1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dbuf.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/spa.h> 37 #include <sys/zio.h> 38 #include <sys/dmu_zfetch.h> 39 40 static void dbuf_destroy(dmu_buf_impl_t *db); 41 static int dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 42 static arc_done_func_t dbuf_write_done; 43 44 /* 45 * Global data structures and functions for the dbuf cache. 46 */ 47 taskq_t *dbuf_tq; 48 static kmem_cache_t *dbuf_cache; 49 50 /* ARGSUSED */ 51 static int 52 dbuf_cons(void *vdb, void *unused, int kmflag) 53 { 54 dmu_buf_impl_t *db = vdb; 55 bzero(db, sizeof (dmu_buf_impl_t)); 56 57 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 58 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 59 refcount_create(&db->db_holds); 60 return (0); 61 } 62 63 /* ARGSUSED */ 64 static void 65 dbuf_dest(void *vdb, void *unused) 66 { 67 dmu_buf_impl_t *db = vdb; 68 mutex_destroy(&db->db_mtx); 69 cv_destroy(&db->db_changed); 70 refcount_destroy(&db->db_holds); 71 } 72 73 /* 74 * dbuf hash table routines 75 */ 76 static dbuf_hash_table_t dbuf_hash_table; 77 78 static uint64_t dbuf_hash_count; 79 80 static uint64_t 81 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 82 { 83 uintptr_t osv = (uintptr_t)os; 84 uint64_t crc = -1ULL; 85 86 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 87 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 88 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 89 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 90 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 91 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 92 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 93 94 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 95 96 return (crc); 97 } 98 99 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid); 100 101 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 102 ((dbuf)->db.db_object == (obj) && \ 103 (dbuf)->db_objset == (os) && \ 104 (dbuf)->db_level == (level) && \ 105 (dbuf)->db_blkid == (blkid)) 106 107 dmu_buf_impl_t * 108 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid) 109 { 110 dbuf_hash_table_t *h = &dbuf_hash_table; 111 objset_impl_t *os = dn->dn_objset; 112 uint64_t obj = dn->dn_object; 113 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 114 uint64_t idx = hv & h->hash_table_mask; 115 dmu_buf_impl_t *db; 116 117 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 118 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 119 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 120 mutex_enter(&db->db_mtx); 121 if (db->db_state != DB_EVICTING) { 122 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 123 return (db); 124 } 125 mutex_exit(&db->db_mtx); 126 } 127 } 128 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 129 return (NULL); 130 } 131 132 /* 133 * Insert an entry into the hash table. If there is already an element 134 * equal to elem in the hash table, then the already existing element 135 * will be returned and the new element will not be inserted. 136 * Otherwise returns NULL. 137 */ 138 static dmu_buf_impl_t * 139 dbuf_hash_insert(dmu_buf_impl_t *db) 140 { 141 dbuf_hash_table_t *h = &dbuf_hash_table; 142 objset_impl_t *os = db->db_objset; 143 uint64_t obj = db->db.db_object; 144 int level = db->db_level; 145 uint64_t blkid = db->db_blkid; 146 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 147 uint64_t idx = hv & h->hash_table_mask; 148 dmu_buf_impl_t *dbf; 149 150 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 151 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 152 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 153 mutex_enter(&dbf->db_mtx); 154 if (dbf->db_state != DB_EVICTING) { 155 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 156 return (dbf); 157 } 158 mutex_exit(&dbf->db_mtx); 159 } 160 } 161 162 mutex_enter(&db->db_mtx); 163 db->db_hash_next = h->hash_table[idx]; 164 h->hash_table[idx] = db; 165 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 166 atomic_add_64(&dbuf_hash_count, 1); 167 168 return (NULL); 169 } 170 171 /* 172 * Remove an entry from the hash table. This operation will 173 * fail if there are any existing holds on the db. 174 */ 175 static void 176 dbuf_hash_remove(dmu_buf_impl_t *db) 177 { 178 dbuf_hash_table_t *h = &dbuf_hash_table; 179 uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object, 180 db->db_level, db->db_blkid); 181 uint64_t idx = hv & h->hash_table_mask; 182 dmu_buf_impl_t *dbf, **dbp; 183 184 /* 185 * We musn't hold db_mtx to maintin lock ordering: 186 * DBUF_HASH_MUTEX > db_mtx. 187 */ 188 ASSERT(refcount_is_zero(&db->db_holds)); 189 ASSERT(db->db_state == DB_EVICTING); 190 ASSERT(!MUTEX_HELD(&db->db_mtx)); 191 192 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 193 dbp = &h->hash_table[idx]; 194 while ((dbf = *dbp) != db) { 195 dbp = &dbf->db_hash_next; 196 ASSERT(dbf != NULL); 197 } 198 *dbp = db->db_hash_next; 199 db->db_hash_next = NULL; 200 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 201 atomic_add_64(&dbuf_hash_count, -1); 202 } 203 204 static arc_evict_func_t dbuf_do_evict; 205 206 static void 207 dbuf_evict_user(dmu_buf_impl_t *db) 208 { 209 ASSERT(MUTEX_HELD(&db->db_mtx)); 210 211 if (db->db_level != 0 || db->db_d.db_evict_func == NULL) 212 return; 213 214 if (db->db_d.db_user_data_ptr_ptr) 215 *db->db_d.db_user_data_ptr_ptr = db->db.db_data; 216 db->db_d.db_evict_func(&db->db, db->db_d.db_user_ptr); 217 db->db_d.db_user_ptr = NULL; 218 db->db_d.db_user_data_ptr_ptr = NULL; 219 db->db_d.db_evict_func = NULL; 220 } 221 222 void 223 dbuf_evict(dmu_buf_impl_t *db) 224 { 225 int i; 226 227 ASSERT(MUTEX_HELD(&db->db_mtx)); 228 ASSERT(db->db_buf == NULL); 229 230 #ifdef ZFS_DEBUG 231 for (i = 0; i < TXG_SIZE; i++) { 232 ASSERT(!list_link_active(&db->db_dirty_node[i])); 233 ASSERT(db->db_level != 0 || db->db_d.db_data_old[i] == NULL); 234 } 235 #endif 236 dbuf_clear(db); 237 dbuf_destroy(db); 238 } 239 240 void 241 dbuf_init(void) 242 { 243 uint64_t hsize = 1ULL << 16; 244 dbuf_hash_table_t *h = &dbuf_hash_table; 245 int i; 246 247 /* 248 * The hash table is big enough to fill all of physical memory 249 * with an average 4K block size. The table will take up 250 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 251 */ 252 while (hsize * 4096 < physmem * PAGESIZE) 253 hsize <<= 1; 254 255 retry: 256 h->hash_table_mask = hsize - 1; 257 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 258 if (h->hash_table == NULL) { 259 /* XXX - we should really return an error instead of assert */ 260 ASSERT(hsize > (1ULL << 10)); 261 hsize >>= 1; 262 goto retry; 263 } 264 265 dbuf_cache = kmem_cache_create("dmu_buf_impl_t", 266 sizeof (dmu_buf_impl_t), 267 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 268 dbuf_tq = taskq_create("dbuf_tq", 8, maxclsyspri, 50, INT_MAX, 269 TASKQ_PREPOPULATE); 270 271 for (i = 0; i < DBUF_MUTEXES; i++) 272 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 273 } 274 275 void 276 dbuf_fini(void) 277 { 278 dbuf_hash_table_t *h = &dbuf_hash_table; 279 int i; 280 281 taskq_destroy(dbuf_tq); 282 dbuf_tq = NULL; 283 284 for (i = 0; i < DBUF_MUTEXES; i++) 285 mutex_destroy(&h->hash_mutexes[i]); 286 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 287 kmem_cache_destroy(dbuf_cache); 288 } 289 290 /* 291 * Other stuff. 