1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 */ 25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ 26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ 27 /* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/dsl_synctask.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/zfs_ioctl.h> 44 #include <sys/zap.h> 45 #include <sys/zio_checksum.h> 46 #include <sys/zio_compress.h> 47 #include <sys/sa.h> 48 #include <sys/zfeature.h> 49 #ifdef _KERNEL 50 #include <sys/vmsystm.h> 51 #include <sys/zfs_znode.h> 52 #endif 53 54 /* 55 * Enable/disable nopwrite feature. 56 */ 57 int zfs_nopwrite_enabled = 1; 58 59 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 60 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 61 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 62 { DMU_BSWAP_UINT64, TRUE, "object array" }, 63 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 64 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 65 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 66 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 67 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 68 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 69 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 70 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 71 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 72 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 73 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 74 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 75 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 76 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 77 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 78 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 79 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 80 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 81 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 82 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 83 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 84 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 85 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 86 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 87 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 88 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 89 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 90 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 91 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 92 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 93 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 94 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 95 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 96 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 97 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 98 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 99 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 100 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 101 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 102 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 103 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 104 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 105 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 106 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 107 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 108 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 109 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 110 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 111 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 112 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 113 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 114 }; 115 116 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 117 { byteswap_uint8_array, "uint8" }, 118 { byteswap_uint16_array, "uint16" }, 119 { byteswap_uint32_array, "uint32" }, 120 { byteswap_uint64_array, "uint64" }, 121 { zap_byteswap, "zap" }, 122 { dnode_buf_byteswap, "dnode" }, 123 { dmu_objset_byteswap, "objset" }, 124 { zfs_znode_byteswap, "znode" }, 125 { zfs_oldacl_byteswap, "oldacl" }, 126 { zfs_acl_byteswap, "acl" } 127 }; 128 129 int 130 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 131 void *tag, dmu_buf_t **dbp) 132 { 133 dnode_t *dn; 134 uint64_t blkid; 135 dmu_buf_impl_t *db; 136 int err; 137 138 err = dnode_hold(os, object, FTAG, &dn); 139 if (err) 140 return (err); 141 blkid = dbuf_whichblock(dn, offset); 142 rw_enter(&dn->dn_struct_rwlock, RW_READER); 143 db = dbuf_hold(dn, blkid, tag); 144 rw_exit(&dn->dn_struct_rwlock); 145 dnode_rele(dn, FTAG); 146 147 if (db == NULL) { 148 *dbp = NULL; 149 return (SET_ERROR(EIO)); 150 } 151 152 *dbp = &db->db; 153 return (err); 154 } 155 156 int 157 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 158 void *tag, dmu_buf_t **dbp, int flags) 159 { 160 int err; 161 int db_flags = DB_RF_CANFAIL; 162 163 if (flags & DMU_READ_NO_PREFETCH) 164 db_flags |= DB_RF_NOPREFETCH; 165 166 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 167 if (err == 0) { 168 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 169 err = dbuf_read(db, NULL, db_flags); 170 if (err != 0) { 171 dbuf_rele(db, tag); 172 *dbp = NULL; 173 } 174 } 175 176 return (err); 177 } 178 179 int 180 dmu_bonus_max(void) 181 { 182 return (DN_MAX_BONUSLEN); 183 } 184 185 int 186 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 187 { 188 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 189 dnode_t *dn; 190 int error; 191 192 DB_DNODE_ENTER(db); 193 dn = DB_DNODE(db); 194 195 if (dn->dn_bonus != db) { 196 error = SET_ERROR(EINVAL); 197 } else if (newsize < 0 || newsize > db_fake->db_size) { 198 error = SET_ERROR(EINVAL); 199 } else { 200 dnode_setbonuslen(dn, newsize, tx); 201 error = 0; 202 } 203 204 DB_DNODE_EXIT(db); 205 return (error); 206 } 207 208 int 209 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 210 { 211 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 212 dnode_t *dn; 213 int error; 214 215 DB_DNODE_ENTER(db); 216 dn = DB_DNODE(db); 217 218 if (!DMU_OT_IS_VALID(type)) { 219 error = SET_ERROR(EINVAL); 220 } else if (dn->dn_bonus != db) { 221 error = SET_ERROR(EINVAL); 222 } else { 223 dnode_setbonus_type(dn, type, tx); 224 error = 0; 225 } 226 227 DB_DNODE_EXIT(db); 228 return (error); 229 } 230 231 dmu_object_type_t 232 dmu_get_bonustype(dmu_buf_t *db_fake) 233 { 234 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 235 dnode_t *dn; 236 dmu_object_type_t type; 237 238 DB_DNODE_ENTER(db); 239 dn = DB_DNODE(db); 240 type = dn->dn_bonustype; 241 DB_DNODE_EXIT(db); 242 243 return (type); 244 } 245 246 int 247 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 248 { 249 dnode_t *dn; 250 int error; 251 252 error = dnode_hold(os, object, FTAG, &dn); 253 dbuf_rm_spill(dn, tx); 254 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 255 dnode_rm_spill(dn, tx); 256 rw_exit(&dn->dn_struct_rwlock); 257 dnode_rele(dn, FTAG); 258 return (error); 259 } 260 261 /* 262 * returns ENOENT, EIO, or 0. 