1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_send.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dbuf.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/dsl_dir.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/spa.h> 40 #include <sys/zio.h> 41 #include <sys/dmu_zfetch.h> 42 #include <sys/sa.h> 43 #include <sys/sa_impl.h> 44 #include <sys/zfeature.h> 45 #include <sys/blkptr.h> 46 #include <sys/range_tree.h> 47 48 /* 49 * Number of times that zfs_free_range() took the slow path while doing 50 * a zfs receive. A nonzero value indicates a potential performance problem. 51 */ 52 uint64_t zfs_free_range_recv_miss; 53 54 static void dbuf_destroy(dmu_buf_impl_t *db); 55 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 56 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 57 58 #ifndef __lint 59 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 60 dmu_buf_evict_func_t *evict_func, dmu_buf_t **clear_on_evict_dbufp); 61 #endif /* ! __lint */ 62 63 /* 64 * Global data structures and functions for the dbuf cache. 65 */ 66 static kmem_cache_t *dbuf_cache; 67 static taskq_t *dbu_evict_taskq; 68 69 /* ARGSUSED */ 70 static int 71 dbuf_cons(void *vdb, void *unused, int kmflag) 72 { 73 dmu_buf_impl_t *db = vdb; 74 bzero(db, sizeof (dmu_buf_impl_t)); 75 76 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 77 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 78 refcount_create(&db->db_holds); 79 80 return (0); 81 } 82 83 /* ARGSUSED */ 84 static void 85 dbuf_dest(void *vdb, void *unused) 86 { 87 dmu_buf_impl_t *db = vdb; 88 mutex_destroy(&db->db_mtx); 89 cv_destroy(&db->db_changed); 90 refcount_destroy(&db->db_holds); 91 } 92 93 /* 94 * dbuf hash table routines 95 */ 96 static dbuf_hash_table_t dbuf_hash_table; 97 98 static uint64_t dbuf_hash_count; 99 100 static uint64_t 101 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 102 { 103 uintptr_t osv = (uintptr_t)os; 104 uint64_t crc = -1ULL; 105 106 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 107 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 108 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 109 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 110 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 111 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 112 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 113 114 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 115 116 return (crc); 117 } 118 119 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid); 120 121 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 122 ((dbuf)->db.db_object == (obj) && \ 123 (dbuf)->db_objset == (os) && \ 124 (dbuf)->db_level == (level) && \ 125 (dbuf)->db_blkid == (blkid)) 126 127 dmu_buf_impl_t * 128 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 129 { 130 dbuf_hash_table_t *h = &dbuf_hash_table; 131 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 132 uint64_t idx = hv & h->hash_table_mask; 133 dmu_buf_impl_t *db; 134 135 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 136 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 137 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 138 mutex_enter(&db->db_mtx); 139 if (db->db_state != DB_EVICTING) { 140 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 141 return (db); 142 } 143 mutex_exit(&db->db_mtx); 144 } 145 } 146 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 147 return (NULL); 148 } 149 150 static dmu_buf_impl_t * 151 dbuf_find_bonus(objset_t *os, uint64_t object) 152 { 153 dnode_t *dn; 154 dmu_buf_impl_t *db = NULL; 155 156 if (dnode_hold(os, object, FTAG, &dn) == 0) { 157 rw_enter(&dn->dn_struct_rwlock, RW_READER); 158 if (dn->dn_bonus != NULL) { 159 db = dn->dn_bonus; 160 mutex_enter(&db->db_mtx); 161 } 162 rw_exit(&dn->dn_struct_rwlock); 163 dnode_rele(dn, FTAG); 164 } 165 return (db); 166 } 167 168 /* 169 * Insert an entry into the hash table. If there is already an element 170 * equal to elem in the hash table, then the already existing element 171 * will be returned and the new element will not be inserted. 172 * Otherwise returns NULL. 173 */ 174 static dmu_buf_impl_t * 175 dbuf_hash_insert(dmu_buf_impl_t *db) 176 { 177 dbuf_hash_table_t *h = &dbuf_hash_table; 178 objset_t *os = db->db_objset; 179 uint64_t obj = db->db.db_object; 180 int level = db->db_level; 181 uint64_t blkid = db->db_blkid; 182 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 183 uint64_t idx = hv & h->hash_table_mask; 184 dmu_buf_impl_t *dbf; 185 186 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 187 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 188 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 189 mutex_enter(&dbf->db_mtx); 190 if (dbf->db_state != DB_EVICTING) { 191 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 192 return (dbf); 193 } 194 mutex_exit(&dbf->db_mtx); 195 } 196 } 197 198 mutex_enter(&db->db_mtx); 199 db->db_hash_next = h->hash_table[idx]; 200 h->hash_table[idx] = db; 201 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 202 atomic_inc_64(&dbuf_hash_count); 203 204 return (NULL); 205 } 206 207 /* 208 * Remove an entry from the hash table. It must be in the EVICTING state. 209 */ 210 static void 211 dbuf_hash_remove(dmu_buf_impl_t *db) 212 { 213 dbuf_hash_table_t *h = &dbuf_hash_table; 214 uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object, 215 db->db_level, db->db_blkid); 216 uint64_t idx = hv & h->hash_table_mask; 217 dmu_buf_impl_t *dbf, **dbp; 218 219 /* 220 * We musn't hold db_mtx to maintain lock ordering: 221 * DBUF_HASH_MUTEX > db_mtx. 222 */ 223 ASSERT(refcount_is_zero(&db->db_holds)); 224 ASSERT(db->db_state == DB_EVICTING); 225 ASSERT(!MUTEX_HELD(&db->db_mtx)); 226 227 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 228 dbp = &h->hash_table[idx]; 229 while ((dbf = *dbp) != db) { 230 dbp = &dbf->db_hash_next; 231 ASSERT(dbf != NULL); 232 } 233 *dbp = db->db_hash_next; 234 db->db_hash_next = NULL; 235 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 236 atomic_dec_64(&dbuf_hash_count); 237 } 238 239 static arc_evict_func_t dbuf_do_evict; 240 241 typedef enum { 242 DBVU_EVICTING, 243 DBVU_NOT_EVICTING 244 } dbvu_verify_type_t; 245 246 static void 247 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 248 { 249 #ifdef ZFS_DEBUG 250 int64_t holds; 251 252 if (db->db_user == NULL) 253 return; 254 255 /* Only data blocks support the attachment of user data. */ 256 ASSERT(db->db_level == 0); 257 258 /* Clients must resolve a dbuf before attaching user data. */ 259 ASSERT(db->db.db_data != NULL); 260 ASSERT3U(db->db_state, ==, DB_CACHED); 261 262 holds = refcount_count(&db->db_holds); 263 if (verify_type == DBVU_EVICTING) { 264 /* 265 * Immediate eviction occurs when holds == dirtycnt. 266 * For normal eviction buffers, holds is zero on 267 * eviction, except when dbuf_fix_old_data() calls 268 * dbuf_clear_data(). However, the hold count can grow 269 * during eviction even though db_mtx is held (see 270 * dmu_bonus_hold() for an example), so we can only 271 * test the generic invariant that holds >= dirtycnt. 272 */ 273 ASSERT3U(holds, >=, db->db_dirtycnt); 274 } else { 275 if (db->db_immediate_evict == TRUE) 276 ASSERT3U(holds, >=, db->db_dirtycnt); 277 else 278 ASSERT3U(holds, >, 0); 279 } 280 #endif 281 } 282 283 static void 284 dbuf_evict_user(dmu_buf_impl_t *db) 285 { 286 dmu_buf_user_t *dbu = db->db_user; 287 288 ASSERT(MUTEX_HELD(&db->db_mtx)); 289 290 if (dbu == NULL) 291 return; 292 293 dbuf_verify_user(db, DBVU_EVICTING); 294 db->db_user = NULL; 295 296 #ifdef ZFS_DEBUG 297 if (dbu->dbu_clear_on_evict_dbufp != NULL) 298 *dbu->dbu_clear_on_evict_dbufp = NULL; 299 #endif 300 301 /* 302 * Invoke the callback from a taskq to avoid lock order reversals 303 * and limit stack depth. 304 */ 305 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func, dbu, 0, 306 &dbu->dbu_tqent); 307 } 308 309 boolean_t 310 dbuf_is_metadata(dmu_buf_impl_t *db) 311 { 312 if (db->db_level > 0) { 313 return (B_TRUE); 314 } else { 315 boolean_t is_metadata; 316 317 DB_DNODE_ENTER(db); 318 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 319 DB_DNODE_EXIT(db); 320 321 return (is_metadata); 322 } 323 } 324 325 void 326 dbuf_evict(dmu_buf_impl_t *db) 327 { 328 ASSERT(MUTEX_HELD(&db->db_mtx)); 329 ASSERT(db->db_buf == NULL); 330 ASSERT(db->db_data_pending == NULL); 331 332 dbuf_clear(db); 333 dbuf_destroy(db); 334 } 335 336 void 337 dbuf_init(void) 338 { 339 uint64_t hsize = 1ULL << 16; 340 dbuf_hash_table_t *h = &dbuf_hash_table; 341 int i; 342 343 /* 344 * The hash table is big enough to fill all of physical memory 345 * with an average 4K block size. The table will take up 346 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 347 */ 348 while (hsize * 4096 < physmem * PAGESIZE) 349 hsize <<= 1; 350 351 retry: 352 h->hash_table_mask = hsize - 1; 353 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 354 if (h->hash_table == NULL) { 355 /* XXX - we should really return an error instead of assert */ 356 ASSERT(hsize > (1ULL << 10)); 357 hsize >>= 1; 358 goto retry; 359 } 360 361 dbuf_cache = kmem_cache_create("dmu_buf_impl_t", 362 sizeof (dmu_buf_impl_t), 363 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 364 365 for (i = 0; i < DBUF_MUTEXES; i++) 366 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 367 368 /* 369 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 370 * configuration is not required. 371 */ 372 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); 373 } 374 375 void 376 dbuf_fini(void) 377 { 378 dbuf_hash_table_t *h = &dbuf_hash_table; 379 int i; 380 381 for (i = 0; i < DBUF_MUTEXES; i++) 382 mutex_destroy(&h->hash_mutexes[i]); 383 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 384 kmem_cache_destroy(dbuf_cache); 385 taskq_destroy(dbu_evict_taskq); 386 } 387 388 /* 389 * Other stuff. 390 */ 391 392 #ifdef ZFS_DEBUG 393 static void 394 dbuf_verify(dmu_buf_impl_t *db) 395 { 396 dnode_t *dn; 397 dbuf_dirty_record_t *dr; 398 399 ASSERT(MUTEX_HELD(&db->db_mtx)); 400 401 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 402 return; 403 404 ASSERT(db->db_objset != NULL); 405 DB_DNODE_ENTER(db); 406 dn = DB_DNODE(db); 407 if (dn == NULL) { 408 ASSERT(db->db_parent == NULL); 409 ASSERT(db->db_blkptr == NULL); 410 } else { 411 ASSERT3U(db->db.db_object, ==, dn->dn_object); 412 ASSERT3P(db->db_objset, ==, dn->dn_objset); 413 ASSERT3U(db->db_level, <, dn->dn_nlevels); 414 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 415 db->db_blkid == DMU_SPILL_BLKID || 416 !avl_is_empty(&dn->dn_dbufs)); 417 } 418 if (db->db_blkid == DMU_BONUS_BLKID) { 419 ASSERT(dn != NULL); 420 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 421 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 422 } else if (db->db_blkid == DMU_SPILL_BLKID) { 423 ASSERT(dn != NULL); 424 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 425 ASSERT0(db->db.db_offset); 426 } else { 427 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 428 } 429 430 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 431 ASSERT(dr->dr_dbuf == db); 432 433 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 434 ASSERT(dr->dr_dbuf == db); 435 436 /* 437 * We can't assert that db_size matches dn_datablksz because it 438 * can be momentarily different when another thread is doing 439 * dnode_set_blksz(). 