1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 */ 25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ 26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ 27 28 #include <sys/dmu.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dbuf.h> 32 #include <sys/dnode.h> 33 #include <sys/zfs_context.h> 34 #include <sys/dmu_objset.h> 35 #include <sys/dmu_traverse.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/dsl_dir.h> 38 #include <sys/dsl_pool.h> 39 #include <sys/dsl_synctask.h> 40 #include <sys/dsl_prop.h> 41 #include <sys/dmu_zfetch.h> 42 #include <sys/zfs_ioctl.h> 43 #include <sys/zap.h> 44 #include <sys/zio_checksum.h> 45 #include <sys/zio_compress.h> 46 #include <sys/sa.h> 47 #ifdef _KERNEL 48 #include <sys/vmsystm.h> 49 #include <sys/zfs_znode.h> 50 #endif 51 52 /* 53 * Enable/disable nopwrite feature. 54 */ 55 int zfs_nopwrite_enabled = 1; 56 57 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 58 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 59 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 60 { DMU_BSWAP_UINT64, TRUE, "object array" }, 61 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 62 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 63 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 64 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 65 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 66 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 67 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 68 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 69 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 70 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 71 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 72 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 73 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 74 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 75 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 76 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 77 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 78 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 79 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 80 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 81 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 82 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 83 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 84 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 85 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 86 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 87 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 88 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 89 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 90 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 91 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 92 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 93 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 94 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 95 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 96 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 97 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 98 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 99 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 100 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 101 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 102 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 103 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 104 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 105 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 106 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 107 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 108 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 109 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 110 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 111 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 112 }; 113 114 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 115 { byteswap_uint8_array, "uint8" }, 116 { byteswap_uint16_array, "uint16" }, 117 { byteswap_uint32_array, "uint32" }, 118 { byteswap_uint64_array, "uint64" }, 119 { zap_byteswap, "zap" }, 120 { dnode_buf_byteswap, "dnode" }, 121 { dmu_objset_byteswap, "objset" }, 122 { zfs_znode_byteswap, "znode" }, 123 { zfs_oldacl_byteswap, "oldacl" }, 124 { zfs_acl_byteswap, "acl" } 125 }; 126 127 int 128 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 129 void *tag, dmu_buf_t **dbp, int flags) 130 { 131 dnode_t *dn; 132 uint64_t blkid; 133 dmu_buf_impl_t *db; 134 int err; 135 int db_flags = DB_RF_CANFAIL; 136 137 if (flags & DMU_READ_NO_PREFETCH) 138 db_flags |= DB_RF_NOPREFETCH; 139 140 err = dnode_hold(os, object, FTAG, &dn); 141 if (err) 142 return (err); 143 blkid = dbuf_whichblock(dn, offset); 144 rw_enter(&dn->dn_struct_rwlock, RW_READER); 145 db = dbuf_hold(dn, blkid, tag); 146 rw_exit(&dn->dn_struct_rwlock); 147 if (db == NULL) { 148 err = SET_ERROR(EIO); 149 } else { 150 err = dbuf_read(db, NULL, db_flags); 151 if (err) { 152 dbuf_rele(db, tag); 153 db = NULL; 154 } 155 } 156 157 dnode_rele(dn, FTAG); 158 *dbp = &db->db; /* NULL db plus first field offset is NULL */ 159 return (err); 160 } 161 162 int 163 dmu_bonus_max(void) 164 { 165 return (DN_MAX_BONUSLEN); 166 } 167 168 int 169 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 170 { 171 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 172 dnode_t *dn; 173 int error; 174 175 DB_DNODE_ENTER(db); 176 dn = DB_DNODE(db); 177 178 if (dn->dn_bonus != db) { 179 error = SET_ERROR(EINVAL); 180 } else if (newsize < 0 || newsize > db_fake->db_size) { 181 error = SET_ERROR(EINVAL); 182 } else { 183 dnode_setbonuslen(dn, newsize, tx); 184 error = 0; 185 } 186 187 DB_DNODE_EXIT(db); 188 return (error); 189 } 190 191 int 192 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 193 { 194 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 195 dnode_t *dn; 196 int error; 197 198 DB_DNODE_ENTER(db); 199 dn = DB_DNODE(db); 200 201 if (!DMU_OT_IS_VALID(type)) { 202 error = SET_ERROR(EINVAL); 203 } else if (dn->dn_bonus != db) { 204 error = SET_ERROR(EINVAL); 205 } else { 206 dnode_setbonus_type(dn, type, tx); 207 error = 0; 208 } 209 210 DB_DNODE_EXIT(db); 211 return (error); 212 } 213 214 dmu_object_type_t 215 dmu_get_bonustype(dmu_buf_t *db_fake) 216 { 217 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 218 dnode_t *dn; 219 dmu_object_type_t type; 220 221 DB_DNODE_ENTER(db); 222 dn = DB_DNODE(db); 223 type = dn->dn_bonustype; 224 DB_DNODE_EXIT(db); 225 226 return (type); 227 } 228 229 int 230 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 231 { 232 dnode_t *dn; 233 int error; 234 235 error = dnode_hold(os, object, FTAG, &dn); 236 dbuf_rm_spill(dn, tx); 237 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 238 dnode_rm_spill(dn, tx); 239 rw_exit(&dn->dn_struct_rwlock); 240 dnode_rele(dn, FTAG); 241 return (error); 242 } 243 244 /* 245 * returns ENOENT, EIO, or 0. 246 */ 247 int 248 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 249 { 250 dnode_t *dn; 251 dmu_buf_impl_t *db; 252 int error; 253 254 error = dnode_hold(os, object, FTAG, &dn); 255 if (error) 256 return (error); 257 258 rw_enter(&dn->dn_struct_rwlock, RW_READER); 259 if (dn->dn_bonus == NULL) { 260 rw_exit(&dn->dn_struct_rwlock); 261 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 262 if (dn->dn_bonus == NULL) 263 dbuf_create_bonus(dn); 264 } 265 db = dn->dn_bonus; 266 267 /* as long as the bonus buf is held, the dnode will be held */ 268 if (refcount_add(&db->db_holds, tag) == 1) { 269 VERIFY(dnode_add_ref(dn, db)); 270 (void) atomic_inc_32_nv(&dn->dn_dbufs_count); 271 } 272 273 /* 274 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 275 * hold and incrementing the dbuf count to ensure that dnode_move() sees 276 * a dnode hold for every dbuf. 277 */ 278 rw_exit(&dn->dn_struct_rwlock); 279 280 dnode_rele(dn, FTAG); 281 282 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 283 284 *dbp = &db->db; 285 return (0); 286 } 287 288 /* 289 * returns ENOENT, EIO, or 0. 290 * 291 * This interface will allocate a blank spill dbuf when a spill blk 292 * doesn't already exist on the dnode. 293 * 294 * if you only want to find an already existing spill db, then 295 * dmu_spill_hold_existing() should be used. 296 */ 297 int 298 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 299 { 300 dmu_buf_impl_t *db = NULL; 301 int err; 302 303 if ((flags & DB_RF_HAVESTRUCT) == 0) 304 rw_enter(&dn->dn_struct_rwlock, RW_READER); 305 306 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 307 308 if ((flags & DB_RF_HAVESTRUCT) == 0) 309 rw_exit(&dn->dn_struct_rwlock); 310 311 ASSERT(db != NULL); 312 err = dbuf_read(db, NULL, flags); 313 if (err == 0) 314 *dbp = &db->db; 315 else 316 dbuf_rele(db, tag); 317 return (err); 318 } 319 320 int 321 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 322 { 323 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 324 dnode_t *dn; 325 int err; 326 327 DB_DNODE_ENTER(db); 328 dn = DB_DNODE(db); 329 330 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 331 err = SET_ERROR(EINVAL); 332 } else { 333 rw_enter(&dn->dn_struct_rwlock, RW_READER); 334 335 if (!dn->dn_have_spill) { 336 err = SET_ERROR(ENOENT); 337 } else { 338 err = dmu_spill_hold_by_dnode(dn, 339 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 340 } 341 342 rw_exit(&dn->dn_struct_rwlock); 343 } 344 345 DB_DNODE_EXIT(db); 346 return (err); 347 } 348 349 int 350 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 351 { 352 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 353 dnode_t *dn; 354 int err; 355 356 DB_DNODE_ENTER(db); 357 dn = DB_DNODE(db); 358 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 359 DB_DNODE_EXIT(db); 360 361 return (err); 362 } 363 364 /* 365 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 366 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 367 * and can induce severe lock contention when writing to several files 368 * whose dnodes are in the same block. 369 */ 370 static int 371 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 372 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 373 { 374 dsl_pool_t *dp = NULL; 375 dmu_buf_t **dbp; 376 uint64_t blkid, nblks, i; 377 uint32_t dbuf_flags; 378 int err; 379 zio_t *zio; 380 hrtime_t start; 381 382 ASSERT(length <= DMU_MAX_ACCESS); 383 384 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 385 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 386 dbuf_flags |= DB_RF_NOPREFETCH; 387 388 rw_enter(&dn->dn_struct_rwlock, RW_READER); 389 if (dn->dn_datablkshift) { 390 int blkshift = dn->dn_datablkshift; 391 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 392 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 393 } else { 394 if (offset + length > dn->dn_datablksz) { 395 zfs_panic_recover("zfs: accessing past end of object " 396 "%llx/%llx (size=%u access=%llu+%llu)", 397 (longlong_t)dn->dn_objset-> 398 os_dsl_dataset->ds_object, 399 (longlong_t)dn->dn_object, dn->dn_datablksz, 400 (longlong_t)offset, (longlong_t)length); 401 rw_exit(&dn->dn_struct_rwlock); 402 return (SET_ERROR(EIO)); 403 } 404 nblks = 1; 405 } 406 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 407 408 if (dn->dn_objset->os_dsl_dataset) 409 dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool; 410 start = gethrtime(); 411 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 412 blkid = dbuf_whichblock(dn, offset); 413 for (i = 0; i < nblks; i++) { 414 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 415 if (db == NULL) { 416 rw_exit(&dn->dn_struct_rwlock); 417 dmu_buf_rele_array(dbp, nblks, tag); 418 zio_nowait(zio); 419 return (SET_ERROR(EIO)); 420 } 421 /* initiate async i/o */ 422 if (read) { 423 (void) dbuf_read(db, zio, dbuf_flags); 424 } 425 dbp[i] = &db->db; 426 } 427 rw_exit(&dn->dn_struct_rwlock); 428 429 /* wait for async i/o */ 430 err = zio_wait(zio); 431 /* track read overhead when we are in sync context */ 432 if (dp && dsl_pool_sync_context(dp)) 433 dp->dp_read_overhead += gethrtime() - start; 434 if (err) { 435 dmu_buf_rele_array(dbp, nblks, tag); 