292 */ 293 294 #ifdef ZFS_DEBUG 295 static void 296 dbuf_verify(dmu_buf_impl_t *db) 297 { 298 int i; 299 dnode_t *dn = db->db_dnode; 300 301 ASSERT(MUTEX_HELD(&db->db_mtx)); 302 303 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 304 return; 305 306 ASSERT(db->db_objset != NULL); 307 if (dn == NULL) { 308 ASSERT(db->db_parent == NULL); 309 ASSERT(db->db_blkptr == NULL); 310 } else { 311 ASSERT3U(db->db.db_object, ==, dn->dn_object); 312 ASSERT3P(db->db_objset, ==, dn->dn_objset); 313 ASSERT3U(db->db_level, <, dn->dn_nlevels); 314 ASSERT(db->db_blkid == DB_BONUS_BLKID || 315 list_head(&dn->dn_dbufs)); 316 } 317 if (db->db_blkid == DB_BONUS_BLKID) { 318 ASSERT(dn != NULL); 319 ASSERT3U(db->db.db_size, ==, dn->dn_bonuslen); 320 ASSERT3U(db->db.db_offset, ==, DB_BONUS_BLKID); 321 } else { 322 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 323 } 324 325 if (db->db_level == 0) { 326 /* we can be momentarily larger in dnode_set_blksz() */ 327 if (db->db_blkid != DB_BONUS_BLKID && dn) { 328 ASSERT3U(db->db.db_size, >=, dn->dn_datablksz); 329 } 330 if (db->db.db_object == DMU_META_DNODE_OBJECT) { 331 for (i = 0; i < TXG_SIZE; i++) { 332 /* 333 * it should only be modified in syncing 334 * context, so make sure we only have 335 * one copy of the data. 336 */ 337 ASSERT(db->db_d.db_data_old[i] == NULL || 338 db->db_d.db_data_old[i] == db->db_buf); 339 } 340 } 341 } 342 343 /* verify db->db_blkptr */ 344 if (db->db_blkptr) { 345 if (db->db_parent == dn->dn_dbuf) { 346 /* db is pointed to by the dnode */ 347 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 348 if (db->db.db_object == DMU_META_DNODE_OBJECT) 349 ASSERT(db->db_parent == NULL); 350 else 351 ASSERT(db->db_parent != NULL); 352 ASSERT3P(db->db_blkptr, ==, 353 &dn->dn_phys->dn_blkptr[db->db_blkid]); 354 } else { 355 /* db is pointed to by an indirect block */ 356 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 357 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 358 ASSERT3U(db->db_parent->db.db_object, ==, 359 db->db.db_object); 360 /* 361 * dnode_grow_indblksz() can make this fail if we don't 362 * have the struct_rwlock. XXX indblksz no longer 363 * grows. safe to do this now? 364 */ 365 if (RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock)) { 366 ASSERT3P(db->db_blkptr, ==, 367 ((blkptr_t *)db->db_parent->db.db_data + 368 db->db_blkid % epb)); 369 } 370 } 371 } 372 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 373 db->db.db_data && db->db_blkid != DB_BONUS_BLKID && 374 db->db_state != DB_FILL && !dn->dn_free_txg) { 375 /* 376 * If the blkptr isn't set but they have nonzero data, 377 * it had better be dirty, otherwise we'll lose that 378 * data when we evict this buffer. 379 */ 380 if (db->db_dirtycnt == 0) { 381 uint64_t *buf = db->db.db_data; 382 int i; 383 384 for (i = 0; i < db->db.db_size >> 3; i++) { 385 ASSERT(buf[i] == 0); 386 } 387 } 388 } 389 } 390 #endif 391 392 static void 393 dbuf_update_data(dmu_buf_impl_t *db) 394 { 395 ASSERT(MUTEX_HELD(&db->db_mtx)); 396 if (db->db_level == 0 && db->db_d.db_user_data_ptr_ptr) { 397 ASSERT(!refcount_is_zero(&db->db_holds)); 398 *db->db_d.db_user_data_ptr_ptr = db->db.db_data; 399 } 400 } 401 402 static void 403 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 404 { 405 ASSERT(MUTEX_HELD(&db->db_mtx)); 406 ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf)); 407 db->db_buf = buf; 408 if (buf != NULL) { 409 ASSERT(buf->b_data != NULL); 410 db->db.db_data = buf->b_data; 411 if (!arc_released(buf)) 412 arc_set_callback(buf, dbuf_do_evict, db); 413 dbuf_update_data(db); 414 } else { 415 dbuf_evict_user(db); 416 db->db.db_data = NULL; 417 db->db_state = DB_UNCACHED; 418 } 419 } 420 421 uint64_t 422 dbuf_whichblock(dnode_t *dn, uint64_t offset) 423 { 424 if (dn->dn_datablkshift) { 425 return (offset >> dn->dn_datablkshift); 426 } else { 427 ASSERT3U(offset, <, dn->dn_datablksz); 428 return (0); 429 } 430 } 431 432 static void 433 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 434 { 435 dmu_buf_impl_t *db = vdb; 436 437 mutex_enter(&db->db_mtx); 438 ASSERT3U(db->db_state, ==, DB_READ); 439 /* 440 * All reads are synchronous, so we must have a hold on the dbuf 441 */ 442 ASSERT(refcount_count(&db->db_holds) > 0); 443 ASSERT(db->db_buf == NULL); 444 ASSERT(db->db.db_data == NULL); 445 if (db->db_level == 0 && db->db_d.db_freed_in_flight) { 446 /* we were freed in flight; disregard any error */ 447 arc_release(buf, db); 448 bzero(buf->b_data, db->db.db_size); 449 db->db_d.db_freed_in_flight = FALSE; 450 dbuf_set_data(db, buf); 451 db->db_state = DB_CACHED; 452 } else if (zio == NULL || zio->io_error == 0) { 453 dbuf_set_data(db, buf); 454 db->db_state = DB_CACHED; 455 } else { 456 ASSERT(db->db_blkid != DB_BONUS_BLKID); 457 ASSERT3P(db->db_buf, ==, NULL); 458 VERIFY(arc_buf_remove_ref(buf, db) == 1); 459 db->db_state = DB_UNCACHED; 460 } 461 cv_broadcast(&db->db_changed); 462 mutex_exit(&db->db_mtx); 463 dbuf_rele(db, NULL); 464 } 465 466 static void 467 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags) 468 { 469 blkptr_t *bp; 470 zbookmark_t zb; 471 uint32_t aflags = ARC_NOWAIT; 472 473 ASSERT(!refcount_is_zero(&db->db_holds)); 474 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 475 ASSERT(RW_LOCK_HELD(&db->db_dnode->dn_struct_rwlock)); 476 ASSERT(MUTEX_HELD(&db->db_mtx)); 477 ASSERT(db->db_state == DB_UNCACHED); 478 ASSERT(db->db_buf == NULL); 479 480 if (db->db_blkid == DB_BONUS_BLKID) { 481 ASSERT3U(db->db_dnode->dn_bonuslen, ==, db->db.db_size); 482 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 483 if (db->db.db_size < DN_MAX_BONUSLEN) 484 bzero(db->db.db_data, DN_MAX_BONUSLEN); 485 bcopy(DN_BONUS(db->db_dnode->dn_phys), db->db.db_data, 486 db->db.db_size); 487 dbuf_update_data(db); 488 db->db_state = DB_CACHED; 489 mutex_exit(&db->db_mtx); 490 return; 491 } 492 493 if (db->db_level == 0 && dnode_block_freed(db->db_dnode, db->db_blkid)) 494 bp = NULL; 495 else 496 bp = db->db_blkptr; 497 498 if (bp == NULL) 499 dprintf_dbuf(db, "blkptr: %s\n", "NULL"); 500 else 501 dprintf_dbuf_bp(db, bp, "%s", "blkptr:"); 502 503 if (bp == NULL || BP_IS_HOLE(bp)) { 504 ASSERT(bp == NULL || BP_IS_HOLE(bp)); 505 dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa, 506 db->db.db_size, db)); 507 bzero(db->db.db_data, db->db.db_size); 508 db->db_state = DB_CACHED; 509 *flags |= DB_RF_CACHED; 510 mutex_exit(&db->db_mtx); 511 return; 512 } 513 514 db->db_state = DB_READ; 515 mutex_exit(&db->db_mtx); 516 517 zb.zb_objset = db->db_objset->os_dsl_dataset ? 518 db->db_objset->os_dsl_dataset->ds_object : 0; 519 zb.zb_object = db->db.db_object; 520 zb.zb_level = db->db_level; 521 zb.zb_blkid = db->db_blkid; 522 523 dbuf_add_ref(db, NULL); 524 /* ZIO_FLAG_CANFAIL callers have to check the parent zio's error */ 525 (void) arc_read(zio, db->db_dnode->dn_objset->os_spa, bp, 526 db->db_level > 0 ? byteswap_uint64_array : 527 dmu_ot[db->db_dnode->dn_type].ot_byteswap, 528 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 529 (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 530 &aflags, &zb); 531 if (aflags & ARC_CACHED) 532 *flags |= DB_RF_CACHED; 533 } 534 535 int 536 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 537 { 538 int err = 0; 539 int havepzio = (zio != NULL); 540 int prefetch; 541 542 /* 543 * We don't have to hold the mutex to check db_state because it 544 * can't be freed while we have a hold on the buffer. 545 */ 546 ASSERT(!refcount_is_zero(&db->db_holds)); 547 548 if ((flags & DB_RF_HAVESTRUCT) == 0) 549 rw_enter(&db->db_dnode->dn_struct_rwlock, RW_READER); 550 551 prefetch = db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID && 552 (flags & DB_RF_NOPREFETCH) == 0 && db->db_dnode != NULL; 553 554 mutex_enter(&db->db_mtx); 555 if (db->db_state == DB_CACHED) { 556 mutex_exit(&db->db_mtx); 557 if (prefetch) 558 dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset, 559 db->db.db_size, TRUE); 560 if ((flags & DB_RF_HAVESTRUCT) == 0) 561 rw_exit(&db->db_dnode->dn_struct_rwlock); 562 } else if (db->db_state == DB_UNCACHED) { 563 if (zio == NULL) { 564 zio = zio_root(db->db_dnode->dn_objset->os_spa, 565 NULL, NULL, ZIO_FLAG_CANFAIL); 566 } 567 dbuf_read_impl(db, zio, &flags); 568 569 /* dbuf_read_impl has dropped db_mtx for us */ 570 571 if (prefetch) 572 dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset, 573 db->db.db_size, flags & DB_RF_CACHED); 574 575 if ((flags & DB_RF_HAVESTRUCT) == 0) 576 rw_exit(&db->db_dnode->dn_struct_rwlock); 577 578 if (!havepzio) 579 err = zio_wait(zio); 580 } else { 581 mutex_exit(&db->db_mtx); 582 if (prefetch) 583 dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset, 584 db->db.db_size, TRUE); 585 if ((flags & DB_RF_HAVESTRUCT) == 0) 586 rw_exit(&db->db_dnode->dn_struct_rwlock); 587 588 mutex_enter(&db->db_mtx); 589 if ((flags & DB_RF_NEVERWAIT) == 0) { 590 while (db->db_state == DB_READ || 591 db->db_state == DB_FILL) { 592 ASSERT(db->db_state == DB_READ || 593 (flags & DB_RF_HAVESTRUCT) == 0); 594 cv_wait(&db->db_changed, &db->db_mtx); 595 } 596 if (db->db_state == DB_UNCACHED) 597 err = EIO; 598 } 599 mutex_exit(&db->db_mtx); 600 } 601 602 ASSERT(err || havepzio || db->db_state == DB_CACHED); 603 return (err); 604 } 605 606 static void 607 dbuf_noread(dmu_buf_impl_t *db) 608 { 609 ASSERT(!refcount_is_zero(&db->db_holds)); 610 ASSERT(db->db_blkid != DB_BONUS_BLKID); 611 mutex_enter(&db->db_mtx); 612 while (db->db_state == DB_READ || db->db_state == DB_FILL) 613 cv_wait(&db->db_changed, &db->db_mtx); 614 if (db->db_state == DB_UNCACHED) { 615 ASSERT(db->db_buf == NULL); 616 ASSERT(db->db.db_data == NULL); 617 dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa, 618 db->db.db_size, db)); 619 db->db_state = DB_FILL; 620 } else { 621 ASSERT3U(db->db_state, ==, DB_CACHED); 622 } 623 mutex_exit(&db->db_mtx); 624 } 625 626 /* 627 * This is our just-in-time copy function. It makes a copy of 628 * buffers, that have been modified in a previous transaction 629 * group, before we modify them in the current active group. 