440 */ 441 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 442 dr = db->db_data_pending; 443 /* 444 * It should only be modified in syncing context, so 445 * make sure we only have one copy of the data. 446 */ 447 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 448 } 449 450 /* verify db->db_blkptr */ 451 if (db->db_blkptr) { 452 if (db->db_parent == dn->dn_dbuf) { 453 /* db is pointed to by the dnode */ 454 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 455 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 456 ASSERT(db->db_parent == NULL); 457 else 458 ASSERT(db->db_parent != NULL); 459 if (db->db_blkid != DMU_SPILL_BLKID) 460 ASSERT3P(db->db_blkptr, ==, 461 &dn->dn_phys->dn_blkptr[db->db_blkid]); 462 } else { 463 /* db is pointed to by an indirect block */ 464 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 465 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 466 ASSERT3U(db->db_parent->db.db_object, ==, 467 db->db.db_object); 468 /* 469 * dnode_grow_indblksz() can make this fail if we don't 470 * have the struct_rwlock. XXX indblksz no longer 471 * grows. safe to do this now? 472 */ 473 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 474 ASSERT3P(db->db_blkptr, ==, 475 ((blkptr_t *)db->db_parent->db.db_data + 476 db->db_blkid % epb)); 477 } 478 } 479 } 480 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 481 (db->db_buf == NULL || db->db_buf->b_data) && 482 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 483 db->db_state != DB_FILL && !dn->dn_free_txg) { 484 /* 485 * If the blkptr isn't set but they have nonzero data, 486 * it had better be dirty, otherwise we'll lose that 487 * data when we evict this buffer. 488 */ 489 if (db->db_dirtycnt == 0) { 490 uint64_t *buf = db->db.db_data; 491 int i; 492 493 for (i = 0; i < db->db.db_size >> 3; i++) { 494 ASSERT(buf[i] == 0); 495 } 496 } 497 } 498 DB_DNODE_EXIT(db); 499 } 500 #endif 501 502 static void 503 dbuf_clear_data(dmu_buf_impl_t *db) 504 { 505 ASSERT(MUTEX_HELD(&db->db_mtx)); 506 dbuf_evict_user(db); 507 db->db_buf = NULL; 508 db->db.db_data = NULL; 509 if (db->db_state != DB_NOFILL) 510 db->db_state = DB_UNCACHED; 511 } 512 513 static void 514 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 515 { 516 ASSERT(MUTEX_HELD(&db->db_mtx)); 517 ASSERT(buf != NULL); 518 519 db->db_buf = buf; 520 ASSERT(buf->b_data != NULL); 521 db->db.db_data = buf->b_data; 522 if (!arc_released(buf)) 523 arc_set_callback(buf, dbuf_do_evict, db); 524 } 525 526 /* 527 * Loan out an arc_buf for read. Return the loaned arc_buf. 528 */ 529 arc_buf_t * 530 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 531 { 532 arc_buf_t *abuf; 533 534 mutex_enter(&db->db_mtx); 535 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 536 int blksz = db->db.db_size; 537 spa_t *spa = db->db_objset->os_spa; 538 539 mutex_exit(&db->db_mtx); 540 abuf = arc_loan_buf(spa, blksz); 541 bcopy(db->db.db_data, abuf->b_data, blksz); 542 } else { 543 abuf = db->db_buf; 544 arc_loan_inuse_buf(abuf, db); 545 dbuf_clear_data(db); 546 mutex_exit(&db->db_mtx); 547 } 548 return (abuf); 549 } 550 551 /* 552 * Calculate which level n block references the data at the level 0 offset 553 * provided. 554 */ 555 uint64_t 556 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) 557 { 558 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 559 /* 560 * The level n blkid is equal to the level 0 blkid divided by 561 * the number of level 0s in a level n block. 562 * 563 * The level 0 blkid is offset >> datablkshift = 564 * offset / 2^datablkshift. 565 * 566 * The number of level 0s in a level n is the number of block 567 * pointers in an indirect block, raised to the power of level. 568 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 569 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 570 * 571 * Thus, the level n blkid is: offset / 572 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) 573 * = offset / 2^(datablkshift + level * 574 * (indblkshift - SPA_BLKPTRSHIFT)) 575 * = offset >> (datablkshift + level * 576 * (indblkshift - SPA_BLKPTRSHIFT)) 577 */ 578 return (offset >> (dn->dn_datablkshift + level * 579 (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); 580 } else { 581 ASSERT3U(offset, <, dn->dn_datablksz); 582 return (0); 583 } 584 } 585 586 static void 587 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 588 { 589 dmu_buf_impl_t *db = vdb; 590 591 mutex_enter(&db->db_mtx); 592 ASSERT3U(db->db_state, ==, DB_READ); 593 /* 594 * All reads are synchronous, so we must have a hold on the dbuf 595 */ 596 ASSERT(refcount_count(&db->db_holds) > 0); 597 ASSERT(db->db_buf == NULL); 598 ASSERT(db->db.db_data == NULL); 599 if (db->db_level == 0 && db->db_freed_in_flight) { 600 /* we were freed in flight; disregard any error */ 601 arc_release(buf, db); 602 bzero(buf->b_data, db->db.db_size); 603 arc_buf_freeze(buf); 604 db->db_freed_in_flight = FALSE; 605 dbuf_set_data(db, buf); 606 db->db_state = DB_CACHED; 607 } else if (zio == NULL || zio->io_error == 0) { 608 dbuf_set_data(db, buf); 609 db->db_state = DB_CACHED; 610 } else { 611 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 612 ASSERT3P(db->db_buf, ==, NULL); 613 VERIFY(arc_buf_remove_ref(buf, db)); 614 db->db_state = DB_UNCACHED; 615 } 616 cv_broadcast(&db->db_changed); 617 dbuf_rele_and_unlock(db, NULL); 618 } 619 620 static void 621 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 622 { 623 dnode_t *dn; 624 zbookmark_phys_t zb; 625 arc_flags_t aflags = ARC_FLAG_NOWAIT; 626 627 DB_DNODE_ENTER(db); 628 dn = DB_DNODE(db); 629 ASSERT(!refcount_is_zero(&db->db_holds)); 630 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 631 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 632 ASSERT(MUTEX_HELD(&db->db_mtx)); 633 ASSERT(db->db_state == DB_UNCACHED); 634 ASSERT(db->db_buf == NULL); 635 636 if (db->db_blkid == DMU_BONUS_BLKID) { 637 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 638 639 ASSERT3U(bonuslen, <=, db->db.db_size); 640 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 641 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 642 if (bonuslen < DN_MAX_BONUSLEN) 643 bzero(db->db.db_data, DN_MAX_BONUSLEN); 644 if (bonuslen) 645 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 646 DB_DNODE_EXIT(db); 647 db->db_state = DB_CACHED; 648 mutex_exit(&db->db_mtx); 649 return; 650 } 651 652 /* 653 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 654 * processes the delete record and clears the bp while we are waiting 655 * for the dn_mtx (resulting in a "no" from block_freed). 656 */ 657 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 658 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 659 BP_IS_HOLE(db->db_blkptr)))) { 660 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 661 662 DB_DNODE_EXIT(db); 663 dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa, 664 db->db.db_size, db, type)); 665 bzero(db->db.db_data, db->db.db_size); 666 db->db_state = DB_CACHED; 667 mutex_exit(&db->db_mtx); 668 return; 669 } 670 671 DB_DNODE_EXIT(db); 672 673 db->db_state = DB_READ; 674 mutex_exit(&db->db_mtx); 675 676 if (DBUF_IS_L2CACHEABLE(db)) 677 aflags |= ARC_FLAG_L2CACHE; 678 if (DBUF_IS_L2COMPRESSIBLE(db)) 679 aflags |= ARC_FLAG_L2COMPRESS; 680 681 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 682 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 683 db->db.db_object, db->db_level, db->db_blkid); 684 685 dbuf_add_ref(db, NULL); 686 687 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 688 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 689 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 690 &aflags, &zb); 691 } 692 693 int 694 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 695 { 696 int err = 0; 697 boolean_t havepzio = (zio != NULL); 698 boolean_t prefetch; 699 dnode_t *dn; 700 701 /* 702 * We don't have to hold the mutex to check db_state because it 703 * can't be freed while we have a hold on the buffer. 704 */ 705 ASSERT(!refcount_is_zero(&db->db_holds)); 706 707 if (db->db_state == DB_NOFILL) 708 return (SET_ERROR(EIO)); 709 710 DB_DNODE_ENTER(db); 711 dn = DB_DNODE(db); 712 if ((flags & DB_RF_HAVESTRUCT) == 0) 713 rw_enter(&dn->dn_struct_rwlock, RW_READER); 714 715 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 716 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 717 DBUF_IS_CACHEABLE(db); 718 719 mutex_enter(&db->db_mtx); 720 if (db->db_state == DB_CACHED) { 721 mutex_exit(&db->db_mtx); 722 if (prefetch) 723 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1); 724 if ((flags & DB_RF_HAVESTRUCT) == 0) 725 rw_exit(&dn->dn_struct_rwlock); 726 DB_DNODE_EXIT(db); 727 } else if (db->db_state == DB_UNCACHED) { 728 spa_t *spa = dn->dn_objset->os_spa; 729 730 if (zio == NULL) 731 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 732 dbuf_read_impl(db, zio, flags); 733 734 /* dbuf_read_impl has dropped db_mtx for us */ 735 736 if (prefetch) 737 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1); 738 739 if ((flags & DB_RF_HAVESTRUCT) == 0) 740 rw_exit(&dn->dn_struct_rwlock); 741 DB_DNODE_EXIT(db); 742 743 if (!havepzio) 744 err = zio_wait(zio); 745 } else { 746 /* 747 * Another reader came in while the dbuf was in flight 748 * between UNCACHED and CACHED. Either a writer will finish 749 * writing the buffer (sending the dbuf to CACHED) or the 750 * first reader's request will reach the read_done callback 751 * and send the dbuf to CACHED. Otherwise, a failure 752 * occurred and the dbuf went to UNCACHED. 753 */ 754 mutex_exit(&db->db_mtx); 755 if (prefetch) 756 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1); 757 if ((flags & DB_RF_HAVESTRUCT) == 0) 758 rw_exit(&dn->dn_struct_rwlock); 759 DB_DNODE_EXIT(db); 760 761 /* Skip the wait per the caller's request. */ 762 mutex_enter(&db->db_mtx); 763 if ((flags & DB_RF_NEVERWAIT) == 0) { 764 while (db->db_state == DB_READ || 765 db->db_state == DB_FILL) { 766 ASSERT(db->db_state == DB_READ || 767 (flags & DB_RF_HAVESTRUCT) == 0); 768 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 769 db, zio_t *, zio); 770 cv_wait(&db->db_changed, &db->db_mtx); 771 } 772 if (db->db_state == DB_UNCACHED) 773 err = SET_ERROR(EIO); 774 } 775 mutex_exit(&db->db_mtx); 776 } 777 778 ASSERT(err || havepzio || db->db_state == DB_CACHED); 779 return (err); 780 } 781 782 static void 783 dbuf_noread(dmu_buf_impl_t *db) 784 { 785 ASSERT(!refcount_is_zero(&db->db_holds)); 786 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 787 mutex_enter(&db->db_mtx); 788 while (db->db_state == DB_READ || db->db_state == DB_FILL) 789 cv_wait(&db->db_changed, &db->db_mtx); 790 if (db->db_state == DB_UNCACHED) { 791 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 792 spa_t *spa = db->db_objset->os_spa; 793 794 ASSERT(db->db_buf == NULL); 795 ASSERT(db->db.db_data == NULL); 796 dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type)); 797 db->db_state = DB_FILL; 798 } else if (db->db_state == DB_NOFILL) { 799 dbuf_clear_data(db); 800 } else { 801 ASSERT3U(db->db_state, ==, DB_CACHED); 802 } 803 mutex_exit(&db->db_mtx); 804 } 805 806 /* 807 * This is our just-in-time copy function. It makes a copy of 808 * buffers, that have been modified in a previous transaction 809 * group, before we modify them in the current active group. 810 * 811 * This function is used in two places: when we are dirtying a 812 * buffer for the first time in a txg, and when we are freeing 813 * a range in a dnode that includes this buffer. 814 * 815 * Note that when we are called from dbuf_free_range() we do 816 * not put a hold on the buffer, we just traverse the active 817 * dbuf list for the dnode. 818 */ 819 static void 820 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 821 { 822 dbuf_dirty_record_t *dr = db->db_last_dirty; 823 824 ASSERT(MUTEX_HELD(&db->db_mtx)); 825 ASSERT(db->db.db_data != NULL); 826 ASSERT(db->db_level == 0); 827 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 828 829 if (dr == NULL || 830 (dr->dt.dl.dr_data != 831 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 832 return; 833 834 /* 835 * If the last dirty record for this dbuf has not yet synced 836 * and its referencing the dbuf data, either: 837 * reset the reference to point to a new copy, 838 * or (if there a no active holders) 839 * just null out the current db_data pointer. 