1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_send.h> 32 #include <sys/dmu_impl.h> 33 #include <sys/dbuf.h> 34 #include <sys/dmu_objset.h> 35 #include <sys/dsl_dataset.h> 36 #include <sys/dsl_dir.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/spa.h> 39 #include <sys/zio.h> 40 #include <sys/dmu_zfetch.h> 41 #include <sys/sa.h> 42 #include <sys/sa_impl.h> 43 #include <sys/zfeature.h> 44 #include <sys/blkptr.h> 45 #include <sys/range_tree.h> 46 47 /* 48 * Number of times that zfs_free_range() took the slow path while doing 49 * a zfs receive. A nonzero value indicates a potential performance problem. 50 */ 51 uint64_t zfs_free_range_recv_miss; 52 53 static void dbuf_destroy(dmu_buf_impl_t *db); 54 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 55 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 56 57 /* 58 * Global data structures and functions for the dbuf cache. 59 */ 60 static kmem_cache_t *dbuf_cache; 61 62 /* ARGSUSED */ 63 static int 64 dbuf_cons(void *vdb, void *unused, int kmflag) 65 { 66 dmu_buf_impl_t *db = vdb; 67 bzero(db, sizeof (dmu_buf_impl_t)); 68 69 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 70 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 71 refcount_create(&db->db_holds); 72 return (0); 73 } 74 75 /* ARGSUSED */ 76 static void 77 dbuf_dest(void *vdb, void *unused) 78 { 79 dmu_buf_impl_t *db = vdb; 80 mutex_destroy(&db->db_mtx); 81 cv_destroy(&db->db_changed); 82 refcount_destroy(&db->db_holds); 83 } 84 85 /* 86 * dbuf hash table routines 87 */ 88 static dbuf_hash_table_t dbuf_hash_table; 89 90 static uint64_t dbuf_hash_count; 91 92 static uint64_t 93 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 94 { 95 uintptr_t osv = (uintptr_t)os; 96 uint64_t crc = -1ULL; 97 98 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 99 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 100 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 101 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 102 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 103 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 104 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 105 106 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 107 108 return (crc); 109 } 110 111 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid); 112 113 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 114 ((dbuf)->db.db_object == (obj) && \ 115 (dbuf)->db_objset == (os) && \ 116 (dbuf)->db_level == (level) && \ 117 (dbuf)->db_blkid == (blkid)) 118 119 dmu_buf_impl_t * 120 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid) 121 { 122 dbuf_hash_table_t *h = &dbuf_hash_table; 123 objset_t *os = dn->dn_objset; 124 uint64_t obj = dn->dn_object; 125 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 126 uint64_t idx = hv & h->hash_table_mask; 127 dmu_buf_impl_t *db; 128 129 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 130 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 131 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 132 mutex_enter(&db->db_mtx); 133 if (db->db_state != DB_EVICTING) { 134 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 135 return (db); 136 } 137 mutex_exit(&db->db_mtx); 138 } 139 } 140 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 141 return (NULL); 142 } 143 144 /* 145 * Insert an entry into the hash table. If there is already an element 146 * equal to elem in the hash table, then the already existing element 147 * will be returned and the new element will not be inserted. 148 * Otherwise returns NULL. 149 */ 150 static dmu_buf_impl_t * 151 dbuf_hash_insert(dmu_buf_impl_t *db) 152 { 153 dbuf_hash_table_t *h = &dbuf_hash_table; 154 objset_t *os = db->db_objset; 155 uint64_t obj = db->db.db_object; 156 int level = db->db_level; 157 uint64_t blkid = db->db_blkid; 158 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 159 uint64_t idx = hv & h->hash_table_mask; 160 dmu_buf_impl_t *dbf; 161 162 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 163 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 164 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 165 mutex_enter(&dbf->db_mtx); 166 if (dbf->db_state != DB_EVICTING) { 167 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 168 return (dbf); 169 } 170 mutex_exit(&dbf->db_mtx); 171 } 172 } 173 174 mutex_enter(&db->db_mtx); 175 db->db_hash_next = h->hash_table[idx]; 176 h->hash_table[idx] = db; 177 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 178 atomic_add_64(&dbuf_hash_count, 1); 179 180 return (NULL); 181 } 182 183 /* 184 * Remove an entry from the hash table. This operation will 185 * fail if there are any existing holds on the db. 186 */ 187 static void 188 dbuf_hash_remove(dmu_buf_impl_t *db) 189 { 190 dbuf_hash_table_t *h = &dbuf_hash_table; 191 uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object, 192 db->db_level, db->db_blkid); 193 uint64_t idx = hv & h->hash_table_mask; 194 dmu_buf_impl_t *dbf, **dbp; 195 196 /* 197 * We musn't hold db_mtx to maintin lock ordering: 198 * DBUF_HASH_MUTEX > db_mtx. 199 */ 200 ASSERT(refcount_is_zero(&db->db_holds)); 201 ASSERT(db->db_state == DB_EVICTING); 202 ASSERT(!MUTEX_HELD(&db->db_mtx)); 203 204 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 205 dbp = &h->hash_table[idx]; 206 while ((dbf = *dbp) != db) { 207 dbp = &dbf->db_hash_next; 208 ASSERT(dbf != NULL); 209 } 210 *dbp = db->db_hash_next; 211 db->db_hash_next = NULL; 212 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 213 atomic_add_64(&dbuf_hash_count, -1); 214 } 215 216 static arc_evict_func_t dbuf_do_evict; 217 218 static void 219 dbuf_evict_user(dmu_buf_impl_t *db) 220 { 221 ASSERT(MUTEX_HELD(&db->db_mtx)); 222 223 if (db->db_level != 0 || db->db_evict_func == NULL) 224 return; 225 226 if (db->db_user_data_ptr_ptr) 227 *db->db_user_data_ptr_ptr = db->db.db_data; 228 db->db_evict_func(&db->db, db->db_user_ptr); 229 db->db_user_ptr = NULL; 230 db->db_user_data_ptr_ptr = NULL; 231 db->db_evict_func = NULL; 232 } 233 234 boolean_t 235 dbuf_is_metadata(dmu_buf_impl_t *db) 236 { 237 if (db->db_level > 0) { 238 return (B_TRUE); 239 } else { 240 boolean_t is_metadata; 241 242 DB_DNODE_ENTER(db); 243 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 244 DB_DNODE_EXIT(db); 245 246 return (is_metadata); 247 } 248 } 249 250 void 251 dbuf_evict(dmu_buf_impl_t *db) 252 { 253 ASSERT(MUTEX_HELD(&db->db_mtx)); 254 ASSERT(db->db_buf == NULL); 255 ASSERT(db->db_data_pending == NULL); 256 257 dbuf_clear(db); 258 dbuf_destroy(db); 259 } 260 261 void 262 dbuf_init(void) 263 { 264 uint64_t hsize = 1ULL << 16; 265 dbuf_hash_table_t *h = &dbuf_hash_table; 266 int i; 267 268 /* 269 * The hash table is big enough to fill all of physical memory 270 * with an average 4K block size. The table will take up 271 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 272 */ 273 while (hsize * 4096 < physmem * PAGESIZE) 274 hsize <<= 1; 275 276 retry: 277 h->hash_table_mask = hsize - 1; 278 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 279 if (h->hash_table == NULL) { 280 /* XXX - we should really return an error instead of assert */ 281 ASSERT(hsize > (1ULL << 10)); 282 hsize >>= 1; 283 goto retry; 284 } 285 286 dbuf_cache = kmem_cache_create("dmu_buf_impl_t", 287 sizeof (dmu_buf_impl_t), 288 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 289 290 for (i = 0; i < DBUF_MUTEXES; i++) 291 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 292 } 293 294 void 295 dbuf_fini(void) 296 { 297 dbuf_hash_table_t *h = &dbuf_hash_table; 298 int i; 299 300 for (i = 0; i < DBUF_MUTEXES; i++) 301 mutex_destroy(&h->hash_mutexes[i]); 302 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 303 kmem_cache_destroy(dbuf_cache); 304 } 305 306 /* 307 * Other stuff. 308 */ 309 310 #ifdef ZFS_DEBUG 311 static void 312 dbuf_verify(dmu_buf_impl_t *db) 313 { 314 dnode_t *dn; 315 dbuf_dirty_record_t *dr; 316 317 ASSERT(MUTEX_HELD(&db->db_mtx)); 318 319 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 320 return; 321 322 ASSERT(db->db_objset != NULL); 323 DB_DNODE_ENTER(db); 324 dn = DB_DNODE(db); 325 if (dn == NULL) { 326 ASSERT(db->db_parent == NULL); 327 ASSERT(db->db_blkptr == NULL); 328 } else { 329 ASSERT3U(db->db.db_object, ==, dn->dn_object); 330 ASSERT3P(db->db_objset, ==, dn->dn_objset); 331 ASSERT3U(db->db_level, <, dn->dn_nlevels); 332 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 333 db->db_blkid == DMU_SPILL_BLKID || 334 !list_is_empty(&dn->dn_dbufs)); 335 } 336 if (db->db_blkid == DMU_BONUS_BLKID) { 337 ASSERT(dn != NULL); 338 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 339 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 340 } else if (db->db_blkid == DMU_SPILL_BLKID) { 341 ASSERT(dn != NULL); 342 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 343 ASSERT0(db->db.db_offset); 344 } else { 345 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 346 } 347 348 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 349 ASSERT(dr->dr_dbuf == db); 350 351 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 352 ASSERT(dr->dr_dbuf == db); 353 354 /* 355 * We can't assert that db_size matches dn_datablksz because it 356 * can be momentarily different when another thread is doing 357 * dnode_set_blksz(). 358 */ 359 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 360 dr = db->db_data_pending; 361 /* 362 * It should only be modified in syncing context, so 363 * make sure we only have one copy of the data. 364 */ 365 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 366 } 367 368 /* verify db->db_blkptr */ 369 if (db->db_blkptr) { 370 if (db->db_parent == dn->dn_dbuf) { 371 /* db is pointed to by the dnode */ 372 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 373 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 374 ASSERT(db->db_parent == NULL); 375 else 376 ASSERT(db->db_parent != NULL); 377 if (db->db_blkid != DMU_SPILL_BLKID) 378 ASSERT3P(db->db_blkptr, ==, 379 &dn->dn_phys->dn_blkptr[db->db_blkid]); 380 } else { 381 /* db is pointed to by an indirect block */ 382 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 383 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 384 ASSERT3U(db->db_parent->db.db_object, ==, 385 db->db.db_object); 386 /* 387 * dnode_grow_indblksz() can make this fail if we don't 388 * have the struct_rwlock. XXX indblksz no longer 389 * grows. safe to do this now? 390 */ 391 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 392 ASSERT3P(db->db_blkptr, ==, 393 ((blkptr_t *)db->db_parent->db.db_data + 394 db->db_blkid % epb)); 395 } 396 } 397 } 398 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 399 (db->db_buf == NULL || db->db_buf->b_data) && 400 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 401 db->db_state != DB_FILL && !dn->dn_free_txg) { 402 /* 403 * If the blkptr isn't set but they have nonzero data, 404 * it had better be dirty, otherwise we'll lose that 405 * data when we evict this buffer. 