xref: /titanic_50/usr/src/uts/common/fs/zfs/dbuf.c (revision 7f11fd00fc23e2af7ae21cc8837a2b86380dcfa7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 
49 /*
50  * Number of times that zfs_free_range() took the slow path while doing
51  * a zfs receive.  A nonzero value indicates a potential performance problem.
52  */
53 uint64_t zfs_free_range_recv_miss;
54 
55 static void dbuf_destroy(dmu_buf_impl_t *db);
56 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
57 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
58 
59 #ifndef __lint
60 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
61     dmu_buf_evict_func_t *evict_func, dmu_buf_t **clear_on_evict_dbufp);
62 #endif /* ! __lint */
63 
64 /*
65  * Global data structures and functions for the dbuf cache.
66  */
67 static kmem_cache_t *dbuf_cache;
68 static taskq_t *dbu_evict_taskq;
69 
70 /* ARGSUSED */
71 static int
72 dbuf_cons(void *vdb, void *unused, int kmflag)
73 {
74 	dmu_buf_impl_t *db = vdb;
75 	bzero(db, sizeof (dmu_buf_impl_t));
76 
77 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
78 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
79 	refcount_create(&db->db_holds);
80 
81 	return (0);
82 }
83 
84 /* ARGSUSED */
85 static void
86 dbuf_dest(void *vdb, void *unused)
87 {
88 	dmu_buf_impl_t *db = vdb;
89 	mutex_destroy(&db->db_mtx);
90 	cv_destroy(&db->db_changed);
91 	refcount_destroy(&db->db_holds);
92 }
93 
94 /*
95  * dbuf hash table routines
96  */
97 static dbuf_hash_table_t dbuf_hash_table;
98 
99 static uint64_t dbuf_hash_count;
100 
101 static uint64_t
102 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
103 {
104 	uintptr_t osv = (uintptr_t)os;
105 	uint64_t crc = -1ULL;
106 
107 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
108 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
109 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
110 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
111 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
112 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
113 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
114 
115 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
116 
117 	return (crc);
118 }
119 
120 #define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
121 
122 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
123 	((dbuf)->db.db_object == (obj) &&		\
124 	(dbuf)->db_objset == (os) &&			\
125 	(dbuf)->db_level == (level) &&			\
126 	(dbuf)->db_blkid == (blkid))
127 
128 dmu_buf_impl_t *
129 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
130 {
131 	dbuf_hash_table_t *h = &dbuf_hash_table;
132 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
133 	uint64_t idx = hv & h->hash_table_mask;
134 	dmu_buf_impl_t *db;
135 
136 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
137 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
138 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
139 			mutex_enter(&db->db_mtx);
140 			if (db->db_state != DB_EVICTING) {
141 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
142 				return (db);
143 			}
144 			mutex_exit(&db->db_mtx);
145 		}
146 	}
147 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
148 	return (NULL);
149 }
150 
151 static dmu_buf_impl_t *
152 dbuf_find_bonus(objset_t *os, uint64_t object)
153 {
154 	dnode_t *dn;
155 	dmu_buf_impl_t *db = NULL;
156 
157 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
158 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
159 		if (dn->dn_bonus != NULL) {
160 			db = dn->dn_bonus;
161 			mutex_enter(&db->db_mtx);
162 		}
163 		rw_exit(&dn->dn_struct_rwlock);
164 		dnode_rele(dn, FTAG);
165 	}
166 	return (db);
167 }
168 
169 /*
170  * Insert an entry into the hash table.  If there is already an element
171  * equal to elem in the hash table, then the already existing element
172  * will be returned and the new element will not be inserted.
173  * Otherwise returns NULL.
174  */
175 static dmu_buf_impl_t *
176 dbuf_hash_insert(dmu_buf_impl_t *db)
177 {
178 	dbuf_hash_table_t *h = &dbuf_hash_table;
179 	objset_t *os = db->db_objset;
180 	uint64_t obj = db->db.db_object;
181 	int level = db->db_level;
182 	uint64_t blkid = db->db_blkid;
183 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
184 	uint64_t idx = hv & h->hash_table_mask;
185 	dmu_buf_impl_t *dbf;
186 
187 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
188 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
189 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
190 			mutex_enter(&dbf->db_mtx);
191 			if (dbf->db_state != DB_EVICTING) {
192 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
193 				return (dbf);
194 			}
195 			mutex_exit(&dbf->db_mtx);
196 		}
197 	}
198 
199 	mutex_enter(&db->db_mtx);
200 	db->db_hash_next = h->hash_table[idx];
201 	h->hash_table[idx] = db;
202 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
203 	atomic_inc_64(&dbuf_hash_count);
204 
205 	return (NULL);
206 }
207 
208 /*
209  * Remove an entry from the hash table.  It must be in the EVICTING state.
210  */
211 static void
212 dbuf_hash_remove(dmu_buf_impl_t *db)
213 {
214 	dbuf_hash_table_t *h = &dbuf_hash_table;
215 	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
216 	    db->db_level, db->db_blkid);
217 	uint64_t idx = hv & h->hash_table_mask;
218 	dmu_buf_impl_t *dbf, **dbp;
219 
220 	/*
221 	 * We musn't hold db_mtx to maintain lock ordering:
222 	 * DBUF_HASH_MUTEX > db_mtx.
223 	 */
224 	ASSERT(refcount_is_zero(&db->db_holds));
225 	ASSERT(db->db_state == DB_EVICTING);
226 	ASSERT(!MUTEX_HELD(&db->db_mtx));
227 
228 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
229 	dbp = &h->hash_table[idx];
230 	while ((dbf = *dbp) != db) {
231 		dbp = &dbf->db_hash_next;
232 		ASSERT(dbf != NULL);
233 	}
234 	*dbp = db->db_hash_next;
235 	db->db_hash_next = NULL;
236 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
237 	atomic_dec_64(&dbuf_hash_count);
238 }
239 
240 static arc_evict_func_t dbuf_do_evict;
241 
242 typedef enum {
243 	DBVU_EVICTING,
244 	DBVU_NOT_EVICTING
245 } dbvu_verify_type_t;
246 
247 static void
248 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
249 {
250 #ifdef ZFS_DEBUG
251 	int64_t holds;
252 
253 	if (db->db_user == NULL)
254 		return;
255 
256 	/* Only data blocks support the attachment of user data. */
257 	ASSERT(db->db_level == 0);
258 
259 	/* Clients must resolve a dbuf before attaching user data. */
260 	ASSERT(db->db.db_data != NULL);
261 	ASSERT3U(db->db_state, ==, DB_CACHED);
262 
263 	holds = refcount_count(&db->db_holds);
264 	if (verify_type == DBVU_EVICTING) {
265 		/*
266 		 * Immediate eviction occurs when holds == dirtycnt.
267 		 * For normal eviction buffers, holds is zero on
268 		 * eviction, except when dbuf_fix_old_data() calls
269 		 * dbuf_clear_data().  However, the hold count can grow
270 		 * during eviction even though db_mtx is held (see
271 		 * dmu_bonus_hold() for an example), so we can only
272 		 * test the generic invariant that holds >= dirtycnt.
273 		 */
274 		ASSERT3U(holds, >=, db->db_dirtycnt);
275 	} else {
276 		if (db->db_user_immediate_evict == TRUE)
277 			ASSERT3U(holds, >=, db->db_dirtycnt);
278 		else
279 			ASSERT3U(holds, >, 0);
280 	}
281 #endif
282 }
283 
284 static void
285 dbuf_evict_user(dmu_buf_impl_t *db)
286 {
287 	dmu_buf_user_t *dbu = db->db_user;
288 
289 	ASSERT(MUTEX_HELD(&db->db_mtx));
290 
291 	if (dbu == NULL)
292 		return;
293 
294 	dbuf_verify_user(db, DBVU_EVICTING);
295 	db->db_user = NULL;
296 
297 #ifdef ZFS_DEBUG
298 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
299 		*dbu->dbu_clear_on_evict_dbufp = NULL;
300 #endif
301 
302 	/*
303 	 * Invoke the callback from a taskq to avoid lock order reversals
304 	 * and limit stack depth.
305 	 */
306 	taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func, dbu, 0,
307 	    &dbu->dbu_tqent);
308 }
309 
310 boolean_t
311 dbuf_is_metadata(dmu_buf_impl_t *db)
312 {
313 	if (db->db_level > 0) {
314 		return (B_TRUE);
315 	} else {
316 		boolean_t is_metadata;
317 
318 		DB_DNODE_ENTER(db);
319 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
320 		DB_DNODE_EXIT(db);
321 
322 		return (is_metadata);
323 	}
324 }
325 
326 void
327 dbuf_evict(dmu_buf_impl_t *db)
328 {
329 	ASSERT(MUTEX_HELD(&db->db_mtx));
330 	ASSERT(db->db_buf == NULL);
331 	ASSERT(db->db_data_pending == NULL);
332 
333 	dbuf_clear(db);
334 	dbuf_destroy(db);
335 }
336 
337 void
338 dbuf_init(void)
339 {
340 	uint64_t hsize = 1ULL << 16;
341 	dbuf_hash_table_t *h = &dbuf_hash_table;
342 	int i;
343 
344 	/*
345 	 * The hash table is big enough to fill all of physical memory
346 	 * with an average 4K block size.  The table will take up
347 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
348 	 */
349 	while (hsize * 4096 < physmem * PAGESIZE)
350 		hsize <<= 1;
351 
352 retry:
353 	h->hash_table_mask = hsize - 1;
354 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
355 	if (h->hash_table == NULL) {
356 		/* XXX - we should really return an error instead of assert */
357 		ASSERT(hsize > (1ULL << 10));
358 		hsize >>= 1;
359 		goto retry;
360 	}
361 
362 	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
363 	    sizeof (dmu_buf_impl_t),
364 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
365 
366 	for (i = 0; i < DBUF_MUTEXES; i++)
367 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
368 
369 	/*
370 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
371 	 * configuration is not required.
372 	 */
373 	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
374 }
375 
376 void
377 dbuf_fini(void)
378 {
379 	dbuf_hash_table_t *h = &dbuf_hash_table;
380 	int i;
381 
382 	for (i = 0; i < DBUF_MUTEXES; i++)
383 		mutex_destroy(&h->hash_mutexes[i]);
384 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
385 	kmem_cache_destroy(dbuf_cache);
386 	taskq_destroy(dbu_evict_taskq);
387 }
388 
389 /*
390  * Other stuff.
391  */
392 
393 #ifdef ZFS_DEBUG
394 static void
395 dbuf_verify(dmu_buf_impl_t *db)
396 {
397 	dnode_t *dn;
398 	dbuf_dirty_record_t *dr;
399 
400 	ASSERT(MUTEX_HELD(&db->db_mtx));
401 
402 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
403 		return;
404 
405 	ASSERT(db->db_objset != NULL);
406 	DB_DNODE_ENTER(db);
407 	dn = DB_DNODE(db);
408 	if (dn == NULL) {
409 		ASSERT(db->db_parent == NULL);
410 		ASSERT(db->db_blkptr == NULL);
411 	} else {
412 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
413 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
414 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
415 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
416 		    db->db_blkid == DMU_SPILL_BLKID ||
417 		    !avl_is_empty(&dn->dn_dbufs));
418 	}
419 	if (db->db_blkid == DMU_BONUS_BLKID) {
420 		ASSERT(dn != NULL);
421 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
422 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
423 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
424 		ASSERT(dn != NULL);
425 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
426 		ASSERT0(db->db.db_offset);
427 	} else {
428 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
429 	}
430 
431 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
432 		ASSERT(dr->dr_dbuf == db);
433 
434 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
435 		ASSERT(dr->dr_dbuf == db);
436 
437 	/*
438 	 * We can't assert that db_size matches dn_datablksz because it
439 	 * can be momentarily different when another thread is doing
440 	 * dnode_set_blksz().
441 	 */
442 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
443 		dr = db->db_data_pending;
444 		/*
445 		 * It should only be modified in syncing context, so
446 		 * make sure we only have one copy of the data.
447 		 */
448 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
449 	}
450 
451 	/* verify db->db_blkptr */
452 	if (db->db_blkptr) {
453 		if (db->db_parent == dn->dn_dbuf) {
454 			/* db is pointed to by the dnode */
455 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
456 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
457 				ASSERT(db->db_parent == NULL);
458 			else
459 				ASSERT(db->db_parent != NULL);
460 			if (db->db_blkid != DMU_SPILL_BLKID)
461 				ASSERT3P(db->db_blkptr, ==,
462 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
463 		} else {
464 			/* db is pointed to by an indirect block */
465 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
466 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
467 			ASSERT3U(db->db_parent->db.db_object, ==,
468 			    db->db.db_object);
469 			/*
470 			 * dnode_grow_indblksz() can make this fail if we don't
471 			 * have the struct_rwlock.  XXX indblksz no longer
472 			 * grows.  safe to do this now?
