1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/dmu.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dbuf.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_dir.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/spa.h> 36 #include <sys/zio.h> 37 #include <sys/dmu_zfetch.h> 38 #include <sys/sa.h> 39 #include <sys/sa_impl.h> 40 41 static void dbuf_destroy(dmu_buf_impl_t *db); 42 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 43 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 44 45 /* 46 * Global data structures and functions for the dbuf cache. 47 */ 48 static kmem_cache_t *dbuf_cache; 49 50 /* ARGSUSED */ 51 static int 52 dbuf_cons(void *vdb, void *unused, int kmflag) 53 { 54 dmu_buf_impl_t *db = vdb; 55 bzero(db, sizeof (dmu_buf_impl_t)); 56 57 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 58 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 59 refcount_create(&db->db_holds); 60 return (0); 61 } 62 63 /* ARGSUSED */ 64 static void 65 dbuf_dest(void *vdb, void *unused) 66 { 67 dmu_buf_impl_t *db = vdb; 68 mutex_destroy(&db->db_mtx); 69 cv_destroy(&db->db_changed); 70 refcount_destroy(&db->db_holds); 71 } 72 73 /* 74 * dbuf hash table routines 75 */ 76 static dbuf_hash_table_t dbuf_hash_table; 77 78 static uint64_t dbuf_hash_count; 79 80 static uint64_t 81 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 82 { 83 uintptr_t osv = (uintptr_t)os; 84 uint64_t crc = -1ULL; 85 86 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 87 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 88 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 89 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 90 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 91 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 92 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 93 94 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 95 96 return (crc); 97 } 98 99 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid); 100 101 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 102 ((dbuf)->db.db_object == (obj) && \ 103 (dbuf)->db_objset == (os) && \ 104 (dbuf)->db_level == (level) && \ 105 (dbuf)->db_blkid == (blkid)) 106 107 dmu_buf_impl_t * 108 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid) 109 { 110 dbuf_hash_table_t *h = &dbuf_hash_table; 111 objset_t *os = dn->dn_objset; 112 uint64_t obj = dn->dn_object; 113 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 114 uint64_t idx = hv & h->hash_table_mask; 115 dmu_buf_impl_t *db; 116 117 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 118 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 119 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 120 mutex_enter(&db->db_mtx); 121 if (db->db_state != DB_EVICTING) { 122 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 123 return (db); 124 } 125 mutex_exit(&db->db_mtx); 126 } 127 } 128 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 129 return (NULL); 130 } 131 132 /* 133 * Insert an entry into the hash table. If there is already an element 134 * equal to elem in the hash table, then the already existing element 135 * will be returned and the new element will not be inserted. 136 * Otherwise returns NULL. 137 */ 138 static dmu_buf_impl_t * 139 dbuf_hash_insert(dmu_buf_impl_t *db) 140 { 141 dbuf_hash_table_t *h = &dbuf_hash_table; 142 objset_t *os = db->db_objset; 143 uint64_t obj = db->db.db_object; 144 int level = db->db_level; 145 uint64_t blkid = db->db_blkid; 146 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 147 uint64_t idx = hv & h->hash_table_mask; 148 dmu_buf_impl_t *dbf; 149 150 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 151 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 152 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 153 mutex_enter(&dbf->db_mtx); 154 if (dbf->db_state != DB_EVICTING) { 155 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 156 return (dbf); 157 } 158 mutex_exit(&dbf->db_mtx); 159 } 160 } 161 162 mutex_enter(&db->db_mtx); 163 db->db_hash_next = h->hash_table[idx]; 164 h->hash_table[idx] = db; 165 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 166 atomic_add_64(&dbuf_hash_count, 1); 167 168 return (NULL); 169 } 170 171 /* 172 * Remove an entry from the hash table. This operation will 173 * fail if there are any existing holds on the db. 174 */ 175 static void 176 dbuf_hash_remove(dmu_buf_impl_t *db) 177 { 178 dbuf_hash_table_t *h = &dbuf_hash_table; 179 uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object, 180 db->db_level, db->db_blkid); 181 uint64_t idx = hv & h->hash_table_mask; 182 dmu_buf_impl_t *dbf, **dbp; 183 184 /* 185 * We musn't hold db_mtx to maintin lock ordering: 186 * DBUF_HASH_MUTEX > db_mtx. 187 */ 188 ASSERT(refcount_is_zero(&db->db_holds)); 189 ASSERT(db->db_state == DB_EVICTING); 190 ASSERT(!MUTEX_HELD(&db->db_mtx)); 191 192 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 193 dbp = &h->hash_table[idx]; 194 while ((dbf = *dbp) != db) { 195 dbp = &dbf->db_hash_next; 196 ASSERT(dbf != NULL); 197 } 198 *dbp = db->db_hash_next; 199 db->db_hash_next = NULL; 200 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 201 atomic_add_64(&dbuf_hash_count, -1); 202 } 203 204 static arc_evict_func_t dbuf_do_evict; 205 206 static void 207 dbuf_evict_user(dmu_buf_impl_t *db) 208 { 209 ASSERT(MUTEX_HELD(&db->db_mtx)); 210 211 if (db->db_level != 0 || db->db_evict_func == NULL) 212 return; 213 214 if (db->db_user_data_ptr_ptr) 215 *db->db_user_data_ptr_ptr = db->db.db_data; 216 db->db_evict_func(&db->db, db->db_user_ptr); 217 db->db_user_ptr = NULL; 218 db->db_user_data_ptr_ptr = NULL; 219 db->db_evict_func = NULL; 220 } 221 222 boolean_t 223 dbuf_is_metadata(dmu_buf_impl_t *db) 224 { 225 if (db->db_level > 0) { 226 return (B_TRUE); 227 } else { 228 boolean_t is_metadata; 229 230 DB_DNODE_ENTER(db); 231 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 232 DB_DNODE_EXIT(db); 233 234 return (is_metadata); 235 } 236 } 237 238 void 239 dbuf_evict(dmu_buf_impl_t *db) 240 { 241 ASSERT(MUTEX_HELD(&db->db_mtx)); 242 ASSERT(db->db_buf == NULL); 243 ASSERT(db->db_data_pending == NULL); 244 245 dbuf_clear(db); 246 dbuf_destroy(db); 247 } 248 249 void 250 dbuf_init(void) 251 { 252 uint64_t hsize = 1ULL << 16; 253 dbuf_hash_table_t *h = &dbuf_hash_table; 254 int i; 255 256 /* 257 * The hash table is big enough to fill all of physical memory 258 * with an average 4K block size. The table will take up 259 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 260 */ 261 while (hsize * 4096 < physmem * PAGESIZE) 262 hsize <<= 1; 263 264 retry: 265 h->hash_table_mask = hsize - 1; 266 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 267 if (h->hash_table == NULL) { 268 /* XXX - we should really return an error instead of assert */ 269 ASSERT(hsize > (1ULL << 10)); 270 hsize >>= 1; 271 goto retry; 272 } 273 274 dbuf_cache = kmem_cache_create("dmu_buf_impl_t", 275 sizeof (dmu_buf_impl_t), 276 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 277 278 for (i = 0; i < DBUF_MUTEXES; i++) 279 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 280 } 281 282 void 283 dbuf_fini(void) 284 { 285 dbuf_hash_table_t *h = &dbuf_hash_table; 286 int i; 287 288 for (i = 0; i < DBUF_MUTEXES; i++) 289 mutex_destroy(&h->hash_mutexes[i]); 290 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 291 kmem_cache_destroy(dbuf_cache); 292 } 293 294 /* 295 * Other stuff. 296 */ 297 298 #ifdef ZFS_DEBUG 299 static void 300 dbuf_verify(dmu_buf_impl_t *db) 301 { 302 dnode_t *dn; 303 dbuf_dirty_record_t *dr; 304 305 ASSERT(MUTEX_HELD(&db->db_mtx)); 306 307 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 308 return; 309 310 ASSERT(db->db_objset != NULL); 311 DB_DNODE_ENTER(db); 312 dn = DB_DNODE(db); 313 if (dn == NULL) { 314 ASSERT(db->db_parent == NULL); 315 ASSERT(db->db_blkptr == NULL); 316 } else { 317 ASSERT3U(db->db.db_object, ==, dn->dn_object); 318 ASSERT3P(db->db_objset, ==, dn->dn_objset); 319 ASSERT3U(db->db_level, <, dn->dn_nlevels); 320 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 321 db->db_blkid == DMU_SPILL_BLKID || 322 !list_is_empty(&dn->dn_dbufs)); 323 } 324 if (db->db_blkid == DMU_BONUS_BLKID) { 325 ASSERT(dn != NULL); 326 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 327 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 328 } else if (db->db_blkid == DMU_SPILL_BLKID) { 329 ASSERT(dn != NULL); 330 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 331 ASSERT0(db->db.db_offset); 332 } else { 333 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 334 } 335 336 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 337 ASSERT(dr->dr_dbuf == db); 338 339 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 340 ASSERT(dr->dr_dbuf == db); 341 342 /* 343 * We can't assert that db_size matches dn_datablksz because it 344 * can be momentarily different when another thread is doing 345 * dnode_set_blksz(). 346 */ 347 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 348 dr = db->db_data_pending; 349 /* 350 * It should only be modified in syncing context, so 351 * make sure we only have one copy of the data. 352 */ 353 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 354 } 355 356 /* verify db->db_blkptr */ 357 if (db->db_blkptr) { 358 if (db->db_parent == dn->dn_dbuf) { 359 /* db is pointed to by the dnode */ 360 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 361 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 362 ASSERT(db->db_parent == NULL); 363 else 364 ASSERT(db->db_parent != NULL); 365 if (db->db_blkid != DMU_SPILL_BLKID) 366 ASSERT3P(db->db_blkptr, ==, 367 &dn->dn_phys->dn_blkptr[db->db_blkid]); 368 } else { 369 /* db is pointed to by an indirect block */ 370 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 371 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 372 ASSERT3U(db->db_parent->db.db_object, ==, 373 db->db.db_object); 374 /* 375 * dnode_grow_indblksz() can make this fail if we don't 376 * have the struct_rwlock. XXX indblksz no longer 377 * grows. safe to do this now? 378 */ 379 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 380 ASSERT3P(db->db_blkptr, ==, 381 ((blkptr_t *)db->db_parent->db.db_data + 382 db->db_blkid % epb)); 383 } 384 } 385 } 386 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 387 (db->db_buf == NULL || db->db_buf->b_data) && 388 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 389 db->db_state != DB_FILL && !dn->dn_free_txg) { 390 /* 391 * If the blkptr isn't set but they have nonzero data, 392 * it had better be dirty, otherwise we'll lose that 393 * data when we evict this buffer. 