406 */ 407 if (db->db_dirtycnt == 0) { 408 uint64_t *buf = db->db.db_data; 409 int i; 410 411 for (i = 0; i < db->db.db_size >> 3; i++) { 412 ASSERT(buf[i] == 0); 413 } 414 } 415 } 416 DB_DNODE_EXIT(db); 417 } 418 #endif 419 420 static void 421 dbuf_update_data(dmu_buf_impl_t *db) 422 { 423 ASSERT(MUTEX_HELD(&db->db_mtx)); 424 if (db->db_level == 0 && db->db_user_data_ptr_ptr) { 425 ASSERT(!refcount_is_zero(&db->db_holds)); 426 *db->db_user_data_ptr_ptr = db->db.db_data; 427 } 428 } 429 430 static void 431 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 432 { 433 ASSERT(MUTEX_HELD(&db->db_mtx)); 434 ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf)); 435 db->db_buf = buf; 436 if (buf != NULL) { 437 ASSERT(buf->b_data != NULL); 438 db->db.db_data = buf->b_data; 439 if (!arc_released(buf)) 440 arc_set_callback(buf, dbuf_do_evict, db); 441 dbuf_update_data(db); 442 } else { 443 dbuf_evict_user(db); 444 db->db.db_data = NULL; 445 if (db->db_state != DB_NOFILL) 446 db->db_state = DB_UNCACHED; 447 } 448 } 449 450 /* 451 * Loan out an arc_buf for read. Return the loaned arc_buf. 452 */ 453 arc_buf_t * 454 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 455 { 456 arc_buf_t *abuf; 457 458 mutex_enter(&db->db_mtx); 459 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 460 int blksz = db->db.db_size; 461 spa_t *spa = db->db_objset->os_spa; 462 463 mutex_exit(&db->db_mtx); 464 abuf = arc_loan_buf(spa, blksz); 465 bcopy(db->db.db_data, abuf->b_data, blksz); 466 } else { 467 abuf = db->db_buf; 468 arc_loan_inuse_buf(abuf, db); 469 dbuf_set_data(db, NULL); 470 mutex_exit(&db->db_mtx); 471 } 472 return (abuf); 473 } 474 475 uint64_t 476 dbuf_whichblock(dnode_t *dn, uint64_t offset) 477 { 478 if (dn->dn_datablkshift) { 479 return (offset >> dn->dn_datablkshift); 480 } else { 481 ASSERT3U(offset, <, dn->dn_datablksz); 482 return (0); 483 } 484 } 485 486 static void 487 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 488 { 489 dmu_buf_impl_t *db = vdb; 490 491 mutex_enter(&db->db_mtx); 492 ASSERT3U(db->db_state, ==, DB_READ); 493 /* 494 * All reads are synchronous, so we must have a hold on the dbuf 495 */ 496 ASSERT(refcount_count(&db->db_holds) > 0); 497 ASSERT(db->db_buf == NULL); 498 ASSERT(db->db.db_data == NULL); 499 if (db->db_level == 0 && db->db_freed_in_flight) { 500 /* we were freed in flight; disregard any error */ 501 arc_release(buf, db); 502 bzero(buf->b_data, db->db.db_size); 503 arc_buf_freeze(buf); 504 db->db_freed_in_flight = FALSE; 505 dbuf_set_data(db, buf); 506 db->db_state = DB_CACHED; 507 } else if (zio == NULL || zio->io_error == 0) { 508 dbuf_set_data(db, buf); 509 db->db_state = DB_CACHED; 510 } else { 511 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 512 ASSERT3P(db->db_buf, ==, NULL); 513 VERIFY(arc_buf_remove_ref(buf, db)); 514 db->db_state = DB_UNCACHED; 515 } 516 cv_broadcast(&db->db_changed); 517 dbuf_rele_and_unlock(db, NULL); 518 } 519 520 static void 521 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags) 522 { 523 dnode_t *dn; 524 zbookmark_phys_t zb; 525 uint32_t aflags = ARC_NOWAIT; 526 527 DB_DNODE_ENTER(db); 528 dn = DB_DNODE(db); 529 ASSERT(!refcount_is_zero(&db->db_holds)); 530 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 531 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 532 ASSERT(MUTEX_HELD(&db->db_mtx)); 533 ASSERT(db->db_state == DB_UNCACHED); 534 ASSERT(db->db_buf == NULL); 535 536 if (db->db_blkid == DMU_BONUS_BLKID) { 537 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 538 539 ASSERT3U(bonuslen, <=, db->db.db_size); 540 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 541 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 542 if (bonuslen < DN_MAX_BONUSLEN) 543 bzero(db->db.db_data, DN_MAX_BONUSLEN); 544 if (bonuslen) 545 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 546 DB_DNODE_EXIT(db); 547 dbuf_update_data(db); 548 db->db_state = DB_CACHED; 549 mutex_exit(&db->db_mtx); 550 return; 551 } 552 553 /* 554 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 555 * processes the delete record and clears the bp while we are waiting 556 * for the dn_mtx (resulting in a "no" from block_freed). 557 */ 558 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 559 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 560 BP_IS_HOLE(db->db_blkptr)))) { 561 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 562 563 DB_DNODE_EXIT(db); 564 dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa, 565 db->db.db_size, db, type)); 566 bzero(db->db.db_data, db->db.db_size); 567 db->db_state = DB_CACHED; 568 *flags |= DB_RF_CACHED; 569 mutex_exit(&db->db_mtx); 570 return; 571 } 572 573 DB_DNODE_EXIT(db); 574 575 db->db_state = DB_READ; 576 mutex_exit(&db->db_mtx); 577 578 if (DBUF_IS_L2CACHEABLE(db)) 579 aflags |= ARC_L2CACHE; 580 if (DBUF_IS_L2COMPRESSIBLE(db)) 581 aflags |= ARC_L2COMPRESS; 582 583 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 584 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 585 db->db.db_object, db->db_level, db->db_blkid); 586 587 dbuf_add_ref(db, NULL); 588 589 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 590 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 591 (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 592 &aflags, &zb); 593 if (aflags & ARC_CACHED) 594 *flags |= DB_RF_CACHED; 595 } 596 597 int 598 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 599 { 600 int err = 0; 601 boolean_t havepzio = (zio != NULL); 602 boolean_t prefetch; 603 dnode_t *dn; 604 605 /* 606 * We don't have to hold the mutex to check db_state because it 607 * can't be freed while we have a hold on the buffer. 608 */ 609 ASSERT(!refcount_is_zero(&db->db_holds)); 610 611 if (db->db_state == DB_NOFILL) 612 return (SET_ERROR(EIO)); 613 614 DB_DNODE_ENTER(db); 615 dn = DB_DNODE(db); 616 if ((flags & DB_RF_HAVESTRUCT) == 0) 617 rw_enter(&dn->dn_struct_rwlock, RW_READER); 618 619 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 620 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 621 DBUF_IS_CACHEABLE(db); 622 623 mutex_enter(&db->db_mtx); 624 if (db->db_state == DB_CACHED) { 625 mutex_exit(&db->db_mtx); 626 if (prefetch) 627 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 628 db->db.db_size, TRUE); 629 if ((flags & DB_RF_HAVESTRUCT) == 0) 630 rw_exit(&dn->dn_struct_rwlock); 631 DB_DNODE_EXIT(db); 632 } else if (db->db_state == DB_UNCACHED) { 633 spa_t *spa = dn->dn_objset->os_spa; 634 635 if (zio == NULL) 636 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 637 dbuf_read_impl(db, zio, &flags); 638 639 /* dbuf_read_impl has dropped db_mtx for us */ 640 641 if (prefetch) 642 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 643 db->db.db_size, flags & DB_RF_CACHED); 644 645 if ((flags & DB_RF_HAVESTRUCT) == 0) 646 rw_exit(&dn->dn_struct_rwlock); 647 DB_DNODE_EXIT(db); 648 649 if (!havepzio) 650 err = zio_wait(zio); 651 } else { 652 /* 653 * Another reader came in while the dbuf was in flight 654 * between UNCACHED and CACHED. Either a writer will finish 655 * writing the buffer (sending the dbuf to CACHED) or the 656 * first reader's request will reach the read_done callback 657 * and send the dbuf to CACHED. Otherwise, a failure 658 * occurred and the dbuf went to UNCACHED. 659 */ 660 mutex_exit(&db->db_mtx); 661 if (prefetch) 662 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 663 db->db.db_size, TRUE); 664 if ((flags & DB_RF_HAVESTRUCT) == 0) 665 rw_exit(&dn->dn_struct_rwlock); 666 DB_DNODE_EXIT(db); 667 668 /* Skip the wait per the caller's request. */ 669 mutex_enter(&db->db_mtx); 670 if ((flags & DB_RF_NEVERWAIT) == 0) { 671 while (db->db_state == DB_READ || 672 db->db_state == DB_FILL) { 673 ASSERT(db->db_state == DB_READ || 674 (flags & DB_RF_HAVESTRUCT) == 0); 675 cv_wait(&db->db_changed, &db->db_mtx); 676 } 677 if (db->db_state == DB_UNCACHED) 678 err = SET_ERROR(EIO); 679 } 680 mutex_exit(&db->db_mtx); 681 } 682 683 ASSERT(err || havepzio || db->db_state == DB_CACHED); 684 return (err); 685 } 686 687 static void 688 dbuf_noread(dmu_buf_impl_t *db) 689 { 690 ASSERT(!refcount_is_zero(&db->db_holds)); 691 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 692 mutex_enter(&db->db_mtx); 693 while (db->db_state == DB_READ || db->db_state == DB_FILL) 694 cv_wait(&db->db_changed, &db->db_mtx); 695 if (db->db_state == DB_UNCACHED) { 696 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 697 spa_t *spa = db->db_objset->os_spa; 698 699 ASSERT(db->db_buf == NULL); 700 ASSERT(db->db.db_data == NULL); 701 dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type)); 702 db->db_state = DB_FILL; 703 } else if (db->db_state == DB_NOFILL) { 704 dbuf_set_data(db, NULL); 705 } else { 706 ASSERT3U(db->db_state, ==, DB_CACHED); 707 } 708 mutex_exit(&db->db_mtx); 709 } 710 711 /* 712 * This is our just-in-time copy function. It makes a copy of 713 * buffers, that have been modified in a previous transaction 714 * group, before we modify them in the current active group. 715 * 716 * This function is used in two places: when we are dirtying a 717 * buffer for the first time in a txg, and when we are freeing 718 * a range in a dnode that includes this buffer. 719 * 720 * Note that when we are called from dbuf_free_range() we do 721 * not put a hold on the buffer, we just traverse the active 722 * dbuf list for the dnode. 723 */ 724 static void 725 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 726 { 727 dbuf_dirty_record_t *dr = db->db_last_dirty; 728 729 ASSERT(MUTEX_HELD(&db->db_mtx)); 730 ASSERT(db->db.db_data != NULL); 731 ASSERT(db->db_level == 0); 732 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 733 734 if (dr == NULL || 735 (dr->dt.dl.dr_data != 736 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 737 return; 738 739 /* 740 * If the last dirty record for this dbuf has not yet synced 741 * and its referencing the dbuf data, either: 742 * reset the reference to point to a new copy, 743 * or (if there a no active holders) 744 * just null out the current db_data pointer. 