xref: /titanic_50/usr/src/uts/common/fs/zfs/arc.c (revision f52228b83292315dabb975359cdcf9db662845b2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 /*
30  * DVA-based Adjustable Replacement Cache
31  *
32  * While much of the theory of operation used here is
33  * based on the self-tuning, low overhead replacement cache
34  * presented by Megiddo and Modha at FAST 2003, there are some
35  * significant differences:
36  *
37  * 1. The Megiddo and Modha model assumes any page is evictable.
38  * Pages in its cache cannot be "locked" into memory.  This makes
39  * the eviction algorithm simple: evict the last page in the list.
40  * This also make the performance characteristics easy to reason
41  * about.  Our cache is not so simple.  At any given moment, some
42  * subset of the blocks in the cache are un-evictable because we
43  * have handed out a reference to them.  Blocks are only evictable
44  * when there are no external references active.  This makes
45  * eviction far more problematic:  we choose to evict the evictable
46  * blocks that are the "lowest" in the list.
47  *
48  * There are times when it is not possible to evict the requested
49  * space.  In these circumstances we are unable to adjust the cache
50  * size.  To prevent the cache growing unbounded at these times we
51  * implement a "cache throttle" that slows the flow of new data
52  * into the cache until we can make space available.
53  *
54  * 2. The Megiddo and Modha model assumes a fixed cache size.
55  * Pages are evicted when the cache is full and there is a cache
56  * miss.  Our model has a variable sized cache.  It grows with
57  * high use, but also tries to react to memory pressure from the
58  * operating system: decreasing its size when system memory is
59  * tight.
60  *
61  * 3. The Megiddo and Modha model assumes a fixed page size. All
62  * elements of the cache are therefore exactly the same size.  So
63  * when adjusting the cache size following a cache miss, its simply
64  * a matter of choosing a single page to evict.  In our model, we
65  * have variable sized cache blocks (rangeing from 512 bytes to
66  * 128K bytes).  We therefore choose a set of blocks to evict to make
67  * space for a cache miss that approximates as closely as possible
68  * the space used by the new block.
69  *
70  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71  * by N. Megiddo & D. Modha, FAST 2003
72  */
73 
74 /*
75  * The locking model:
76  *
77  * A new reference to a cache buffer can be obtained in two
78  * ways: 1) via a hash table lookup using the DVA as a key,
79  * or 2) via one of the ARC lists.  The arc_read() interface
80  * uses method 1, while the internal arc algorithms for
81  * adjusting the cache use method 2.  We therefore provide two
82  * types of locks: 1) the hash table lock array, and 2) the
83  * arc list locks.
84  *
85  * Buffers do not have their own mutexes, rather they rely on the
86  * hash table mutexes for the bulk of their protection (i.e. most
87  * fields in the arc_buf_hdr_t are protected by these mutexes).
88  *
89  * buf_hash_find() returns the appropriate mutex (held) when it
90  * locates the requested buffer in the hash table.  It returns
91  * NULL for the mutex if the buffer was not in the table.
92  *
93  * buf_hash_remove() expects the appropriate hash mutex to be
94  * already held before it is invoked.
95  *
96  * Each arc state also has a mutex which is used to protect the
97  * buffer list associated with the state.  When attempting to
98  * obtain a hash table lock while holding an arc list lock you
99  * must use: mutex_tryenter() to avoid deadlock.  Also note that
100  * the active state mutex must be held before the ghost state mutex.
101  *
102  * Arc buffers may have an associated eviction callback function.
103  * This function will be invoked prior to removing the buffer (e.g.
104  * in arc_do_user_evicts()).  Note however that the data associated
105  * with the buffer may be evicted prior to the callback.  The callback
106  * must be made with *no locks held* (to prevent deadlock).  Additionally,
107  * the users of callbacks must ensure that their private data is
108  * protected from simultaneous callbacks from arc_clear_callback()
109  * and arc_do_user_evicts().
110  *
111  * Note that the majority of the performance stats are manipulated
112  * with atomic operations.
113  *
114  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
115  *
116  *	- L2ARC buflist creation
117  *	- L2ARC buflist eviction
118  *	- L2ARC write completion, which walks L2ARC buflists
119  *	- ARC header destruction, as it removes from L2ARC buflists
120  *	- ARC header release, as it removes from L2ARC buflists
121  */
122 
123 #include <sys/spa.h>
124 #include <sys/zio.h>
125 #include <sys/zio_compress.h>
126 #include <sys/zfs_context.h>
127 #include <sys/arc.h>
128 #include <sys/refcount.h>
129 #include <sys/vdev.h>
130 #include <sys/vdev_impl.h>
131 #include <sys/dsl_pool.h>
132 #ifdef _KERNEL
133 #include <sys/vmsystm.h>
134 #include <vm/anon.h>
135 #include <sys/fs/swapnode.h>
136 #include <sys/dnlc.h>
137 #endif
138 #include <sys/callb.h>
139 #include <sys/kstat.h>
140 #include <zfs_fletcher.h>
141 
142 #ifndef _KERNEL
143 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
144 boolean_t arc_watch = B_FALSE;
145 int arc_procfd;
146 #endif
147 
148 static kmutex_t		arc_reclaim_thr_lock;
149 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
150 static uint8_t		arc_thread_exit;
151 
152 #define	ARC_REDUCE_DNLC_PERCENT	3
153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
154 
155 typedef enum arc_reclaim_strategy {
156 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
157 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
158 } arc_reclaim_strategy_t;
159 
160 /*
161  * The number of iterations through arc_evict_*() before we
162  * drop & reacquire the lock.
163  */
164 int arc_evict_iterations = 100;
165 
166 /* number of seconds before growing cache again */
167 static int		arc_grow_retry = 60;
168 
169 /* shift of arc_c for calculating both min and max arc_p */
170 static int		arc_p_min_shift = 4;
171 
172 /* log2(fraction of arc to reclaim) */
173 static int		arc_shrink_shift = 5;
174 
175 /*
176  * minimum lifespan of a prefetch block in clock ticks
177  * (initialized in arc_init())
178  */
179 static int		arc_min_prefetch_lifespan;
180 
181 /*
182  * If this percent of memory is free, don't throttle.