394 */ 395 if (db->db_dirtycnt == 0) { 396 uint64_t *buf = db->db.db_data; 397 int i; 398 399 for (i = 0; i < db->db.db_size >> 3; i++) { 400 ASSERT(buf[i] == 0); 401 } 402 } 403 } 404 DB_DNODE_EXIT(db); 405 } 406 #endif 407 408 static void 409 dbuf_update_data(dmu_buf_impl_t *db) 410 { 411 ASSERT(MUTEX_HELD(&db->db_mtx)); 412 if (db->db_level == 0 && db->db_user_data_ptr_ptr) { 413 ASSERT(!refcount_is_zero(&db->db_holds)); 414 *db->db_user_data_ptr_ptr = db->db.db_data; 415 } 416 } 417 418 static void 419 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 420 { 421 ASSERT(MUTEX_HELD(&db->db_mtx)); 422 ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf)); 423 db->db_buf = buf; 424 if (buf != NULL) { 425 ASSERT(buf->b_data != NULL); 426 db->db.db_data = buf->b_data; 427 if (!arc_released(buf)) 428 arc_set_callback(buf, dbuf_do_evict, db); 429 dbuf_update_data(db); 430 } else { 431 dbuf_evict_user(db); 432 db->db.db_data = NULL; 433 if (db->db_state != DB_NOFILL) 434 db->db_state = DB_UNCACHED; 435 } 436 } 437 438 /* 439 * Loan out an arc_buf for read. Return the loaned arc_buf. 440 */ 441 arc_buf_t * 442 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 443 { 444 arc_buf_t *abuf; 445 446 mutex_enter(&db->db_mtx); 447 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 448 int blksz = db->db.db_size; 449 spa_t *spa; 450 451 mutex_exit(&db->db_mtx); 452 DB_GET_SPA(&spa, db); 453 abuf = arc_loan_buf(spa, blksz); 454 bcopy(db->db.db_data, abuf->b_data, blksz); 455 } else { 456 abuf = db->db_buf; 457 arc_loan_inuse_buf(abuf, db); 458 dbuf_set_data(db, NULL); 459 mutex_exit(&db->db_mtx); 460 } 461 return (abuf); 462 } 463 464 uint64_t 465 dbuf_whichblock(dnode_t *dn, uint64_t offset) 466 { 467 if (dn->dn_datablkshift) { 468 return (offset >> dn->dn_datablkshift); 469 } else { 470 ASSERT3U(offset, <, dn->dn_datablksz); 471 return (0); 472 } 473 } 474 475 static void 476 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 477 { 478 dmu_buf_impl_t *db = vdb; 479 480 mutex_enter(&db->db_mtx); 481 ASSERT3U(db->db_state, ==, DB_READ); 482 /* 483 * All reads are synchronous, so we must have a hold on the dbuf 484 */ 485 ASSERT(refcount_count(&db->db_holds) > 0); 486 ASSERT(db->db_buf == NULL); 487 ASSERT(db->db.db_data == NULL); 488 if (db->db_level == 0 && db->db_freed_in_flight) { 489 /* we were freed in flight; disregard any error */ 490 arc_release(buf, db); 491 bzero(buf->b_data, db->db.db_size); 492 arc_buf_freeze(buf); 493 db->db_freed_in_flight = FALSE; 494 dbuf_set_data(db, buf); 495 db->db_state = DB_CACHED; 496 } else if (zio == NULL || zio->io_error == 0) { 497 dbuf_set_data(db, buf); 498 db->db_state = DB_CACHED; 499 } else { 500 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 501 ASSERT3P(db->db_buf, ==, NULL); 502 VERIFY(arc_buf_remove_ref(buf, db)); 503 db->db_state = DB_UNCACHED; 504 } 505 cv_broadcast(&db->db_changed); 506 dbuf_rele_and_unlock(db, NULL); 507 } 508 509 static void 510 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags) 511 { 512 dnode_t *dn; 513 spa_t *spa; 514 zbookmark_t zb; 515 uint32_t aflags = ARC_NOWAIT; 516 517 DB_DNODE_ENTER(db); 518 dn = DB_DNODE(db); 519 ASSERT(!refcount_is_zero(&db->db_holds)); 520 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 521 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 522 ASSERT(MUTEX_HELD(&db->db_mtx)); 523 ASSERT(db->db_state == DB_UNCACHED); 524 ASSERT(db->db_buf == NULL); 525 526 if (db->db_blkid == DMU_BONUS_BLKID) { 527 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 528 529 ASSERT3U(bonuslen, <=, db->db.db_size); 530 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 531 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 532 if (bonuslen < DN_MAX_BONUSLEN) 533 bzero(db->db.db_data, DN_MAX_BONUSLEN); 534 if (bonuslen) 535 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 536 DB_DNODE_EXIT(db); 537 dbuf_update_data(db); 538 db->db_state = DB_CACHED; 539 mutex_exit(&db->db_mtx); 540 return; 541 } 542 543 /* 544 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 545 * processes the delete record and clears the bp while we are waiting 546 * for the dn_mtx (resulting in a "no" from block_freed). 547 */ 548 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 549 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 550 BP_IS_HOLE(db->db_blkptr)))) { 551 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 552 553 dbuf_set_data(db, arc_buf_alloc(dn->dn_objset->os_spa, 554 db->db.db_size, db, type)); 555 DB_DNODE_EXIT(db); 556 bzero(db->db.db_data, db->db.db_size); 557 db->db_state = DB_CACHED; 558 *flags |= DB_RF_CACHED; 559 mutex_exit(&db->db_mtx); 560 return; 561 } 562 563 spa = dn->dn_objset->os_spa; 564 DB_DNODE_EXIT(db); 565 566 db->db_state = DB_READ; 567 mutex_exit(&db->db_mtx); 568 569 if (DBUF_IS_L2CACHEABLE(db)) 570 aflags |= ARC_L2CACHE; 571 572 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 573 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 574 db->db.db_object, db->db_level, db->db_blkid); 575 576 dbuf_add_ref(db, NULL); 577 578 (void) arc_read(zio, spa, db->db_blkptr, 579 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 580 (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 581 &aflags, &zb); 582 if (aflags & ARC_CACHED) 583 *flags |= DB_RF_CACHED; 584 } 585 586 int 587 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 588 { 589 int err = 0; 590 int havepzio = (zio != NULL); 591 int prefetch; 592 dnode_t *dn; 593 594 /* 595 * We don't have to hold the mutex to check db_state because it 596 * can't be freed while we have a hold on the buffer. 597 */ 598 ASSERT(!refcount_is_zero(&db->db_holds)); 599 600 if (db->db_state == DB_NOFILL) 601 return (EIO); 602 603 DB_DNODE_ENTER(db); 604 dn = DB_DNODE(db); 605 if ((flags & DB_RF_HAVESTRUCT) == 0) 606 rw_enter(&dn->dn_struct_rwlock, RW_READER); 607 608 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 609 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 610 DBUF_IS_CACHEABLE(db); 611 612 mutex_enter(&db->db_mtx); 613 if (db->db_state == DB_CACHED) { 614 mutex_exit(&db->db_mtx); 615 if (prefetch) 616 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 617 db->db.db_size, TRUE); 618 if ((flags & DB_RF_HAVESTRUCT) == 0) 619 rw_exit(&dn->dn_struct_rwlock); 620 DB_DNODE_EXIT(db); 621 } else if (db->db_state == DB_UNCACHED) { 622 spa_t *spa = dn->dn_objset->os_spa; 623 624 if (zio == NULL) 625 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 626 dbuf_read_impl(db, zio, &flags); 627 628 /* dbuf_read_impl has dropped db_mtx for us */ 629 630 if (prefetch) 631 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 632 db->db.db_size, flags & DB_RF_CACHED); 633 634 if ((flags & DB_RF_HAVESTRUCT) == 0) 635 rw_exit(&dn->dn_struct_rwlock); 636 DB_DNODE_EXIT(db); 637 638 if (!havepzio) 639 err = zio_wait(zio); 640 } else { 641 mutex_exit(&db->db_mtx); 642 if (prefetch) 643 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 644 db->db.db_size, TRUE); 645 if ((flags & DB_RF_HAVESTRUCT) == 0) 646 rw_exit(&dn->dn_struct_rwlock); 647 DB_DNODE_EXIT(db); 648 649 mutex_enter(&db->db_mtx); 650 if ((flags & DB_RF_NEVERWAIT) == 0) { 651 while (db->db_state == DB_READ || 652 db->db_state == DB_FILL) { 653 ASSERT(db->db_state == DB_READ || 654 (flags & DB_RF_HAVESTRUCT) == 0); 655 cv_wait(&db->db_changed, &db->db_mtx); 656 } 657 if (db->db_state == DB_UNCACHED) 658 err = EIO; 659 } 660 mutex_exit(&db->db_mtx); 661 } 662 663 ASSERT(err || havepzio || db->db_state == DB_CACHED); 664 return (err); 665 } 666 667 static void 668 dbuf_noread(dmu_buf_impl_t *db) 669 { 670 ASSERT(!refcount_is_zero(&db->db_holds)); 671 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 672 mutex_enter(&db->db_mtx); 673 while (db->db_state == DB_READ || db->db_state == DB_FILL) 674 cv_wait(&db->db_changed, &db->db_mtx); 675 if (db->db_state == DB_UNCACHED) { 676 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 677 spa_t *spa; 678 679 ASSERT(db->db_buf == NULL); 680 ASSERT(db->db.db_data == NULL); 681 DB_GET_SPA(&spa, db); 682 dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type)); 683 db->db_state = DB_FILL; 684 } else if (db->db_state == DB_NOFILL) { 685 dbuf_set_data(db, NULL); 686 } else { 687 ASSERT3U(db->db_state, ==, DB_CACHED); 688 } 689 mutex_exit(&db->db_mtx); 690 } 691 692 /* 693 * This is our just-in-time copy function. It makes a copy of 694 * buffers, that have been modified in a previous transaction 695 * group, before we modify them in the current active group. 696 * 697 * This function is used in two places: when we are dirtying a 698 * buffer for the first time in a txg, and when we are freeing 699 * a range in a dnode that includes this buffer. 700 * 701 * Note that when we are called from dbuf_free_range() we do 702 * not put a hold on the buffer, we just traverse the active 703 * dbuf list for the dnode. 704 */ 705 static void 706 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 707 { 708 dbuf_dirty_record_t *dr = db->db_last_dirty; 709 710 ASSERT(MUTEX_HELD(&db->db_mtx)); 711 ASSERT(db->db.db_data != NULL); 712 ASSERT(db->db_level == 0); 713 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 714 715 if (dr == NULL || 716 (dr->dt.dl.dr_data != 717 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 718 return; 719 720 /* 721 * If the last dirty record for this dbuf has not yet synced 722 * and its referencing the dbuf data, either: 723 * reset the reference to point to a new copy, 724 * or (if there a no active holders) 725 * just null out the current db_data pointer. 