1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 */ 25 26 #include <sys/dmu.h> 27 #include <sys/dmu_impl.h> 28 #include <sys/dmu_tx.h> 29 #include <sys/dbuf.h> 30 #include <sys/dnode.h> 31 #include <sys/zfs_context.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dmu_traverse.h> 34 #include <sys/dsl_dataset.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_pool.h> 37 #include <sys/dsl_synctask.h> 38 #include <sys/dsl_prop.h> 39 #include <sys/dmu_zfetch.h> 40 #include <sys/zfs_ioctl.h> 41 #include <sys/zap.h> 42 #include <sys/zio_checksum.h> 43 #include <sys/sa.h> 44 #ifdef _KERNEL 45 #include <sys/vmsystm.h> 46 #include <sys/zfs_znode.h> 47 #endif 48 49 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 50 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 51 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 52 { DMU_BSWAP_UINT64, TRUE, "object array" }, 53 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 54 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 55 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 56 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 57 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 58 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 59 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 60 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 61 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 62 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 63 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 64 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 65 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 66 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 67 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 68 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 69 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 70 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 71 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 72 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 73 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 74 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 75 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 76 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 77 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 78 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 79 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 80 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 81 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 82 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 83 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 84 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 85 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 86 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 87 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 88 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 89 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 90 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 91 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 92 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 93 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 94 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 95 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 96 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 97 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 98 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 99 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 100 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 101 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 102 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 103 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 104 }; 105 106 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 107 { byteswap_uint8_array, "uint8" }, 108 { byteswap_uint16_array, "uint16" }, 109 { byteswap_uint32_array, "uint32" }, 110 { byteswap_uint64_array, "uint64" }, 111 { zap_byteswap, "zap" }, 112 { dnode_buf_byteswap, "dnode" }, 113 { dmu_objset_byteswap, "objset" }, 114 { zfs_znode_byteswap, "znode" }, 115 { zfs_oldacl_byteswap, "oldacl" }, 116 { zfs_acl_byteswap, "acl" } 117 }; 118 119 int 120 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 121 void *tag, dmu_buf_t **dbp, int flags) 122 { 123 dnode_t *dn; 124 uint64_t blkid; 125 dmu_buf_impl_t *db; 126 int err; 127 int db_flags = DB_RF_CANFAIL; 128 129 if (flags & DMU_READ_NO_PREFETCH) 130 db_flags |= DB_RF_NOPREFETCH; 131 132 err = dnode_hold(os, object, FTAG, &dn); 133 if (err) 134 return (err); 135 blkid = dbuf_whichblock(dn, offset); 136 rw_enter(&dn->dn_struct_rwlock, RW_READER); 137 db = dbuf_hold(dn, blkid, tag); 138 rw_exit(&dn->dn_struct_rwlock); 139 if (db == NULL) { 140 err = EIO; 141 } else { 142 err = dbuf_read(db, NULL, db_flags); 143 if (err) { 144 dbuf_rele(db, tag); 145 db = NULL; 146 } 147 } 148 149 dnode_rele(dn, FTAG); 150 *dbp = &db->db; /* NULL db plus first field offset is NULL */ 151 return (err); 152 } 153 154 int 155 dmu_bonus_max(void) 156 { 157 return (DN_MAX_BONUSLEN); 158 } 159 160 int 161 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 162 { 163 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 164 dnode_t *dn; 165 int error; 166 167 DB_DNODE_ENTER(db); 168 dn = DB_DNODE(db); 169 170 if (dn->dn_bonus != db) { 171 error = EINVAL; 172 } else if (newsize < 0 || newsize > db_fake->db_size) { 173 error = EINVAL; 174 } else { 175 dnode_setbonuslen(dn, newsize, tx); 176 error = 0; 177 } 178 179 DB_DNODE_EXIT(db); 180 return (error); 181 } 182 183 int 184 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 185 { 186 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 