xref: /titanic_50/usr/src/uts/common/fs/zfs/dmu.c (revision dc32d872cbeb56532bcea030255db9cd79bac7da)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24  */
25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27 /* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */
28 
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dbuf.h>
33 #include <sys/dnode.h>
34 #include <sys/zfs_context.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dmu_traverse.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/zfs_ioctl.h>
44 #include <sys/zap.h>
45 #include <sys/zio_checksum.h>
46 #include <sys/zio_compress.h>
47 #include <sys/sa.h>
48 #include <sys/zfeature.h>
49 #ifdef _KERNEL
50 #include <sys/vmsystm.h>
51 #include <sys/zfs_znode.h>
52 #endif
53 
54 /*
55  * Enable/disable nopwrite feature.
56  */
57 int zfs_nopwrite_enabled = 1;
58 
59 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
60 	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
61 	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
62 	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
63 	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
64 	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
65 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
66 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
67 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
68 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
69 	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
70 	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
71 	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
72 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
73 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
74 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
75 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
76 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
77 	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
78 	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
79 	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
80 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
81 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
82 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
83 	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
84 	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
85 	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
86 	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
87 	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
88 	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
89 	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
90 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
91 	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
92 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
93 	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
94 	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
95 	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
96 	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
97 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
98 	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
99 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
100 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
101 	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
102 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
103 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
104 	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
105 	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
106 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
107 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
108 	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
109 	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
110 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
111 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
112 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
113 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
114 };
115 
116 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
117 	{	byteswap_uint8_array,	"uint8"		},
118 	{	byteswap_uint16_array,	"uint16"	},
119 	{	byteswap_uint32_array,	"uint32"	},
120 	{	byteswap_uint64_array,	"uint64"	},
121 	{	zap_byteswap,		"zap"		},
122 	{	dnode_buf_byteswap,	"dnode"		},
123 	{	dmu_objset_byteswap,	"objset"	},
124 	{	zfs_znode_byteswap,	"znode"		},
125 	{	zfs_oldacl_byteswap,	"oldacl"	},
126 	{	zfs_acl_byteswap,	"acl"		}
127 };
128 
129 int
130 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
131     void *tag, dmu_buf_t **dbp)
132 {
133 	dnode_t *dn;
134 	uint64_t blkid;
135 	dmu_buf_impl_t *db;
136 	int err;
137 
138 	err = dnode_hold(os, object, FTAG, &dn);
139 	if (err)
140 		return (err);
141 	blkid = dbuf_whichblock(dn, 0, offset);
142 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
143 	db = dbuf_hold(dn, blkid, tag);
144 	rw_exit(&dn->dn_struct_rwlock);
145 	dnode_rele(dn, FTAG);
146 
147 	if (db == NULL) {
148 		*dbp = NULL;
149 		return (SET_ERROR(EIO));
150 	}
151 
152 	*dbp = &db->db;
153 	return (err);
154 }
155 
156 int
157 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
158     void *tag, dmu_buf_t **dbp, int flags)
159 {
160 	int err;
161 	int db_flags = DB_RF_CANFAIL;
162 
163 	if (flags & DMU_READ_NO_PREFETCH)
164 		db_flags |= DB_RF_NOPREFETCH;
165 
166 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
167 	if (err == 0) {
168 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
169 		err = dbuf_read(db, NULL, db_flags);
170 		if (err != 0) {
171 			dbuf_rele(db, tag);
172 			*dbp = NULL;
173 		}
174 	}
175 
176 	return (err);
177 }
178 
179 int
180 dmu_bonus_max(void)
181 {
182 	return (DN_MAX_BONUSLEN);
183 }
184 
185 int
186 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
187 {
188 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
189 	dnode_t *dn;
190 	int error;
191 
192 	DB_DNODE_ENTER(db);
193 	dn = DB_DNODE(db);
194 
195 	if (dn->dn_bonus != db) {
196 		error = SET_ERROR(EINVAL);
197 	} else if (newsize < 0 || newsize > db_fake->db_size) {
198 		error = SET_ERROR(EINVAL);
199 	} else {
200 		dnode_setbonuslen(dn, newsize, tx);
201 		error = 0;
202 	}
203 
204 	DB_DNODE_EXIT(db);
205 	return (error);
206 }
207 
208 int
209 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
210 {
211 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
212 	dnode_t *dn;
213 	int error;
214 
215 	DB_DNODE_ENTER(db);
216 	dn = DB_DNODE(db);
217 
218 	if (!DMU_OT_IS_VALID(type)) {
219 		error = SET_ERROR(EINVAL);
220 	} else if (dn->dn_bonus != db) {
221 		error = SET_ERROR(EINVAL);
222 	} else {
223 		dnode_setbonus_type(dn, type, tx);
224 		error = 0;
225 	}
226 
227 	DB_DNODE_EXIT(db);
228 	return (error);
229 }
230 
231 dmu_object_type_t
232 dmu_get_bonustype(dmu_buf_t *db_fake)
233 {
234 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
235 	dnode_t *dn;
236 	dmu_object_type_t type;
237 
238 	DB_DNODE_ENTER(db);
239 	dn = DB_DNODE(db);
240 	type = dn->dn_bonustype;
241 	DB_DNODE_EXIT(db);
242 
243 	return (type);
244 }
245 
246 int
247 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
248 {
249 	dnode_t *dn;
250 	int error;
251 
252 	error = dnode_hold(os, object, FTAG, &dn);
253 	dbuf_rm_spill(dn, tx);
254 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
255 	dnode_rm_spill(dn, tx);
256 	rw_exit(&dn->dn_struct_rwlock);
257 	dnode_rele(dn, FTAG);
258 	return (error);
259 }
260 
261 /*
262  * returns ENOENT, EIO, or 0.
263  */
264 int
265 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
266 {
267 	dnode_t *dn;
268 	dmu_buf_impl_t *db;
269 	int error;
270 
271 	error = dnode_hold(os, object, FTAG, &dn);
272 	if (error)
273 		return (error);
274 
275 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
276 	if (dn->dn_bonus == NULL) {
277 		rw_exit(&dn->dn_struct_rwlock);
278 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
279 		if (dn->dn_bonus == NULL)
280 			dbuf_create_bonus(dn);
281 	}
282 	db = dn->dn_bonus;
283 
284 	/* as long as the bonus buf is held, the dnode will be held */
285 	if (refcount_add(&db->db_holds, tag) == 1) {
286 		VERIFY(dnode_add_ref(dn, db));
287 		atomic_inc_32(&dn->dn_dbufs_count);
288 	}
289 
290 	/*
291 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
292 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
293 	 * a dnode hold for every dbuf.
294 	 */
295 	rw_exit(&dn->dn_struct_rwlock);
296 
297 	dnode_rele(dn, FTAG);
298 
299 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
300 
301 	*dbp = &db->db;
302 	return (0);
303 }
304 
305 /*
306  * returns ENOENT, EIO, or 0.
307  *
308  * This interface will allocate a blank spill dbuf when a spill blk
309  * doesn't already exist on the dnode.
310  *
311  * if you only want to find an already existing spill db, then
312  * dmu_spill_hold_existing() should be used.