726 */ 727 ASSERT(dr->dr_txg >= txg - 2); 728 if (db->db_blkid == DMU_BONUS_BLKID) { 729 /* Note that the data bufs here are zio_bufs */ 730 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 731 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 732 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 733 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 734 int size = db->db.db_size; 735 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 736 spa_t *spa; 737 738 DB_GET_SPA(&spa, db); 739 dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type); 740 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 741 } else { 742 dbuf_set_data(db, NULL); 743 } 744 } 745 746 void 747 dbuf_unoverride(dbuf_dirty_record_t *dr) 748 { 749 dmu_buf_impl_t *db = dr->dr_dbuf; 750 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 751 uint64_t txg = dr->dr_txg; 752 753 ASSERT(MUTEX_HELD(&db->db_mtx)); 754 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 755 ASSERT(db->db_level == 0); 756 757 if (db->db_blkid == DMU_BONUS_BLKID || 758 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 759 return; 760 761 ASSERT(db->db_data_pending != dr); 762 763 /* free this block */ 764 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) { 765 spa_t *spa; 766 767 DB_GET_SPA(&spa, db); 768 zio_free(spa, txg, bp); 769 } 770 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 771 dr->dt.dl.dr_nopwrite = B_FALSE; 772 773 /* 774 * Release the already-written buffer, so we leave it in 775 * a consistent dirty state. Note that all callers are 776 * modifying the buffer, so they will immediately do 777 * another (redundant) arc_release(). Therefore, leave 778 * the buf thawed to save the effort of freezing & 779 * immediately re-thawing it. 780 */ 781 arc_release(dr->dt.dl.dr_data, db); 782 } 783 784 /* 785 * Evict (if its unreferenced) or clear (if its referenced) any level-0 786 * data blocks in the free range, so that any future readers will find 787 * empty blocks. Also, if we happen accross any level-1 dbufs in the 788 * range that have not already been marked dirty, mark them dirty so 789 * they stay in memory. 790 */ 791 void 792 dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx) 793 { 794 dmu_buf_impl_t *db, *db_next; 795 uint64_t txg = tx->tx_txg; 796 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 797 uint64_t first_l1 = start >> epbs; 798 uint64_t last_l1 = end >> epbs; 799 800 if (end > dn->dn_maxblkid && (end != DMU_SPILL_BLKID)) { 801 end = dn->dn_maxblkid; 802 last_l1 = end >> epbs; 803 } 804 dprintf_dnode(dn, "start=%llu end=%llu\n", start, end); 805 mutex_enter(&dn->dn_dbufs_mtx); 806 for (db = list_head(&dn->dn_dbufs); db; db = db_next) { 807 db_next = list_next(&dn->dn_dbufs, db); 808 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 809 810 if (db->db_level == 1 && 811 db->db_blkid >= first_l1 && db->db_blkid <= last_l1) { 812 mutex_enter(&db->db_mtx); 813 if (db->db_last_dirty && 814 db->db_last_dirty->dr_txg < txg) { 815 dbuf_add_ref(db, FTAG); 816 mutex_exit(&db->db_mtx); 817 dbuf_will_dirty(db, tx); 818 dbuf_rele(db, FTAG); 819 } else { 820 mutex_exit(&db->db_mtx); 821 } 822 } 823 824 if (db->db_level != 0) 825 continue; 826 dprintf_dbuf(db, "found buf %s\n", ""); 827 if (db->db_blkid < start || db->db_blkid > end) 828 continue; 829 830 /* found a level 0 buffer in the range */ 831 mutex_enter(&db->db_mtx); 832 if (dbuf_undirty(db, tx)) { 833 /* mutex has been dropped and dbuf destroyed */ 834 continue; 835 } 836 837 if (db->db_state == DB_UNCACHED || 838 db->db_state == DB_NOFILL || 839 db->db_state == DB_EVICTING) { 840 ASSERT(db->db.db_data == NULL); 841 mutex_exit(&db->db_mtx); 842 continue; 843 } 844 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 845 /* will be handled in dbuf_read_done or dbuf_rele */ 846 db->db_freed_in_flight = TRUE; 847 mutex_exit(&db->db_mtx); 848 continue; 849 } 850 if (refcount_count(&db->db_holds) == 0) { 851 ASSERT(db->db_buf); 852 dbuf_clear(db); 853 continue; 854 } 855 /* The dbuf is referenced */ 856 857 if (db->db_last_dirty != NULL) { 858 dbuf_dirty_record_t *dr = db->db_last_dirty; 859 860 if (dr->dr_txg == txg) { 861 /* 862 * This buffer is "in-use", re-adjust the file 863 * size to reflect that this buffer may 864 * contain new data when we sync. 865 */ 866 if (db->db_blkid != DMU_SPILL_BLKID && 867 db->db_blkid > dn->dn_maxblkid) 868 dn->dn_maxblkid = db->db_blkid; 869 dbuf_unoverride(dr); 870 } else { 871 /* 872 * This dbuf is not dirty in the open context. 873 * Either uncache it (if its not referenced in 874 * the open context) or reset its contents to 875 * empty. 876 */ 877 dbuf_fix_old_data(db, txg); 878 } 879 } 880 /* clear the contents if its cached */ 881 if (db->db_state == DB_CACHED) { 882 ASSERT(db->db.db_data != NULL); 883 arc_release(db->db_buf, db); 884 bzero(db->db.db_data, db->db.db_size); 885 arc_buf_freeze(db->db_buf); 886 } 887 888 mutex_exit(&db->db_mtx); 889 } 890 mutex_exit(&dn->dn_dbufs_mtx); 891 } 892 893 static int 894 dbuf_block_freeable(dmu_buf_impl_t *db) 895 { 896 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 897 uint64_t birth_txg = 0; 898 899 /* 900 * We don't need any locking to protect db_blkptr: 901 * If it's syncing, then db_last_dirty will be set 902 * so we'll ignore db_blkptr. 903 */ 904 ASSERT(MUTEX_HELD(&db->db_mtx)); 905 if (db->db_last_dirty) 906 birth_txg = db->db_last_dirty->dr_txg; 907 else if (db->db_blkptr) 908 birth_txg = db->db_blkptr->blk_birth; 909 910 /* 911 * If we don't exist or are in a snapshot, we can't be freed. 912 * Don't pass the bp to dsl_dataset_block_freeable() since we 913 * are holding the db_mtx lock and might deadlock if we are 914 * prefetching a dedup-ed block. 915 */ 916 if (birth_txg) 917 return (ds == NULL || 918 dsl_dataset_block_freeable(ds, NULL, birth_txg)); 919 else 920 return (FALSE); 921 } 922 923 void 924 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 925 { 926 arc_buf_t *buf, *obuf; 927 int osize = db->db.db_size; 928 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 929 dnode_t *dn; 930 931 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 932 933 DB_DNODE_ENTER(db); 934 dn = DB_DNODE(db); 935 936 /* XXX does *this* func really need the lock? */ 937 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 938 939 /* 940 * This call to dbuf_will_dirty() with the dn_struct_rwlock held 941 * is OK, because there can be no other references to the db 942 * when we are changing its size, so no concurrent DB_FILL can 943 * be happening. 944 */ 945 /* 946 * XXX we should be doing a dbuf_read, checking the return 947 * value and returning that up to our callers 948 */ 949 dbuf_will_dirty(db, tx); 950 951 /* create the data buffer for the new block */ 952 buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type); 953 954 /* copy old block data to the new block */ 955 obuf = db->db_buf; 956 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 957 /* zero the remainder */ 958 if (size > osize) 959 bzero((uint8_t *)buf->b_data + osize, size - osize); 960 961 mutex_enter(&db->db_mtx); 962 dbuf_set_data(db, buf); 963 VERIFY(arc_buf_remove_ref(obuf, db)); 964 db->db.db_size = size; 965 966 if (db->db_level == 0) { 967 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 968 db->db_last_dirty->dt.dl.dr_data = buf; 969 } 970 mutex_exit(&db->db_mtx); 971 972 dnode_willuse_space(dn, size-osize, tx); 973 DB_DNODE_EXIT(db); 974 } 975 976 void 977 dbuf_release_bp(dmu_buf_impl_t *db) 978 { 979 objset_t *os; 980 981 DB_GET_OBJSET(&os, db); 982 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 983 ASSERT(arc_released(os->os_phys_buf) || 984 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 985 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 986 987 (void) arc_release(db->db_buf, db); 988 } 989 990 dbuf_dirty_record_t * 991 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 992 { 993 dnode_t *dn; 994 objset_t *os; 995 dbuf_dirty_record_t **drp, *dr; 996 int drop_struct_lock = FALSE; 997 boolean_t do_free_accounting = B_FALSE; 998 int txgoff = tx->tx_txg & TXG_MASK; 999 1000 ASSERT(tx->tx_txg != 0); 1001 ASSERT(!refcount_is_zero(&db->db_holds)); 1002 DMU_TX_DIRTY_BUF(tx, db); 1003 1004 DB_DNODE_ENTER(db); 1005 dn = DB_DNODE(db); 1006 /* 1007 * Shouldn't dirty a regular buffer in syncing context. Private 1008 * objects may be dirtied in syncing context, but only if they 1009 * were already pre-dirtied in open context. 1010 */ 1011 ASSERT(!dmu_tx_is_syncing(tx) || 1012 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1013 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1014 dn->dn_objset->os_dsl_dataset == NULL); 1015 /* 1016 * We make this assert for private objects as well, but after we 1017 * check if we're already dirty. They are allowed to re-dirty 1018 * in syncing context. 1019 */ 1020 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1021 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1022 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1023 1024 mutex_enter(&db->db_mtx); 1025 /* 1026 * XXX make this true for indirects too? The problem is that 1027 * transactions created with dmu_tx_create_assigned() from 1028 * syncing context don't bother holding ahead. 1029 */ 1030 ASSERT(db->db_level != 0 || 1031 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1032 db->db_state == DB_NOFILL); 1033 1034 mutex_enter(&dn->dn_mtx); 1035 /* 1036 * Don't set dirtyctx to SYNC if we're just modifying this as we 1037 * initialize the objset. 