187 dnode_t *dn; 188 int error; 189 190 DB_DNODE_ENTER(db); 191 dn = DB_DNODE(db); 192 193 if (!DMU_OT_IS_VALID(type)) { 194 error = EINVAL; 195 } else if (dn->dn_bonus != db) { 196 error = EINVAL; 197 } else { 198 dnode_setbonus_type(dn, type, tx); 199 error = 0; 200 } 201 202 DB_DNODE_EXIT(db); 203 return (error); 204 } 205 206 dmu_object_type_t 207 dmu_get_bonustype(dmu_buf_t *db_fake) 208 { 209 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 210 dnode_t *dn; 211 dmu_object_type_t type; 212 213 DB_DNODE_ENTER(db); 214 dn = DB_DNODE(db); 215 type = dn->dn_bonustype; 216 DB_DNODE_EXIT(db); 217 218 return (type); 219 } 220 221 int 222 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 223 { 224 dnode_t *dn; 225 int error; 226 227 error = dnode_hold(os, object, FTAG, &dn); 228 dbuf_rm_spill(dn, tx); 229 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 230 dnode_rm_spill(dn, tx); 231 rw_exit(&dn->dn_struct_rwlock); 232 dnode_rele(dn, FTAG); 233 return (error); 234 } 235 236 /* 237 * returns ENOENT, EIO, or 0. 238 */ 239 int 240 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 241 { 242 dnode_t *dn; 243 dmu_buf_impl_t *db; 244 int error; 245 246 error = dnode_hold(os, object, FTAG, &dn); 247 if (error) 248 return (error); 249 250 rw_enter(&dn->dn_struct_rwlock, RW_READER); 251 if (dn->dn_bonus == NULL) { 252 rw_exit(&dn->dn_struct_rwlock); 253 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 254 if (dn->dn_bonus == NULL) 255 dbuf_create_bonus(dn); 256 } 257 db = dn->dn_bonus; 258 259 /* as long as the bonus buf is held, the dnode will be held */ 260 if (refcount_add(&db->db_holds, tag) == 1) { 261 VERIFY(dnode_add_ref(dn, db)); 262 (void) atomic_inc_32_nv(&dn->dn_dbufs_count); 263 } 264 265 /* 266 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 267 * hold and incrementing the dbuf count to ensure that dnode_move() sees 268 * a dnode hold for every dbuf. 269 */ 270 rw_exit(&dn->dn_struct_rwlock); 271 272 dnode_rele(dn, FTAG); 273 274 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 275 276 *dbp = &db->db; 277 return (0); 278 } 279 280 /* 281 * returns ENOENT, EIO, or 0. 282 * 283 * This interface will allocate a blank spill dbuf when a spill blk 284 * doesn't already exist on the dnode. 285 * 286 * if you only want to find an already existing spill db, then 287 * dmu_spill_hold_existing() should be used. 288 */ 289 int 290 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 291 { 292 dmu_buf_impl_t *db = NULL; 293 int err; 294 295 if ((flags & DB_RF_HAVESTRUCT) == 0) 296 rw_enter(&dn->dn_struct_rwlock, RW_READER); 297 298 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 299 300 if ((flags & DB_RF_HAVESTRUCT) == 0) 301 rw_exit(&dn->dn_struct_rwlock); 302 303 ASSERT(db != NULL); 304 err = dbuf_read(db, NULL, flags); 305 if (err == 0) 306 *dbp = &db->db; 307 else 308 dbuf_rele(db, tag); 309 return (err); 310 } 311 312 int 313 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 314 { 315 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 316 dnode_t *dn; 317 int err; 318 319 DB_DNODE_ENTER(db); 320 dn = DB_DNODE(db); 321 322 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 323 err = EINVAL; 324 } else { 325 rw_enter(&dn->dn_struct_rwlock, RW_READER); 326 327 if (!dn->dn_have_spill) { 328 err = ENOENT; 329 } else { 330 err = dmu_spill_hold_by_dnode(dn, 331 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 332 } 333 334 rw_exit(&dn->dn_struct_rwlock); 335 } 336 337 DB_DNODE_EXIT(db); 338 return (err); 339 } 340 341 int 342 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 343 { 344 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 345 dnode_t *dn; 346 int err; 347 348 DB_DNODE_ENTER(db); 349 dn = DB_DNODE(db); 350 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 351 DB_DNODE_EXIT(db); 352 353 return (err); 354 } 355 356 /* 357 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 358 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 359 * and can induce severe lock contention when writing to several files 360 * whose dnodes are in the same block. 361 */ 362 static int 363 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 364 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 365 { 366 dsl_pool_t *dp = NULL; 367 dmu_buf_t **dbp; 368 uint64_t blkid, nblks, i; 369 uint32_t dbuf_flags; 370 int err; 371 zio_t *zio; 372 hrtime_t start; 373 374 ASSERT(length <= DMU_MAX_ACCESS); 375 376 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 377 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 378 dbuf_flags |= DB_RF_NOPREFETCH; 379 380 rw_enter(&dn->dn_struct_rwlock, RW_READER); 381 if (dn->dn_datablkshift) { 382 int blkshift = dn->dn_datablkshift; 383 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 384 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 385 } else { 386 if (offset + length > dn->dn_datablksz) { 387 zfs_panic_recover("zfs: accessing past end of object " 388 "%llx/%llx (size=%u access=%llu+%llu)", 389 (longlong_t)dn->dn_objset-> 390 os_dsl_dataset->ds_object, 391 (longlong_t)dn->dn_object, dn->dn_datablksz, 392 (longlong_t)offset, (longlong_t)length); 393 rw_exit(&dn->dn_struct_rwlock); 394 return (EIO); 395 } 396 nblks = 1; 397 } 398 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 399 400 if (dn->dn_objset->os_dsl_dataset) 401 dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool; 402 if (dp && dsl_pool_sync_context(dp)) 403 start = gethrtime(); 404 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 405 blkid = dbuf_whichblock(dn, offset); 406 for (i = 0; i < nblks; i++) { 407 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 408 if (db == NULL) { 409 rw_exit(&dn->dn_struct_rwlock); 410 dmu_buf_rele_array(dbp, nblks, tag); 411 zio_nowait(zio); 