313  */
314 int
315 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
316 {
317 	dmu_buf_impl_t *db = NULL;
318 	int err;
319 
320 	if ((flags & DB_RF_HAVESTRUCT) == 0)
321 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
322 
323 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
324 
325 	if ((flags & DB_RF_HAVESTRUCT) == 0)
326 		rw_exit(&dn->dn_struct_rwlock);
327 
328 	ASSERT(db != NULL);
329 	err = dbuf_read(db, NULL, flags);
330 	if (err == 0)
331 		*dbp = &db->db;
332 	else
333 		dbuf_rele(db, tag);
334 	return (err);
335 }
336 
337 int
338 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
339 {
340 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
341 	dnode_t *dn;
342 	int err;
343 
344 	DB_DNODE_ENTER(db);
345 	dn = DB_DNODE(db);
346 
347 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
348 		err = SET_ERROR(EINVAL);
349 	} else {
350 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
351 
352 		if (!dn->dn_have_spill) {
353 			err = SET_ERROR(ENOENT);
354 		} else {
355 			err = dmu_spill_hold_by_dnode(dn,
356 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
357 		}
358 
359 		rw_exit(&dn->dn_struct_rwlock);
360 	}
361 
362 	DB_DNODE_EXIT(db);
363 	return (err);
364 }
365 
366 int
367 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
368 {
369 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
370 	dnode_t *dn;
371 	int err;
372 
373 	DB_DNODE_ENTER(db);
374 	dn = DB_DNODE(db);
375 	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
376 	DB_DNODE_EXIT(db);
377 
378 	return (err);
379 }
380 
381 /*
382  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
383  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
384  * and can induce severe lock contention when writing to several files
385  * whose dnodes are in the same block.
386  */
387 static int
388 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
389     boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
390 {
391 	dmu_buf_t **dbp;
392 	uint64_t blkid, nblks, i;
393 	uint32_t dbuf_flags;
394 	int err;
395 	zio_t *zio;
396 
397 	ASSERT(length <= DMU_MAX_ACCESS);
398 
399 	/*
400 	 * Note: We directly notify the prefetch code of this read, so that
401 	 * we can tell it about the multi-block read.  dbuf_read() only knows
402 	 * about the one block it is accessing.
403 	 */
404 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
405 	    DB_RF_NOPREFETCH;
406 
407 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
408 	if (dn->dn_datablkshift) {
409 		int blkshift = dn->dn_datablkshift;
410 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
411 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
412 	} else {
413 		if (offset + length > dn->dn_datablksz) {
414 			zfs_panic_recover("zfs: accessing past end of object "
415 			    "%llx/%llx (size=%u access=%llu+%llu)",
416 			    (longlong_t)dn->dn_objset->
417 			    os_dsl_dataset->ds_object,
418 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
419 			    (longlong_t)offset, (longlong_t)length);
420 			rw_exit(&dn->dn_struct_rwlock);
421 			return (SET_ERROR(EIO));
422 		}
423 		nblks = 1;
424 	}
425 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
426 
427 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
428 	blkid = dbuf_whichblock(dn, 0, offset);
429 	for (i = 0; i < nblks; i++) {
430 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
431 		if (db == NULL) {
432 			rw_exit(&dn->dn_struct_rwlock);
433 			dmu_buf_rele_array(dbp, nblks, tag);
434 			zio_nowait(zio);
435 			return (SET_ERROR(EIO));
436 		}
437 
438 		/* initiate async i/o */
439 		if (read)
440 			(void) dbuf_read(db, zio, dbuf_flags);
441 		dbp[i] = &db->db;
442 	}
443 
444 	if ((flags & DMU_READ_NO_PREFETCH) == 0 && read &&
445 	    length <= zfetch_array_rd_sz) {
446 		dmu_zfetch(&dn->dn_zfetch, blkid, nblks);
447 	}
448 	rw_exit(&dn->dn_struct_rwlock);
449 
450 	/* wait for async i/o */
451 	err = zio_wait(zio);
452 	if (err) {
453 		dmu_buf_rele_array(dbp, nblks, tag);
454 		return (err);
455 	}
456 
457 	/* wait for other io to complete */
458 	if (read) {
459 		for (i = 0; i < nblks; i++) {
460 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
461 			mutex_enter(&db->db_mtx);
462 			while (db->db_state == DB_READ ||
463 			    db->db_state == DB_FILL)
464 				cv_wait(&db->db_changed, &db->db_mtx);
465 			if (db->db_state == DB_UNCACHED)
466 				err = SET_ERROR(EIO);
467 			mutex_exit(&db->db_mtx);
468 			if (err) {
469 				dmu_buf_rele_array(dbp, nblks, tag);
470 				return (err);
471 			}
472 		}
473 	}
474 
475 	*numbufsp = nblks;
476 	*dbpp = dbp;
477 	return (0);
478 }
479 
480 static int
481 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
482     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
483 {
484 	dnode_t *dn;
485 	int err;
486 
487 	err = dnode_hold(os, object, FTAG, &dn);
488 	if (err)
489 		return (err);
490 
491 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
492 	    numbufsp, dbpp, DMU_READ_PREFETCH);
493 
494 	dnode_rele(dn, FTAG);
495 
496 	return (err);
497 }
498 
499 int
500 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
501     uint64_t length, boolean_t read, void *tag, int *numbufsp,
502     dmu_buf_t ***dbpp)
503 {
504 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
505 	dnode_t *dn;
506 	int err;
507 
508 	DB_DNODE_ENTER(db);
509 	dn = DB_DNODE(db);
510 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
511 	    numbufsp, dbpp, DMU_READ_PREFETCH);
512 	DB_DNODE_EXIT(db);
513 
514 	return (err);
515 }
516 
517 void
518 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
519 {
520 	int i;
521 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
522 
523 	if (numbufs == 0)
524 		return;
525 
526 	for (i = 0; i < numbufs; i++) {
527 		if (dbp[i])
528 			dbuf_rele(dbp[i], tag);
529 	}
530 
531 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
532 }
533 
534 /*
535  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
536  * indirect blocks prefeteched will be those that point to the blocks containing
537  * the data starting at offset, and continuing to offset + len.
538  *
539  * Note that if the indirect blocks above the blocks being prefetched are not in
540  * cache, they will be asychronously read in.
541  */
542 void
543 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
544     uint64_t len, zio_priority_t pri)
545 {
546 	dnode_t *dn;
547 	uint64_t blkid;
548 	int nblks, err;
549 
550 	if (len == 0) {  /* they're interested in the bonus buffer */
551 		dn = DMU_META_DNODE(os);
552 
553 		if (object == 0 || object >= DN_MAX_OBJECT)
554 			return;
555 
556 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
557 		blkid = dbuf_whichblock(dn, level,
558 		    object * sizeof (dnode_phys_t));
559 		dbuf_prefetch(dn, level, blkid, pri, 0);
560 		rw_exit(&dn->dn_struct_rwlock);
561 		return;
562 	}
563 
564 	/*
565 	 * XXX - Note, if the dnode for the requested object is not
566 	 * already cached, we will do a *synchronous* read in the
567 	 * dnode_hold() call.  The same is true for any indirects.
568 	 */
569 	err = dnode_hold(os, object, FTAG, &dn);
570 	if (err != 0)
571 		return;
572 
573 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
574 	/*
575 	 * offset + len - 1 is the last byte we want to prefetch for, and offset
576 	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
577 	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
578 	 * offset)  is the first.  Then the number we need to prefetch is the
579 	 * last - first + 1.