263 */ 264 int 265 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 266 { 267 dnode_t *dn; 268 dmu_buf_impl_t *db; 269 int error; 270 271 error = dnode_hold(os, object, FTAG, &dn); 272 if (error) 273 return (error); 274 275 rw_enter(&dn->dn_struct_rwlock, RW_READER); 276 if (dn->dn_bonus == NULL) { 277 rw_exit(&dn->dn_struct_rwlock); 278 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 279 if (dn->dn_bonus == NULL) 280 dbuf_create_bonus(dn); 281 } 282 db = dn->dn_bonus; 283 284 /* as long as the bonus buf is held, the dnode will be held */ 285 if (refcount_add(&db->db_holds, tag) == 1) { 286 VERIFY(dnode_add_ref(dn, db)); 287 (void) atomic_inc_32_nv(&dn->dn_dbufs_count); 288 } 289 290 /* 291 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 292 * hold and incrementing the dbuf count to ensure that dnode_move() sees 293 * a dnode hold for every dbuf. 294 */ 295 rw_exit(&dn->dn_struct_rwlock); 296 297 dnode_rele(dn, FTAG); 298 299 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 300 301 *dbp = &db->db; 302 return (0); 303 } 304 305 /* 306 * returns ENOENT, EIO, or 0. 307 * 308 * This interface will allocate a blank spill dbuf when a spill blk 309 * doesn't already exist on the dnode. 310 * 311 * if you only want to find an already existing spill db, then 312 * dmu_spill_hold_existing() should be used. 313 */ 314 int 315 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 316 { 317 dmu_buf_impl_t *db = NULL; 318 int err; 319 320 if ((flags & DB_RF_HAVESTRUCT) == 0) 321 rw_enter(&dn->dn_struct_rwlock, RW_READER); 322 323 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 324 325 if ((flags & DB_RF_HAVESTRUCT) == 0) 326 rw_exit(&dn->dn_struct_rwlock); 327 328 ASSERT(db != NULL); 329 err = dbuf_read(db, NULL, flags); 330 if (err == 0) 331 *dbp = &db->db; 332 else 333 dbuf_rele(db, tag); 334 return (err); 335 } 336 337 int 338 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 339 { 340 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 341 dnode_t *dn; 342 int err; 343 344 DB_DNODE_ENTER(db); 345 dn = DB_DNODE(db); 346 347 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 348 err = SET_ERROR(EINVAL); 349 } else { 350 rw_enter(&dn->dn_struct_rwlock, RW_READER); 351 352 if (!dn->dn_have_spill) { 353 err = SET_ERROR(ENOENT); 354 } else { 355 err = dmu_spill_hold_by_dnode(dn, 356 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 357 } 358 359 rw_exit(&dn->dn_struct_rwlock); 360 } 361 362 DB_DNODE_EXIT(db); 363 return (err); 364 } 365 366 int 367 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 368 { 369 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 370 dnode_t *dn; 371 int err; 372 373 DB_DNODE_ENTER(db); 374 dn = DB_DNODE(db); 375 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 376 DB_DNODE_EXIT(db); 377 378 return (err); 379 } 380 381 /* 382 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 383 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 384 * and can induce severe lock contention when writing to several files 385 * whose dnodes are in the same block. 386 */ 387 static int 388 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 389 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 390 { 391 dmu_buf_t **dbp; 392 uint64_t blkid, nblks, i; 393 uint32_t dbuf_flags; 394 int err; 395 zio_t *zio; 396 397 ASSERT(length <= DMU_MAX_ACCESS); 398 399 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 400 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 401 dbuf_flags |= DB_RF_NOPREFETCH; 402 403 rw_enter(&dn->dn_struct_rwlock, RW_READER); 404 if (dn->dn_datablkshift) { 405 int blkshift = dn->dn_datablkshift; 406 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 407 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 408 } else { 409 if (offset + length > dn->dn_datablksz) { 410 zfs_panic_recover("zfs: accessing past end of object " 411 "%llx/%llx (size=%u access=%llu+%llu)", 412 (longlong_t)dn->dn_objset-> 413 os_dsl_dataset->ds_object, 414 (longlong_t)dn->dn_object, dn->dn_datablksz, 415 (longlong_t)offset, (longlong_t)length); 416 rw_exit(&dn->dn_struct_rwlock); 417 return (SET_ERROR(EIO)); 418 } 419 nblks = 1; 420 } 421 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 422 423 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 424 blkid = dbuf_whichblock(dn, offset); 425 for (i = 0; i < nblks; i++) { 426 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 427 if (db == NULL) { 428 rw_exit(&dn->dn_struct_rwlock); 429 dmu_buf_rele_array(dbp, nblks, tag); 430 zio_nowait(zio); 431 return (SET_ERROR(EIO)); 432 } 433 /* initiate async i/o */ 434 if (read) { 435 (void) dbuf_read(db, zio, dbuf_flags); 436 } 437 dbp[i] = &db->db; 438 } 439 rw_exit(&dn->dn_struct_rwlock); 440 441 /* wait for async i/o */ 442 err = zio_wait(zio); 443 if (err) { 444 dmu_buf_rele_array(dbp, nblks, tag); 445 return (err); 446 } 447 448 /* wait for other io to complete */ 449 if (read) { 450 for (i = 0; i < nblks; i++) { 451 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 452 mutex_enter(&db->db_mtx); 453 while (db->db_state == DB_READ || 454 db->db_state == DB_FILL) 455 cv_wait(&db->db_changed, &db->db_mtx); 456 if (db->db_state == DB_UNCACHED) 457 err = SET_ERROR(EIO); 458 mutex_exit(&db->db_mtx); 459 if (err) { 460 dmu_buf_rele_array(dbp, nblks, tag); 461 return (err); 462 } 463 } 464 } 465 466 *numbufsp = nblks; 467 *dbpp = dbp; 468 return (0); 469 } 470 471 static int 472 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 473 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 474 { 475 dnode_t *dn; 476 int err; 477 478 err = dnode_hold(os, object, FTAG, &dn); 479 if (err) 480 return (err); 481 482 