412 return (EIO); 413 } 414 /* initiate async i/o */ 415 if (read) { 416 (void) dbuf_read(db, zio, dbuf_flags); 417 } 418 dbp[i] = &db->db; 419 } 420 rw_exit(&dn->dn_struct_rwlock); 421 422 /* wait for async i/o */ 423 err = zio_wait(zio); 424 /* track read overhead when we are in sync context */ 425 if (dp && dsl_pool_sync_context(dp)) 426 dp->dp_read_overhead += gethrtime() - start; 427 if (err) { 428 dmu_buf_rele_array(dbp, nblks, tag); 429 return (err); 430 } 431 432 /* wait for other io to complete */ 433 if (read) { 434 for (i = 0; i < nblks; i++) { 435 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 436 mutex_enter(&db->db_mtx); 437 while (db->db_state == DB_READ || 438 db->db_state == DB_FILL) 439 cv_wait(&db->db_changed, &db->db_mtx); 440 if (db->db_state == DB_UNCACHED) 441 err = EIO; 442 mutex_exit(&db->db_mtx); 443 if (err) { 444 dmu_buf_rele_array(dbp, nblks, tag); 445 return (err); 446 } 447 } 448 } 449 450 *numbufsp = nblks; 451 *dbpp = dbp; 452 return (0); 453 } 454 455 static int 456 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 457 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 458 { 459 dnode_t *dn; 460 int err; 461 462 err = dnode_hold(os, object, FTAG, &dn); 463 if (err) 464 return (err); 465 466 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 467 numbufsp, dbpp, DMU_READ_PREFETCH); 468 469 dnode_rele(dn, FTAG); 470 471 return (err); 472 } 473 474 int 475 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 476 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 477 { 478 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 479 dnode_t *dn; 480 int err; 481 482 DB_DNODE_ENTER(db); 483 dn = DB_DNODE(db); 484 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 485 numbufsp, dbpp, DMU_READ_PREFETCH); 486 DB_DNODE_EXIT(db); 487 488 return (err); 489 } 490 491 void 492 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 493 { 494 int i; 495 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 496 497 if (numbufs == 0) 498 return; 499 500 for (i = 0; i < numbufs; i++) { 501 if (dbp[i]) 502 dbuf_rele(dbp[i], tag); 503 } 504 505 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 506 } 507 508 void 509 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 510 { 511 dnode_t *dn; 512 uint64_t blkid; 513 int nblks, i, err; 514 515 if (zfs_prefetch_disable) 516 return; 517 518 if (len == 0) { /* they're interested in the bonus buffer */ 519 dn = DMU_META_DNODE(os); 520 521 if (object == 0 || object >= DN_MAX_OBJECT) 522 return; 523 524 rw_enter(&dn->dn_struct_rwlock, RW_READER); 525 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 526 dbuf_prefetch(dn, blkid); 527 rw_exit(&dn->dn_struct_rwlock); 528 return; 529 } 530 531 /* 532 * XXX - Note, if the dnode for the requested object is not 533 * already cached, we will do a *synchronous* read in the 534 * dnode_hold() call. The same is true for any indirects. 535 */ 536 err = dnode_hold(os, object, FTAG, &dn); 537 if (err != 0) 538 return; 539 540 rw_enter(&dn->dn_struct_rwlock, RW_READER); 541 if (dn->dn_datablkshift) { 542 int blkshift = dn->dn_datablkshift; 543 nblks = (P2ROUNDUP(offset+len, 1<<blkshift) - 544 P2ALIGN(offset, 1<<blkshift)) >> blkshift; 545 } else { 546 nblks = (offset < dn->dn_datablksz); 547 } 548 549 if (nblks != 0) { 550 blkid = dbuf_whichblock(dn, offset); 551 for (i = 0; i < nblks; i++) 552 dbuf_prefetch(dn, blkid+i); 553 } 554 555 rw_exit(&dn->dn_struct_rwlock); 556 557 dnode_rele(dn, FTAG); 558 } 559 560 /* 561 * Get the next "chunk" of file data to free. We traverse the file from 562 * the end so that the file gets shorter over time (if we crashes in the 563 * middle, this will leave us in a better state). We find allocated file 564 * data by simply searching the allocated level 1 indirects. 565 */ 566 static int 567 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit) 568 { 569 uint64_t len = *start - limit; 570 uint64_t blkcnt = 0; 571 uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1)); 572 uint64_t iblkrange = 573 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 574 575 ASSERT(limit <= *start); 576 577 if (len <= iblkrange * maxblks) { 578 *start = limit; 579 return (0); 580 } 581 ASSERT(ISP2(iblkrange)); 582 583 while (*start > limit && blkcnt < maxblks) { 584 int err; 585 586 /* find next allocated L1 indirect */ 587 err = dnode_next_offset(dn, 588 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 589 590 /* if there are no more, then we are done */ 591 if (err == ESRCH) { 592 *start = limit; 593 return (0); 594 } else if (err) { 595 return (err); 596 } 597 blkcnt += 1; 598 599 /* reset offset to end of "next" block back */ 600 *start = P2ALIGN(*start, iblkrange); 601 if (*start <= limit) 602 *start = limit; 603 else 604 *start -= 1; 605 } 606 return (0); 607 } 608 609 static int 610 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 611 uint64_t length, boolean_t free_dnode) 612 { 613 dmu_tx_t *tx; 614 uint64_t object_size, start, end, len; 615 boolean_t trunc = (length == DMU_OBJECT_END); 616 int align, err; 617 618 align = 1 << dn->dn_datablkshift; 619 ASSERT(align > 0); 620 object_size = align == 1 ? dn->dn_datablksz : 621 (dn->dn_maxblkid + 1) << dn->dn_datablkshift; 622 623 end = offset + length; 624 if (trunc || end > object_size) 625 end = object_size; 626 if (end <= offset) 627 return (0); 628 length = end - offset; 629 630 while (length) { 631 start = end; 632 /* assert(offset <= start) */ 633 err = get_next_chunk(dn, &start, offset); 634 if (err) 635 return (err); 636 len = trunc ? DMU_OBJECT_END : end - start; 637 638 tx = dmu_tx_create(os); 639 dmu_tx_hold_free(tx, dn->dn_object, start, len); 640 err = dmu_tx_assign(tx, TXG_WAIT); 641 if (err) { 642 dmu_tx_abort(tx); 643 return (err); 644 } 645 646 dnode_free_range(dn, start, trunc ? -1 : len, tx); 647 648 if (start == 0 && free_dnode) { 649 ASSERT(trunc); 650 dnode_free(dn, tx); 651 } 652 653 length -= end - start; 654 655 dmu_tx_commit(tx); 656 end = start; 657 } 658 return (0); 659 } 660 661 int 662 dmu_free_long_range(objset_t *os, uint64_t object, 663 uint64_t offset, uint64_t length) 664 { 665 dnode_t *dn; 666 int err; 667 668 err = dnode_hold(os, object, FTAG, &dn); 669 if (err != 0) 670 return (err); 671 err = dmu_free_long_range_impl(os, dn, offset, length, FALSE); 672 dnode_rele(dn, FTAG); 673 return (err); 674 } 675 676 int 677 dmu_free_object(objset_t *os, uint64_t object) 678 { 679 dnode_t *dn; 680 dmu_tx_t *tx; 681 int err; 682 683 err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 684 FTAG, &dn); 685 if (err != 0) 686 return (err); 687 if (dn->dn_nlevels == 1) { 688 tx = dmu_tx_create(os); 689 dmu_tx_hold_bonus(tx, object); 690 dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END); 691 err = dmu_tx_assign(tx, TXG_WAIT); 692 if (err == 0) { 693 dnode_free_range(dn, 0, DMU_OBJECT_END, tx); 694 dnode_free(dn, tx); 695 dmu_tx_commit(tx); 696 } else { 697 dmu_tx_abort(tx); 698 } 699 } else { 700 err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE); 701 } 702 dnode_rele(dn, FTAG); 703 return (err); 704 } 705 706 int 707 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 708 uint64_t size, dmu_tx_t *tx) 709 { 710 dnode_t *dn; 711 int err = dnode_hold(os, object, FTAG, &dn); 712 if (err) 713 return (err); 714 ASSERT(offset < UINT64_MAX); 715 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 716 dnode_free_range(dn, offset, size, tx); 717 dnode_rele(dn, FTAG); 718 return (0); 719 } 720 721 int 722 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 723 void *buf, uint32_t flags) 724 { 725 dnode_t *dn; 726 dmu_buf_t **dbp; 727 int numbufs, err; 728 729 err = dnode_hold(os, object, FTAG, &dn); 730 if (err) 731 return (err); 732 733 /* 734 * Deal with odd block sizes, where there can't be data past the first 735 * block. If we ever do the tail block optimization, we will need to 736 * handle that here as well. 737 */ 738 if (dn->dn_maxblkid == 0) { 739 int newsz = offset > dn->dn_datablksz ? 0 : 740 MIN(size, dn->dn_datablksz - offset); 741 bzero((char *)buf + newsz, size - newsz); 742 size = newsz; 743 } 744 745 while (size > 0) { 746 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 747 int i; 748 749 /* 750 * NB: we could do this block-at-a-time, but it's nice 751 * to be reading in parallel. 752 */ 753 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 754 TRUE, FTAG, &numbufs, &dbp, flags); 755 if (err) 756 break; 757 758 for (i = 0; i < numbufs; i++) { 759 int tocpy; 760 int bufoff; 761 dmu_buf_t *db = dbp[i]; 762 763 ASSERT(size > 0); 764 765 bufoff = offset - db->db_offset; 766 tocpy = (int)MIN(db->db_size - bufoff, size); 767 768 bcopy((char *)db->db_data + bufoff, buf, tocpy); 769 770 offset += tocpy; 771 size -= tocpy; 772 buf = (char *)buf + tocpy; 773 } 774 dmu_buf_rele_array(dbp, numbufs, FTAG); 775 } 776 dnode_rele(dn, FTAG); 777 return (err); 778 } 779 780 void 781 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 782 const void *buf, dmu_tx_t *tx) 783 { 784 dmu_buf_t **dbp; 785 int numbufs, i; 786 787 if (size == 0) 788 return; 789 790 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 791 FALSE, FTAG, &numbufs, &dbp)); 792 793 for (i = 0; i < numbufs; i++) { 794 int tocpy; 795 int bufoff; 796 dmu_buf_t *db = dbp[i]; 797 798 ASSERT(size > 0); 799 800 bufoff = offset - db->db_offset; 801 tocpy = (int)MIN(db->db_size - bufoff, size); 802 803 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 804 805 if (tocpy == db->db_size) 806 dmu_buf_will_fill(db, tx); 807 else 808 dmu_buf_will_dirty(db, tx); 809 810 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 811 812 if (tocpy == db->db_size) 813 dmu_buf_fill_done(db, tx); 814 815 offset += tocpy; 816 size -= tocpy; 817 buf = (char *)buf + tocpy; 818 } 819 dmu_buf_rele_array(dbp, numbufs, FTAG); 820 } 821 822 void 823 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 824 dmu_tx_t *tx) 825 { 826 dmu_buf_t **dbp; 827 int numbufs, i; 828 829 if (size == 0) 830 return; 831 832 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 833 FALSE, FTAG, &numbufs, &dbp)); 834 835 for (i = 0; i < numbufs; i++) { 836 dmu_buf_t *db = dbp[i]; 837 838 dmu_buf_will_not_fill(db, tx); 839 } 840 dmu_buf_rele_array(dbp, numbufs, FTAG); 841 } 842 843 /* 844 * DMU support for xuio 845 */ 846 kstat_t *xuio_ksp = NULL; 847 848 int 849 dmu_xuio_init(xuio_t *xuio, int nblk) 850 { 851 dmu_xuio_t *priv; 852 uio_t *uio = &xuio->xu_uio; 853 854 uio->uio_iovcnt = nblk; 855 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 856 857 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 858 priv->cnt = nblk; 859 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 860 priv->iovp = uio->uio_iov; 861 XUIO_XUZC_PRIV(xuio) = priv; 862 863 if (XUIO_XUZC_RW(xuio) == UIO_READ) 864 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 865 else 866 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 867 868 return (0); 869 } 870 871 void 872 dmu_xuio_fini(xuio_t *xuio) 873 { 874 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 875 int nblk = priv->cnt; 876 877 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 878 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 879 kmem_free(priv, sizeof (dmu_xuio_t)); 880 881 if (XUIO_XUZC_RW(xuio) == UIO_READ) 882 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 883 else 884 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 885 } 886 887 /* 888 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 889 * and increase priv->next by 1. 