580 	 */
581 	if (level > 0 || dn->dn_datablkshift != 0) {
582 		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
583 		    dbuf_whichblock(dn, level, offset) + 1;
584 	} else {
585 		nblks = (offset < dn->dn_datablksz);
586 	}
587 
588 	if (nblks != 0) {
589 		blkid = dbuf_whichblock(dn, level, offset);
590 		for (int i = 0; i < nblks; i++)
591 			dbuf_prefetch(dn, level, blkid + i, pri, 0);
592 	}
593 
594 	rw_exit(&dn->dn_struct_rwlock);
595 
596 	dnode_rele(dn, FTAG);
597 }
598 
599 /*
600  * Get the next "chunk" of file data to free.  We traverse the file from
601  * the end so that the file gets shorter over time (if we crashes in the
602  * middle, this will leave us in a better state).  We find allocated file
603  * data by simply searching the allocated level 1 indirects.
604  *
605  * On input, *start should be the first offset that does not need to be
606  * freed (e.g. "offset + length").  On return, *start will be the first
607  * offset that should be freed.
608  */
609 static int
610 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
611 {
612 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
613 	/* bytes of data covered by a level-1 indirect block */
614 	uint64_t iblkrange =
615 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
616 
617 	ASSERT3U(minimum, <=, *start);
618 
619 	if (*start - minimum <= iblkrange * maxblks) {
620 		*start = minimum;
621 		return (0);
622 	}
623 	ASSERT(ISP2(iblkrange));
624 
625 	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
626 		int err;
627 
628 		/*
629 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
630 		 * indirect block at or before the input offset.  We must
631 		 * decrement *start so that it is at the end of the region
632 		 * to search.
633 		 */
634 		(*start)--;
635 		err = dnode_next_offset(dn,
636 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
637 
638 		/* if there are no indirect blocks before start, we are done */
639 		if (err == ESRCH) {
640 			*start = minimum;
641 			break;
642 		} else if (err != 0) {
643 			return (err);
644 		}
645 
646 		/* set start to the beginning of this L1 indirect */
647 		*start = P2ALIGN(*start, iblkrange);
648 	}
649 	if (*start < minimum)
650 		*start = minimum;
651 	return (0);
652 }
653 
654 static int
655 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
656     uint64_t length)
657 {
658 	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
659 	int err;
660 
661 	if (offset >= object_size)
662 		return (0);
663 
664 	if (length == DMU_OBJECT_END || offset + length > object_size)
665 		length = object_size - offset;
666 
667 	while (length != 0) {
668 		uint64_t chunk_end, chunk_begin;
669 
670 		chunk_end = chunk_begin = offset + length;
671 
672 		/* move chunk_begin backwards to the beginning of this chunk */
673 		err = get_next_chunk(dn, &chunk_begin, offset);
674 		if (err)
675 			return (err);
676 		ASSERT3U(chunk_begin, >=, offset);
677 		ASSERT3U(chunk_begin, <=, chunk_end);
678 
679 		dmu_tx_t *tx = dmu_tx_create(os);
680 		dmu_tx_hold_free(tx, dn->dn_object,
681 		    chunk_begin, chunk_end - chunk_begin);
682 
683 		/*
684 		 * Mark this transaction as typically resulting in a net
685 		 * reduction in space used.
686 		 */
687 		dmu_tx_mark_netfree(tx);
688 		err = dmu_tx_assign(tx, TXG_WAIT);
689 		if (err) {
690 			dmu_tx_abort(tx);
691 			return (err);
692 		}
693 		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
694 		dmu_tx_commit(tx);
695 
696 		length -= chunk_end - chunk_begin;
697 	}
698 	return (0);
699 }
700 
701 int
702 dmu_free_long_range(objset_t *os, uint64_t object,
703     uint64_t offset, uint64_t length)
704 {
705 	dnode_t *dn;
706 	int err;
707 
708 	err = dnode_hold(os, object, FTAG, &dn);
709 	if (err != 0)
710 		return (err);
711 	err = dmu_free_long_range_impl(os, dn, offset, length);
712 
713 	/*
714 	 * It is important to zero out the maxblkid when freeing the entire
715 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
716 	 * will take the fast path, and (b) dnode_reallocate() can verify
717 	 * that the entire file has been freed.
718 	 */
719 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
720 		dn->dn_maxblkid = 0;
721 
722 	dnode_rele(dn, FTAG);
723 	return (err);
724 }
725 
726 int
727 dmu_free_long_object(objset_t *os, uint64_t object)
728 {
729 	dmu_tx_t *tx;
730 	int err;
731 
732 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
733 	if (err != 0)
734 		return (err);
735 
736 	tx = dmu_tx_create(os);
737 	dmu_tx_hold_bonus(tx, object);
738 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
739 	dmu_tx_mark_netfree(tx);
740 	err = dmu_tx_assign(tx, TXG_WAIT);
741 	if (err == 0) {
742 		err = dmu_object_free(os, object, tx);
743 		dmu_tx_commit(tx);
744 	} else {
745 		dmu_tx_abort(tx);
746 	}
747 
748 	return (err);
749 }
750 
751 int
752 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
753     uint64_t size, dmu_tx_t *tx)
754 {
755 	dnode_t *dn;
756 	int err = dnode_hold(os, object, FTAG, &dn);
757 	if (err)
758 		return (err);
759 	ASSERT(offset < UINT64_MAX);
760 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
761 	dnode_free_range(dn, offset, size, tx);
762 	dnode_rele(dn, FTAG);
763 	return (0);
764 }
765 
766 int
767 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
768     void *buf, uint32_t flags)
769 {
770 	dnode_t *dn;
771 	dmu_buf_t **dbp;
772 	int numbufs, err;
773 
774 	err = dnode_hold(os, object, FTAG, &dn);
775 	if (err)
776 		return (err);
777 
778 	/*
779 	 * Deal with odd block sizes, where there can't be data past the first
780 	 * block.  If we ever do the tail block optimization, we will need to
781 	 * handle that here as well.
782 	 */
783 	if (dn->dn_maxblkid == 0) {
784 		int newsz = offset > dn->dn_datablksz ? 0 :
785 		    MIN(size, dn->dn_datablksz - offset);
786 		bzero((char *)buf + newsz, size - newsz);
787 		size = newsz;
788 	}
789 
790 	while (size > 0) {
791 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
792 		int i;
793 
794 		/*
795 		 * NB: we could do this block-at-a-time, but it's nice
796 		 * to be reading in parallel.