183  */
184 int arc_lotsfree_percent = 10;
185 
186 static int arc_dead;
187 
188 /*
189  * The arc has filled available memory and has now warmed up.
190  */
191 static boolean_t arc_warm;
192 
193 /*
194  * These tunables are for performance analysis.
195  */
196 uint64_t zfs_arc_max;
197 uint64_t zfs_arc_min;
198 uint64_t zfs_arc_meta_limit = 0;
199 int zfs_arc_grow_retry = 0;
200 int zfs_arc_shrink_shift = 0;
201 int zfs_arc_p_min_shift = 0;
202 int zfs_disable_dup_eviction = 0;
203 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
204 
205 /*
206  * Note that buffers can be in one of 6 states:
207  *	ARC_anon	- anonymous (discussed below)
208  *	ARC_mru		- recently used, currently cached
209  *	ARC_mru_ghost	- recentely used, no longer in cache
210  *	ARC_mfu		- frequently used, currently cached
211  *	ARC_mfu_ghost	- frequently used, no longer in cache
212  *	ARC_l2c_only	- exists in L2ARC but not other states
213  * When there are no active references to the buffer, they are
214  * are linked onto a list in one of these arc states.  These are
215  * the only buffers that can be evicted or deleted.  Within each
216  * state there are multiple lists, one for meta-data and one for
217  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
218  * etc.) is tracked separately so that it can be managed more
219  * explicitly: favored over data, limited explicitly.
220  *
221  * Anonymous buffers are buffers that are not associated with
222  * a DVA.  These are buffers that hold dirty block copies
223  * before they are written to stable storage.  By definition,
224  * they are "ref'd" and are considered part of arc_mru
225  * that cannot be freed.  Generally, they will aquire a DVA
226  * as they are written and migrate onto the arc_mru list.
227  *
228  * The ARC_l2c_only state is for buffers that are in the second
229  * level ARC but no longer in any of the ARC_m* lists.  The second
230  * level ARC itself may also contain buffers that are in any of
231  * the ARC_m* states - meaning that a buffer can exist in two
232  * places.  The reason for the ARC_l2c_only state is to keep the
233  * buffer header in the hash table, so that reads that hit the
234  * second level ARC benefit from these fast lookups.
235  */
236 
237 typedef struct arc_state {
238 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
239 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
240 	uint64_t arcs_size;	/* total amount of data in this state */
241 	kmutex_t arcs_mtx;
242 } arc_state_t;
243 
244 /* The 6 states: */
245 static arc_state_t ARC_anon;
246 static arc_state_t ARC_mru;
247 static arc_state_t ARC_mru_ghost;
248 static arc_state_t ARC_mfu;
249 static arc_state_t ARC_mfu_ghost;
250 static arc_state_t ARC_l2c_only;
251 
252 typedef struct arc_stats {
253 	kstat_named_t arcstat_hits;
254 	kstat_named_t arcstat_misses;
255 	kstat_named_t arcstat_demand_data_hits;
256 	kstat_named_t arcstat_demand_data_misses;
257 	kstat_named_t arcstat_demand_metadata_hits;
258 	kstat_named_t arcstat_demand_metadata_misses;
259 	kstat_named_t arcstat_prefetch_data_hits;
260 	kstat_named_t arcstat_prefetch_data_misses;
261 	kstat_named_t arcstat_prefetch_metadata_hits;
262 	kstat_named_t arcstat_prefetch_metadata_misses;
263 	kstat_named_t arcstat_mru_hits;
264 	kstat_named_t arcstat_mru_ghost_hits;
265 	kstat_named_t arcstat_mfu_hits;
266 	kstat_named_t arcstat_mfu_ghost_hits;
267 	kstat_named_t arcstat_deleted;
268 	kstat_named_t arcstat_recycle_miss;
269 	/*
270 	 * Number of buffers that could not be evicted because the hash lock
271 	 * was held by another thread.  The lock may not necessarily be held
272 	 * by something using the same buffer, since hash locks are shared
273 	 * by multiple buffers.
274 	 */
275 	kstat_named_t arcstat_mutex_miss;
276 	/*
277 	 * Number of buffers skipped because they have I/O in progress, are
278 	 * indrect prefetch buffers that have not lived long enough, or are
279 	 * not from the spa we're trying to evict from.