840 */ 841 ASSERT(dr->dr_txg >= txg - 2); 842 if (db->db_blkid == DMU_BONUS_BLKID) { 843 /* Note that the data bufs here are zio_bufs */ 844 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 845 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 846 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 847 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 848 int size = db->db.db_size; 849 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 850 spa_t *spa = db->db_objset->os_spa; 851 852 dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type); 853 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 854 } else { 855 dbuf_clear_data(db); 856 } 857 } 858 859 void 860 dbuf_unoverride(dbuf_dirty_record_t *dr) 861 { 862 dmu_buf_impl_t *db = dr->dr_dbuf; 863 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 864 uint64_t txg = dr->dr_txg; 865 866 ASSERT(MUTEX_HELD(&db->db_mtx)); 867 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 868 ASSERT(db->db_level == 0); 869 870 if (db->db_blkid == DMU_BONUS_BLKID || 871 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 872 return; 873 874 ASSERT(db->db_data_pending != dr); 875 876 /* free this block */ 877 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 878 zio_free(db->db_objset->os_spa, txg, bp); 879 880 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 881 dr->dt.dl.dr_nopwrite = B_FALSE; 882 883 /* 884 * Release the already-written buffer, so we leave it in 885 * a consistent dirty state. Note that all callers are 886 * modifying the buffer, so they will immediately do 887 * another (redundant) arc_release(). Therefore, leave 888 * the buf thawed to save the effort of freezing & 889 * immediately re-thawing it. 890 */ 891 arc_release(dr->dt.dl.dr_data, db); 892 } 893 894 /* 895 * Evict (if its unreferenced) or clear (if its referenced) any level-0 896 * data blocks in the free range, so that any future readers will find 897 * empty blocks. 898 * 899 * This is a no-op if the dataset is in the middle of an incremental 900 * receive; see comment below for details. 901 */ 902 void 903 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 904 dmu_tx_t *tx) 905 { 906 dmu_buf_impl_t db_search; 907 dmu_buf_impl_t *db, *db_next; 908 uint64_t txg = tx->tx_txg; 909 avl_index_t where; 910 911 if (end_blkid > dn->dn_maxblkid && (end_blkid != DMU_SPILL_BLKID)) 912 end_blkid = dn->dn_maxblkid; 913 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 914 915 db_search.db_level = 0; 916 db_search.db_blkid = start_blkid; 917 db_search.db_state = DB_SEARCH; 918 919 mutex_enter(&dn->dn_dbufs_mtx); 920 if (start_blkid >= dn->dn_unlisted_l0_blkid) { 921 /* There can't be any dbufs in this range; no need to search. */ 922 #ifdef DEBUG 923 db = avl_find(&dn->dn_dbufs, &db_search, &where); 924 ASSERT3P(db, ==, NULL); 925 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 926 ASSERT(db == NULL || db->db_level > 0); 927 #endif 928 mutex_exit(&dn->dn_dbufs_mtx); 929 return; 930 } else if (dmu_objset_is_receiving(dn->dn_objset)) { 931 /* 932 * If we are receiving, we expect there to be no dbufs in 933 * the range to be freed, because receive modifies each 934 * block at most once, and in offset order. If this is 935 * not the case, it can lead to performance problems, 936 * so note that we unexpectedly took the slow path. 937 */ 938 atomic_inc_64(&zfs_free_range_recv_miss); 939 } 940 941 db = avl_find(&dn->dn_dbufs, &db_search, &where); 942 ASSERT3P(db, ==, NULL); 943 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 944 945 for (; db != NULL; db = db_next) { 946 db_next = AVL_NEXT(&dn->dn_dbufs, db); 947 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 948 949 if (db->db_level != 0 || db->db_blkid > end_blkid) { 950 break; 951 } 952 ASSERT3U(db->db_blkid, >=, start_blkid); 953 954 /* found a level 0 buffer in the range */ 955 mutex_enter(&db->db_mtx); 956 if (dbuf_undirty(db, tx)) { 957 /* mutex has been dropped and dbuf destroyed */ 958 continue; 959 } 960 961 if (db->db_state == DB_UNCACHED || 962 db->db_state == DB_NOFILL || 963 db->db_state == DB_EVICTING) { 964 ASSERT(db->db.db_data == NULL); 965 mutex_exit(&db->db_mtx); 966 continue; 967 } 968 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 969 /* will be handled in dbuf_read_done or dbuf_rele */ 970 db->db_freed_in_flight = TRUE; 971 mutex_exit(&db->db_mtx); 972 continue; 973 } 974 if (refcount_count(&db->db_holds) == 0) { 975 ASSERT(db->db_buf); 976 dbuf_clear(db); 977 continue; 978 } 979 /* The dbuf is referenced */ 980 981 if (db->db_last_dirty != NULL) { 982 dbuf_dirty_record_t *dr = db->db_last_dirty; 983 984 if (dr->dr_txg == txg) { 985 /* 986 * This buffer is "in-use", re-adjust the file 987 * size to reflect that this buffer may 988 * contain new data when we sync. 989 */ 990 if (db->db_blkid != DMU_SPILL_BLKID && 991 db->db_blkid > dn->dn_maxblkid) 992 dn->dn_maxblkid = db->db_blkid; 993 dbuf_unoverride(dr); 994 } else { 995 /* 996 * This dbuf is not dirty in the open context. 997 * Either uncache it (if its not referenced in 998 * the open context) or reset its contents to 999 * empty. 1000 */ 1001 dbuf_fix_old_data(db, txg); 1002 } 1003 } 1004 /* clear the contents if its cached */ 1005 if (db->db_state == DB_CACHED) { 1006 ASSERT(db->db.db_data != NULL); 1007 arc_release(db->db_buf, db); 1008 bzero(db->db.db_data, db->db.db_size); 1009 arc_buf_freeze(db->db_buf); 1010 } 1011 1012 mutex_exit(&db->db_mtx); 1013 } 1014 mutex_exit(&dn->dn_dbufs_mtx); 1015 } 1016 1017 static int 1018 dbuf_block_freeable(dmu_buf_impl_t *db) 1019 { 1020 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 1021 uint64_t birth_txg = 0; 1022 1023 /* 1024 * We don't need any locking to protect db_blkptr: 1025 * If it's syncing, then db_last_dirty will be set 1026 * so we'll ignore db_blkptr. 1027 * 1028 * This logic ensures that only block births for 1029 * filled blocks are considered. 1030 */ 1031 ASSERT(MUTEX_HELD(&db->db_mtx)); 1032 if (db->db_last_dirty && (db->db_blkptr == NULL || 1033 !BP_IS_HOLE(db->db_blkptr))) { 1034 birth_txg = db->db_last_dirty->dr_txg; 1035 } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1036 birth_txg = db->db_blkptr->blk_birth; 1037 } 1038 1039 /* 1040 * If this block don't exist or is in a snapshot, it can't be freed. 1041 * Don't pass the bp to dsl_dataset_block_freeable() since we 1042 * are holding the db_mtx lock and might deadlock if we are 1043 * prefetching a dedup-ed block. 1044 */ 1045 if (birth_txg != 0) 1046 return (ds == NULL || 1047 dsl_dataset_block_freeable(ds, NULL, birth_txg)); 1048 else 1049 return (B_FALSE); 1050 } 1051 1052 void 1053 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1054 { 1055 arc_buf_t *buf, *obuf; 1056 int osize = db->db.db_size; 1057 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1058 dnode_t *dn; 1059 1060 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1061 1062 DB_DNODE_ENTER(db); 1063 dn = DB_DNODE(db); 1064 1065 /* XXX does *this* func really need the lock? */ 1066 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1067 1068 /* 1069 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 1070 * is OK, because there can be no other references to the db 1071 * when we are changing its size, so no concurrent DB_FILL can 1072 * be happening. 1073 */ 1074 /* 1075 * XXX we should be doing a dbuf_read, checking the return 1076 * value and returning that up to our callers 1077 */ 1078 dmu_buf_will_dirty(&db->db, tx); 1079 1080 /* create the data buffer for the new block */ 1081 buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type); 1082 1083 /* copy old block data to the new block */ 1084 obuf = db->db_buf; 1085 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1086 /* zero the remainder */ 1087 if (size > osize) 1088 bzero((uint8_t *)buf->b_data + osize, size - osize); 1089 1090 mutex_enter(&db->db_mtx); 1091 dbuf_set_data(db, buf); 1092 VERIFY(arc_buf_remove_ref(obuf, db)); 1093 db->db.db_size = size; 1094 1095 if (db->db_level == 0) { 1096 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1097 db->db_last_dirty->dt.dl.dr_data = buf; 1098 } 1099 mutex_exit(&db->db_mtx); 1100 1101 dnode_willuse_space(dn, size-osize, tx); 1102 DB_DNODE_EXIT(db); 1103 } 1104 1105 void 1106 dbuf_release_bp(dmu_buf_impl_t *db) 1107 { 1108 objset_t *os = db->db_objset; 1109 1110 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1111 ASSERT(arc_released(os->os_phys_buf) || 1112 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1113 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1114 1115 (void) arc_release(db->db_buf, db); 1116 } 1117 1118 dbuf_dirty_record_t * 1119 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1120 { 1121 dnode_t *dn; 1122 objset_t *os; 1123 dbuf_dirty_record_t **drp, *dr; 1124 int drop_struct_lock = FALSE; 1125 boolean_t do_free_accounting = B_FALSE; 1126 int txgoff = tx->tx_txg & TXG_MASK; 1127 1128 ASSERT(tx->tx_txg != 0); 1129 ASSERT(!refcount_is_zero(&db->db_holds)); 1130 DMU_TX_DIRTY_BUF(tx, db); 1131 1132 DB_DNODE_ENTER(db); 1133 dn = DB_DNODE(db); 1134 /* 1135 * Shouldn't dirty a regular buffer in syncing context. Private 1136 * objects may be dirtied in syncing context, but only if they 1137 * were already pre-dirtied in open context. 1138 */ 1139 ASSERT(!dmu_tx_is_syncing(tx) || 1140 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1141 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1142 dn->dn_objset->os_dsl_dataset == NULL); 1143 /* 1144 * We make this assert for private objects as well, but after we 1145 * check if we're already dirty. They are allowed to re-dirty 1146 * in syncing context. 1147 */ 1148 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1149 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1150 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1151 1152 mutex_enter(&db->db_mtx); 1153 /* 1154 * XXX make this true for indirects too? The problem is that 1155 * transactions created with dmu_tx_create_assigned() from 1156 * syncing context don't bother holding ahead. 1157 */ 1158 ASSERT(db->db_level != 0 || 1159 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1160 db->db_state == DB_NOFILL); 1161 1162 mutex_enter(&dn->dn_mtx); 1163 /* 1164 * Don't set dirtyctx to SYNC if we're just modifying this as we 1165 * initialize the objset. 1166 */ 1167 if (dn->dn_dirtyctx == DN_UNDIRTIED && 1168 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1169 dn->dn_dirtyctx = 1170 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1171 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1172 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1173 } 1174 mutex_exit(&dn->dn_mtx); 1175 1176 if (db->db_blkid == DMU_SPILL_BLKID) 1177 dn->dn_have_spill = B_TRUE; 1178 1179 /* 1180 * If this buffer is already dirty, we're done. 1181 */ 1182 drp = &db->db_last_dirty; 1183 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1184 db->db.db_object == DMU_META_DNODE_OBJECT); 1185 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1186 drp = &dr->dr_next; 1187 if (dr && dr->dr_txg == tx->tx_txg) { 1188 DB_DNODE_EXIT(db); 1189 1190 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1191 /* 1192 * If this buffer has already been written out, 1193 * we now need to reset its state. 1194 */ 1195 dbuf_unoverride(dr); 1196 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1197 db->db_state != DB_NOFILL) 1198 arc_buf_thaw(db->db_buf); 1199 } 1200 mutex_exit(&db->db_mtx); 1201 return (dr); 1202 } 1203 1204 /* 1205 * Only valid if not already dirty. 1206 */ 1207 ASSERT(dn->dn_object == 0 || 1208 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1209 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1210 1211 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1212 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1213 dn->dn_phys->dn_nlevels > db->db_level || 1214 dn->dn_next_nlevels[txgoff] > db->db_level || 1215 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1216 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1217 1218 /* 1219 * We should only be dirtying in syncing context if it's the 1220 * mos or we're initializing the os or it's a special object. 1221 * However, we are allowed to dirty in syncing context provided 1222 * we already dirtied it in open context. Hence we must make 1223 * this assertion only if we're not already dirty. 1224 */ 1225 os = dn->dn_objset; 1226 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1227 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1228 ASSERT(db->db.db_size != 0); 1229 1230 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1231 1232 if (db->db_blkid != DMU_BONUS_BLKID) { 1233 /* 1234 * Update the accounting. 