1038 */ 1039 if (dn->dn_dirtyctx == DN_UNDIRTIED && 1040 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1041 dn->dn_dirtyctx = 1042 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1043 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1044 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1045 } 1046 mutex_exit(&dn->dn_mtx); 1047 1048 if (db->db_blkid == DMU_SPILL_BLKID) 1049 dn->dn_have_spill = B_TRUE; 1050 1051 /* 1052 * If this buffer is already dirty, we're done. 1053 */ 1054 drp = &db->db_last_dirty; 1055 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1056 db->db.db_object == DMU_META_DNODE_OBJECT); 1057 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1058 drp = &dr->dr_next; 1059 if (dr && dr->dr_txg == tx->tx_txg) { 1060 DB_DNODE_EXIT(db); 1061 1062 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1063 /* 1064 * If this buffer has already been written out, 1065 * we now need to reset its state. 1066 */ 1067 dbuf_unoverride(dr); 1068 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1069 db->db_state != DB_NOFILL) 1070 arc_buf_thaw(db->db_buf); 1071 } 1072 mutex_exit(&db->db_mtx); 1073 return (dr); 1074 } 1075 1076 /* 1077 * Only valid if not already dirty. 1078 */ 1079 ASSERT(dn->dn_object == 0 || 1080 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1081 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1082 1083 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1084 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1085 dn->dn_phys->dn_nlevels > db->db_level || 1086 dn->dn_next_nlevels[txgoff] > db->db_level || 1087 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1088 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1089 1090 /* 1091 * We should only be dirtying in syncing context if it's the 1092 * mos or we're initializing the os or it's a special object. 1093 * However, we are allowed to dirty in syncing context provided 1094 * we already dirtied it in open context. Hence we must make 1095 * this assertion only if we're not already dirty. 1096 */ 1097 os = dn->dn_objset; 1098 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1099 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1100 ASSERT(db->db.db_size != 0); 1101 1102 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1103 1104 if (db->db_blkid != DMU_BONUS_BLKID) { 1105 /* 1106 * Update the accounting. 1107 * Note: we delay "free accounting" until after we drop 1108 * the db_mtx. This keeps us from grabbing other locks 1109 * (and possibly deadlocking) in bp_get_dsize() while 1110 * also holding the db_mtx. 1111 */ 1112 dnode_willuse_space(dn, db->db.db_size, tx); 1113 do_free_accounting = dbuf_block_freeable(db); 1114 } 1115 1116 /* 1117 * If this buffer is dirty in an old transaction group we need 1118 * to make a copy of it so that the changes we make in this 1119 * transaction group won't leak out when we sync the older txg. 1120 */ 1121 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1122 if (db->db_level == 0) { 1123 void *data_old = db->db_buf; 1124 1125 if (db->db_state != DB_NOFILL) { 1126 if (db->db_blkid == DMU_BONUS_BLKID) { 1127 dbuf_fix_old_data(db, tx->tx_txg); 1128 data_old = db->db.db_data; 1129 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1130 /* 1131 * Release the data buffer from the cache so 1132 * that we can modify it without impacting 1133 * possible other users of this cached data 1134 * block. Note that indirect blocks and 1135 * private objects are not released until the 1136 * syncing state (since they are only modified 1137 * then). 1138 */ 1139 arc_release(db->db_buf, db); 1140 dbuf_fix_old_data(db, tx->tx_txg); 1141 data_old = db->db_buf; 1142 } 1143 ASSERT(data_old != NULL); 1144 } 1145 dr->dt.dl.dr_data = data_old; 1146 } else { 1147 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1148 list_create(&dr->dt.di.dr_children, 1149 sizeof (dbuf_dirty_record_t), 1150 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1151 } 1152 dr->dr_dbuf = db; 1153 dr->dr_txg = tx->tx_txg; 1154 dr->dr_next = *drp; 1155 *drp = dr; 1156 1157 /* 1158 * We could have been freed_in_flight between the dbuf_noread 1159 * and dbuf_dirty. We win, as though the dbuf_noread() had 1160 * happened after the free. 1161 */ 1162 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1163 db->db_blkid != DMU_SPILL_BLKID) { 1164 mutex_enter(&dn->dn_mtx); 1165 dnode_clear_range(dn, db->db_blkid, 1, tx); 1166 mutex_exit(&dn->dn_mtx); 1167 db->db_freed_in_flight = FALSE; 1168 } 1169 1170 /* 1171 * This buffer is now part of this txg 1172 */ 1173 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1174 db->db_dirtycnt += 1; 1175 ASSERT3U(db->db_dirtycnt, <=, 3); 1176 1177 mutex_exit(&db->db_mtx); 1178 1179 if (db->db_blkid == DMU_BONUS_BLKID || 1180 db->db_blkid == DMU_SPILL_BLKID) { 1181 mutex_enter(&dn->dn_mtx); 1182 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1183 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1184 mutex_exit(&dn->dn_mtx); 1185 dnode_setdirty(dn, tx); 1186 DB_DNODE_EXIT(db); 1187 return (dr); 1188 } else if (do_free_accounting) { 1189 blkptr_t *bp = db->db_blkptr; 1190 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ? 1191 bp_get_dsize(os->os_spa, bp) : db->db.db_size; 1192 /* 1193 * This is only a guess -- if the dbuf is dirty 1194 * in a previous txg, we don't know how much 1195 * space it will use on disk yet. We should 1196 * really have the struct_rwlock to access 1197 * db_blkptr, but since this is just a guess, 1198 * it's OK if we get an odd answer. 1199 */ 1200 ddt_prefetch(os->os_spa, bp); 1201 dnode_willuse_space(dn, -willfree, tx); 1202 } 1203 1204 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1205 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1206 drop_struct_lock = TRUE; 1207 } 1208 1209 if (db->db_level == 0) { 1210 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1211 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1212 } 1213 1214 if (db->db_level+1 < dn->dn_nlevels) { 1215 dmu_buf_impl_t *parent = db->db_parent; 1216 dbuf_dirty_record_t *di; 1217 int parent_held = FALSE; 1218 1219 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1220 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1221 1222 parent = dbuf_hold_level(dn, db->db_level+1, 1223 db->db_blkid >> epbs, FTAG); 1224 ASSERT(parent != NULL); 1225 parent_held = TRUE; 1226 } 1227 if (drop_struct_lock) 1228 rw_exit(&dn->dn_struct_rwlock); 1229 ASSERT3U(db->db_level+1, ==, parent->db_level); 1230 di = dbuf_dirty(parent, tx); 1231 if (parent_held) 1232 dbuf_rele(parent, FTAG); 1233 1234 mutex_enter(&db->db_mtx); 1235 /* possible race with dbuf_undirty() */ 1236 if (db->db_last_dirty == dr || 1237 dn->dn_object == DMU_META_DNODE_OBJECT) { 1238 mutex_enter(&di->dt.di.dr_mtx); 1239 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1240 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1241 list_insert_tail(&di->dt.di.dr_children, dr); 1242 mutex_exit(&di->dt.di.dr_mtx); 1243 dr->dr_parent = di; 1244 } 1245 mutex_exit(&db->db_mtx); 1246 } else { 1247 ASSERT(db->db_level+1 == dn->dn_nlevels); 1248 ASSERT(db->db_blkid < dn->dn_nblkptr); 1249 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1250 mutex_enter(&dn->dn_mtx); 1251 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1252 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1253 mutex_exit(&dn->dn_mtx); 1254 if (drop_struct_lock) 1255 rw_exit(&dn->dn_struct_rwlock); 1256 } 1257 1258 dnode_setdirty(dn, tx); 1259 DB_DNODE_EXIT(db); 1260 return (dr); 1261 } 1262 1263 /* 1264 * Return TRUE if this evicted the dbuf. 1265 */ 1266 static boolean_t 1267 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1268 { 1269 dnode_t *dn; 1270 uint64_t txg = tx->tx_txg; 1271 dbuf_dirty_record_t *dr, **drp; 1272 1273 ASSERT(txg != 0); 1274 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1275 ASSERT0(db->db_level); 1276 ASSERT(MUTEX_HELD(&db->db_mtx)); 1277 1278 /* 1279 * If this buffer is not dirty, we're done. 1280 */ 1281 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1282 if (dr->dr_txg <= txg) 1283 break; 1284 if (dr == NULL || dr->dr_txg < txg) 1285 return (B_FALSE); 1286 ASSERT(dr->dr_txg == txg); 1287 ASSERT(dr->dr_dbuf == db); 1288 1289 DB_DNODE_ENTER(db); 1290 dn = DB_DNODE(db); 1291 1292 /* 1293 * Note: This code will probably work even if there are concurrent 1294 * holders, but it is untested in that scenerio, as the ZPL and 1295 * ztest have additional locking (the range locks) that prevents 1296 * that type of concurrent access. 1297 */ 1298 ASSERT3U(refcount_count(&db->db_holds), ==, db->db_dirtycnt); 1299 1300 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1301 1302 ASSERT(db->db.db_size != 0); 1303 1304 /* XXX would be nice to fix up dn_towrite_space[] */ 1305 1306 *drp = dr->dr_next; 1307 1308 /* 1309 * Note that there are three places in dbuf_dirty() 1310 * where this dirty record may be put on a list. 1311 * Make sure to do a list_remove corresponding to 1312 * every one of those list_insert calls. 