473 			 */
474 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
475 				ASSERT3P(db->db_blkptr, ==,
476 				    ((blkptr_t *)db->db_parent->db.db_data +
477 				    db->db_blkid % epb));
478 			}
479 		}
480 	}
481 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
482 	    (db->db_buf == NULL || db->db_buf->b_data) &&
483 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
484 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
485 		/*
486 		 * If the blkptr isn't set but they have nonzero data,
487 		 * it had better be dirty, otherwise we'll lose that
488 		 * data when we evict this buffer.
489 		 */
490 		if (db->db_dirtycnt == 0) {
491 			uint64_t *buf = db->db.db_data;
492 			int i;
493 
494 			for (i = 0; i < db->db.db_size >> 3; i++) {
495 				ASSERT(buf[i] == 0);
496 			}
497 		}
498 	}
499 	DB_DNODE_EXIT(db);
500 }
501 #endif
502 
503 static void
504 dbuf_clear_data(dmu_buf_impl_t *db)
505 {
506 	ASSERT(MUTEX_HELD(&db->db_mtx));
507 	dbuf_evict_user(db);
508 	db->db_buf = NULL;
509 	db->db.db_data = NULL;
510 	if (db->db_state != DB_NOFILL)
511 		db->db_state = DB_UNCACHED;
512 }
513 
514 static void
515 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
516 {
517 	ASSERT(MUTEX_HELD(&db->db_mtx));
518 	ASSERT(buf != NULL);
519 
520 	db->db_buf = buf;
521 	ASSERT(buf->b_data != NULL);
522 	db->db.db_data = buf->b_data;
523 	if (!arc_released(buf))
524 		arc_set_callback(buf, dbuf_do_evict, db);
525 }
526 
527 /*
528  * Loan out an arc_buf for read.  Return the loaned arc_buf.
529  */
530 arc_buf_t *
531 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
532 {
533 	arc_buf_t *abuf;
534 
535 	mutex_enter(&db->db_mtx);
536 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
537 		int blksz = db->db.db_size;
538 		spa_t *spa = db->db_objset->os_spa;
539 
540 		mutex_exit(&db->db_mtx);
541 		abuf = arc_loan_buf(spa, blksz);
542 		bcopy(db->db.db_data, abuf->b_data, blksz);
543 	} else {
544 		abuf = db->db_buf;
545 		arc_loan_inuse_buf(abuf, db);
546 		dbuf_clear_data(db);
547 		mutex_exit(&db->db_mtx);
548 	}
549 	return (abuf);
550 }
551 
552 /*
553  * Calculate which level n block references the data at the level 0 offset
554  * provided.
555  */
556 uint64_t
557 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
558 {
559 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
560 		/*
561 		 * The level n blkid is equal to the level 0 blkid divided by
562 		 * the number of level 0s in a level n block.
563 		 *
564 		 * The level 0 blkid is offset >> datablkshift =
565 		 * offset / 2^datablkshift.
566 		 *
567 		 * The number of level 0s in a level n is the number of block
568 		 * pointers in an indirect block, raised to the power of level.
569 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
570 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
571 		 *
572 		 * Thus, the level n blkid is: offset /
573 		 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
574 		 * = offset / 2^(datablkshift + level *
575 		 *   (indblkshift - SPA_BLKPTRSHIFT))
576 		 * = offset >> (datablkshift + level *
577 		 *   (indblkshift - SPA_BLKPTRSHIFT))
578 		 */
579 		return (offset >> (dn->dn_datablkshift + level *
580 		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
581 	} else {
582 		ASSERT3U(offset, <, dn->dn_datablksz);
583 		return (0);
584 	}
585 }
586 
587 static void
588 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
589 {
590 	dmu_buf_impl_t *db = vdb;
591 
592 	mutex_enter(&db->db_mtx);
593 	ASSERT3U(db->db_state, ==, DB_READ);
594 	/*
595 	 * All reads are synchronous, so we must have a hold on the dbuf
596 	 */
597 	ASSERT(refcount_count(&db->db_holds) > 0);
598 	ASSERT(db->db_buf == NULL);
599 	ASSERT(db->db.db_data == NULL);
600 	if (db->db_level == 0 && db->db_freed_in_flight) {
601 		/* we were freed in flight; disregard any error */
602 		arc_release(buf, db);
603 		bzero(buf->b_data, db->db.db_size);
604 		arc_buf_freeze(buf);
605 		db->db_freed_in_flight = FALSE;
606 		dbuf_set_data(db, buf);
607 		db->db_state = DB_CACHED;
608 	} else if (zio == NULL || zio->io_error == 0) {
609 		dbuf_set_data(db, buf);
610 		db->db_state = DB_CACHED;
611 	} else {
612 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
613 		ASSERT3P(db->db_buf, ==, NULL);
614 		VERIFY(arc_buf_remove_ref(buf, db));
615 		db->db_state = DB_UNCACHED;
616 	}
617 	cv_broadcast(&db->db_changed);
618 	dbuf_rele_and_unlock(db, NULL);
619 }
620 
621 static void
622 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
623 {
624 	dnode_t *dn;
625 	zbookmark_phys_t zb;
626 	arc_flags_t aflags = ARC_FLAG_NOWAIT;
627 
628 	DB_DNODE_ENTER(db);
629 	dn = DB_DNODE(db);
630 	ASSERT(!refcount_is_zero(&db->db_holds));
631 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
632 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
633 	ASSERT(MUTEX_HELD(&db->db_mtx));
634 	ASSERT(db->db_state == DB_UNCACHED);
635 	ASSERT(db->db_buf == NULL);
636 
637 	if (db->db_blkid == DMU_BONUS_BLKID) {
638 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
639 
640 		ASSERT3U(bonuslen, <=, db->db.db_size);
641 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
642 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
643 		if (bonuslen < DN_MAX_BONUSLEN)
644 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
645 		if (bonuslen)
646 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
647 		DB_DNODE_EXIT(db);
648 		db->db_state = DB_CACHED;
649 		mutex_exit(&db->db_mtx);
650 		return;
651 	}
652 
653 	/*
654 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
655 	 * processes the delete record and clears the bp while we are waiting
656 	 * for the dn_mtx (resulting in a "no" from block_freed).
657 	 */
658 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
659 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
660 	    BP_IS_HOLE(db->db_blkptr)))) {
661 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
662 
663 		DB_DNODE_EXIT(db);
664 		dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
665 		    db->db.db_size, db, type));
666 		bzero(db->db.db_data, db->db.db_size);
667 		db->db_state = DB_CACHED;
668 		mutex_exit(&db->db_mtx);
669 		return;
670 	}
671 
672 	DB_DNODE_EXIT(db);
673 
674 	db->db_state = DB_READ;
675 	mutex_exit(&db->db_mtx);
676 
677 	if (DBUF_IS_L2CACHEABLE(db))
678 		aflags |= ARC_FLAG_L2CACHE;
679 	if (DBUF_IS_L2COMPRESSIBLE(db))
680 		aflags |= ARC_FLAG_L2COMPRESS;
681 
682 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
683 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
684 	    db->db.db_object, db->db_level, db->db_blkid);
685 
686 	dbuf_add_ref(db, NULL);
687 
688 	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
689 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
690 	    (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
691 	    &aflags, &zb);
692 }
693 
694 int
695 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
696 {
697 	int err = 0;
698 	boolean_t havepzio = (zio != NULL);
699 	boolean_t prefetch;
700 	dnode_t *dn;
701 
702 	/*
703 	 * We don't have to hold the mutex to check db_state because it
704 	 * can't be freed while we have a hold on the buffer.
705 	 */
706 	ASSERT(!refcount_is_zero(&db->db_holds));
707 
708 	if (db->db_state == DB_NOFILL)
709 		return (SET_ERROR(EIO));
710 
711 	DB_DNODE_ENTER(db);
712 	dn = DB_DNODE(db);
713 	if ((flags & DB_RF_HAVESTRUCT) == 0)
714 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
715 
716 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
717 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
718 	    DBUF_IS_CACHEABLE(db);
719 
720 	mutex_enter(&db->db_mtx);
721 	if (db->db_state == DB_CACHED) {
722 		mutex_exit(&db->db_mtx);
723 		if (prefetch)
724 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
725 		if ((flags & DB_RF_HAVESTRUCT) == 0)
726 			rw_exit(&dn->dn_struct_rwlock);
727 		DB_DNODE_EXIT(db);
728 	} else if (db->db_state == DB_UNCACHED) {
729 		spa_t *spa = dn->dn_objset->os_spa;
730 
731 		if (zio == NULL)
732 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
733 		dbuf_read_impl(db, zio, flags);
734 
735 		/* dbuf_read_impl has dropped db_mtx for us */
736 
737 		if (prefetch)
738 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
739 
740 		if ((flags & DB_RF_HAVESTRUCT) == 0)
741 			rw_exit(&dn->dn_struct_rwlock);
742 		DB_DNODE_EXIT(db);
743 
744 		if (!havepzio)
745 			err = zio_wait(zio);
746 	} else {
747 		/*
748 		 * Another reader came in while the dbuf was in flight
749 		 * between UNCACHED and CACHED.  Either a writer will finish
750 		 * writing the buffer (sending the dbuf to CACHED) or the
751 		 * first reader's request will reach the read_done callback
752 		 * and send the dbuf to CACHED.  Otherwise, a failure
753 		 * occurred and the dbuf went to UNCACHED.
754 		 */
755 		mutex_exit(&db->db_mtx);
756 		if (prefetch)
757 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
758 		if ((flags & DB_RF_HAVESTRUCT) == 0)
759 			rw_exit(&dn->dn_struct_rwlock);
760 		DB_DNODE_EXIT(db);
761 
762 		/* Skip the wait per the caller's request. */
763 		mutex_enter(&db->db_mtx);
764 		if ((flags & DB_RF_NEVERWAIT) == 0) {
765 			while (db->db_state == DB_READ ||
766 			    db->db_state == DB_FILL) {
767 				ASSERT(db->db_state == DB_READ ||
768 				    (flags & DB_RF_HAVESTRUCT) == 0);
769 				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
770 				    db, zio_t *, zio);
771 				cv_wait(&db->db_changed, &db->db_mtx);
772 			}
773 			if (db->db_state == DB_UNCACHED)
774 				err = SET_ERROR(EIO);
775 		}
776 		mutex_exit(&db->db_mtx);
777 	}
778 
779 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
780 	return (err);
781 }
782 
783 static void
784 dbuf_noread(dmu_buf_impl_t *db)
785 {
786 	ASSERT(!refcount_is_zero(&db->db_holds));
787 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
788 	mutex_enter(&db->db_mtx);
789 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
790 		cv_wait(&db->db_changed, &db->db_mtx);
791 	if (db->db_state == DB_UNCACHED) {
792 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
793 		spa_t *spa = db->db_objset->os_spa;
794 
795 		ASSERT(db->db_buf == NULL);
796 		ASSERT(db->db.db_data == NULL);
797 		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
798 		db->db_state = DB_FILL;
799 	} else if (db->db_state == DB_NOFILL) {
800 		dbuf_clear_data(db);
801 	} else {
802 		ASSERT3U(db->db_state, ==, DB_CACHED);
803 	}
804 	mutex_exit(&db->db_mtx);
805 }
806 
807 /*
808  * This is our just-in-time copy function.  It makes a copy of
809  * buffers, that have been modified in a previous transaction
810  * group, before we modify them in the current active group.
811  *
812  * This function is used in two places: when we are dirtying a
813  * buffer for the first time in a txg, and when we are freeing
814  * a range in a dnode that includes this buffer.
815  *
816  * Note that when we are called from dbuf_free_range() we do
817  * not put a hold on the buffer, we just traverse the active
818  * dbuf list for the dnode.
819  */
820 static void
821 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
822 {
823 	dbuf_dirty_record_t *dr = db->db_last_dirty;
824 
825 	ASSERT(MUTEX_HELD(&db->db_mtx));
826 	ASSERT(db->db.db_data != NULL);
827 	ASSERT(db->db_level == 0);
828 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
829 
830 	if (dr == NULL ||
831 	    (dr->dt.dl.dr_data !=
832 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
833 		return;
834 
835 	/*
836 	 * If the last dirty record for this dbuf has not yet synced
837 	 * and its referencing the dbuf data, either:
838 	 *	reset the reference to point to a new copy,
839 	 * or (if there a no active holders)
840 	 *	just null out the current db_data pointer.