745 */ 746 ASSERT(dr->dr_txg >= txg - 2); 747 if (db->db_blkid == DMU_BONUS_BLKID) { 748 /* Note that the data bufs here are zio_bufs */ 749 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 750 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 751 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 752 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 753 int size = db->db.db_size; 754 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 755 spa_t *spa = db->db_objset->os_spa; 756 757 dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type); 758 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 759 } else { 760 dbuf_set_data(db, NULL); 761 } 762 } 763 764 void 765 dbuf_unoverride(dbuf_dirty_record_t *dr) 766 { 767 dmu_buf_impl_t *db = dr->dr_dbuf; 768 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 769 uint64_t txg = dr->dr_txg; 770 771 ASSERT(MUTEX_HELD(&db->db_mtx)); 772 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 773 ASSERT(db->db_level == 0); 774 775 if (db->db_blkid == DMU_BONUS_BLKID || 776 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 777 return; 778 779 ASSERT(db->db_data_pending != dr); 780 781 /* free this block */ 782 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 783 zio_free(db->db_objset->os_spa, txg, bp); 784 785 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 786 dr->dt.dl.dr_nopwrite = B_FALSE; 787 788 /* 789 * Release the already-written buffer, so we leave it in 790 * a consistent dirty state. Note that all callers are 791 * modifying the buffer, so they will immediately do 792 * another (redundant) arc_release(). Therefore, leave 793 * the buf thawed to save the effort of freezing & 794 * immediately re-thawing it. 795 */ 796 arc_release(dr->dt.dl.dr_data, db); 797 } 798 799 /* 800 * Evict (if its unreferenced) or clear (if its referenced) any level-0 801 * data blocks in the free range, so that any future readers will find 802 * empty blocks. 803 * 804 * This is a no-op if the dataset is in the middle of an incremental 805 * receive; see comment below for details. 806 */ 807 void 808 dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx) 809 { 810 dmu_buf_impl_t *db, *db_next; 811 uint64_t txg = tx->tx_txg; 812 813 if (end > dn->dn_maxblkid && (end != DMU_SPILL_BLKID)) 814 end = dn->dn_maxblkid; 815 dprintf_dnode(dn, "start=%llu end=%llu\n", start, end); 816 817 mutex_enter(&dn->dn_dbufs_mtx); 818 if (start >= dn->dn_unlisted_l0_blkid * dn->dn_datablksz) { 819 /* There can't be any dbufs in this range; no need to search. */ 820 mutex_exit(&dn->dn_dbufs_mtx); 821 return; 822 } else if (dmu_objset_is_receiving(dn->dn_objset)) { 823 /* 824 * If we are receiving, we expect there to be no dbufs in 825 * the range to be freed, because receive modifies each 826 * block at most once, and in offset order. If this is 827 * not the case, it can lead to performance problems, 828 * so note that we unexpectedly took the slow path. 829 */ 830 atomic_inc_64(&zfs_free_range_recv_miss); 831 } 832 833 for (db = list_head(&dn->dn_dbufs); db != NULL; db = db_next) { 834 db_next = list_next(&dn->dn_dbufs, db); 835 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 836 837 if (db->db_level != 0) 838 continue; 839 if (db->db_blkid < start || db->db_blkid > end) 840 continue; 841 842 /* found a level 0 buffer in the range */ 843 mutex_enter(&db->db_mtx); 844 if (dbuf_undirty(db, tx)) { 845 /* mutex has been dropped and dbuf destroyed */ 846 continue; 847 } 848 849 if (db->db_state == DB_UNCACHED || 850 db->db_state == DB_NOFILL || 851 db->db_state == DB_EVICTING) { 852 ASSERT(db->db.db_data == NULL); 853 mutex_exit(&db->db_mtx); 854 continue; 855 } 856 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 857 /* will be handled in dbuf_read_done or dbuf_rele */ 858 db->db_freed_in_flight = TRUE; 859 mutex_exit(&db->db_mtx); 860 continue; 861 } 862 if (refcount_count(&db->db_holds) == 0) { 863 ASSERT(db->db_buf); 864 dbuf_clear(db); 865 continue; 866 } 867 /* The dbuf is referenced */ 868 869 if (db->db_last_dirty != NULL) { 870 dbuf_dirty_record_t *dr = db->db_last_dirty; 871 872 if (dr->dr_txg == txg) { 873 /* 874 * This buffer is "in-use", re-adjust the file 875 * size to reflect that this buffer may 876 * contain new data when we sync. 877 */ 878 if (db->db_blkid != DMU_SPILL_BLKID && 879 db->db_blkid > dn->dn_maxblkid) 880 dn->dn_maxblkid = db->db_blkid; 881 dbuf_unoverride(dr); 882 } else { 883 /* 884 * This dbuf is not dirty in the open context. 885 * Either uncache it (if its not referenced in 886 * the open context) or reset its contents to 887 * empty. 888 */ 889 dbuf_fix_old_data(db, txg); 890 } 891 } 892 /* clear the contents if its cached */ 893 if (db->db_state == DB_CACHED) { 894 ASSERT(db->db.db_data != NULL); 895 arc_release(db->db_buf, db); 896 bzero(db->db.db_data, db->db.db_size); 897 arc_buf_freeze(db->db_buf); 898 } 899 900 mutex_exit(&db->db_mtx); 901 } 902 mutex_exit(&dn->dn_dbufs_mtx); 903 } 904 905 static int 906 dbuf_block_freeable(dmu_buf_impl_t *db) 907 { 908 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 909 uint64_t birth_txg = 0; 910 911 /* 912 * We don't need any locking to protect db_blkptr: 913 * If it's syncing, then db_last_dirty will be set 914 * so we'll ignore db_blkptr. 915 * 916 * This logic ensures that only block births for 917 * filled blocks are considered. 918 */ 919 ASSERT(MUTEX_HELD(&db->db_mtx)); 920 if (db->db_last_dirty && (db->db_blkptr == NULL || 921 !BP_IS_HOLE(db->db_blkptr))) { 922 birth_txg = db->db_last_dirty->dr_txg; 923 } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 924 birth_txg = db->db_blkptr->blk_birth; 925 } 926 927 /* 928 * If this block don't exist or is in a snapshot, it can't be freed. 929 * Don't pass the bp to dsl_dataset_block_freeable() since we 930 * are holding the db_mtx lock and might deadlock if we are 931 * prefetching a dedup-ed block. 932 */ 933 if (birth_txg != 0) 934 return (ds == NULL || 935 dsl_dataset_block_freeable(ds, NULL, birth_txg)); 936 else 937 return (B_FALSE); 938 } 939 940 void 941 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 942 { 943 arc_buf_t *buf, *obuf; 944 int osize = db->db.db_size; 945 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 946 dnode_t *dn; 947 948 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 949 950 DB_DNODE_ENTER(db); 951 dn = DB_DNODE(db); 952 953 /* XXX does *this* func really need the lock? */ 954 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 955 956 /* 957 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 958 * is OK, because there can be no other references to the db 959 * when we are changing its size, so no concurrent DB_FILL can 960 * be happening. 961 */ 962 /* 963 * XXX we should be doing a dbuf_read, checking the return 964 * value and returning that up to our callers 965 */ 966 dmu_buf_will_dirty(&db->db, tx); 967 968 /* create the data buffer for the new block */ 969 buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type); 970 971 /* copy old block data to the new block */ 972 obuf = db->db_buf; 973 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 974 /* zero the remainder */ 975 if (size > osize) 976 bzero((uint8_t *)buf->b_data + osize, size - osize); 977 978 mutex_enter(&db->db_mtx); 979 dbuf_set_data(db, buf); 980 VERIFY(arc_buf_remove_ref(obuf, db)); 981 db->db.db_size = size; 982 983 if (db->db_level == 0) { 984 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 985 db->db_last_dirty->dt.dl.dr_data = buf; 986 } 987 mutex_exit(&db->db_mtx); 988 989 dnode_willuse_space(dn, size-osize, tx); 990 DB_DNODE_EXIT(db); 991 } 992 993 void 994 dbuf_release_bp(dmu_buf_impl_t *db) 995 { 996 objset_t *os = db->db_objset; 997 998 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 999 ASSERT(arc_released(os->os_phys_buf) || 1000 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1001 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1002 1003 (void) arc_release(db->db_buf, db); 1004 } 1005 1006 dbuf_dirty_record_t * 1007 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1008 { 1009 dnode_t *dn; 1010 objset_t *os; 1011 dbuf_dirty_record_t **drp, *dr; 1012 int drop_struct_lock = FALSE; 1013 boolean_t do_free_accounting = B_FALSE; 1014 int txgoff = tx->tx_txg & TXG_MASK; 1015 1016 ASSERT(tx->tx_txg != 0); 1017 ASSERT(!refcount_is_zero(&db->db_holds)); 1018 DMU_TX_DIRTY_BUF(tx, db); 1019 1020 DB_DNODE_ENTER(db); 1021 dn = DB_DNODE(db); 1022 /* 1023 * Shouldn't dirty a regular buffer in syncing context. Private 1024 * objects may be dirtied in syncing context, but only if they 1025 * were already pre-dirtied in open context. 1026 */ 1027 ASSERT(!dmu_tx_is_syncing(tx) || 1028 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1029 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1030 dn->dn_objset->os_dsl_dataset == NULL); 1031 /* 1032 * We make this assert for private objects as well, but after we 1033 * check if we're already dirty. They are allowed to re-dirty 1034 * in syncing context. 1035 */ 1036 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1037 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1038 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1039 1040 mutex_enter(&db->db_mtx); 1041 /* 1042 * XXX make this true for indirects too? The problem is that 1043 * transactions created with dmu_tx_create_assigned() from 1044 * syncing context don't bother holding ahead. 1045 */ 1046 ASSERT(db->db_level != 0 || 1047 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1048 db->db_state == DB_NOFILL); 1049 1050 mutex_enter(&dn->dn_mtx); 1051 /* 1052 * Don't set dirtyctx to SYNC if we're just modifying this as we 1053 * initialize the objset. 1054 */ 1055 if (dn->dn_dirtyctx == DN_UNDIRTIED && 1056 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1057 dn->dn_dirtyctx = 1058 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1059 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1060 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1061 } 1062 mutex_exit(&dn->dn_mtx); 1063 1064 if (db->db_blkid == DMU_SPILL_BLKID) 1065 dn->dn_have_spill = B_TRUE; 1066 1067 /* 1068 * If this buffer is already dirty, we're done. 1069 */ 1070 drp = &db->db_last_dirty; 1071 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1072 db->db.db_object == DMU_META_DNODE_OBJECT); 1073 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1074 drp = &dr->dr_next; 1075 if (dr && dr->dr_txg == tx->tx_txg) { 1076 DB_DNODE_EXIT(db); 1077 1078 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1079 /* 1080 * If this buffer has already been written out, 1081 * we now need to reset its state. 1082 */ 1083 dbuf_unoverride(dr); 1084 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1085 db->db_state != DB_NOFILL) 1086 arc_buf_thaw(db->db_buf); 1087 } 1088 mutex_exit(&db->db_mtx); 1089 return (dr); 1090 } 1091 1092 /* 1093 * Only valid if not already dirty. 