280 	 */
281 	kstat_named_t arcstat_evict_skip;
282 	kstat_named_t arcstat_evict_l2_cached;
283 	kstat_named_t arcstat_evict_l2_eligible;
284 	kstat_named_t arcstat_evict_l2_ineligible;
285 	kstat_named_t arcstat_hash_elements;
286 	kstat_named_t arcstat_hash_elements_max;
287 	kstat_named_t arcstat_hash_collisions;
288 	kstat_named_t arcstat_hash_chains;
289 	kstat_named_t arcstat_hash_chain_max;
290 	kstat_named_t arcstat_p;
291 	kstat_named_t arcstat_c;
292 	kstat_named_t arcstat_c_min;
293 	kstat_named_t arcstat_c_max;
294 	kstat_named_t arcstat_size;
295 	kstat_named_t arcstat_hdr_size;
296 	kstat_named_t arcstat_data_size;
297 	kstat_named_t arcstat_other_size;
298 	kstat_named_t arcstat_l2_hits;
299 	kstat_named_t arcstat_l2_misses;
300 	kstat_named_t arcstat_l2_feeds;
301 	kstat_named_t arcstat_l2_rw_clash;
302 	kstat_named_t arcstat_l2_read_bytes;
303 	kstat_named_t arcstat_l2_write_bytes;
304 	kstat_named_t arcstat_l2_writes_sent;
305 	kstat_named_t arcstat_l2_writes_done;
306 	kstat_named_t arcstat_l2_writes_error;
307 	kstat_named_t arcstat_l2_writes_hdr_miss;
308 	kstat_named_t arcstat_l2_evict_lock_retry;
309 	kstat_named_t arcstat_l2_evict_reading;
310 	kstat_named_t arcstat_l2_free_on_write;
311 	kstat_named_t arcstat_l2_abort_lowmem;
312 	kstat_named_t arcstat_l2_cksum_bad;
313 	kstat_named_t arcstat_l2_io_error;
314 	kstat_named_t arcstat_l2_size;
315 	kstat_named_t arcstat_l2_asize;
316 	kstat_named_t arcstat_l2_hdr_size;
317 	kstat_named_t arcstat_l2_compress_successes;
318 	kstat_named_t arcstat_l2_compress_zeros;
319 	kstat_named_t arcstat_l2_compress_failures;
320 	kstat_named_t arcstat_memory_throttle_count;
321 	kstat_named_t arcstat_duplicate_buffers;
322 	kstat_named_t arcstat_duplicate_buffers_size;
323 	kstat_named_t arcstat_duplicate_reads;
324 	kstat_named_t arcstat_meta_used;
325 	kstat_named_t arcstat_meta_limit;
326 	kstat_named_t arcstat_meta_max;
327 } arc_stats_t;
328 
329 static arc_stats_t arc_stats = {
330 	{ "hits",			KSTAT_DATA_UINT64 },
331 	{ "misses",			KSTAT_DATA_UINT64 },
332 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
333 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
334 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
335 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
336 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
337 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
338 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
339 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
340 	{ "mru_hits",			KSTAT_DATA_UINT64 },
341 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
342 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
343 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
344 	{ "deleted",			KSTAT_DATA_UINT64 },
345 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
346 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
347 	{ "evict_skip",			KSTAT_DATA_UINT64 },
348 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
349 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
350 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
351 	{ "hash_elements",		KSTAT_DATA_UINT64 },
352 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
353 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
354 	{ "hash_chains",		KSTAT_DATA_UINT64 },
355 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
356 	{ "p",				KSTAT_DATA_UINT64 },
357 	{ "c",				KSTAT_DATA_UINT64 },
358 	{ "c_min",			KSTAT_DATA_UINT64 },
359 	{ "c_max",			KSTAT_DATA_UINT64 },
360 	{ "size",			KSTAT_DATA_UINT64 },
361 	{ "hdr_size",			KSTAT_DATA_UINT64 },
362 	{ "data_size",			KSTAT_DATA_UINT64 },
363 	{ "other_size",			KSTAT_DATA_UINT64 },
364 	{ "l2_hits",			KSTAT_DATA_UINT64 },
365 	{ "l2_misses",			KSTAT_DATA_UINT64 },
366 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
367 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
368 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
369 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
370 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
371 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
372 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
373 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
374 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
375 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
376 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
377 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
378 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
379 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
380 	{ "l2_size",			KSTAT_DATA_UINT64 },
381 	{ "l2_asize",			KSTAT_DATA_UINT64 },
382 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
383 	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
384 	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
385 	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
386 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
387 	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
388 	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
389 	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
390 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
391 	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
392 	{ "arc_meta_max",		KSTAT_DATA_UINT64 }
393 };
394 
395 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
396 
397 #define	ARCSTAT_INCR(stat, val) \
398 	atomic_add_64(&arc_stats.stat.value.ui64, (val))
399 
400 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
401 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
402 
403 #define	ARCSTAT_MAX(stat, val) {					\
404 	uint64_t m;							\
405 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
406 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
407 		continue;						\
408 }
409 
410 #define	ARCSTAT_MAXSTAT(stat) \
411 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
412 
413 /*
414  * We define a macro to allow ARC hits/misses to be easily broken down by
415  * two separate conditions, giving a total of four different subtypes for
416  * each of hits and misses (so eight statistics total).
417  */
418 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
419 	if (cond1) {							\
420 		if (cond2) {						\
421 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
422 		} else {						\
423 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
424 		}							\
425 	} else {							\
426 		if (cond2) {						\
427 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
428 		} else {						\
429 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
430 		}							\
431 	}
432 
433 kstat_t			*arc_ksp;
434 static arc_state_t	*arc_anon;
435 static arc_state_t	*arc_mru;
436 static arc_state_t	*arc_mru_ghost;
437 static arc_state_t	*arc_mfu;
438 static arc_state_t	*arc_mfu_ghost;
439 static arc_state_t	*arc_l2c_only;
440 
441 /*
442  * There are several ARC variables that are critical to export as kstats --
443  * but we don't want to have to grovel around in the kstat whenever we wish to
444  * manipulate them.  For these variables, we therefore define them to be in
445  * terms of the statistic variable.  This assures that we are not introducing
446  * the possibility of inconsistency by having shadow copies of the variables,
447  * while still allowing the code to be readable.