1313 */ 1314 if (dr->dr_parent) { 1315 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1316 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1317 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1318 } else if (db->db_blkid == DMU_SPILL_BLKID || 1319 db->db_level+1 == dn->dn_nlevels) { 1320 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1321 mutex_enter(&dn->dn_mtx); 1322 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1323 mutex_exit(&dn->dn_mtx); 1324 } 1325 DB_DNODE_EXIT(db); 1326 1327 if (db->db_state != DB_NOFILL) { 1328 dbuf_unoverride(dr); 1329 1330 ASSERT(db->db_buf != NULL); 1331 ASSERT(dr->dt.dl.dr_data != NULL); 1332 if (dr->dt.dl.dr_data != db->db_buf) 1333 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db)); 1334 } 1335 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1336 1337 ASSERT(db->db_dirtycnt > 0); 1338 db->db_dirtycnt -= 1; 1339 1340 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1341 arc_buf_t *buf = db->db_buf; 1342 1343 ASSERT(db->db_state == DB_NOFILL || arc_released(buf)); 1344 dbuf_set_data(db, NULL); 1345 VERIFY(arc_buf_remove_ref(buf, db)); 1346 dbuf_evict(db); 1347 return (B_TRUE); 1348 } 1349 1350 return (B_FALSE); 1351 } 1352 1353 #pragma weak dmu_buf_will_dirty = dbuf_will_dirty 1354 void 1355 dbuf_will_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1356 { 1357 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1358 1359 ASSERT(tx->tx_txg != 0); 1360 ASSERT(!refcount_is_zero(&db->db_holds)); 1361 1362 DB_DNODE_ENTER(db); 1363 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1364 rf |= DB_RF_HAVESTRUCT; 1365 DB_DNODE_EXIT(db); 1366 (void) dbuf_read(db, NULL, rf); 1367 (void) dbuf_dirty(db, tx); 1368 } 1369 1370 void 1371 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1372 { 1373 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1374 1375 db->db_state = DB_NOFILL; 1376 1377 dmu_buf_will_fill(db_fake, tx); 1378 } 1379 1380 void 1381 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1382 { 1383 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1384 1385 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1386 ASSERT(tx->tx_txg != 0); 1387 ASSERT(db->db_level == 0); 1388 ASSERT(!refcount_is_zero(&db->db_holds)); 1389 1390 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1391 dmu_tx_private_ok(tx)); 1392 1393 dbuf_noread(db); 1394 (void) dbuf_dirty(db, tx); 1395 } 1396 1397 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1398 /* ARGSUSED */ 1399 void 1400 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1401 { 1402 mutex_enter(&db->db_mtx); 1403 DBUF_VERIFY(db); 1404 1405 if (db->db_state == DB_FILL) { 1406 if (db->db_level == 0 && db->db_freed_in_flight) { 1407 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1408 /* we were freed while filling */ 1409 /* XXX dbuf_undirty? */ 1410 bzero(db->db.db_data, db->db.db_size); 1411 db->db_freed_in_flight = FALSE; 1412 } 1413 db->db_state = DB_CACHED; 1414 cv_broadcast(&db->db_changed); 1415 } 1416 mutex_exit(&db->db_mtx); 1417 } 1418 1419 /* 1420 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1421 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1422 */ 1423 void 1424 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1425 { 1426 ASSERT(!refcount_is_zero(&db->db_holds)); 1427 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1428 ASSERT(db->db_level == 0); 1429 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA); 1430 ASSERT(buf != NULL); 1431 ASSERT(arc_buf_size(buf) == db->db.db_size); 1432 ASSERT(tx->tx_txg != 0); 1433 1434 arc_return_buf(buf, db); 1435 ASSERT(arc_released(buf)); 1436 1437 mutex_enter(&db->db_mtx); 1438 1439 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1440 cv_wait(&db->db_changed, &db->db_mtx); 1441 1442 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1443 1444 if (db->db_state == DB_CACHED && 1445 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1446 mutex_exit(&db->db_mtx); 1447 (void) dbuf_dirty(db, tx); 1448 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1449 VERIFY(arc_buf_remove_ref(buf, db)); 1450 xuio_stat_wbuf_copied(); 1451 return; 1452 } 1453 1454 xuio_stat_wbuf_nocopy(); 1455 if (db->db_state == DB_CACHED) { 1456 dbuf_dirty_record_t *dr = db->db_last_dirty; 1457 1458 ASSERT(db->db_buf != NULL); 1459 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 1460 ASSERT(dr->dt.dl.dr_data == db->db_buf); 1461 if (!arc_released(db->db_buf)) { 1462 ASSERT(dr->dt.dl.dr_override_state == 1463 DR_OVERRIDDEN); 1464 arc_release(db->db_buf, db); 1465 } 1466 dr->dt.dl.dr_data = buf; 1467 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1468 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 1469 arc_release(db->db_buf, db); 1470 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1471 } 1472 db->db_buf = NULL; 1473 } 1474 ASSERT(db->db_buf == NULL); 1475 dbuf_set_data(db, buf); 1476 db->db_state = DB_FILL; 1477 mutex_exit(&db->db_mtx); 1478 (void) dbuf_dirty(db, tx); 1479 dbuf_fill_done(db, tx); 1480 } 1481 1482 /* 1483 * "Clear" the contents of this dbuf. This will mark the dbuf 1484 * EVICTING and clear *most* of its references. Unfortunetely, 1485 * when we are not holding the dn_dbufs_mtx, we can't clear the 1486 * entry in the dn_dbufs list. We have to wait until dbuf_destroy() 1487 * in this case. For callers from the DMU we will usually see: 1488 * dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy() 1489 * For the arc callback, we will usually see: 1490 * dbuf_do_evict()->dbuf_clear();dbuf_destroy() 1491 * Sometimes, though, we will get a mix of these two: 1492 * DMU: dbuf_clear()->arc_buf_evict() 1493 * ARC: dbuf_do_evict()->dbuf_destroy() 1494 */ 1495 void 1496 dbuf_clear(dmu_buf_impl_t *db) 1497 { 1498 dnode_t *dn; 1499 dmu_buf_impl_t *parent = db->db_parent; 1500 dmu_buf_impl_t *dndb; 1501 int dbuf_gone = FALSE; 1502 1503 ASSERT(MUTEX_HELD(&db->db_mtx)); 1504 ASSERT(refcount_is_zero(&db->db_holds)); 1505 1506 dbuf_evict_user(db); 1507 1508 if (db->db_state == DB_CACHED) { 1509 ASSERT(db->db.db_data != NULL); 1510 if (db->db_blkid == DMU_BONUS_BLKID) { 1511 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 1512 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1513 } 1514 db->db.db_data = NULL; 1515 db->db_state = DB_UNCACHED; 1516 } 1517 1518 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1519 ASSERT(db->db_data_pending == NULL); 1520 1521 db->db_state = DB_EVICTING; 1522 db->db_blkptr = NULL; 1523 1524 DB_DNODE_ENTER(db); 1525 dn = DB_DNODE(db); 1526 dndb = dn->dn_dbuf; 1527 if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) { 1528 list_remove(&dn->dn_dbufs, db); 1529 (void) atomic_dec_32_nv(&dn->dn_dbufs_count); 1530 membar_producer(); 1531 DB_DNODE_EXIT(db); 1532 /* 1533 * Decrementing the dbuf count means that the hold corresponding 1534 * to the removed dbuf is no longer discounted in dnode_move(), 1535 * so the dnode cannot be moved until after we release the hold. 1536 * The membar_producer() ensures visibility of the decremented 1537 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 1538 * release any lock. 1539 */ 1540 dnode_rele(dn, db); 1541 db->db_dnode_handle = NULL; 1542 } else { 1543 DB_DNODE_EXIT(db); 1544 } 1545 1546 if (db->db_buf) 1547 dbuf_gone = arc_buf_evict(db->db_buf); 1548 1549 if (!dbuf_gone) 1550 mutex_exit(&db->db_mtx); 1551 1552 /* 1553 * If this dbuf is referenced from an indirect dbuf, 1554 * decrement the ref count on the indirect dbuf. 1555 */ 1556 if (parent && parent != dndb) 1557 dbuf_rele(parent, db); 1558 } 1559 1560 static int 1561 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 1562 dmu_buf_impl_t **parentp, blkptr_t **bpp) 1563 { 1564 int nlevels, epbs; 1565 1566 *parentp = NULL; 1567 *bpp = NULL; 1568 1569 ASSERT(blkid != DMU_BONUS_BLKID); 1570 1571 if (blkid == DMU_SPILL_BLKID) { 1572 mutex_enter(&dn->dn_mtx); 1573 if (dn->dn_have_spill && 1574 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1575 *bpp = &dn->dn_phys->dn_spill; 1576 else 1577 *bpp = NULL; 1578 dbuf_add_ref(dn->dn_dbuf, NULL); 1579 *parentp = dn->dn_dbuf; 1580 mutex_exit(&dn->dn_mtx); 1581 return (0); 1582 } 1583 1584 if (dn->dn_phys->dn_nlevels == 0) 1585 nlevels = 1; 1586 else 1587 nlevels = dn->dn_phys->dn_nlevels; 1588 1589 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1590 1591 ASSERT3U(level * epbs, <, 64); 1592 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1593 if (level >= nlevels || 1594 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 1595 /* the buffer has no parent yet */ 1596 return (ENOENT); 1597 } else if (level < nlevels-1) { 1598 /* this block is referenced from an indirect block */ 1599 int err = dbuf_hold_impl(dn, level+1, 1600 blkid >> epbs, fail_sparse, NULL, parentp); 1601 if (err) 1602 return (err); 1603 err = dbuf_read(*parentp, NULL, 1604 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 1605 if (err) { 1606 dbuf_rele(*parentp, NULL); 1607 *parentp = NULL; 1608 return (err); 1609 } 1610 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 1611 (blkid & ((1ULL << epbs) - 1)); 1612 return (0); 1613 } else { 1614 /* the block is referenced from the dnode */ 1615 ASSERT3U(level, ==, nlevels-1); 1616 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 1617 blkid < dn->dn_phys->dn_nblkptr); 1618 if (dn->dn_dbuf) { 1619 dbuf_add_ref(dn->dn_dbuf, NULL); 1620 *parentp = dn->dn_dbuf; 1621 } 1622 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 1623 return (0); 1624 } 1625 } 1626 1627 static dmu_buf_impl_t * 1628 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 1629 dmu_buf_impl_t *parent, blkptr_t *blkptr) 1630 { 1631 objset_t *os = dn->dn_objset; 1632 dmu_buf_impl_t *db, *odb; 1633 1634 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1635 ASSERT(dn->dn_type != DMU_OT_NONE); 1636 1637 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP); 1638 1639 db->db_objset = os; 1640 db->db.db_object = dn->dn_object; 1641 db->db_level = level; 1642 db->db_blkid = blkid; 1643 db->db_last_dirty = NULL; 1644 db->db_dirtycnt = 0; 1645 db->db_dnode_handle = dn->dn_handle; 1646 db->db_parent = parent; 1647 db->db_blkptr = blkptr; 1648 1649 db->db_user_ptr = NULL; 1650 db->db_user_data_ptr_ptr = NULL; 1651 db->db_evict_func = NULL; 1652 db->db_immediate_evict = 0; 1653 db->db_freed_in_flight = 0; 1654 1655 if (blkid == DMU_BONUS_BLKID) { 1656 ASSERT3P(parent, ==, dn->dn_dbuf); 1657 db->db.db_size = DN_MAX_BONUSLEN - 1658 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 1659 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1660 db->db.db_offset = DMU_BONUS_BLKID; 1661 db->db_state = DB_UNCACHED; 1662 /* the bonus dbuf is not placed in the hash table */ 1663 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1664 return (db); 1665 } else if (blkid == DMU_SPILL_BLKID) { 1666 db->db.db_size = (blkptr != NULL) ? 1667 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 1668 db->db.db_offset = 0; 1669 } else { 1670 int blocksize = 1671 db->db_level ? 