630 * 631 * This function is used in two places: when we are dirtying a 632 * buffer for the first time in a txg, and when we are freeing 633 * a range in a dnode that includes this buffer. 634 * 635 * Note that when we are called from dbuf_free_range() we do 636 * not put a hold on the buffer, we just traverse the active 637 * dbuf list for the dnode. 638 */ 639 static void 640 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 641 { 642 arc_buf_t **quiescing, **syncing; 643 644 ASSERT(MUTEX_HELD(&db->db_mtx)); 645 ASSERT(db->db.db_data != NULL); 646 ASSERT(db->db_blkid != DB_BONUS_BLKID); 647 648 quiescing = (arc_buf_t **)&db->db_d.db_data_old[(txg-1)&TXG_MASK]; 649 syncing = (arc_buf_t **)&db->db_d.db_data_old[(txg-2)&TXG_MASK]; 650 651 /* 652 * If this buffer is referenced from the current quiescing 653 * transaction group: either make a copy and reset the reference 654 * to point to the copy, or (if there a no active holders) just 655 * null out the current db_data pointer. 656 */ 657 if (*quiescing == db->db_buf) { 658 /* 659 * If the quiescing txg is "dirty", then we better not 660 * be referencing the same buffer from the syncing txg. 661 */ 662 ASSERT(*syncing != db->db_buf); 663 if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 664 int size = db->db.db_size; 665 *quiescing = arc_buf_alloc( 666 db->db_dnode->dn_objset->os_spa, size, db); 667 bcopy(db->db.db_data, (*quiescing)->b_data, size); 668 } else { 669 dbuf_set_data(db, NULL); 670 } 671 return; 672 } 673 674 /* 675 * If this buffer is referenced from the current syncing 676 * transaction group: either 677 * 1 - make a copy and reset the reference, or 678 * 2 - if there are no holders, just null the current db_data. 679 */ 680 if (*syncing == db->db_buf) { 681 ASSERT3P(*quiescing, ==, NULL); 682 ASSERT3U(db->db_dirtycnt, ==, 1); 683 if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 684 int size = db->db.db_size; 685 /* we can't copy if we have already started a write */ 686 ASSERT(*syncing != db->db_data_pending); 687 *syncing = arc_buf_alloc( 688 db->db_dnode->dn_objset->os_spa, size, db); 689 bcopy(db->db.db_data, (*syncing)->b_data, size); 690 } else { 691 dbuf_set_data(db, NULL); 692 } 693 } 694 } 695 696 /* 697 * This is the "bonus buffer" version of the above routine 698 */ 699 static void 700 dbuf_fix_old_bonus_data(dmu_buf_impl_t *db, uint64_t txg) 701 { 702 void **quiescing, **syncing; 703 704 ASSERT(MUTEX_HELD(&db->db_mtx)); 705 ASSERT(db->db.db_data != NULL); 706 ASSERT(db->db_blkid == DB_BONUS_BLKID); 707 708 quiescing = &db->db_d.db_data_old[(txg-1)&TXG_MASK]; 709 syncing = &db->db_d.db_data_old[(txg-2)&TXG_MASK]; 710 711 if (*quiescing == db->db.db_data) { 712 ASSERT(*syncing != db->db.db_data); 713 *quiescing = zio_buf_alloc(DN_MAX_BONUSLEN); 714 bcopy(db->db.db_data, *quiescing, DN_MAX_BONUSLEN); 715 } else if (*syncing == db->db.db_data) { 716 ASSERT3P(*quiescing, ==, NULL); 717 ASSERT3U(db->db_dirtycnt, ==, 1); 718 *syncing = zio_buf_alloc(DN_MAX_BONUSLEN); 719 bcopy(db->db.db_data, *syncing, DN_MAX_BONUSLEN); 720 } 721 } 722 723 void 724 dbuf_unoverride(dmu_buf_impl_t *db, uint64_t txg) 725 { 726 ASSERT(db->db_blkid != DB_BONUS_BLKID); 727 ASSERT(MUTEX_HELD(&db->db_mtx)); 728 ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK] != IN_DMU_SYNC); 729 730 if (db->db_d.db_overridden_by[txg&TXG_MASK] != NULL) { 731 /* free this block */ 732 ASSERT(list_link_active(&db->db_dirty_node[txg&TXG_MASK]) || 733 db->db_dnode->dn_free_txg == txg); 734 if (!BP_IS_HOLE(db->db_d.db_overridden_by[txg&TXG_MASK])) { 735 /* XXX can get silent EIO here */ 736 (void) arc_free(NULL, db->db_dnode->dn_objset->os_spa, 737 txg, db->db_d.db_overridden_by[txg&TXG_MASK], 738 NULL, NULL, ARC_WAIT); 739 } 740 kmem_free(db->db_d.db_overridden_by[txg&TXG_MASK], 741 sizeof (blkptr_t)); 742 db->db_d.db_overridden_by[txg&TXG_MASK] = NULL; 743 /* release the already-written buffer */ 744 arc_release(db->db_d.db_data_old[txg&TXG_MASK], db); 745 } 746 } 747 748 void 749 dbuf_free_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx) 750 { 751 dmu_buf_impl_t *db, *db_next; 752 uint64_t txg = tx->tx_txg; 753 754 dprintf_dnode(dn, "blkid=%llu nblks=%llu\n", blkid, nblks); 755 mutex_enter(&dn->dn_dbufs_mtx); 756 for (db = list_head(&dn->dn_dbufs); db; db = db_next) { 757 db_next = list_next(&dn->dn_dbufs, db); 758 ASSERT(db->db_blkid != DB_BONUS_BLKID); 759 if (db->db_level != 0) 760 continue; 761 dprintf_dbuf(db, "found buf %s\n", ""); 762 if (db->db_blkid < blkid || 763 db->db_blkid >= blkid+nblks) 764 continue; 765 766 /* found a level 0 buffer in the range */ 767 if (dbuf_undirty(db, tx)) 768 continue; 769 770 mutex_enter(&db->db_mtx); 771 if (db->db_state == DB_UNCACHED || 772 db->db_state == DB_EVICTING) { 773 ASSERT(db->db.db_data == NULL); 774 mutex_exit(&db->db_mtx); 775 continue; 776 } 777 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 778 /* will be handled in dbuf_read_done or dbuf_rele */ 779 db->db_d.db_freed_in_flight = TRUE; 780 mutex_exit(&db->db_mtx); 781 continue; 782 } 783 if (refcount_count(&db->db_holds) == 0) { 784 ASSERT(db->db_buf); 785 dbuf_clear(db); 786 continue; 787 } 788 /* The dbuf is CACHED and referenced */ 789 790 if (!list_link_active(&db->db_dirty_node[txg & TXG_MASK])) { 791 /* 792 * This dbuf is not currently dirty. Either 793 * uncache it (if its not referenced in the open 794 * context) or reset its contents to empty. 795 */ 796 dbuf_fix_old_data(db, txg); 797 } else { 798 if (db->db_d.db_overridden_by[txg & TXG_MASK] != NULL) { 799 /* 800 * This dbuf is overridden. Clear that state. 801 */ 802 dbuf_unoverride(db, txg); 803 } 804 if (db->db_blkid > dn->dn_maxblkid) 805 dn->dn_maxblkid = db->db_blkid; 806 } 807 /* fill in with appropriate data */ 808 if (db->db_state == DB_CACHED) { 809 ASSERT(db->db.db_data != NULL); 810 arc_release(db->db_buf, db); 811 bzero(db->db.db_data, db->db.db_size); 812 } 813 814 mutex_exit(&db->db_mtx); 815 } 816 mutex_exit(&dn->dn_dbufs_mtx); 817 } 818 819 static int 820 dbuf_new_block(dmu_buf_impl_t *db) 821 { 822 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 823 uint64_t birth_txg = 0; 824 825 /* Don't count meta-objects */ 826 if (ds == NULL) 827 return (FALSE); 828 829 /* 830 * We don't need any locking to protect db_blkptr: 831 * If it's syncing, then db_dirtied will be set so we'll 832 * ignore db_blkptr. 833 */ 834 ASSERT(MUTEX_HELD(&db->db_mtx)); /* XXX strictly necessary? */ 835 /* If we have been dirtied since the last snapshot, its not new */ 836 if (db->db_dirtied) 837 birth_txg = db->db_dirtied; 838 else if (db->db_blkptr) 839 birth_txg = db->db_blkptr->blk_birth; 840 841 if (birth_txg) 842 return (!dsl_dataset_block_freeable(ds, birth_txg)); 843 else 844 return (TRUE); 845 } 846 847 void 848 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 849 { 850 arc_buf_t *buf, *obuf; 851 int osize = db->db.db_size; 852 853 ASSERT(db->db_blkid != DB_BONUS_BLKID); 854 855 /* XXX does *this* func really need the lock? */ 856 ASSERT(RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock)); 857 858 /* 859 * This call to dbuf_will_dirty() with the dn_struct_rwlock held 860 * is OK, because there can be no other references to the db 861 * when we are changing its size, so no concurrent DB_FILL can 862 * be happening. 