841 	 */
842 	ASSERT(dr->dr_txg >= txg - 2);
843 	if (db->db_blkid == DMU_BONUS_BLKID) {
844 		/* Note that the data bufs here are zio_bufs */
845 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
846 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
847 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
848 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
849 		int size = db->db.db_size;
850 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
851 		spa_t *spa = db->db_objset->os_spa;
852 
853 		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
854 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
855 	} else {
856 		dbuf_clear_data(db);
857 	}
858 }
859 
860 void
861 dbuf_unoverride(dbuf_dirty_record_t *dr)
862 {
863 	dmu_buf_impl_t *db = dr->dr_dbuf;
864 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
865 	uint64_t txg = dr->dr_txg;
866 
867 	ASSERT(MUTEX_HELD(&db->db_mtx));
868 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
869 	ASSERT(db->db_level == 0);
870 
871 	if (db->db_blkid == DMU_BONUS_BLKID ||
872 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
873 		return;
874 
875 	ASSERT(db->db_data_pending != dr);
876 
877 	/* free this block */
878 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
879 		zio_free(db->db_objset->os_spa, txg, bp);
880 
881 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
882 	dr->dt.dl.dr_nopwrite = B_FALSE;
883 
884 	/*
885 	 * Release the already-written buffer, so we leave it in
886 	 * a consistent dirty state.  Note that all callers are
887 	 * modifying the buffer, so they will immediately do
888 	 * another (redundant) arc_release().  Therefore, leave
889 	 * the buf thawed to save the effort of freezing &
890 	 * immediately re-thawing it.
891 	 */
892 	arc_release(dr->dt.dl.dr_data, db);
893 }
894 
895 /*
896  * Evict (if its unreferenced) or clear (if its referenced) any level-0
897  * data blocks in the free range, so that any future readers will find
898  * empty blocks.
899  *
900  * This is a no-op if the dataset is in the middle of an incremental
901  * receive; see comment below for details.
902  */
903 void
904 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
905     dmu_tx_t *tx)
906 {
907 	dmu_buf_impl_t db_search;
908 	dmu_buf_impl_t *db, *db_next;
909 	uint64_t txg = tx->tx_txg;
910 	avl_index_t where;
911 
912 	if (end_blkid > dn->dn_maxblkid && (end_blkid != DMU_SPILL_BLKID))
913 		end_blkid = dn->dn_maxblkid;
914 	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
915 
916 	db_search.db_level = 0;
917 	db_search.db_blkid = start_blkid;
918 	db_search.db_state = DB_SEARCH;
919 
920 	mutex_enter(&dn->dn_dbufs_mtx);
921 	if (start_blkid >= dn->dn_unlisted_l0_blkid) {
922 		/* There can't be any dbufs in this range; no need to search. */
923 #ifdef DEBUG
924 		db = avl_find(&dn->dn_dbufs, &db_search, &where);
925 		ASSERT3P(db, ==, NULL);
926 		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
927 		ASSERT(db == NULL || db->db_level > 0);
928 #endif
929 		mutex_exit(&dn->dn_dbufs_mtx);
930 		return;
931 	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
932 		/*
933 		 * If we are receiving, we expect there to be no dbufs in
934 		 * the range to be freed, because receive modifies each
935 		 * block at most once, and in offset order.  If this is
936 		 * not the case, it can lead to performance problems,
937 		 * so note that we unexpectedly took the slow path.
938 		 */
939 		atomic_inc_64(&zfs_free_range_recv_miss);
940 	}
941 
942 	db = avl_find(&dn->dn_dbufs, &db_search, &where);
943 	ASSERT3P(db, ==, NULL);
944 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
945 
946 	for (; db != NULL; db = db_next) {
947 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
948 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
949 
950 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
951 			break;
952 		}
953 		ASSERT3U(db->db_blkid, >=, start_blkid);
954 
955 		/* found a level 0 buffer in the range */
956 		mutex_enter(&db->db_mtx);
957 		if (dbuf_undirty(db, tx)) {
958 			/* mutex has been dropped and dbuf destroyed */
959 			continue;
960 		}
961 
962 		if (db->db_state == DB_UNCACHED ||
963 		    db->db_state == DB_NOFILL ||
964 		    db->db_state == DB_EVICTING) {
965 			ASSERT(db->db.db_data == NULL);
966 			mutex_exit(&db->db_mtx);
967 			continue;
968 		}
969 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
970 			/* will be handled in dbuf_read_done or dbuf_rele */
971 			db->db_freed_in_flight = TRUE;
972 			mutex_exit(&db->db_mtx);
973 			continue;
974 		}
975 		if (refcount_count(&db->db_holds) == 0) {
976 			ASSERT(db->db_buf);
977 			dbuf_clear(db);
978 			continue;
979 		}
980 		/* The dbuf is referenced */
981 
982 		if (db->db_last_dirty != NULL) {
983 			dbuf_dirty_record_t *dr = db->db_last_dirty;
984 
985 			if (dr->dr_txg == txg) {
986 				/*
987 				 * This buffer is "in-use", re-adjust the file
988 				 * size to reflect that this buffer may
989 				 * contain new data when we sync.
990 				 */
991 				if (db->db_blkid != DMU_SPILL_BLKID &&
992 				    db->db_blkid > dn->dn_maxblkid)
993 					dn->dn_maxblkid = db->db_blkid;
994 				dbuf_unoverride(dr);
995 			} else {
996 				/*
997 				 * This dbuf is not dirty in the open context.
998 				 * Either uncache it (if its not referenced in
999 				 * the open context) or reset its contents to
1000 				 * empty.
1001 				 */
1002 				dbuf_fix_old_data(db, txg);
1003 			}
1004 		}
1005 		/* clear the contents if its cached */
1006 		if (db->db_state == DB_CACHED) {
1007 			ASSERT(db->db.db_data != NULL);
1008 			arc_release(db->db_buf, db);
1009 			bzero(db->db.db_data, db->db.db_size);
1010 			arc_buf_freeze(db->db_buf);
1011 		}
1012 
1013 		mutex_exit(&db->db_mtx);
1014 	}
1015 	mutex_exit(&dn->dn_dbufs_mtx);
1016 }
1017 
1018 static int
1019 dbuf_block_freeable(dmu_buf_impl_t *db)
1020 {
1021 	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
1022 	uint64_t birth_txg = 0;
1023 
1024 	/*
1025 	 * We don't need any locking to protect db_blkptr:
1026 	 * If it's syncing, then db_last_dirty will be set
1027 	 * so we'll ignore db_blkptr.
1028 	 *
1029 	 * This logic ensures that only block births for
1030 	 * filled blocks are considered.
1031 	 */
1032 	ASSERT(MUTEX_HELD(&db->db_mtx));
1033 	if (db->db_last_dirty && (db->db_blkptr == NULL ||
1034 	    !BP_IS_HOLE(db->db_blkptr))) {
1035 		birth_txg = db->db_last_dirty->dr_txg;
1036 	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1037 		birth_txg = db->db_blkptr->blk_birth;
1038 	}
1039 
1040 	/*
1041 	 * If this block don't exist or is in a snapshot, it can't be freed.
1042 	 * Don't pass the bp to dsl_dataset_block_freeable() since we
1043 	 * are holding the db_mtx lock and might deadlock if we are
1044 	 * prefetching a dedup-ed block.
1045 	 */
1046 	if (birth_txg != 0)
1047 		return (ds == NULL ||
1048 		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
1049 	else
1050 		return (B_FALSE);
1051 }
1052 
1053 void
1054 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1055 {
1056 	arc_buf_t *buf, *obuf;
1057 	int osize = db->db.db_size;
1058 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1059 	dnode_t *dn;
1060 
1061 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1062 
1063 	DB_DNODE_ENTER(db);
1064 	dn = DB_DNODE(db);
1065 
1066 	/* XXX does *this* func really need the lock? */
1067 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1068 
1069 	/*
1070 	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1071 	 * is OK, because there can be no other references to the db
1072 	 * when we are changing its size, so no concurrent DB_FILL can
1073 	 * be happening.
1074 	 */
1075 	/*
1076 	 * XXX we should be doing a dbuf_read, checking the return
1077 	 * value and returning that up to our callers
1078 	 */
1079 	dmu_buf_will_dirty(&db->db, tx);
1080 
1081 	/* create the data buffer for the new block */
1082 	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
1083 
1084 	/* copy old block data to the new block */
1085 	obuf = db->db_buf;
1086 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1087 	/* zero the remainder */
1088 	if (size > osize)
1089 		bzero((uint8_t *)buf->b_data + osize, size - osize);
1090 
1091 	mutex_enter(&db->db_mtx);
1092 	dbuf_set_data(db, buf);
1093 	VERIFY(arc_buf_remove_ref(obuf, db));
1094 	db->db.db_size = size;
1095 
1096 	if (db->db_level == 0) {
1097 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1098 		db->db_last_dirty->dt.dl.dr_data = buf;
1099 	}
1100 	mutex_exit(&db->db_mtx);
1101 
1102 	dnode_willuse_space(dn, size-osize, tx);
1103 	DB_DNODE_EXIT(db);
1104 }
1105 
1106 void
1107 dbuf_release_bp(dmu_buf_impl_t *db)
1108 {
1109 	objset_t *os = db->db_objset;
1110 
1111 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1112 	ASSERT(arc_released(os->os_phys_buf) ||
1113 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1114 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1115 
1116 	(void) arc_release(db->db_buf, db);
1117 }
1118 
1119 /*
1120  * We already have a dirty record for this TXG, and we are being
1121  * dirtied again.
1122  */
1123 static void
1124 dbuf_redirty(dbuf_dirty_record_t *dr)
1125 {
1126 	dmu_buf_impl_t *db = dr->dr_dbuf;
1127 
1128 	ASSERT(MUTEX_HELD(&db->db_mtx));
1129 
1130 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1131 		/*
1132 		 * If this buffer has already been written out,
1133 		 * we now need to reset its state.
1134 		 */
1135 		dbuf_unoverride(dr);
1136 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1137 		    db->db_state != DB_NOFILL) {
1138 			/* Already released on initial dirty, so just thaw. */
1139 			ASSERT(arc_released(db->db_buf));
1140 			arc_buf_thaw(db->db_buf);
1141 		}
1142 	}
1143 }
1144 
1145 dbuf_dirty_record_t *
1146 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1147 {
1148 	dnode_t *dn;
1149 	objset_t *os;
1150 	dbuf_dirty_record_t **drp, *dr;
1151 	int drop_struct_lock = FALSE;
1152 	boolean_t do_free_accounting = B_FALSE;
1153 	int txgoff = tx->tx_txg & TXG_MASK;
1154 
1155 	ASSERT(tx->tx_txg != 0);
1156 	ASSERT(!refcount_is_zero(&db->db_holds));
1157 	DMU_TX_DIRTY_BUF(tx, db);
1158 
1159 	DB_DNODE_ENTER(db);
1160 	dn = DB_DNODE(db);
1161 	/*
1162 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1163 	 * objects may be dirtied in syncing context, but only if they
1164 	 * were already pre-dirtied in open context.
1165 	 */
1166 	ASSERT(!dmu_tx_is_syncing(tx) ||
1167 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1168 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1169 	    dn->dn_objset->os_dsl_dataset == NULL);
1170 	/*
1171 	 * We make this assert for private objects as well, but after we
1172 	 * check if we're already dirty.  They are allowed to re-dirty
1173 	 * in syncing context.
1174 	 */
1175 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1176 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1177 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1178 
1179 	mutex_enter(&db->db_mtx);
1180 	/*
1181 	 * XXX make this true for indirects too?  The problem is that
1182 	 * transactions created with dmu_tx_create_assigned() from
1183 	 * syncing context don't bother holding ahead.
1184 	 */
1185 	ASSERT(db->db_level != 0 ||
1186 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1187 	    db->db_state == DB_NOFILL);
1188 
1189 	mutex_enter(&dn->dn_mtx);
1190 	/*
1191 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1192 	 * initialize the objset.
1193 	 */
1194 	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1195 	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1196 		dn->dn_dirtyctx =
1197 		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1198 		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1199 		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1200 	}
1201 	mutex_exit(&dn->dn_mtx);
1202 
1203 	if (db->db_blkid == DMU_SPILL_BLKID)
1204 		dn->dn_have_spill = B_TRUE;
1205 
1206 	/*
1207 	 * If this buffer is already dirty, we're done.
1208 	 */
1209 	drp = &db->db_last_dirty;
1210 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1211 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1212 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1213 		drp = &dr->dr_next;
1214 	if (dr && dr->dr_txg == tx->tx_txg) {
1215 		DB_DNODE_EXIT(db);
1216 
1217 		dbuf_redirty(dr);
1218 		mutex_exit(&db->db_mtx);
1219 		return (dr);
1220 	}
1221 
1222 	/*
1223 	 * Only valid if not already dirty.
1224 	 */
1225 	ASSERT(dn->dn_object == 0 ||
1226 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1227 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1228 
1229 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1230 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1231 	    dn->dn_phys->dn_nlevels > db->db_level ||
1232 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1233 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1234 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1235 
1236 	/*
1237 	 * We should only be dirtying in syncing context if it's the
1238 	 * mos or we're initializing the os or it's a special object.
1239 	 * However, we are allowed to dirty in syncing context provided
1240 	 * we already dirtied it in open context.  Hence we must make
1241 	 * this assertion only if we're not already dirty.
1242 	 */
1243 	os = dn->dn_objset;
1244 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1245 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1246 	ASSERT(db->db.db_size != 0);
1247 
1248 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1249 
1250 	if (db->db_blkid != DMU_BONUS_BLKID) {
1251 		/*
1252 		 * Update the accounting.