436 return (err); 437 } 438 439 /* wait for other io to complete */ 440 if (read) { 441 for (i = 0; i < nblks; i++) { 442 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 443 mutex_enter(&db->db_mtx); 444 while (db->db_state == DB_READ || 445 db->db_state == DB_FILL) 446 cv_wait(&db->db_changed, &db->db_mtx); 447 if (db->db_state == DB_UNCACHED) 448 err = SET_ERROR(EIO); 449 mutex_exit(&db->db_mtx); 450 if (err) { 451 dmu_buf_rele_array(dbp, nblks, tag); 452 return (err); 453 } 454 } 455 } 456 457 *numbufsp = nblks; 458 *dbpp = dbp; 459 return (0); 460 } 461 462 static int 463 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 464 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 465 { 466 dnode_t *dn; 467 int err; 468 469 err = dnode_hold(os, object, FTAG, &dn); 470 if (err) 471 return (err); 472 473 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 474 numbufsp, dbpp, DMU_READ_PREFETCH); 475 476 dnode_rele(dn, FTAG); 477 478 return (err); 479 } 480 481 int 482 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 483 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 484 { 485 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 486 dnode_t *dn; 487 int err; 488 489 DB_DNODE_ENTER(db); 490 dn = DB_DNODE(db); 491 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 492 numbufsp, dbpp, DMU_READ_PREFETCH); 493 DB_DNODE_EXIT(db); 494 495 return (err); 496 } 497 498 void 499 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 500 { 501 int i; 502 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 503 504 if (numbufs == 0) 505 return; 506 507 for (i = 0; i < numbufs; i++) { 508 if (dbp[i]) 509 dbuf_rele(dbp[i], tag); 510 } 511 512 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 513 } 514 515 void 516 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 517 { 518 dnode_t *dn; 519 uint64_t blkid; 520 int nblks, i, err; 521 522 if (zfs_prefetch_disable) 523 return; 524 525 if (len == 0) { /* they're interested in the bonus buffer */ 526 dn = DMU_META_DNODE(os); 527 528 if (object == 0 || object >= DN_MAX_OBJECT) 529 return; 530 531 rw_enter(&dn->dn_struct_rwlock, RW_READER); 532 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 533 dbuf_prefetch(dn, blkid); 534 rw_exit(&dn->dn_struct_rwlock); 535 return; 536 } 537 538 /* 539 * XXX - Note, if the dnode for the requested object is not 540 * already cached, we will do a *synchronous* read in the 541 * dnode_hold() call. The same is true for any indirects. 542 */ 543 err = dnode_hold(os, object, FTAG, &dn); 544 if (err != 0) 545 return; 546 547 rw_enter(&dn->dn_struct_rwlock, RW_READER); 548 if (dn->dn_datablkshift) { 549 int blkshift = dn->dn_datablkshift; 550 nblks = (P2ROUNDUP(offset+len, 1<<blkshift) - 551 P2ALIGN(offset, 1<<blkshift)) >> blkshift; 552 } else { 553 nblks = (offset < dn->dn_datablksz); 554 } 555 556 if (nblks != 0) { 557 blkid = dbuf_whichblock(dn, offset); 558 for (i = 0; i < nblks; i++) 559 dbuf_prefetch(dn, blkid+i); 560 } 561 562 rw_exit(&dn->dn_struct_rwlock); 563 564 dnode_rele(dn, FTAG); 565 } 566 567 /* 568 * Get the next "chunk" of file data to free. We traverse the file from 569 * the end so that the file gets shorter over time (if we crashes in the 570 * middle, this will leave us in a better state). We find allocated file 571 * data by simply searching the allocated level 1 indirects. 572 * 573 * On input, *start should be the first offset that does not need to be 574 * freed (e.g. "offset + length"). On return, *start will be the first 575 * offset that should be freed. 576 */ 577 static int 578 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 579 { 580 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 581 /* bytes of data covered by a level-1 indirect block */ 582 uint64_t iblkrange = 583 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 584 585 ASSERT3U(minimum, <=, *start); 586 587 if (*start - minimum <= iblkrange * maxblks) { 588 *start = minimum; 589 return (0); 590 } 591 ASSERT(ISP2(iblkrange)); 592 593 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 594 int err; 595 596 /* 597 * dnode_next_offset(BACKWARDS) will find an allocated L1 598 * indirect block at or before the input offset. We must 599 * decrement *start so that it is at the end of the region 600 * to search. 601 */ 602 (*start)--; 603 err = dnode_next_offset(dn, 604 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 605 606 /* if there are no indirect blocks before start, we are done */ 607 if (err == ESRCH) { 608 *start = minimum; 609 break; 610 } else if (err != 0) { 611 return (err); 612 } 613 614 /* set start to the beginning of this L1 indirect */ 615 *start = P2ALIGN(*start, iblkrange); 616 } 617 if (*start < minimum) 618 *start = minimum; 619 return (0); 620 } 621 622 static int 623 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 624 uint64_t length) 625 { 626 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 627 int err; 628 629 if (offset >= object_size) 630 return (0); 631 632 if (length == DMU_OBJECT_END || offset + length > object_size) 633 length = object_size - offset; 634 635 while (length != 0) { 636 uint64_t chunk_end, chunk_begin; 637 638 chunk_end = chunk_begin = offset + length; 639 640 /* move chunk_begin backwards to the beginning of this chunk */ 641 err = get_next_chunk(dn, &chunk_begin, offset); 642 if (err) 643 return (err); 644 ASSERT3U(chunk_begin, >=, offset); 645 ASSERT3U(chunk_begin, <=, chunk_end); 646 647 dmu_tx_t *tx = dmu_tx_create(os); 648 dmu_tx_hold_free(tx, dn->dn_object, 649 chunk_begin, chunk_end - chunk_begin); 650 err = dmu_tx_assign(tx, TXG_WAIT); 651 if (err) { 652 dmu_tx_abort(tx); 653 return (err); 654 } 655 dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx); 656 dmu_tx_commit(tx); 657 658 length -= chunk_end - chunk_begin; 659 } 660 return (0); 661 } 662 663 int 664 dmu_free_long_range(objset_t *os, uint64_t object, 665 uint64_t offset, uint64_t length) 666 { 667 dnode_t *dn; 668 int err; 669 670 err = dnode_hold(os, object, FTAG, &dn); 671 if (err != 0) 672 return (err); 673 err = dmu_free_long_range_impl(os, dn, offset, length); 