890 */ 891 int 892 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 893 { 894 struct iovec *iov; 895 uio_t *uio = &xuio->xu_uio; 896 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 897 int i = priv->next++; 898 899 ASSERT(i < priv->cnt); 900 ASSERT(off + n <= arc_buf_size(abuf)); 901 iov = uio->uio_iov + i; 902 iov->iov_base = (char *)abuf->b_data + off; 903 iov->iov_len = n; 904 priv->bufs[i] = abuf; 905 return (0); 906 } 907 908 int 909 dmu_xuio_cnt(xuio_t *xuio) 910 { 911 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 912 return (priv->cnt); 913 } 914 915 arc_buf_t * 916 dmu_xuio_arcbuf(xuio_t *xuio, int i) 917 { 918 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 919 920 ASSERT(i < priv->cnt); 921 return (priv->bufs[i]); 922 } 923 924 void 925 dmu_xuio_clear(xuio_t *xuio, int i) 926 { 927 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 928 929 ASSERT(i < priv->cnt); 930 priv->bufs[i] = NULL; 931 } 932 933 static void 934 xuio_stat_init(void) 935 { 936 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 937 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 938 KSTAT_FLAG_VIRTUAL); 939 if (xuio_ksp != NULL) { 940 xuio_ksp->ks_data = &xuio_stats; 941 kstat_install(xuio_ksp); 942 } 943 } 944 945 static void 946 xuio_stat_fini(void) 947 { 948 if (xuio_ksp != NULL) { 949 kstat_delete(xuio_ksp); 950 xuio_ksp = NULL; 951 } 952 } 953 954 void 955 xuio_stat_wbuf_copied() 956 { 957 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 958 } 959 960 void 961 xuio_stat_wbuf_nocopy() 962 { 963 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 964 } 965 966 #ifdef _KERNEL 967 int 968 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 969 { 970 dmu_buf_t **dbp; 971 int numbufs, i, err; 972 xuio_t *xuio = NULL; 973 974 /* 975 * NB: we could do this block-at-a-time, but it's nice 976 * to be reading in parallel. 977 */ 978 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 979 &numbufs, &dbp); 980 if (err) 981 return (err); 982 983 if (uio->uio_extflg == UIO_XUIO) 984 xuio = (xuio_t *)uio; 985 986 for (i = 0; i < numbufs; i++) { 987 int tocpy; 988 int bufoff; 989 dmu_buf_t *db = dbp[i]; 990 991 ASSERT(size > 0); 992 993 bufoff = uio->uio_loffset - db->db_offset; 994 tocpy = (int)MIN(db->db_size - bufoff, size); 995 996 if (xuio) { 997 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 998 arc_buf_t *dbuf_abuf = dbi->db_buf; 999 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1000 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1001 if (!err) { 1002 uio->uio_resid -= tocpy; 1003 uio->uio_loffset += tocpy; 1004 } 1005 1006 if (abuf == dbuf_abuf) 1007 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1008 else 1009 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1010 } else { 1011 err = uiomove((char *)db->db_data + bufoff, tocpy, 1012 UIO_READ, uio); 1013 } 1014 if (err) 1015 break; 1016 1017 size -= tocpy; 1018 } 1019 dmu_buf_rele_array(dbp, numbufs, FTAG); 1020 1021 return (err); 1022 } 1023 1024 static int 1025 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1026 { 1027 dmu_buf_t **dbp; 1028 int numbufs; 1029 int err = 0; 1030 int i; 1031 1032 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1033 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1034 if (err) 1035 return (err); 1036 1037 for (i = 0; i < numbufs; i++) { 1038 int tocpy; 1039 int bufoff; 1040 dmu_buf_t *db = dbp[i]; 1041 1042 ASSERT(size > 0); 1043 1044 bufoff = uio->uio_loffset - db->db_offset; 1045 tocpy = (int)MIN(db->db_size - bufoff, size); 1046 1047 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1048 1049 if (tocpy == db->db_size) 1050 dmu_buf_will_fill(db, tx); 1051 else 1052 dmu_buf_will_dirty(db, tx); 1053 1054 /* 1055 * XXX uiomove could block forever (eg. nfs-backed 1056 * pages). There needs to be a uiolockdown() function 1057 * to lock the pages in memory, so that uiomove won't 1058 * block. 1059 */ 1060 err = uiomove((char *)db->db_data + bufoff, tocpy, 1061 UIO_WRITE, uio); 1062 1063 if (tocpy == db->db_size) 1064 dmu_buf_fill_done(db, tx); 1065 1066 if (err) 1067 break; 1068 1069 size -= tocpy; 1070 } 1071 1072 dmu_buf_rele_array(dbp, numbufs, FTAG); 1073 return (err); 1074 } 1075 1076 int 1077 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1078 dmu_tx_t *tx) 1079 { 1080 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1081 dnode_t *dn; 1082 int err; 1083 1084 if (size == 0) 1085 return (0); 1086 1087 DB_DNODE_ENTER(db); 1088 dn = DB_DNODE(db); 1089 err = dmu_write_uio_dnode(dn, uio, size, tx); 1090 DB_DNODE_EXIT(db); 1091 1092 return (err); 1093 } 1094 1095 int 1096 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1097 dmu_tx_t *tx) 1098 { 1099 dnode_t *dn; 1100 int err; 1101 1102 if (size == 0) 1103 return (0); 1104 1105 err = dnode_hold(os, object, FTAG, &dn); 1106 if (err) 1107 return (err); 1108 1109 err = dmu_write_uio_dnode(dn, uio, size, tx); 1110 1111 dnode_rele(dn, FTAG); 1112 1113 return (err); 1114 } 1115 1116 int 1117 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1118 page_t *pp, dmu_tx_t *tx) 1119 { 1120 dmu_buf_t **dbp; 1121 int numbufs, i; 1122 int err; 1123 1124 if (size == 0) 1125 return (0); 1126 1127 err = dmu_buf_hold_array(os, object, offset, size, 1128 FALSE, FTAG, &numbufs, &dbp); 1129 if (err) 1130 return (err); 1131 1132 for (i = 0; i < numbufs; i++) { 1133 int tocpy, copied, thiscpy; 1134 int bufoff; 1135 dmu_buf_t *db = dbp[i]; 1136 caddr_t va; 1137 1138 ASSERT(size > 0); 1139 ASSERT3U(db->db_size, >=, PAGESIZE); 1140 1141 bufoff = offset - db->db_offset; 1142 tocpy = (int)MIN(db->db_size - bufoff, size); 1143 1144 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1145 1146 if (tocpy == db->db_size) 1147 dmu_buf_will_fill(db, tx); 1148 else 1149 dmu_buf_will_dirty(db, tx); 1150 1151 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1152 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1153 thiscpy = MIN(PAGESIZE, tocpy - copied); 1154 va = zfs_map_page(pp, S_READ); 1155 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1156 zfs_unmap_page(pp, va); 1157 pp = pp->p_next; 1158 bufoff += PAGESIZE; 1159 } 1160 1161 if (tocpy == db->db_size) 1162 dmu_buf_fill_done(db, tx); 1163 1164 offset += tocpy; 1165 size -= tocpy; 1166 } 1167 dmu_buf_rele_array(dbp, numbufs, FTAG); 1168 return (err); 1169 } 1170 #endif 1171 1172 /* 1173 * Allocate a loaned anonymous arc buffer. 