1235 * Note: we delay "free accounting" until after we drop 1236 * the db_mtx. This keeps us from grabbing other locks 1237 * (and possibly deadlocking) in bp_get_dsize() while 1238 * also holding the db_mtx. 1239 */ 1240 dnode_willuse_space(dn, db->db.db_size, tx); 1241 do_free_accounting = dbuf_block_freeable(db); 1242 } 1243 1244 /* 1245 * If this buffer is dirty in an old transaction group we need 1246 * to make a copy of it so that the changes we make in this 1247 * transaction group won't leak out when we sync the older txg. 1248 */ 1249 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1250 if (db->db_level == 0) { 1251 void *data_old = db->db_buf; 1252 1253 if (db->db_state != DB_NOFILL) { 1254 if (db->db_blkid == DMU_BONUS_BLKID) { 1255 dbuf_fix_old_data(db, tx->tx_txg); 1256 data_old = db->db.db_data; 1257 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1258 /* 1259 * Release the data buffer from the cache so 1260 * that we can modify it without impacting 1261 * possible other users of this cached data 1262 * block. Note that indirect blocks and 1263 * private objects are not released until the 1264 * syncing state (since they are only modified 1265 * then). 1266 */ 1267 arc_release(db->db_buf, db); 1268 dbuf_fix_old_data(db, tx->tx_txg); 1269 data_old = db->db_buf; 1270 } 1271 ASSERT(data_old != NULL); 1272 } 1273 dr->dt.dl.dr_data = data_old; 1274 } else { 1275 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1276 list_create(&dr->dt.di.dr_children, 1277 sizeof (dbuf_dirty_record_t), 1278 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1279 } 1280 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1281 dr->dr_accounted = db->db.db_size; 1282 dr->dr_dbuf = db; 1283 dr->dr_txg = tx->tx_txg; 1284 dr->dr_next = *drp; 1285 *drp = dr; 1286 1287 /* 1288 * We could have been freed_in_flight between the dbuf_noread 1289 * and dbuf_dirty. We win, as though the dbuf_noread() had 1290 * happened after the free. 1291 */ 1292 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1293 db->db_blkid != DMU_SPILL_BLKID) { 1294 mutex_enter(&dn->dn_mtx); 1295 if (dn->dn_free_ranges[txgoff] != NULL) { 1296 range_tree_clear(dn->dn_free_ranges[txgoff], 1297 db->db_blkid, 1); 1298 } 1299 mutex_exit(&dn->dn_mtx); 1300 db->db_freed_in_flight = FALSE; 1301 } 1302 1303 /* 1304 * This buffer is now part of this txg 1305 */ 1306 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1307 db->db_dirtycnt += 1; 1308 ASSERT3U(db->db_dirtycnt, <=, 3); 1309 1310 mutex_exit(&db->db_mtx); 1311 1312 if (db->db_blkid == DMU_BONUS_BLKID || 1313 db->db_blkid == DMU_SPILL_BLKID) { 1314 mutex_enter(&dn->dn_mtx); 1315 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1316 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1317 mutex_exit(&dn->dn_mtx); 1318 dnode_setdirty(dn, tx); 1319 DB_DNODE_EXIT(db); 1320 return (dr); 1321 } else if (do_free_accounting) { 1322 blkptr_t *bp = db->db_blkptr; 1323 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ? 1324 bp_get_dsize(os->os_spa, bp) : db->db.db_size; 1325 /* 1326 * This is only a guess -- if the dbuf is dirty 1327 * in a previous txg, we don't know how much 1328 * space it will use on disk yet. We should 1329 * really have the struct_rwlock to access 1330 * db_blkptr, but since this is just a guess, 1331 * it's OK if we get an odd answer. 1332 */ 1333 ddt_prefetch(os->os_spa, bp); 1334 dnode_willuse_space(dn, -willfree, tx); 1335 } 1336 1337 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1338 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1339 drop_struct_lock = TRUE; 1340 } 1341 1342 if (db->db_level == 0) { 1343 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1344 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1345 } 1346 1347 if (db->db_level+1 < dn->dn_nlevels) { 1348 dmu_buf_impl_t *parent = db->db_parent; 1349 dbuf_dirty_record_t *di; 1350 int parent_held = FALSE; 1351 1352 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1353 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1354 1355 parent = dbuf_hold_level(dn, db->db_level+1, 1356 db->db_blkid >> epbs, FTAG); 1357 ASSERT(parent != NULL); 1358 parent_held = TRUE; 1359 } 1360 if (drop_struct_lock) 1361 rw_exit(&dn->dn_struct_rwlock); 1362 ASSERT3U(db->db_level+1, ==, parent->db_level); 1363 di = dbuf_dirty(parent, tx); 1364 if (parent_held) 1365 dbuf_rele(parent, FTAG); 1366 1367 mutex_enter(&db->db_mtx); 1368 /* 1369 * Since we've dropped the mutex, it's possible that 1370 * dbuf_undirty() might have changed this out from under us. 1371 */ 1372 if (db->db_last_dirty == dr || 1373 dn->dn_object == DMU_META_DNODE_OBJECT) { 1374 mutex_enter(&di->dt.di.dr_mtx); 1375 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1376 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1377 list_insert_tail(&di->dt.di.dr_children, dr); 1378 mutex_exit(&di->dt.di.dr_mtx); 1379 dr->dr_parent = di; 1380 } 1381 mutex_exit(&db->db_mtx); 1382 } else { 1383 ASSERT(db->db_level+1 == dn->dn_nlevels); 1384 ASSERT(db->db_blkid < dn->dn_nblkptr); 1385 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1386 mutex_enter(&dn->dn_mtx); 1387 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1388 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1389 mutex_exit(&dn->dn_mtx); 1390 if (drop_struct_lock) 1391 rw_exit(&dn->dn_struct_rwlock); 1392 } 1393 1394 dnode_setdirty(dn, tx); 1395 DB_DNODE_EXIT(db); 1396 return (dr); 1397 } 1398 1399 /* 1400 * Undirty a buffer in the transaction group referenced by the given 1401 * transaction. Return whether this evicted the dbuf. 1402 */ 1403 static boolean_t 1404 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1405 { 1406 dnode_t *dn; 1407 uint64_t txg = tx->tx_txg; 1408 dbuf_dirty_record_t *dr, **drp; 1409 1410 ASSERT(txg != 0); 1411 1412 /* 1413 * Due to our use of dn_nlevels below, this can only be called 1414 * in open context, unless we are operating on the MOS. 1415 * From syncing context, dn_nlevels may be different from the 1416 * dn_nlevels used when dbuf was dirtied. 1417 */ 1418 ASSERT(db->db_objset == 1419 dmu_objset_pool(db->db_objset)->dp_meta_objset || 1420 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1421 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1422 ASSERT0(db->db_level); 1423 ASSERT(MUTEX_HELD(&db->db_mtx)); 1424 1425 /* 1426 * If this buffer is not dirty, we're done. 1427 */ 1428 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1429 if (dr->dr_txg <= txg) 1430 break; 1431 if (dr == NULL || dr->dr_txg < txg) 1432 return (B_FALSE); 1433 ASSERT(dr->dr_txg == txg); 1434 ASSERT(dr->dr_dbuf == db); 1435 1436 DB_DNODE_ENTER(db); 1437 dn = DB_DNODE(db); 1438 1439 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1440 1441 ASSERT(db->db.db_size != 0); 1442 1443 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 1444 dr->dr_accounted, txg); 1445 1446 *drp = dr->dr_next; 1447 1448 /* 1449 * Note that there are three places in dbuf_dirty() 1450 * where this dirty record may be put on a list. 1451 * Make sure to do a list_remove corresponding to 1452 * every one of those list_insert calls. 1453 */ 1454 if (dr->dr_parent) { 1455 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1456 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1457 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1458 } else if (db->db_blkid == DMU_SPILL_BLKID || 1459 db->db_level + 1 == dn->dn_nlevels) { 1460 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1461 mutex_enter(&dn->dn_mtx); 1462 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1463 mutex_exit(&dn->dn_mtx); 1464 } 1465 DB_DNODE_EXIT(db); 1466 1467 if (db->db_state != DB_NOFILL) { 1468 dbuf_unoverride(dr); 1469 1470 ASSERT(db->db_buf != NULL); 1471 ASSERT(dr->dt.dl.dr_data != NULL); 1472 if (dr->dt.dl.dr_data != db->db_buf) 1473 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db)); 1474 } 1475 1476 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1477 1478 ASSERT(db->db_dirtycnt > 0); 1479 db->db_dirtycnt -= 1; 1480 1481 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1482 arc_buf_t *buf = db->db_buf; 1483 1484 ASSERT(db->db_state == DB_NOFILL || arc_released(buf)); 1485 dbuf_clear_data(db); 1486 VERIFY(arc_buf_remove_ref(buf, db)); 1487 dbuf_evict(db); 1488 return (B_TRUE); 1489 } 1490 1491 return (B_FALSE); 1492 } 1493 1494 void 1495 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1496 { 1497 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1498 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1499 1500 ASSERT(tx->tx_txg != 0); 1501 ASSERT(!refcount_is_zero(&db->db_holds)); 1502 1503 DB_DNODE_ENTER(db); 1504 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1505 rf |= DB_RF_HAVESTRUCT; 1506 DB_DNODE_EXIT(db); 1507 (void) dbuf_read(db, NULL, rf); 1508 (void) dbuf_dirty(db, tx); 1509 } 1510 1511 void 1512 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1513 { 1514 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1515 1516 db->db_state = DB_NOFILL; 1517 1518 dmu_buf_will_fill(db_fake, tx); 1519 } 1520 1521 void 1522 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1523 { 1524 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1525 1526 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1527 ASSERT(tx->tx_txg != 0); 1528 ASSERT(db->db_level == 0); 1529 ASSERT(!refcount_is_zero(&db->db_holds)); 1530 1531 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1532 dmu_tx_private_ok(tx)); 1533 1534 dbuf_noread(db); 1535 (void) dbuf_dirty(db, tx); 1536 } 1537 1538 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1539 /* ARGSUSED */ 1540 void 1541 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1542 { 1543 mutex_enter(&db->db_mtx); 1544 DBUF_VERIFY(db); 1545 1546 if (db->db_state == DB_FILL) { 1547 if (db->db_level == 0 && db->db_freed_in_flight) { 1548 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1549 /* we were freed while filling */ 1550 /* XXX dbuf_undirty? */ 1551 bzero(db->db.db_data, db->db.db_size); 1552 db->db_freed_in_flight = FALSE; 1553 } 1554 db->db_state = DB_CACHED; 1555 cv_broadcast(&db->db_changed); 1556 } 1557 mutex_exit(&db->db_mtx); 1558 } 1559 1560 void 1561 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 1562 bp_embedded_type_t etype, enum zio_compress comp, 1563 int uncompressed_size, int compressed_size, int byteorder, 1564 dmu_tx_t *tx) 1565 { 1566 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 1567 struct dirty_leaf *dl; 1568 dmu_object_type_t type; 1569 1570 if (etype == BP_EMBEDDED_TYPE_DATA) { 1571 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 1572 SPA_FEATURE_EMBEDDED_DATA)); 1573 } 1574 1575 DB_DNODE_ENTER(db); 1576 type = DB_DNODE(db)->dn_type; 1577 DB_DNODE_EXIT(db); 1578 1579 ASSERT0(db->db_level); 1580 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1581 1582 dmu_buf_will_not_fill(dbuf, tx); 1583 1584 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1585 dl = &db->db_last_dirty->dt.dl; 1586 encode_embedded_bp_compressed(&dl->dr_overridden_by, 1587 data, comp, uncompressed_size, compressed_size); 1588 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 1589 BP_SET_TYPE(&dl->dr_overridden_by, type); 1590 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 1591 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 1592 1593 dl->dr_override_state = DR_OVERRIDDEN; 1594 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 1595 } 1596 1597 /* 1598 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1599 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1600 */ 1601 void 1602 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1603 { 1604 ASSERT(!refcount_is_zero(&db->db_holds)); 1605 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1606 ASSERT(db->db_level == 0); 1607 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA); 1608 ASSERT(buf != NULL); 1609 ASSERT(arc_buf_size(buf) == db->db.db_size); 1610 ASSERT(tx->tx_txg != 0); 1611 1612 arc_return_buf(buf, db); 1613 ASSERT(arc_released(buf)); 1614 1615 mutex_enter(&db->db_mtx); 1616 1617 