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 483 numbufsp, dbpp, DMU_READ_PREFETCH); 484 485 dnode_rele(dn, FTAG); 486 487 return (err); 488 } 489 490 int 491 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 492 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 493 { 494 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 495 dnode_t *dn; 496 int err; 497 498 DB_DNODE_ENTER(db); 499 dn = DB_DNODE(db); 500 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 501 numbufsp, dbpp, DMU_READ_PREFETCH); 502 DB_DNODE_EXIT(db); 503 504 return (err); 505 } 506 507 void 508 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 509 { 510 int i; 511 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 512 513 if (numbufs == 0) 514 return; 515 516 for (i = 0; i < numbufs; i++) { 517 if (dbp[i]) 518 dbuf_rele(dbp[i], tag); 519 } 520 521 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 522 } 523 524 /* 525 * Issue prefetch i/os for the given blocks. 526 * 527 * Note: The assumption is that we *know* these blocks will be needed 528 * almost immediately. Therefore, the prefetch i/os will be issued at 529 * ZIO_PRIORITY_SYNC_READ 530 * 531 * Note: indirect blocks and other metadata will be read synchronously, 532 * causing this function to block if they are not already cached. 533 */ 534 void 535 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 536 { 537 dnode_t *dn; 538 uint64_t blkid; 539 int nblks, err; 540 541 if (zfs_prefetch_disable) 542 return; 543 544 if (len == 0) { /* they're interested in the bonus buffer */ 545 dn = DMU_META_DNODE(os); 546 547 if (object == 0 || object >= DN_MAX_OBJECT) 548 return; 549 550 rw_enter(&dn->dn_struct_rwlock, RW_READER); 551 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 552 dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ); 553 rw_exit(&dn->dn_struct_rwlock); 554 return; 555 } 556 557 /* 558 * XXX - Note, if the dnode for the requested object is not 559 * already cached, we will do a *synchronous* read in the 560 * dnode_hold() call. The same is true for any indirects. 561 */ 562 err = dnode_hold(os, object, FTAG, &dn); 563 if (err != 0) 564 return; 565 566 rw_enter(&dn->dn_struct_rwlock, RW_READER); 567 if (dn->dn_datablkshift) { 568 int blkshift = dn->dn_datablkshift; 569 nblks = (P2ROUNDUP(offset + len, 1 << blkshift) - 570 P2ALIGN(offset, 1 << blkshift)) >> blkshift; 571 } else { 572 nblks = (offset < dn->dn_datablksz); 573 } 574 575 if (nblks != 0) { 576 blkid = dbuf_whichblock(dn, offset); 577 for (int i = 0; i < nblks; i++) 578 dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ); 579 } 580 581 rw_exit(&dn->dn_struct_rwlock); 582 583 dnode_rele(dn, FTAG); 584 } 585 586 /* 587 * Get the next "chunk" of file data to free. We traverse the file from 588 * the end so that the file gets shorter over time (if we crashes in the 589 * middle, this will leave us in a better state). We find allocated file 590 * data by simply searching the allocated level 1 indirects. 591 * 592 * On input, *start should be the first offset that does not need to be 593 * freed (e.g. "offset + length"). On return, *start will be the first 594 * offset that should be freed. 595 */ 596 static int 597 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 598 { 599 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 600 /* bytes of data covered by a level-1 indirect block */ 601 uint64_t iblkrange = 602 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 603 604 ASSERT3U(minimum, <=, *start); 605 606 if (*start - minimum <= iblkrange * maxblks) { 607 *start = minimum; 608 return (0); 609 } 610 ASSERT(ISP2(iblkrange)); 611 612 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 613 int err; 614 615 /* 616 * dnode_next_offset(BACKWARDS) will find an allocated L1 617 * indirect block at or before the input offset. We must 618 * decrement *start so that it is at the end of the region 619 * to search. 620 */ 621 (*start)--; 622 err = dnode_next_offset(dn, 623 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 624 625 /* if there are no indirect blocks before start, we are done */ 626 if (err == ESRCH) { 627 *start = minimum; 628 break; 629 } else if (err != 0) { 630 return (err); 631 } 632 633 /* set start to the beginning of this L1 indirect */ 634 *start = P2ALIGN(*start, iblkrange); 635 } 636 if (*start < minimum) 637 *start = minimum; 638 return (0); 639 } 640 641 static int 642 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 643 uint64_t length) 644 { 645 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 646 int err; 647 648 if (offset >= object_size) 649 return (0); 650 651 if (length == DMU_OBJECT_END || offset + length > object_size) 652 length = object_size - offset; 653 654 while (length != 0) { 655 uint64_t chunk_end, chunk_begin; 656 657 chunk_end = chunk_begin = offset + length; 658 659 /* move chunk_begin backwards to the beginning of this chunk */ 660 err = get_next_chunk(dn, &chunk_begin, offset); 661 if (err) 662 return (err); 663 ASSERT3U(chunk_begin, >=, offset); 664 ASSERT3U(chunk_begin, <=, chunk_end); 665 666 dmu_tx_t *tx = dmu_tx_create(os); 667 dmu_tx_hold_free(tx, dn->dn_object, 668 chunk_begin, chunk_end - chunk_begin); 669 err = dmu_tx_assign(tx, TXG_WAIT); 670 if (err) { 671 dmu_tx_abort(tx); 672 return (err); 673 } 674 dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx); 675 dmu_tx_commit(tx); 676 677 length -= chunk_end - chunk_begin; 678 } 679 return (0); 680 } 681 682 int 683 dmu_free_long_range(objset_t *os, uint64_t object, 684 uint64_t offset, uint64_t length) 685 { 686 dnode_t *dn; 687 int err; 688 689 err = dnode_hold(os, object, FTAG, &dn); 690 if (err != 0) 691 return (err); 692 err = dmu_free_long_range_impl(os, dn, offset, length); 693 694 /* 695 * It is important to zero out the maxblkid when freeing the entire 696 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 697 * will take the fast path, and (b) dnode_reallocate() can verify 698 * that the entire file has been freed. 