1174 */ 1175 arc_buf_t * 1176 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1177 { 1178 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1179 spa_t *spa; 1180 1181 DB_GET_SPA(&spa, db); 1182 return (arc_loan_buf(spa, size)); 1183 } 1184 1185 /* 1186 * Free a loaned arc buffer. 1187 */ 1188 void 1189 dmu_return_arcbuf(arc_buf_t *buf) 1190 { 1191 arc_return_buf(buf, FTAG); 1192 VERIFY(arc_buf_remove_ref(buf, FTAG) == 1); 1193 } 1194 1195 /* 1196 * When possible directly assign passed loaned arc buffer to a dbuf. 1197 * If this is not possible copy the contents of passed arc buf via 1198 * dmu_write(). 1199 */ 1200 void 1201 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1202 dmu_tx_t *tx) 1203 { 1204 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1205 dnode_t *dn; 1206 dmu_buf_impl_t *db; 1207 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1208 uint64_t blkid; 1209 1210 DB_DNODE_ENTER(dbuf); 1211 dn = DB_DNODE(dbuf); 1212 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1213 blkid = dbuf_whichblock(dn, offset); 1214 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1215 rw_exit(&dn->dn_struct_rwlock); 1216 DB_DNODE_EXIT(dbuf); 1217 1218 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1219 dbuf_assign_arcbuf(db, buf, tx); 1220 dbuf_rele(db, FTAG); 1221 } else { 1222 objset_t *os; 1223 uint64_t object; 1224 1225 DB_DNODE_ENTER(dbuf); 1226 dn = DB_DNODE(dbuf); 1227 os = dn->dn_objset; 1228 object = dn->dn_object; 1229 DB_DNODE_EXIT(dbuf); 1230 1231 dbuf_rele(db, FTAG); 1232 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1233 dmu_return_arcbuf(buf); 1234 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1235 } 1236 } 1237 1238 typedef struct { 1239 dbuf_dirty_record_t *dsa_dr; 1240 dmu_sync_cb_t *dsa_done; 1241 zgd_t *dsa_zgd; 1242 dmu_tx_t *dsa_tx; 1243 } dmu_sync_arg_t; 1244 1245 /* ARGSUSED */ 1246 static void 1247 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1248 { 1249 dmu_sync_arg_t *dsa = varg; 1250 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1251 blkptr_t *bp = zio->io_bp; 1252 1253 if (zio->io_error == 0) { 1254 if (BP_IS_HOLE(bp)) { 1255 /* 1256 * A block of zeros may compress to a hole, but the 1257 * block size still needs to be known for replay. 1258 */ 1259 BP_SET_LSIZE(bp, db->db_size); 1260 } else { 1261 ASSERT(BP_GET_LEVEL(bp) == 0); 1262 bp->blk_fill = 1; 1263 } 1264 } 1265 } 1266 1267 static void 1268 dmu_sync_late_arrival_ready(zio_t *zio) 1269 { 1270 dmu_sync_ready(zio, NULL, zio->io_private); 1271 } 1272 1273 /* ARGSUSED */ 1274 static void 1275 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1276 { 1277 dmu_sync_arg_t *dsa = varg; 1278 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1279 dmu_buf_impl_t *db = dr->dr_dbuf; 1280 1281 mutex_enter(&db->db_mtx); 1282 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1283 if (zio->io_error == 0) { 1284 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1285 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1286 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1287 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) 1288 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1289 } else { 1290 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1291 } 1292 cv_broadcast(&db->db_changed); 1293 mutex_exit(&db->db_mtx); 1294 1295 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1296 1297 kmem_free(dsa, sizeof (*dsa)); 1298 } 1299 1300 static void 1301 dmu_sync_late_arrival_done(zio_t *zio) 1302 { 1303 blkptr_t *bp = zio->io_bp; 1304 dmu_sync_arg_t *dsa = zio->io_private; 1305 1306 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1307 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1308 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1309 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1310 } 1311 1312 dmu_tx_commit(dsa->dsa_tx); 1313 1314 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1315 1316 kmem_free(dsa, sizeof (*dsa)); 1317 } 1318 1319 static int 1320 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1321 zio_prop_t *zp, zbookmark_t *zb) 1322 { 1323 dmu_sync_arg_t *dsa; 1324 dmu_tx_t *tx; 1325 1326 tx = dmu_tx_create(os); 1327 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1328 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1329 dmu_tx_abort(tx); 1330 return (EIO); /* Make zl_get_data do txg_waited_synced() */ 1331 } 1332 1333 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1334 dsa->dsa_dr = NULL; 1335 dsa->dsa_done = done; 1336 dsa->dsa_zgd = zgd; 1337 dsa->dsa_tx = tx; 1338 1339 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1340 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1341 dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa, 1342 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1343 1344 return (0); 1345 } 1346 1347 /* 1348 * Intent log support: sync the block associated with db to disk. 1349 * N.B. and XXX: the caller is responsible for making sure that the 1350 * data isn't changing while dmu_sync() is writing it. 1351 * 1352 * Return values: 1353 * 1354 * EEXIST: this txg has already been synced, so there's nothing to to. 1355 * The caller should not log the write. 