448  */
449 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
450 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
451 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
452 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
453 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
454 #define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
455 #define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
456 #define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
457 
458 #define	L2ARC_IS_VALID_COMPRESS(_c_) \
459 	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
460 
461 static int		arc_no_grow;	/* Don't try to grow cache size */
462 static uint64_t		arc_tempreserve;
463 static uint64_t		arc_loaned_bytes;
464 
465 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
466 
467 typedef struct arc_callback arc_callback_t;
468 
469 struct arc_callback {
470 	void			*acb_private;
471 	arc_done_func_t		*acb_done;
472 	arc_buf_t		*acb_buf;
473 	zio_t			*acb_zio_dummy;
474 	arc_callback_t		*acb_next;
475 };
476 
477 typedef struct arc_write_callback arc_write_callback_t;
478 
479 struct arc_write_callback {
480 	void		*awcb_private;
481 	arc_done_func_t	*awcb_ready;
482 	arc_done_func_t	*awcb_physdone;
483 	arc_done_func_t	*awcb_done;
484 	arc_buf_t	*awcb_buf;
485 };
486 
487 struct arc_buf_hdr {
488 	/* protected by hash lock */
489 	dva_t			b_dva;
490 	uint64_t		b_birth;
491 	uint64_t		b_cksum0;
492 
493 	kmutex_t		b_freeze_lock;
494 	zio_cksum_t		*b_freeze_cksum;
495 	void			*b_thawed;
496 
497 	arc_buf_hdr_t		*b_hash_next;
498 	arc_buf_t		*b_buf;
499 	uint32_t		b_flags;
500 	uint32_t		b_datacnt;
501 
502 	arc_callback_t		*b_acb;
503 	kcondvar_t		b_cv;
504 
505 	/* immutable */
506 	arc_buf_contents_t	b_type;
507 	uint64_t		b_size;
508 	uint64_t		b_spa;
509 
510 	/* protected by arc state mutex */
511 	arc_state_t		*b_state;
512 	list_node_t		b_arc_node;
513 
514 	/* updated atomically */
515 	clock_t			b_arc_access;
516 
517 	/* self protecting */
518 	refcount_t		b_refcnt;
519 
520 	l2arc_buf_hdr_t		*b_l2hdr;
521 	list_node_t		b_l2node;
522 };
523 
524 static arc_buf_t *arc_eviction_list;
525 static kmutex_t arc_eviction_mtx;
526 static arc_buf_hdr_t arc_eviction_hdr;
527 static void arc_get_data_buf(arc_buf_t *buf);
528 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
529 static int arc_evict_needed(arc_buf_contents_t type);
530 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
531 static void arc_buf_watch(arc_buf_t *buf);
532 
533 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
534 
535 #define	GHOST_STATE(state)	\
536 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
537 	(state) == arc_l2c_only)
538 
539 /*
540  * Private ARC flags.  These flags are private ARC only flags that will show up
541  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
542  * be passed in as arc_flags in things like arc_read.  However, these flags
543  * should never be passed and should only be set by ARC code.  When adding new
544  * public flags, make sure not to smash the private ones.
545  */
546 
547 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
548 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
549 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
550 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
551 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
552 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
553 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
554 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
555 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
556 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
557 
558 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
559 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
560 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
561 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
562 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
563 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
564 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
565 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
566 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
567 				    (hdr)->b_l2hdr != NULL)
568 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
569 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
570 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
571 
572 /*
573  * Other sizes
574  */
575 
576 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
577 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
578 
579 /*
580  * Hash table routines
581  */
582 
583 #define	HT_LOCK_PAD	64
584 
585 struct ht_lock {
586 	kmutex_t	ht_lock;
587 #ifdef _KERNEL
588 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
589 #endif
590 };
591 
592 #define	BUF_LOCKS 256
593 typedef struct buf_hash_table {
594 	uint64_t ht_mask;
595 	arc_buf_hdr_t **ht_table;
596 	struct ht_lock ht_locks[BUF_LOCKS];
597 } buf_hash_table_t;
598 
599 static buf_hash_table_t buf_hash_table;
600 
601 #define	BUF_HASH_INDEX(spa, dva, birth) \
602 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
603 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
604 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
605 #define	HDR_LOCK(hdr) \
606 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
607 
608 uint64_t zfs_crc64_table[256];
609 
610 /*
611  * Level 2 ARC
612  */
613 
614 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
615 #define	L2ARC_HEADROOM		2			/* num of writes */
616 /*
617  * If we discover during ARC scan any buffers to be compressed, we boost
618  * our headroom for the next scanning cycle by this percentage multiple.
619  */
620 #define	L2ARC_HEADROOM_BOOST	200
621 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
622 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
623 
624 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
625 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
626 
627 /* L2ARC Performance Tunables */
628 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
629 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
630 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
631 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
632 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
633 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
634 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
635 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
636 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
637 
638 /*
639  * L2ARC Internals
640  */
641 typedef struct l2arc_dev {
642 	vdev_t			*l2ad_vdev;	/* vdev */
643 	spa_t			*l2ad_spa;	/* spa */
644 	uint64_t		l2ad_hand;	/* next write location */
645 	uint64_t		l2ad_start;	/* first addr on device */
646 	uint64_t		l2ad_end;	/* last addr on device */
647 	uint64_t		l2ad_evict;	/* last addr eviction reached */
648 	boolean_t		l2ad_first;	/* first sweep through */
649 	boolean_t		l2ad_writing;	/* currently writing */
650 	list_t			*l2ad_buflist;	/* buffer list */
651 	list_node_t		l2ad_node;	/* device list node */
652 } l2arc_dev_t;
653 
654 static list_t L2ARC_dev_list;			/* device list */
655 static list_t *l2arc_dev_list;			/* device list pointer */
656 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