1094 */ 1095 ASSERT(dn->dn_object == 0 || 1096 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1097 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1098 1099 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1100 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1101 dn->dn_phys->dn_nlevels > db->db_level || 1102 dn->dn_next_nlevels[txgoff] > db->db_level || 1103 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1104 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1105 1106 /* 1107 * We should only be dirtying in syncing context if it's the 1108 * mos or we're initializing the os or it's a special object. 1109 * However, we are allowed to dirty in syncing context provided 1110 * we already dirtied it in open context. Hence we must make 1111 * this assertion only if we're not already dirty. 1112 */ 1113 os = dn->dn_objset; 1114 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1115 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1116 ASSERT(db->db.db_size != 0); 1117 1118 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1119 1120 if (db->db_blkid != DMU_BONUS_BLKID) { 1121 /* 1122 * Update the accounting. 1123 * Note: we delay "free accounting" until after we drop 1124 * the db_mtx. This keeps us from grabbing other locks 1125 * (and possibly deadlocking) in bp_get_dsize() while 1126 * also holding the db_mtx. 1127 */ 1128 dnode_willuse_space(dn, db->db.db_size, tx); 1129 do_free_accounting = dbuf_block_freeable(db); 1130 } 1131 1132 /* 1133 * If this buffer is dirty in an old transaction group we need 1134 * to make a copy of it so that the changes we make in this 1135 * transaction group won't leak out when we sync the older txg. 1136 */ 1137 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1138 if (db->db_level == 0) { 1139 void *data_old = db->db_buf; 1140 1141 if (db->db_state != DB_NOFILL) { 1142 if (db->db_blkid == DMU_BONUS_BLKID) { 1143 dbuf_fix_old_data(db, tx->tx_txg); 1144 data_old = db->db.db_data; 1145 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1146 /* 1147 * Release the data buffer from the cache so 1148 * that we can modify it without impacting 1149 * possible other users of this cached data 1150 * block. Note that indirect blocks and 1151 * private objects are not released until the 1152 * syncing state (since they are only modified 1153 * then). 1154 */ 1155 arc_release(db->db_buf, db); 1156 dbuf_fix_old_data(db, tx->tx_txg); 1157 data_old = db->db_buf; 1158 } 1159 ASSERT(data_old != NULL); 1160 } 1161 dr->dt.dl.dr_data = data_old; 1162 } else { 1163 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1164 list_create(&dr->dt.di.dr_children, 1165 sizeof (dbuf_dirty_record_t), 1166 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1167 } 1168 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1169 dr->dr_accounted = db->db.db_size; 1170 dr->dr_dbuf = db; 1171 dr->dr_txg = tx->tx_txg; 1172 dr->dr_next = *drp; 1173 *drp = dr; 1174 1175 /* 1176 * We could have been freed_in_flight between the dbuf_noread 1177 * and dbuf_dirty. We win, as though the dbuf_noread() had 1178 * happened after the free. 1179 */ 1180 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1181 db->db_blkid != DMU_SPILL_BLKID) { 1182 mutex_enter(&dn->dn_mtx); 1183 if (dn->dn_free_ranges[txgoff] != NULL) { 1184 range_tree_clear(dn->dn_free_ranges[txgoff], 1185 db->db_blkid, 1); 1186 } 1187 mutex_exit(&dn->dn_mtx); 1188 db->db_freed_in_flight = FALSE; 1189 } 1190 1191 /* 1192 * This buffer is now part of this txg 1193 */ 1194 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1195 db->db_dirtycnt += 1; 1196 ASSERT3U(db->db_dirtycnt, <=, 3); 1197 1198 mutex_exit(&db->db_mtx); 1199 1200 if (db->db_blkid == DMU_BONUS_BLKID || 1201 db->db_blkid == DMU_SPILL_BLKID) { 1202 mutex_enter(&dn->dn_mtx); 1203 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1204 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1205 mutex_exit(&dn->dn_mtx); 1206 dnode_setdirty(dn, tx); 1207 DB_DNODE_EXIT(db); 1208 return (dr); 1209 } else if (do_free_accounting) { 1210 blkptr_t *bp = db->db_blkptr; 1211 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ? 1212 bp_get_dsize(os->os_spa, bp) : db->db.db_size; 1213 /* 1214 * This is only a guess -- if the dbuf is dirty 1215 * in a previous txg, we don't know how much 1216 * space it will use on disk yet. We should 1217 * really have the struct_rwlock to access 1218 * db_blkptr, but since this is just a guess, 1219 * it's OK if we get an odd answer. 1220 */ 1221 ddt_prefetch(os->os_spa, bp); 1222 dnode_willuse_space(dn, -willfree, tx); 1223 } 1224 1225 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1226 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1227 drop_struct_lock = TRUE; 1228 } 1229 1230 if (db->db_level == 0) { 1231 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1232 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1233 } 1234 1235 if (db->db_level+1 < dn->dn_nlevels) { 1236 dmu_buf_impl_t *parent = db->db_parent; 1237 dbuf_dirty_record_t *di; 1238 int parent_held = FALSE; 1239 1240 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1241 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1242 1243 parent = dbuf_hold_level(dn, db->db_level+1, 1244 db->db_blkid >> epbs, FTAG); 1245 ASSERT(parent != NULL); 1246 parent_held = TRUE; 1247 } 1248 if (drop_struct_lock) 1249 rw_exit(&dn->dn_struct_rwlock); 1250 ASSERT3U(db->db_level+1, ==, parent->db_level); 1251 di = dbuf_dirty(parent, tx); 1252 if (parent_held) 1253 dbuf_rele(parent, FTAG); 1254 1255 mutex_enter(&db->db_mtx); 1256 /* 1257 * Since we've dropped the mutex, it's possible that 1258 * dbuf_undirty() might have changed this out from under us. 1259 */ 1260 if (db->db_last_dirty == dr || 1261 dn->dn_object == DMU_META_DNODE_OBJECT) { 1262 mutex_enter(&di->dt.di.dr_mtx); 1263 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1264 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1265 list_insert_tail(&di->dt.di.dr_children, dr); 1266 mutex_exit(&di->dt.di.dr_mtx); 1267 dr->dr_parent = di; 1268 } 1269 mutex_exit(&db->db_mtx); 1270 } else { 1271 ASSERT(db->db_level+1 == dn->dn_nlevels); 1272 ASSERT(db->db_blkid < dn->dn_nblkptr); 1273 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1274 mutex_enter(&dn->dn_mtx); 1275 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1276 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1277 mutex_exit(&dn->dn_mtx); 1278 if (drop_struct_lock) 1279 rw_exit(&dn->dn_struct_rwlock); 1280 } 1281 1282 dnode_setdirty(dn, tx); 1283 DB_DNODE_EXIT(db); 1284 return (dr); 1285 } 1286 1287 /* 1288 * Undirty a buffer in the transaction group referenced by the given 1289 * transaction. Return whether this evicted the dbuf. 1290 */ 1291 static boolean_t 1292 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1293 { 1294 dnode_t *dn; 1295 uint64_t txg = tx->tx_txg; 1296 dbuf_dirty_record_t *dr, **drp; 1297 1298 ASSERT(txg != 0); 1299 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1300 ASSERT0(db->db_level); 1301 ASSERT(MUTEX_HELD(&db->db_mtx)); 1302 1303 /* 1304 * If this buffer is not dirty, we're done. 1305 */ 1306 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1307 if (dr->dr_txg <= txg) 1308 break; 1309 if (dr == NULL || dr->dr_txg < txg) 1310 return (B_FALSE); 1311 ASSERT(dr->dr_txg == txg); 1312 ASSERT(dr->dr_dbuf == db); 1313 1314 DB_DNODE_ENTER(db); 1315 dn = DB_DNODE(db); 1316 1317 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1318 1319 ASSERT(db->db.db_size != 0); 1320 1321 /* 1322 * Any space we accounted for in dp_dirty_* will be cleaned up by 1323 * dsl_pool_sync(). This is relatively rare so the discrepancy 1324 * is not a big deal. 1325 */ 1326 1327 *drp = dr->dr_next; 1328 1329 /* 1330 * Note that there are three places in dbuf_dirty() 1331 * where this dirty record may be put on a list. 1332 * Make sure to do a list_remove corresponding to 1333 * every one of those list_insert calls. 1334 */ 1335 if (dr->dr_parent) { 1336 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1337 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1338 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1339 } else if (db->db_blkid == DMU_SPILL_BLKID || 1340 db->db_level+1 == dn->dn_nlevels) { 1341 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1342 mutex_enter(&dn->dn_mtx); 1343 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1344 mutex_exit(&dn->dn_mtx); 1345 } 1346 DB_DNODE_EXIT(db); 1347 1348 if (db->db_state != DB_NOFILL) { 1349 dbuf_unoverride(dr); 1350 1351 ASSERT(db->db_buf != NULL); 1352 ASSERT(dr->dt.dl.dr_data != NULL); 1353 if (dr->dt.dl.dr_data != db->db_buf) 1354 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db)); 1355 } 1356 1357 if (db->db_level != 0) { 1358 mutex_destroy(&dr->dt.di.dr_mtx); 1359 list_destroy(&dr->dt.di.dr_children); 1360 } 1361 1362 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1363 1364 ASSERT(db->db_dirtycnt > 0); 1365 db->db_dirtycnt -= 1; 1366 1367 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1368 arc_buf_t *buf = db->db_buf; 1369 1370 ASSERT(db->db_state == DB_NOFILL || arc_released(buf)); 1371 dbuf_set_data(db, NULL); 1372 VERIFY(arc_buf_remove_ref(buf, db)); 1373 dbuf_evict(db); 1374 return (B_TRUE); 1375 } 1376 1377 return (B_FALSE); 1378 } 1379 1380 void 1381 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1382 { 1383 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1384 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1385 1386 ASSERT(tx->tx_txg != 0); 1387 ASSERT(!refcount_is_zero(&db->db_holds)); 1388 1389 DB_DNODE_ENTER(db); 1390 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1391 rf |= DB_RF_HAVESTRUCT; 1392 DB_DNODE_EXIT(db); 1393 (void) dbuf_read(db, NULL, rf); 1394 (void) dbuf_dirty(db, tx); 1395 } 1396 1397 void 1398 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1399 { 1400 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1401 1402 db->db_state = DB_NOFILL; 1403 1404 dmu_buf_will_fill(db_fake, tx); 1405 } 1406 1407 void 1408 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1409 { 1410 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1411 1412 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1413 ASSERT(tx->tx_txg != 0); 1414 ASSERT(db->db_level == 0); 1415 ASSERT(!refcount_is_zero(&db->db_holds)); 1416 1417 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1418 dmu_tx_private_ok(tx)); 1419 1420 dbuf_noread(db); 1421 (void) dbuf_dirty(db, tx); 1422 } 1423 1424 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1425 /* ARGSUSED */ 1426 void 1427 