1356 * 1357 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1358 * The caller should not log the write. 1359 * 1360 * EALREADY: this block is already in the process of being synced. 1361 * The caller should track its progress (somehow). 1362 * 1363 * EIO: could not do the I/O. 1364 * The caller should do a txg_wait_synced(). 1365 * 1366 * 0: the I/O has been initiated. 1367 * The caller should log this blkptr in the done callback. 1368 * It is possible that the I/O will fail, in which case 1369 * the error will be reported to the done callback and 1370 * propagated to pio from zio_done(). 1371 */ 1372 int 1373 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1374 { 1375 blkptr_t *bp = zgd->zgd_bp; 1376 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1377 objset_t *os = db->db_objset; 1378 dsl_dataset_t *ds = os->os_dsl_dataset; 1379 dbuf_dirty_record_t *dr; 1380 dmu_sync_arg_t *dsa; 1381 zbookmark_t zb; 1382 zio_prop_t zp; 1383 dnode_t *dn; 1384 1385 ASSERT(pio != NULL); 1386 ASSERT(BP_IS_HOLE(bp)); 1387 ASSERT(txg != 0); 1388 1389 SET_BOOKMARK(&zb, ds->ds_object, 1390 db->db.db_object, db->db_level, db->db_blkid); 1391 1392 DB_DNODE_ENTER(db); 1393 dn = DB_DNODE(db); 1394 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1395 DB_DNODE_EXIT(db); 1396 1397 /* 1398 * If we're frozen (running ziltest), we always need to generate a bp. 1399 */ 1400 if (txg > spa_freeze_txg(os->os_spa)) 1401 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1402 1403 /* 1404 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1405 * and us. If we determine that this txg is not yet syncing, 1406 * but it begins to sync a moment later, that's OK because the 1407 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1408 */ 1409 mutex_enter(&db->db_mtx); 1410 1411 if (txg <= spa_last_synced_txg(os->os_spa)) { 1412 /* 1413 * This txg has already synced. There's nothing to do. 1414 */ 1415 mutex_exit(&db->db_mtx); 1416 return (EEXIST); 1417 } 1418 1419 if (txg <= spa_syncing_txg(os->os_spa)) { 1420 /* 1421 * This txg is currently syncing, so we can't mess with 1422 * the dirty record anymore; just write a new log block. 1423 */ 1424 mutex_exit(&db->db_mtx); 1425 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1426 } 1427 1428 dr = db->db_last_dirty; 1429 while (dr && dr->dr_txg != txg) 1430 dr = dr->dr_next; 1431 1432 if (dr == NULL) { 1433 /* 1434 * There's no dr for this dbuf, so it must have been freed. 1435 * There's no need to log writes to freed blocks, so we're done. 1436 */ 1437 mutex_exit(&db->db_mtx); 1438 return (ENOENT); 1439 } 1440 1441 ASSERT(dr->dr_txg == txg); 1442 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1443 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1444 /* 1445 * We have already issued a sync write for this buffer, 1446 * or this buffer has already been synced. It could not 1447 * have been dirtied since, or we would have cleared the state. 1448 */ 1449 mutex_exit(&db->db_mtx); 1450 return (EALREADY); 1451 } 1452 1453 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1454 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1455 mutex_exit(&db->db_mtx); 1456 1457 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1458 dsa->dsa_dr = dr; 1459 dsa->dsa_done = done; 1460 dsa->dsa_zgd = zgd; 1461 dsa->dsa_tx = NULL; 1462 1463 zio_nowait(arc_write(pio, os->os_spa, txg, 1464 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp, 1465 dmu_sync_ready, dmu_sync_done, dsa, 1466 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1467 1468 return (0); 1469 } 1470 1471 int 1472 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1473 dmu_tx_t *tx) 1474 { 1475 dnode_t *dn; 1476 int err; 1477 1478 err = dnode_hold(os, object, FTAG, &dn); 1479 if (err) 1480 return (err); 1481 err = dnode_set_blksz(dn, size, ibs, tx); 1482 dnode_rele(dn, FTAG); 1483 return (err); 1484 } 1485 1486 void 1487 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1488 dmu_tx_t *tx) 1489 { 1490 dnode_t *dn; 1491 1492 /* XXX assumes dnode_hold will not get an i/o error */ 1493 (void) dnode_hold(os, object, FTAG, &dn); 1494 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 1495 dn->dn_checksum = checksum; 1496 dnode_setdirty(dn, tx); 1497 dnode_rele(dn, FTAG); 1498 } 1499 1500 void 1501 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1502 dmu_tx_t *tx) 1503 { 1504 dnode_t *dn; 1505 1506 /* XXX assumes dnode_hold will not get an i/o error */ 1507 (void) dnode_hold(os, object, FTAG, &dn); 1508 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 1509 dn->dn_compress = compress; 1510 dnode_setdirty(dn, tx); 1511 dnode_rele(dn, FTAG); 1512 } 1513 1514 int zfs_mdcomp_disable = 0; 1515 1516 void 1517 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1518 { 1519 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1520 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1521 (wp & WP_SPILL)); 1522 enum zio_checksum checksum = os->os_checksum; 1523 enum zio_compress compress = os->os_compress; 1524 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1525 boolean_t dedup; 1526 boolean_t dedup_verify = os->os_dedup_verify; 1527 int copies = os->os_copies; 1528 1529 /* 1530 * Determine checksum setting. 1531 */ 1532 if (ismd) { 1533 /* 1534 * Metadata always gets checksummed. If the data 1535 * checksum is multi-bit correctable, and it's not a 1536 * ZBT-style checksum, then it's suitable for metadata 1537 * as well. Otherwise, the metadata checksum defaults 1538 * to fletcher4. 1539 */ 1540 if (zio_checksum_table[checksum].ci_correctable < 1 || 1541 zio_checksum_table[checksum].ci_eck) 1542 checksum = ZIO_CHECKSUM_FLETCHER_4; 1543 } else { 1544 checksum = zio_checksum_select(dn->dn_checksum, checksum); 1545 } 1546 1547 /* 1548 * Determine compression setting. 