1253 		 * Note: we delay "free accounting" until after we drop
1254 		 * the db_mtx.  This keeps us from grabbing other locks
1255 		 * (and possibly deadlocking) in bp_get_dsize() while
1256 		 * also holding the db_mtx.
1257 		 */
1258 		dnode_willuse_space(dn, db->db.db_size, tx);
1259 		do_free_accounting = dbuf_block_freeable(db);
1260 	}
1261 
1262 	/*
1263 	 * If this buffer is dirty in an old transaction group we need
1264 	 * to make a copy of it so that the changes we make in this
1265 	 * transaction group won't leak out when we sync the older txg.
1266 	 */
1267 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1268 	if (db->db_level == 0) {
1269 		void *data_old = db->db_buf;
1270 
1271 		if (db->db_state != DB_NOFILL) {
1272 			if (db->db_blkid == DMU_BONUS_BLKID) {
1273 				dbuf_fix_old_data(db, tx->tx_txg);
1274 				data_old = db->db.db_data;
1275 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1276 				/*
1277 				 * Release the data buffer from the cache so
1278 				 * that we can modify it without impacting
1279 				 * possible other users of this cached data
1280 				 * block.  Note that indirect blocks and
1281 				 * private objects are not released until the
1282 				 * syncing state (since they are only modified
1283 				 * then).
1284 				 */
1285 				arc_release(db->db_buf, db);
1286 				dbuf_fix_old_data(db, tx->tx_txg);
1287 				data_old = db->db_buf;
1288 			}
1289 			ASSERT(data_old != NULL);
1290 		}
1291 		dr->dt.dl.dr_data = data_old;
1292 	} else {
1293 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1294 		list_create(&dr->dt.di.dr_children,
1295 		    sizeof (dbuf_dirty_record_t),
1296 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1297 	}
1298 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1299 		dr->dr_accounted = db->db.db_size;
1300 	dr->dr_dbuf = db;
1301 	dr->dr_txg = tx->tx_txg;
1302 	dr->dr_next = *drp;
1303 	*drp = dr;
1304 
1305 	/*
1306 	 * We could have been freed_in_flight between the dbuf_noread
1307 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1308 	 * happened after the free.
1309 	 */
1310 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1311 	    db->db_blkid != DMU_SPILL_BLKID) {
1312 		mutex_enter(&dn->dn_mtx);
1313 		if (dn->dn_free_ranges[txgoff] != NULL) {
1314 			range_tree_clear(dn->dn_free_ranges[txgoff],
1315 			    db->db_blkid, 1);
1316 		}
1317 		mutex_exit(&dn->dn_mtx);
1318 		db->db_freed_in_flight = FALSE;
1319 	}
1320 
1321 	/*
1322 	 * This buffer is now part of this txg
1323 	 */
1324 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1325 	db->db_dirtycnt += 1;
1326 	ASSERT3U(db->db_dirtycnt, <=, 3);
1327 
1328 	mutex_exit(&db->db_mtx);
1329 
1330 	if (db->db_blkid == DMU_BONUS_BLKID ||
1331 	    db->db_blkid == DMU_SPILL_BLKID) {
1332 		mutex_enter(&dn->dn_mtx);
1333 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1334 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1335 		mutex_exit(&dn->dn_mtx);
1336 		dnode_setdirty(dn, tx);
1337 		DB_DNODE_EXIT(db);
1338 		return (dr);
1339 	} else if (do_free_accounting) {
1340 		blkptr_t *bp = db->db_blkptr;
1341 		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1342 		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1343 		/*
1344 		 * This is only a guess -- if the dbuf is dirty
1345 		 * in a previous txg, we don't know how much
1346 		 * space it will use on disk yet.  We should
1347 		 * really have the struct_rwlock to access
1348 		 * db_blkptr, but since this is just a guess,
1349 		 * it's OK if we get an odd answer.
1350 		 */
1351 		ddt_prefetch(os->os_spa, bp);
1352 		dnode_willuse_space(dn, -willfree, tx);
1353 	}
1354 
1355 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1356 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1357 		drop_struct_lock = TRUE;
1358 	}
1359 
1360 	if (db->db_level == 0) {
1361 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1362 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1363 	}
1364 
1365 	if (db->db_level+1 < dn->dn_nlevels) {
1366 		dmu_buf_impl_t *parent = db->db_parent;
1367 		dbuf_dirty_record_t *di;
1368 		int parent_held = FALSE;
1369 
1370 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1371 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1372 
1373 			parent = dbuf_hold_level(dn, db->db_level+1,
1374 			    db->db_blkid >> epbs, FTAG);
1375 			ASSERT(parent != NULL);
1376 			parent_held = TRUE;
1377 		}
1378 		if (drop_struct_lock)
1379 			rw_exit(&dn->dn_struct_rwlock);
1380 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1381 		di = dbuf_dirty(parent, tx);
1382 		if (parent_held)
1383 			dbuf_rele(parent, FTAG);
1384 
1385 		mutex_enter(&db->db_mtx);
1386 		/*
1387 		 * Since we've dropped the mutex, it's possible that
1388 		 * dbuf_undirty() might have changed this out from under us.
1389 		 */
1390 		if (db->db_last_dirty == dr ||
1391 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1392 			mutex_enter(&di->dt.di.dr_mtx);
1393 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1394 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1395 			list_insert_tail(&di->dt.di.dr_children, dr);
1396 			mutex_exit(&di->dt.di.dr_mtx);
1397 			dr->dr_parent = di;
1398 		}
1399 		mutex_exit(&db->db_mtx);
1400 	} else {
1401 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1402 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1403 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1404 		mutex_enter(&dn->dn_mtx);
1405 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1406 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1407 		mutex_exit(&dn->dn_mtx);
1408 		if (drop_struct_lock)
1409 			rw_exit(&dn->dn_struct_rwlock);
1410 	}
1411 
1412 	dnode_setdirty(dn, tx);
1413 	DB_DNODE_EXIT(db);
1414 	return (dr);
1415 }
1416 
1417 /*
1418  * Undirty a buffer in the transaction group referenced by the given
1419  * transaction.  Return whether this evicted the dbuf.
1420  */
1421 static boolean_t
1422 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1423 {
1424 	dnode_t *dn;
1425 	uint64_t txg = tx->tx_txg;
1426 	dbuf_dirty_record_t *dr, **drp;
1427 
1428 	ASSERT(txg != 0);
1429 
1430 	/*
1431 	 * Due to our use of dn_nlevels below, this can only be called
1432 	 * in open context, unless we are operating on the MOS.
1433 	 * From syncing context, dn_nlevels may be different from the
1434 	 * dn_nlevels used when dbuf was dirtied.
1435 	 */
1436 	ASSERT(db->db_objset ==
1437 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1438 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1439 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1440 	ASSERT0(db->db_level);
1441 	ASSERT(MUTEX_HELD(&db->db_mtx));
1442 
1443 	/*
1444 	 * If this buffer is not dirty, we're done.
1445 	 */
1446 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1447 		if (dr->dr_txg <= txg)
1448 			break;
1449 	if (dr == NULL || dr->dr_txg < txg)
1450 		return (B_FALSE);
1451 	ASSERT(dr->dr_txg == txg);
1452 	ASSERT(dr->dr_dbuf == db);
1453 
1454 	DB_DNODE_ENTER(db);
1455 	dn = DB_DNODE(db);
1456 
1457 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1458 
1459 	ASSERT(db->db.db_size != 0);
1460 
1461 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1462 	    dr->dr_accounted, txg);
1463 
1464 	*drp = dr->dr_next;
1465 
1466 	/*
1467 	 * Note that there are three places in dbuf_dirty()
1468 	 * where this dirty record may be put on a list.
1469 	 * Make sure to do a list_remove corresponding to
1470 	 * every one of those list_insert calls.
1471 	 */
1472 	if (dr->dr_parent) {
1473 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1474 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1475 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1476 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1477 	    db->db_level + 1 == dn->dn_nlevels) {
1478 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1479 		mutex_enter(&dn->dn_mtx);
1480 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1481 		mutex_exit(&dn->dn_mtx);
1482 	}
1483 	DB_DNODE_EXIT(db);
1484 
1485 	if (db->db_state != DB_NOFILL) {
1486 		dbuf_unoverride(dr);
1487 
1488 		ASSERT(db->db_buf != NULL);
1489 		ASSERT(dr->dt.dl.dr_data != NULL);
1490 		if (dr->dt.dl.dr_data != db->db_buf)
1491 			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1492 	}
1493 
1494 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1495 
1496 	ASSERT(db->db_dirtycnt > 0);
1497 	db->db_dirtycnt -= 1;
1498 
1499 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1500 		arc_buf_t *buf = db->db_buf;
1501 
1502 		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1503 		dbuf_clear_data(db);
1504 		VERIFY(arc_buf_remove_ref(buf, db));
1505 		dbuf_evict(db);
1506 		return (B_TRUE);
1507 	}
1508 
1509 	return (B_FALSE);
1510 }
1511 
1512 void
1513 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1514 {
1515 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1516 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1517 
1518 	ASSERT(tx->tx_txg != 0);
1519 	ASSERT(!refcount_is_zero(&db->db_holds));
1520 
1521 	/*
1522 	 * Quick check for dirtyness.  For already dirty blocks, this
1523 	 * reduces runtime of this function by >90%, and overall performance
1524 	 * by 50% for some workloads (e.g. file deletion with indirect blocks
1525 	 * cached).
1526 	 */
1527 	mutex_enter(&db->db_mtx);
1528 	dbuf_dirty_record_t *dr;
1529 	for (dr = db->db_last_dirty;
1530 	    dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1531 		/*
1532 		 * It's possible that it is already dirty but not cached,
1533 		 * because there are some calls to dbuf_dirty() that don't
1534 		 * go through dmu_buf_will_dirty().
1535 		 */
1536 		if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1537 			/* This dbuf is already dirty and cached. */
1538 			dbuf_redirty(dr);
1539 			mutex_exit(&db->db_mtx);
1540 			return;
1541 		}
1542 	}
1543 	mutex_exit(&db->db_mtx);
1544 
1545 	DB_DNODE_ENTER(db);
1546 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1547 		rf |= DB_RF_HAVESTRUCT;
1548 	DB_DNODE_EXIT(db);
1549 	(void) dbuf_read(db, NULL, rf);
1550 	(void) dbuf_dirty(db, tx);
1551 }
1552 
1553 void
1554 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1555 {
1556 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1557 
1558 	db->db_state = DB_NOFILL;
1559 
1560 	dmu_buf_will_fill(db_fake, tx);
1561 }
1562 
1563 void
1564 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1565 {
1566 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1567 
1568 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1569 	ASSERT(tx->tx_txg != 0);
1570 	ASSERT(db->db_level == 0);
1571 	ASSERT(!refcount_is_zero(&db->db_holds));
1572 
1573 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1574 	    dmu_tx_private_ok(tx));
1575 
1576 	dbuf_noread(db);
1577 	(void) dbuf_dirty(db, tx);
1578 }
1579 
1580 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1581 /* ARGSUSED */
1582 void
1583 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1584 {
1585 	mutex_enter(&db->db_mtx);
1586 	DBUF_VERIFY(db);
1587 
1588 	if (db->db_state == DB_FILL) {
1589 		if (db->db_level == 0 && db->db_freed_in_flight) {
1590 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1591 			/* we were freed while filling */
1592 			/* XXX dbuf_undirty? */
1593 			bzero(db->db.db_data, db->db.db_size);
1594 			db->db_freed_in_flight = FALSE;
1595 		}
1596 		db->db_state = DB_CACHED;
1597 		cv_broadcast(&db->db_changed);
1598 	}
1599 	mutex_exit(&db->db_mtx);
1600 }
1601 
1602 void
1603 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1604     bp_embedded_type_t etype, enum zio_compress comp,
1605     int uncompressed_size, int compressed_size, int byteorder,
1606     dmu_tx_t *tx)
1607 {
1608 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1609 	struct dirty_leaf *dl;
1610 	dmu_object_type_t type;
1611 
1612 	if (etype == BP_EMBEDDED_TYPE_DATA) {
1613 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1614 		    SPA_FEATURE_EMBEDDED_DATA));
1615 	}
1616 
1617 	DB_DNODE_ENTER(db);
1618 	type = DB_DNODE(db)->dn_type;
1619 	DB_DNODE_EXIT(db);
1620 
1621 	ASSERT0(db->db_level);
1622 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1623 
1624 	dmu_buf_will_not_fill(dbuf, tx);
1625 
1626 	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1627 	dl = &db->db_last_dirty->dt.dl;
1628 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1629 	    data, comp, uncompressed_size, compressed_size);
1630 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1631 	BP_SET_TYPE(&dl->dr_overridden_by, type);
1632 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1633 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1634 
1635 	dl->dr_override_state = DR_OVERRIDDEN;
1636 	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1637 }
1638 
1639 /*
1640  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1641  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1642  */
1643 void
1644 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1645 {
1646 	ASSERT(!refcount_is_zero(&db->db_holds));
1647 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1648 	ASSERT(db->db_level == 0);
1649 	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1650 	ASSERT(buf != NULL);
1651 	ASSERT(arc_buf_size(buf) == db->db.db_size);
1652 	ASSERT(tx->tx_txg != 0);
1653 
1654 	arc_return_buf(buf, db);
1655 	ASSERT(arc_released(buf));
1656 
1657 	mutex_enter(&db->db_mtx);
1658 
1659 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1660 		cv_wait(&db->db_changed, &db->db_mtx);
1661 
1662 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1663 
1664 	if (db->db_state == DB_CACHED &&
1665 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1666 		mutex_exit(&db->db_mtx);
1667 		(void) dbuf_dirty(db, tx);
1668 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1669 		VERIFY(arc_buf_remove_ref(buf, db));
1670 		xuio_stat_wbuf_copied();
1671 		return;
1672 	}
1673 
1674 	xuio_stat_wbuf_nocopy();
1675 	if (db->db_state == DB_CACHED) {
1676 		dbuf_dirty_record_t *dr = db->db_last_dirty;
1677 
1678 		ASSERT(db->db_buf != NULL);
1679 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1680 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1681 			if (!arc_released(db->db_buf)) {
1682 				ASSERT(dr->dt.dl.dr_override_state ==
1683 				    DR_OVERRIDDEN);
1684 				arc_release(db->db_buf, db);
1685 			}
1686 			dr->dt.dl.dr_data = buf;
1687 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1688 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1689 			arc_release(db->db_buf, db);
1690 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1691 		}
1692 		db->db_buf = NULL;
1693 	}
1694 	ASSERT(db->db_buf == NULL);
1695 	dbuf_set_data(db, buf);
1696 	db->db_state = DB_FILL;
1697 	mutex_exit(&db->db_mtx);
1698 	(void) dbuf_dirty(db, tx);
1699 	dmu_buf_fill_done(&db->db, tx);
1700 }
1701 
1702 /*
1703  * "Clear" the contents of this dbuf.  This will mark the dbuf
1704  * EVICTING and clear *most* of its references.  Unfortunately,
1705  * when we are not holding the dn_dbufs_mtx, we can't clear the
1706  * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1707  * in this case.  For callers from the DMU we will usually see:
1708  *	dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy()
1709  * For the arc callback, we will usually see:
1710  *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1711  * Sometimes, though, we will get a mix of these two:
1712  *	DMU: dbuf_clear()->arc_clear_callback()
1713  *	ARC: dbuf_do_evict()->dbuf_destroy()
1714  *
1715  * This routine will dissociate the dbuf from the arc, by calling
1716  * arc_clear_callback(), but will not evict the data from the ARC.