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1618 cv_wait(&db->db_changed, &db->db_mtx); 1619 1620 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1621 1622 if (db->db_state == DB_CACHED && 1623 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1624 mutex_exit(&db->db_mtx); 1625 (void) dbuf_dirty(db, tx); 1626 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1627 VERIFY(arc_buf_remove_ref(buf, db)); 1628 xuio_stat_wbuf_copied(); 1629 return; 1630 } 1631 1632 xuio_stat_wbuf_nocopy(); 1633 if (db->db_state == DB_CACHED) { 1634 dbuf_dirty_record_t *dr = db->db_last_dirty; 1635 1636 ASSERT(db->db_buf != NULL); 1637 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 1638 ASSERT(dr->dt.dl.dr_data == db->db_buf); 1639 if (!arc_released(db->db_buf)) { 1640 ASSERT(dr->dt.dl.dr_override_state == 1641 DR_OVERRIDDEN); 1642 arc_release(db->db_buf, db); 1643 } 1644 dr->dt.dl.dr_data = buf; 1645 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1646 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 1647 arc_release(db->db_buf, db); 1648 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1649 } 1650 db->db_buf = NULL; 1651 } 1652 ASSERT(db->db_buf == NULL); 1653 dbuf_set_data(db, buf); 1654 db->db_state = DB_FILL; 1655 mutex_exit(&db->db_mtx); 1656 (void) dbuf_dirty(db, tx); 1657 dmu_buf_fill_done(&db->db, tx); 1658 } 1659 1660 /* 1661 * "Clear" the contents of this dbuf. This will mark the dbuf 1662 * EVICTING and clear *most* of its references. Unfortunately, 1663 * when we are not holding the dn_dbufs_mtx, we can't clear the 1664 * entry in the dn_dbufs list. We have to wait until dbuf_destroy() 1665 * in this case. For callers from the DMU we will usually see: 1666 * dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy() 1667 * For the arc callback, we will usually see: 1668 * dbuf_do_evict()->dbuf_clear();dbuf_destroy() 1669 * Sometimes, though, we will get a mix of these two: 1670 * DMU: dbuf_clear()->arc_clear_callback() 1671 * ARC: dbuf_do_evict()->dbuf_destroy() 1672 * 1673 * This routine will dissociate the dbuf from the arc, by calling 1674 * arc_clear_callback(), but will not evict the data from the ARC. 1675 */ 1676 void 1677 dbuf_clear(dmu_buf_impl_t *db) 1678 { 1679 dnode_t *dn; 1680 dmu_buf_impl_t *parent = db->db_parent; 1681 dmu_buf_impl_t *dndb; 1682 boolean_t dbuf_gone = B_FALSE; 1683 1684 ASSERT(MUTEX_HELD(&db->db_mtx)); 1685 ASSERT(refcount_is_zero(&db->db_holds)); 1686 1687 dbuf_evict_user(db); 1688 1689 if (db->db_state == DB_CACHED) { 1690 ASSERT(db->db.db_data != NULL); 1691 if (db->db_blkid == DMU_BONUS_BLKID) { 1692 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 1693 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1694 } 1695 db->db.db_data = NULL; 1696 db->db_state = DB_UNCACHED; 1697 } 1698 1699 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1700 ASSERT(db->db_data_pending == NULL); 1701 1702 db->db_state = DB_EVICTING; 1703 db->db_blkptr = NULL; 1704 1705 DB_DNODE_ENTER(db); 1706 dn = DB_DNODE(db); 1707 dndb = dn->dn_dbuf; 1708 if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) { 1709 avl_remove(&dn->dn_dbufs, db); 1710 atomic_dec_32(&dn->dn_dbufs_count); 1711 membar_producer(); 1712 DB_DNODE_EXIT(db); 1713 /* 1714 * Decrementing the dbuf count means that the hold corresponding 1715 * to the removed dbuf is no longer discounted in dnode_move(), 1716 * so the dnode cannot be moved until after we release the hold. 1717 * The membar_producer() ensures visibility of the decremented 1718 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 1719 * release any lock. 1720 */ 1721 dnode_rele(dn, db); 1722 db->db_dnode_handle = NULL; 1723 } else { 1724 DB_DNODE_EXIT(db); 1725 } 1726 1727 if (db->db_buf) 1728 dbuf_gone = arc_clear_callback(db->db_buf); 1729 1730 if (!dbuf_gone) 1731 mutex_exit(&db->db_mtx); 1732 1733 /* 1734 * If this dbuf is referenced from an indirect dbuf, 1735 * decrement the ref count on the indirect dbuf. 1736 */ 1737 if (parent && parent != dndb) 1738 dbuf_rele(parent, db); 1739 } 1740 1741 /* 1742 * Note: While bpp will always be updated if the function returns success, 1743 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 1744 * this happens when the dnode is the meta-dnode, or a userused or groupused 1745 * object. 1746 */ 1747 static int 1748 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 1749 dmu_buf_impl_t **parentp, blkptr_t **bpp) 1750 { 1751 int nlevels, epbs; 1752 1753 *parentp = NULL; 1754 *bpp = NULL; 1755 1756 ASSERT(blkid != DMU_BONUS_BLKID); 1757 1758 if (blkid == DMU_SPILL_BLKID) { 1759 mutex_enter(&dn->dn_mtx); 1760 if (dn->dn_have_spill && 1761 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1762 *bpp = &dn->dn_phys->dn_spill; 1763 else 1764 *bpp = NULL; 1765 dbuf_add_ref(dn->dn_dbuf, NULL); 1766 *parentp = dn->dn_dbuf; 1767 mutex_exit(&dn->dn_mtx); 1768 return (0); 1769 } 1770 1771 if (dn->dn_phys->dn_nlevels == 0) 1772 nlevels = 1; 1773 else 1774 nlevels = dn->dn_phys->dn_nlevels; 1775 1776 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1777 1778 ASSERT3U(level * epbs, <, 64); 1779 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1780 if (level >= nlevels || 1781 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 1782 /* the buffer has no parent yet */ 1783 return (SET_ERROR(ENOENT)); 1784 } else if (level < nlevels-1) { 1785 /* this block is referenced from an indirect block */ 1786 int err = dbuf_hold_impl(dn, level+1, 1787 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 1788 if (err) 1789 return (err); 1790 err = dbuf_read(*parentp, NULL, 1791 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 1792 if (err) { 1793 dbuf_rele(*parentp, NULL); 1794 *parentp = NULL; 1795 return (err); 1796 } 1797 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 1798 (blkid & ((1ULL << epbs) - 1)); 1799 return (0); 1800 } else { 1801 /* the block is referenced from the dnode */ 1802 ASSERT3U(level, ==, nlevels-1); 1803 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 1804 blkid < dn->dn_phys->dn_nblkptr); 1805 if (dn->dn_dbuf) { 1806 dbuf_add_ref(dn->dn_dbuf, NULL); 1807 *parentp = dn->dn_dbuf; 1808 } 1809 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 1810 return (0); 1811 } 1812 } 1813 1814 static dmu_buf_impl_t * 1815 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 1816 dmu_buf_impl_t *parent, blkptr_t *blkptr) 1817 { 1818 objset_t *os = dn->dn_objset; 1819 dmu_buf_impl_t *db, *odb; 1820 1821 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1822 ASSERT(dn->dn_type != DMU_OT_NONE); 1823 1824 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP); 1825 1826 db->db_objset = os; 1827 db->db.db_object = dn->dn_object; 1828 db->db_level = level; 1829 db->db_blkid = blkid; 1830 db->db_last_dirty = NULL; 1831 db->db_dirtycnt = 0; 1832 db->db_dnode_handle = dn->dn_handle; 1833 db->db_parent = parent; 1834 db->db_blkptr = blkptr; 1835 1836 db->db_user = NULL; 1837 db->db_immediate_evict = 0; 1838 db->db_freed_in_flight = 0; 1839 1840 if (blkid == DMU_BONUS_BLKID) { 1841 ASSERT3P(parent, ==, dn->dn_dbuf); 1842 db->db.db_size = DN_MAX_BONUSLEN - 1843 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 1844 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1845 db->db.db_offset = DMU_BONUS_BLKID; 1846 db->db_state = DB_UNCACHED; 1847 /* the bonus dbuf is not placed in the hash table */ 1848 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1849 return (db); 1850 } else if (blkid == DMU_SPILL_BLKID) { 1851 db->db.db_size = (blkptr != NULL) ? 1852 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 1853 db->db.db_offset = 0; 1854 } else { 1855 int blocksize = 1856 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 1857 db->db.db_size = blocksize; 1858 db->db.db_offset = db->db_blkid * blocksize; 1859 } 1860 1861 /* 1862 * Hold the dn_dbufs_mtx while we get the new dbuf 1863 * in the hash table *and* added to the dbufs list. 1864 * This prevents a possible deadlock with someone 1865 * trying to look up this dbuf before its added to the 1866 * dn_dbufs list. 1867 */ 1868 mutex_enter(&dn->dn_dbufs_mtx); 1869 db->db_state = DB_EVICTING; 1870 if ((odb = dbuf_hash_insert(db)) != NULL) { 1871 /* someone else inserted it first */ 1872 kmem_cache_free(dbuf_cache, db); 1873 mutex_exit(&dn->dn_dbufs_mtx); 1874 return (odb); 1875 } 1876 avl_add(&dn->dn_dbufs, db); 1877 if (db->db_level == 0 && db->db_blkid >= 1878 dn->dn_unlisted_l0_blkid) 1879 dn->dn_unlisted_l0_blkid = db->db_blkid + 1; 1880 db->db_state = DB_UNCACHED; 1881 mutex_exit(&dn->dn_dbufs_mtx); 1882 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1883 1884 if (parent && parent != dn->dn_dbuf) 1885 dbuf_add_ref(parent, db); 1886 1887 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1888 refcount_count(&dn->dn_holds) > 0); 1889 (void) refcount_add(&dn->dn_holds, db); 1890 atomic_inc_32(&dn->dn_dbufs_count); 1891 1892 dprintf_dbuf(db, "db=%p\n", db); 1893 1894 return (db); 1895 } 1896 1897 static int 1898 dbuf_do_evict(void *private) 1899 { 1900 dmu_buf_impl_t *db = private; 1901 1902 if (!MUTEX_HELD(&db->db_mtx)) 1903 mutex_enter(&db->db_mtx); 1904 1905 ASSERT(refcount_is_zero(&db->db_holds)); 1906 1907 if (db->db_state != DB_EVICTING) { 1908 ASSERT(db->db_state == DB_CACHED); 1909 DBUF_VERIFY(db); 1910 db->db_buf = NULL; 1911 dbuf_evict(db); 1912 } else { 1913 mutex_exit(&db->db_mtx); 1914 dbuf_destroy(db); 1915 } 1916 return (0); 1917 } 1918 1919 static void 1920 dbuf_destroy(dmu_buf_impl_t *db) 1921 { 1922 ASSERT(refcount_is_zero(&db->db_holds)); 1923 1924 if (db->db_blkid != DMU_BONUS_BLKID) { 1925 /* 1926 * If this dbuf is still on the dn_dbufs list, 1927 * remove it from that list. 1928 */ 1929 if (db->db_dnode_handle != NULL) { 1930 dnode_t *dn; 1931 1932 DB_DNODE_ENTER(db); 1933 dn = DB_DNODE(db); 1934 mutex_enter(&dn->dn_dbufs_mtx); 1935 avl_remove(&dn->dn_dbufs, db); 1936 atomic_dec_32(&dn->dn_dbufs_count); 1937 mutex_exit(&dn->dn_dbufs_mtx); 1938 DB_DNODE_EXIT(db); 1939 /* 1940 * Decrementing the dbuf count means that the hold 1941 * corresponding to the removed dbuf is no longer 1942 * discounted in dnode_move(), so the dnode cannot be 1943 * moved until after we release the hold. 1944 */ 1945 dnode_rele(dn, db); 1946 db->db_dnode_handle = NULL; 1947 } 1948 dbuf_hash_remove(db); 1949 } 1950 db->db_parent = NULL; 1951 db->db_buf = NULL; 1952 1953 ASSERT(db->db.db_data == NULL); 1954 ASSERT(db->db_hash_next == NULL); 1955 ASSERT(db->db_blkptr == NULL); 1956 ASSERT(db->db_data_pending == NULL); 1957 1958 kmem_cache_free(dbuf_cache, db); 1959 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1960 } 1961 1962 typedef struct dbuf_prefetch_arg { 1963 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 1964 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 1965 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 1966 int dpa_curlevel; /* The current level that we're reading */ 1967 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 1968 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 1969 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 1970 } dbuf_prefetch_arg_t; 1971 1972 /* 1973 * Actually issue the prefetch read for the block given. 1974 */ 1975 static void 1976 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 1977 { 1978 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1979 return; 1980 1981 arc_flags_t aflags = 1982 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 1983 1984 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 1985 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 1986 ASSERT(dpa->dpa_zio != NULL); 1987 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 1988 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 1989 &aflags, &dpa->dpa_zb); 1990 } 1991 1992 /* 1993 * Called when an indirect block above our prefetch target is read in. This 1994 * will either read in the next indirect block down the tree or issue the actual 1995 * prefetch if the next block down is our target. 