699 */ 700 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 701 dn->dn_maxblkid = 0; 702 703 dnode_rele(dn, FTAG); 704 return (err); 705 } 706 707 int 708 dmu_free_long_object(objset_t *os, uint64_t object) 709 { 710 dmu_tx_t *tx; 711 int err; 712 713 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 714 if (err != 0) 715 return (err); 716 717 tx = dmu_tx_create(os); 718 dmu_tx_hold_bonus(tx, object); 719 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 720 err = dmu_tx_assign(tx, TXG_WAIT); 721 if (err == 0) { 722 err = dmu_object_free(os, object, tx); 723 dmu_tx_commit(tx); 724 } else { 725 dmu_tx_abort(tx); 726 } 727 728 return (err); 729 } 730 731 int 732 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 733 uint64_t size, dmu_tx_t *tx) 734 { 735 dnode_t *dn; 736 int err = dnode_hold(os, object, FTAG, &dn); 737 if (err) 738 return (err); 739 ASSERT(offset < UINT64_MAX); 740 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 741 dnode_free_range(dn, offset, size, tx); 742 dnode_rele(dn, FTAG); 743 return (0); 744 } 745 746 int 747 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 748 void *buf, uint32_t flags) 749 { 750 dnode_t *dn; 751 dmu_buf_t **dbp; 752 int numbufs, err; 753 754 err = dnode_hold(os, object, FTAG, &dn); 755 if (err) 756 return (err); 757 758 /* 759 * Deal with odd block sizes, where there can't be data past the first 760 * block. If we ever do the tail block optimization, we will need to 761 * handle that here as well. 762 */ 763 if (dn->dn_maxblkid == 0) { 764 int newsz = offset > dn->dn_datablksz ? 0 : 765 MIN(size, dn->dn_datablksz - offset); 766 bzero((char *)buf + newsz, size - newsz); 767 size = newsz; 768 } 769 770 while (size > 0) { 771 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 772 int i; 773 774 /* 775 * NB: we could do this block-at-a-time, but it's nice 776 * to be reading in parallel. 777 */ 778 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 779 TRUE, FTAG, &numbufs, &dbp, flags); 780 if (err) 781 break; 782 783 for (i = 0; i < numbufs; i++) { 784 int tocpy; 785 int bufoff; 786 dmu_buf_t *db = dbp[i]; 787 788 ASSERT(size > 0); 789 790 bufoff = offset - db->db_offset; 791 tocpy = (int)MIN(db->db_size - bufoff, size); 792 793 bcopy((char *)db->db_data + bufoff, buf, tocpy); 794 795 offset += tocpy; 796 size -= tocpy; 797 buf = (char *)buf + tocpy; 798 } 799 dmu_buf_rele_array(dbp, numbufs, FTAG); 800 } 801 dnode_rele(dn, FTAG); 802 return (err); 803 } 804 805 void 806 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 807 const void *buf, dmu_tx_t *tx) 808 { 809 dmu_buf_t **dbp; 810 int numbufs, i; 811 812 if (size == 0) 813 return; 814 815 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 816 FALSE, FTAG, &numbufs, &dbp)); 817 818 for (i = 0; i < numbufs; i++) { 819 int tocpy; 820 int bufoff; 821 dmu_buf_t *db = dbp[i]; 822 823 ASSERT(size > 0); 824 825 bufoff = offset - db->db_offset; 826 tocpy = (int)MIN(db->db_size - bufoff, size); 827 828 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 829 830 if (tocpy == db->db_size) 831 dmu_buf_will_fill(db, tx); 832 else 833 dmu_buf_will_dirty(db, tx); 834 835 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 836 837 if (tocpy == db->db_size) 838 dmu_buf_fill_done(db, tx); 839 840 offset += tocpy; 841 size -= tocpy; 842 buf = (char *)buf + tocpy; 843 } 844 dmu_buf_rele_array(dbp, numbufs, FTAG); 845 } 846 847 void 848 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 849 dmu_tx_t *tx) 850 { 851 dmu_buf_t **dbp; 852 int numbufs, i; 853 854 if (size == 0) 855 return; 856 857 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 858 FALSE, FTAG, &numbufs, &dbp)); 859 860 for (i = 0; i < numbufs; i++) { 861 dmu_buf_t *db = dbp[i]; 862 863 dmu_buf_will_not_fill(db, tx); 864 } 865 dmu_buf_rele_array(dbp, numbufs, FTAG); 866 } 867 868 void 869 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 870 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 871 int compressed_size, int byteorder, dmu_tx_t *tx) 872 { 873 dmu_buf_t *db; 874 875 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 876 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 877 VERIFY0(dmu_buf_hold_noread(os, object, offset, 878 FTAG, &db)); 879 880 dmu_buf_write_embedded(db, 881 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 882 uncompressed_size, compressed_size, byteorder, tx); 883 884 dmu_buf_rele(db, FTAG); 885 } 886 887 /* 888 * DMU support for xuio 889 */ 890 kstat_t *xuio_ksp = NULL; 891 892 int 893 dmu_xuio_init(xuio_t *xuio, int nblk) 894 { 895 dmu_xuio_t *priv; 896 uio_t *uio = &xuio->xu_uio; 897 898 uio->uio_iovcnt = nblk; 899 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 900 901 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 902 priv->cnt = nblk; 903 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 904 priv->iovp = uio->uio_iov; 905 XUIO_XUZC_PRIV(xuio) = priv; 906 907 if (XUIO_XUZC_RW(xuio) == UIO_READ) 908 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 909 else 910 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 911 912 return (0); 913 } 914 915 void 916 dmu_xuio_fini(xuio_t *xuio) 917 { 918 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 919 int nblk = priv->cnt; 920 921 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 922 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 923 kmem_free(priv, sizeof (dmu_xuio_t)); 924 925 if (XUIO_XUZC_RW(xuio) == UIO_READ) 926 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 927 else 928 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 929 } 930 931 /* 932 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 933 * and increase priv->next by 1. 934 */ 935 int 936 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 937 { 938 struct iovec *iov; 939 uio_t *uio = &xuio->xu_uio; 940 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 941 int i = priv->next++; 942 943 ASSERT(i < priv->cnt); 944 ASSERT(off + n <= arc_buf_size(abuf)); 945 iov = uio->uio_iov + i; 946 iov->iov_base = (char *)abuf->b_data + off; 947 iov->iov_len = n; 948 priv->bufs[i] = abuf; 949 return (0); 950 } 951 952 int 953 dmu_xuio_cnt(xuio_t *xuio) 954 { 955 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 956 return (priv->cnt); 957 } 958 959 arc_buf_t * 960 dmu_xuio_arcbuf(xuio_t *xuio, int i) 961 { 962 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 963 964 ASSERT(i < priv->cnt); 965 return (priv->bufs[i]); 966 } 967 968 void 969 dmu_xuio_clear(xuio_t *xuio, int i) 970 { 971 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 972 973 ASSERT(i < priv->cnt); 974 priv->bufs[i] = NULL; 975 } 976 977 static void 978 xuio_stat_init(void) 979 { 980 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 981 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 982 KSTAT_FLAG_VIRTUAL); 983 if (xuio_ksp != NULL) { 984 xuio_ksp->ks_data = &xuio_stats; 985 kstat_install(xuio_ksp); 986 } 987 } 988 989 static void 990 xuio_stat_fini(void) 991 { 992 if (xuio_ksp != NULL) { 993 kstat_delete(xuio_ksp); 994 xuio_ksp = NULL; 995 } 996 } 997 998 void 999 xuio_stat_wbuf_copied() 1000 { 1001 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1002 } 1003 1004 void 1005 xuio_stat_wbuf_nocopy() 1006 { 1007 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 1008 } 1009 1010 #ifdef _KERNEL 1011 int 1012 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1013 { 1014 dmu_buf_t **dbp; 1015 int numbufs, i, err; 1016 xuio_t *xuio = NULL; 1017 1018 /* 1019 * NB: we could do this block-at-a-time, but it's nice 1020 * to be reading in parallel. 