1<<dn->dn_indblkshift : dn->dn_datablksz; 1672 db->db.db_size = blocksize; 1673 db->db.db_offset = db->db_blkid * blocksize; 1674 } 1675 1676 /* 1677 * Hold the dn_dbufs_mtx while we get the new dbuf 1678 * in the hash table *and* added to the dbufs list. 1679 * This prevents a possible deadlock with someone 1680 * trying to look up this dbuf before its added to the 1681 * dn_dbufs list. 1682 */ 1683 mutex_enter(&dn->dn_dbufs_mtx); 1684 db->db_state = DB_EVICTING; 1685 if ((odb = dbuf_hash_insert(db)) != NULL) { 1686 /* someone else inserted it first */ 1687 kmem_cache_free(dbuf_cache, db); 1688 mutex_exit(&dn->dn_dbufs_mtx); 1689 return (odb); 1690 } 1691 list_insert_head(&dn->dn_dbufs, db); 1692 db->db_state = DB_UNCACHED; 1693 mutex_exit(&dn->dn_dbufs_mtx); 1694 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1695 1696 if (parent && parent != dn->dn_dbuf) 1697 dbuf_add_ref(parent, db); 1698 1699 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1700 refcount_count(&dn->dn_holds) > 0); 1701 (void) refcount_add(&dn->dn_holds, db); 1702 (void) atomic_inc_32_nv(&dn->dn_dbufs_count); 1703 1704 dprintf_dbuf(db, "db=%p\n", db); 1705 1706 return (db); 1707 } 1708 1709 static int 1710 dbuf_do_evict(void *private) 1711 { 1712 arc_buf_t *buf = private; 1713 dmu_buf_impl_t *db = buf->b_private; 1714 1715 if (!MUTEX_HELD(&db->db_mtx)) 1716 mutex_enter(&db->db_mtx); 1717 1718 ASSERT(refcount_is_zero(&db->db_holds)); 1719 1720 if (db->db_state != DB_EVICTING) { 1721 ASSERT(db->db_state == DB_CACHED); 1722 DBUF_VERIFY(db); 1723 db->db_buf = NULL; 1724 dbuf_evict(db); 1725 } else { 1726 mutex_exit(&db->db_mtx); 1727 dbuf_destroy(db); 1728 } 1729 return (0); 1730 } 1731 1732 static void 1733 dbuf_destroy(dmu_buf_impl_t *db) 1734 { 1735 ASSERT(refcount_is_zero(&db->db_holds)); 1736 1737 if (db->db_blkid != DMU_BONUS_BLKID) { 1738 /* 1739 * If this dbuf is still on the dn_dbufs list, 1740 * remove it from that list. 1741 */ 1742 if (db->db_dnode_handle != NULL) { 1743 dnode_t *dn; 1744 1745 DB_DNODE_ENTER(db); 1746 dn = DB_DNODE(db); 1747 mutex_enter(&dn->dn_dbufs_mtx); 1748 list_remove(&dn->dn_dbufs, db); 1749 (void) atomic_dec_32_nv(&dn->dn_dbufs_count); 1750 mutex_exit(&dn->dn_dbufs_mtx); 1751 DB_DNODE_EXIT(db); 1752 /* 1753 * Decrementing the dbuf count means that the hold 1754 * corresponding to the removed dbuf is no longer 1755 * discounted in dnode_move(), so the dnode cannot be 1756 * moved until after we release the hold. 1757 */ 1758 dnode_rele(dn, db); 1759 db->db_dnode_handle = NULL; 1760 } 1761 dbuf_hash_remove(db); 1762 } 1763 db->db_parent = NULL; 1764 db->db_buf = NULL; 1765 1766 ASSERT(!list_link_active(&db->db_link)); 1767 ASSERT(db->db.db_data == NULL); 1768 ASSERT(db->db_hash_next == NULL); 1769 ASSERT(db->db_blkptr == NULL); 1770 ASSERT(db->db_data_pending == NULL); 1771 1772 kmem_cache_free(dbuf_cache, db); 1773 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1774 } 1775 1776 void 1777 dbuf_prefetch(dnode_t *dn, uint64_t blkid) 1778 { 1779 dmu_buf_impl_t *db = NULL; 1780 blkptr_t *bp = NULL; 1781 1782 ASSERT(blkid != DMU_BONUS_BLKID); 1783 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1784 1785 if (dnode_block_freed(dn, blkid)) 1786 return; 1787 1788 /* dbuf_find() returns with db_mtx held */ 1789 if (db = dbuf_find(dn, 0, blkid)) { 1790 /* 1791 * This dbuf is already in the cache. We assume that 1792 * it is already CACHED, or else about to be either 1793 * read or filled. 1794 */ 1795 mutex_exit(&db->db_mtx); 1796 return; 1797 } 1798 1799 if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) { 1800 if (bp && !BP_IS_HOLE(bp)) { 1801 int priority = dn->dn_type == DMU_OT_DDT_ZAP ? 1802 ZIO_PRIORITY_DDT_PREFETCH : ZIO_PRIORITY_ASYNC_READ; 1803 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 1804 uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH; 1805 zbookmark_t zb; 1806 1807 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1808 dn->dn_object, 0, blkid); 1809 1810 (void) arc_read(NULL, dn->dn_objset->os_spa, 1811 bp, NULL, NULL, priority, 1812 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 1813 &aflags, &zb); 1814 } 1815 if (db) 1816 dbuf_rele(db, NULL); 1817 } 1818 } 1819 1820 /* 1821 * Returns with db_holds incremented, and db_mtx not held. 1822 * Note: dn_struct_rwlock must be held. 1823 */ 1824 int 1825 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse, 1826 void *tag, dmu_buf_impl_t **dbp) 1827 { 1828 dmu_buf_impl_t *db, *parent = NULL; 1829 1830 ASSERT(blkid != DMU_BONUS_BLKID); 1831 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1832 ASSERT3U(dn->dn_nlevels, >, level); 1833 1834 *dbp = NULL; 1835 top: 1836 /* dbuf_find() returns with db_mtx held */ 1837 db = dbuf_find(dn, level, blkid); 1838 1839 if (db == NULL) { 1840 blkptr_t *bp = NULL; 1841 int err; 1842 1843 ASSERT3P(parent, ==, NULL); 1844 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 1845 if (fail_sparse) { 1846 if (err == 0 && bp && BP_IS_HOLE(bp)) 1847 err = ENOENT; 1848 if (err) { 1849 if (parent) 1850 dbuf_rele(parent, NULL); 1851 return (err); 1852 } 1853 } 1854 if (err && err != ENOENT) 1855 return (err); 1856 db = dbuf_create(dn, level, blkid, parent, bp); 1857 } 1858 1859 if (db->db_buf && refcount_is_zero(&db->db_holds)) { 1860 arc_buf_add_ref(db->db_buf, db); 1861 if (db->db_buf->b_data == NULL) { 1862 dbuf_clear(db); 1863 if (parent) { 1864 dbuf_rele(parent, NULL); 1865 parent = NULL; 1866 } 1867 goto top; 1868 } 1869 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 1870 } 1871 1872 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 1873 1874 /* 1875 * If this buffer is currently syncing out, and we are are 1876 * still referencing it from db_data, we need to make a copy 1877 * of it in case we decide we want to dirty it again in this txg. 1878 */ 1879 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1880 dn->dn_object != DMU_META_DNODE_OBJECT && 1881 db->db_state == DB_CACHED && db->db_data_pending) { 1882 dbuf_dirty_record_t *dr = db->db_data_pending; 1883 1884 if (dr->dt.dl.dr_data == db->db_buf) { 1885 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1886 1887 dbuf_set_data(db, 1888 arc_buf_alloc(dn->dn_objset->os_spa, 1889 db->db.db_size, db, type)); 1890 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 1891 db->db.db_size); 1892 } 1893 } 1894 1895 (void) refcount_add(&db->db_holds, tag); 1896 dbuf_update_data(db); 1897 DBUF_VERIFY(db); 1898 mutex_exit(&db->db_mtx); 1899 1900 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 1901 if (parent) 1902 dbuf_rele(parent, NULL); 1903 1904 ASSERT3P(DB_DNODE(db), ==, dn); 1905 ASSERT3U(db->db_blkid, ==, blkid); 1906 ASSERT3U(db->db_level, ==, level); 1907 *dbp = db; 1908 1909 return (0); 1910 } 1911 1912 dmu_buf_impl_t * 1913 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 1914 { 1915 dmu_buf_impl_t *db; 1916 int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db); 1917 return (err ? NULL : db); 1918 } 1919 1920 dmu_buf_impl_t * 1921 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 1922 { 1923 dmu_buf_impl_t *db; 1924 int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db); 1925 return (err ? NULL : db); 1926 } 1927 1928 void 1929 dbuf_create_bonus(dnode_t *dn) 1930 { 1931 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1932 1933 ASSERT(dn->dn_bonus == NULL); 1934 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 1935 } 1936 1937 int 1938 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 1939 { 1940 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1941 dnode_t *dn; 1942 1943 if (db->db_blkid != DMU_SPILL_BLKID) 1944 return (ENOTSUP); 1945 if (blksz == 0) 1946 blksz = SPA_MINBLOCKSIZE; 1947 if (blksz > SPA_MAXBLOCKSIZE) 1948 blksz = SPA_MAXBLOCKSIZE; 1949 else 1950 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 1951 1952 DB_DNODE_ENTER(db); 1953 dn = DB_DNODE(db); 1954 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1955 dbuf_new_size(db, blksz, tx); 1956 rw_exit(&dn->dn_struct_rwlock); 1957 DB_DNODE_EXIT(db); 1958 1959 return (0); 1960 } 1961 1962 void 1963 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 1964 { 1965 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 1966 } 1967 1968 #pragma weak dmu_buf_add_ref = dbuf_add_ref 1969 void 1970 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 1971 { 1972 int64_t holds = refcount_add(&db->db_holds, tag); 1973 ASSERT(holds > 1); 1974 } 1975 1976 /* 1977 * If you call dbuf_rele() you had better not be referencing the dnode handle 1978 * unless you have some other direct or indirect hold on the dnode. (An indirect 1979 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 1980 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 1981 * dnode's parent dbuf evicting its dnode handles. 1982 */ 1983 #pragma weak dmu_buf_rele = dbuf_rele 1984 void 1985 dbuf_rele(dmu_buf_impl_t *db, void *tag) 1986 { 1987 mutex_enter(&db->db_mtx); 1988 dbuf_rele_and_unlock(db, tag); 1989 } 1990 1991 /* 1992 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 1993 * db_dirtycnt and db_holds to be updated atomically. 1994 */ 1995 void 1996 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 1997 { 1998 int64_t holds; 1999 2000 ASSERT(MUTEX_HELD(&db->db_mtx)); 2001 DBUF_VERIFY(db); 2002 2003 /* 2004 * Remove the reference to the dbuf before removing its hold on the 2005 * dnode so we can guarantee in dnode_move() that a referenced bonus 2006 * buffer has a corresponding dnode hold. 2007 */ 2008 holds = refcount_remove(&db->db_holds, tag); 2009 ASSERT(holds >= 0); 2010 2011 /* 2012 * We can't freeze indirects if there is a possibility that they 2013 * may be modified in the current syncing context. 2014 */ 2015 if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) 2016 arc_buf_freeze(db->db_buf); 2017 2018 if (holds == db->db_dirtycnt && 2019 db->db_level == 0 && db->db_immediate_evict) 2020 dbuf_evict_user(db); 2021 2022 if (holds == 0) { 2023 if (db->db_blkid == DMU_BONUS_BLKID) { 2024 mutex_exit(&db->db_mtx); 2025 2026 /* 2027 * If the dnode moves here, we cannot cross this barrier 2028 * until the move completes. 2029 */ 2030 DB_DNODE_ENTER(db); 2031 (void) atomic_dec_32_nv(&DB_DNODE(db)->dn_dbufs_count); 2032 DB_DNODE_EXIT(db); 2033 /* 2034 * The bonus buffer's dnode hold is no longer discounted 2035 * in dnode_move(). The dnode cannot move until after 2036 * the dnode_rele(). 