1996 */ 1997 static void 1998 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private) 1999 { 2000 dbuf_prefetch_arg_t *dpa = private; 2001 2002 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 2003 ASSERT3S(dpa->dpa_curlevel, >, 0); 2004 if (zio != NULL) { 2005 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 2006 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 2007 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 2008 } 2009 2010 dpa->dpa_curlevel--; 2011 2012 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 2013 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 2014 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 2015 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 2016 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) { 2017 kmem_free(dpa, sizeof (*dpa)); 2018 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 2019 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 2020 dbuf_issue_final_prefetch(dpa, bp); 2021 kmem_free(dpa, sizeof (*dpa)); 2022 } else { 2023 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2024 zbookmark_phys_t zb; 2025 2026 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2027 2028 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 2029 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 2030 2031 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2032 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 2033 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2034 &iter_aflags, &zb); 2035 } 2036 (void) arc_buf_remove_ref(abuf, private); 2037 } 2038 2039 /* 2040 * Issue prefetch reads for the given block on the given level. If the indirect 2041 * blocks above that block are not in memory, we will read them in 2042 * asynchronously. As a result, this call never blocks waiting for a read to 2043 * complete. 2044 */ 2045 void 2046 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 2047 arc_flags_t aflags) 2048 { 2049 blkptr_t bp; 2050 int epbs, nlevels, curlevel; 2051 uint64_t curblkid; 2052 2053 ASSERT(blkid != DMU_BONUS_BLKID); 2054 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2055 2056 if (blkid > dn->dn_maxblkid) 2057 return; 2058 2059 if (dnode_block_freed(dn, blkid)) 2060 return; 2061 2062 /* 2063 * This dnode hasn't been written to disk yet, so there's nothing to 2064 * prefetch. 2065 */ 2066 nlevels = dn->dn_phys->dn_nlevels; 2067 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 2068 return; 2069 2070 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2071 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 2072 return; 2073 2074 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 2075 level, blkid); 2076 if (db != NULL) { 2077 mutex_exit(&db->db_mtx); 2078 /* 2079 * This dbuf already exists. It is either CACHED, or 2080 * (we assume) about to be read or filled. 2081 */ 2082 return; 2083 } 2084 2085 /* 2086 * Find the closest ancestor (indirect block) of the target block 2087 * that is present in the cache. In this indirect block, we will 2088 * find the bp that is at curlevel, curblkid. 2089 */ 2090 curlevel = level; 2091 curblkid = blkid; 2092 while (curlevel < nlevels - 1) { 2093 int parent_level = curlevel + 1; 2094 uint64_t parent_blkid = curblkid >> epbs; 2095 dmu_buf_impl_t *db; 2096 2097 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 2098 FALSE, TRUE, FTAG, &db) == 0) { 2099 blkptr_t *bpp = db->db_buf->b_data; 2100 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 2101 dbuf_rele(db, FTAG); 2102 break; 2103 } 2104 2105 curlevel = parent_level; 2106 curblkid = parent_blkid; 2107 } 2108 2109 if (curlevel == nlevels - 1) { 2110 /* No cached indirect blocks found. */ 2111 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 2112 bp = dn->dn_phys->dn_blkptr[curblkid]; 2113 } 2114 if (BP_IS_HOLE(&bp)) 2115 return; 2116 2117 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 2118 2119 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 2120 ZIO_FLAG_CANFAIL); 2121 2122 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 2123 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2124 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2125 dn->dn_object, level, blkid); 2126 dpa->dpa_curlevel = curlevel; 2127 dpa->dpa_prio = prio; 2128 dpa->dpa_aflags = aflags; 2129 dpa->dpa_spa = dn->dn_objset->os_spa; 2130 dpa->dpa_epbs = epbs; 2131 dpa->dpa_zio = pio; 2132 2133 /* 2134 * If we have the indirect just above us, no need to do the asynchronous 2135 * prefetch chain; we'll just run the last step ourselves. If we're at 2136 * a higher level, though, we want to issue the prefetches for all the 2137 * indirect blocks asynchronously, so we can go on with whatever we were 2138 * doing. 2139 */ 2140 if (curlevel == level) { 2141 ASSERT3U(curblkid, ==, blkid); 2142 dbuf_issue_final_prefetch(dpa, &bp); 2143 kmem_free(dpa, sizeof (*dpa)); 2144 } else { 2145 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2146 zbookmark_phys_t zb; 2147 2148 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2149 dn->dn_object, curlevel, curblkid); 2150 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2151 &bp, dbuf_prefetch_indirect_done, dpa, prio, 2152 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2153 &iter_aflags, &zb); 2154 } 2155 /* 2156 * We use pio here instead of dpa_zio since it's possible that 2157 * dpa may have already been freed. 2158 */ 2159 zio_nowait(pio); 2160 } 2161 2162 /* 2163 * Returns with db_holds incremented, and db_mtx not held. 2164 * Note: dn_struct_rwlock must be held. 2165 */ 2166 int 2167 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 2168 boolean_t fail_sparse, boolean_t fail_uncached, 2169 void *tag, dmu_buf_impl_t **dbp) 2170 { 2171 dmu_buf_impl_t *db, *parent = NULL; 2172 2173 ASSERT(blkid != DMU_BONUS_BLKID); 2174 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2175 ASSERT3U(dn->dn_nlevels, >, level); 2176 2177 *dbp = NULL; 2178 top: 2179 /* dbuf_find() returns with db_mtx held */ 2180 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 2181 2182 if (db == NULL) { 2183 blkptr_t *bp = NULL; 2184 int err; 2185 2186 if (fail_uncached) 2187 return (SET_ERROR(ENOENT)); 2188 2189 ASSERT3P(parent, ==, NULL); 2190 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 2191 if (fail_sparse) { 2192 if (err == 0 && bp && BP_IS_HOLE(bp)) 2193 err = SET_ERROR(ENOENT); 2194 if (err) { 2195 if (parent) 2196 dbuf_rele(parent, NULL); 2197 return (err); 2198 } 2199 } 2200 if (err && err != ENOENT) 2201 return (err); 2202 db = dbuf_create(dn, level, blkid, parent, bp); 2203 } 2204 2205 if (fail_uncached && db->db_state != DB_CACHED) { 2206 mutex_exit(&db->db_mtx); 2207 return (SET_ERROR(ENOENT)); 2208 } 2209 2210 if (db->db_buf && refcount_is_zero(&db->db_holds)) { 2211 arc_buf_add_ref(db->db_buf, db); 2212 if (db->db_buf->b_data == NULL) { 2213 dbuf_clear(db); 2214 if (parent) { 2215 dbuf_rele(parent, NULL); 2216 parent = NULL; 2217 } 2218 goto top; 2219 } 2220 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 2221 } 2222 2223 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 2224 2225 /* 2226 * If this buffer is currently syncing out, and we are are 2227 * still referencing it from db_data, we need to make a copy 2228 * of it in case we decide we want to dirty it again in this txg. 2229 */ 2230 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2231 dn->dn_object != DMU_META_DNODE_OBJECT && 2232 db->db_state == DB_CACHED && db->db_data_pending) { 2233 dbuf_dirty_record_t *dr = db->db_data_pending; 2234 2235 if (dr->dt.dl.dr_data == db->db_buf) { 2236 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2237 2238 dbuf_set_data(db, 2239 arc_buf_alloc(dn->dn_objset->os_spa, 2240 db->db.db_size, db, type)); 2241 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 2242 db->db.db_size); 2243 } 2244 } 2245 2246 (void) refcount_add(&db->db_holds, tag); 2247 DBUF_VERIFY(db); 2248 mutex_exit(&db->db_mtx); 2249 2250 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2251 if (parent) 2252 dbuf_rele(parent, NULL); 2253 2254 ASSERT3P(DB_DNODE(db), ==, dn); 2255 ASSERT3U(db->db_blkid, ==, blkid); 2256 ASSERT3U(db->db_level, ==, level); 2257 *dbp = db; 2258 2259 return (0); 2260 } 2261 2262 dmu_buf_impl_t * 2263 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2264 { 2265 return (dbuf_hold_level(dn, 0, blkid, tag)); 2266 } 2267 2268 dmu_buf_impl_t * 2269 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2270 { 2271 dmu_buf_impl_t *db; 2272 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 2273 return (err ? NULL : db); 2274 } 2275 2276 void 2277 dbuf_create_bonus(dnode_t *dn) 2278 { 2279 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2280 2281 ASSERT(dn->dn_bonus == NULL); 2282 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2283 } 2284 2285 int 2286 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2287 { 2288 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2289 dnode_t *dn; 2290 2291 if (db->db_blkid != DMU_SPILL_BLKID) 2292 return (SET_ERROR(ENOTSUP)); 2293 if (blksz == 0) 2294 blksz = SPA_MINBLOCKSIZE; 2295 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 2296 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2297 2298 DB_DNODE_ENTER(db); 2299 dn = DB_DNODE(db); 2300 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2301 dbuf_new_size(db, blksz, tx); 2302 rw_exit(&dn->dn_struct_rwlock); 2303 DB_DNODE_EXIT(db); 2304 2305 return (0); 2306 } 2307 2308 void 2309 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2310 { 2311 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2312 } 2313 2314 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2315 void 2316 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2317 { 2318 int64_t holds = refcount_add(&db->db_holds, tag); 2319 ASSERT(holds > 1); 2320 } 2321 2322 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 2323 boolean_t 2324 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 2325 void *tag) 2326 { 2327 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2328 dmu_buf_impl_t *found_db; 2329 boolean_t result = B_FALSE; 2330 2331 if (db->db_blkid == DMU_BONUS_BLKID) 2332 found_db = dbuf_find_bonus(os, obj); 2333 else 2334 found_db = dbuf_find(os, obj, 0, blkid); 2335 2336 if (found_db != NULL) { 2337 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 2338 (void) refcount_add(&db->db_holds, tag); 2339 result = B_TRUE; 2340 } 2341 mutex_exit(&db->db_mtx); 2342 } 2343 return (result); 2344 } 2345 2346 /* 2347 * If you call dbuf_rele() you had better not be referencing the dnode handle 2348 * unless you have some other direct or indirect hold on the dnode. (An indirect 2349 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2350 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2351 * dnode's parent dbuf evicting its dnode handles. 2352 */ 2353 void 2354 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2355 { 2356 mutex_enter(&db->db_mtx); 2357 dbuf_rele_and_unlock(db, tag); 2358 } 2359 2360 void 2361 dmu_buf_rele(dmu_buf_t *db, void *tag) 2362 { 2363 dbuf_rele((dmu_buf_impl_t *)db, tag); 2364 } 2365 2366 /* 2367 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2368 * db_dirtycnt and db_holds to be updated atomically. 2369 */ 2370 void 2371 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2372 { 2373 int64_t holds; 2374 2375 ASSERT(MUTEX_HELD(&db->db_mtx)); 2376 DBUF_VERIFY(db); 2377 2378 /* 2379 * Remove the reference to the dbuf before removing its hold on the 2380 * dnode so we can guarantee in dnode_move() that a referenced bonus 2381 * buffer has a corresponding dnode hold. 2382 */ 2383 holds = refcount_remove(&db->db_holds, tag); 2384 ASSERT(holds >= 0); 2385 2386 /* 2387 * We can't freeze indirects if there is a possibility that they 2388 * may be modified in the current syncing context. 2389 */ 2390 if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) 2391 arc_buf_freeze(db->db_buf); 2392 2393 if (holds == db->db_dirtycnt && 2394 db->db_level == 0 && db->db_immediate_evict) 2395 dbuf_evict_user(db); 2396 2397 if (holds == 0) { 2398 if (db->db_blkid == DMU_BONUS_BLKID) { 2399 dnode_t *dn; 2400 2401 /* 2402 * If the dnode moves here, we cannot cross this 2403 * barrier until the move completes. 