674 dnode_rele(dn, FTAG); 675 return (err); 676 } 677 678 int 679 dmu_free_long_object(objset_t *os, uint64_t object) 680 { 681 dmu_tx_t *tx; 682 int err; 683 684 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 685 if (err != 0) 686 return (err); 687 688 tx = dmu_tx_create(os); 689 dmu_tx_hold_bonus(tx, object); 690 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 691 err = dmu_tx_assign(tx, TXG_WAIT); 692 if (err == 0) { 693 err = dmu_object_free(os, object, tx); 694 dmu_tx_commit(tx); 695 } else { 696 dmu_tx_abort(tx); 697 } 698 699 return (err); 700 } 701 702 int 703 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 704 uint64_t size, dmu_tx_t *tx) 705 { 706 dnode_t *dn; 707 int err = dnode_hold(os, object, FTAG, &dn); 708 if (err) 709 return (err); 710 ASSERT(offset < UINT64_MAX); 711 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 712 dnode_free_range(dn, offset, size, tx); 713 dnode_rele(dn, FTAG); 714 return (0); 715 } 716 717 int 718 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 719 void *buf, uint32_t flags) 720 { 721 dnode_t *dn; 722 dmu_buf_t **dbp; 723 int numbufs, err; 724 725 err = dnode_hold(os, object, FTAG, &dn); 726 if (err) 727 return (err); 728 729 /* 730 * Deal with odd block sizes, where there can't be data past the first 731 * block. If we ever do the tail block optimization, we will need to 732 * handle that here as well. 733 */ 734 if (dn->dn_maxblkid == 0) { 735 int newsz = offset > dn->dn_datablksz ? 0 : 736 MIN(size, dn->dn_datablksz - offset); 737 bzero((char *)buf + newsz, size - newsz); 738 size = newsz; 739 } 740 741 while (size > 0) { 742 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 743 int i; 744 745 /* 746 * NB: we could do this block-at-a-time, but it's nice 747 * to be reading in parallel. 748 */ 749 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 750 TRUE, FTAG, &numbufs, &dbp, flags); 751 if (err) 752 break; 753 754 for (i = 0; i < numbufs; i++) { 755 int tocpy; 756 int bufoff; 757 dmu_buf_t *db = dbp[i]; 758 759 ASSERT(size > 0); 760 761 bufoff = offset - db->db_offset; 762 tocpy = (int)MIN(db->db_size - bufoff, size); 763 764 bcopy((char *)db->db_data + bufoff, buf, tocpy); 765 766 offset += tocpy; 767 size -= tocpy; 768 buf = (char *)buf + tocpy; 769 } 770 dmu_buf_rele_array(dbp, numbufs, FTAG); 771 } 772 dnode_rele(dn, FTAG); 773 return (err); 774 } 775 776 void 777 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 778 const void *buf, dmu_tx_t *tx) 779 { 780 dmu_buf_t **dbp; 781 int numbufs, i; 782 783 if (size == 0) 784 return; 785 786 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 787 FALSE, FTAG, &numbufs, &dbp)); 788 789 for (i = 0; i < numbufs; i++) { 790 int tocpy; 791 int bufoff; 792 dmu_buf_t *db = dbp[i]; 793 794 ASSERT(size > 0); 795 796 bufoff = offset - db->db_offset; 797 tocpy = (int)MIN(db->db_size - bufoff, size); 798 799 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 800 801 if (tocpy == db->db_size) 802 dmu_buf_will_fill(db, tx); 803 else 804 dmu_buf_will_dirty(db, tx); 805 806 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 807 808 if (tocpy == db->db_size) 809 dmu_buf_fill_done(db, tx); 810 811 offset += tocpy; 812 size -= tocpy; 813 buf = (char *)buf + tocpy; 814 } 815 dmu_buf_rele_array(dbp, numbufs, FTAG); 816 } 817 818 void 819 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 820 dmu_tx_t *tx) 821 { 822 dmu_buf_t **dbp; 823 int numbufs, i; 824 825 if (size == 0) 826 return; 827 828 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 829 FALSE, FTAG, &numbufs, &dbp)); 830 831 for (i = 0; i < numbufs; i++) { 832 dmu_buf_t *db = dbp[i]; 833 834 dmu_buf_will_not_fill(db, tx); 835 } 836 dmu_buf_rele_array(dbp, numbufs, FTAG); 837 } 838 839 /* 840 * DMU support for xuio 841 */ 842 kstat_t *xuio_ksp = NULL; 843 844 int 845 dmu_xuio_init(xuio_t *xuio, int nblk) 846 { 847 dmu_xuio_t *priv; 848 uio_t *uio = &xuio->xu_uio; 849 850 uio->uio_iovcnt = nblk; 851 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 852 853 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 854 priv->cnt = nblk; 855 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 856 priv->iovp = uio->uio_iov; 857 XUIO_XUZC_PRIV(xuio) = priv; 858 859 if (XUIO_XUZC_RW(xuio) == UIO_READ) 860 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 861 else 862 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 863 864 return (0); 865 } 866 867 void 868 dmu_xuio_fini(xuio_t *xuio) 869 { 870 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 871 int nblk = priv->cnt; 872 873 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 874 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 875 kmem_free(priv, sizeof (dmu_xuio_t)); 876 877 if (XUIO_XUZC_RW(xuio) == UIO_READ) 878 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 879 else 880 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 881 } 882 883 /* 884 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 885 * and increase priv->next by 1. 886 */ 887 int 888 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 889 { 890 struct iovec *iov; 891 uio_t *uio = &xuio->xu_uio; 892 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 893 int i = priv->next++; 894 895 ASSERT(i < priv->cnt); 896 ASSERT(off + n <= arc_buf_size(abuf)); 897 iov = uio->uio_iov + i; 898 iov->iov_base = (char *)abuf->b_data + off; 899 iov->iov_len = n; 900 priv->bufs[i] = abuf; 901 return (0); 902 } 903 904 int 905 dmu_xuio_cnt(xuio_t *xuio) 906 { 907 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 908 return (priv->cnt); 909 } 910 911 arc_buf_t * 912 dmu_xuio_arcbuf(xuio_t *xuio, int i) 913 { 914 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 915 916 ASSERT(i < priv->cnt); 917 return (priv->bufs[i]); 918 } 919 920 void 921 dmu_xuio_clear(xuio_t *xuio, int i) 922 { 923 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 924 925 ASSERT(i < priv->cnt); 926 priv->bufs[i] = NULL; 927 } 928 929 static void 930 xuio_stat_init(void) 931 { 932 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 933 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 934 KSTAT_FLAG_VIRTUAL); 935 if (xuio_ksp != NULL) { 936 xuio_ksp->ks_data = &xuio_stats; 937 kstat_install(xuio_ksp); 938 } 939 } 940 941 static void 942 xuio_stat_fini(void) 943 { 944 if (xuio_ksp != NULL) { 945 kstat_delete(xuio_ksp); 946 xuio_ksp = NULL; 947 } 948 } 949 950 void 951 xuio_stat_wbuf_copied() 952 { 953 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 954 } 955 956 void 957 xuio_stat_wbuf_nocopy() 958 { 959 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 960 } 961 962 #ifdef _KERNEL 963 int 964 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 965 { 966 dmu_buf_t **dbp; 967 int numbufs, i, err; 968 xuio_t *xuio = NULL; 969 970 /* 971 * NB: we could do this block-at-a-time, but it's nice 972 * to be reading in parallel. 