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1428 { 1429 mutex_enter(&db->db_mtx); 1430 DBUF_VERIFY(db); 1431 1432 if (db->db_state == DB_FILL) { 1433 if (db->db_level == 0 && db->db_freed_in_flight) { 1434 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1435 /* we were freed while filling */ 1436 /* XXX dbuf_undirty? */ 1437 bzero(db->db.db_data, db->db.db_size); 1438 db->db_freed_in_flight = FALSE; 1439 } 1440 db->db_state = DB_CACHED; 1441 cv_broadcast(&db->db_changed); 1442 } 1443 mutex_exit(&db->db_mtx); 1444 } 1445 1446 void 1447 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 1448 bp_embedded_type_t etype, enum zio_compress comp, 1449 int uncompressed_size, int compressed_size, int byteorder, 1450 dmu_tx_t *tx) 1451 { 1452 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 1453 struct dirty_leaf *dl; 1454 dmu_object_type_t type; 1455 1456 DB_DNODE_ENTER(db); 1457 type = DB_DNODE(db)->dn_type; 1458 DB_DNODE_EXIT(db); 1459 1460 ASSERT0(db->db_level); 1461 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1462 1463 dmu_buf_will_not_fill(dbuf, tx); 1464 1465 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1466 dl = &db->db_last_dirty->dt.dl; 1467 encode_embedded_bp_compressed(&dl->dr_overridden_by, 1468 data, comp, uncompressed_size, compressed_size); 1469 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 1470 BP_SET_TYPE(&dl->dr_overridden_by, type); 1471 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 1472 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 1473 1474 dl->dr_override_state = DR_OVERRIDDEN; 1475 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 1476 } 1477 1478 /* 1479 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1480 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1481 */ 1482 void 1483 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1484 { 1485 ASSERT(!refcount_is_zero(&db->db_holds)); 1486 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1487 ASSERT(db->db_level == 0); 1488 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA); 1489 ASSERT(buf != NULL); 1490 ASSERT(arc_buf_size(buf) == db->db.db_size); 1491 ASSERT(tx->tx_txg != 0); 1492 1493 arc_return_buf(buf, db); 1494 ASSERT(arc_released(buf)); 1495 1496 mutex_enter(&db->db_mtx); 1497 1498 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1499 cv_wait(&db->db_changed, &db->db_mtx); 1500 1501 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1502 1503 if (db->db_state == DB_CACHED && 1504 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1505 mutex_exit(&db->db_mtx); 1506 (void) dbuf_dirty(db, tx); 1507 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1508 VERIFY(arc_buf_remove_ref(buf, db)); 1509 xuio_stat_wbuf_copied(); 1510 return; 1511 } 1512 1513 xuio_stat_wbuf_nocopy(); 1514 if (db->db_state == DB_CACHED) { 1515 dbuf_dirty_record_t *dr = db->db_last_dirty; 1516 1517 ASSERT(db->db_buf != NULL); 1518 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 1519 ASSERT(dr->dt.dl.dr_data == db->db_buf); 1520 if (!arc_released(db->db_buf)) { 1521 ASSERT(dr->dt.dl.dr_override_state == 1522 DR_OVERRIDDEN); 1523 arc_release(db->db_buf, db); 1524 } 1525 dr->dt.dl.dr_data = buf; 1526 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1527 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 1528 arc_release(db->db_buf, db); 1529 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1530 } 1531 db->db_buf = NULL; 1532 } 1533 ASSERT(db->db_buf == NULL); 1534 dbuf_set_data(db, buf); 1535 db->db_state = DB_FILL; 1536 mutex_exit(&db->db_mtx); 1537 (void) dbuf_dirty(db, tx); 1538 dmu_buf_fill_done(&db->db, tx); 1539 } 1540 1541 /* 1542 * "Clear" the contents of this dbuf. This will mark the dbuf 1543 * EVICTING and clear *most* of its references. Unfortunately, 1544 * when we are not holding the dn_dbufs_mtx, we can't clear the 1545 * entry in the dn_dbufs list. We have to wait until dbuf_destroy() 1546 * in this case. For callers from the DMU we will usually see: 1547 * dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy() 1548 * For the arc callback, we will usually see: 1549 * dbuf_do_evict()->dbuf_clear();dbuf_destroy() 1550 * Sometimes, though, we will get a mix of these two: 1551 * DMU: dbuf_clear()->arc_buf_evict() 1552 * ARC: dbuf_do_evict()->dbuf_destroy() 1553 */ 1554 void 1555 dbuf_clear(dmu_buf_impl_t *db) 1556 { 1557 dnode_t *dn; 1558 dmu_buf_impl_t *parent = db->db_parent; 1559 dmu_buf_impl_t *dndb; 1560 int dbuf_gone = FALSE; 1561 1562 ASSERT(MUTEX_HELD(&db->db_mtx)); 1563 ASSERT(refcount_is_zero(&db->db_holds)); 1564 1565 dbuf_evict_user(db); 1566 1567 if (db->db_state == DB_CACHED) { 1568 ASSERT(db->db.db_data != NULL); 1569 if (db->db_blkid == DMU_BONUS_BLKID) { 1570 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 1571 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1572 } 1573 db->db.db_data = NULL; 1574 db->db_state = DB_UNCACHED; 1575 } 1576 1577 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1578 ASSERT(db->db_data_pending == NULL); 1579 1580 db->db_state = DB_EVICTING; 1581 db->db_blkptr = NULL; 1582 1583 DB_DNODE_ENTER(db); 1584 dn = DB_DNODE(db); 1585 dndb = dn->dn_dbuf; 1586 if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) { 1587 list_remove(&dn->dn_dbufs, db); 1588 (void) atomic_dec_32_nv(&dn->dn_dbufs_count); 1589 membar_producer(); 1590 DB_DNODE_EXIT(db); 1591 /* 1592 * Decrementing the dbuf count means that the hold corresponding 1593 * to the removed dbuf is no longer discounted in dnode_move(), 1594 * so the dnode cannot be moved until after we release the hold. 1595 * The membar_producer() ensures visibility of the decremented 1596 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 1597 * release any lock. 1598 */ 1599 dnode_rele(dn, db); 1600 db->db_dnode_handle = NULL; 1601 } else { 1602 DB_DNODE_EXIT(db); 1603 } 1604 1605 if (db->db_buf) 1606 dbuf_gone = arc_buf_evict(db->db_buf); 1607 1608 if (!dbuf_gone) 1609 mutex_exit(&db->db_mtx); 1610 1611 /* 1612 * If this dbuf is referenced from an indirect dbuf, 1613 * decrement the ref count on the indirect dbuf. 1614 */ 1615 if (parent && parent != dndb) 1616 dbuf_rele(parent, db); 1617 } 1618 1619 static int 1620 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 1621 dmu_buf_impl_t **parentp, blkptr_t **bpp) 1622 { 1623 int nlevels, epbs; 1624 1625 *parentp = NULL; 1626 *bpp = NULL; 1627 1628 ASSERT(blkid != DMU_BONUS_BLKID); 1629 1630 if (blkid == DMU_SPILL_BLKID) { 1631 mutex_enter(&dn->dn_mtx); 1632 if (dn->dn_have_spill && 1633 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1634 *bpp = &dn->dn_phys->dn_spill; 1635 else 1636 *bpp = NULL; 1637 dbuf_add_ref(dn->dn_dbuf, NULL); 1638 *parentp = dn->dn_dbuf; 1639 mutex_exit(&dn->dn_mtx); 1640 return (0); 1641 } 1642 1643 if (dn->dn_phys->dn_nlevels == 0) 1644 nlevels = 1; 1645 else 1646 nlevels = dn->dn_phys->dn_nlevels; 1647 1648 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1649 1650 ASSERT3U(level * epbs, <, 64); 1651 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1652 if (level >= nlevels || 1653 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 1654 /* the buffer has no parent yet */ 1655 return (SET_ERROR(ENOENT)); 1656 } else if (level < nlevels-1) { 1657 /* this block is referenced from an indirect block */ 1658 int err = dbuf_hold_impl(dn, level+1, 1659 blkid >> epbs, fail_sparse, NULL, parentp); 1660 if (err) 1661 return (err); 1662 err = dbuf_read(*parentp, NULL, 1663 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 1664 if (err) { 1665 dbuf_rele(*parentp, NULL); 1666 *parentp = NULL; 1667 return (err); 1668 } 1669 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 1670 (blkid & ((1ULL << epbs) - 1)); 1671 return (0); 1672 } else { 1673 /* the block is referenced from the dnode */ 1674 ASSERT3U(level, ==, nlevels-1); 1675 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 1676 blkid < dn->dn_phys->dn_nblkptr); 1677 if (dn->dn_dbuf) { 1678 dbuf_add_ref(dn->dn_dbuf, NULL); 1679 *parentp = dn->dn_dbuf; 1680 } 1681 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 1682 return (0); 1683 } 1684 } 1685 1686 static dmu_buf_impl_t * 1687 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 1688 dmu_buf_impl_t *parent, blkptr_t *blkptr) 1689 { 1690 objset_t *os = dn->dn_objset; 1691 dmu_buf_impl_t *db, *odb; 1692 1693 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1694 ASSERT(dn->dn_type != DMU_OT_NONE); 1695 1696 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP); 1697 1698 db->db_objset = os; 1699 db->db.db_object = dn->dn_object; 1700 db->db_level = level; 1701 db->db_blkid = blkid; 1702 db->db_last_dirty = NULL; 1703 db->db_dirtycnt = 0; 1704 db->db_dnode_handle = dn->dn_handle; 1705 db->db_parent = parent; 1706 db->db_blkptr = blkptr; 1707 1708 db->db_user_ptr = NULL; 1709 db->db_user_data_ptr_ptr = NULL; 1710 db->db_evict_func = NULL; 1711 db->db_immediate_evict = 0; 1712 db->db_freed_in_flight = 0; 1713 1714 if (blkid == DMU_BONUS_BLKID) { 1715 ASSERT3P(parent, ==, dn->dn_dbuf); 1716 db->db.db_size = DN_MAX_BONUSLEN - 1717 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 1718 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1719 db->db.db_offset = DMU_BONUS_BLKID; 1720 db->db_state = DB_UNCACHED; 1721 /* the bonus dbuf is not placed in the hash table */ 1722 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1723 return (db); 1724 } else if (blkid == DMU_SPILL_BLKID) { 1725 db->db.db_size = (blkptr != NULL) ? 