657 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
658 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
659 static list_t L2ARC_free_on_write;		/* free after write buf list */
660 static list_t *l2arc_free_on_write;		/* free after write list ptr */
661 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
662 static uint64_t l2arc_ndev;			/* number of devices */
663 
664 typedef struct l2arc_read_callback {
665 	arc_buf_t		*l2rcb_buf;		/* read buffer */
666 	spa_t			*l2rcb_spa;		/* spa */
667 	blkptr_t		l2rcb_bp;		/* original blkptr */
668 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
669 	int			l2rcb_flags;		/* original flags */
670 	enum zio_compress	l2rcb_compress;		/* applied compress */
671 } l2arc_read_callback_t;
672 
673 typedef struct l2arc_write_callback {
674 	l2arc_dev_t	*l2wcb_dev;		/* device info */
675 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
676 } l2arc_write_callback_t;
677 
678 struct l2arc_buf_hdr {
679 	/* protected by arc_buf_hdr  mutex */
680 	l2arc_dev_t		*b_dev;		/* L2ARC device */
681 	uint64_t		b_daddr;	/* disk address, offset byte */
682 	/* compression applied to buffer data */
683 	enum zio_compress	b_compress;
684 	/* real alloc'd buffer size depending on b_compress applied */
685 	int			b_asize;
686 	/* temporary buffer holder for in-flight compressed data */
687 	void			*b_tmp_cdata;
688 };
689 
690 typedef struct l2arc_data_free {
691 	/* protected by l2arc_free_on_write_mtx */
692 	void		*l2df_data;
693 	size_t		l2df_size;
694 	void		(*l2df_func)(void *, size_t);
695 	list_node_t	l2df_list_node;
696 } l2arc_data_free_t;
697 
698 static kmutex_t l2arc_feed_thr_lock;
699 static kcondvar_t l2arc_feed_thr_cv;
700 static uint8_t l2arc_thread_exit;
701 
702 static void l2arc_read_done(zio_t *zio);
703 static void l2arc_hdr_stat_add(void);
704 static void l2arc_hdr_stat_remove(void);
705 
706 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
707 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
708     enum zio_compress c);
709 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
710 
711 static uint64_t
712 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
713 {
714 	uint8_t *vdva = (uint8_t *)dva;
715 	uint64_t crc = -1ULL;
716 	int i;
717 
718 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
719 
720 	for (i = 0; i < sizeof (dva_t); i++)
721 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
722 
723 	crc ^= (spa>>8) ^ birth;
724 
725 	return (crc);
726 }
727 
728 #define	BUF_EMPTY(buf)						\
729 	((buf)->b_dva.dva_word[0] == 0 &&			\
730 	(buf)->b_dva.dva_word[1] == 0 &&			\
731 	(buf)->b_cksum0 == 0)
732 
733 #define	BUF_EQUAL(spa, dva, birth, buf)				\
734 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
735 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
736 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
737 
738 static void
739 buf_discard_identity(arc_buf_hdr_t *hdr)
740 {
741 	hdr->b_dva.dva_word[0] = 0;
742 	hdr->b_dva.dva_word[1] = 0;
743 	hdr->b_birth = 0;
744 	hdr->b_cksum0 = 0;
745 }
746 
747 static arc_buf_hdr_t *
748 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
749 {
750 	const dva_t *dva = BP_IDENTITY(bp);
751 	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
752 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
753 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
754 	arc_buf_hdr_t *buf;
755 
756 	mutex_enter(hash_lock);
757 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
758 	    buf = buf->b_hash_next) {
759 		if (BUF_EQUAL(spa, dva, birth, buf)) {
760 			*lockp = hash_lock;
761 			return (buf);
762 		}
763 	}
764 	mutex_exit(hash_lock);
765 	*lockp = NULL;
766 	return (NULL);
767 }
768 
769 /*
770  * Insert an entry into the hash table.  If there is already an element
771  * equal to elem in the hash table, then the already existing element
772  * will be returned and the new element will not be inserted.
773  * Otherwise returns NULL.
774  */
775 static arc_buf_hdr_t *
776 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
777 {
778 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
779 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
780 	arc_buf_hdr_t *fbuf;
781 	uint32_t i;
782 
783 	ASSERT(!DVA_IS_EMPTY(&buf->b_dva));
784 	ASSERT(buf->b_birth != 0);
785 	ASSERT(!HDR_IN_HASH_TABLE(buf));
786 	*lockp = hash_lock;
787 	mutex_enter(hash_lock);
788 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
789 	    fbuf = fbuf->b_hash_next, i++) {
790 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
791 			return (fbuf);
792 	}
793 
794 	buf->b_hash_next = buf_hash_table.ht_table[idx];
795 	buf_hash_table.ht_table[idx] = buf;
796 	buf->b_flags |= ARC_IN_HASH_TABLE;
797 
798 	/* collect some hash table performance data */
799 	if (i > 0) {
800 		ARCSTAT_BUMP(arcstat_hash_collisions);
801 		if (i == 1)
802 			ARCSTAT_BUMP(arcstat_hash_chains);
803 
804 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
805 	}
806 
807 	ARCSTAT_BUMP(arcstat_hash_elements);
808 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
809 
810 	return (NULL);
811 }
812 
813 static void
814 buf_hash_remove(arc_buf_hdr_t *buf)
815 {
816 	arc_buf_hdr_t *fbuf, **bufp;
817 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
818 
819 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
820 	ASSERT(HDR_IN_HASH_TABLE(buf));
821 
822 	bufp = &buf_hash_table.ht_table[idx];
823 	while ((fbuf = *bufp) != buf) {
824 		ASSERT(fbuf != NULL);
825 		bufp = &fbuf->b_hash_next;
826 	}
827 	*bufp = buf->b_hash_next;
828 	buf->b_hash_next = NULL;
829 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
830 
831 	/* collect some hash table performance data */
832 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
833 
834 	if (buf_hash_table.ht_table[idx] &&
835 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
836 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
837 }
838 
839 /*
840  * Global data structures and functions for the buf kmem cache.
841  */
842 static kmem_cache_t *hdr_cache;
843 static kmem_cache_t *buf_cache;
844 
845 static void
846 buf_fini(void)
847 {
848 	int i;
849 
850 	kmem_free(buf_hash_table.ht_table,
851 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
852 	for (i = 0; i < BUF_LOCKS; i++)
853 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
854 	kmem_cache_destroy(hdr_cache);
855 	kmem_cache_destroy(buf_cache);
856 }
857 
858 /*
859  * Constructor callback - called when the cache is empty
860  * and a new buf is requested.
861  */
862 /* ARGSUSED */
863 static int
864 hdr_cons(void *vbuf, void *unused, int kmflag)
865 {
866 	arc_buf_hdr_t *buf = vbuf;
867 
868 	bzero(buf, sizeof (arc_buf_hdr_t));
869 	refcount_create(&buf->b_refcnt);
870 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
871 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
872 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
873 
874 	return (0);
875 }
876 
877 /* ARGSUSED */
878 static int
879 buf_cons(void *vbuf, void *unused, int kmflag)
880 {
881 	arc_buf_t *buf = vbuf;
882 
883 	bzero(buf, sizeof (arc_buf_t));
884 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
885 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
886 
887 	return (0);
888 }
889 
890 /*
891  * Destructor callback - called when a cached buf is
892  * no longer required.