797 		 */
798 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
799 		    TRUE, FTAG, &numbufs, &dbp, flags);
800 		if (err)
801 			break;
802 
803 		for (i = 0; i < numbufs; i++) {
804 			int tocpy;
805 			int bufoff;
806 			dmu_buf_t *db = dbp[i];
807 
808 			ASSERT(size > 0);
809 
810 			bufoff = offset - db->db_offset;
811 			tocpy = (int)MIN(db->db_size - bufoff, size);
812 
813 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
814 
815 			offset += tocpy;
816 			size -= tocpy;
817 			buf = (char *)buf + tocpy;
818 		}
819 		dmu_buf_rele_array(dbp, numbufs, FTAG);
820 	}
821 	dnode_rele(dn, FTAG);
822 	return (err);
823 }
824 
825 void
826 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
827     const void *buf, dmu_tx_t *tx)
828 {
829 	dmu_buf_t **dbp;
830 	int numbufs, i;
831 
832 	if (size == 0)
833 		return;
834 
835 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
836 	    FALSE, FTAG, &numbufs, &dbp));
837 
838 	for (i = 0; i < numbufs; i++) {
839 		int tocpy;
840 		int bufoff;
841 		dmu_buf_t *db = dbp[i];
842 
843 		ASSERT(size > 0);
844 
845 		bufoff = offset - db->db_offset;
846 		tocpy = (int)MIN(db->db_size - bufoff, size);
847 
848 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
849 
850 		if (tocpy == db->db_size)
851 			dmu_buf_will_fill(db, tx);
852 		else
853 			dmu_buf_will_dirty(db, tx);
854 
855 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
856 
857 		if (tocpy == db->db_size)
858 			dmu_buf_fill_done(db, tx);
859 
860 		offset += tocpy;
861 		size -= tocpy;
862 		buf = (char *)buf + tocpy;
863 	}
864 	dmu_buf_rele_array(dbp, numbufs, FTAG);
865 }
866 
867 void
868 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
869     dmu_tx_t *tx)
870 {
871 	dmu_buf_t **dbp;
872 	int numbufs, i;
873 
874 	if (size == 0)
875 		return;
876 
877 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
878 	    FALSE, FTAG, &numbufs, &dbp));
879 
880 	for (i = 0; i < numbufs; i++) {
881 		dmu_buf_t *db = dbp[i];
882 
883 		dmu_buf_will_not_fill(db, tx);
884 	}
885 	dmu_buf_rele_array(dbp, numbufs, FTAG);
886 }
887 
888 void
889 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
890     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
891     int compressed_size, int byteorder, dmu_tx_t *tx)
892 {
893 	dmu_buf_t *db;
894 
895 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
896 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
897 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
898 	    FTAG, &db));
899 
900 	dmu_buf_write_embedded(db,
901 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
902 	    uncompressed_size, compressed_size, byteorder, tx);
903 
904 	dmu_buf_rele(db, FTAG);
905 }
906 
907 /*
908  * DMU support for xuio
909  */
910 kstat_t *xuio_ksp = NULL;
911 
912 int
913 dmu_xuio_init(xuio_t *xuio, int nblk)
914 {
915 	dmu_xuio_t *priv;
916 	uio_t *uio = &xuio->xu_uio;
917 
918 	uio->uio_iovcnt = nblk;
919 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
920 
921 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
922 	priv->cnt = nblk;
923 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
924 	priv->iovp = uio->uio_iov;
925 	XUIO_XUZC_PRIV(xuio) = priv;
926 
927 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
928 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
929 	else
930 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
931 
932 	return (0);
933 }
934 
935 void
936 dmu_xuio_fini(xuio_t *xuio)
937 {
938 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
939 	int nblk = priv->cnt;
940 
941 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
942 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
943 	kmem_free(priv, sizeof (dmu_xuio_t));
944 
945 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
946 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
947 	else
948 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
949 }
950 
951 /*
952  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
953  * and increase priv->next by 1.
954  */
955 int
956 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
957 {
958 	struct iovec *iov;
959 	uio_t *uio = &xuio->xu_uio;
960 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
961 	int i = priv->next++;
962 
963 	ASSERT(i < priv->cnt);
964 	ASSERT(off + n <= arc_buf_size(abuf));
965 	iov = uio->uio_iov + i;
966 	iov->iov_base = (char *)abuf->b_data + off;
967 	iov->iov_len = n;
968 	priv->bufs[i] = abuf;
969 	return (0);
970 }
971 
972 int
973 dmu_xuio_cnt(xuio_t *xuio)
974 {
975 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
976 	return (priv->cnt);
977 }
978 
979 arc_buf_t *
980 dmu_xuio_arcbuf(xuio_t *xuio, int i)
981 {
982 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
983 
984 	ASSERT(i < priv->cnt);
985 	return (priv->bufs[i]);
986 }
987 
988 void
989 dmu_xuio_clear(xuio_t *xuio, int i)
990 {
991 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
992 
993 	ASSERT(i < priv->cnt);
994 	priv->bufs[i] = NULL;
995 }
996 
997 static void
998 xuio_stat_init(void)
999 {
1000 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1001 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1002 	    KSTAT_FLAG_VIRTUAL);
1003 	if (xuio_ksp != NULL) {
1004 		xuio_ksp->ks_data = &xuio_stats;
1005 		kstat_install(xuio_ksp);
1006 	}
1007 }
1008 
1009 static void
1010 xuio_stat_fini(void)
1011 {
1012 	if (xuio_ksp != NULL) {
1013 		kstat_delete(xuio_ksp);
1014 		xuio_ksp = NULL;
1015 	}
1016 }
1017 
1018 void
1019 xuio_stat_wbuf_copied()
1020 {
1021 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1022 }
1023 
1024 void
1025 xuio_stat_wbuf_nocopy()
1026 {
1027 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1028 }
1029 
1030 #ifdef _KERNEL
1031 static int
1032 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1033 {
1034 	dmu_buf_t **dbp;
1035 	int numbufs, i, err;
1036 	xuio_t *xuio = NULL;
1037 
1038 	/*
1039 	 * NB: we could do this block-at-a-time, but it's nice
1040 	 * to be reading in parallel.
1041 	 */
1042 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1043 	    TRUE, FTAG, &numbufs, &dbp, 0);
1044 	if (err)
1045 		return (err);
1046 
1047 	if (uio->uio_extflg == UIO_XUIO)
1048 		xuio = (xuio_t *)uio;
1049 
1050 	for (i = 0; i < numbufs; i++) {
1051 		int tocpy;
1052 		int bufoff;
1053 		dmu_buf_t *db = dbp[i];
1054 
1055 		ASSERT(size > 0);
1056 
1057 		bufoff = uio->uio_loffset - db->db_offset;
1058 		tocpy = (int)MIN(db->db_size - bufoff, size);
1059 
1060 		if (xuio) {
1061 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1062 			arc_buf_t *dbuf_abuf = dbi->db_buf;
1063 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1064 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1065 			if (!err) {
1066 				uio->uio_resid -= tocpy;
1067 				uio->uio_loffset += tocpy;
1068 			}
1069 
1070 			if (abuf == dbuf_abuf)
1071 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1072 			else
1073 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1074 		} else {
1075 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1076 			    UIO_READ, uio);
1077 		}
1078 		if (err)
1079 			break;
1080 
1081 		size -= tocpy;
1082 	}
1083 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1084 
1085 	return (err);
1086 }
1087 
1088 /*
1089  * Read 'size' bytes into the uio buffer.
1090  * From object zdb->db_object.
1091  * Starting at offset uio->uio_loffset.
1092  *
1093  * If the caller already has a dbuf in the target object
1094  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1095  * because we don't have to find the dnode_t for the object.
1096  */
1097 int
1098 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1099 {
1100 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1101 	dnode_t *dn;
1102 	int err;
1103 
1104 	if (size == 0)
1105 		return (0);
1106 
1107 	DB_DNODE_ENTER(db);
1108 	dn = DB_DNODE(db);
1109 	err = dmu_read_uio_dnode(dn, uio, size);
1110 	DB_DNODE_EXIT(db);
1111 
1112 	return (err);
1113 }
1114 
1115 /*
1116  * Read 'size' bytes into the uio buffer.