863 */ 864 /* 865 * XXX we should be doing a dbuf_read, checking the return 866 * value and returning that up to our callers 867 */ 868 dbuf_will_dirty(db, tx); 869 870 /* create the data buffer for the new block */ 871 buf = arc_buf_alloc(db->db_dnode->dn_objset->os_spa, size, db); 872 873 /* copy old block data to the new block */ 874 obuf = db->db_buf; 875 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 876 /* zero the remainder */ 877 if (size > osize) 878 bzero((uint8_t *)buf->b_data + osize, size - osize); 879 880 mutex_enter(&db->db_mtx); 881 dbuf_set_data(db, buf); 882 VERIFY(arc_buf_remove_ref(obuf, db) == 1); 883 db->db.db_size = size; 884 885 if (db->db_level == 0) 886 db->db_d.db_data_old[tx->tx_txg&TXG_MASK] = buf; 887 mutex_exit(&db->db_mtx); 888 889 dnode_willuse_space(db->db_dnode, size-osize, tx); 890 } 891 892 void 893 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 894 { 895 dnode_t *dn = db->db_dnode; 896 objset_impl_t *os = dn->dn_objset; 897 int drop_struct_lock = FALSE; 898 int txgoff = tx->tx_txg & TXG_MASK; 899 900 ASSERT(tx->tx_txg != 0); 901 ASSERT(!refcount_is_zero(&db->db_holds)); 902 DMU_TX_DIRTY_BUF(tx, db); 903 904 /* 905 * Shouldn't dirty a regular buffer in syncing context. Private 906 * objects may be dirtied in syncing context, but only if they 907 * were already pre-dirtied in open context. 908 * XXX We may want to prohibit dirtying in syncing context even 909 * if they did pre-dirty. 910 */ 911 ASSERT(!(dmu_tx_is_syncing(tx) && 912 !BP_IS_HOLE(&dn->dn_objset->os_rootbp) && 913 dn->dn_object != DMU_META_DNODE_OBJECT && 914 dn->dn_objset->os_dsl_dataset != NULL && 915 !dsl_dir_is_private( 916 dn->dn_objset->os_dsl_dataset->ds_dir))); 917 918 /* 919 * We make this assert for private objects as well, but after we 920 * check if we're already dirty. They are allowed to re-dirty 921 * in syncing context. 922 */ 923 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 924 dn->dn_dirtyctx == DN_UNDIRTIED || 925 dn->dn_dirtyctx == 926 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 927 928 mutex_enter(&db->db_mtx); 929 /* XXX make this true for indirects too? */ 930 ASSERT(db->db_level != 0 || db->db_state == DB_CACHED || 931 db->db_state == DB_FILL); 932 933 /* 934 * If this buffer is currently part of an "overridden" region, 935 * we now need to remove it from that region. 936 */ 937 if (db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID && 938 db->db_d.db_overridden_by[txgoff] != NULL) { 939 dbuf_unoverride(db, tx->tx_txg); 940 } 941 942 mutex_enter(&dn->dn_mtx); 943 /* 944 * Don't set dirtyctx to SYNC if we're just modifying this as we 945 * initialize the objset. 946 */ 947 if (dn->dn_dirtyctx == DN_UNDIRTIED && 948 !BP_IS_HOLE(&dn->dn_objset->os_rootbp)) { 949 dn->dn_dirtyctx = 950 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); 951 ASSERT(dn->dn_dirtyctx_firstset == NULL); 952 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 953 } 954 mutex_exit(&dn->dn_mtx); 955 956 /* 957 * If this buffer is already dirty, we're done. 958 */ 959 if (list_link_active(&db->db_dirty_node[txgoff])) { 960 mutex_exit(&db->db_mtx); 961 return; 962 } 963 964 /* 965 * Only valid if not already dirty. 966 */ 967 ASSERT(dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 968 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 969 970 ASSERT3U(dn->dn_nlevels, >, db->db_level); 971 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 972 dn->dn_phys->dn_nlevels > db->db_level || 973 dn->dn_next_nlevels[txgoff] > db->db_level || 974 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 975 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 976 977 /* 978 * We should only be dirtying in syncing context if it's the 979 * mos, a spa os, or we're initializing the os. However, we are 980 * allowed to dirty in syncing context provided we already 981 * dirtied it in open context. Hence we must make this 982 * assertion only if we're not already dirty. 983 */ 984 ASSERT(!dmu_tx_is_syncing(tx) || 985 os->os_dsl_dataset == NULL || 986 !dsl_dir_is_private(os->os_dsl_dataset->ds_dir) || 987 !BP_IS_HOLE(&os->os_rootbp)); 988 ASSERT(db->db.db_size != 0); 989 990 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 991 992 /* 993 * If this buffer is dirty in an old transaction group we need 994 * to make a copy of it so that the changes we make in this 995 * transaction group won't leak out when we sync the older txg. 996 */ 997 if (db->db_blkid == DB_BONUS_BLKID) { 998 ASSERT(db->db.db_data != NULL); 999 ASSERT(db->db_d.db_data_old[txgoff] == NULL); 1000 dbuf_fix_old_bonus_data(db, tx->tx_txg); 1001 db->db_d.db_data_old[txgoff] = db->db.db_data; 1002 } else if (db->db_level == 0) { 1003 /* 1004 * Release the data buffer from the cache so that we 1005 * can modify it without impacting possible other users 1006 * of this cached data block. Note that indirect blocks 1007 * and private objects are not released until the syncing 1008 * state (since they are only modified then). 1009 */ 1010 ASSERT(db->db_buf != NULL); 1011 ASSERT(db->db_d.db_data_old[txgoff] == NULL); 1012 if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1013 arc_release(db->db_buf, db); 1014 dbuf_fix_old_data(db, tx->tx_txg); 1015 ASSERT(db->db_buf != NULL); 1016 } 1017 db->db_d.db_data_old[txgoff] = db->db_buf; 1018 } 1019 1020 mutex_enter(&dn->dn_mtx); 1021 /* 1022 * We could have been freed_in_flight between the dbuf_noread 1023 * and dbuf_dirty. We win, as though the dbuf_noread() had 1024 * happened after the free. 1025 */ 1026 if (db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID) { 1027 dnode_clear_range(dn, db->db_blkid, 1, tx); 1028 db->db_d.db_freed_in_flight = FALSE; 1029 } 1030 1031 db->db_dirtied = tx->tx_txg; 1032 list_insert_tail(&dn->dn_dirty_dbufs[txgoff], db); 1033 mutex_exit(&dn->dn_mtx); 1034 1035 if (db->db_blkid != DB_BONUS_BLKID) { 1036 /* 1037 * Update the accounting. 1038 */ 1039 if (!dbuf_new_block(db) && db->db_blkptr) { 1040 /* 1041 * This is only a guess -- if the dbuf is dirty 1042 * in a previous txg, we don't know how much 1043 * space it will use on disk yet. We should 1044 * really have the struct_rwlock to access 1045 * db_blkptr, but since this is just a guess, 1046 * it's OK if we get an odd answer. 1047 */ 1048 dnode_willuse_space(dn, 1049 -bp_get_dasize(os->os_spa, db->db_blkptr), tx); 1050 } 1051 dnode_willuse_space(dn, db->db.db_size, tx); 1052 } 1053 1054 /* 1055 * This buffer is now part of this txg 1056 */ 1057 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1058 db->db_dirtycnt += 1; 1059 ASSERT3U(db->db_dirtycnt, <=, 3); 1060 1061 mutex_exit(&db->db_mtx); 1062 1063 if (db->db_blkid == DB_BONUS_BLKID) { 1064 dnode_setdirty(dn, tx); 1065 return; 1066 } 1067 1068 if (db->db_level == 0) { 1069 dnode_new_blkid(dn, db->db_blkid, tx); 1070 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1071 } 1072 1073 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1074 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1075 drop_struct_lock = TRUE; 1076 } 1077 1078 if (db->db_level+1 < dn->dn_nlevels) { 1079 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1080 dmu_buf_impl_t *parent; 1081 parent = dbuf_hold_level(dn, db->db_level+1, 1082 db->db_blkid >> epbs, FTAG); 1083 if (drop_struct_lock) 1084 rw_exit(&dn->dn_struct_rwlock); 1085 dbuf_dirty(parent, tx); 1086 dbuf_rele(parent, FTAG); 1087 } else { 1088 if (drop_struct_lock) 1089 rw_exit(&dn->dn_struct_rwlock); 1090 } 1091 1092 dnode_setdirty(dn, tx); 1093 } 1094 1095 static int 1096 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1097 { 1098 dnode_t *dn = db->db_dnode; 1099 int txgoff = tx->tx_txg & TXG_MASK; 1100 int64_t holds; 1101 1102 ASSERT(tx->tx_txg != 0); 1103 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1104 1105 mutex_enter(&db->db_mtx); 1106 1107 /* 1108 * If this buffer is not dirty, we're done. 1109 */ 1110 if (!list_link_active(&db->db_dirty_node[txgoff])) { 1111 mutex_exit(&db->db_mtx); 1112 return (0); 1113 } 1114 1115 /* 1116 * If this buffer is currently held, we cannot undirty 1117 * it, since one of the current holders may be in the 1118 * middle of