893  */
894 /* ARGSUSED */
895 static void
896 hdr_dest(void *vbuf, void *unused)
897 {
898 	arc_buf_hdr_t *buf = vbuf;
899 
900 	ASSERT(BUF_EMPTY(buf));
901 	refcount_destroy(&buf->b_refcnt);
902 	cv_destroy(&buf->b_cv);
903 	mutex_destroy(&buf->b_freeze_lock);
904 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
905 }
906 
907 /* ARGSUSED */
908 static void
909 buf_dest(void *vbuf, void *unused)
910 {
911 	arc_buf_t *buf = vbuf;
912 
913 	mutex_destroy(&buf->b_evict_lock);
914 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
915 }
916 
917 /*
918  * Reclaim callback -- invoked when memory is low.
919  */
920 /* ARGSUSED */
921 static void
922 hdr_recl(void *unused)
923 {
924 	dprintf("hdr_recl called\n");
925 	/*
926 	 * umem calls the reclaim func when we destroy the buf cache,
927 	 * which is after we do arc_fini().
928 	 */
929 	if (!arc_dead)
930 		cv_signal(&arc_reclaim_thr_cv);
931 }
932 
933 static void
934 buf_init(void)
935 {
936 	uint64_t *ct;
937 	uint64_t hsize = 1ULL << 12;
938 	int i, j;
939 
940 	/*
941 	 * The hash table is big enough to fill all of physical memory
942 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
943 	 * By default, the table will take up
944 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
945 	 */
946 	while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
947 		hsize <<= 1;
948 retry:
949 	buf_hash_table.ht_mask = hsize - 1;
950 	buf_hash_table.ht_table =
951 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
952 	if (buf_hash_table.ht_table == NULL) {
953 		ASSERT(hsize > (1ULL << 8));
954 		hsize >>= 1;
955 		goto retry;
956 	}
957 
958 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
959 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
960 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
961 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
962 
963 	for (i = 0; i < 256; i++)
964 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
965 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
966 
967 	for (i = 0; i < BUF_LOCKS; i++) {
968 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
969 		    NULL, MUTEX_DEFAULT, NULL);
970 	}
971 }
972 
973 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
974 
975 static void
976 arc_cksum_verify(arc_buf_t *buf)
977 {
978 	zio_cksum_t zc;
979 
980 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
981 		return;
982 
983 	mutex_enter(&buf->b_hdr->b_freeze_lock);
984 	if (buf->b_hdr->b_freeze_cksum == NULL ||
985 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
986 		mutex_exit(&buf->b_hdr->b_freeze_lock);
987 		return;
988 	}
989 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
990 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
991 		panic("buffer modified while frozen!");
992 	mutex_exit(&buf->b_hdr->b_freeze_lock);
993 }
994 
995 static int
996 arc_cksum_equal(arc_buf_t *buf)
997 {
998 	zio_cksum_t zc;
999 	int equal;
1000 
1001 	mutex_enter(&buf->b_hdr->b_freeze_lock);
1002 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1003 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1004 	mutex_exit(&buf->b_hdr->b_freeze_lock);
1005 
1006 	return (equal);
1007 }
1008 
1009 static void
1010 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1011 {
1012 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1013 		return;
1014 
1015 	mutex_enter(&buf->b_hdr->b_freeze_lock);
1016 	if (buf->b_hdr->b_freeze_cksum != NULL) {
1017 		mutex_exit(&buf->b_hdr->b_freeze_lock);
1018 		return;
1019 	}
1020 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1021 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1022 	    buf->b_hdr->b_freeze_cksum);
1023 	mutex_exit(&buf->b_hdr->b_freeze_lock);
1024 	arc_buf_watch(buf);
1025 }
1026 
1027 #ifndef _KERNEL
1028 typedef struct procctl {
1029 	long cmd;
1030 	prwatch_t prwatch;
1031 } procctl_t;
1032 #endif
1033 
1034 /* ARGSUSED */
1035 static void
1036 arc_buf_unwatch(arc_buf_t *buf)
1037 {
1038 #ifndef _KERNEL
1039 	if (arc_watch) {
1040 		int result;
1041 		procctl_t ctl;
1042 		ctl.cmd = PCWATCH;
1043 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1044 		ctl.prwatch.pr_size = 0;
1045 		ctl.prwatch.pr_wflags = 0;
1046 		result = write(arc_procfd, &ctl, sizeof (ctl));
1047 		ASSERT3U(result, ==, sizeof (ctl));
1048 	}
1049 #endif
1050 }
1051 
1052 /* ARGSUSED */
1053 static void
1054 arc_buf_watch(arc_buf_t *buf)
1055 {
1056 #ifndef _KERNEL
1057 	if (arc_watch) {
1058 		int result;
1059 		procctl_t ctl;
1060 		ctl.cmd = PCWATCH;
1061 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1062 		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1063 		ctl.prwatch.pr_wflags = WA_WRITE;
1064 		result = write(arc_procfd, &ctl, sizeof (ctl));
1065 		ASSERT3U(result, ==, sizeof (ctl));
1066 	}
1067 #endif
1068 }
1069 
1070 void
1071 arc_buf_thaw(arc_buf_t *buf)
1072 {
1073 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1074 		if (buf->b_hdr->b_state != arc_anon)
1075 			panic("modifying non-anon buffer!");
1076 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1077 			panic("modifying buffer while i/o in progress!");
1078 		arc_cksum_verify(buf);
1079 	}
1080 
1081 	mutex_enter(&buf->b_hdr->b_freeze_lock);
1082 	if (buf->b_hdr->b_freeze_cksum != NULL) {
1083 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1084 		buf->b_hdr->b_freeze_cksum = NULL;
1085 	}
1086 
1087 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1088 		if (buf->b_hdr->b_thawed)
1089 			kmem_free(buf->b_hdr->b_thawed, 1);
1090 		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1091 	}
1092 