2404 */ 2405 DB_DNODE_ENTER(db); 2406 2407 dn = DB_DNODE(db); 2408 atomic_dec_32(&dn->dn_dbufs_count); 2409 2410 /* 2411 * Decrementing the dbuf count means that the bonus 2412 * buffer's dnode hold is no longer discounted in 2413 * dnode_move(). The dnode cannot move until after 2414 * the dnode_rele_and_unlock() below. 2415 */ 2416 DB_DNODE_EXIT(db); 2417 2418 /* 2419 * Do not reference db after its lock is dropped. 2420 * Another thread may evict it. 2421 */ 2422 mutex_exit(&db->db_mtx); 2423 2424 /* 2425 * If the dnode has been freed, evict the bonus 2426 * buffer immediately. The data in the bonus 2427 * buffer is no longer relevant and this prevents 2428 * a stale bonus buffer from being associated 2429 * with this dnode_t should the dnode_t be reused 2430 * prior to being destroyed. 2431 */ 2432 mutex_enter(&dn->dn_mtx); 2433 if (dn->dn_type == DMU_OT_NONE || 2434 dn->dn_free_txg != 0) { 2435 /* 2436 * Drop dn_mtx. It is a leaf lock and 2437 * cannot be held when dnode_evict_bonus() 2438 * acquires other locks in order to 2439 * perform the eviction. 2440 * 2441 * Freed dnodes cannot be reused until the 2442 * last hold is released. Since this bonus 2443 * buffer has a hold, the dnode will remain 2444 * in the free state, even without dn_mtx 2445 * held, until the dnode_rele_and_unlock() 2446 * below. 2447 */ 2448 mutex_exit(&dn->dn_mtx); 2449 dnode_evict_bonus(dn); 2450 mutex_enter(&dn->dn_mtx); 2451 } 2452 dnode_rele_and_unlock(dn, db); 2453 } else if (db->db_buf == NULL) { 2454 /* 2455 * This is a special case: we never associated this 2456 * dbuf with any data allocated from the ARC. 2457 */ 2458 ASSERT(db->db_state == DB_UNCACHED || 2459 db->db_state == DB_NOFILL); 2460 dbuf_evict(db); 2461 } else if (arc_released(db->db_buf)) { 2462 arc_buf_t *buf = db->db_buf; 2463 /* 2464 * This dbuf has anonymous data associated with it. 2465 */ 2466 dbuf_clear_data(db); 2467 VERIFY(arc_buf_remove_ref(buf, db)); 2468 dbuf_evict(db); 2469 } else { 2470 VERIFY(!arc_buf_remove_ref(db->db_buf, db)); 2471 2472 /* 2473 * A dbuf will be eligible for eviction if either the 2474 * 'primarycache' property is set or a duplicate 2475 * copy of this buffer is already cached in the arc. 2476 * 2477 * In the case of the 'primarycache' a buffer 2478 * is considered for eviction if it matches the 2479 * criteria set in the property. 2480 * 2481 * To decide if our buffer is considered a 2482 * duplicate, we must call into the arc to determine 2483 * if multiple buffers are referencing the same 2484 * block on-disk. If so, then we simply evict 2485 * ourselves. 2486 */ 2487 if (!DBUF_IS_CACHEABLE(db)) { 2488 if (db->db_blkptr != NULL && 2489 !BP_IS_HOLE(db->db_blkptr) && 2490 !BP_IS_EMBEDDED(db->db_blkptr)) { 2491 spa_t *spa = 2492 dmu_objset_spa(db->db_objset); 2493 blkptr_t bp = *db->db_blkptr; 2494 dbuf_clear(db); 2495 arc_freed(spa, &bp); 2496 } else { 2497 dbuf_clear(db); 2498 } 2499 } else if (db->db_objset->os_evicting || 2500 arc_buf_eviction_needed(db->db_buf)) { 2501 dbuf_clear(db); 2502 } else { 2503 mutex_exit(&db->db_mtx); 2504 } 2505 } 2506 } else { 2507 mutex_exit(&db->db_mtx); 2508 } 2509 } 2510 2511 #pragma weak dmu_buf_refcount = dbuf_refcount 2512 uint64_t 2513 dbuf_refcount(dmu_buf_impl_t *db) 2514 { 2515 return (refcount_count(&db->db_holds)); 2516 } 2517 2518 void * 2519 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 2520 dmu_buf_user_t *new_user) 2521 { 2522 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2523 2524 mutex_enter(&db->db_mtx); 2525 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2526 if (db->db_user == old_user) 2527 db->db_user = new_user; 2528 else 2529 old_user = db->db_user; 2530 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2531 mutex_exit(&db->db_mtx); 2532 2533 return (old_user); 2534 } 2535 2536 void * 2537 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2538 { 2539 return (dmu_buf_replace_user(db_fake, NULL, user)); 2540 } 2541 2542 void * 2543 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2544 { 2545 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2546 2547 db->db_immediate_evict = TRUE; 2548 return (dmu_buf_set_user(db_fake, user)); 2549 } 2550 2551 void * 2552 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2553 { 2554 return (dmu_buf_replace_user(db_fake, user, NULL)); 2555 } 2556 2557 void * 2558 dmu_buf_get_user(dmu_buf_t *db_fake) 2559 { 2560 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2561 2562 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2563 return (db->db_user); 2564 } 2565 2566 void 2567 dmu_buf_user_evict_wait() 2568 { 2569 taskq_wait(dbu_evict_taskq); 2570 } 2571 2572 boolean_t 2573 dmu_buf_freeable(dmu_buf_t *dbuf) 2574 { 2575 boolean_t res = B_FALSE; 2576 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2577 2578 if (db->db_blkptr) 2579 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset, 2580 db->db_blkptr, db->db_blkptr->blk_birth); 2581 2582 return (res); 2583 } 2584 2585 blkptr_t * 2586 dmu_buf_get_blkptr(dmu_buf_t *db) 2587 { 2588 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2589 return (dbi->db_blkptr); 2590 } 2591 2592 static void 2593 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2594 { 2595 /* ASSERT(dmu_tx_is_syncing(tx) */ 2596 ASSERT(MUTEX_HELD(&db->db_mtx)); 2597 2598 if (db->db_blkptr != NULL) 2599 return; 2600 2601 if (db->db_blkid == DMU_SPILL_BLKID) { 2602 db->db_blkptr = &dn->dn_phys->dn_spill; 2603 BP_ZERO(db->db_blkptr); 2604 return; 2605 } 2606 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2607 /* 2608 * This buffer was allocated at a time when there was 2609 * no available blkptrs from the dnode, or it was 2610 * inappropriate to hook it in (i.e., nlevels mis-match). 2611 */ 2612 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2613 ASSERT(db->db_parent == NULL); 2614 db->db_parent = dn->dn_dbuf; 2615 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2616 DBUF_VERIFY(db); 2617 } else { 2618 dmu_buf_impl_t *parent = db->db_parent; 2619 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2620 2621 ASSERT(dn->dn_phys->dn_nlevels > 1); 2622 if (parent == NULL) { 2623 mutex_exit(&db->db_mtx); 2624 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2625 parent = dbuf_hold_level(dn, db->db_level + 1, 2626 db->db_blkid >> epbs, db); 2627 rw_exit(&dn->dn_struct_rwlock); 2628 mutex_enter(&db->db_mtx); 2629 db->db_parent = parent; 2630 } 2631 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2632 (db->db_blkid & ((1ULL << epbs) - 1)); 2633 DBUF_VERIFY(db); 2634 } 2635 } 2636 2637 static void 2638 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2639 { 2640 dmu_buf_impl_t *db = dr->dr_dbuf; 2641 dnode_t *dn; 2642 zio_t *zio; 2643 2644 ASSERT(dmu_tx_is_syncing(tx)); 2645 2646 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2647 2648 mutex_enter(&db->db_mtx); 2649 2650 ASSERT(db->db_level > 0); 2651 DBUF_VERIFY(db); 2652 2653 /* Read the block if it hasn't been read yet. */ 2654 if (db->db_buf == NULL) { 2655 mutex_exit(&db->db_mtx); 2656 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2657 mutex_enter(&db->db_mtx); 2658 } 2659 ASSERT3U(db->db_state, ==, DB_CACHED); 2660 ASSERT(db->db_buf != NULL); 2661 2662 DB_DNODE_ENTER(db); 2663 dn = DB_DNODE(db); 2664 /* Indirect block size must match what the dnode thinks it is. */ 2665 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2666 dbuf_check_blkptr(dn, db); 2667 DB_DNODE_EXIT(db); 2668 2669 /* Provide the pending dirty record to child dbufs */ 2670 db->db_data_pending = dr; 2671 2672 mutex_exit(&db->db_mtx); 2673 dbuf_write(dr, db->db_buf, tx); 2674 2675 zio = dr->dr_zio; 2676 mutex_enter(&dr->dt.di.dr_mtx); 2677 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 2678 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2679 mutex_exit(&dr->dt.di.dr_mtx); 2680 zio_nowait(zio); 2681 } 2682 2683 static void 2684 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2685 { 2686 arc_buf_t **datap = &dr->dt.dl.dr_data; 2687 dmu_buf_impl_t *db = dr->dr_dbuf; 2688 dnode_t *dn; 2689 objset_t *os; 2690 uint64_t txg = tx->tx_txg; 2691 2692 ASSERT(dmu_tx_is_syncing(tx)); 2693 2694 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2695 2696 mutex_enter(&db->db_mtx); 2697 /* 2698 * To be synced, we must be dirtied. But we 2699 * might have been freed after the dirty. 2700 */ 2701 if (db->db_state == DB_UNCACHED) { 2702 /* This buffer has been freed since it was dirtied */ 2703 ASSERT(db->db.db_data == NULL); 2704 } else if (db->db_state == DB_FILL) { 2705 /* This buffer was freed and is now being re-filled */ 2706 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 2707 } else { 2708 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 2709 } 2710 DBUF_VERIFY(db); 2711 2712 DB_DNODE_ENTER(db); 2713 dn = DB_DNODE(db); 2714 2715 if (db->db_blkid == DMU_SPILL_BLKID) { 2716 mutex_enter(&dn->dn_mtx); 2717 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 2718 mutex_exit(&dn->dn_mtx); 2719 } 2720 2721 /* 2722 * If this is a bonus buffer, simply copy the bonus data into the 2723 * dnode. It will be written out when the dnode is synced (and it 2724 * will be synced, since it must have been dirty for dbuf_sync to 2725 * be called). 2726 */ 2727 if (db->db_blkid == DMU_BONUS_BLKID) { 2728 dbuf_dirty_record_t **drp; 2729 2730 ASSERT(*datap != NULL); 2731 ASSERT0(db->db_level); 2732 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 2733 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 2734 DB_DNODE_EXIT(db); 2735 2736 if (*datap != db->db.db_data) { 2737 zio_buf_free(*datap, DN_MAX_BONUSLEN); 2738 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2739 } 2740 db->db_data_pending = NULL; 2741 drp = &db->db_last_dirty; 2742 while (*drp != dr) 2743 drp = &(*drp)->dr_next; 2744 ASSERT(dr->dr_next == NULL); 2745 ASSERT(dr->dr_dbuf == db); 2746 *drp = dr->dr_next; 2747 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2748 ASSERT(db->db_dirtycnt > 0); 2749 db->db_dirtycnt -= 1; 2750 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 2751 return; 2752 } 2753 2754 os = dn->dn_objset; 2755 2756 /* 2757 * This function may have dropped the db_mtx lock allowing a dmu_sync 2758 * operation to sneak in. As a result, we need to ensure that we 2759 * don't check the dr_override_state until we have returned from 2760 * dbuf_check_blkptr. 2761 */ 2762 dbuf_check_blkptr(dn, db); 2763 2764 /* 2765 * If this buffer is in the middle of an immediate write, 2766 * wait for the synchronous IO to complete. 2767 */ 2768 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 2769 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 2770 cv_wait(&db->db_changed, &db->db_mtx); 2771 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 2772 } 2773 2774 if (db->db_state != DB_NOFILL && 2775 dn->dn_object != DMU_META_DNODE_OBJECT && 2776 refcount_count(&db->db_holds) > 1 && 2777 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 2778 *datap == db->db_buf) { 2779 /* 2780 * If this buffer is currently "in use" (i.e., there 2781 * are active holds and db_data still references it), 2782 * then make a copy before we start the write so that 2783 * any modifications from the open txg will not leak 2784 * into this write. 2785 * 2786 * NOTE: this copy does not need to be made for 2787 * objects only modified in the syncing context (e.g. 2788 * DNONE_DNODE blocks). 2789 */ 2790 int blksz = arc_buf_size(*datap); 2791 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2792 *datap = arc_buf_alloc(os->os_spa, blksz, db, type); 2793 bcopy(db->db.db_data, (*datap)->b_data, blksz); 2794 } 2795 db->db_data_pending = dr; 2796 2797 mutex_exit(&db->db_mtx); 2798 2799 dbuf_write(dr, *datap, tx); 2800 2801 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2802 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 2803 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 2804 DB_DNODE_EXIT(db); 2805 } else { 2806 /* 2807 * Although zio_nowait() does not "wait for an IO", it does 2808 * initiate the IO. If this is an empty write it seems plausible 2809 * that the IO could actually be completed before the nowait 2810 * returns. We need to DB_DNODE_EXIT() first in case 2811 * zio_nowait() invalidates the dbuf. 2812 */ 2813 DB_DNODE_EXIT(db); 2814 zio_nowait(dr->dr_zio); 2815 } 2816 } 2817 2818 void 2819 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 2820 { 2821 dbuf_dirty_record_t *dr; 2822 2823 while (dr = list_head(list)) { 2824 if (dr->dr_zio != NULL) { 2825 /* 2826 * If we find an already initialized zio then we 2827 * are processing the meta-dnode, and we have finished. 