an update. Note that users of dbuf_undirty() 1119 * should not place a hold on the dbuf before the call. 1120 */ 1121 if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 1122 mutex_exit(&db->db_mtx); 1123 /* Make sure we don't toss this buffer at sync phase */ 1124 mutex_enter(&dn->dn_mtx); 1125 dnode_clear_range(dn, db->db_blkid, 1, tx); 1126 mutex_exit(&dn->dn_mtx); 1127 return (0); 1128 } 1129 1130 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1131 1132 dbuf_unoverride(db, tx->tx_txg); 1133 1134 ASSERT(db->db.db_size != 0); 1135 if (db->db_level == 0) { 1136 ASSERT(db->db_buf != NULL); 1137 ASSERT(db->db_d.db_data_old[txgoff] != NULL); 1138 if (db->db_d.db_data_old[txgoff] != db->db_buf) 1139 VERIFY(arc_buf_remove_ref( 1140 db->db_d.db_data_old[txgoff], db) == 1); 1141 db->db_d.db_data_old[txgoff] = NULL; 1142 } 1143 1144 /* XXX would be nice to fix up dn_towrite_space[] */ 1145 /* XXX undo db_dirtied? but how? */ 1146 /* db->db_dirtied = tx->tx_txg; */ 1147 1148 mutex_enter(&dn->dn_mtx); 1149 list_remove(&dn->dn_dirty_dbufs[txgoff], db); 1150 mutex_exit(&dn->dn_mtx); 1151 1152 ASSERT(db->db_dirtycnt > 0); 1153 db->db_dirtycnt -= 1; 1154 1155 if ((holds = refcount_remove(&db->db_holds, 1156 (void *)(uintptr_t)tx->tx_txg)) == 0) { 1157 arc_buf_t *buf = db->db_buf; 1158 1159 ASSERT(arc_released(buf)); 1160 dbuf_set_data(db, NULL); 1161 VERIFY(arc_buf_remove_ref(buf, db) == 1); 1162 dbuf_evict(db); 1163 return (1); 1164 } 1165 ASSERT(holds > 0); 1166 1167 mutex_exit(&db->db_mtx); 1168 return (0); 1169 } 1170 1171 #pragma weak dmu_buf_will_dirty = dbuf_will_dirty 1172 void 1173 dbuf_will_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1174 { 1175 int rf = DB_RF_MUST_SUCCEED; 1176 1177 ASSERT(tx->tx_txg != 0); 1178 ASSERT(!refcount_is_zero(&db->db_holds)); 1179 1180 if (RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock)) 1181 rf |= DB_RF_HAVESTRUCT; 1182 (void) dbuf_read(db, NULL, rf); 1183 dbuf_dirty(db, tx); 1184 } 1185 1186 void 1187 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1188 { 1189 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1190 1191 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1192 ASSERT(tx->tx_txg != 0); 1193 ASSERT(db->db_level == 0); 1194 ASSERT(!refcount_is_zero(&db->db_holds)); 1195 1196 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1197 dmu_tx_private_ok(tx)); 1198 1199 dbuf_noread(db); 1200 dbuf_dirty(db, tx); 1201 } 1202 1203 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1204 /* ARGSUSED */ 1205 void 1206 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1207 { 1208 mutex_enter(&db->db_mtx); 1209 DBUF_VERIFY(db); 1210 1211 if (db->db_state == DB_FILL) { 1212 if (db->db_level == 0 && db->db_d.db_freed_in_flight) { 1213 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1214 /* we were freed while filling */ 1215 /* XXX dbuf_undirty? */ 1216 bzero(db->db.db_data, db->db.db_size); 1217 db->db_d.db_freed_in_flight = FALSE; 1218 } 1219 db->db_state = DB_CACHED; 1220 cv_broadcast(&db->db_changed); 1221 } 1222 mutex_exit(&db->db_mtx); 1223 } 1224 1225 /* 1226 * "Clear" the contents of this dbuf. This will mark the dbuf 1227 * EVICTING and clear *most* of its references. Unfortunetely, 1228 * when we are not holding the dn_dbufs_mtx, we can't clear the 1229 * entry in the dn_dbufs list. We have to wait until dbuf_destroy() 1230 * in this case. For callers from the DMU we will usually see: 1231 * dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy() 1232 * For the arc callback, we will usually see: 1233 * dbuf_do_evict()->dbuf_clear();dbuf_destroy() 1234 * Sometimes, though, we will get a mix of these two: 1235 * DMU: dbuf_clear()->arc_buf_evict() 1236 * ARC: dbuf_do_evict()->dbuf_destroy() 1237 */ 1238 void 1239 dbuf_clear(dmu_buf_impl_t *db) 1240 { 1241 dnode_t *dn = db->db_dnode; 1242 dmu_buf_impl_t *parent = db->db_parent; 1243 dmu_buf_impl_t *dndb = dn->dn_dbuf; 1244 int dbuf_gone = FALSE; 1245 1246 ASSERT(MUTEX_HELD(&db->db_mtx)); 1247 ASSERT(refcount_is_zero(&db->db_holds)); 1248 1249 dbuf_evict_user(db); 1250 1251 if (db->db_state == DB_CACHED) { 1252 ASSERT(db->db.db_data != NULL); 1253 if (db->db_blkid == DB_BONUS_BLKID) 1254 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 1255 db->db.db_data = NULL; 1256 db->db_state = DB_UNCACHED; 1257 } 1258 1259 ASSERT3U(db->db_state, ==, DB_UNCACHED); 1260 ASSERT(db->db_data_pending == NULL); 1261 1262 db->db_state = DB_EVICTING; 1263 db->db_blkptr = NULL; 1264 1265 if (db->db_blkid != DB_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) { 1266 list_remove(&dn->dn_dbufs, db); 1267 dnode_rele(dn, db); 1268 } 1269 1270 if (db->db_buf) 1271 dbuf_gone = arc_buf_evict(db->db_buf); 1272 1273 if (!dbuf_gone) 1274 mutex_exit(&db->db_mtx); 1275 1276 /* 1277 * If this dbuf is referened from an indirect dbuf, 1278 * decrement the ref count on the indirect dbuf. 1279 */ 1280 if (parent && parent != dndb) 1281 dbuf_rele(parent, db); 1282 } 1283 1284 static int 1285 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 1286 dmu_buf_impl_t **parentp, blkptr_t **bpp) 1287 { 1288 int nlevels, epbs; 1289 1290 *parentp = NULL; 1291 *bpp = NULL; 1292 1293 ASSERT(blkid != DB_BONUS_BLKID); 1294 1295 if (dn->dn_phys->dn_nlevels == 0) 1296 nlevels = 1; 1297 else 1298 nlevels = dn->dn_phys->dn_nlevels; 1299 1300 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1301 1302 ASSERT3U(level * epbs, <, 64); 1303 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1304 if (level >= nlevels || 1305 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 1306 /* the buffer has no parent yet */ 1307 return (ENOENT); 1308 } else if (level < nlevels-1) { 1309 /* this block is referenced from an indirect block */ 1310 int err = dbuf_hold_impl(dn, level+1, 1311 blkid >> epbs, fail_sparse, NULL, parentp); 1312 if (err) 1313 return (err); 1314 err = dbuf_read(*parentp, NULL, 1315 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 1316 if (err) { 1317 dbuf_rele(*parentp, NULL); 1318 *parentp = NULL; 1319 return (err); 1320 } 1321 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 1322 (blkid & ((1ULL << epbs) - 1)); 1323 return (0); 1324 } else { 1325 /* the block is referenced from the dnode */ 1326 ASSERT3U(level, ==, nlevels-1); 1327 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 1328 blkid < dn->dn_phys->dn_nblkptr); 1329 if (dn->dn_dbuf) { 1330 dbuf_add_ref(dn->dn_dbuf, NULL); 1331 *parentp = dn->dn_dbuf; 1332 } 1333 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 1334 return (0); 1335 } 1336 } 1337 1338 static dmu_buf_impl_t * 1339 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 1340 dmu_buf_impl_t *parent, blkptr_t *blkptr) 1341 { 1342 objset_impl_t *os = dn->dn_objset; 1343 dmu_buf_impl_t *db, *odb; 1344 1345 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1346 ASSERT(dn->dn_type != DMU_OT_NONE); 1347 1348 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP); 1349 1350 db->db_objset = os; 1351 db->db.db_object = dn->dn_object; 1352 db->db_level = level; 1353 db->db_blkid = blkid; 1354 db->db_dirtied = 0; 1355 db->db_dirtycnt = 0; 1356 db->db_dnode = dn; 1357 db->db_parent = parent; 1358 db->db_blkptr = blkptr; 1359 1360 bzero(&db->db_d, sizeof (db->db_d)); 1361 1362 if (blkid == DB_BONUS_BLKID) { 1363 ASSERT3P(parent, ==, dn->dn_dbuf); 1364 db->db.db_size = dn->dn_bonuslen; 1365 db->db.db_offset = DB_BONUS_BLKID; 1366 db->db_state = DB_UNCACHED; 1367 /* the bonus dbuf is not placed in the hash table */ 1368 return (db); 1369 } else { 1370 int blocksize = 1371 db->db_level ? 