1093 	mutex_exit(&buf->b_hdr->b_freeze_lock);
1094 
1095 	arc_buf_unwatch(buf);
1096 }
1097 
1098 void
1099 arc_buf_freeze(arc_buf_t *buf)
1100 {
1101 	kmutex_t *hash_lock;
1102 
1103 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1104 		return;
1105 
1106 	hash_lock = HDR_LOCK(buf->b_hdr);
1107 	mutex_enter(hash_lock);
1108 
1109 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1110 	    buf->b_hdr->b_state == arc_anon);
1111 	arc_cksum_compute(buf, B_FALSE);
1112 	mutex_exit(hash_lock);
1113 
1114 }
1115 
1116 static void
1117 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1118 {
1119 	ASSERT(MUTEX_HELD(hash_lock));
1120 
1121 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1122 	    (ab->b_state != arc_anon)) {
1123 		uint64_t delta = ab->b_size * ab->b_datacnt;
1124 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
1125 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1126 
1127 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1128 		mutex_enter(&ab->b_state->arcs_mtx);
1129 		ASSERT(list_link_active(&ab->b_arc_node));
1130 		list_remove(list, ab);
1131 		if (GHOST_STATE(ab->b_state)) {
1132 			ASSERT0(ab->b_datacnt);
1133 			ASSERT3P(ab->b_buf, ==, NULL);
1134 			delta = ab->b_size;
1135 		}
1136 		ASSERT(delta > 0);
1137 		ASSERT3U(*size, >=, delta);
1138 		atomic_add_64(size, -delta);
1139 		mutex_exit(&ab->b_state->arcs_mtx);
1140 		/* remove the prefetch flag if we get a reference */
1141 		if (ab->b_flags & ARC_PREFETCH)
1142 			ab->b_flags &= ~ARC_PREFETCH;
1143 	}
1144 }
1145 
1146 static int
1147 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1148 {
1149 	int cnt;
1150 	arc_state_t *state = ab->b_state;
1151 
1152 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1153 	ASSERT(!GHOST_STATE(state));
1154 
1155 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1156 	    (state != arc_anon)) {
1157 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1158 
1159 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1160 		mutex_enter(&state->arcs_mtx);
1161 		ASSERT(!list_link_active(&ab->b_arc_node));
1162 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1163 		ASSERT(ab->b_datacnt > 0);
1164 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1165 		mutex_exit(&state->arcs_mtx);
1166 	}
1167 	return (cnt);
1168 }
1169 
1170 /*
1171  * Move the supplied buffer to the indicated state.  The mutex
1172  * for the buffer must be held by the caller.
1173  */
1174 static void
1175 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1176 {
1177 	arc_state_t *old_state = ab->b_state;
1178 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1179 	uint64_t from_delta, to_delta;
1180 
1181 	ASSERT(MUTEX_HELD(hash_lock));
1182 	ASSERT3P(new_state, !=, old_state);
1183 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1184 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1185 	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1186 
1187 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1188 
1189 	/*
1190 	 * If this buffer is evictable, transfer it from the
1191 	 * old state list to the new state list.
1192 	 */
1193 	if (refcnt == 0) {
1194 		if (old_state != arc_anon) {
1195 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1196 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1197 
1198 			if (use_mutex)
1199 				mutex_enter(&old_state->arcs_mtx);
1200 
1201 			ASSERT(list_link_active(&ab->b_arc_node));
1202 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1203 
1204 			/*
1205 			 * If prefetching out of the ghost cache,
1206 			 * we will have a non-zero datacnt.
1207 			 */
1208 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1209 				/* ghost elements have a ghost size */
1210 				ASSERT(ab->b_buf == NULL);
1211 				from_delta = ab->b_size;
1212 			}
1213 			ASSERT3U(*size, >=, from_delta);
1214 			atomic_add_64(size, -from_delta);
1215 
1216 			if (use_mutex)
1217 				mutex_exit(&old_state->arcs_mtx);
1218 		}
1219 		if (new_state != arc_anon) {
1220 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1221 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1222 
1223 			if (use_mutex)
1224 				mutex_enter(&new_state->arcs_mtx);
1225 
1226 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1227 
1228 			/* ghost elements have a ghost size */
1229 			if (GHOST_STATE(new_state)) {
1230 				ASSERT(ab->b_datacnt == 0);
1231 				ASSERT(ab->b_buf == NULL);
1232 				to_delta = ab->b_size;
1233 			}
1234 			atomic_add_64(size, to_delta);
1235 
1236 			if (use_mutex)
1237 				mutex_exit(&new_state->arcs_mtx);
1238 		}
1239 	}
1240 
1241 	ASSERT(!BUF_EMPTY(ab));
1242 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1243 		buf_hash_remove(ab);
1244 
1245 	/* adjust state sizes */
1246 	if (to_delta)
1247 		atomic_add_64(&new_state->arcs_size, to_delta);
1248 	if (from_delta) {
1249 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1250 		atomic_add_64(&old_state->arcs_size, -from_delta);
1251 	}
1252 	ab->b_state = new_state;
1253 
1254 	/* adjust l2arc hdr stats */
1255 	if (new_state == arc_l2c_only)
1256 		l2arc_hdr_stat_add();
1257 	else if (old_state == arc_l2c_only)
1258 		l2arc_hdr_stat_remove();
1259 }
1260 
1261 void
1262 arc_space_consume(uint64_t space, arc_space_type_t type)
1263 {
1264 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1265 
1266 	switch (type) {
1267 	case ARC_SPACE_DATA:
1268 		ARCSTAT_INCR(arcstat_data_size, space);
1269 		break;
1270 	case ARC_SPACE_OTHER:
1271 		ARCSTAT_INCR(arcstat_other_size, space);
1272 		break;
1273 	case ARC_SPACE_HDRS:
1274 		ARCSTAT_INCR(arcstat_hdr_size, space);