973 */ 974 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 975 &numbufs, &dbp); 976 if (err) 977 return (err); 978 979 if (uio->uio_extflg == UIO_XUIO) 980 xuio = (xuio_t *)uio; 981 982 for (i = 0; i < numbufs; i++) { 983 int tocpy; 984 int bufoff; 985 dmu_buf_t *db = dbp[i]; 986 987 ASSERT(size > 0); 988 989 bufoff = uio->uio_loffset - db->db_offset; 990 tocpy = (int)MIN(db->db_size - bufoff, size); 991 992 if (xuio) { 993 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 994 arc_buf_t *dbuf_abuf = dbi->db_buf; 995 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 996 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 997 if (!err) { 998 uio->uio_resid -= tocpy; 999 uio->uio_loffset += tocpy; 1000 } 1001 1002 if (abuf == dbuf_abuf) 1003 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1004 else 1005 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1006 } else { 1007 err = uiomove((char *)db->db_data + bufoff, tocpy, 1008 UIO_READ, uio); 1009 } 1010 if (err) 1011 break; 1012 1013 size -= tocpy; 1014 } 1015 dmu_buf_rele_array(dbp, numbufs, FTAG); 1016 1017 return (err); 1018 } 1019 1020 static int 1021 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1022 { 1023 dmu_buf_t **dbp; 1024 int numbufs; 1025 int err = 0; 1026 int i; 1027 1028 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1029 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1030 if (err) 1031 return (err); 1032 1033 for (i = 0; i < numbufs; i++) { 1034 int tocpy; 1035 int bufoff; 1036 dmu_buf_t *db = dbp[i]; 1037 1038 ASSERT(size > 0); 1039 1040 bufoff = uio->uio_loffset - db->db_offset; 1041 tocpy = (int)MIN(db->db_size - bufoff, size); 1042 1043 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1044 1045 if (tocpy == db->db_size) 1046 dmu_buf_will_fill(db, tx); 1047 else 1048 dmu_buf_will_dirty(db, tx); 1049 1050 /* 1051 * XXX uiomove could block forever (eg. nfs-backed 1052 * pages). There needs to be a uiolockdown() function 1053 * to lock the pages in memory, so that uiomove won't 1054 * block. 1055 */ 1056 err = uiomove((char *)db->db_data + bufoff, tocpy, 1057 UIO_WRITE, uio); 1058 1059 if (tocpy == db->db_size) 1060 dmu_buf_fill_done(db, tx); 1061 1062 if (err) 1063 break; 1064 1065 size -= tocpy; 1066 } 1067 1068 dmu_buf_rele_array(dbp, numbufs, FTAG); 1069 return (err); 1070 } 1071 1072 int 1073 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1074 dmu_tx_t *tx) 1075 { 1076 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1077 dnode_t *dn; 1078 int err; 1079 1080 if (size == 0) 1081 return (0); 1082 1083 DB_DNODE_ENTER(db); 1084 dn = DB_DNODE(db); 1085 err = dmu_write_uio_dnode(dn, uio, size, tx); 1086 DB_DNODE_EXIT(db); 1087 1088 return (err); 1089 } 1090 1091 int 1092 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1093 dmu_tx_t *tx) 1094 { 1095 dnode_t *dn; 1096 int err; 1097 1098 if (size == 0) 1099 return (0); 1100 1101 err = dnode_hold(os, object, FTAG, &dn); 1102 if (err) 1103 return (err); 1104 1105 err = dmu_write_uio_dnode(dn, uio, size, tx); 1106 1107 dnode_rele(dn, FTAG); 1108 1109 return (err); 1110 } 1111 1112 int 1113 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1114 page_t *pp, dmu_tx_t *tx) 1115 { 1116 dmu_buf_t **dbp; 1117 int numbufs, i; 1118 int err; 1119 1120 if (size == 0) 1121 return (0); 1122 1123 err = dmu_buf_hold_array(os, object, offset, size, 1124 FALSE, FTAG, &numbufs, &dbp); 1125 if (err) 1126 return (err); 1127 1128 for (i = 0; i < numbufs; i++) { 1129 int tocpy, copied, thiscpy; 1130 int bufoff; 1131 dmu_buf_t *db = dbp[i]; 1132 caddr_t va; 1133 1134 ASSERT(size > 0); 1135 ASSERT3U(db->db_size, >=, PAGESIZE); 1136 1137 bufoff = offset - db->db_offset; 1138 tocpy = (int)MIN(db->db_size - bufoff, size); 1139 1140 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1141 1142 if (tocpy == db->db_size) 1143 dmu_buf_will_fill(db, tx); 1144 else 1145 dmu_buf_will_dirty(db, tx); 1146 1147 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1148 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1149 thiscpy = MIN(PAGESIZE, tocpy - copied); 1150 va = zfs_map_page(pp, S_READ); 1151 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1152 zfs_unmap_page(pp, va); 1153 pp = pp->p_next; 1154 bufoff += PAGESIZE; 1155 } 1156 1157 if (tocpy == db->db_size) 1158 dmu_buf_fill_done(db, tx); 1159 1160 offset += tocpy; 1161 size -= tocpy; 1162 } 1163 dmu_buf_rele_array(dbp, numbufs, FTAG); 1164 return (err); 1165 } 1166 #endif 1167 1168 /* 1169 * Allocate a loaned anonymous arc buffer. 1170 */ 1171 arc_buf_t * 1172 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1173 { 1174 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1175 spa_t *spa; 1176 1177 DB_GET_SPA(&spa, db); 1178 return (arc_loan_buf(spa, size)); 1179 } 1180 1181 /* 1182 * Free a loaned arc buffer. 1183 */ 1184 void 1185 dmu_return_arcbuf(arc_buf_t *buf) 1186 { 1187 arc_return_buf(buf, FTAG); 1188 VERIFY(arc_buf_remove_ref(buf, FTAG)); 1189 } 1190 1191 /* 1192 * When possible directly assign passed loaned arc buffer to a dbuf. 1193 * If this is not possible copy the contents of passed arc buf via 1194 * dmu_write(). 