1117  * From the specified object
1118  * Starting at offset uio->uio_loffset.
1119  */
1120 int
1121 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1122 {
1123 	dnode_t *dn;
1124 	int err;
1125 
1126 	if (size == 0)
1127 		return (0);
1128 
1129 	err = dnode_hold(os, object, FTAG, &dn);
1130 	if (err)
1131 		return (err);
1132 
1133 	err = dmu_read_uio_dnode(dn, uio, size);
1134 
1135 	dnode_rele(dn, FTAG);
1136 
1137 	return (err);
1138 }
1139 
1140 static int
1141 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1142 {
1143 	dmu_buf_t **dbp;
1144 	int numbufs;
1145 	int err = 0;
1146 	int i;
1147 
1148 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1149 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1150 	if (err)
1151 		return (err);
1152 
1153 	for (i = 0; i < numbufs; i++) {
1154 		int tocpy;
1155 		int bufoff;
1156 		dmu_buf_t *db = dbp[i];
1157 
1158 		ASSERT(size > 0);
1159 
1160 		bufoff = uio->uio_loffset - db->db_offset;
1161 		tocpy = (int)MIN(db->db_size - bufoff, size);
1162 
1163 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1164 
1165 		if (tocpy == db->db_size)
1166 			dmu_buf_will_fill(db, tx);
1167 		else
1168 			dmu_buf_will_dirty(db, tx);
1169 
1170 		/*
1171 		 * XXX uiomove could block forever (eg. nfs-backed
1172 		 * pages).  There needs to be a uiolockdown() function
1173 		 * to lock the pages in memory, so that uiomove won't
1174 		 * block.
1175 		 */
1176 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1177 		    UIO_WRITE, uio);
1178 
1179 		if (tocpy == db->db_size)
1180 			dmu_buf_fill_done(db, tx);
1181 
1182 		if (err)
1183 			break;
1184 
1185 		size -= tocpy;
1186 	}
1187 
1188 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1189 	return (err);
1190 }
1191 
1192 /*
1193  * Write 'size' bytes from the uio buffer.
1194  * To object zdb->db_object.
1195  * Starting at offset uio->uio_loffset.
1196  *
1197  * If the caller already has a dbuf in the target object
1198  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1199  * because we don't have to find the dnode_t for the object.
1200  */
1201 int
1202 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1203     dmu_tx_t *tx)
1204 {
1205 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1206 	dnode_t *dn;
1207 	int err;
1208 
1209 	if (size == 0)
1210 		return (0);
1211 
1212 	DB_DNODE_ENTER(db);
1213 	dn = DB_DNODE(db);
1214 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1215 	DB_DNODE_EXIT(db);
1216 
1217 	return (err);
1218 }
1219 
1220 /*
1221  * Write 'size' bytes from the uio buffer.
1222  * To the specified object.
1223  * Starting at offset uio->uio_loffset.
1224  */
1225 int
1226 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1227     dmu_tx_t *tx)
1228 {
1229 	dnode_t *dn;
1230 	int err;
1231 
1232 	if (size == 0)
1233 		return (0);
1234 
1235 	err = dnode_hold(os, object, FTAG, &dn);
1236 	if (err)
1237 		return (err);
1238 
1239 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1240 
1241 	dnode_rele(dn, FTAG);
1242 
1243 	return (err);
1244 }
1245 
1246 int
1247 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1248     page_t *pp, dmu_tx_t *tx)
1249 {
1250 	dmu_buf_t **dbp;
1251 	int numbufs, i;
1252 	int err;
1253 
1254 	if (size == 0)
1255 		return (0);
1256 
1257 	err = dmu_buf_hold_array(os, object, offset, size,
1258 	    FALSE, FTAG, &numbufs, &dbp);
1259 	if (err)
1260 		return (err);
1261 
1262 	for (i = 0; i < numbufs; i++) {
1263 		int tocpy, copied, thiscpy;
1264 		int bufoff;
1265 		dmu_buf_t *db = dbp[i];
1266 		caddr_t va;
1267 
1268 		ASSERT(size > 0);
1269 		ASSERT3U(db->db_size, >=, PAGESIZE);
1270 
1271 		bufoff = offset - db->db_offset;
1272 		tocpy = (int)MIN(db->db_size - bufoff, size);
1273 
1274 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1275 
1276 		if (tocpy == db->db_size)
1277 			dmu_buf_will_fill(db, tx);
1278 		else
1279 			dmu_buf_will_dirty(db, tx);
1280 
1281 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1282 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1283 			thiscpy = MIN(PAGESIZE, tocpy - copied);
1284 			va = zfs_map_page(pp, S_READ);
1285 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1286 			zfs_unmap_page(pp, va);
1287 			pp = pp->p_next;
1288 			bufoff += PAGESIZE;
1289 		}
1290 
1291 		if (tocpy == db->db_size)
1292 			dmu_buf_fill_done(db, tx);
1293 
1294 		offset += tocpy;
1295 		size -= tocpy;
1296 	}
1297 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1298 	return (err);
1299 }
1300 #endif
1301 
1302 /*
1303  * Allocate a loaned anonymous arc buffer.
1304  */
1305 arc_buf_t *
1306 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1307 {
1308 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1309 
1310 	return (arc_loan_buf(db->db_objset->os_spa, size));
1311 }
1312 
1313 /*
1314  * Free a loaned arc buffer.
1315  */
1316 void
1317 dmu_return_arcbuf(arc_buf_t *buf)
1318 {
1319 	arc_return_buf(buf, FTAG);
1320 	VERIFY(arc_buf_remove_ref(buf, FTAG));
1321 }
1322 
1323 /*
1324  * When possible directly assign passed loaned arc buffer to a dbuf.
1325  * If this is not possible copy the contents of passed arc buf via
1326  * dmu_write().
1327  */
1328 void
1329 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1330     dmu_tx_t *tx)
1331 {
1332 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1333 	dnode_t *dn;
1334 	dmu_buf_impl_t *db;
1335 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1336 	uint64_t blkid;
1337 
1338 	DB_DNODE_ENTER(dbuf);
1339 	dn = DB_DNODE(dbuf);
1340 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1341 	blkid = dbuf_whichblock(dn, 0, offset);
1342 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1343 	rw_exit(&dn->dn_struct_rwlock);
1344 	DB_DNODE_EXIT(dbuf);
1345 
1346 	/*
1347 	 * We can only assign if the offset is aligned, the arc buf is the
1348 	 * same size as the dbuf, and the dbuf is not metadata.  It
1349 	 * can't be metadata because the loaned arc buf comes from the
1350 	 * user-data kmem arena.