1717  */
1718 void
1719 dbuf_clear(dmu_buf_impl_t *db)
1720 {
1721 	dnode_t *dn;
1722 	dmu_buf_impl_t *parent = db->db_parent;
1723 	dmu_buf_impl_t *dndb;
1724 	boolean_t dbuf_gone = B_FALSE;
1725 
1726 	ASSERT(MUTEX_HELD(&db->db_mtx));
1727 	ASSERT(refcount_is_zero(&db->db_holds));
1728 
1729 	dbuf_evict_user(db);
1730 
1731 	if (db->db_state == DB_CACHED) {
1732 		ASSERT(db->db.db_data != NULL);
1733 		if (db->db_blkid == DMU_BONUS_BLKID) {
1734 			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1735 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1736 		}
1737 		db->db.db_data = NULL;
1738 		db->db_state = DB_UNCACHED;
1739 	}
1740 
1741 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1742 	ASSERT(db->db_data_pending == NULL);
1743 
1744 	db->db_state = DB_EVICTING;
1745 	db->db_blkptr = NULL;
1746 
1747 	DB_DNODE_ENTER(db);
1748 	dn = DB_DNODE(db);
1749 	dndb = dn->dn_dbuf;
1750 	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1751 		avl_remove(&dn->dn_dbufs, db);
1752 		atomic_dec_32(&dn->dn_dbufs_count);
1753 		membar_producer();
1754 		DB_DNODE_EXIT(db);
1755 		/*
1756 		 * Decrementing the dbuf count means that the hold corresponding
1757 		 * to the removed dbuf is no longer discounted in dnode_move(),
1758 		 * so the dnode cannot be moved until after we release the hold.
1759 		 * The membar_producer() ensures visibility of the decremented
1760 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1761 		 * release any lock.
1762 		 */
1763 		dnode_rele(dn, db);
1764 		db->db_dnode_handle = NULL;
1765 	} else {
1766 		DB_DNODE_EXIT(db);
1767 	}
1768 
1769 	if (db->db_buf)
1770 		dbuf_gone = arc_clear_callback(db->db_buf);
1771 
1772 	if (!dbuf_gone)
1773 		mutex_exit(&db->db_mtx);
1774 
1775 	/*
1776 	 * If this dbuf is referenced from an indirect dbuf,
1777 	 * decrement the ref count on the indirect dbuf.
1778 	 */
1779 	if (parent && parent != dndb)
1780 		dbuf_rele(parent, db);
1781 }
1782 
1783 /*
1784  * Note: While bpp will always be updated if the function returns success,
1785  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
1786  * this happens when the dnode is the meta-dnode, or a userused or groupused
1787  * object.
1788  */
1789 static int
1790 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1791     dmu_buf_impl_t **parentp, blkptr_t **bpp)
1792 {
1793 	int nlevels, epbs;
1794 
1795 	*parentp = NULL;
1796 	*bpp = NULL;
1797 
1798 	ASSERT(blkid != DMU_BONUS_BLKID);
1799 
1800 	if (blkid == DMU_SPILL_BLKID) {
1801 		mutex_enter(&dn->dn_mtx);
1802 		if (dn->dn_have_spill &&
1803 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1804 			*bpp = &dn->dn_phys->dn_spill;
1805 		else
1806 			*bpp = NULL;
1807 		dbuf_add_ref(dn->dn_dbuf, NULL);
1808 		*parentp = dn->dn_dbuf;
1809 		mutex_exit(&dn->dn_mtx);
1810 		return (0);
1811 	}
1812 
1813 	if (dn->dn_phys->dn_nlevels == 0)
1814 		nlevels = 1;
1815 	else
1816 		nlevels = dn->dn_phys->dn_nlevels;
1817 
1818 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1819 
1820 	ASSERT3U(level * epbs, <, 64);
1821 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1822 	if (level >= nlevels ||
1823 	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1824 		/* the buffer has no parent yet */
1825 		return (SET_ERROR(ENOENT));
1826 	} else if (level < nlevels-1) {
1827 		/* this block is referenced from an indirect block */
1828 		int err = dbuf_hold_impl(dn, level+1,
1829 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
1830 		if (err)
1831 			return (err);
1832 		err = dbuf_read(*parentp, NULL,
1833 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1834 		if (err) {
1835 			dbuf_rele(*parentp, NULL);
1836 			*parentp = NULL;
1837 			return (err);
1838 		}
1839 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1840 		    (blkid & ((1ULL << epbs) - 1));
1841 		return (0);
1842 	} else {
1843 		/* the block is referenced from the dnode */
1844 		ASSERT3U(level, ==, nlevels-1);
1845 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1846 		    blkid < dn->dn_phys->dn_nblkptr);
1847 		if (dn->dn_dbuf) {
1848 			dbuf_add_ref(dn->dn_dbuf, NULL);
1849 			*parentp = dn->dn_dbuf;
1850 		}
1851 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1852 		return (0);
1853 	}
1854 }
1855 
1856 static dmu_buf_impl_t *
1857 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1858     dmu_buf_impl_t *parent, blkptr_t *blkptr)
1859 {
1860 	objset_t *os = dn->dn_objset;
1861 	dmu_buf_impl_t *db, *odb;
1862 
1863 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1864 	ASSERT(dn->dn_type != DMU_OT_NONE);
1865 
1866 	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1867 
1868 	db->db_objset = os;
1869 	db->db.db_object = dn->dn_object;
1870 	db->db_level = level;
1871 	db->db_blkid = blkid;
1872 	db->db_last_dirty = NULL;
1873 	db->db_dirtycnt = 0;
1874 	db->db_dnode_handle = dn->dn_handle;
1875 	db->db_parent = parent;
1876 	db->db_blkptr = blkptr;
1877 
1878 	db->db_user = NULL;
1879 	db->db_user_immediate_evict = FALSE;
1880 	db->db_freed_in_flight = FALSE;
1881 	db->db_pending_evict = FALSE;
1882 
1883 	if (blkid == DMU_BONUS_BLKID) {
1884 		ASSERT3P(parent, ==, dn->dn_dbuf);
1885 		db->db.db_size = DN_MAX_BONUSLEN -
1886 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1887 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1888 		db->db.db_offset = DMU_BONUS_BLKID;
1889 		db->db_state = DB_UNCACHED;
1890 		/* the bonus dbuf is not placed in the hash table */
1891 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1892 		return (db);
1893 	} else if (blkid == DMU_SPILL_BLKID) {
1894 		db->db.db_size = (blkptr != NULL) ?
1895 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1896 		db->db.db_offset = 0;
1897 	} else {
1898 		int blocksize =
1899 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1900 		db->db.db_size = blocksize;
1901 		db->db.db_offset = db->db_blkid * blocksize;
1902 	}
1903 
1904 	/*
1905 	 * Hold the dn_dbufs_mtx while we get the new dbuf
1906 	 * in the hash table *and* added to the dbufs list.
1907 	 * This prevents a possible deadlock with someone
1908 	 * trying to look up this dbuf before its added to the
1909 	 * dn_dbufs list.
1910 	 */
1911 	mutex_enter(&dn->dn_dbufs_mtx);
1912 	db->db_state = DB_EVICTING;
1913 	if ((odb = dbuf_hash_insert(db)) != NULL) {
1914 		/* someone else inserted it first */
1915 		kmem_cache_free(dbuf_cache, db);
1916 		mutex_exit(&dn->dn_dbufs_mtx);
1917 		return (odb);
1918 	}
1919 	avl_add(&dn->dn_dbufs, db);
1920 	if (db->db_level == 0 && db->db_blkid >=
1921 	    dn->dn_unlisted_l0_blkid)
1922 		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1923 	db->db_state = DB_UNCACHED;
1924 	mutex_exit(&dn->dn_dbufs_mtx);
1925 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1926 
1927 	if (parent && parent != dn->dn_dbuf)
1928 		dbuf_add_ref(parent, db);
1929 
1930 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1931 	    refcount_count(&dn->dn_holds) > 0);
1932 	(void) refcount_add(&dn->dn_holds, db);
1933 	atomic_inc_32(&dn->dn_dbufs_count);
1934 
1935 	dprintf_dbuf(db, "db=%p\n", db);
1936 
1937 	return (db);
1938 }
1939 
1940 static int
1941 dbuf_do_evict(void *private)
1942 {
1943 	dmu_buf_impl_t *db = private;
1944 
1945 	if (!MUTEX_HELD(&db->db_mtx))
1946 		mutex_enter(&db->db_mtx);
1947 
1948 	ASSERT(refcount_is_zero(&db->db_holds));
1949 
1950 	if (db->db_state != DB_EVICTING) {
1951 		ASSERT(db->db_state == DB_CACHED);
1952 		DBUF_VERIFY(db);
1953 		db->db_buf = NULL;
1954 		dbuf_evict(db);
1955 	} else {
1956 		mutex_exit(&db->db_mtx);
1957 		dbuf_destroy(db);
1958 	}
1959 	return (0);
1960 }
1961 
1962 static void
1963 dbuf_destroy(dmu_buf_impl_t *db)
1964 {
1965 	ASSERT(refcount_is_zero(&db->db_holds));
1966 
1967 	if (db->db_blkid != DMU_BONUS_BLKID) {
1968 		/*
1969 		 * If this dbuf is still on the dn_dbufs list,
1970 		 * remove it from that list.
1971 		 */
1972 		if (db->db_dnode_handle != NULL) {
1973 			dnode_t *dn;
1974 
1975 			DB_DNODE_ENTER(db);
1976 			dn = DB_DNODE(db);
1977 			mutex_enter(&dn->dn_dbufs_mtx);
1978 			avl_remove(&dn->dn_dbufs, db);
1979 			atomic_dec_32(&dn->dn_dbufs_count);
1980 			mutex_exit(&dn->dn_dbufs_mtx);
1981 			DB_DNODE_EXIT(db);
1982 			/*
1983 			 * Decrementing the dbuf count means that the hold
1984 			 * corresponding to the removed dbuf is no longer
1985 			 * discounted in dnode_move(), so the dnode cannot be
1986 			 * moved until after we release the hold.