1726 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 1727 db->db.db_offset = 0; 1728 } else { 1729 int blocksize = 1730 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 1731 db->db.db_size = blocksize; 1732 db->db.db_offset = db->db_blkid * blocksize; 1733 } 1734 1735 /* 1736 * Hold the dn_dbufs_mtx while we get the new dbuf 1737 * in the hash table *and* added to the dbufs list. 1738 * This prevents a possible deadlock with someone 1739 * trying to look up this dbuf before its added to the 1740 * dn_dbufs list. 1741 */ 1742 mutex_enter(&dn->dn_dbufs_mtx); 1743 db->db_state = DB_EVICTING; 1744 if ((odb = dbuf_hash_insert(db)) != NULL) { 1745 /* someone else inserted it first */ 1746 kmem_cache_free(dbuf_cache, db); 1747 mutex_exit(&dn->dn_dbufs_mtx); 1748 return (odb); 1749 } 1750 list_insert_head(&dn->dn_dbufs, db); 1751 if (db->db_level == 0 && db->db_blkid >= 1752 dn->dn_unlisted_l0_blkid) 1753 dn->dn_unlisted_l0_blkid = db->db_blkid + 1; 1754 db->db_state = DB_UNCACHED; 1755 mutex_exit(&dn->dn_dbufs_mtx); 1756 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1757 1758 if (parent && parent != dn->dn_dbuf) 1759 dbuf_add_ref(parent, db); 1760 1761 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1762 refcount_count(&dn->dn_holds) > 0); 1763 (void) refcount_add(&dn->dn_holds, db); 1764 (void) atomic_inc_32_nv(&dn->dn_dbufs_count); 1765 1766 dprintf_dbuf(db, "db=%p\n", db); 1767 1768 return (db); 1769 } 1770 1771 static int 1772 dbuf_do_evict(void *private) 1773 { 1774 arc_buf_t *buf = private; 1775 dmu_buf_impl_t *db = buf->b_private; 1776 1777 if (!MUTEX_HELD(&db->db_mtx)) 1778 mutex_enter(&db->db_mtx); 1779 1780 ASSERT(refcount_is_zero(&db->db_holds)); 1781 1782 if (db->db_state != DB_EVICTING) { 1783 ASSERT(db->db_state == DB_CACHED); 1784 DBUF_VERIFY(db); 1785 db->db_buf = NULL; 1786 dbuf_evict(db); 1787 } else { 1788 mutex_exit(&db->db_mtx); 1789 dbuf_destroy(db); 1790 } 1791 return (0); 1792 } 1793 1794 static void 1795 dbuf_destroy(dmu_buf_impl_t *db) 1796 { 1797 ASSERT(refcount_is_zero(&db->db_holds)); 1798 1799 if (db->db_blkid != DMU_BONUS_BLKID) { 1800 /* 1801 * If this dbuf is still on the dn_dbufs list, 1802 * remove it from that list. 1803 */ 1804 if (db->db_dnode_handle != NULL) { 1805 dnode_t *dn; 1806 1807 DB_DNODE_ENTER(db); 1808 dn = DB_DNODE(db); 1809 mutex_enter(&dn->dn_dbufs_mtx); 1810 list_remove(&dn->dn_dbufs, db); 1811 (void) atomic_dec_32_nv(&dn->dn_dbufs_count); 1812 mutex_exit(&dn->dn_dbufs_mtx); 1813 DB_DNODE_EXIT(db); 1814 /* 1815 * Decrementing the dbuf count means that the hold 1816 * corresponding to the removed dbuf is no longer 1817 * discounted in dnode_move(), so the dnode cannot be 1818 * moved until after we release the hold. 1819 */ 1820 dnode_rele(dn, db); 1821 db->db_dnode_handle = NULL; 1822 } 1823 dbuf_hash_remove(db); 1824 } 1825 db->db_parent = NULL; 1826 db->db_buf = NULL; 1827 1828 ASSERT(!list_link_active(&db->db_link)); 1829 ASSERT(db->db.db_data == NULL); 1830 ASSERT(db->db_hash_next == NULL); 1831 ASSERT(db->db_blkptr == NULL); 1832 ASSERT(db->db_data_pending == NULL); 1833 1834 kmem_cache_free(dbuf_cache, db); 1835 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1836 } 1837 1838 void 1839 dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio) 1840 { 1841 dmu_buf_impl_t *db = NULL; 1842 blkptr_t *bp = NULL; 1843 1844 ASSERT(blkid != DMU_BONUS_BLKID); 1845 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1846 1847 if (dnode_block_freed(dn, blkid)) 1848 return; 1849 1850 /* dbuf_find() returns with db_mtx held */ 1851 if (db = dbuf_find(dn, 0, blkid)) { 1852 /* 1853 * This dbuf is already in the cache. We assume that 1854 * it is already CACHED, or else about to be either 1855 * read or filled. 1856 */ 1857 mutex_exit(&db->db_mtx); 1858 return; 1859 } 1860 1861 if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) { 1862 if (bp && !BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 1863 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 1864 uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH; 1865 zbookmark_phys_t zb; 1866 1867 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1868 dn->dn_object, 0, blkid); 1869 1870 (void) arc_read(NULL, dn->dn_objset->os_spa, 1871 bp, NULL, NULL, prio, 1872 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 1873 &aflags, &zb); 1874 } 1875 if (db) 1876 dbuf_rele(db, NULL); 1877 } 1878 } 1879 1880 /* 1881 * Returns with db_holds incremented, and db_mtx not held. 1882 * Note: dn_struct_rwlock must be held. 1883 */ 1884 int 1885 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse, 1886 void *tag, dmu_buf_impl_t **dbp) 1887 { 1888 dmu_buf_impl_t *db, *parent = NULL; 1889 1890 ASSERT(blkid != DMU_BONUS_BLKID); 1891 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1892 ASSERT3U(dn->dn_nlevels, >, level); 1893 1894 *dbp = NULL; 1895 top: 1896 /* dbuf_find() returns with db_mtx held */ 1897 db = dbuf_find(dn, level, blkid); 1898 1899 if (db == NULL) { 1900 blkptr_t *bp = NULL; 1901 int err; 1902 1903 ASSERT3P(parent, ==, NULL); 1904 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 1905 if (fail_sparse) { 1906 if (err == 0 && bp && BP_IS_HOLE(bp)) 1907 err = SET_ERROR(ENOENT); 1908 if (err) { 1909 if (parent) 1910 dbuf_rele(parent, NULL); 1911 return (err); 1912 } 1913 } 1914 if (err && err != ENOENT) 1915 return (err); 1916 db = dbuf_create(dn, level, blkid, parent, bp); 1917 } 1918 1919 if (db->db_buf && refcount_is_zero(&db->db_holds)) { 1920 arc_buf_add_ref(db->db_buf, db); 1921 if (db->db_buf->b_data == NULL) { 1922 dbuf_clear(db); 1923 if (parent) { 1924 dbuf_rele(parent, NULL); 1925 parent = NULL; 1926 } 1927 goto top; 1928 } 1929 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 1930 } 1931 1932 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 1933 1934 /* 1935 * If this buffer is currently syncing out, and we are are 1936 * still referencing it from db_data, we need to make a copy 1937 * of it in case we decide we want to dirty it again in this txg. 1938 */ 1939 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1940 dn->dn_object != DMU_META_DNODE_OBJECT && 1941 db->db_state == DB_CACHED && db->db_data_pending) { 1942 dbuf_dirty_record_t *dr = db->db_data_pending; 1943 1944 if (dr->dt.dl.dr_data == db->db_buf) { 1945 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1946 1947 dbuf_set_data(db, 1948 arc_buf_alloc(dn->dn_objset->os_spa, 1949 db->db.db_size, db, type)); 1950 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 1951 db->db.db_size); 1952 } 1953 } 1954 1955 (void) refcount_add(&db->db_holds, tag); 1956 dbuf_update_data(db); 1957 DBUF_VERIFY(db); 1958 mutex_exit(&db->db_mtx); 1959 1960 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 1961 if (parent) 1962 dbuf_rele(parent, NULL); 1963 1964 ASSERT3P(DB_DNODE(db), ==, dn); 1965 ASSERT3U(db->db_blkid, ==, blkid); 1966 ASSERT3U(db->db_level, ==, level); 1967 *dbp = db; 1968 1969 return (0); 1970 } 1971 1972 dmu_buf_impl_t * 1973 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 1974 { 1975 dmu_buf_impl_t *db; 1976 int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db); 1977 return (err ? NULL : db); 1978 } 1979 1980 dmu_buf_impl_t * 1981 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 1982 { 1983 dmu_buf_impl_t *db; 1984 int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db); 1985 return (err ? NULL : db); 1986 } 1987 1988 void 1989 dbuf_create_bonus(dnode_t *dn) 1990 { 1991 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1992 1993 ASSERT(dn->dn_bonus == NULL); 1994 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 1995 } 1996 1997 int 1998 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 1999 { 2000 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2001 dnode_t *dn; 2002 2003 if (db->db_blkid != DMU_SPILL_BLKID) 2004 return (SET_ERROR(ENOTSUP)); 2005 if (blksz == 0) 2006 blksz = SPA_MINBLOCKSIZE; 2007 if (blksz > SPA_MAXBLOCKSIZE) 2008 blksz = SPA_MAXBLOCKSIZE; 2009 else 2010 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2011 2012 DB_DNODE_ENTER(db); 2013 dn = DB_DNODE(db); 2014 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2015 dbuf_new_size(db, blksz, tx); 2016 rw_exit(&dn->dn_struct_rwlock); 2017 DB_DNODE_EXIT(db); 2018 2019 return (0); 2020 } 2021 2022 void 2023 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2024 { 2025 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2026 } 2027 2028 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2029 void 2030 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2031 { 2032 int64_t holds = refcount_add(&db->db_holds, tag); 2033 ASSERT(holds > 1); 2034 } 2035 2036 /* 2037 * If you call dbuf_rele() you had better not be referencing the dnode handle 2038 * unless you have some other direct or indirect hold on the dnode. (An indirect 2039 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2040 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2041 * dnode's parent dbuf evicting its dnode handles. 2042 */ 2043 void 2044 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2045 { 2046 mutex_enter(&db->db_mtx); 2047 dbuf_rele_and_unlock(db, tag); 2048 } 2049 2050 void 2051 dmu_buf_rele(dmu_buf_t *db, void *tag) 2052 { 2053 dbuf_rele((dmu_buf_impl_t *)db, tag); 2054 } 2055 2056 /* 2057 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2058 * db_dirtycnt and db_holds to be updated atomically. 2059 */ 2060 void 2061 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2062 { 2063 int64_t holds; 2064 2065 ASSERT(MUTEX_HELD(&db->db_mtx)); 2066 DBUF_VERIFY(db); 2067 2068 /* 2069 * Remove the reference to the dbuf before removing its hold on the 2070 * dnode so we can guarantee in dnode_move() that a referenced bonus 2071 * buffer has a corresponding dnode hold. 2072 */ 2073 holds = refcount_remove(&db->db_holds, tag); 2074 ASSERT(holds >= 0); 2075 2076 /* 2077 * We can't freeze indirects if there is a possibility that they 2078 * may be modified in the current syncing context. 2079 */ 2080 if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) 2081 arc_buf_freeze(db->db_buf); 2082 2083 if (holds == db->db_dirtycnt && 2084 db->db_level == 0 && db->db_immediate_evict) 2085 dbuf_evict_user(db); 2086 2087 if (holds == 0) { 2088 if (db->db_blkid == DMU_BONUS_BLKID) { 2089 mutex_exit(&db->db_mtx); 2090 2091 /* 2092 * If the dnode moves here, we cannot cross this barrier 2093 * until the move completes. 2094 */ 2095 DB_DNODE_ENTER(db); 2096 (void) atomic_dec_32_nv(&DB_DNODE(db)->dn_dbufs_count); 2097 DB_DNODE_EXIT(db); 2098 /* 2099 * The bonus buffer's dnode hold is no longer discounted 2100 * in dnode_move(). The dnode cannot move until after 2101 * the dnode_rele(). 2102 */ 2103 dnode_rele(DB_DNODE(db), db); 2104 } else if (db->db_buf == NULL) { 2105 /* 2106 * This is a special case: we never associated this 2107 * dbuf with any data allocated from the ARC. 2108 */ 2109 ASSERT(db->db_state == DB_UNCACHED || 2110 db->db_state == DB_NOFILL); 2111 dbuf_evict(db); 2112 } else if (arc_released(db->db_buf)) { 2113 arc_buf_t *buf = db->db_buf; 2114 /* 2115 * This dbuf has anonymous data associated with it. 2116 */ 2117 dbuf_set_data(db, NULL); 2118 VERIFY(arc_buf_remove_ref(buf, db)); 2119 dbuf_evict(db); 2120 } else { 2121 VERIFY(!arc_buf_remove_ref(db->db_buf, db)); 2122 2123 /* 2124 * A dbuf will be eligible for eviction if either the 2125 * 'primarycache' property is set or a duplicate 2126 * copy of this buffer is already cached in the arc. 2127 * 2128 * In the case of the 'primarycache' a buffer 2129 * is considered for eviction if it matches the 2130 * criteria set in the property. 2131 * 2132 * To decide if our buffer is considered a 2133 * duplicate, we must call into the arc to determine 2134 * if multiple buffers are referencing the same 2135 * block on-disk. If so, then we simply evict 2136 * ourselves. 