1549 */ 1550 if (ismd) { 1551 /* 1552 * XXX -- we should design a compression algorithm 1553 * that specializes in arrays of bps. 1554 */ 1555 compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 1556 ZIO_COMPRESS_LZJB; 1557 } else { 1558 compress = zio_compress_select(dn->dn_compress, compress); 1559 } 1560 1561 /* 1562 * Determine dedup setting. If we are in dmu_sync(), we won't 1563 * actually dedup now because that's all done in syncing context; 1564 * but we do want to use the dedup checkum. If the checksum is not 1565 * strong enough to ensure unique signatures, force dedup_verify. 1566 */ 1567 dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF); 1568 if (dedup) { 1569 checksum = dedup_checksum; 1570 if (!zio_checksum_table[checksum].ci_dedup) 1571 dedup_verify = 1; 1572 } 1573 1574 if (wp & WP_DMU_SYNC) 1575 dedup = 0; 1576 1577 if (wp & WP_NOFILL) { 1578 ASSERT(!ismd && level == 0); 1579 checksum = ZIO_CHECKSUM_OFF; 1580 compress = ZIO_COMPRESS_OFF; 1581 dedup = B_FALSE; 1582 } 1583 1584 zp->zp_checksum = checksum; 1585 zp->zp_compress = compress; 1586 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1587 zp->zp_level = level; 1588 zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa)); 1589 zp->zp_dedup = dedup; 1590 zp->zp_dedup_verify = dedup && dedup_verify; 1591 } 1592 1593 int 1594 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1595 { 1596 dnode_t *dn; 1597 int i, err; 1598 1599 err = dnode_hold(os, object, FTAG, &dn); 1600 if (err) 1601 return (err); 1602 /* 1603 * Sync any current changes before 1604 * we go trundling through the block pointers. 1605 */ 1606 for (i = 0; i < TXG_SIZE; i++) { 1607 if (list_link_active(&dn->dn_dirty_link[i])) 1608 break; 1609 } 1610 if (i != TXG_SIZE) { 1611 dnode_rele(dn, FTAG); 1612 txg_wait_synced(dmu_objset_pool(os), 0); 1613 err = dnode_hold(os, object, FTAG, &dn); 1614 if (err) 1615 return (err); 1616 } 1617 1618 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1619 dnode_rele(dn, FTAG); 1620 1621 return (err); 1622 } 1623 1624 void 1625 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1626 { 1627 dnode_phys_t *dnp; 1628 1629 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1630 mutex_enter(&dn->dn_mtx); 1631 1632 dnp = dn->dn_phys; 1633 1634 doi->doi_data_block_size = dn->dn_datablksz; 1635 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1636 1ULL << dn->dn_indblkshift : 0; 1637 doi->doi_type = dn->dn_type; 1638 doi->doi_bonus_type = dn->dn_bonustype; 1639 doi->doi_bonus_size = dn->dn_bonuslen; 1640 doi->doi_indirection = dn->dn_nlevels; 1641 doi->doi_checksum = dn->dn_checksum; 1642 doi->doi_compress = dn->dn_compress; 1643 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1644 doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz; 1645 doi->doi_fill_count = 0; 1646 for (int i = 0; i < dnp->dn_nblkptr; i++) 1647 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill; 1648 1649 mutex_exit(&dn->dn_mtx); 1650 rw_exit(&dn->dn_struct_rwlock); 1651 } 1652 1653 /* 1654 * Get information on a DMU object. 1655 * If doi is NULL, just indicates whether the object exists. 1656 */ 1657 int 1658 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1659 { 1660 dnode_t *dn; 1661 int err = dnode_hold(os, object, FTAG, &dn); 1662 1663 if (err) 1664 return (err); 1665 1666 if (doi != NULL) 1667 dmu_object_info_from_dnode(dn, doi); 1668 1669 dnode_rele(dn, FTAG); 1670 return (0); 1671 } 1672 1673 /* 1674 * As above, but faster; can be used when you have a held dbuf in hand. 1675 */ 1676 void 1677 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 1678 { 1679 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1680 1681 DB_DNODE_ENTER(db); 1682 dmu_object_info_from_dnode(DB_DNODE(db), doi); 1683 DB_DNODE_EXIT(db); 1684 } 1685 1686 /* 1687 * Faster still when you only care about the size. 1688 * This is specifically optimized for zfs_getattr(). 1689 */ 1690 void 1691 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 1692 u_longlong_t *nblk512) 1693 { 1694 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1695 dnode_t *dn; 1696 1697 DB_DNODE_ENTER(db); 1698 dn = DB_DNODE(db); 1699 1700 *blksize = dn->dn_datablksz; 1701 /* add 1 for dnode space */ 1702 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1703 SPA_MINBLOCKSHIFT) + 1; 1704 DB_DNODE_EXIT(db); 1705 } 1706 1707 void 1708 byteswap_uint64_array(void *vbuf, size_t size) 1709 { 1710 uint64_t *buf = vbuf; 1711 size_t count = size >> 3; 1712 int i; 1713 1714 ASSERT((size & 7) == 0); 1715 1716 for (i = 0; i < count; i++) 1717 buf[i] = BSWAP_64(buf[i]); 1718 } 1719 1720 void 1721 byteswap_uint32_array(void *vbuf, size_t size) 1722 { 1723 uint32_t *buf = vbuf; 1724 size_t count = size >> 2; 1725 int i; 1726 1727 ASSERT((size & 3) == 0); 1728 1729 for (i = 0; i < count; i++) 1730 buf[i] = BSWAP_32(buf[i]); 1731 } 1732 1733 void 1734 byteswap_uint16_array(void *vbuf, size_t size) 1735 { 1736 uint16_t *buf = vbuf; 1737 size_t count = size >> 1; 1738 int i; 1739 1740 ASSERT((size & 1) == 0); 1741 1742 for (i = 0; i < count; i++) 1743 buf[i] = BSWAP_16(buf[i]); 1744 } 1745 1746 /* ARGSUSED */ 1747 void 1748 byteswap_uint8_array(void *vbuf, size_t size) 1749 { 1750 } 1751 1752 void 1753 dmu_init(void) 1754 { 1755 zfs_dbgmsg_init(); 1756 sa_cache_init(); 1757 xuio_stat_init(); 1758 dmu_objset_init(); 1759 dnode_init(); 1760 dbuf_init(); 1761 zfetch_init(); 1762 arc_init(); 1763 l2arc_init(); 1764 } 1765 1766 void 1767 dmu_fini(void) 1768 { 1769 l2arc_fini(); 1770 arc_fini(); 1771 zfetch_fini(); 1772 dbuf_fini(); 1773 dnode_fini(); 1774 dmu_objset_fini(); 1775 xuio_stat_fini(); 1776 sa_cache_fini(); 1777 zfs_dbgmsg_fini(); 1778 } 1779