1987 			 */
1988 			dnode_rele(dn, db);
1989 			db->db_dnode_handle = NULL;
1990 		}
1991 		dbuf_hash_remove(db);
1992 	}
1993 	db->db_parent = NULL;
1994 	db->db_buf = NULL;
1995 
1996 	ASSERT(db->db.db_data == NULL);
1997 	ASSERT(db->db_hash_next == NULL);
1998 	ASSERT(db->db_blkptr == NULL);
1999 	ASSERT(db->db_data_pending == NULL);
2000 
2001 	kmem_cache_free(dbuf_cache, db);
2002 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2003 }
2004 
2005 typedef struct dbuf_prefetch_arg {
2006 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
2007 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2008 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2009 	int dpa_curlevel; /* The current level that we're reading */
2010 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2011 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2012 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2013 } dbuf_prefetch_arg_t;
2014 
2015 /*
2016  * Actually issue the prefetch read for the block given.
2017  */
2018 static void
2019 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2020 {
2021 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2022 		return;
2023 
2024 	arc_flags_t aflags =
2025 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2026 
2027 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2028 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2029 	ASSERT(dpa->dpa_zio != NULL);
2030 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2031 	    dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2032 	    &aflags, &dpa->dpa_zb);
2033 }
2034 
2035 /*
2036  * Called when an indirect block above our prefetch target is read in.  This
2037  * will either read in the next indirect block down the tree or issue the actual
2038  * prefetch if the next block down is our target.
2039  */
2040 static void
2041 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2042 {
2043 	dbuf_prefetch_arg_t *dpa = private;
2044 
2045 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2046 	ASSERT3S(dpa->dpa_curlevel, >, 0);
2047 	if (zio != NULL) {
2048 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2049 		ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2050 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2051 	}
2052 
2053 	dpa->dpa_curlevel--;
2054 
2055 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2056 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2057 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2058 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2059 	if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2060 		kmem_free(dpa, sizeof (*dpa));
2061 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2062 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2063 		dbuf_issue_final_prefetch(dpa, bp);
2064 		kmem_free(dpa, sizeof (*dpa));
2065 	} else {
2066 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2067 		zbookmark_phys_t zb;
2068 
2069 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2070 
2071 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2072 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2073 
2074 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2075 		    bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2076 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2077 		    &iter_aflags, &zb);
2078 	}
2079 	(void) arc_buf_remove_ref(abuf, private);
2080 }
2081 
2082 /*
2083  * Issue prefetch reads for the given block on the given level.  If the indirect
2084  * blocks above that block are not in memory, we will read them in
2085  * asynchronously.  As a result, this call never blocks waiting for a read to
2086  * complete.
2087  */
2088 void
2089 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2090     arc_flags_t aflags)
2091 {
2092 	blkptr_t bp;
2093 	int epbs, nlevels, curlevel;
2094 	uint64_t curblkid;
2095 
2096 	ASSERT(blkid != DMU_BONUS_BLKID);
2097 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2098 
2099 	if (blkid > dn->dn_maxblkid)
2100 		return;
2101 
2102 	if (dnode_block_freed(dn, blkid))
2103 		return;
2104 
2105 	/*
2106 	 * This dnode hasn't been written to disk yet, so there's nothing to
2107 	 * prefetch.
2108 	 */
2109 	nlevels = dn->dn_phys->dn_nlevels;
2110 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2111 		return;
2112 
2113 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2114 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2115 		return;
2116 
2117 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2118 	    level, blkid);
2119 	if (db != NULL) {
2120 		mutex_exit(&db->db_mtx);
2121 		/*
2122 		 * This dbuf already exists.  It is either CACHED, or
2123 		 * (we assume) about to be read or filled.
2124 		 */
2125 		return;
2126 	}
2127 
2128 	/*
2129 	 * Find the closest ancestor (indirect block) of the target block
2130 	 * that is present in the cache.  In this indirect block, we will
2131 	 * find the bp that is at curlevel, curblkid.
2132 	 */
2133 	curlevel = level;
2134 	curblkid = blkid;
2135 	while (curlevel < nlevels - 1) {
2136 		int parent_level = curlevel + 1;
2137 		uint64_t parent_blkid = curblkid >> epbs;
2138 		dmu_buf_impl_t *db;
2139 
2140 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2141 		    FALSE, TRUE, FTAG, &db) == 0) {
2142 			blkptr_t *bpp = db->db_buf->b_data;
2143 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2144 			dbuf_rele(db, FTAG);
2145 			break;
2146 		}
2147 
2148 		curlevel = parent_level;
2149 		curblkid = parent_blkid;
2150 	}
2151 
2152 	if (curlevel == nlevels - 1) {
2153 		/* No cached indirect blocks found. */
2154 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2155 		bp = dn->dn_phys->dn_blkptr[curblkid];
2156 	}
2157 	if (BP_IS_HOLE(&bp))
2158 		return;
2159 
2160 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2161 
2162 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2163 	    ZIO_FLAG_CANFAIL);
2164 
2165 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2166 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2167 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2168 	    dn->dn_object, level, blkid);
2169 	dpa->dpa_curlevel = curlevel;
2170 	dpa->dpa_prio = prio;
2171 	dpa->dpa_aflags = aflags;
2172 	dpa->dpa_spa = dn->dn_objset->os_spa;
2173 	dpa->dpa_epbs = epbs;
2174 	dpa->dpa_zio = pio;
2175 
2176 	/*
2177 	 * If we have the indirect just above us, no need to do the asynchronous
2178 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
2179 	 * a higher level, though, we want to issue the prefetches for all the
2180 	 * indirect blocks asynchronously, so we can go on with whatever we were
2181 	 * doing.
2182 	 */
2183 	if (curlevel == level) {
2184 		ASSERT3U(curblkid, ==, blkid);
2185 		dbuf_issue_final_prefetch(dpa, &bp);
2186 		kmem_free(dpa, sizeof (*dpa));
2187 	} else {
2188 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2189 		zbookmark_phys_t zb;
2190 
2191 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2192 		    dn->dn_object, curlevel, curblkid);
2193 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2194 		    &bp, dbuf_prefetch_indirect_done, dpa, prio,
2195 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2196 		    &iter_aflags, &zb);
2197 	}
2198 	/*
2199 	 * We use pio here instead of dpa_zio since it's possible that
2200 	 * dpa may have already been freed.
2201 	 */
2202 	zio_nowait(pio);
2203 }
2204 
2205 /*
2206  * Returns with db_holds incremented, and db_mtx not held.
2207  * Note: dn_struct_rwlock must be held.
2208  */
2209 int
2210 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2211     boolean_t fail_sparse, boolean_t fail_uncached,
2212     void *tag, dmu_buf_impl_t **dbp)
2213 {
2214 	dmu_buf_impl_t *db, *parent = NULL;
2215 
2216 	ASSERT(blkid != DMU_BONUS_BLKID);
2217 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2218 	ASSERT3U(dn->dn_nlevels, >, level);
2219 
2220 	*dbp = NULL;
2221 top:
2222 	/* dbuf_find() returns with db_mtx held */
2223 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2224 
2225 	if (db == NULL) {
2226 		blkptr_t *bp = NULL;
2227 		int err;
2228 
2229 		if (fail_uncached)
2230 			return (SET_ERROR(ENOENT));
2231 
2232 		ASSERT3P(parent, ==, NULL);
2233 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2234 		if (fail_sparse) {
2235 			if (err == 0 && bp && BP_IS_HOLE(bp))
2236 				err = SET_ERROR(ENOENT);
2237 			if (err) {
2238 				if (parent)
2239 					dbuf_rele(parent, NULL);
2240 				return (err);
2241 			}
2242 		}
2243 		if (err && err != ENOENT)
2244 			return (err);
2245 		db = dbuf_create(dn, level, blkid, parent, bp);
2246 	}
2247 
2248 	if (fail_uncached && db->db_state != DB_CACHED) {
2249 		mutex_exit(&db->db_mtx);
2250 		return (SET_ERROR(ENOENT));
2251 	}
2252 
2253 	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
2254 		arc_buf_add_ref(db->db_buf, db);
2255 		if (db->db_buf->b_data == NULL) {
2256 			dbuf_clear(db);
2257 			if (parent) {
2258 				dbuf_rele(parent, NULL);
2259 				parent = NULL;
2260 			}
2261 			goto top;
2262 		}
2263 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2264 	}
2265 
2266 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2267 
2268 	/*
2269 	 * If this buffer is currently syncing out, and we are are
2270 	 * still referencing it from db_data, we need to make a copy
2271 	 * of it in case we decide we want to dirty it again in this txg.
2272 	 */
2273 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2274 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2275 	    db->db_state == DB_CACHED && db->db_data_pending) {
2276 		dbuf_dirty_record_t *dr = db->db_data_pending;
2277 
2278 		if (dr->dt.dl.dr_data == db->db_buf) {
2279 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2280 
2281 			dbuf_set_data(db,
2282 			    arc_buf_alloc(dn->dn_objset->os_spa,
2283 			    db->db.db_size, db, type));
2284 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2285 			    db->db.db_size);
2286 		}
2287 	}
2288 
2289 	(void) refcount_add(&db->db_holds, tag);
2290 	DBUF_VERIFY(db);
2291 	mutex_exit(&db->db_mtx);
2292 
2293 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
2294 	if (parent)
2295 		dbuf_rele(parent, NULL);
2296 
2297 	ASSERT3P(DB_DNODE(db), ==, dn);
2298 	ASSERT3U(db->db_blkid, ==, blkid);
2299 	ASSERT3U(db->db_level, ==, level);
2300 	*dbp = db;
2301 
2302 	return (0);
2303 }
2304 
2305 dmu_buf_impl_t *
2306 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2307 {
2308 	return (dbuf_hold_level(dn, 0, blkid, tag));
2309 }
2310 
2311 dmu_buf_impl_t *
2312 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2313 {
2314 	dmu_buf_impl_t *db;
2315 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2316 	return (err ? NULL : db);
2317 }
2318 
2319 void
2320 dbuf_create_bonus(dnode_t *dn)
2321 {
2322 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2323 
2324 	ASSERT(dn->dn_bonus == NULL);
2325 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2326 }
2327 
2328 int
2329 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2330 {
2331 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2332 	dnode_t *dn;
2333 
2334 	if (db->db_blkid != DMU_SPILL_BLKID)
2335 		return (SET_ERROR(ENOTSUP));
2336 	if (blksz == 0)
2337 		blksz = SPA_MINBLOCKSIZE;
2338 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2339 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2340 
2341 	DB_DNODE_ENTER(db);
2342 	dn = DB_DNODE(db);
2343 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2344 	dbuf_new_size(db, blksz, tx);
2345 	rw_exit(&dn->dn_struct_rwlock);
2346 	DB_DNODE_EXIT(db);
2347 
2348 	return (0);
2349 }
2350 
2351 void
2352 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2353 {
2354 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2355 }
2356 
2357 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2358 void
2359 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2360 {
2361 	int64_t holds = refcount_add(&db->db_holds, tag);
2362 	ASSERT(holds > 1);
2363 }
2364 
2365 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2366 boolean_t
2367 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2368     void *tag)
2369 {
2370 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2371 	dmu_buf_impl_t *found_db;
2372 	boolean_t result = B_FALSE;
2373 
2374 	if (db->db_blkid == DMU_BONUS_BLKID)
2375 		found_db = dbuf_find_bonus(os, obj);
2376 	else
2377 		found_db = dbuf_find(os, obj, 0, blkid);
2378 
2379 	if (found_db != NULL) {
2380 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2381 			(void) refcount_add(&db->db_holds, tag);
2382 			result = B_TRUE;
2383 		}
2384 		mutex_exit(&db->db_mtx);
2385 	}
2386 	return (result);
2387 }
2388 
2389 /*
2390  * If you call dbuf_rele() you had better not be referencing the dnode handle
2391  * unless you have some other direct or indirect hold on the dnode. (An indirect
2392  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2393  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2394  * dnode's parent dbuf evicting its dnode handles.
2395  */
2396 void
2397 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2398 {
2399 	mutex_enter(&db->db_mtx);
2400 	dbuf_rele_and_unlock(db, tag);
2401 }
2402 
2403 void
2404 dmu_buf_rele(dmu_buf_t *db, void *tag)
2405 {
2406 	dbuf_rele((dmu_buf_impl_t *)db, tag);
2407 }
2408 
2409 /*
2410  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2411  * db_dirtycnt and db_holds to be updated atomically.
2412  */
2413 void
2414 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2415 {
2416 	int64_t holds;
2417 
2418 	ASSERT(MUTEX_HELD(&db->db_mtx));
2419 	DBUF_VERIFY(db);
2420 
2421 	/*
2422 	 * Remove the reference to the dbuf before removing its hold on the
2423 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2424 	 * buffer has a corresponding dnode hold.
2425 	 */
2426 	holds = refcount_remove(&db->db_holds, tag);
2427 	ASSERT(holds >= 0);
2428 
2429 	/*
2430 	 * We can't freeze indirects if there is a possibility that they
2431 	 * may be modified in the current syncing context.