1<<dn->dn_indblkshift : dn->dn_datablksz; 1372 db->db.db_size = blocksize; 1373 db->db.db_offset = db->db_blkid * blocksize; 1374 } 1375 1376 /* 1377 * Hold the dn_dbufs_mtx while we get the new dbuf 1378 * in the hash table *and* added to the dbufs list. 1379 * This prevents a possible deadlock with someone 1380 * trying to look up this dbuf before its added to the 1381 * dn_dbufs list. 1382 */ 1383 mutex_enter(&dn->dn_dbufs_mtx); 1384 db->db_state = DB_EVICTING; 1385 if ((odb = dbuf_hash_insert(db)) != NULL) { 1386 /* someone else inserted it first */ 1387 kmem_cache_free(dbuf_cache, db); 1388 mutex_exit(&dn->dn_dbufs_mtx); 1389 return (odb); 1390 } 1391 list_insert_head(&dn->dn_dbufs, db); 1392 db->db_state = DB_UNCACHED; 1393 mutex_exit(&dn->dn_dbufs_mtx); 1394 1395 if (parent && parent != dn->dn_dbuf) 1396 dbuf_add_ref(parent, db); 1397 1398 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1399 refcount_count(&dn->dn_holds) > 0); 1400 (void) refcount_add(&dn->dn_holds, db); 1401 1402 dprintf_dbuf(db, "db=%p\n", db); 1403 1404 return (db); 1405 } 1406 1407 static int 1408 dbuf_do_evict(void *private) 1409 { 1410 arc_buf_t *buf = private; 1411 dmu_buf_impl_t *db = buf->b_private; 1412 1413 if (!MUTEX_HELD(&db->db_mtx)) 1414 mutex_enter(&db->db_mtx); 1415 1416 ASSERT(refcount_is_zero(&db->db_holds)); 1417 1418 if (db->db_state != DB_EVICTING) { 1419 ASSERT(db->db_state == DB_CACHED); 1420 DBUF_VERIFY(db); 1421 db->db_buf = NULL; 1422 dbuf_evict(db); 1423 } else { 1424 mutex_exit(&db->db_mtx); 1425 dbuf_destroy(db); 1426 } 1427 return (0); 1428 } 1429 1430 static void 1431 dbuf_destroy(dmu_buf_impl_t *db) 1432 { 1433 ASSERT(refcount_is_zero(&db->db_holds)); 1434 1435 if (db->db_blkid != DB_BONUS_BLKID) { 1436 dnode_t *dn = db->db_dnode; 1437 1438 /* 1439 * If this dbuf is still on the dn_dbufs list, 1440 * remove it from that list. 1441 */ 1442 if (list_link_active(&db->db_link)) { 1443 mutex_enter(&dn->dn_dbufs_mtx); 1444 list_remove(&dn->dn_dbufs, db); 1445 mutex_exit(&dn->dn_dbufs_mtx); 1446 1447 dnode_rele(dn, db); 1448 } 1449 dbuf_hash_remove(db); 1450 } 1451 db->db_parent = NULL; 1452 db->db_dnode = NULL; 1453 db->db_buf = NULL; 1454 1455 ASSERT(db->db.db_data == NULL); 1456 ASSERT(db->db_hash_next == NULL); 1457 ASSERT(db->db_blkptr == NULL); 1458 ASSERT(db->db_data_pending == NULL); 1459 1460 kmem_cache_free(dbuf_cache, db); 1461 } 1462 1463 void 1464 dbuf_prefetch(dnode_t *dn, uint64_t blkid) 1465 { 1466 dmu_buf_impl_t *db = NULL; 1467 blkptr_t *bp = NULL; 1468 1469 ASSERT(blkid != DB_BONUS_BLKID); 1470 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1471 1472 if (dnode_block_freed(dn, blkid)) 1473 return; 1474 1475 /* dbuf_find() returns with db_mtx held */ 1476 if (db = dbuf_find(dn, 0, blkid)) { 1477 if (refcount_count(&db->db_holds) > 0) { 1478 /* 1479 * This dbuf is active. We assume that it is 1480 * already CACHED, or else about to be either 1481 * read or filled. 1482 */ 1483 mutex_exit(&db->db_mtx); 1484 return; 1485 } 1486 mutex_exit(&db->db_mtx); 1487 db = NULL; 1488 } 1489 1490 if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) { 1491 if (bp && !BP_IS_HOLE(bp)) { 1492 uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH; 1493 zbookmark_t zb; 1494 zb.zb_objset = dn->dn_objset->os_dsl_dataset ? 1495 dn->dn_objset->os_dsl_dataset->ds_object : 0; 1496 zb.zb_object = dn->dn_object; 1497 zb.zb_level = 0; 1498 zb.zb_blkid = blkid; 1499 1500 (void) arc_read(NULL, dn->dn_objset->os_spa, bp, 1501 dmu_ot[dn->dn_type].ot_byteswap, 1502 NULL, NULL, ZIO_PRIORITY_ASYNC_READ, 1503 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 1504 &aflags, &zb); 1505 } 1506 if (db) 1507 dbuf_rele(db, NULL); 1508 } 1509 } 1510 1511 /* 1512 * Returns with db_holds incremented, and db_mtx not held. 1513 * Note: dn_struct_rwlock must be held. 1514 */ 1515 int 1516 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse, 1517 void *tag, dmu_buf_impl_t **dbp) 1518 { 1519 dmu_buf_impl_t *db, *parent = NULL; 1520 1521 ASSERT(blkid != DB_BONUS_BLKID); 1522 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1523 ASSERT3U(dn->dn_nlevels, >, level); 1524 1525 *dbp = NULL; 1526 top: 1527 /* dbuf_find() returns with db_mtx held */ 1528 db = dbuf_find(dn, level, blkid); 1529 1530 if (db == NULL) { 1531 blkptr_t *bp = NULL; 1532 int err; 1533 1534 ASSERT3P(parent, ==, NULL); 1535 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 1536 if (fail_sparse) { 1537 if (err == 0 && bp && BP_IS_HOLE(bp)) 1538 err = ENOENT; 1539 if (err) { 1540 if (parent) 1541 dbuf_rele(parent, NULL); 1542 return (err); 1543 } 1544 } 1545 if (err && err != ENOENT) 1546 return (err); 1547 db = dbuf_create(dn, level, blkid, parent, bp); 1548 } 1549 1550 if (db->db_buf && refcount_is_zero(&db->db_holds)) { 1551 arc_buf_add_ref(db->db_buf, db); 1552 if (db->db_buf->b_data == NULL) { 1553 dbuf_clear(db); 1554 if (parent) { 1555 dbuf_rele(parent, NULL); 1556 parent = NULL; 1557 } 1558 goto top; 1559 } 1560 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 1561 } 1562 1563 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 1564 1565 /* 1566 * If this buffer is currently syncing out, and we are 1567 * are still referencing it from db_data, we need to make 1568 * a copy of it in case we decide we want to dirty it 1569 * again in this txg. 1570 */ 1571 if (db->db_level == 0 && db->db_state == DB_CACHED && 1572 dn->dn_object != DMU_META_DNODE_OBJECT && 1573 db->db_data_pending == db->db_buf) { 1574 int size = (db->db_blkid == DB_BONUS_BLKID) ? 1575 DN_MAX_BONUSLEN : db->db.db_size; 1576 1577 dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa, 1578 size, db)); 1579 bcopy(db->db_data_pending->b_data, db->db.db_data, 1580 db->db.db_size); 1581 } 1582 1583 (void) refcount_add(&db->db_holds, tag); 1584 dbuf_update_data(db); 1585 DBUF_VERIFY(db); 1586 mutex_exit(&db->db_mtx); 1587 1588 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 1589 if (parent) 1590 dbuf_rele(parent, NULL); 1591 1592 ASSERT3P(db->db_dnode, ==, dn); 1593 ASSERT3U(db->db_blkid, ==, blkid); 1594 ASSERT3U(db->db_level, ==, level); 1595 *dbp = db; 1596 1597 return (0); 1598 } 1599 1600 dmu_buf_impl_t * 1601 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 1602 { 1603 dmu_buf_impl_t *db; 1604 int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db); 1605 return (err ? NULL : db); 1606 } 1607 1608 dmu_buf_impl_t * 1609 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 1610 { 1611 dmu_buf_impl_t *db; 1612 int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db); 1613 return (err ? NULL : db); 1614 } 1615 1616 dmu_buf_impl_t * 1617 dbuf_create_bonus(dnode_t *dn) 1618 { 1619 dmu_buf_impl_t *db = dn->dn_bonus; 1620 1621 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1622 1623 ASSERT(dn->dn_bonus == NULL); 1624 db = dbuf_create(dn, 0, DB_BONUS_BLKID, dn->dn_dbuf, NULL); 1625 return (db); 1626 } 1627 1628 #pragma weak dmu_buf_add_ref = dbuf_add_ref 1629 void 1630 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 1631 { 1632 int64_t holds = refcount_add(&db->db_holds, tag); 1633 ASSERT(holds > 1); 1634 } 1635 1636 #pragma weak dmu_buf_rele = dbuf_rele 1637 void 1638 dbuf_rele(dmu_buf_impl_t *db, void *tag) 1639 { 1640 int64_t holds; 1641 1642 mutex_enter(&db->db_mtx); 1643 DBUF_VERIFY(db); 1644 1645 holds = refcount_remove(&db->db_holds, tag); 1646 ASSERT(holds >= 0); 1647 1648 if (holds == db->db_dirtycnt && 1649 db->db_level == 0 && db->db_d.db_immediate_evict) 1650 dbuf_evict_user(db); 1651 1652 if (holds == 0) { 1653 if (db->db_blkid == DB_BONUS_BLKID) { 1654 mutex_exit(&db->db_mtx); 1655 dnode_rele(db->db_dnode, db); 1656 } else if (db->db_buf == NULL) { 1657 /* 1658 * This is a special case: we never associated this 1659 * dbuf with any data allocated from the ARC. 1660 */ 1661 ASSERT3U(db->db_state, ==, DB_UNCACHED); 1662 dbuf_evict(db); 1663 } else if (arc_released(db->db_buf)) { 1664 arc_buf_t *buf = db->db_buf; 1665 /* 1666 * This dbuf has anonymous data associated with it. 1667 */ 1668 dbuf_set_data(db, NULL); 1669 VERIFY(arc_buf_remove_ref(buf, db) == 1); 1670 dbuf_evict(db); 1671 } else { 1672 VERIFY(arc_buf_remove_ref(db->db_buf, db) == 0); 1673 mutex_exit(&db->db_mtx); 1674 } 1675 } else { 1676 mutex_exit(&db->db_mtx); 1677 } 1678 } 1679 1680 #pragma weak dmu_buf_refcount = dbuf_refcount 1681 uint64_t 1682 dbuf_refcount(dmu_buf_impl_t *db) 1683 { 1684 return (refcount_count(&db->db_holds)); 1685 } 1686 1687 void * 1688 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 1689 dmu_buf_evict_func_t *evict_func) 1690 { 1691 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 1692 user_data_ptr_ptr, evict_func)); 1693 } 1694 1695 void * 1696 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 1697 dmu_buf_evict_func_t *evict_func) 1698 { 1699 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1700 1701 