1021 */ 1022 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 1023 &numbufs, &dbp); 1024 if (err) 1025 return (err); 1026 1027 if (uio->uio_extflg == UIO_XUIO) 1028 xuio = (xuio_t *)uio; 1029 1030 for (i = 0; i < numbufs; i++) { 1031 int tocpy; 1032 int bufoff; 1033 dmu_buf_t *db = dbp[i]; 1034 1035 ASSERT(size > 0); 1036 1037 bufoff = uio->uio_loffset - db->db_offset; 1038 tocpy = (int)MIN(db->db_size - bufoff, size); 1039 1040 if (xuio) { 1041 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1042 arc_buf_t *dbuf_abuf = dbi->db_buf; 1043 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1044 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1045 if (!err) { 1046 uio->uio_resid -= tocpy; 1047 uio->uio_loffset += tocpy; 1048 } 1049 1050 if (abuf == dbuf_abuf) 1051 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1052 else 1053 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1054 } else { 1055 err = uiomove((char *)db->db_data + bufoff, tocpy, 1056 UIO_READ, uio); 1057 } 1058 if (err) 1059 break; 1060 1061 size -= tocpy; 1062 } 1063 dmu_buf_rele_array(dbp, numbufs, FTAG); 1064 1065 return (err); 1066 } 1067 1068 static int 1069 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1070 { 1071 dmu_buf_t **dbp; 1072 int numbufs; 1073 int err = 0; 1074 int i; 1075 1076 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1077 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1078 if (err) 1079 return (err); 1080 1081 for (i = 0; i < numbufs; i++) { 1082 int tocpy; 1083 int bufoff; 1084 dmu_buf_t *db = dbp[i]; 1085 1086 ASSERT(size > 0); 1087 1088 bufoff = uio->uio_loffset - db->db_offset; 1089 tocpy = (int)MIN(db->db_size - bufoff, size); 1090 1091 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1092 1093 if (tocpy == db->db_size) 1094 dmu_buf_will_fill(db, tx); 1095 else 1096 dmu_buf_will_dirty(db, tx); 1097 1098 /* 1099 * XXX uiomove could block forever (eg. nfs-backed 1100 * pages). There needs to be a uiolockdown() function 1101 * to lock the pages in memory, so that uiomove won't 1102 * block. 1103 */ 1104 err = uiomove((char *)db->db_data + bufoff, tocpy, 1105 UIO_WRITE, uio); 1106 1107 if (tocpy == db->db_size) 1108 dmu_buf_fill_done(db, tx); 1109 1110 if (err) 1111 break; 1112 1113 size -= tocpy; 1114 } 1115 1116 dmu_buf_rele_array(dbp, numbufs, FTAG); 1117 return (err); 1118 } 1119 1120 int 1121 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1122 dmu_tx_t *tx) 1123 { 1124 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1125 dnode_t *dn; 1126 int err; 1127 1128 if (size == 0) 1129 return (0); 1130 1131 DB_DNODE_ENTER(db); 1132 dn = DB_DNODE(db); 1133 err = dmu_write_uio_dnode(dn, uio, size, tx); 1134 DB_DNODE_EXIT(db); 1135 1136 return (err); 1137 } 1138 1139 int 1140 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1141 dmu_tx_t *tx) 1142 { 1143 dnode_t *dn; 1144 int err; 1145 1146 if (size == 0) 1147 return (0); 1148 1149 err = dnode_hold(os, object, FTAG, &dn); 1150 if (err) 1151 return (err); 1152 1153 err = dmu_write_uio_dnode(dn, uio, size, tx); 1154 1155 dnode_rele(dn, FTAG); 1156 1157 return (err); 1158 } 1159 1160 int 1161 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1162 page_t *pp, dmu_tx_t *tx) 1163 { 1164 dmu_buf_t **dbp; 1165 int numbufs, i; 1166 int err; 1167 1168 if (size == 0) 1169 return (0); 1170 1171 err = dmu_buf_hold_array(os, object, offset, size, 1172 FALSE, FTAG, &numbufs, &dbp); 1173 if (err) 1174 return (err); 1175 1176 for (i = 0; i < numbufs; i++) { 1177 int tocpy, copied, thiscpy; 1178 int bufoff; 1179 dmu_buf_t *db = dbp[i]; 1180 caddr_t va; 1181 1182 ASSERT(size > 0); 1183 ASSERT3U(db->db_size, >=, PAGESIZE); 1184 1185 bufoff = offset - db->db_offset; 1186 tocpy = (int)MIN(db->db_size - bufoff, size); 1187 1188 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1189 1190 if (tocpy == db->db_size) 1191 dmu_buf_will_fill(db, tx); 1192 else 1193 dmu_buf_will_dirty(db, tx); 1194 1195 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1196 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1197 thiscpy = MIN(PAGESIZE, tocpy - copied); 1198 va = zfs_map_page(pp, S_READ); 1199 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1200 zfs_unmap_page(pp, va); 1201 pp = pp->p_next; 1202 bufoff += PAGESIZE; 1203 } 1204 1205 if (tocpy == db->db_size) 1206 dmu_buf_fill_done(db, tx); 1207 1208 offset += tocpy; 1209 size -= tocpy; 1210 } 1211 dmu_buf_rele_array(dbp, numbufs, FTAG); 1212 return (err); 1213 } 1214 #endif 1215 1216 /* 1217 * Allocate a loaned anonymous arc buffer. 1218 */ 1219 arc_buf_t * 1220 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1221 { 1222 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1223 1224 return (arc_loan_buf(db->db_objset->os_spa, size)); 1225 } 1226 1227 /* 1228 * Free a loaned arc buffer. 1229 */ 1230 void 1231 dmu_return_arcbuf(arc_buf_t *buf) 1232 { 1233 arc_return_buf(buf, FTAG); 1234 VERIFY(arc_buf_remove_ref(buf, FTAG)); 1235 } 1236 1237 /* 1238 * When possible directly assign passed loaned arc buffer to a dbuf. 1239 * If this is not possible copy the contents of passed arc buf via 1240 * dmu_write(). 