2432 	 */
2433 	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2434 		arc_buf_freeze(db->db_buf);
2435 
2436 	if (holds == db->db_dirtycnt &&
2437 	    db->db_level == 0 && db->db_user_immediate_evict)
2438 		dbuf_evict_user(db);
2439 
2440 	if (holds == 0) {
2441 		if (db->db_blkid == DMU_BONUS_BLKID) {
2442 			dnode_t *dn;
2443 			boolean_t evict_dbuf = db->db_pending_evict;
2444 
2445 			/*
2446 			 * If the dnode moves here, we cannot cross this
2447 			 * barrier until the move completes.
2448 			 */
2449 			DB_DNODE_ENTER(db);
2450 
2451 			dn = DB_DNODE(db);
2452 			atomic_dec_32(&dn->dn_dbufs_count);
2453 
2454 			/*
2455 			 * Decrementing the dbuf count means that the bonus
2456 			 * buffer's dnode hold is no longer discounted in
2457 			 * dnode_move(). The dnode cannot move until after
2458 			 * the dnode_rele() below.
2459 			 */
2460 			DB_DNODE_EXIT(db);
2461 
2462 			/*
2463 			 * Do not reference db after its lock is dropped.
2464 			 * Another thread may evict it.
2465 			 */
2466 			mutex_exit(&db->db_mtx);
2467 
2468 			if (evict_dbuf)
2469 				dnode_evict_bonus(dn);
2470 
2471 			dnode_rele(dn, db);
2472 		} else if (db->db_buf == NULL) {
2473 			/*
2474 			 * This is a special case: we never associated this
2475 			 * dbuf with any data allocated from the ARC.
2476 			 */
2477 			ASSERT(db->db_state == DB_UNCACHED ||
2478 			    db->db_state == DB_NOFILL);
2479 			dbuf_evict(db);
2480 		} else if (arc_released(db->db_buf)) {
2481 			arc_buf_t *buf = db->db_buf;
2482 			/*
2483 			 * This dbuf has anonymous data associated with it.
2484 			 */
2485 			dbuf_clear_data(db);
2486 			VERIFY(arc_buf_remove_ref(buf, db));
2487 			dbuf_evict(db);
2488 		} else {
2489 			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2490 
2491 			/*
2492 			 * A dbuf will be eligible for eviction if either the
2493 			 * 'primarycache' property is set or a duplicate
2494 			 * copy of this buffer is already cached in the arc.
2495 			 *
2496 			 * In the case of the 'primarycache' a buffer
2497 			 * is considered for eviction if it matches the
2498 			 * criteria set in the property.
2499 			 *
2500 			 * To decide if our buffer is considered a
2501 			 * duplicate, we must call into the arc to determine
2502 			 * if multiple buffers are referencing the same
2503 			 * block on-disk. If so, then we simply evict
2504 			 * ourselves.
2505 			 */
2506 			if (!DBUF_IS_CACHEABLE(db)) {
2507 				if (db->db_blkptr != NULL &&
2508 				    !BP_IS_HOLE(db->db_blkptr) &&
2509 				    !BP_IS_EMBEDDED(db->db_blkptr)) {
2510 					spa_t *spa =
2511 					    dmu_objset_spa(db->db_objset);
2512 					blkptr_t bp = *db->db_blkptr;
2513 					dbuf_clear(db);
2514 					arc_freed(spa, &bp);
2515 				} else {
2516 					dbuf_clear(db);
2517 				}
2518 			} else if (db->db_pending_evict ||
2519 			    arc_buf_eviction_needed(db->db_buf)) {
2520 				dbuf_clear(db);
2521 			} else {
2522 				mutex_exit(&db->db_mtx);
2523 			}
2524 		}
2525 	} else {
2526 		mutex_exit(&db->db_mtx);
2527 	}
2528 }
2529 
2530 #pragma weak dmu_buf_refcount = dbuf_refcount
2531 uint64_t
2532 dbuf_refcount(dmu_buf_impl_t *db)
2533 {
2534 	return (refcount_count(&db->db_holds));
2535 }
2536 
2537 void *
2538 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2539     dmu_buf_user_t *new_user)
2540 {
2541 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2542 
2543 	mutex_enter(&db->db_mtx);
2544 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2545 	if (db->db_user == old_user)
2546 		db->db_user = new_user;
2547 	else
2548 		old_user = db->db_user;
2549 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2550 	mutex_exit(&db->db_mtx);
2551 
2552 	return (old_user);
2553 }
2554 
2555 void *
2556 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2557 {
2558 	return (dmu_buf_replace_user(db_fake, NULL, user));
2559 }
2560 
2561 void *
2562 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2563 {
2564 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2565 
2566 	db->db_user_immediate_evict = TRUE;
2567 	return (dmu_buf_set_user(db_fake, user));
2568 }
2569 
2570 void *
2571 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2572 {
2573 	return (dmu_buf_replace_user(db_fake, user, NULL));
2574 }
2575 
2576 void *
2577 dmu_buf_get_user(dmu_buf_t *db_fake)
2578 {
2579 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2580 
2581 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2582 	return (db->db_user);
2583 }
2584 
2585 void
2586 dmu_buf_user_evict_wait()
2587 {
2588 	taskq_wait(dbu_evict_taskq);
2589 }
2590 
2591 boolean_t
2592 dmu_buf_freeable(dmu_buf_t *dbuf)
2593 {
2594 	boolean_t res = B_FALSE;
2595 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2596 
2597 	if (db->db_blkptr)
2598 		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2599 		    db->db_blkptr, db->db_blkptr->blk_birth);
2600 
2601 	return (res);
2602 }
2603 
2604 blkptr_t *
2605 dmu_buf_get_blkptr(dmu_buf_t *db)
2606 {
2607 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2608 	return (dbi->db_blkptr);
2609 }
2610 
2611 static void
2612 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2613 {
2614 	/* ASSERT(dmu_tx_is_syncing(tx) */
2615 	ASSERT(MUTEX_HELD(&db->db_mtx));
2616 
2617 	if (db->db_blkptr != NULL)
2618 		return;
2619 
2620 	if (db->db_blkid == DMU_SPILL_BLKID) {
2621 		db->db_blkptr = &dn->dn_phys->dn_spill;
2622 		BP_ZERO(db->db_blkptr);
2623 		return;
2624 	}
2625 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2626 		/*
2627 		 * This buffer was allocated at a time when there was
2628 		 * no available blkptrs from the dnode, or it was
2629 		 * inappropriate to hook it in (i.e., nlevels mis-match).
2630 		 */
2631 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2632 		ASSERT(db->db_parent == NULL);
2633 		db->db_parent = dn->dn_dbuf;
2634 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2635 		DBUF_VERIFY(db);
2636 	} else {
2637 		dmu_buf_impl_t *parent = db->db_parent;
2638 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2639 
2640 		ASSERT(dn->dn_phys->dn_nlevels > 1);
2641 		if (parent == NULL) {
2642 			mutex_exit(&db->db_mtx);
2643 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2644 			parent = dbuf_hold_level(dn, db->db_level + 1,
2645 			    db->db_blkid >> epbs, db);
2646 			rw_exit(&dn->dn_struct_rwlock);
2647 			mutex_enter(&db->db_mtx);
2648 			db->db_parent = parent;
2649 		}
2650 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2651 		    (db->db_blkid & ((1ULL << epbs) - 1));
2652 		DBUF_VERIFY(db);
2653 	}
2654 }
2655 
2656 static void
2657 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2658 {
2659 	dmu_buf_impl_t *db = dr->dr_dbuf;
2660 	dnode_t *dn;
2661 	zio_t *zio;
2662 
2663 	ASSERT(dmu_tx_is_syncing(tx));
2664 
2665 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2666 
2667 	mutex_enter(&db->db_mtx);
2668 
2669 	ASSERT(db->db_level > 0);
2670 	DBUF_VERIFY(db);
2671 
2672 	/* Read the block if it hasn't been read yet. */
2673 	if (db->db_buf == NULL) {
2674 		mutex_exit(&db->db_mtx);
2675 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2676 		mutex_enter(&db->db_mtx);
2677 	}
2678 	ASSERT3U(db->db_state, ==, DB_CACHED);
2679 	ASSERT(db->db_buf != NULL);
2680 
2681 	DB_DNODE_ENTER(db);
2682 	dn = DB_DNODE(db);
2683 	/* Indirect block size must match what the dnode thinks it is. */
2684 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2685 	dbuf_check_blkptr(dn, db);
2686 	DB_DNODE_EXIT(db);
2687 
2688 	/* Provide the pending dirty record to child dbufs */
2689 	db->db_data_pending = dr;
2690 
2691 	mutex_exit(&db->db_mtx);
2692 	dbuf_write(dr, db->db_buf, tx);
2693 
2694 	zio = dr->dr_zio;
2695 	mutex_enter(&dr->dt.di.dr_mtx);
2696 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
2697 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2698 	mutex_exit(&dr->dt.di.dr_mtx);
2699 	zio_nowait(zio);
2700 }
2701 
2702 static void
2703 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2704 {
2705 	arc_buf_t **datap = &dr->dt.dl.dr_data;
2706 	dmu_buf_impl_t *db = dr->dr_dbuf;
2707 	dnode_t *dn;
2708 	objset_t *os;
2709 	uint64_t txg = tx->tx_txg;
2710 
2711 	ASSERT(dmu_tx_is_syncing(tx));
2712 
2713 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2714 
2715 	mutex_enter(&db->db_mtx);
2716 	/*
2717 	 * To be synced, we must be dirtied.  But we
2718 	 * might have been freed after the dirty.
2719 	 */
2720 	if (db->db_state == DB_UNCACHED) {
2721 		/* This buffer has been freed since it was dirtied */
2722 		ASSERT(db->db.db_data == NULL);
2723 	} else if (db->db_state == DB_FILL) {
2724 		/* This buffer was freed and is now being re-filled */
2725 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2726 	} else {
2727 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2728 	}
2729 	DBUF_VERIFY(db);
2730 
2731 	DB_DNODE_ENTER(db);
2732 	dn = DB_DNODE(db);
2733 
2734 	if (db->db_blkid == DMU_SPILL_BLKID) {
2735 		mutex_enter(&dn->dn_mtx);
2736 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2737 		mutex_exit(&dn->dn_mtx);
2738 	}
2739 
2740 	/*
2741 	 * If this is a bonus buffer, simply copy the bonus data into the
2742 	 * dnode.  It will be written out when the dnode is synced (and it
2743 	 * will be synced, since it must have been dirty for dbuf_sync to
2744 	 * be called).
2745 	 */
2746 	if (db->db_blkid == DMU_BONUS_BLKID) {
2747 		dbuf_dirty_record_t **drp;
2748 
2749 		ASSERT(*datap != NULL);
2750 		ASSERT0(db->db_level);
2751 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2752 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2753 		DB_DNODE_EXIT(db);
2754 
2755 		if (*datap != db->db.db_data) {
2756 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2757 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2758 		}
2759 		db->db_data_pending = NULL;
2760 		drp = &db->db_last_dirty;
2761 		while (*drp != dr)
2762 			drp = &(*drp)->dr_next;
2763 		ASSERT(dr->dr_next == NULL);
2764 		ASSERT(dr->dr_dbuf == db);
2765 		*drp = dr->dr_next;
2766 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2767 		ASSERT(db->db_dirtycnt > 0);
2768 		db->db_dirtycnt -= 1;
2769 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2770 		return;
2771 	}
2772 
2773 	os = dn->dn_objset;
2774 
2775 	/*
2776 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2777 	 * operation to sneak in. As a result, we need to ensure that we
2778 	 * don't check the dr_override_state until we have returned from
2779 	 * dbuf_check_blkptr.
2780 	 */
2781 	dbuf_check_blkptr(dn, db);
2782 
2783 	/*
2784 	 * If this buffer is in the middle of an immediate write,
2785 	 * wait for the synchronous IO to complete.
2786 	 */
2787 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2788 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2789 		cv_wait(&db->db_changed, &db->db_mtx);
2790 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2791 	}
2792 
2793 	if (db->db_state != DB_NOFILL &&
2794 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2795 	    refcount_count(&db->db_holds) > 1 &&
2796 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2797 	    *datap == db->db_buf) {
2798 		/*
2799 		 * If this buffer is currently "in use" (i.e., there
2800 		 * are active holds and db_data still references it),
2801 		 * then make a copy before we start the write so that
2802 		 * any modifications from the open txg will not leak
2803 		 * into this write.
2804 		 *
2805 		 * NOTE: this copy does not need to be made for
2806 		 * objects only modified in the syncing context (e.g.
2807 		 * DNONE_DNODE blocks).
2808 		 */
2809 		int blksz = arc_buf_size(*datap);
2810 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2811 		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2812 		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2813 	}
2814 	db->db_data_pending = dr;
2815 
2816 	mutex_exit(&db->db_mtx);
2817 
2818 	dbuf_write(dr, *datap, tx);
2819 
2820 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2821 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2822 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2823 		DB_DNODE_EXIT(db);
2824 	} else {
2825 		/*
2826 		 * Although zio_nowait() does not "wait for an IO", it does
2827 		 * initiate the IO. If this is an empty write it seems plausible
2828 		 * that the IO could actually be completed before the nowait
2829 		 * returns. We need to DB_DNODE_EXIT() first in case
2830 		 * zio_nowait() invalidates the dbuf.