db->db_d.db_immediate_evict = TRUE; 1702 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 1703 user_data_ptr_ptr, evict_func)); 1704 } 1705 1706 void * 1707 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr, 1708 void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func) 1709 { 1710 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1711 ASSERT(db->db_level == 0); 1712 1713 ASSERT((user_ptr == NULL) == (evict_func == NULL)); 1714 1715 mutex_enter(&db->db_mtx); 1716 1717 if (db->db_d.db_user_ptr == old_user_ptr) { 1718 db->db_d.db_user_ptr = user_ptr; 1719 db->db_d.db_user_data_ptr_ptr = user_data_ptr_ptr; 1720 db->db_d.db_evict_func = evict_func; 1721 1722 dbuf_update_data(db); 1723 } else { 1724 old_user_ptr = db->db_d.db_user_ptr; 1725 } 1726 1727 mutex_exit(&db->db_mtx); 1728 return (old_user_ptr); 1729 } 1730 1731 void * 1732 dmu_buf_get_user(dmu_buf_t *db_fake) 1733 { 1734 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1735 ASSERT(!refcount_is_zero(&db->db_holds)); 1736 1737 return (db->db_d.db_user_ptr); 1738 } 1739 1740 void 1741 dbuf_sync(dmu_buf_impl_t *db, zio_t *zio, dmu_tx_t *tx) 1742 { 1743 arc_buf_t **data; 1744 uint64_t txg = tx->tx_txg; 1745 dnode_t *dn = db->db_dnode; 1746 objset_impl_t *os = dn->dn_objset; 1747 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 1748 int checksum, compress; 1749 zbookmark_t zb; 1750 int blksz; 1751 1752 ASSERT(dmu_tx_is_syncing(tx)); 1753 1754 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 1755 1756 mutex_enter(&db->db_mtx); 1757 /* 1758 * To be synced, we must be dirtied. But we 1759 * might have been freed after the dirty. 1760 */ 1761 if (db->db_state == DB_UNCACHED) { 1762 /* This buffer has been freed since it was dirtied */ 1763 ASSERT(db->db.db_data == NULL); 1764 } else if (db->db_state == DB_FILL) { 1765 /* This buffer was freed and is now being re-filled */ 1766 ASSERT(db->db.db_data != db->db_d.db_data_old[txg&TXG_MASK]); 1767 } else { 1768 ASSERT3U(db->db_state, ==, DB_CACHED); 1769 } 1770 DBUF_VERIFY(db); 1771 1772 /* 1773 * Don't need a lock on db_dirty (dn_mtx), because it can't 1774 * be modified yet. 1775 */ 1776 1777 if (db->db_blkid == DB_BONUS_BLKID) { 1778 void **datap = &db->db_d.db_data_old[txg&TXG_MASK]; 1779 /* 1780 * Simply copy the bonus data into the dnode. It will 1781 * be written out when the dnode is synced (and it will 1782 * be synced, since it must have been dirty for dbuf_sync 1783 * to be called). 1784 */ 1785 /* 1786 * Use dn_phys->dn_bonuslen since db.db_size is the length 1787 * of the bonus buffer in the open transaction rather than 1788 * the syncing transaction. 1789 */ 1790 ASSERT(*datap != NULL); 1791 ASSERT3U(db->db_level, ==, 0); 1792 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 1793 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 1794 if (*datap != db->db.db_data) 1795 zio_buf_free(*datap, DN_MAX_BONUSLEN); 1796 db->db_d.db_data_old[txg&TXG_MASK] = NULL; 1797 db->db_data_pending = NULL; 1798 if (db->db_dirtied == txg) 1799 db->db_dirtied = 0; 1800 ASSERT(db->db_dirtycnt > 0); 1801 db->db_dirtycnt -= 1; 1802 mutex_exit(&db->db_mtx); 1803 dbuf_rele(db, (void *)(uintptr_t)txg); 1804 return; 1805 } 1806 1807 if (db->db_level == 0) { 1808 data = (arc_buf_t **)&db->db_d.db_data_old[txg&TXG_MASK]; 1809 blksz = arc_buf_size(*data); 1810 1811 /* 1812 * This buffer is in the middle of an immdiate write. 1813 * Wait for the synchronous IO to complete. 1814 */ 1815 while (db->db_d.db_overridden_by[txg&TXG_MASK] == IN_DMU_SYNC) { 1816 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 1817 cv_wait(&db->db_changed, &db->db_mtx); 1818 ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK]); 1819 } 1820 /* 1821 * If this buffer is currently "in use" (i.e., there are 1822 * active holds and db_data still references it), then make 1823 * a copy before we start the write so that any modifications 1824 * from the open txg will not leak into this write. 1825 * 1826 * NOTE: this copy does not need to be made for objects only 1827 * modified in the syncing context (e.g. DNONE_DNODE blocks) 1828 * or if there is no actual write involved (bonus blocks). 1829 */ 1830 if (dn->dn_object != DMU_META_DNODE_OBJECT && 1831 db->db_d.db_overridden_by[txg&TXG_MASK] == NULL) { 1832 if (refcount_count(&db->db_holds) > 1 && 1833 *data == db->db_buf) { 1834 *data = arc_buf_alloc(os->os_spa, blksz, db); 1835 bcopy(db->db.db_data, (*data)->b_data, blksz); 1836 } 1837 db->db_data_pending = *data; 1838 } else if (dn->dn_object == DMU_META_DNODE_OBJECT) { 1839 /* 1840 * Private object buffers are released here rather 1841 * than in dbuf_dirty() since they are only modified 1842 * in the syncing context and we don't want the 1843 * overhead of making multiple copies of the data. 1844 */ 1845 arc_release(db->db_buf, db); 1846 } 1847 } else { 1848 data = &db->db_buf; 1849 if (*data == NULL) { 1850 /* 1851 * This can happen if we dirty and then free 1852 * the level-0 data blocks in the same txg. So 1853 * this indirect remains unchanged. 1854 */ 1855 if (db->db_dirtied == txg) 1856 db->db_dirtied = 0; 1857 ASSERT(db->db_dirtycnt > 0); 1858 db->db_dirtycnt -= 1; 1859 mutex_exit(&db->db_mtx); 1860 dbuf_rele(db, (void *)(uintptr_t)txg); 1861 return; 1862 } 1863 blksz = db->db.db_size; 1864 ASSERT3U(blksz, ==, 1<<dn->dn_phys->dn_indblkshift); 1865 } 1866 1867 ASSERT(*data != NULL); 1868 1869 if (db->db_level > 0 && !arc_released(db->db_buf)) { 1870 /* 1871 * This indirect buffer was marked dirty, but 1872 * never modified (if it had been modified, then 1873 * we would have released the buffer). There is 1874 * no reason to write anything. 1875 */ 1876 db->db_data_pending = NULL; 1877 if (db->db_dirtied == txg) 1878 db->db_dirtied = 0; 1879 ASSERT(db->db_dirtycnt > 0); 1880 db->db_dirtycnt -= 1; 1881 mutex_exit(&db->db_mtx); 1882 dbuf_rele(db, (void *)(uintptr_t)txg); 1883 return; 1884 } else if (db->db_blkptr == NULL && 1885 db->db_level == dn->dn_phys->dn_nlevels-1 && 1886 db->db_blkid < dn->dn_phys->dn_nblkptr) { 1887 /* 1888 * This buffer was allocated at a time when there was 1889 * no available blkptrs from the dnode, or it was 1890 * inappropriate to hook it in (i.e., nlevels mis-match). 1891 */ 1892 ASSERT(db->db_blkptr == NULL); 1893 ASSERT(db->db_parent == NULL); 1894 db->db_parent = dn->dn_dbuf; 1895 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 1896 DBUF_VERIFY(db); 1897 mutex_exit(&db->db_mtx); 1898 } else if (db->db_blkptr == NULL) { 1899 dmu_buf_impl_t *parent = db->db_parent; 1900 1901 mutex_exit(&db->db_mtx); 1902 ASSERT(dn->dn_phys->dn_nlevels > 1); 1903 if (parent == NULL) { 1904 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1905 (void) dbuf_hold_impl(dn, db->db_level+1, 1906 db->db_blkid >> epbs, FALSE, FTAG, &parent); 1907 rw_exit(&dn->dn_struct_rwlock); 1908 dbuf_add_ref(parent, db); 1909 db->db_parent = parent; 1910 dbuf_rele(parent, FTAG); 1911 } 1912 (void) dbuf_read(parent, NULL, DB_RF_MUST_SUCCEED); 1913 } else { 1914 mutex_exit(&db->db_mtx); 1915 } 1916 1917 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || db->db_parent != NULL); 1918 1919 if (db->db_level > 0 && 1920 db->db_blkid > dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)) { 1921 /* 1922 * Don't write indirect blocks past EOF. 1923 * We get these when we truncate a file *after* dirtying 1924 * blocks in the truncate range (we undirty the level 0 1925 * blocks in dbuf_free_range(), but not the indirects). 1926 */ 1927 #ifdef ZFS_DEBUG 1928 /* 1929 * Verify that this indirect block is empty. 1930 */ 1931 blkptr_t *bplist; 1932 int i; 1933 1934 mutex_enter(&db->db_mtx); 1935 bplist = db->db.db_data; 1936 for (i = 0; i < (1 << epbs); i++) { 1937 if (!BP_IS_HOLE(&bplist[i])) { 1938 panic("data past EOF: " 1939 "db=%p level=%d id=%llu i=%d\n", 1940 db, db->db_level, 1941 (u_longlong_t)db->db_blkid, i); 1942 } 1943 } 1944 mutex_exit(&db->db_mtx); 1945 #endif 1946 ASSERT(db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)); 1947 mutex_enter(&db->db_mtx); 1948 db->db_dirtycnt -= 1; 1949 mutex_exit(&db->db_mtx); 1950 dbuf_rele(db, (void *)(uintptr_t)txg); 1951 return; 1952 } 1953 1954 if (db->db_parent != dn->dn_dbuf) { 1955 dmu_buf_impl_t *parent = db->db_parent; 1956 1957 mutex_enter(&db->db_mtx); 1958 ASSERT(db->db_level == parent->db_level-1); 1959 ASSERT(list_link_active(&parent->db_dirty_node[txg&TXG_MASK])); 1960 /* 1961 * We may have read this indirect block after we dirtied it, 1962 * so never released it from the cache. 