2137 */ 2138 if (!DBUF_IS_CACHEABLE(db) || 2139 arc_buf_eviction_needed(db->db_buf)) 2140 dbuf_clear(db); 2141 else 2142 mutex_exit(&db->db_mtx); 2143 } 2144 } else { 2145 mutex_exit(&db->db_mtx); 2146 } 2147 } 2148 2149 #pragma weak dmu_buf_refcount = dbuf_refcount 2150 uint64_t 2151 dbuf_refcount(dmu_buf_impl_t *db) 2152 { 2153 return (refcount_count(&db->db_holds)); 2154 } 2155 2156 void * 2157 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 2158 dmu_buf_evict_func_t *evict_func) 2159 { 2160 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 2161 user_data_ptr_ptr, evict_func)); 2162 } 2163 2164 void * 2165 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 2166 dmu_buf_evict_func_t *evict_func) 2167 { 2168 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2169 2170 db->db_immediate_evict = TRUE; 2171 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 2172 user_data_ptr_ptr, evict_func)); 2173 } 2174 2175 void * 2176 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr, 2177 void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func) 2178 { 2179 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2180 ASSERT(db->db_level == 0); 2181 2182 ASSERT((user_ptr == NULL) == (evict_func == NULL)); 2183 2184 mutex_enter(&db->db_mtx); 2185 2186 if (db->db_user_ptr == old_user_ptr) { 2187 db->db_user_ptr = user_ptr; 2188 db->db_user_data_ptr_ptr = user_data_ptr_ptr; 2189 db->db_evict_func = evict_func; 2190 2191 dbuf_update_data(db); 2192 } else { 2193 old_user_ptr = db->db_user_ptr; 2194 } 2195 2196 mutex_exit(&db->db_mtx); 2197 return (old_user_ptr); 2198 } 2199 2200 void * 2201 dmu_buf_get_user(dmu_buf_t *db_fake) 2202 { 2203 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2204 ASSERT(!refcount_is_zero(&db->db_holds)); 2205 2206 return (db->db_user_ptr); 2207 } 2208 2209 boolean_t 2210 dmu_buf_freeable(dmu_buf_t *dbuf) 2211 { 2212 boolean_t res = B_FALSE; 2213 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2214 2215 if (db->db_blkptr) 2216 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset, 2217 db->db_blkptr, db->db_blkptr->blk_birth); 2218 2219 return (res); 2220 } 2221 2222 blkptr_t * 2223 dmu_buf_get_blkptr(dmu_buf_t *db) 2224 { 2225 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2226 return (dbi->db_blkptr); 2227 } 2228 2229 static void 2230 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2231 { 2232 /* ASSERT(dmu_tx_is_syncing(tx) */ 2233 ASSERT(MUTEX_HELD(&db->db_mtx)); 2234 2235 if (db->db_blkptr != NULL) 2236 return; 2237 2238 if (db->db_blkid == DMU_SPILL_BLKID) { 2239 db->db_blkptr = &dn->dn_phys->dn_spill; 2240 BP_ZERO(db->db_blkptr); 2241 return; 2242 } 2243 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2244 /* 2245 * This buffer was allocated at a time when there was 2246 * no available blkptrs from the dnode, or it was 2247 * inappropriate to hook it in (i.e., nlevels mis-match). 2248 */ 2249 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2250 ASSERT(db->db_parent == NULL); 2251 db->db_parent = dn->dn_dbuf; 2252 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2253 DBUF_VERIFY(db); 2254 } else { 2255 dmu_buf_impl_t *parent = db->db_parent; 2256 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2257 2258 ASSERT(dn->dn_phys->dn_nlevels > 1); 2259 if (parent == NULL) { 2260 mutex_exit(&db->db_mtx); 2261 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2262 (void) dbuf_hold_impl(dn, db->db_level+1, 2263 db->db_blkid >> epbs, FALSE, db, &parent); 2264 rw_exit(&dn->dn_struct_rwlock); 2265 mutex_enter(&db->db_mtx); 2266 db->db_parent = parent; 2267 } 2268 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2269 (db->db_blkid & ((1ULL << epbs) - 1)); 2270 DBUF_VERIFY(db); 2271 } 2272 } 2273 2274 static void 2275 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2276 { 2277 dmu_buf_impl_t *db = dr->dr_dbuf; 2278 dnode_t *dn; 2279 zio_t *zio; 2280 2281 ASSERT(dmu_tx_is_syncing(tx)); 2282 2283 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2284 2285 mutex_enter(&db->db_mtx); 2286 2287 ASSERT(db->db_level > 0); 2288 DBUF_VERIFY(db); 2289 2290 /* Read the block if it hasn't been read yet. */ 2291 if (db->db_buf == NULL) { 2292 mutex_exit(&db->db_mtx); 2293 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2294 mutex_enter(&db->db_mtx); 2295 } 2296 ASSERT3U(db->db_state, ==, DB_CACHED); 2297 ASSERT(db->db_buf != NULL); 2298 2299 DB_DNODE_ENTER(db); 2300 dn = DB_DNODE(db); 2301 /* Indirect block size must match what the dnode thinks it is. */ 2302 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2303 dbuf_check_blkptr(dn, db); 2304 DB_DNODE_EXIT(db); 2305 2306 /* Provide the pending dirty record to child dbufs */ 2307 db->db_data_pending = dr; 2308 2309 mutex_exit(&db->db_mtx); 2310 dbuf_write(dr, db->db_buf, tx); 2311 2312 zio = dr->dr_zio; 2313 mutex_enter(&dr->dt.di.dr_mtx); 2314 dbuf_sync_list(&dr->dt.di.dr_children, tx); 2315 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2316 mutex_exit(&dr->dt.di.dr_mtx); 2317 zio_nowait(zio); 2318 } 2319 2320 static void 2321 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2322 { 2323 arc_buf_t **datap = &dr->dt.dl.dr_data; 2324 dmu_buf_impl_t *db = dr->dr_dbuf; 2325 dnode_t *dn; 2326 objset_t *os; 2327 uint64_t txg = tx->tx_txg; 2328 2329 ASSERT(dmu_tx_is_syncing(tx)); 2330 2331 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2332 2333 mutex_enter(&db->db_mtx); 2334 /* 2335 * To be synced, we must be dirtied. But we 2336 * might have been freed after the dirty. 2337 */ 2338 if (db->db_state == DB_UNCACHED) { 2339 /* This buffer has been freed since it was dirtied */ 2340 ASSERT(db->db.db_data == NULL); 2341 } else if (db->db_state == DB_FILL) { 2342 /* This buffer was freed and is now being re-filled */ 2343 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 2344 } else { 2345 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 2346 } 2347 DBUF_VERIFY(db); 2348 2349 DB_DNODE_ENTER(db); 2350 dn = DB_DNODE(db); 2351 2352 if (db->db_blkid == DMU_SPILL_BLKID) { 2353 mutex_enter(&dn->dn_mtx); 2354 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 2355 mutex_exit(&dn->dn_mtx); 2356 } 2357 2358 /* 2359 * If this is a bonus buffer, simply copy the bonus data into the 2360 * dnode. It will be written out when the dnode is synced (and it 2361 * will be synced, since it must have been dirty for dbuf_sync to 2362 * be called). 2363 */ 2364 if (db->db_blkid == DMU_BONUS_BLKID) { 2365 dbuf_dirty_record_t **drp; 2366 2367 ASSERT(*datap != NULL); 2368 ASSERT0(db->db_level); 2369 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 2370 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 2371 DB_DNODE_EXIT(db); 2372 2373 if (*datap != db->db.db_data) { 2374 zio_buf_free(*datap, DN_MAX_BONUSLEN); 2375 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2376 } 2377 db->db_data_pending = NULL; 2378 drp = &db->db_last_dirty; 2379 while (*drp != dr) 2380 drp = &(*drp)->dr_next; 2381 ASSERT(dr->dr_next == NULL); 2382 ASSERT(dr->dr_dbuf == db); 2383 *drp = dr->dr_next; 2384 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2385 ASSERT(db->db_dirtycnt > 0); 2386 db->db_dirtycnt -= 1; 2387 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 2388 return; 2389 } 2390 2391 os = dn->dn_objset; 2392 2393 /* 2394 * This function may have dropped the db_mtx lock allowing a dmu_sync 2395 * operation to sneak in. As a result, we need to ensure that we 2396 * don't check the dr_override_state until we have returned from 2397 * dbuf_check_blkptr. 2398 */ 2399 dbuf_check_blkptr(dn, db); 2400 2401 /* 2402 * If this buffer is in the middle of an immediate write, 2403 * wait for the synchronous IO to complete. 2404 */ 2405 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 2406 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 2407 cv_wait(&db->db_changed, &db->db_mtx); 2408 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 2409 } 2410 2411 if (db->db_state != DB_NOFILL && 2412 dn->dn_object != DMU_META_DNODE_OBJECT && 2413 refcount_count(&db->db_holds) > 1 && 2414 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 2415 *datap == db->db_buf) { 2416 /* 2417 * If this buffer is currently "in use" (i.e., there 2418 * are active holds and db_data still references it), 2419 * then make a copy before we start the write so that 2420 * any modifications from the open txg will not leak 2421 * into this write. 2422 * 2423 * NOTE: this copy does not need to be made for 2424 * objects only modified in the syncing context (e.g. 2425 * DNONE_DNODE blocks). 2426 */ 2427 int blksz = arc_buf_size(*datap); 2428 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2429 *datap = arc_buf_alloc(os->os_spa, blksz, db, type); 2430 bcopy(db->db.db_data, (*datap)->b_data, blksz); 2431 } 2432 db->db_data_pending = dr; 2433 2434 mutex_exit(&db->db_mtx); 2435 2436 dbuf_write(dr, *datap, tx); 2437 2438 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2439 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 2440 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 2441 DB_DNODE_EXIT(db); 2442 } else { 2443 /* 2444 * Although zio_nowait() does not "wait for an IO", it does 2445 * initiate the IO. If this is an empty write it seems plausible 2446 * that the IO could actually be completed before the nowait 2447 * returns. We need to DB_DNODE_EXIT() first in case 2448 * zio_nowait() invalidates the dbuf. 2449 */ 2450 DB_DNODE_EXIT(db); 2451 zio_nowait(dr->dr_zio); 2452 } 2453 } 2454 2455 void 2456 dbuf_sync_list(list_t *list, dmu_tx_t *tx) 2457 { 2458 dbuf_dirty_record_t *dr; 2459 2460 while (dr = list_head(list)) { 2461 if (dr->dr_zio != NULL) { 2462 /* 2463 * If we find an already initialized zio then we 2464 * are processing the meta-dnode, and we have finished. 