2037 */ 2038 dnode_rele(DB_DNODE(db), db); 2039 } else if (db->db_buf == NULL) { 2040 /* 2041 * This is a special case: we never associated this 2042 * dbuf with any data allocated from the ARC. 2043 */ 2044 ASSERT(db->db_state == DB_UNCACHED || 2045 db->db_state == DB_NOFILL); 2046 dbuf_evict(db); 2047 } else if (arc_released(db->db_buf)) { 2048 arc_buf_t *buf = db->db_buf; 2049 /* 2050 * This dbuf has anonymous data associated with it. 2051 */ 2052 dbuf_set_data(db, NULL); 2053 VERIFY(arc_buf_remove_ref(buf, db)); 2054 dbuf_evict(db); 2055 } else { 2056 VERIFY(!arc_buf_remove_ref(db->db_buf, db)); 2057 2058 /* 2059 * A dbuf will be eligible for eviction if either the 2060 * 'primarycache' property is set or a duplicate 2061 * copy of this buffer is already cached in the arc. 2062 * 2063 * In the case of the 'primarycache' a buffer 2064 * is considered for eviction if it matches the 2065 * criteria set in the property. 2066 * 2067 * To decide if our buffer is considered a 2068 * duplicate, we must call into the arc to determine 2069 * if multiple buffers are referencing the same 2070 * block on-disk. If so, then we simply evict 2071 * ourselves. 2072 */ 2073 if (!DBUF_IS_CACHEABLE(db) || 2074 arc_buf_eviction_needed(db->db_buf)) 2075 dbuf_clear(db); 2076 else 2077 mutex_exit(&db->db_mtx); 2078 } 2079 } else { 2080 mutex_exit(&db->db_mtx); 2081 } 2082 } 2083 2084 #pragma weak dmu_buf_refcount = dbuf_refcount 2085 uint64_t 2086 dbuf_refcount(dmu_buf_impl_t *db) 2087 { 2088 return (refcount_count(&db->db_holds)); 2089 } 2090 2091 void * 2092 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 2093 dmu_buf_evict_func_t *evict_func) 2094 { 2095 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 2096 user_data_ptr_ptr, evict_func)); 2097 } 2098 2099 void * 2100 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 2101 dmu_buf_evict_func_t *evict_func) 2102 { 2103 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2104 2105 db->db_immediate_evict = TRUE; 2106 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 2107 user_data_ptr_ptr, evict_func)); 2108 } 2109 2110 void * 2111 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr, 2112 void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func) 2113 { 2114 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2115 ASSERT(db->db_level == 0); 2116 2117 ASSERT((user_ptr == NULL) == (evict_func == NULL)); 2118 2119 mutex_enter(&db->db_mtx); 2120 2121 if (db->db_user_ptr == old_user_ptr) { 2122 db->db_user_ptr = user_ptr; 2123 db->db_user_data_ptr_ptr = user_data_ptr_ptr; 2124 db->db_evict_func = evict_func; 2125 2126 dbuf_update_data(db); 2127 } else { 2128 old_user_ptr = db->db_user_ptr; 2129 } 2130 2131 mutex_exit(&db->db_mtx); 2132 return (old_user_ptr); 2133 } 2134 2135 void * 2136 dmu_buf_get_user(dmu_buf_t *db_fake) 2137 { 2138 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2139 ASSERT(!refcount_is_zero(&db->db_holds)); 2140 2141 return (db->db_user_ptr); 2142 } 2143 2144 boolean_t 2145 dmu_buf_freeable(dmu_buf_t *dbuf) 2146 { 2147 boolean_t res = B_FALSE; 2148 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2149 2150 if (db->db_blkptr) 2151 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset, 2152 db->db_blkptr, db->db_blkptr->blk_birth); 2153 2154 return (res); 2155 } 2156 2157 blkptr_t * 2158 dmu_buf_get_blkptr(dmu_buf_t *db) 2159 { 2160 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2161 return (dbi->db_blkptr); 2162 } 2163 2164 static void 2165 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2166 { 2167 /* ASSERT(dmu_tx_is_syncing(tx) */ 2168 ASSERT(MUTEX_HELD(&db->db_mtx)); 2169 2170 if (db->db_blkptr != NULL) 2171 return; 2172 2173 if (db->db_blkid == DMU_SPILL_BLKID) { 2174 db->db_blkptr = &dn->dn_phys->dn_spill; 2175 BP_ZERO(db->db_blkptr); 2176 return; 2177 } 2178 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2179 /* 2180 * This buffer was allocated at a time when there was 2181 * no available blkptrs from the dnode, or it was 2182 * inappropriate to hook it in (i.e., nlevels mis-match). 2183 */ 2184 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2185 ASSERT(db->db_parent == NULL); 2186 db->db_parent = dn->dn_dbuf; 2187 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2188 DBUF_VERIFY(db); 2189 } else { 2190 dmu_buf_impl_t *parent = db->db_parent; 2191 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2192 2193 ASSERT(dn->dn_phys->dn_nlevels > 1); 2194 if (parent == NULL) { 2195 mutex_exit(&db->db_mtx); 2196 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2197 (void) dbuf_hold_impl(dn, db->db_level+1, 2198 db->db_blkid >> epbs, FALSE, db, &parent); 2199 rw_exit(&dn->dn_struct_rwlock); 2200 mutex_enter(&db->db_mtx); 2201 db->db_parent = parent; 2202 } 2203 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2204 (db->db_blkid & ((1ULL << epbs) - 1)); 2205 DBUF_VERIFY(db); 2206 } 2207 } 2208 2209 static void 2210 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2211 { 2212 dmu_buf_impl_t *db = dr->dr_dbuf; 2213 dnode_t *dn; 2214 zio_t *zio; 2215 2216 ASSERT(dmu_tx_is_syncing(tx)); 2217 2218 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2219 2220 mutex_enter(&db->db_mtx); 2221 2222 ASSERT(db->db_level > 0); 2223 DBUF_VERIFY(db); 2224 2225 if (db->db_buf == NULL) { 2226 mutex_exit(&db->db_mtx); 2227 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2228 mutex_enter(&db->db_mtx); 2229 } 2230 ASSERT3U(db->db_state, ==, DB_CACHED); 2231 ASSERT(db->db_buf != NULL); 2232 2233 DB_DNODE_ENTER(db); 2234 dn = DB_DNODE(db); 2235 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2236 dbuf_check_blkptr(dn, db); 2237 DB_DNODE_EXIT(db); 2238 2239 db->db_data_pending = dr; 2240 2241 mutex_exit(&db->db_mtx); 2242 dbuf_write(dr, db->db_buf, tx); 2243 2244 zio = dr->dr_zio; 2245 mutex_enter(&dr->dt.di.dr_mtx); 2246 dbuf_sync_list(&dr->dt.di.dr_children, tx); 2247 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2248 mutex_exit(&dr->dt.di.dr_mtx); 2249 zio_nowait(zio); 2250 } 2251 2252 static void 2253 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2254 { 2255 arc_buf_t **datap = &dr->dt.dl.dr_data; 2256 dmu_buf_impl_t *db = dr->dr_dbuf; 2257 dnode_t *dn; 2258 objset_t *os; 2259 uint64_t txg = tx->tx_txg; 2260 2261 ASSERT(dmu_tx_is_syncing(tx)); 2262 2263 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2264 2265 mutex_enter(&db->db_mtx); 2266 /* 2267 * To be synced, we must be dirtied. But we 2268 * might have been freed after the dirty. 2269 */ 2270 if (db->db_state == DB_UNCACHED) { 2271 /* This buffer has been freed since it was dirtied */ 2272 ASSERT(db->db.db_data == NULL); 2273 } else if (db->db_state == DB_FILL) { 2274 /* This buffer was freed and is now being re-filled */ 2275 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 2276 } else { 2277 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 2278 } 2279 DBUF_VERIFY(db); 2280 2281 DB_DNODE_ENTER(db); 2282 dn = DB_DNODE(db); 2283 2284 if (db->db_blkid == DMU_SPILL_BLKID) { 2285 mutex_enter(&dn->dn_mtx); 2286 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 2287 mutex_exit(&dn->dn_mtx); 2288 } 2289 2290 /* 2291 * If this is a bonus buffer, simply copy the bonus data into the 2292 * dnode. It will be written out when the dnode is synced (and it 2293 * will be synced, since it must have been dirty for dbuf_sync to 2294 * be called). 2295 */ 2296 if (db->db_blkid == DMU_BONUS_BLKID) { 2297 dbuf_dirty_record_t **drp; 2298 2299 ASSERT(*datap != NULL); 2300 ASSERT0(db->db_level); 2301 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 2302 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 2303 DB_DNODE_EXIT(db); 2304 2305 if (*datap != db->db.db_data) { 2306 zio_buf_free(*datap, DN_MAX_BONUSLEN); 2307 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2308 } 2309 db->db_data_pending = NULL; 2310 drp = &db->db_last_dirty; 2311 while (*drp != dr) 2312 drp = &(*drp)->dr_next; 2313 ASSERT(dr->dr_next == NULL); 2314 ASSERT(dr->dr_dbuf == db); 2315 *drp = dr->dr_next; 2316 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2317 ASSERT(db->db_dirtycnt > 0); 2318 db->db_dirtycnt -= 1; 2319 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 2320 return; 2321 } 2322 2323 os = dn->dn_objset; 2324 2325 /* 2326 * This function may have dropped the db_mtx lock allowing a dmu_sync 2327 * operation to sneak in. As a result, we need to ensure that we 2328 * don't check the dr_override_state until we have returned from 2329 * dbuf_check_blkptr. 2330 */ 2331 dbuf_check_blkptr(dn, db); 2332 2333 /* 2334 * If this buffer is in the middle of an immediate write, 2335 * wait for the synchronous IO to complete. 2336 */ 2337 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 2338 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 2339 cv_wait(&db->db_changed, &db->db_mtx); 2340 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 2341 } 2342 2343 if (db->db_state != DB_NOFILL && 2344 dn->dn_object != DMU_META_DNODE_OBJECT && 2345 refcount_count(&db->db_holds) > 1 && 2346 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 2347 *datap == db->db_buf) { 2348 /* 2349 * If this buffer is currently "in use" (i.e., there 2350 * are active holds and db_data still references it), 2351 * then make a copy before we start the write so that 2352 * any modifications from the open txg will not leak 2353 * into this write. 2354 * 2355 * NOTE: this copy does not need to be made for 2356 * objects only modified in the syncing context (e.g. 2357 * DNONE_DNODE blocks). 2358 */ 2359 int blksz = arc_buf_size(*datap); 2360 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2361 *datap = arc_buf_alloc(os->os_spa, blksz, db, type); 2362 bcopy(db->db.db_data, (*datap)->b_data, blksz); 2363 } 2364 db->db_data_pending = dr; 2365 2366 mutex_exit(&db->db_mtx); 2367 2368 dbuf_write(dr, *datap, tx); 2369 2370 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2371 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 2372 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 2373 DB_DNODE_EXIT(db); 2374 } else { 2375 /* 2376 * Although zio_nowait() does not "wait for an IO", it does 2377 * initiate the IO. If this is an empty write it seems plausible 2378 * that the IO could actually be completed before the nowait 2379 * returns. We need to DB_DNODE_EXIT() first in case 2380 * zio_nowait() invalidates the dbuf. 2381 */ 2382 DB_DNODE_EXIT(db); 2383 zio_nowait(dr->dr_zio); 2384 } 2385 } 2386 2387 void 2388 dbuf_sync_list(list_t *list, dmu_tx_t *tx) 2389 { 2390 dbuf_dirty_record_t *dr; 2391 2392 while (dr = list_head(list)) { 2393 if (dr->dr_zio != NULL) { 2394 /* 2395 * If we find an already initialized zio then we 2396 * are processing the meta-dnode, and we have finished. 