1351 	 */
1352 	if (offset == db->db.db_offset && blksz == db->db.db_size &&
1353 	    DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) {
1354 		dbuf_assign_arcbuf(db, buf, tx);
1355 		dbuf_rele(db, FTAG);
1356 	} else {
1357 		objset_t *os;
1358 		uint64_t object;
1359 
1360 		DB_DNODE_ENTER(dbuf);
1361 		dn = DB_DNODE(dbuf);
1362 		os = dn->dn_objset;
1363 		object = dn->dn_object;
1364 		DB_DNODE_EXIT(dbuf);
1365 
1366 		dbuf_rele(db, FTAG);
1367 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1368 		dmu_return_arcbuf(buf);
1369 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1370 	}
1371 }
1372 
1373 typedef struct {
1374 	dbuf_dirty_record_t	*dsa_dr;
1375 	dmu_sync_cb_t		*dsa_done;
1376 	zgd_t			*dsa_zgd;
1377 	dmu_tx_t		*dsa_tx;
1378 } dmu_sync_arg_t;
1379 
1380 /* ARGSUSED */
1381 static void
1382 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1383 {
1384 	dmu_sync_arg_t *dsa = varg;
1385 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1386 	blkptr_t *bp = zio->io_bp;
1387 
1388 	if (zio->io_error == 0) {
1389 		if (BP_IS_HOLE(bp)) {
1390 			/*
1391 			 * A block of zeros may compress to a hole, but the
1392 			 * block size still needs to be known for replay.
1393 			 */
1394 			BP_SET_LSIZE(bp, db->db_size);
1395 		} else if (!BP_IS_EMBEDDED(bp)) {
1396 			ASSERT(BP_GET_LEVEL(bp) == 0);
1397 			bp->blk_fill = 1;
1398 		}
1399 	}
1400 }
1401 
1402 static void
1403 dmu_sync_late_arrival_ready(zio_t *zio)
1404 {
1405 	dmu_sync_ready(zio, NULL, zio->io_private);
1406 }
1407 
1408 /* ARGSUSED */
1409 static void
1410 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1411 {
1412 	dmu_sync_arg_t *dsa = varg;
1413 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1414 	dmu_buf_impl_t *db = dr->dr_dbuf;
1415 
1416 	mutex_enter(&db->db_mtx);
1417 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1418 	if (zio->io_error == 0) {
1419 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1420 		if (dr->dt.dl.dr_nopwrite) {
1421 			blkptr_t *bp = zio->io_bp;
1422 			blkptr_t *bp_orig = &zio->io_bp_orig;
1423 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1424 
1425 			ASSERT(BP_EQUAL(bp, bp_orig));
1426 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1427 			ASSERT(zio_checksum_table[chksum].ci_flags &
1428 			    ZCHECKSUM_FLAG_NOPWRITE);
1429 		}
1430 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1431 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1432 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1433 
1434 		/*
1435 		 * Old style holes are filled with all zeros, whereas
1436 		 * new-style holes maintain their lsize, type, level,
1437 		 * and birth time (see zio_write_compress). While we
1438 		 * need to reset the BP_SET_LSIZE() call that happened
1439 		 * in dmu_sync_ready for old style holes, we do *not*
1440 		 * want to wipe out the information contained in new
1441 		 * style holes. Thus, only zero out the block pointer if
1442 		 * it's an old style hole.
1443 		 */
1444 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1445 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1446 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1447 	} else {
1448 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1449 	}
1450 	cv_broadcast(&db->db_changed);
1451 	mutex_exit(&db->db_mtx);
1452 
1453 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1454 
1455 	kmem_free(dsa, sizeof (*dsa));
1456 }
1457 
1458 static void
1459 dmu_sync_late_arrival_done(zio_t *zio)
1460 {
1461 	blkptr_t *bp = zio->io_bp;
1462 	dmu_sync_arg_t *dsa = zio->io_private;
1463 	blkptr_t *bp_orig = &zio->io_bp_orig;
1464 
1465 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1466 		/*
1467 		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1468 		 * then there is nothing to do here. Otherwise, free the
1469 		 * newly allocated block in this txg.
1470 		 */
1471 		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1472 			ASSERT(BP_EQUAL(bp, bp_orig));
1473 		} else {
1474 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1475 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1476 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1477 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1478 		}
1479 	}
1480 
1481 	dmu_tx_commit(dsa->dsa_tx);
1482 
1483 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1484 
1485 	kmem_free(dsa, sizeof (*dsa));
1486 }
1487 
1488 static int
1489 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1490     zio_prop_t *zp, zbookmark_phys_t *zb)
1491 {
1492 	dmu_sync_arg_t *dsa;
1493 	dmu_tx_t *tx;
1494 
1495 	tx = dmu_tx_create(os);
1496 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1497 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1498 		dmu_tx_abort(tx);
1499 		/* Make zl_get_data do txg_waited_synced() */
1500 		return (SET_ERROR(EIO));
1501 	}
1502 
1503 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1504 	dsa->dsa_dr = NULL;
1505 	dsa->dsa_done = done;
1506 	dsa->dsa_zgd = zgd;
1507 	dsa->dsa_tx = tx;
1508 
1509 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1510 	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1511 	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1512 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1513 
1514 	return (0);
1515 }
1516 
1517 /*
1518  * Intent log support: sync the block associated with db to disk.
1519  * N.B. and XXX: the caller is responsible for making sure that the
1520  * data isn't changing while dmu_sync() is writing it.
1521  *
1522  * Return values:
1523  *
1524  *	EEXIST: this txg has already been synced, so there's nothing to do.
1525  *		The caller should not log the write.
1526  *
1527  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1528  *		The caller should not log the write.
1529  *
1530  *	EALREADY: this block is already in the process of being synced.
1531  *		The caller should track its progress (somehow).
1532  *
1533  *	EIO: could not do the I/O.
1534  *		The caller should do a txg_wait_synced().
1535  *
1536  *	0: the I/O has been initiated.
1537  *		The caller should log this blkptr in the done callback.
1538  *		It is possible that the I/O will fail, in which case
1539  *		the error will be reported to the done callback and
1540  *		propagated to pio from zio_done().
1541  */
1542 int
1543 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1544 {
1545 	blkptr_t *bp = zgd->zgd_bp;
1546 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1547 	objset_t *os = db->db_objset;
1548 	dsl_dataset_t *ds = os->os_dsl_dataset;
1549 	dbuf_dirty_record_t *dr;
1550 	dmu_sync_arg_t *dsa;
1551 	zbookmark_phys_t zb;
1552 	zio_prop_t zp;
1553 	dnode_t *dn;
1554 
1555 	ASSERT(pio != NULL);
1556 	ASSERT(txg != 0);
1557 
1558 	SET_BOOKMARK(&zb, ds->ds_object,
1559 	    db->db.db_object, db->db_level, db->db_blkid);
1560 
1561 	DB_DNODE_ENTER(db);
1562 	dn = DB_DNODE(db);
1563 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1564 	DB_DNODE_EXIT(db);
1565 
1566 	/*
1567 	 * If we're frozen (running ziltest), we always need to generate a bp.
1568 	 */
1569 	if (txg > spa_freeze_txg(os->os_spa))
1570 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1571 
1572 	/*
1573 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1574 	 * and us.  If we determine that this txg is not yet syncing,
1575 	 * but it begins to sync a moment later, that's OK because the
1576 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1577 	 */
1578 	mutex_enter(&db->db_mtx);
1579 
1580 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1581 		/*
1582 		 * This txg has already synced.  There's nothing to do.
1583 		 */
1584 		mutex_exit(&db->db_mtx);
1585 		return (SET_ERROR(EEXIST));
1586 	}
1587 
1588 	if (txg <= spa_syncing_txg(os->os_spa)) {
1589 		/*
1590 		 * This txg is currently syncing, so we can't mess with
1591 		 * the dirty record anymore; just write a new log block.