1241 */ 1242 void 1243 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1244 dmu_tx_t *tx) 1245 { 1246 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1247 dnode_t *dn; 1248 dmu_buf_impl_t *db; 1249 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1250 uint64_t blkid; 1251 1252 DB_DNODE_ENTER(dbuf); 1253 dn = DB_DNODE(dbuf); 1254 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1255 blkid = dbuf_whichblock(dn, offset); 1256 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1257 rw_exit(&dn->dn_struct_rwlock); 1258 DB_DNODE_EXIT(dbuf); 1259 1260 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1261 dbuf_assign_arcbuf(db, buf, tx); 1262 dbuf_rele(db, FTAG); 1263 } else { 1264 objset_t *os; 1265 uint64_t object; 1266 1267 DB_DNODE_ENTER(dbuf); 1268 dn = DB_DNODE(dbuf); 1269 os = dn->dn_objset; 1270 object = dn->dn_object; 1271 DB_DNODE_EXIT(dbuf); 1272 1273 dbuf_rele(db, FTAG); 1274 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1275 dmu_return_arcbuf(buf); 1276 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1277 } 1278 } 1279 1280 typedef struct { 1281 dbuf_dirty_record_t *dsa_dr; 1282 dmu_sync_cb_t *dsa_done; 1283 zgd_t *dsa_zgd; 1284 dmu_tx_t *dsa_tx; 1285 } dmu_sync_arg_t; 1286 1287 /* ARGSUSED */ 1288 static void 1289 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1290 { 1291 dmu_sync_arg_t *dsa = varg; 1292 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1293 blkptr_t *bp = zio->io_bp; 1294 1295 if (zio->io_error == 0) { 1296 if (BP_IS_HOLE(bp)) { 1297 /* 1298 * A block of zeros may compress to a hole, but the 1299 * block size still needs to be known for replay. 1300 */ 1301 BP_SET_LSIZE(bp, db->db_size); 1302 } else if (!BP_IS_EMBEDDED(bp)) { 1303 ASSERT(BP_GET_LEVEL(bp) == 0); 1304 bp->blk_fill = 1; 1305 } 1306 } 1307 } 1308 1309 static void 1310 dmu_sync_late_arrival_ready(zio_t *zio) 1311 { 1312 dmu_sync_ready(zio, NULL, zio->io_private); 1313 } 1314 1315 /* ARGSUSED */ 1316 static void 1317 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1318 { 1319 dmu_sync_arg_t *dsa = varg; 1320 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1321 dmu_buf_impl_t *db = dr->dr_dbuf; 1322 1323 mutex_enter(&db->db_mtx); 1324 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1325 if (zio->io_error == 0) { 1326 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1327 if (dr->dt.dl.dr_nopwrite) { 1328 blkptr_t *bp = zio->io_bp; 1329 blkptr_t *bp_orig = &zio->io_bp_orig; 1330 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1331 1332 ASSERT(BP_EQUAL(bp, bp_orig)); 1333 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1334 ASSERT(zio_checksum_table[chksum].ci_dedup); 1335 } 1336 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1337 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1338 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1339 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) 1340 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1341 } else { 1342 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1343 } 1344 cv_broadcast(&db->db_changed); 1345 mutex_exit(&db->db_mtx); 1346 1347 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1348 1349 kmem_free(dsa, sizeof (*dsa)); 1350 } 1351 1352 static void 1353 dmu_sync_late_arrival_done(zio_t *zio) 1354 { 1355 blkptr_t *bp = zio->io_bp; 1356 dmu_sync_arg_t *dsa = zio->io_private; 1357 blkptr_t *bp_orig = &zio->io_bp_orig; 1358 1359 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1360 /* 1361 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE) 1362 * then there is nothing to do here. Otherwise, free the 1363 * newly allocated block in this txg. 1364 */ 1365 if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 1366 ASSERT(BP_EQUAL(bp, bp_orig)); 1367 } else { 1368 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1369 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1370 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1371 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1372 } 1373 } 1374 1375 dmu_tx_commit(dsa->dsa_tx); 1376 1377 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1378 1379 kmem_free(dsa, sizeof (*dsa)); 1380 } 1381 1382 static int 1383 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1384 zio_prop_t *zp, zbookmark_phys_t *zb) 1385 { 1386 dmu_sync_arg_t *dsa; 1387 dmu_tx_t *tx; 1388 1389 tx = dmu_tx_create(os); 1390 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1391 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1392 dmu_tx_abort(tx); 1393 /* Make zl_get_data do txg_waited_synced() */ 1394 return (SET_ERROR(EIO)); 1395 } 1396 1397 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1398 dsa->dsa_dr = NULL; 1399 dsa->dsa_done = done; 1400 dsa->dsa_zgd = zgd; 1401 dsa->dsa_tx = tx; 1402 1403 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1404 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1405 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa, 1406 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1407 1408 return (0); 1409 } 1410 1411 /* 1412 * Intent log support: sync the block associated with db to disk. 1413 * N.B. and XXX: the caller is responsible for making sure that the 1414 * data isn't changing while dmu_sync() is writing it. 1415 * 1416 * Return values: 1417 * 1418 * EEXIST: this txg has already been synced, so there's nothing to do. 1419 * The caller should not log the write. 1420 * 1421 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1422 * The caller should not log the write. 1423 * 1424 * EALREADY: this block is already in the process of being synced. 1425 * The caller should track its progress (somehow). 1426 * 1427 * EIO: could not do the I/O. 1428 * The caller should do a txg_wait_synced(). 1429 * 1430 * 0: the I/O has been initiated. 1431 * The caller should log this blkptr in the done callback. 1432 * It is possible that the I/O will fail, in which case 1433 * the error will be reported to the done callback and 1434 * propagated to pio from zio_done(). 1435 */ 1436 int 1437 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1438 { 1439 blkptr_t *bp = zgd->zgd_bp; 1440 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1441 objset_t *os = db->db_objset; 1442 dsl_dataset_t *ds = os->os_dsl_dataset; 1443 dbuf_dirty_record_t *dr; 1444 dmu_sync_arg_t *dsa; 1445 zbookmark_phys_t zb; 1446 zio_prop_t zp; 1447 dnode_t *dn; 1448 1449 ASSERT(pio != NULL); 1450 ASSERT(txg != 0); 1451 1452 SET_BOOKMARK(&zb, ds->ds_object, 1453 db->db.db_object, db->db_level, db->db_blkid); 1454 1455 DB_DNODE_ENTER(db); 1456 dn = DB_DNODE(db); 1457 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1458 DB_DNODE_EXIT(db); 1459 1460 /* 1461 * If we're frozen (running ziltest), we always need to generate a bp. 1462 */ 1463 if (txg > spa_freeze_txg(os->os_spa)) 1464 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1465 1466 /* 1467 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1468 * and us. If we determine that this txg is not yet syncing, 1469 * but it begins to sync a moment later, that's OK because the 1470 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1471 */ 1472 mutex_enter(&db->db_mtx); 1473 1474 if (txg <= spa_last_synced_txg(os->os_spa)) { 1475 /* 1476 * This txg has already synced. There's nothing to do. 1477 */ 1478 mutex_exit(&db->db_mtx); 1479 return (SET_ERROR(EEXIST)); 1480 } 1481 1482 if (txg <= spa_syncing_txg(os->os_spa)) { 1483 /* 1484 * This txg is currently syncing, so we can't mess with 1485 * the dirty record anymore; just write a new log block. 