2397 * The dbufs for all dnodes are put back on the list 2398 * during processing, so that we can zio_wait() 2399 * these IOs after initiating all child IOs. 2400 */ 2401 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 2402 DMU_META_DNODE_OBJECT); 2403 break; 2404 } 2405 list_remove(list, dr); 2406 if (dr->dr_dbuf->db_level > 0) 2407 dbuf_sync_indirect(dr, tx); 2408 else 2409 dbuf_sync_leaf(dr, tx); 2410 } 2411 } 2412 2413 /* ARGSUSED */ 2414 static void 2415 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 2416 { 2417 dmu_buf_impl_t *db = vdb; 2418 dnode_t *dn; 2419 blkptr_t *bp = zio->io_bp; 2420 blkptr_t *bp_orig = &zio->io_bp_orig; 2421 spa_t *spa = zio->io_spa; 2422 int64_t delta; 2423 uint64_t fill = 0; 2424 int i; 2425 2426 ASSERT(db->db_blkptr == bp); 2427 2428 DB_DNODE_ENTER(db); 2429 dn = DB_DNODE(db); 2430 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 2431 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 2432 zio->io_prev_space_delta = delta; 2433 2434 if (BP_IS_HOLE(bp)) { 2435 ASSERT(bp->blk_fill == 0); 2436 DB_DNODE_EXIT(db); 2437 return; 2438 } 2439 2440 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 2441 BP_GET_TYPE(bp) == dn->dn_type) || 2442 (db->db_blkid == DMU_SPILL_BLKID && 2443 BP_GET_TYPE(bp) == dn->dn_bonustype)); 2444 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 2445 2446 mutex_enter(&db->db_mtx); 2447 2448 #ifdef ZFS_DEBUG 2449 if (db->db_blkid == DMU_SPILL_BLKID) { 2450 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2451 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2452 db->db_blkptr == &dn->dn_phys->dn_spill); 2453 } 2454 #endif 2455 2456 if (db->db_level == 0) { 2457 mutex_enter(&dn->dn_mtx); 2458 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 2459 db->db_blkid != DMU_SPILL_BLKID) 2460 dn->dn_phys->dn_maxblkid = db->db_blkid; 2461 mutex_exit(&dn->dn_mtx); 2462 2463 if (dn->dn_type == DMU_OT_DNODE) { 2464 dnode_phys_t *dnp = db->db.db_data; 2465 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 2466 i--, dnp++) { 2467 if (dnp->dn_type != DMU_OT_NONE) 2468 fill++; 2469 } 2470 } else { 2471 fill = 1; 2472 } 2473 } else { 2474 blkptr_t *ibp = db->db.db_data; 2475 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2476 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 2477 if (BP_IS_HOLE(ibp)) 2478 continue; 2479 fill += ibp->blk_fill; 2480 } 2481 } 2482 DB_DNODE_EXIT(db); 2483 2484 bp->blk_fill = fill; 2485 2486 mutex_exit(&db->db_mtx); 2487 } 2488 2489 /* ARGSUSED */ 2490 static void 2491 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 2492 { 2493 dmu_buf_impl_t *db = vdb; 2494 blkptr_t *bp = zio->io_bp; 2495 blkptr_t *bp_orig = &zio->io_bp_orig; 2496 uint64_t txg = zio->io_txg; 2497 dbuf_dirty_record_t **drp, *dr; 2498 2499 ASSERT0(zio->io_error); 2500 ASSERT(db->db_blkptr == bp); 2501 2502 /* 2503 * For nopwrites and rewrites we ensure that the bp matches our 2504 * original and bypass all the accounting. 2505 */ 2506 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 2507 ASSERT(BP_EQUAL(bp, bp_orig)); 2508 } else { 2509 objset_t *os; 2510 dsl_dataset_t *ds; 2511 dmu_tx_t *tx; 2512 2513 DB_GET_OBJSET(&os, db); 2514 ds = os->os_dsl_dataset; 2515 tx = os->os_synctx; 2516 2517 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 2518 dsl_dataset_block_born(ds, bp, tx); 2519 } 2520 2521 mutex_enter(&db->db_mtx); 2522 2523 DBUF_VERIFY(db); 2524 2525 drp = &db->db_last_dirty; 2526 while ((dr = *drp) != db->db_data_pending) 2527 drp = &dr->dr_next; 2528 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2529 ASSERT(dr->dr_txg == txg); 2530 ASSERT(dr->dr_dbuf == db); 2531 ASSERT(dr->dr_next == NULL); 2532 *drp = dr->dr_next; 2533 2534 #ifdef ZFS_DEBUG 2535 if (db->db_blkid == DMU_SPILL_BLKID) { 2536 dnode_t *dn; 2537 2538 DB_DNODE_ENTER(db); 2539 dn = DB_DNODE(db); 2540 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2541 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2542 db->db_blkptr == &dn->dn_phys->dn_spill); 2543 DB_DNODE_EXIT(db); 2544 } 2545 #endif 2546 2547 if (db->db_level == 0) { 2548 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2549 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 2550 if (db->db_state != DB_NOFILL) { 2551 if (dr->dt.dl.dr_data != db->db_buf) 2552 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, 2553 db)); 2554 else if (!arc_released(db->db_buf)) 2555 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2556 } 2557 } else { 2558 dnode_t *dn; 2559 2560 DB_DNODE_ENTER(db); 2561 dn = DB_DNODE(db); 2562 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2563 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2564 if (!BP_IS_HOLE(db->db_blkptr)) { 2565 int epbs = 2566 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2567 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 2568 db->db.db_size); 2569 ASSERT3U(dn->dn_phys->dn_maxblkid 2570 >> (db->db_level * epbs), >=, db->db_blkid); 2571 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2572 } 2573 DB_DNODE_EXIT(db); 2574 mutex_destroy(&dr->dt.di.dr_mtx); 2575 list_destroy(&dr->dt.di.dr_children); 2576 } 2577 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2578 2579 cv_broadcast(&db->db_changed); 2580 ASSERT(db->db_dirtycnt > 0); 2581 db->db_dirtycnt -= 1; 2582 db->db_data_pending = NULL; 2583 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 2584 } 2585 2586 static void 2587 dbuf_write_nofill_ready(zio_t *zio) 2588 { 2589 dbuf_write_ready(zio, NULL, zio->io_private); 2590 } 2591 2592 static void 2593 dbuf_write_nofill_done(zio_t *zio) 2594 { 2595 dbuf_write_done(zio, NULL, zio->io_private); 2596 } 2597 2598 static void 2599 dbuf_write_override_ready(zio_t *zio) 2600 { 2601 dbuf_dirty_record_t *dr = zio->io_private; 2602 dmu_buf_impl_t *db = dr->dr_dbuf; 2603 2604 dbuf_write_ready(zio, NULL, db); 2605 } 2606 2607 static void 2608 dbuf_write_override_done(zio_t *zio) 2609 { 2610 dbuf_dirty_record_t *dr = zio->io_private; 2611 dmu_buf_impl_t *db = dr->dr_dbuf; 2612 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 2613 2614 mutex_enter(&db->db_mtx); 2615 if (!BP_EQUAL(zio->io_bp, obp)) { 2616 if (!BP_IS_HOLE(obp)) 2617 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 2618 arc_release(dr->dt.dl.dr_data, db); 2619 } 2620 mutex_exit(&db->db_mtx); 2621 2622 dbuf_write_done(zio, NULL, db); 2623 } 2624 2625 static void 2626 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 2627 { 2628 dmu_buf_impl_t *db = dr->dr_dbuf; 2629 dnode_t *dn; 2630 objset_t *os; 2631 dmu_buf_impl_t *parent = db->db_parent; 2632 uint64_t txg = tx->tx_txg; 2633 zbookmark_t zb; 2634 zio_prop_t zp; 2635 zio_t *zio; 2636 int wp_flag = 0; 2637 2638 DB_DNODE_ENTER(db); 2639 dn = DB_DNODE(db); 2640 os = dn->dn_objset; 2641 2642 if (db->db_state != DB_NOFILL) { 2643 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 2644 /* 2645 * Private object buffers are released here rather 2646 * than in dbuf_dirty() since they are only modified 2647 * in the syncing context and we don't want the 2648 * overhead of making multiple copies of the data. 2649 */ 2650 if (BP_IS_HOLE(db->db_blkptr)) { 2651 arc_buf_thaw(data); 2652 } else { 2653 dbuf_release_bp(db); 2654 } 2655 } 2656 } 2657 2658 if (parent != dn->dn_dbuf) { 2659 ASSERT(parent && parent->db_data_pending); 2660 ASSERT(db->db_level == parent->db_level-1); 2661 ASSERT(arc_released(parent->db_buf)); 2662 zio = parent->db_data_pending->dr_zio; 2663 } else { 2664 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 2665 db->db_blkid != DMU_SPILL_BLKID) || 2666 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 2667 if (db->db_blkid != DMU_SPILL_BLKID) 2668 ASSERT3P(db->db_blkptr, ==, 2669 &dn->dn_phys->dn_blkptr[db->db_blkid]); 2670 zio = dn->dn_zio; 2671 } 2672 2673 ASSERT(db->db_level == 0 || data == db->db_buf); 2674 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 2675 ASSERT(zio); 2676 2677 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 2678 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 2679 db->db.db_object, db->db_level, db->db_blkid); 2680 2681 if (db->db_blkid == DMU_SPILL_BLKID) 2682 wp_flag = WP_SPILL; 2683 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 2684 2685 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 2686 DB_DNODE_EXIT(db); 2687 2688 if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 2689 ASSERT(db->db_state != DB_NOFILL); 2690 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2691 db->db_blkptr, data->b_data, arc_buf_size(data), &zp, 2692 dbuf_write_override_ready, dbuf_write_override_done, dr, 2693 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 2694 mutex_enter(&db->db_mtx); 2695 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 2696 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 2697 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 2698 mutex_exit(&db->db_mtx); 2699 } else if (db->db_state == DB_NOFILL) { 2700 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF); 2701 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2702 db->db_blkptr, NULL, db->db.db_size, &zp, 2703 dbuf_write_nofill_ready, dbuf_write_nofill_done, db, 2704 ZIO_PRIORITY_ASYNC_WRITE, 2705 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 2706 } else { 2707 ASSERT(arc_released(data)); 2708 dr->dr_zio = arc_write(zio, os->os_spa, txg, 2709 db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db), &zp, 2710 dbuf_write_ready, dbuf_write_done, db, 2711 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 2712 } 2713 } 2714