1195 */ 1196 void 1197 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1198 dmu_tx_t *tx) 1199 { 1200 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1201 dnode_t *dn; 1202 dmu_buf_impl_t *db; 1203 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1204 uint64_t blkid; 1205 1206 DB_DNODE_ENTER(dbuf); 1207 dn = DB_DNODE(dbuf); 1208 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1209 blkid = dbuf_whichblock(dn, offset); 1210 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1211 rw_exit(&dn->dn_struct_rwlock); 1212 DB_DNODE_EXIT(dbuf); 1213 1214 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1215 dbuf_assign_arcbuf(db, buf, tx); 1216 dbuf_rele(db, FTAG); 1217 } else { 1218 objset_t *os; 1219 uint64_t object; 1220 1221 DB_DNODE_ENTER(dbuf); 1222 dn = DB_DNODE(dbuf); 1223 os = dn->dn_objset; 1224 object = dn->dn_object; 1225 DB_DNODE_EXIT(dbuf); 1226 1227 dbuf_rele(db, FTAG); 1228 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1229 dmu_return_arcbuf(buf); 1230 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1231 } 1232 } 1233 1234 typedef struct { 1235 dbuf_dirty_record_t *dsa_dr; 1236 dmu_sync_cb_t *dsa_done; 1237 zgd_t *dsa_zgd; 1238 dmu_tx_t *dsa_tx; 1239 } dmu_sync_arg_t; 1240 1241 /* ARGSUSED */ 1242 static void 1243 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1244 { 1245 dmu_sync_arg_t *dsa = varg; 1246 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1247 blkptr_t *bp = zio->io_bp; 1248 1249 if (zio->io_error == 0) { 1250 if (BP_IS_HOLE(bp)) { 1251 /* 1252 * A block of zeros may compress to a hole, but the 1253 * block size still needs to be known for replay. 1254 */ 1255 BP_SET_LSIZE(bp, db->db_size); 1256 } else { 1257 ASSERT(BP_GET_LEVEL(bp) == 0); 1258 bp->blk_fill = 1; 1259 } 1260 } 1261 } 1262 1263 static void 1264 dmu_sync_late_arrival_ready(zio_t *zio) 1265 { 1266 dmu_sync_ready(zio, NULL, zio->io_private); 1267 } 1268 1269 /* ARGSUSED */ 1270 static void 1271 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1272 { 1273 dmu_sync_arg_t *dsa = varg; 1274 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1275 dmu_buf_impl_t *db = dr->dr_dbuf; 1276 1277 mutex_enter(&db->db_mtx); 1278 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1279 if (zio->io_error == 0) { 1280 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1281 if (dr->dt.dl.dr_nopwrite) { 1282 blkptr_t *bp = zio->io_bp; 1283 blkptr_t *bp_orig = &zio->io_bp_orig; 1284 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1285 1286 ASSERT(BP_EQUAL(bp, bp_orig)); 1287 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1288 ASSERT(zio_checksum_table[chksum].ci_dedup); 1289 } 1290 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1291 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1292 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1293 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) 1294 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1295 } else { 1296 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1297 } 1298 cv_broadcast(&db->db_changed); 1299 mutex_exit(&db->db_mtx); 1300 1301 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1302 1303 kmem_free(dsa, sizeof (*dsa)); 1304 } 1305 1306 static void 1307 dmu_sync_late_arrival_done(zio_t *zio) 1308 { 1309 blkptr_t *bp = zio->io_bp; 1310 dmu_sync_arg_t *dsa = zio->io_private; 1311 blkptr_t *bp_orig = &zio->io_bp_orig; 1312 1313 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1314 /* 1315 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE) 1316 * then there is nothing to do here. Otherwise, free the 1317 * newly allocated block in this txg. 1318 */ 1319 if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 1320 ASSERT(BP_EQUAL(bp, bp_orig)); 1321 } else { 1322 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1323 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1324 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1325 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1326 } 1327 } 1328 1329 dmu_tx_commit(dsa->dsa_tx); 1330 1331 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1332 1333 kmem_free(dsa, sizeof (*dsa)); 1334 } 1335 1336 static int 1337 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1338 zio_prop_t *zp, zbookmark_t *zb) 1339 { 1340 dmu_sync_arg_t *dsa; 1341 dmu_tx_t *tx; 1342 1343 tx = dmu_tx_create(os); 1344 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1345 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1346 dmu_tx_abort(tx); 1347 /* Make zl_get_data do txg_waited_synced() */ 1348 return (SET_ERROR(EIO)); 1349 } 1350 1351 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1352 dsa->dsa_dr = NULL; 1353 dsa->dsa_done = done; 1354 dsa->dsa_zgd = zgd; 1355 dsa->dsa_tx = tx; 1356 1357 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1358 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1359 dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa, 1360 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1361 1362 return (0); 1363 } 1364 1365 /* 1366 * Intent log support: sync the block associated with db to disk. 1367 * N.B. and XXX: the caller is responsible for making sure that the 1368 * data isn't changing while dmu_sync() is writing it. 1369 * 1370 * Return values: 1371 * 1372 * EEXIST: this txg has already been synced, so there's nothing to do. 1373 * The caller should not log the write. 1374 * 1375 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1376 * The caller should not log the write. 1377 * 1378 * EALREADY: this block is already in the process of being synced. 1379 * The caller should track its progress (somehow). 1380 * 1381 * EIO: could not do the I/O. 1382 * The caller should do a txg_wait_synced(). 1383 * 1384 * 0: the I/O has been initiated. 1385 * The caller should log this blkptr in the done callback. 1386 * It is possible that the I/O will fail, in which case 1387 * the error will be reported to the done callback and 1388 * propagated to pio from zio_done(). 