1592 		 */
1593 		mutex_exit(&db->db_mtx);
1594 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1595 	}
1596 
1597 	dr = db->db_last_dirty;
1598 	while (dr && dr->dr_txg != txg)
1599 		dr = dr->dr_next;
1600 
1601 	if (dr == NULL) {
1602 		/*
1603 		 * There's no dr for this dbuf, so it must have been freed.
1604 		 * There's no need to log writes to freed blocks, so we're done.
1605 		 */
1606 		mutex_exit(&db->db_mtx);
1607 		return (SET_ERROR(ENOENT));
1608 	}
1609 
1610 	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1611 
1612 	/*
1613 	 * Assume the on-disk data is X, the current syncing data (in
1614 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1615 	 * in dmu_sync).
1616 	 *
1617 	 * We usually want to perform a nopwrite if X and Z are the
1618 	 * same.  However, if Y is different (i.e. the BP is going to
1619 	 * change before this write takes effect), then a nopwrite will
1620 	 * be incorrect - we would override with X, which could have
1621 	 * been freed when Y was written.
1622 	 *
1623 	 * (Note that this is not a concern when we are nop-writing from
1624 	 * syncing context, because X and Y must be identical, because
1625 	 * all previous txgs have been synced.)
1626 	 *
1627 	 * Therefore, we disable nopwrite if the current BP could change
1628 	 * before this TXG.  There are two ways it could change: by
1629 	 * being dirty (dr_next is non-NULL), or by being freed
1630 	 * (dnode_block_freed()).  This behavior is verified by
1631 	 * zio_done(), which VERIFYs that the override BP is identical
1632 	 * to the on-disk BP.
1633 	 */
1634 	DB_DNODE_ENTER(db);
1635 	dn = DB_DNODE(db);
1636 	if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1637 		zp.zp_nopwrite = B_FALSE;
1638 	DB_DNODE_EXIT(db);
1639 
1640 	ASSERT(dr->dr_txg == txg);
1641 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1642 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1643 		/*
1644 		 * We have already issued a sync write for this buffer,
1645 		 * or this buffer has already been synced.  It could not
1646 		 * have been dirtied since, or we would have cleared the state.
1647 		 */
1648 		mutex_exit(&db->db_mtx);
1649 		return (SET_ERROR(EALREADY));
1650 	}
1651 
1652 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1653 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1654 	mutex_exit(&db->db_mtx);
1655 
1656 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1657 	dsa->dsa_dr = dr;
1658 	dsa->dsa_done = done;
1659 	dsa->dsa_zgd = zgd;
1660 	dsa->dsa_tx = NULL;
1661 
1662 	zio_nowait(arc_write(pio, os->os_spa, txg,
1663 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1664 	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1665 	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1666 	    ZIO_FLAG_CANFAIL, &zb));
1667 
1668 	return (0);
1669 }
1670 
1671 int
1672 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1673     dmu_tx_t *tx)
1674 {
1675 	dnode_t *dn;
1676 	int err;
1677 
1678 	err = dnode_hold(os, object, FTAG, &dn);
1679 	if (err)
1680 		return (err);
1681 	err = dnode_set_blksz(dn, size, ibs, tx);
1682 	dnode_rele(dn, FTAG);
1683 	return (err);
1684 }
1685 
1686 void
1687 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1688     dmu_tx_t *tx)
1689 {
1690 	dnode_t *dn;
1691 
1692 	/*
1693 	 * Send streams include each object's checksum function.  This
1694 	 * check ensures that the receiving system can understand the
1695 	 * checksum function transmitted.
1696 	 */
1697 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1698 
1699 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1700 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1701 	dn->dn_checksum = checksum;
1702 	dnode_setdirty(dn, tx);
1703 	dnode_rele(dn, FTAG);
1704 }
1705 
1706 void
1707 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1708     dmu_tx_t *tx)
1709 {
1710 	dnode_t *dn;
1711 
1712 	/*
1713 	 * Send streams include each object's compression function.  This
1714 	 * check ensures that the receiving system can understand the
1715 	 * compression function transmitted.
1716 	 */
1717 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1718 
1719 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1720 	dn->dn_compress = compress;
1721 	dnode_setdirty(dn, tx);
1722 	dnode_rele(dn, FTAG);
1723 }
1724 
1725 int zfs_mdcomp_disable = 0;
1726 
1727 /*
1728  * When the "redundant_metadata" property is set to "most", only indirect
1729  * blocks of this level and higher will have an additional ditto block.
1730  */
1731 int zfs_redundant_metadata_most_ditto_level = 2;
1732 
1733 void
1734 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1735 {
1736 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1737 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1738 	    (wp & WP_SPILL));
1739 	enum zio_checksum checksum = os->os_checksum;
1740 	enum zio_compress compress = os->os_compress;
1741 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1742 	boolean_t dedup = B_FALSE;
1743 	boolean_t nopwrite = B_FALSE;
1744 	boolean_t dedup_verify = os->os_dedup_verify;
1745 	int copies = os->os_copies;
1746 
1747 	/*
1748 	 * We maintain different write policies for each of the following
1749 	 * types of data:
1750 	 *	 1. metadata
1751 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1752 	 *	 3. all other level 0 blocks
1753 	 */
1754 	if (ismd) {
1755 		if (zfs_mdcomp_disable) {
1756 			compress = ZIO_COMPRESS_EMPTY;
1757 		} else {
1758 			/*
1759 			 * XXX -- we should design a compression algorithm
1760 			 * that specializes in arrays of bps.
1761 			 */
1762 			compress = zio_compress_select(os->os_spa,
1763 			    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1764 		}
1765 
1766 		/*
1767 		 * Metadata always gets checksummed.  If the data
1768 		 * checksum is multi-bit correctable, and it's not a
1769 		 * ZBT-style checksum, then it's suitable for metadata
1770 		 * as well.  Otherwise, the metadata checksum defaults
1771 		 * to fletcher4.
1772 		 */
1773 		if (!(zio_checksum_table[checksum].ci_flags &
1774 		    ZCHECKSUM_FLAG_METADATA) ||
1775 		    (zio_checksum_table[checksum].ci_flags &
1776 		    ZCHECKSUM_FLAG_EMBEDDED))
1777 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1778 
1779 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1780 		    (os->os_redundant_metadata ==
1781 		    ZFS_REDUNDANT_METADATA_MOST &&
1782 		    (level >= zfs_redundant_metadata_most_ditto_level ||
1783 		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1784 			copies++;
1785 	} else if (wp & WP_NOFILL) {
1786 		ASSERT(level == 0);
1787 
1788 		/*
1789 		 * If we're writing preallocated blocks, we aren't actually
1790 		 * writing them so don't set any policy properties.  These
1791 		 * blocks are currently only used by an external subsystem
1792 		 * outside of zfs (i.e. dump) and not written by the zio
1793 		 * pipeline.
1794 		 */
1795 		compress = ZIO_COMPRESS_OFF;
1796 		checksum = ZIO_CHECKSUM_NOPARITY;
1797 	} else {
1798 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
1799 		    compress);
1800 
1801 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1802 		    zio_checksum_select(dn->dn_checksum, checksum) :
1803 		    dedup_checksum;
1804 
1805 		/*
1806 		 * Determine dedup setting.  If we are in dmu_sync(),
1807 		 * we won't actually dedup now because that's all
1808 		 * done in syncing context; but we do want to use the
1809 		 * dedup checkum.  If the checksum is not strong
1810 		 * enough to ensure unique signatures, force
1811 		 * dedup_verify.