1486 */ 1487 mutex_exit(&db->db_mtx); 1488 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1489 } 1490 1491 dr = db->db_last_dirty; 1492 while (dr && dr->dr_txg != txg) 1493 dr = dr->dr_next; 1494 1495 if (dr == NULL) { 1496 /* 1497 * There's no dr for this dbuf, so it must have been freed. 1498 * There's no need to log writes to freed blocks, so we're done. 1499 */ 1500 mutex_exit(&db->db_mtx); 1501 return (SET_ERROR(ENOENT)); 1502 } 1503 1504 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1505 1506 /* 1507 * Assume the on-disk data is X, the current syncing data is Y, 1508 * and the current in-memory data is Z (currently in dmu_sync). 1509 * X and Z are identical but Y is has been modified. Normally, 1510 * when X and Z are the same we will perform a nopwrite but if Y 1511 * is different we must disable nopwrite since the resulting write 1512 * of Y to disk can free the block containing X. If we allowed a 1513 * nopwrite to occur the block pointing to Z would reference a freed 1514 * block. Since this is a rare case we simplify this by disabling 1515 * nopwrite if the current dmu_sync-ing dbuf has been modified in 1516 * a previous transaction. 1517 */ 1518 if (dr->dr_next) 1519 zp.zp_nopwrite = B_FALSE; 1520 1521 ASSERT(dr->dr_txg == txg); 1522 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1523 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1524 /* 1525 * We have already issued a sync write for this buffer, 1526 * or this buffer has already been synced. It could not 1527 * have been dirtied since, or we would have cleared the state. 1528 */ 1529 mutex_exit(&db->db_mtx); 1530 return (SET_ERROR(EALREADY)); 1531 } 1532 1533 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1534 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1535 mutex_exit(&db->db_mtx); 1536 1537 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1538 dsa->dsa_dr = dr; 1539 dsa->dsa_done = done; 1540 dsa->dsa_zgd = zgd; 1541 dsa->dsa_tx = NULL; 1542 1543 zio_nowait(arc_write(pio, os->os_spa, txg, 1544 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1545 DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready, 1546 NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, 1547 ZIO_FLAG_CANFAIL, &zb)); 1548 1549 return (0); 1550 } 1551 1552 int 1553 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1554 dmu_tx_t *tx) 1555 { 1556 dnode_t *dn; 1557 int err; 1558 1559 err = dnode_hold(os, object, FTAG, &dn); 1560 if (err) 1561 return (err); 1562 err = dnode_set_blksz(dn, size, ibs, tx); 1563 dnode_rele(dn, FTAG); 1564 return (err); 1565 } 1566 1567 void 1568 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1569 dmu_tx_t *tx) 1570 { 1571 dnode_t *dn; 1572 1573 /* 1574 * Send streams include each object's checksum function. This 1575 * check ensures that the receiving system can understand the 1576 * checksum function transmitted. 1577 */ 1578 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1579 1580 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1581 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1582 dn->dn_checksum = checksum; 1583 dnode_setdirty(dn, tx); 1584 dnode_rele(dn, FTAG); 1585 } 1586 1587 void 1588 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1589 dmu_tx_t *tx) 1590 { 1591 dnode_t *dn; 1592 1593 /* 1594 * Send streams include each object's compression function. This 1595 * check ensures that the receiving system can understand the 1596 * compression function transmitted. 1597 */ 1598 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1599 1600 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1601 dn->dn_compress = compress; 1602 dnode_setdirty(dn, tx); 1603 dnode_rele(dn, FTAG); 1604 } 1605 1606 int zfs_mdcomp_disable = 0; 1607 1608 /* 1609 * When the "redundant_metadata" property is set to "most", only indirect 1610 * blocks of this level and higher will have an additional ditto block. 1611 */ 1612 int zfs_redundant_metadata_most_ditto_level = 2; 1613 1614 void 1615 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1616 { 1617 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1618 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1619 (wp & WP_SPILL)); 1620 enum zio_checksum checksum = os->os_checksum; 1621 enum zio_compress compress = os->os_compress; 1622 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1623 boolean_t dedup = B_FALSE; 1624 boolean_t nopwrite = B_FALSE; 1625 boolean_t dedup_verify = os->os_dedup_verify; 1626 int copies = os->os_copies; 1627 1628 /* 1629 * We maintain different write policies for each of the following 1630 * types of data: 1631 * 1. metadata 1632 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1633 * 3. all other level 0 blocks 1634 */ 1635 if (ismd) { 1636 /* 1637 * XXX -- we should design a compression algorithm 1638 * that specializes in arrays of bps. 1639 */ 1640 boolean_t lz4_ac = spa_feature_is_active(os->os_spa, 1641 SPA_FEATURE_LZ4_COMPRESS); 1642 1643 if (zfs_mdcomp_disable) { 1644 compress = ZIO_COMPRESS_EMPTY; 1645 } else if (lz4_ac) { 1646 compress = ZIO_COMPRESS_LZ4; 1647 } else { 1648 compress = ZIO_COMPRESS_LZJB; 1649 } 1650 1651 /* 1652 * Metadata always gets checksummed. If the data 1653 * checksum is multi-bit correctable, and it's not a 1654 * ZBT-style checksum, then it's suitable for metadata 1655 * as well. Otherwise, the metadata checksum defaults 1656 * to fletcher4. 