1389 */ 1390 int 1391 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1392 { 1393 blkptr_t *bp = zgd->zgd_bp; 1394 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1395 objset_t *os = db->db_objset; 1396 dsl_dataset_t *ds = os->os_dsl_dataset; 1397 dbuf_dirty_record_t *dr; 1398 dmu_sync_arg_t *dsa; 1399 zbookmark_t zb; 1400 zio_prop_t zp; 1401 dnode_t *dn; 1402 1403 ASSERT(pio != NULL); 1404 ASSERT(txg != 0); 1405 1406 SET_BOOKMARK(&zb, ds->ds_object, 1407 db->db.db_object, db->db_level, db->db_blkid); 1408 1409 DB_DNODE_ENTER(db); 1410 dn = DB_DNODE(db); 1411 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1412 DB_DNODE_EXIT(db); 1413 1414 /* 1415 * If we're frozen (running ziltest), we always need to generate a bp. 1416 */ 1417 if (txg > spa_freeze_txg(os->os_spa)) 1418 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1419 1420 /* 1421 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1422 * and us. If we determine that this txg is not yet syncing, 1423 * but it begins to sync a moment later, that's OK because the 1424 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1425 */ 1426 mutex_enter(&db->db_mtx); 1427 1428 if (txg <= spa_last_synced_txg(os->os_spa)) { 1429 /* 1430 * This txg has already synced. There's nothing to do. 1431 */ 1432 mutex_exit(&db->db_mtx); 1433 return (SET_ERROR(EEXIST)); 1434 } 1435 1436 if (txg <= spa_syncing_txg(os->os_spa)) { 1437 /* 1438 * This txg is currently syncing, so we can't mess with 1439 * the dirty record anymore; just write a new log block. 1440 */ 1441 mutex_exit(&db->db_mtx); 1442 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1443 } 1444 1445 dr = db->db_last_dirty; 1446 while (dr && dr->dr_txg != txg) 1447 dr = dr->dr_next; 1448 1449 if (dr == NULL) { 1450 /* 1451 * There's no dr for this dbuf, so it must have been freed. 1452 * There's no need to log writes to freed blocks, so we're done. 1453 */ 1454 mutex_exit(&db->db_mtx); 1455 return (SET_ERROR(ENOENT)); 1456 } 1457 1458 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1459 1460 /* 1461 * Assume the on-disk data is X, the current syncing data is Y, 1462 * and the current in-memory data is Z (currently in dmu_sync). 1463 * X and Z are identical but Y is has been modified. Normally, 1464 * when X and Z are the same we will perform a nopwrite but if Y 1465 * is different we must disable nopwrite since the resulting write 1466 * of Y to disk can free the block containing X. If we allowed a 1467 * nopwrite to occur the block pointing to Z would reference a freed 1468 * block. Since this is a rare case we simplify this by disabling 1469 * nopwrite if the current dmu_sync-ing dbuf has been modified in 1470 * a previous transaction. 1471 */ 1472 if (dr->dr_next) 1473 zp.zp_nopwrite = B_FALSE; 1474 1475 ASSERT(dr->dr_txg == txg); 1476 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1477 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1478 /* 1479 * We have already issued a sync write for this buffer, 1480 * or this buffer has already been synced. It could not 1481 * have been dirtied since, or we would have cleared the state. 1482 */ 1483 mutex_exit(&db->db_mtx); 1484 return (SET_ERROR(EALREADY)); 1485 } 1486 1487 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1488 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1489 mutex_exit(&db->db_mtx); 1490 1491 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1492 dsa->dsa_dr = dr; 1493 dsa->dsa_done = done; 1494 dsa->dsa_zgd = zgd; 1495 dsa->dsa_tx = NULL; 1496 1497 zio_nowait(arc_write(pio, os->os_spa, txg, 1498 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1499 DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready, dmu_sync_done, 1500 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1501 1502 return (0); 1503 } 1504 1505 int 1506 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1507 dmu_tx_t *tx) 1508 { 1509 dnode_t *dn; 1510 int err; 1511 1512 err = dnode_hold(os, object, FTAG, &dn); 1513 if (err) 1514 return (err); 1515 err = dnode_set_blksz(dn, size, ibs, tx); 1516 dnode_rele(dn, FTAG); 1517 return (err); 1518 } 1519 1520 void 1521 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1522 dmu_tx_t *tx) 1523 { 1524 dnode_t *dn; 1525 1526 /* XXX assumes dnode_hold will not get an i/o error */ 1527 (void) dnode_hold(os, object, FTAG, &dn); 1528 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 1529 dn->dn_checksum = checksum; 1530 dnode_setdirty(dn, tx); 1531 dnode_rele(dn, FTAG); 1532 } 1533 1534 void 1535 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1536 dmu_tx_t *tx) 1537 { 1538 dnode_t *dn; 1539 1540 /* XXX assumes dnode_hold will not get an i/o error */ 1541 (void) dnode_hold(os, object, FTAG, &dn); 1542 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 1543 dn->dn_compress = compress; 1544 dnode_setdirty(dn, tx); 1545 dnode_rele(dn, FTAG); 1546 } 1547 1548 int zfs_mdcomp_disable = 0; 1549 1550 void 1551 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1552 { 1553 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1554 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1555 (wp & WP_SPILL)); 1556 enum zio_checksum checksum = os->os_checksum; 1557 enum zio_compress compress = os->os_compress; 1558 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1559 boolean_t dedup = B_FALSE; 1560 boolean_t nopwrite = B_FALSE; 1561 boolean_t dedup_verify = os->os_dedup_verify; 1562 int copies = os->os_copies; 1563 1564 /* 1565 * We maintain different write policies for each of the following 1566 * types of data: 1567 * 1. metadata 1568 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1569 * 3. all other level 0 blocks 1570 */ 1571 if (ismd) { 1572 /* 1573 * XXX -- we should design a compression algorithm 1574 * that specializes in arrays of bps. 1575 */ 1576 compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 1577 ZIO_COMPRESS_LZJB; 1578 1579 /* 1580 * Metadata always gets checksummed. If the data 1581 * checksum is multi-bit correctable, and it's not a 1582 * ZBT-style checksum, then it's suitable for metadata 1583 * as well. Otherwise, the metadata checksum defaults 1584 * to fletcher4. 1585 */ 1586 if (zio_checksum_table[checksum].ci_correctable < 1 || 1587 zio_checksum_table[checksum].ci_eck) 1588 checksum = ZIO_CHECKSUM_FLETCHER_4; 1589 } else if (wp & WP_NOFILL) { 1590 ASSERT(level == 0); 1591 1592 /* 1593 * If we're writing preallocated blocks, we aren't actually 1594 * writing them so don't set any policy properties. These 1595 * blocks are currently only used by an external subsystem 1596 * outside of zfs (i.e. dump) and not written by the zio 1597 * pipeline. 