1963 */ 1964 arc_release(parent->db_buf, db->db_parent); 1965 1966 db->db_blkptr = (blkptr_t *)parent->db.db_data + 1967 (db->db_blkid & ((1ULL << epbs) - 1)); 1968 DBUF_VERIFY(db); 1969 mutex_exit(&db->db_mtx); 1970 #ifdef ZFS_DEBUG 1971 } else { 1972 /* 1973 * We don't need to dnode_setdirty(dn) because if we got 1974 * here then the parent is already dirty. 1975 */ 1976 ASSERT(db->db_level == dn->dn_phys->dn_nlevels-1); 1977 ASSERT3P(db->db_blkptr, ==, 1978 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1979 #endif 1980 } 1981 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1982 1983 if (db->db_level == 0 && 1984 db->db_d.db_overridden_by[txg&TXG_MASK] != NULL) { 1985 arc_buf_t **old = 1986 (arc_buf_t **)&db->db_d.db_data_old[txg&TXG_MASK]; 1987 blkptr_t **bpp = &db->db_d.db_overridden_by[txg&TXG_MASK]; 1988 int old_size = bp_get_dasize(os->os_spa, db->db_blkptr); 1989 int new_size = bp_get_dasize(os->os_spa, *bpp); 1990 1991 ASSERT(db->db_blkid != DB_BONUS_BLKID); 1992 1993 dnode_diduse_space(dn, new_size-old_size); 1994 mutex_enter(&dn->dn_mtx); 1995 if (db->db_blkid > dn->dn_phys->dn_maxblkid) 1996 dn->dn_phys->dn_maxblkid = db->db_blkid; 1997 mutex_exit(&dn->dn_mtx); 1998 1999 dsl_dataset_block_born(os->os_dsl_dataset, *bpp, tx); 2000 if (!BP_IS_HOLE(db->db_blkptr)) 2001 dsl_dataset_block_kill(os->os_dsl_dataset, 2002 db->db_blkptr, os->os_synctx); 2003 2004 mutex_enter(&db->db_mtx); 2005 *db->db_blkptr = **bpp; 2006 kmem_free(*bpp, sizeof (blkptr_t)); 2007 *bpp = NULL; 2008 2009 if (*old != db->db_buf) 2010 VERIFY(arc_buf_remove_ref(*old, db) == 1); 2011 else if (!BP_IS_HOLE(db->db_blkptr)) 2012 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2013 else 2014 ASSERT(arc_released(db->db_buf)); 2015 *old = NULL; 2016 db->db_data_pending = NULL; 2017 2018 cv_broadcast(&db->db_changed); 2019 2020 ASSERT(db->db_dirtycnt > 0); 2021 db->db_dirtycnt -= 1; 2022 mutex_exit(&db->db_mtx); 2023 dbuf_rele(db, (void *)(uintptr_t)txg); 2024 return; 2025 } 2026 2027 if (db->db_level > 0) { 2028 /* 2029 * XXX -- we should design a compression algorithm 2030 * that specializes in arrays of bps. 2031 */ 2032 checksum = ZIO_CHECKSUM_FLETCHER_4; 2033 compress = ZIO_COMPRESS_LZJB; 2034 } else { 2035 /* 2036 * Allow dnode settings to override objset settings, 2037 * except for metadata checksums. 2038 */ 2039 if (dmu_ot[dn->dn_type].ot_metadata) { 2040 checksum = os->os_md_checksum; 2041 compress = zio_compress_select(dn->dn_compress, 2042 os->os_md_compress); 2043 } else { 2044 checksum = zio_checksum_select(dn->dn_checksum, 2045 os->os_checksum); 2046 compress = zio_compress_select(dn->dn_compress, 2047 os->os_compress); 2048 } 2049 } 2050 #ifdef ZFS_DEBUG 2051 if (db->db_parent) { 2052 ASSERT(list_link_active( 2053 &db->db_parent->db_dirty_node[txg&TXG_MASK])); 2054 ASSERT(db->db_parent == dn->dn_dbuf || 2055 db->db_parent->db_level > 0); 2056 if (dn->dn_object == DMU_META_DNODE_OBJECT || db->db_level > 0) 2057 ASSERT(*data == db->db_buf); 2058 } 2059 #endif 2060 ASSERT3U(db->db_blkptr->blk_birth, <=, tx->tx_txg); 2061 zb.zb_objset = os->os_dsl_dataset ? os->os_dsl_dataset->ds_object : 0; 2062 zb.zb_object = db->db.db_object; 2063 zb.zb_level = db->db_level; 2064 zb.zb_blkid = db->db_blkid; 2065 2066 (void) arc_write(zio, os->os_spa, checksum, compress, 2067 dmu_get_replication_level(os->os_spa, &zb, dn->dn_type), txg, 2068 db->db_blkptr, *data, dbuf_write_done, db, 2069 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, ARC_NOWAIT, &zb); 2070 /* 2071 * We can't access db after arc_write, since it could finish 2072 * and be freed, and we have no locks on it. 2073 */ 2074 } 2075 2076 struct dbuf_arg { 2077 objset_impl_t *os; 2078 blkptr_t bp; 2079 }; 2080 2081 static void 2082 dbuf_do_born(void *arg) 2083 { 2084 struct dbuf_arg *da = arg; 2085 dsl_dataset_block_born(da->os->os_dsl_dataset, 2086 &da->bp, da->os->os_synctx); 2087 kmem_free(da, sizeof (struct dbuf_arg)); 2088 } 2089 2090 static void 2091 dbuf_do_kill(void *arg) 2092 { 2093 struct dbuf_arg *da = arg; 2094 dsl_dataset_block_kill(da->os->os_dsl_dataset, 2095 &da->bp, da->os->os_synctx); 2096 kmem_free(da, sizeof (struct dbuf_arg)); 2097 } 2098 2099 /* ARGSUSED */ 2100 static void 2101 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 2102 { 2103 dmu_buf_impl_t *db = vdb; 2104 dnode_t *dn = db->db_dnode; 2105 objset_impl_t *os = dn->dn_objset; 2106 uint64_t txg = zio->io_txg; 2107 uint64_t fill = 0; 2108 int i; 2109 int old_size, new_size; 2110 2111 ASSERT3U(zio->io_error, ==, 0); 2112 2113 dprintf_dbuf_bp(db, &zio->io_bp_orig, "bp_orig: %s", ""); 2114 2115 old_size = bp_get_dasize(os->os_spa, &zio->io_bp_orig); 2116 new_size = bp_get_dasize(os->os_spa, zio->io_bp); 2117 2118 dnode_diduse_space(dn, new_size-old_size); 2119 2120 mutex_enter(&db->db_mtx); 2121 2122 ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK] == NULL); 2123 2124 if (db->db_dirtied == txg) 2125 db->db_dirtied = 0; 2126 2127 if (db->db_level == 0) { 2128 arc_buf_t **old = 2129 (arc_buf_t **)&db->db_d.db_data_old[txg&TXG_MASK]; 2130 2131 ASSERT(db->db_blkid != DB_BONUS_BLKID); 2132 2133 if (*old != db->db_buf) 2134 VERIFY(arc_buf_remove_ref(*old, db) == 1); 2135 else if (!BP_IS_HOLE(db->db_blkptr)) 2136 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2137 else 2138 ASSERT(arc_released(db->db_buf)); 2139 *old = NULL; 2140 db->db_data_pending = NULL; 2141 2142 mutex_enter(&dn->dn_mtx); 2143 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 2144 !BP_IS_HOLE(db->db_blkptr)) 2145 dn->dn_phys->dn_maxblkid = db->db_blkid; 2146 mutex_exit(&dn->dn_mtx); 2147 2148 if (dn->dn_type == DMU_OT_DNODE) { 2149 dnode_phys_t *dnp = db->db.db_data; 2150 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 2151 i--, dnp++) { 2152 if (dnp->dn_type != DMU_OT_NONE) 2153 fill++; 2154 } 2155 } else { 2156 if (!BP_IS_HOLE(db->db_blkptr)) 2157 fill = 1; 2158 } 2159 } else { 2160 blkptr_t *bp = db->db.db_data; 2161 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2162 if (!BP_IS_HOLE(db->db_blkptr)) { 2163 int epbs = 2164 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2165 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, db->db.db_size); 2166 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 2167 db->db.db_size); 2168 ASSERT3U(dn->dn_phys->dn_maxblkid 2169 >> (db->db_level * epbs), >=, db->db_blkid); 2170 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2171 } 2172 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, bp++) { 2173 if (BP_IS_HOLE(bp)) 2174 continue; 2175 ASSERT3U(BP_GET_LSIZE(bp), ==, 2176 db->db_level == 1 ? dn->dn_datablksz : 2177 (1<<dn->dn_phys->dn_indblkshift)); 2178 fill += bp->blk_fill; 2179 } 2180 } 2181 2182 if (!BP_IS_HOLE(db->db_blkptr)) { 2183 db->db_blkptr->blk_fill = fill; 2184 BP_SET_TYPE(db->db_blkptr, dn->dn_type); 2185 BP_SET_LEVEL(db->db_blkptr, db->db_level); 2186 } else { 2187 ASSERT3U(fill, ==, 0); 2188 ASSERT3U(db->db_blkptr->blk_fill, ==, 0); 2189 } 2190 2191 dprintf_dbuf_bp(db, db->db_blkptr, 2192 "wrote %llu bytes to blkptr:", zio->io_size); 2193 2194 ASSERT(db->db_parent == NULL || 2195 list_link_active(&db->db_parent->db_dirty_node[txg&TXG_MASK])); 2196 cv_broadcast(&db->db_changed); 2197 ASSERT(db->db_dirtycnt > 0); 2198 db->db_dirtycnt -= 1; 2199 mutex_exit(&db->db_mtx); 2200 2201 /* We must do this after we've set the bp's type and level */ 2202 if (!DVA_EQUAL(BP_IDENTITY(zio->io_bp), 2203 BP_IDENTITY(&zio->io_bp_orig))) { 2204 struct dbuf_arg *da; 2205 da = kmem_alloc(sizeof (struct dbuf_arg), KM_SLEEP); 2206 da->os = os; 2207 da->bp = *zio->io_bp; 2208 (void) taskq_dispatch(dbuf_tq, dbuf_do_born, da, 0); 2209 if (!BP_IS_HOLE(&zio->io_bp_orig)) { 2210 da = kmem_alloc(sizeof (struct dbuf_arg), KM_SLEEP); 2211 da->os = os; 2212 da->bp = zio->io_bp_orig; 2213 (void) taskq_dispatch(dbuf_tq, dbuf_do_kill, da, 0); 2214 } 2215 } 2216 2217 dbuf_rele(db, (void *)(uintptr_t)txg); 2218 } 2219