2831 		 */
2832 		DB_DNODE_EXIT(db);
2833 		zio_nowait(dr->dr_zio);
2834 	}
2835 }
2836 
2837 void
2838 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
2839 {
2840 	dbuf_dirty_record_t *dr;
2841 
2842 	while (dr = list_head(list)) {
2843 		if (dr->dr_zio != NULL) {
2844 			/*
2845 			 * If we find an already initialized zio then we
2846 			 * are processing the meta-dnode, and we have finished.
2847 			 * The dbufs for all dnodes are put back on the list
2848 			 * during processing, so that we can zio_wait()
2849 			 * these IOs after initiating all child IOs.
2850 			 */
2851 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2852 			    DMU_META_DNODE_OBJECT);
2853 			break;
2854 		}
2855 		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
2856 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
2857 			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
2858 		}
2859 		list_remove(list, dr);
2860 		if (dr->dr_dbuf->db_level > 0)
2861 			dbuf_sync_indirect(dr, tx);
2862 		else
2863 			dbuf_sync_leaf(dr, tx);
2864 	}
2865 }
2866 
2867 /* ARGSUSED */
2868 static void
2869 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2870 {
2871 	dmu_buf_impl_t *db = vdb;
2872 	dnode_t *dn;
2873 	blkptr_t *bp = zio->io_bp;
2874 	blkptr_t *bp_orig = &zio->io_bp_orig;
2875 	spa_t *spa = zio->io_spa;
2876 	int64_t delta;
2877 	uint64_t fill = 0;
2878 	int i;
2879 
2880 	ASSERT3P(db->db_blkptr, ==, bp);
2881 
2882 	DB_DNODE_ENTER(db);
2883 	dn = DB_DNODE(db);
2884 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2885 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2886 	zio->io_prev_space_delta = delta;
2887 
2888 	if (bp->blk_birth != 0) {
2889 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2890 		    BP_GET_TYPE(bp) == dn->dn_type) ||
2891 		    (db->db_blkid == DMU_SPILL_BLKID &&
2892 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
2893 		    BP_IS_EMBEDDED(bp));
2894 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2895 	}
2896 
2897 	mutex_enter(&db->db_mtx);
2898 
2899 #ifdef ZFS_DEBUG
2900 	if (db->db_blkid == DMU_SPILL_BLKID) {
2901 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2902 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2903 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2904 	}
2905 #endif
2906 
2907 	if (db->db_level == 0) {
2908 		mutex_enter(&dn->dn_mtx);
2909 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2910 		    db->db_blkid != DMU_SPILL_BLKID)
2911 			dn->dn_phys->dn_maxblkid = db->db_blkid;
2912 		mutex_exit(&dn->dn_mtx);
2913 
2914 		if (dn->dn_type == DMU_OT_DNODE) {
2915 			dnode_phys_t *dnp = db->db.db_data;
2916 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2917 			    i--, dnp++) {
2918 				if (dnp->dn_type != DMU_OT_NONE)
2919 					fill++;
2920 			}
2921 		} else {
2922 			if (BP_IS_HOLE(bp)) {
2923 				fill = 0;
2924 			} else {
2925 				fill = 1;
2926 			}
2927 		}
2928 	} else {
2929 		blkptr_t *ibp = db->db.db_data;
2930 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2931 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2932 			if (BP_IS_HOLE(ibp))
2933 				continue;
2934 			fill += BP_GET_FILL(ibp);
2935 		}
2936 	}
2937 	DB_DNODE_EXIT(db);
2938 
2939 	if (!BP_IS_EMBEDDED(bp))
2940 		bp->blk_fill = fill;
2941 
2942 	mutex_exit(&db->db_mtx);
2943 }
2944 
2945 /*
2946  * The SPA will call this callback several times for each zio - once
2947  * for every physical child i/o (zio->io_phys_children times).  This
2948  * allows the DMU to monitor the progress of each logical i/o.  For example,
2949  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2950  * block.  There may be a long delay before all copies/fragments are completed,
2951  * so this callback allows us to retire dirty space gradually, as the physical
2952  * i/os complete.
2953  */
2954 /* ARGSUSED */
2955 static void
2956 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2957 {
2958 	dmu_buf_impl_t *db = arg;
2959 	objset_t *os = db->db_objset;
2960 	dsl_pool_t *dp = dmu_objset_pool(os);
2961 	dbuf_dirty_record_t *dr;
2962 	int delta = 0;
2963 
2964 	dr = db->db_data_pending;
2965 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2966 
2967 	/*
2968 	 * The callback will be called io_phys_children times.  Retire one
2969 	 * portion of our dirty space each time we are called.  Any rounding
2970 	 * error will be cleaned up by dsl_pool_sync()'s call to
2971 	 * dsl_pool_undirty_space().
2972 	 */
2973 	delta = dr->dr_accounted / zio->io_phys_children;
2974 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
2975 }
2976 
2977 /* ARGSUSED */
2978 static void
2979 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2980 {
2981 	dmu_buf_impl_t *db = vdb;
2982 	blkptr_t *bp_orig = &zio->io_bp_orig;
2983 	blkptr_t *bp = db->db_blkptr;
2984 	objset_t *os = db->db_objset;
2985 	dmu_tx_t *tx = os->os_synctx;
2986 	dbuf_dirty_record_t **drp, *dr;
2987 
2988 	ASSERT0(zio->io_error);
2989 	ASSERT(db->db_blkptr == bp);
2990 
2991 	/*
2992 	 * For nopwrites and rewrites we ensure that the bp matches our
2993 	 * original and bypass all the accounting.
2994 	 */
2995 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2996 		ASSERT(BP_EQUAL(bp, bp_orig));
2997 	} else {
2998 		dsl_dataset_t *ds = os->os_dsl_dataset;
2999 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3000 		dsl_dataset_block_born(ds, bp, tx);
3001 	}
3002 
3003 	mutex_enter(&db->db_mtx);
3004 
3005 	DBUF_VERIFY(db);
3006 
3007 	drp = &db->db_last_dirty;
3008 	while ((dr = *drp) != db->db_data_pending)
3009 		drp = &dr->dr_next;
3010 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3011 	ASSERT(dr->dr_dbuf == db);
3012 	ASSERT(dr->dr_next == NULL);
3013 	*drp = dr->dr_next;
3014 
3015 #ifdef ZFS_DEBUG
3016 	if (db->db_blkid == DMU_SPILL_BLKID) {
3017 		dnode_t *dn;
3018 
3019 		DB_DNODE_ENTER(db);
3020 		dn = DB_DNODE(db);
3021 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3022 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3023 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3024 		DB_DNODE_EXIT(db);
3025 	}
3026 #endif
3027 
3028 	if (db->db_level == 0) {
3029 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3030 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3031 		if (db->db_state != DB_NOFILL) {
3032 			if (dr->dt.dl.dr_data != db->db_buf)
3033 				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
3034 				    db));
3035 			else if (!arc_released(db->db_buf))
3036 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
3037 		}
3038 	} else {
3039 		dnode_t *dn;
3040 
3041 		DB_DNODE_ENTER(db);
3042 		dn = DB_DNODE(db);
3043 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3044 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3045 		if (!BP_IS_HOLE(db->db_blkptr)) {
3046 			int epbs =
3047 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3048 			ASSERT3U(db->db_blkid, <=,
3049 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3050 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3051 			    db->db.db_size);
3052 			if (!arc_released(db->db_buf))
3053 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
3054 		}
3055 		DB_DNODE_EXIT(db);
3056 		mutex_destroy(&dr->dt.di.dr_mtx);
3057 		list_destroy(&dr->dt.di.dr_children);
3058 	}
3059 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
3060 
3061 	cv_broadcast(&db->db_changed);
3062 	ASSERT(db->db_dirtycnt > 0);
3063 	db->db_dirtycnt -= 1;
3064 	db->db_data_pending = NULL;
3065 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3066 }
3067 
3068 static void
3069 dbuf_write_nofill_ready(zio_t *zio)
3070 {
3071 	dbuf_write_ready(zio, NULL, zio->io_private);
3072 }
3073 
3074 static void
3075 dbuf_write_nofill_done(zio_t *zio)
3076 {
3077 	dbuf_write_done(zio, NULL, zio->io_private);
3078 }
3079 
3080 static void
3081 dbuf_write_override_ready(zio_t *zio)
3082 {
3083 	dbuf_dirty_record_t *dr = zio->io_private;
3084 	dmu_buf_impl_t *db = dr->dr_dbuf;
3085 
3086 	dbuf_write_ready(zio, NULL, db);
3087 }
3088 
3089 static void
3090 dbuf_write_override_done(zio_t *zio)
3091 {
3092 	dbuf_dirty_record_t *dr = zio->io_private;
3093 	dmu_buf_impl_t *db = dr->dr_dbuf;
3094 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3095 
3096 	mutex_enter(&db->db_mtx);
3097 	if (!BP_EQUAL(zio->io_bp, obp)) {
3098 		if (!BP_IS_HOLE(obp))
3099 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3100 		arc_release(dr->dt.dl.dr_data, db);
3101 	}
3102 	mutex_exit(&db->db_mtx);
3103 
3104 	dbuf_write_done(zio, NULL, db);
3105 }
3106 
3107 /* Issue I/O to commit a dirty buffer to disk. */
3108 static void
3109 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3110 {
3111 	dmu_buf_impl_t *db = dr->dr_dbuf;
3112 	dnode_t *dn;
3113 	objset_t *os;
3114 	dmu_buf_impl_t *parent = db->db_parent;
3115 	uint64_t txg = tx->tx_txg;
3116 	zbookmark_phys_t zb;
3117 	zio_prop_t zp;
3118 	zio_t *zio;
3119 	int wp_flag = 0;
3120 
3121 	DB_DNODE_ENTER(db);
3122 	dn = DB_DNODE(db);
3123 	os = dn->dn_objset;
3124 
3125 	if (db->db_state != DB_NOFILL) {
3126 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3127 			/*
3128 			 * Private object buffers are released here rather
3129 			 * than in dbuf_dirty() since they are only modified
3130 			 * in the syncing context and we don't want the
3131 			 * overhead of making multiple copies of the data.
3132 			 */
3133 			if (BP_IS_HOLE(db->db_blkptr)) {
3134 				arc_buf_thaw(data);
3135 			} else {
3136 				dbuf_release_bp(db);
3137 			}
3138 		}
3139 	}
3140 
3141 	if (parent != dn->dn_dbuf) {
3142 		/* Our parent is an indirect block. */
3143 		/* We have a dirty parent that has been scheduled for write. */
3144 		ASSERT(parent && parent->db_data_pending);
3145 		/* Our parent's buffer is one level closer to the dnode. */
3146 		ASSERT(db->db_level == parent->db_level-1);
3147 		/*
3148 		 * We're about to modify our parent's db_data by modifying
3149 		 * our block pointer, so the parent must be released.
3150 		 */
3151 		ASSERT(arc_released(parent->db_buf));
3152 		zio = parent->db_data_pending->dr_zio;
3153 	} else {
3154 		/* Our parent is the dnode itself. */
3155 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3156 		    db->db_blkid != DMU_SPILL_BLKID) ||
3157 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3158 		if (db->db_blkid != DMU_SPILL_BLKID)
3159 			ASSERT3P(db->db_blkptr, ==,
3160 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
3161 		zio = dn->dn_zio;
3162 	}
3163 
3164 	ASSERT(db->db_level == 0 || data == db->db_buf);
3165 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3166 	ASSERT(zio);
3167 
3168 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3169 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3170 	    db->db.db_object, db->db_level, db->db_blkid);
3171 
3172 	if (db->db_blkid == DMU_SPILL_BLKID)
3173 		wp_flag = WP_SPILL;
3174 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3175 
3176 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3177 	DB_DNODE_EXIT(db);
3178 
3179 	if (db->db_level == 0 &&
3180 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3181 		/*
3182 		 * The BP for this block has been provided by open context
3183 		 * (by dmu_sync() or dmu_buf_write_embedded()).
3184 		 */
3185 		void *contents = (data != NULL) ? data->b_data : NULL;
3186 
3187 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3188 		    db->db_blkptr, contents, db->db.db_size, &zp,
3189 		    dbuf_write_override_ready, NULL, dbuf_write_override_done,
3190 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3191 		mutex_enter(&db->db_mtx);
3192 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3193 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3194 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3195 		mutex_exit(&db->db_mtx);
3196 	} else if (db->db_state == DB_NOFILL) {
3197 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3198 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3199 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3200 		    db->db_blkptr, NULL, db->db.db_size, &zp,
3201 		    dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
3202 		    ZIO_PRIORITY_ASYNC_WRITE,
3203 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3204 	} else {
3205 		ASSERT(arc_released(data));
3206 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
3207 		    db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
3208 		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
3209 		    dbuf_write_physdone, dbuf_write_done, db,
3210 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3211 	}
3212 }
3213