1598 */ 1599 compress = ZIO_COMPRESS_OFF; 1600 checksum = ZIO_CHECKSUM_NOPARITY; 1601 } else { 1602 compress = zio_compress_select(dn->dn_compress, compress); 1603 1604 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1605 zio_checksum_select(dn->dn_checksum, checksum) : 1606 dedup_checksum; 1607 1608 /* 1609 * Determine dedup setting. If we are in dmu_sync(), 1610 * we won't actually dedup now because that's all 1611 * done in syncing context; but we do want to use the 1612 * dedup checkum. If the checksum is not strong 1613 * enough to ensure unique signatures, force 1614 * dedup_verify. 1615 */ 1616 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 1617 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 1618 if (!zio_checksum_table[checksum].ci_dedup) 1619 dedup_verify = B_TRUE; 1620 } 1621 1622 /* 1623 * Enable nopwrite if we have a cryptographically secure 1624 * checksum that has no known collisions (i.e. SHA-256) 1625 * and compression is enabled. We don't enable nopwrite if 1626 * dedup is enabled as the two features are mutually exclusive. 1627 */ 1628 nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup && 1629 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 1630 } 1631 1632 zp->zp_checksum = checksum; 1633 zp->zp_compress = compress; 1634 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1635 zp->zp_level = level; 1636 zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa)); 1637 zp->zp_dedup = dedup; 1638 zp->zp_dedup_verify = dedup && dedup_verify; 1639 zp->zp_nopwrite = nopwrite; 1640 } 1641 1642 int 1643 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1644 { 1645 dnode_t *dn; 1646 int i, err; 1647 1648 err = dnode_hold(os, object, FTAG, &dn); 1649 if (err) 1650 return (err); 1651 /* 1652 * Sync any current changes before 1653 * we go trundling through the block pointers. 1654 */ 1655 for (i = 0; i < TXG_SIZE; i++) { 1656 if (list_link_active(&dn->dn_dirty_link[i])) 1657 break; 1658 } 1659 if (i != TXG_SIZE) { 1660 dnode_rele(dn, FTAG); 1661 txg_wait_synced(dmu_objset_pool(os), 0); 1662 err = dnode_hold(os, object, FTAG, &dn); 1663 if (err) 1664 return (err); 1665 } 1666 1667 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1668 dnode_rele(dn, FTAG); 1669 1670 return (err); 1671 } 1672 1673 void 1674 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1675 { 1676 dnode_phys_t *dnp; 1677 1678 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1679 mutex_enter(&dn->dn_mtx); 1680 1681 dnp = dn->dn_phys; 1682 1683 doi->doi_data_block_size = dn->dn_datablksz; 1684 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1685 1ULL << dn->dn_indblkshift : 0; 1686 doi->doi_type = dn->dn_type; 1687 doi->doi_bonus_type = dn->dn_bonustype; 1688 doi->doi_bonus_size = dn->dn_bonuslen; 1689 doi->doi_indirection = dn->dn_nlevels; 1690 doi->doi_checksum = dn->dn_checksum; 1691 doi->doi_compress = dn->dn_compress; 1692 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1693 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 1694 doi->doi_fill_count = 0; 1695 for (int i = 0; i < dnp->dn_nblkptr; i++) 1696 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill; 1697 1698 mutex_exit(&dn->dn_mtx); 1699 rw_exit(&dn->dn_struct_rwlock); 1700 } 1701 1702 /* 1703 * Get information on a DMU object. 1704 * If doi is NULL, just indicates whether the object exists. 1705 */ 1706 int 1707 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1708 { 1709 dnode_t *dn; 1710 int err = dnode_hold(os, object, FTAG, &dn); 1711 1712 if (err) 1713 return (err); 1714 1715 if (doi != NULL) 1716 dmu_object_info_from_dnode(dn, doi); 1717 1718 dnode_rele(dn, FTAG); 1719 return (0); 1720 } 1721 1722 /* 1723 * As above, but faster; can be used when you have a held dbuf in hand. 1724 */ 1725 void 1726 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 1727 { 1728 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1729 1730 DB_DNODE_ENTER(db); 1731 dmu_object_info_from_dnode(DB_DNODE(db), doi); 1732 DB_DNODE_EXIT(db); 1733 } 1734 1735 /* 1736 * Faster still when you only care about the size. 1737 * This is specifically optimized for zfs_getattr(). 1738 */ 1739 void 1740 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 1741 u_longlong_t *nblk512) 1742 { 1743 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1744 dnode_t *dn; 1745 1746 DB_DNODE_ENTER(db); 1747 dn = DB_DNODE(db); 1748 1749 *blksize = dn->dn_datablksz; 1750 /* add 1 for dnode space */ 1751 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1752 SPA_MINBLOCKSHIFT) + 1; 1753 DB_DNODE_EXIT(db); 1754 } 1755 1756 void 1757 byteswap_uint64_array(void *vbuf, size_t size) 1758 { 1759 uint64_t *buf = vbuf; 1760 size_t count = size >> 3; 1761 int i; 1762 1763 ASSERT((size & 7) == 0); 1764 1765 for (i = 0; i < count; i++) 1766 buf[i] = BSWAP_64(buf[i]); 1767 } 1768 1769 void 1770 byteswap_uint32_array(void *vbuf, size_t size) 1771 { 1772 uint32_t *buf = vbuf; 1773 size_t count = size >> 2; 1774 int i; 1775 1776 ASSERT((size & 3) == 0); 1777 1778 for (i = 0; i < count; i++) 1779 buf[i] = BSWAP_32(buf[i]); 1780 } 1781 1782 void 1783 byteswap_uint16_array(void *vbuf, size_t size) 1784 { 1785 uint16_t *buf = vbuf; 1786 size_t count = size >> 1; 1787 int i; 1788 1789 ASSERT((size & 1) == 0); 1790 1791 for (i = 0; i < count; i++) 1792 buf[i] = BSWAP_16(buf[i]); 1793 } 1794 1795 /* ARGSUSED */ 1796 void 1797 byteswap_uint8_array(void *vbuf, size_t size) 1798 { 1799 } 1800 1801 void 1802 dmu_init(void) 1803 { 1804 zfs_dbgmsg_init(); 1805 sa_cache_init(); 1806 xuio_stat_init(); 1807 dmu_objset_init(); 1808 dnode_init(); 1809 dbuf_init(); 1810 zfetch_init(); 1811 l2arc_init(); 1812 arc_init(); 1813 } 1814 1815 void 1816 dmu_fini(void) 1817 { 1818 arc_fini(); /* arc depends on l2arc, so arc must go first */ 1819 l2arc_fini(); 1820 zfetch_fini(); 1821 dbuf_fini(); 1822 dnode_fini(); 1823 dmu_objset_fini(); 1824 xuio_stat_fini(); 1825 sa_cache_fini(); 1826 zfs_dbgmsg_fini(); 1827 } 1828