1812 		 */
1813 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1814 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1815 			if (!(zio_checksum_table[checksum].ci_flags &
1816 			    ZCHECKSUM_FLAG_DEDUP))
1817 				dedup_verify = B_TRUE;
1818 		}
1819 
1820 		/*
1821 		 * Enable nopwrite if we have secure enough checksum
1822 		 * algorithm (see comment in zio_nop_write) and
1823 		 * compression is enabled.  We don't enable nopwrite if
1824 		 * dedup is enabled as the two features are mutually
1825 		 * exclusive.
1826 		 */
1827 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
1828 		    ZCHECKSUM_FLAG_NOPWRITE) &&
1829 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1830 	}
1831 
1832 	zp->zp_checksum = checksum;
1833 	zp->zp_compress = compress;
1834 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1835 	zp->zp_level = level;
1836 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1837 	zp->zp_dedup = dedup;
1838 	zp->zp_dedup_verify = dedup && dedup_verify;
1839 	zp->zp_nopwrite = nopwrite;
1840 }
1841 
1842 int
1843 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1844 {
1845 	dnode_t *dn;
1846 	int err;
1847 
1848 	/*
1849 	 * Sync any current changes before
1850 	 * we go trundling through the block pointers.
1851 	 */
1852 	err = dmu_object_wait_synced(os, object);
1853 	if (err) {
1854 		return (err);
1855 	}
1856 
1857 	err = dnode_hold(os, object, FTAG, &dn);
1858 	if (err) {
1859 		return (err);
1860 	}
1861 
1862 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1863 	dnode_rele(dn, FTAG);
1864 
1865 	return (err);
1866 }
1867 
1868 /*
1869  * Given the ZFS object, if it contains any dirty nodes
1870  * this function flushes all dirty blocks to disk. This
1871  * ensures the DMU object info is updated. A more efficient
1872  * future version might just find the TXG with the maximum
1873  * ID and wait for that to be synced.
1874  */
1875 int
1876 dmu_object_wait_synced(objset_t *os, uint64_t object)
1877 {
1878 	dnode_t *dn;
1879 	int error, i;
1880 
1881 	error = dnode_hold(os, object, FTAG, &dn);
1882 	if (error) {
1883 		return (error);
1884 	}
1885 
1886 	for (i = 0; i < TXG_SIZE; i++) {
1887 		if (list_link_active(&dn->dn_dirty_link[i])) {
1888 			break;
1889 		}
1890 	}
1891 	dnode_rele(dn, FTAG);
1892 	if (i != TXG_SIZE) {
1893 		txg_wait_synced(dmu_objset_pool(os), 0);
1894 	}
1895 
1896 	return (0);
1897 }
1898 
1899 void
1900 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1901 {
1902 	dnode_phys_t *dnp;
1903 
1904 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1905 	mutex_enter(&dn->dn_mtx);
1906 
1907 	dnp = dn->dn_phys;
1908 
1909 	doi->doi_data_block_size = dn->dn_datablksz;
1910 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1911 	    1ULL << dn->dn_indblkshift : 0;
1912 	doi->doi_type = dn->dn_type;
1913 	doi->doi_bonus_type = dn->dn_bonustype;
1914 	doi->doi_bonus_size = dn->dn_bonuslen;
1915 	doi->doi_indirection = dn->dn_nlevels;
1916 	doi->doi_checksum = dn->dn_checksum;
1917 	doi->doi_compress = dn->dn_compress;
1918 	doi->doi_nblkptr = dn->dn_nblkptr;
1919 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1920 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1921 	doi->doi_fill_count = 0;
1922 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1923 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
1924 
1925 	mutex_exit(&dn->dn_mtx);
1926 	rw_exit(&dn->dn_struct_rwlock);
1927 }
1928 
1929 /*
1930  * Get information on a DMU object.
1931  * If doi is NULL, just indicates whether the object exists.
1932  */
1933 int
1934 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1935 {
1936 	dnode_t *dn;
1937 	int err = dnode_hold(os, object, FTAG, &dn);
1938 
1939 	if (err)
1940 		return (err);
1941 
1942 	if (doi != NULL)
1943 		dmu_object_info_from_dnode(dn, doi);
1944 
1945 	dnode_rele(dn, FTAG);
1946 	return (0);
1947 }
1948 
1949 /*
1950  * As above, but faster; can be used when you have a held dbuf in hand.
1951  */
1952 void
1953 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1954 {
1955 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1956 
1957 	DB_DNODE_ENTER(db);
1958 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1959 	DB_DNODE_EXIT(db);
1960 }
1961 
1962 /*
1963  * Faster still when you only care about the size.
1964  * This is specifically optimized for zfs_getattr().
1965  */
1966 void
1967 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1968     u_longlong_t *nblk512)
1969 {
1970 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1971 	dnode_t *dn;
1972 
1973 	DB_DNODE_ENTER(db);
1974 	dn = DB_DNODE(db);
1975 
1976 	*blksize = dn->dn_datablksz;
1977 	/* add 1 for dnode space */
1978 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1979 	    SPA_MINBLOCKSHIFT) + 1;
1980 	DB_DNODE_EXIT(db);
1981 }
1982 
1983 void
1984 byteswap_uint64_array(void *vbuf, size_t size)
1985 {
1986 	uint64_t *buf = vbuf;
1987 	size_t count = size >> 3;
1988 	int i;
1989 
1990 	ASSERT((size & 7) == 0);
1991 
1992 	for (i = 0; i < count; i++)
1993 		buf[i] = BSWAP_64(buf[i]);
1994 }
1995 
1996 void
1997 byteswap_uint32_array(void *vbuf, size_t size)
1998 {
1999 	uint32_t *buf = vbuf;
2000 	size_t count = size >> 2;
2001 	int i;
2002 
2003 	ASSERT((size & 3) == 0);
2004 
2005 	for (i = 0; i < count; i++)
2006 		buf[i] = BSWAP_32(buf[i]);
2007 }
2008 
2009 void
2010 byteswap_uint16_array(void *vbuf, size_t size)
2011 {
2012 	uint16_t *buf = vbuf;
2013 	size_t count = size >> 1;
2014 	int i;
2015 
2016 	ASSERT((size & 1) == 0);
2017 
2018 	for (i = 0; i < count; i++)
2019 		buf[i] = BSWAP_16(buf[i]);
2020 }
2021 
2022 /* ARGSUSED */
2023 void
2024 byteswap_uint8_array(void *vbuf, size_t size)
2025 {
2026 }
2027 
2028 void
2029 dmu_init(void)
2030 {
2031 	zfs_dbgmsg_init();
2032 	sa_cache_init();
2033 	xuio_stat_init();
2034 	dmu_objset_init();
2035 	dnode_init();
2036 	dbuf_init();
2037 	zfetch_init();
2038 	l2arc_init();
2039 	arc_init();
2040 }
2041 
2042 void
2043 dmu_fini(void)
2044 {
2045 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2046 	l2arc_fini();
2047 	zfetch_fini();
2048 	dbuf_fini();
2049 	dnode_fini();
2050 	dmu_objset_fini();
2051 	xuio_stat_fini();
2052 	sa_cache_fini();
2053 	zfs_dbgmsg_fini();
2054 }
2055