2465 * The dbufs for all dnodes are put back on the list 2466 * during processing, so that we can zio_wait() 2467 * these IOs after initiating all child IOs. 2468 */ 2469 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 2470 DMU_META_DNODE_OBJECT); 2471 break; 2472 } 2473 list_remove(list, dr); 2474 if (dr->dr_dbuf->db_level > 0) 2475 dbuf_sync_indirect(dr, tx); 2476 else 2477 dbuf_sync_leaf(dr, tx); 2478 } 2479 } 2480 2481 /* ARGSUSED */ 2482 static void 2483 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 2484 { 2485 dmu_buf_impl_t *db = vdb; 2486 dnode_t *dn; 2487 blkptr_t *bp = zio->io_bp; 2488 blkptr_t *bp_orig = &zio->io_bp_orig; 2489 spa_t *spa = zio->io_spa; 2490 int64_t delta; 2491 uint64_t fill = 0; 2492 int i; 2493 2494 ASSERT3P(db->db_blkptr, ==, bp); 2495 2496 DB_DNODE_ENTER(db); 2497 dn = DB_DNODE(db); 2498 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 2499 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 2500 zio->io_prev_space_delta = delta; 2501 2502 if (bp->blk_birth != 0) { 2503 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 2504 BP_GET_TYPE(bp) == dn->dn_type) || 2505 (db->db_blkid == DMU_SPILL_BLKID && 2506 BP_GET_TYPE(bp) == dn->dn_bonustype) || 2507 BP_IS_EMBEDDED(bp)); 2508 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 2509 } 2510 2511 mutex_enter(&db->db_mtx); 2512 2513 #ifdef ZFS_DEBUG 2514 if (db->db_blkid == DMU_SPILL_BLKID) { 2515 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2516 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2517 db->db_blkptr == &dn->dn_phys->dn_spill); 2518 } 2519 #endif 2520 2521 if (db->db_level == 0) { 2522 mutex_enter(&dn->dn_mtx); 2523 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 2524 db->db_blkid != DMU_SPILL_BLKID) 2525 dn->dn_phys->dn_maxblkid = db->db_blkid; 2526 mutex_exit(&dn->dn_mtx); 2527 2528 if (dn->dn_type == DMU_OT_DNODE) { 2529 dnode_phys_t *dnp = db->db.db_data; 2530 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 2531 i--, dnp++) { 2532 if (dnp->dn_type != DMU_OT_NONE) 2533 fill++; 2534 } 2535 } else { 2536 if (BP_IS_HOLE(bp)) { 2537 fill = 0; 2538 } else { 2539 fill = 1; 2540 } 2541 } 2542 } else { 2543 blkptr_t *ibp = db->db.db_data; 2544 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2545 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 2546 if (BP_IS_HOLE(ibp)) 2547 continue; 2548 fill += BP_GET_FILL(ibp); 2549 } 2550 } 2551 DB_DNODE_EXIT(db); 2552 2553 if (!BP_IS_EMBEDDED(bp)) 2554 bp->blk_fill = fill; 2555 2556 mutex_exit(&db->db_mtx); 2557 } 2558 2559 /* 2560 * The SPA will call this callback several times for each zio - once 2561 * for every physical child i/o (zio->io_phys_children times). This 2562 * allows the DMU to monitor the progress of each logical i/o. For example, 2563 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 2564 * block. There may be a long delay before all copies/fragments are completed, 2565 * so this callback allows us to retire dirty space gradually, as the physical 2566 * i/os complete. 2567 */ 2568 /* ARGSUSED */ 2569 static void 2570 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 2571 { 2572 dmu_buf_impl_t *db = arg; 2573 objset_t *os = db->db_objset; 2574 dsl_pool_t *dp = dmu_objset_pool(os); 2575 dbuf_dirty_record_t *dr; 2576 int delta = 0; 2577 2578 dr = db->db_data_pending; 2579 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 2580 2581 /* 2582 * The callback will be called io_phys_children times. Retire one 2583 * portion of our dirty space each time we are called. Any rounding 2584 * error will be cleaned up by dsl_pool_sync()'s call to 2585 * dsl_pool_undirty_space(). 2586 */ 2587 delta = dr->dr_accounted / zio->io_phys_children; 2588 dsl_pool_undirty_space(dp, delta, zio->io_txg); 2589 } 2590 2591 /* ARGSUSED */ 2592 static void 2593 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 2594 { 2595 dmu_buf_impl_t *db = vdb; 2596 blkptr_t *bp_orig = &zio->io_bp_orig; 2597 blkptr_t *bp = db->db_blkptr; 2598 objset_t *os = db->db_objset; 2599 dmu_tx_t *tx = os->os_synctx; 2600 dbuf_dirty_record_t **drp, *dr; 2601 2602 ASSERT0(zio->io_error); 2603 ASSERT(db->db_blkptr == bp); 2604 2605 /* 2606 * For nopwrites and rewrites we ensure that the bp matches our 2607 * original and bypass all the accounting. 2608 */ 2609 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 2610 ASSERT(BP_EQUAL(bp, bp_orig)); 2611 } else { 2612 dsl_dataset_t *ds = os->os_dsl_dataset; 2613 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 2614 dsl_dataset_block_born(ds, bp, tx); 2615 } 2616 2617 mutex_enter(&db->db_mtx); 2618 2619 DBUF_VERIFY(db); 2620 2621 drp = &db->db_last_dirty; 2622 while ((dr = *drp) != db->db_data_pending) 2623 drp = &dr->dr_next; 2624 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2625 ASSERT(dr->dr_dbuf == db); 2626 ASSERT(dr->dr_next == NULL); 2627 *drp = dr->dr_next; 2628 2629 #ifdef ZFS_DEBUG 2630 if (db->db_blkid == DMU_SPILL_BLKID) { 2631 dnode_t *dn; 2632 2633 DB_DNODE_ENTER(db); 2634 dn = DB_DNODE(db); 2635 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2636 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2637 db->db_blkptr == &dn->dn_phys->dn_spill); 2638 DB_DNODE_EXIT(db); 2639 } 2640 #endif 2641 2642 if (db->db_level == 0) { 2643 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2644 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 2645 if (db->db_state != DB_NOFILL) { 2646 if (dr->dt.dl.dr_data != db->db_buf) 2647 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, 2648 db)); 2649 else if (!arc_released(db->db_buf)) 2650 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2651 } 2652 } else { 2653 dnode_t *dn; 2654 2655 DB_DNODE_ENTER(db); 2656 dn = DB_DNODE(db); 2657 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2658 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 2659 if (!BP_IS_HOLE(db->db_blkptr)) { 2660 int epbs = 2661 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2662 ASSERT3U(db->db_blkid, <=, 2663 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 2664 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 2665 db->db.db_size); 2666 if (!arc_released(db->db_buf)) 2667 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2668 } 2669 DB_DNODE_EXIT(db); 2670 mutex_destroy(&dr->dt.di.dr_mtx); 2671 list_destroy(&dr->dt.di.dr_children); 2672 } 2673 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2674 2675 cv_broadcast(&db->db_changed); 2676 ASSERT(db->db_dirtycnt > 0); 2677 db->db_dirtycnt -= 1; 2678 db->db_data_pending = NULL; 2679 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); 2680 } 2681 2682 static void 2683 dbuf_write_nofill_ready(zio_t *zio) 2684 { 2685 dbuf_write_ready(zio, NULL, zio->io_private); 2686 } 2687 2688 static void 2689 dbuf_write_nofill_done(zio_t *zio) 2690 { 2691 dbuf_write_done(zio, NULL, zio->io_private); 2692 } 2693 2694 static void 2695 dbuf_write_override_ready(zio_t *zio) 2696 { 2697 dbuf_dirty_record_t *dr = zio->io_private; 2698 dmu_buf_impl_t *db = dr->dr_dbuf; 2699 2700 dbuf_write_ready(zio, NULL, db); 2701 } 2702 2703 static void 2704 dbuf_write_override_done(zio_t *zio) 2705 { 2706 dbuf_dirty_record_t *dr = zio->io_private; 2707 dmu_buf_impl_t *db = dr->dr_dbuf; 2708 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 2709 2710 mutex_enter(&db->db_mtx); 2711 if (!BP_EQUAL(zio->io_bp, obp)) { 2712 if (!BP_IS_HOLE(obp)) 2713 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 2714 arc_release(dr->dt.dl.dr_data, db); 2715 } 2716 mutex_exit(&db->db_mtx); 2717 2718 dbuf_write_done(zio, NULL, db); 2719 } 2720 2721 /* Issue I/O to commit a dirty buffer to disk. */ 2722 static void 2723 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 2724 { 2725 dmu_buf_impl_t *db = dr->dr_dbuf; 2726 dnode_t *dn; 2727 objset_t *os; 2728 dmu_buf_impl_t *parent = db->db_parent; 2729 uint64_t txg = tx->tx_txg; 2730 zbookmark_phys_t zb; 2731 zio_prop_t zp; 2732 zio_t *zio; 2733 int wp_flag = 0; 2734 2735 DB_DNODE_ENTER(db); 2736 dn = DB_DNODE(db); 2737 os = dn->dn_objset; 2738 2739 if (db->db_state != DB_NOFILL) { 2740 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 2741 /* 2742 * Private object buffers are released here rather 2743 * than in dbuf_dirty() since they are only modified 2744 * in the syncing context and we don't want the 2745 * overhead of making multiple copies of the data. 2746 */ 2747 if (BP_IS_HOLE(db->db_blkptr)) { 2748 arc_buf_thaw(data); 2749 } else { 2750 dbuf_release_bp(db); 2751 } 2752 } 2753 } 2754 2755 if (parent != dn->dn_dbuf) { 2756 /* Our parent is an indirect block. */ 2757 /* We have a dirty parent that has been scheduled for write. */ 2758 ASSERT(parent && parent->db_data_pending); 2759 /* Our parent's buffer is one level closer to the dnode. */ 2760 ASSERT(db->db_level == parent->db_level-1); 2761 /* 2762 * We're about to modify our parent's db_data by modifying 2763 * our block pointer, so the parent must be released. 2764 */ 2765 ASSERT(arc_released(parent->db_buf)); 2766 zio = parent->db_data_pending->dr_zio; 2767 } else { 2768 /* Our parent is the dnode itself. */ 2769 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 2770 db->db_blkid != DMU_SPILL_BLKID) || 2771 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 2772 if (db->db_blkid != DMU_SPILL_BLKID) 2773 ASSERT3P(db->db_blkptr, ==, 2774 &dn->dn_phys->dn_blkptr[db->db_blkid]); 2775 zio = dn->dn_zio; 2776 } 2777 2778 ASSERT(db->db_level == 0 || data == db->db_buf); 2779 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 2780 ASSERT(zio); 2781 2782 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 2783 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 2784 db->db.db_object, db->db_level, db->db_blkid); 2785 2786 if (db->db_blkid == DMU_SPILL_BLKID) 2787 wp_flag = WP_SPILL; 2788 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 2789 2790 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 2791 DB_DNODE_EXIT(db); 2792 2793 if (db->db_level == 0 && 2794 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 2795 /* 2796 * The BP for this block has been provided by open context 2797 * (by dmu_sync() or dmu_buf_write_embedded()). 2798 */ 2799 void *contents = (data != NULL) ? data->b_data : NULL; 2800 2801 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2802 db->db_blkptr, contents, db->db.db_size, &zp, 2803 dbuf_write_override_ready, NULL, dbuf_write_override_done, 2804 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 2805 mutex_enter(&db->db_mtx); 2806 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 2807 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 2808 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 2809 mutex_exit(&db->db_mtx); 2810 } else if (db->db_state == DB_NOFILL) { 2811 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 2812 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 2813 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2814 db->db_blkptr, NULL, db->db.db_size, &zp, 2815 dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db, 2816 ZIO_PRIORITY_ASYNC_WRITE, 2817 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 2818 } else { 2819 ASSERT(arc_released(data)); 2820 dr->dr_zio = arc_write(zio, os->os_spa, txg, 2821 db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db), 2822 DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready, 2823 dbuf_write_physdone, dbuf_write_done, db, 2824 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 2825 } 2826 } 2827