1657 */ 1658 if (zio_checksum_table[checksum].ci_correctable < 1 || 1659 zio_checksum_table[checksum].ci_eck) 1660 checksum = ZIO_CHECKSUM_FLETCHER_4; 1661 1662 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1663 (os->os_redundant_metadata == 1664 ZFS_REDUNDANT_METADATA_MOST && 1665 (level >= zfs_redundant_metadata_most_ditto_level || 1666 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 1667 copies++; 1668 } else if (wp & WP_NOFILL) { 1669 ASSERT(level == 0); 1670 1671 /* 1672 * If we're writing preallocated blocks, we aren't actually 1673 * writing them so don't set any policy properties. These 1674 * blocks are currently only used by an external subsystem 1675 * outside of zfs (i.e. dump) and not written by the zio 1676 * pipeline. 1677 */ 1678 compress = ZIO_COMPRESS_OFF; 1679 checksum = ZIO_CHECKSUM_NOPARITY; 1680 } else { 1681 compress = zio_compress_select(dn->dn_compress, compress); 1682 1683 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1684 zio_checksum_select(dn->dn_checksum, checksum) : 1685 dedup_checksum; 1686 1687 /* 1688 * Determine dedup setting. If we are in dmu_sync(), 1689 * we won't actually dedup now because that's all 1690 * done in syncing context; but we do want to use the 1691 * dedup checkum. If the checksum is not strong 1692 * enough to ensure unique signatures, force 1693 * dedup_verify. 1694 */ 1695 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 1696 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 1697 if (!zio_checksum_table[checksum].ci_dedup) 1698 dedup_verify = B_TRUE; 1699 } 1700 1701 /* 1702 * Enable nopwrite if we have a cryptographically secure 1703 * checksum that has no known collisions (i.e. SHA-256) 1704 * and compression is enabled. We don't enable nopwrite if 1705 * dedup is enabled as the two features are mutually exclusive. 1706 */ 1707 nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup && 1708 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 1709 } 1710 1711 zp->zp_checksum = checksum; 1712 zp->zp_compress = compress; 1713 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1714 zp->zp_level = level; 1715 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 1716 zp->zp_dedup = dedup; 1717 zp->zp_dedup_verify = dedup && dedup_verify; 1718 zp->zp_nopwrite = nopwrite; 1719 } 1720 1721 int 1722 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1723 { 1724 dnode_t *dn; 1725 int i, err; 1726 1727 err = dnode_hold(os, object, FTAG, &dn); 1728 if (err) 1729 return (err); 1730 /* 1731 * Sync any current changes before 1732 * we go trundling through the block pointers. 1733 */ 1734 for (i = 0; i < TXG_SIZE; i++) { 1735 if (list_link_active(&dn->dn_dirty_link[i])) 1736 break; 1737 } 1738 if (i != TXG_SIZE) { 1739 dnode_rele(dn, FTAG); 1740 txg_wait_synced(dmu_objset_pool(os), 0); 1741 err = dnode_hold(os, object, FTAG, &dn); 1742 if (err) 1743 return (err); 1744 } 1745 1746 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1747 dnode_rele(dn, FTAG); 1748 1749 return (err); 1750 } 1751 1752 void 1753 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1754 { 1755 dnode_phys_t *dnp; 1756 1757 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1758 mutex_enter(&dn->dn_mtx); 1759 1760 dnp = dn->dn_phys; 1761 1762 doi->doi_data_block_size = dn->dn_datablksz; 1763 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1764 1ULL << dn->dn_indblkshift : 0; 1765 doi->doi_type = dn->dn_type; 1766 doi->doi_bonus_type = dn->dn_bonustype; 1767 doi->doi_bonus_size = dn->dn_bonuslen; 1768 doi->doi_indirection = dn->dn_nlevels; 1769 doi->doi_checksum = dn->dn_checksum; 1770 doi->doi_compress = dn->dn_compress; 1771 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1772 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 1773 doi->doi_fill_count = 0; 1774 for (int i = 0; i < dnp->dn_nblkptr; i++) 1775 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 1776 1777 mutex_exit(&dn->dn_mtx); 1778 rw_exit(&dn->dn_struct_rwlock); 1779 } 1780 1781 /* 1782 * Get information on a DMU object. 1783 * If doi is NULL, just indicates whether the object exists. 1784 */ 1785 int 1786 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1787 { 1788 dnode_t *dn; 1789 int err = dnode_hold(os, object, FTAG, &dn); 1790 1791 if (err) 1792 return (err); 1793 1794 if (doi != NULL) 1795 dmu_object_info_from_dnode(dn, doi); 1796 1797 dnode_rele(dn, FTAG); 1798 return (0); 1799 } 1800 1801 /* 1802 * As above, but faster; can be used when you have a held dbuf in hand. 1803 */ 1804 void 1805 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 1806 { 1807 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1808 1809 DB_DNODE_ENTER(db); 1810 dmu_object_info_from_dnode(DB_DNODE(db), doi); 1811 DB_DNODE_EXIT(db); 1812 } 1813 1814 /* 1815 * Faster still when you only care about the size. 1816 * This is specifically optimized for zfs_getattr(). 1817 */ 1818 void 1819 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 1820 u_longlong_t *nblk512) 1821 { 1822 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1823 dnode_t *dn; 1824 1825 DB_DNODE_ENTER(db); 1826 dn = DB_DNODE(db); 1827 1828 *blksize = dn->dn_datablksz; 1829 /* add 1 for dnode space */ 1830 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1831 SPA_MINBLOCKSHIFT) + 1; 1832 DB_DNODE_EXIT(db); 1833 } 1834 1835 void 1836 byteswap_uint64_array(void *vbuf, size_t size) 1837 { 1838 uint64_t *buf = vbuf; 1839 size_t count = size >> 3; 1840 int i; 1841 1842 ASSERT((size & 7) == 0); 1843 1844 for (i = 0; i < count; i++) 1845 buf[i] = BSWAP_64(buf[i]); 1846 } 1847 1848 void 1849 byteswap_uint32_array(void *vbuf, size_t size) 1850 { 1851 uint32_t *buf = vbuf; 1852 size_t count = size >> 2; 1853 int i; 1854 1855 ASSERT((size & 3) == 0); 1856 1857 for (i = 0; i < count; i++) 1858 buf[i] = BSWAP_32(buf[i]); 1859 } 1860 1861 void 1862 byteswap_uint16_array(void *vbuf, size_t size) 1863 { 1864 uint16_t *buf = vbuf; 1865 size_t count = size >> 1; 1866 int i; 1867 1868 ASSERT((size & 1) == 0); 1869 1870 for (i = 0; i < count; i++) 1871 buf[i] = BSWAP_16(buf[i]); 1872 } 1873 1874 /* ARGSUSED */ 1875 void 1876 byteswap_uint8_array(void *vbuf, size_t size) 1877 { 1878 } 1879 1880 void 1881 dmu_init(void) 1882 { 1883 zfs_dbgmsg_init(); 1884 sa_cache_init(); 1885 xuio_stat_init(); 1886 dmu_objset_init(); 1887 dnode_init(); 1888 dbuf_init(); 1889 zfetch_init(); 1890 l2arc_init(); 1891 arc_init(); 1892 } 1893 1894 void 1895 dmu_fini(void) 1896 { 1897 arc_fini(); /* arc depends on l2arc, so arc must go first */ 1898 l2arc_fini(); 1899 zfetch_fini(); 1900 dbuf_fini(); 1901 dnode_fini(); 1902 dmu_objset_fini(); 1903 xuio_stat_fini(); 1904 sa_cache_fini(); 1905 zfs_dbgmsg_fini(); 1906 } 1907