2828 * The dbufs for all dnodes are put back on the list 2829 * during processing, so that we can zio_wait() 2830 * these IOs after initiating all child IOs. 2831 */ 2832 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 2833 DMU_META_DNODE_OBJECT); 2834 break; 2835 } 2836 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 2837 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 2838 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 2839 } 2840 list_remove(list, dr); 2841 if (dr->dr_dbuf->db_level > 0) 2842 dbuf_sync_indirect(dr, tx); 2843 else 2844 dbuf_sync_leaf(dr, tx); 2845 } 2846 } 2847 2848 /* ARGSUSED */ 2849 static void 2850 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 2851 { 2852 dmu_buf_impl_t *db = vdb; 2853 dnode_t *dn; 2854 blkptr_t *bp = zio->io_bp; 2855 blkptr_t *bp_orig = &zio->io_bp_orig; 2856 spa_t *spa = zio->io_spa; 2857 int64_t delta; 2858 uint64_t fill = 0; 2859 int i; 2860 2861 ASSERT3P(db->db_blkptr, ==, bp); 2862 2863 DB_DNODE_ENTER(db); 2864 dn = DB_DNODE(db); 2865 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 2866 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 2867 zio->io_prev_space_delta = delta; 2868 2869 if (bp->blk_birth != 0) { 2870 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 2871 BP_GET_TYPE(bp) == dn->dn_type) || 2872 (db->db_blkid == DMU_SPILL_BLKID && 2873 BP_GET_TYPE(bp) == dn->dn_bonustype) || 2874 BP_IS_EMBEDDED(bp)); 2875 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 2876 } 2877 2878 mutex_enter(&db->db_mtx); 2879 2880 #ifdef ZFS_DEBUG 2881 if (db->db_blkid == DMU_SPILL_BLKID) { 2882 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2883 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2884 db->db_blkptr == &dn->dn_phys->dn_spill); 2885 } 2886 #endif 2887 2888 if (db->db_level == 0) { 2889 mutex_enter(&dn->dn_mtx); 2890 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 2891 db->db_blkid != DMU_SPILL_BLKID) 2892 dn->dn_phys->dn_maxblkid = db->db_blkid; 2893 mutex_exit(&dn->dn_mtx); 2894 2895 if (dn->dn_type == DMU_OT_DNODE) { 2896 dnode_phys_t *dnp = db->db.db_data; 2897 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 2898 i--, dnp++) { 2899 if (dnp->dn_type != DMU_OT_NONE) 2900 fill++; 2901 } 2902 } else { 2903 if (BP_IS_HOLE(bp)) { 2904 fill = 0; 2905 } else { 2906 fill = 1; 2907 } 2908 } 2909 } else { 2910 blkptr_t *ibp = db->db.db_data; 2911 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2912 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 2913 if (BP_IS_HOLE(ibp)) 2914 continue; 2915 fill += BP_GET_FILL(ibp); 2916 } 2917 } 2918 DB_DNODE_EXIT(db); 2919 2920 if (!BP_IS_EMBEDDED(bp)) 2921 bp->blk_fill = fill; 2922 2923 mutex_exit(&db->db_mtx); 2924 } 2925 2926 /* 2927 * The SPA will call this callback several times for each zio - once 2928 * for every physical child i/o (zio->io_phys_children times). This 2929 * allows the DMU to monitor the progress of each logical i/o. For example, 2930 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 2931 * block. There may be a long delay before all copies/fragments are completed, 2932 * so this callback allows us to retire dirty space gradually, as the physical 2933 * i/os complete. 2934 */ 2935 /* ARGSUSED */ 2936 static void 2937 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 2938 { 2939 dmu_buf_impl_t *db = arg; 2940 objset_t *os = db->db_objset; 2941 dsl_pool_t *dp = dmu_objset_pool(os); 2942 dbuf_dirty_record_t *dr; 2943 int delta = 0; 2944 2945 dr = db->db_data_pending; 2946 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 2947 2948 /* 2949 * The callback will be called io_phys_children times. Retire one 2950 * portion of our dirty space each time we are called. Any rounding 2951 * error will be cleaned up by dsl_pool_sync()'s call to 2952 * dsl_pool_undirty_space(). 2953 */ 2954 delta = dr->dr_accounted / zio->io_phys_children; 2955 dsl_pool_undirty_space(dp, delta, zio->io_txg); 2956 } 2957 2958 /* ARGSUSED */ 2959 static void 2960 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 2961 { 2962 dmu_buf_impl_t *db = vdb; 2963 blkptr_t *bp_orig = &zio->io_bp_orig; 2964 blkptr_t *bp = db->db_blkptr; 2965 objset_t *os = db->db_objset; 2966 dmu_tx_t *tx = os->os_synctx; 2967 dbuf_dirty_record_t **drp, *dr; 2968 2969 ASSERT0(zio->io_error); 2970 ASSERT(db->db_blkptr == bp); 2971 2972 /* 2973 * For nopwrites and rewrites we ensure that the bp matches our 2974 * original and bypass all the accounting. 2975 */ 2976 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 2977 ASSERT(BP_EQUAL(bp, bp_orig)); 2978 } else { 2979 dsl_dataset_t *ds = os->os_dsl_dataset; 2980 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 2981 dsl_dataset_block_born(ds, bp, tx); 2982 } 2983 2984 mutex_enter(&db->db_mtx); 2985 2986 DBUF_VERIFY(db); 2987 2988 drp = &db->db_last_dirty; 2989 while ((dr = *drp) != db->db_data_pending) 2990 drp = &dr->dr_next; 2991 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2992 ASSERT(dr->dr_dbuf == db); 2993 ASSERT(dr->dr_next == NULL); 2994 *drp = dr->dr_next; 2995 2996 #ifdef ZFS_DEBUG 2997 if (db->db_blkid == DMU_SPILL_BLKID) { 2998 dnode_t *dn; 2999 3000 DB_DNODE_ENTER(db); 3001 dn = DB_DNODE(db); 3002 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3003 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 3004 db->db_blkptr == &dn->dn_phys->dn_spill); 3005 DB_DNODE_EXIT(db); 3006 } 3007 #endif 3008 3009 if (db->db_level == 0) { 3010 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3011 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 3012 if (db->db_state != DB_NOFILL) { 3013 if (dr->dt.dl.dr_data != db->db_buf) 3014 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, 3015 db)); 3016 else if (!arc_released(db->db_buf)) 3017 arc_set_callback(db->db_buf, dbuf_do_evict, db); 3018 } 3019 } else { 3020 dnode_t *dn; 3021 3022 DB_DNODE_ENTER(db); 3023 dn = DB_DNODE(db); 3024 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3025 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 3026 if (!BP_IS_HOLE(db->db_blkptr)) { 3027 int epbs = 3028 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3029 ASSERT3U(db->db_blkid, <=, 3030 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 3031 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 3032 db->db.db_size); 3033 if (!arc_released(db->db_buf)) 3034 arc_set_callback(db->db_buf, dbuf_do_evict, db); 3035 } 3036 DB_DNODE_EXIT(db); 3037 mutex_destroy(&dr->dt.di.dr_mtx); 3038 list_destroy(&dr->dt.di.dr_children); 3039 } 3040 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3041 3042 cv_broadcast(&db->db_changed); 3043 ASSERT(db->db_dirtycnt > 0); 3044 db->db_dirtycnt -= 1; 3045 db->db_data_pending = NULL; 3046 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); 3047 } 3048 3049 static void 3050 dbuf_write_nofill_ready(zio_t *zio) 3051 { 3052 dbuf_write_ready(zio, NULL, zio->io_private); 3053 } 3054 3055 static void 3056 dbuf_write_nofill_done(zio_t *zio) 3057 { 3058 dbuf_write_done(zio, NULL, zio->io_private); 3059 } 3060 3061 static void 3062 dbuf_write_override_ready(zio_t *zio) 3063 { 3064 dbuf_dirty_record_t *dr = zio->io_private; 3065 dmu_buf_impl_t *db = dr->dr_dbuf; 3066 3067 dbuf_write_ready(zio, NULL, db); 3068 } 3069 3070 static void 3071 dbuf_write_override_done(zio_t *zio) 3072 { 3073 dbuf_dirty_record_t *dr = zio->io_private; 3074 dmu_buf_impl_t *db = dr->dr_dbuf; 3075 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 3076 3077 mutex_enter(&db->db_mtx); 3078 if (!BP_EQUAL(zio->io_bp, obp)) { 3079 if (!BP_IS_HOLE(obp)) 3080 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 3081 arc_release(dr->dt.dl.dr_data, db); 3082 } 3083 mutex_exit(&db->db_mtx); 3084 3085 dbuf_write_done(zio, NULL, db); 3086 } 3087 3088 /* Issue I/O to commit a dirty buffer to disk. */ 3089 static void 3090 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 3091 { 3092 dmu_buf_impl_t *db = dr->dr_dbuf; 3093 dnode_t *dn; 3094 objset_t *os; 3095 dmu_buf_impl_t *parent = db->db_parent; 3096 uint64_t txg = tx->tx_txg; 3097 zbookmark_phys_t zb; 3098 zio_prop_t zp; 3099 zio_t *zio; 3100 int wp_flag = 0; 3101 3102 DB_DNODE_ENTER(db); 3103 dn = DB_DNODE(db); 3104 os = dn->dn_objset; 3105 3106 if (db->db_state != DB_NOFILL) { 3107 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 3108 /* 3109 * Private object buffers are released here rather 3110 * than in dbuf_dirty() since they are only modified 3111 * in the syncing context and we don't want the 3112 * overhead of making multiple copies of the data. 3113 */ 3114 if (BP_IS_HOLE(db->db_blkptr)) { 3115 arc_buf_thaw(data); 3116 } else { 3117 dbuf_release_bp(db); 3118 } 3119 } 3120 } 3121 3122 if (parent != dn->dn_dbuf) { 3123 /* Our parent is an indirect block. */ 3124 /* We have a dirty parent that has been scheduled for write. */ 3125 ASSERT(parent && parent->db_data_pending); 3126 /* Our parent's buffer is one level closer to the dnode. */ 3127 ASSERT(db->db_level == parent->db_level-1); 3128 /* 3129 * We're about to modify our parent's db_data by modifying 3130 * our block pointer, so the parent must be released. 3131 */ 3132 ASSERT(arc_released(parent->db_buf)); 3133 zio = parent->db_data_pending->dr_zio; 3134 } else { 3135 /* Our parent is the dnode itself. */ 3136 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 3137 db->db_blkid != DMU_SPILL_BLKID) || 3138 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 3139 if (db->db_blkid != DMU_SPILL_BLKID) 3140 ASSERT3P(db->db_blkptr, ==, 3141 &dn->dn_phys->dn_blkptr[db->db_blkid]); 3142 zio = dn->dn_zio; 3143 } 3144 3145 ASSERT(db->db_level == 0 || data == db->db_buf); 3146 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 3147 ASSERT(zio); 3148 3149 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 3150 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 3151 db->db.db_object, db->db_level, db->db_blkid); 3152 3153 if (db->db_blkid == DMU_SPILL_BLKID) 3154 wp_flag = WP_SPILL; 3155 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 3156 3157 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 3158 DB_DNODE_EXIT(db); 3159 3160 if (db->db_level == 0 && 3161 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 3162 /* 3163 * The BP for this block has been provided by open context 3164 * (by dmu_sync() or dmu_buf_write_embedded()). 3165 */ 3166 void *contents = (data != NULL) ? data->b_data : NULL; 3167 3168 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3169 db->db_blkptr, contents, db->db.db_size, &zp, 3170 dbuf_write_override_ready, NULL, dbuf_write_override_done, 3171 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3172 mutex_enter(&db->db_mtx); 3173 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 3174 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 3175 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 3176 mutex_exit(&db->db_mtx); 3177 } else if (db->db_state == DB_NOFILL) { 3178 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 3179 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 3180 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3181 db->db_blkptr, NULL, db->db.db_size, &zp, 3182 dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db, 3183 ZIO_PRIORITY_ASYNC_WRITE, 3184 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 3185 } else { 3186 ASSERT(arc_released(data)); 3187 dr->dr_zio = arc_write(zio, os->os_spa, txg, 3188 db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db), 3189 DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready, 3190 dbuf_write_physdone, dbuf_write_done, db, 3191 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3192 } 3193 } 3194