1275 		break;
1276 	case ARC_SPACE_L2HDRS:
1277 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1278 		break;
1279 	}
1280 
1281 	ARCSTAT_INCR(arcstat_meta_used, space);
1282 	atomic_add_64(&arc_size, space);
1283 }
1284 
1285 void
1286 arc_space_return(uint64_t space, arc_space_type_t type)
1287 {
1288 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1289 
1290 	switch (type) {
1291 	case ARC_SPACE_DATA:
1292 		ARCSTAT_INCR(arcstat_data_size, -space);
1293 		break;
1294 	case ARC_SPACE_OTHER:
1295 		ARCSTAT_INCR(arcstat_other_size, -space);
1296 		break;
1297 	case ARC_SPACE_HDRS:
1298 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1299 		break;
1300 	case ARC_SPACE_L2HDRS:
1301 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1302 		break;
1303 	}
1304 
1305 	ASSERT(arc_meta_used >= space);
1306 	if (arc_meta_max < arc_meta_used)
1307 		arc_meta_max = arc_meta_used;
1308 	ARCSTAT_INCR(arcstat_meta_used, -space);
1309 	ASSERT(arc_size >= space);
1310 	atomic_add_64(&arc_size, -space);
1311 }
1312 
1313 void *
1314 arc_data_buf_alloc(uint64_t size)
1315 {
1316 	if (arc_evict_needed(ARC_BUFC_DATA))
1317 		cv_signal(&arc_reclaim_thr_cv);
1318 	atomic_add_64(&arc_size, size);
1319 	return (zio_data_buf_alloc(size));
1320 }
1321 
1322 void
1323 arc_data_buf_free(void *buf, uint64_t size)
1324 {
1325 	zio_data_buf_free(buf, size);
1326 	ASSERT(arc_size >= size);
1327 	atomic_add_64(&arc_size, -size);
1328 }
1329 
1330 arc_buf_t *
1331 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1332 {
1333 	arc_buf_hdr_t *hdr;
1334 	arc_buf_t *buf;
1335 
1336 	ASSERT3U(size, >, 0);
1337 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1338 	ASSERT(BUF_EMPTY(hdr));
1339 	hdr->b_size = size;
1340 	hdr->b_type = type;
1341 	hdr->b_spa = spa_load_guid(spa);
1342 	hdr->b_state = arc_anon;
1343 	hdr->b_arc_access = 0;
1344 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1345 	buf->b_hdr = hdr;
1346 	buf->b_data = NULL;
1347 	buf->b_efunc = NULL;
1348 	buf->b_private = NULL;
1349 	buf->b_next = NULL;
1350 	hdr->b_buf = buf;
1351 	arc_get_data_buf(buf);
1352 	hdr->b_datacnt = 1;
1353 	hdr->b_flags = 0;
1354 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1355 	(void) refcount_add(&hdr->b_refcnt, tag);
1356 
1357 	return (buf);
1358 }
1359 
1360 static char *arc_onloan_tag = "onloan";
1361 
1362 /*
1363  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1364  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1365  * buffers must be returned to the arc before they can be used by the DMU or
1366  * freed.
1367  */
1368 arc_buf_t *
1369 arc_loan_buf(spa_t *spa, int size)
1370 {
1371 	arc_buf_t *buf;
1372 
1373 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1374 
1375 	atomic_add_64(&arc_loaned_bytes, size);
1376 	return (buf);
1377 }
1378 
1379 /*
1380  * Return a loaned arc buffer to the arc.
1381  */
1382 void
1383 arc_return_buf(arc_buf_t *buf, void *tag)
1384 {
1385 	arc_buf_hdr_t *hdr = buf->b_hdr;
1386 
1387 	ASSERT(buf->b_data != NULL);
1388 	(void) refcount_add(&hdr->b_refcnt, tag);
1389 	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1390 
1391 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1392 }
1393 
1394 /* Detach an arc_buf from a dbuf (tag) */
1395 void
1396 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1397 {
1398 	arc_buf_hdr_t *hdr;
1399 
1400 	ASSERT(buf->b_data != NULL);
1401 	hdr = buf->b_hdr;
1402 	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1403 	(void) refcount_remove(&hdr->b_refcnt, tag);
1404 	buf->b_efunc = NULL;
1405 	buf->b_private = NULL;
1406 
1407 	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1408 }
1409 
1410 static arc_buf_t *
1411 arc_buf_clone(arc_buf_t *from)
1412 {
1413 	arc_buf_t *buf;
1414 	arc_buf_hdr_t *hdr = from->b_hdr;
1415 	uint64_t size = hdr->b_size;
1416 
1417 	ASSERT(hdr->b_state != arc_anon);
1418 
1419 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1420 	buf->b_hdr = hdr;
1421 	buf->b_data = NULL;
1422 	buf->b_efunc = NULL;
1423 	buf->b_private = NULL;
1424 	buf->b_next = hdr->b_buf;
1425 	hdr->b_buf = buf;
1426 	arc_get_data_buf(buf);
1427 	bcopy(from->b_data, buf->b_data, size);
1428 
1429 	/*
1430 	 * This buffer already exists in the arc so create a duplicate
1431 	 * copy for the caller.  If the buffer is associated with user data
1432 	 * then track the size and number of duplicates.  These stats will be
1433 	 * updated as duplicate buffers are created and destroyed.
1434 	 */
1435 	if (hdr->b_type == ARC_BUFC_DATA) {
1436 		ARCSTAT_BUMP(arcstat_duplicate_buffers);
1437 		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1438 	}
1439 	hdr->b_datacnt += 1;
1440 	return (buf);
1441 }
1442 
1443 void
1444 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1445 {
1446 	arc_buf_hdr_t *hdr;
1447 	kmutex_t *hash_lock;
1448 
1449 	/*
1450 	 * Check to see if this buffer is evicted.  Callers
1451 	 * must verify b_data != NULL to know if the add_ref
1452 	 * was successful.
1453 	 */
1454 	mutex_enter(&buf->b_evict_lock);
1455 	if (buf->b_data == NULL) {
1456 		mutex_exit(&buf->b_evict_lock);
1457 		return;
1458 	}
1459 	hash_lock = HDR_LOCK(buf->b_hdr);
1460 	mutex_enter(hash_lock);
1461 	hdr = buf->b_hdr;
1462 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1463 	mutex_exit(&buf->b_evict_lock);
1464 
1465 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1466 	add_reference(hdr, hash_lock, tag);
1467 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1468 	arc_access(hdr, hash_lock);
1469 	mutex_exit(hash_lock);
1470 	ARCSTAT_BUMP(arcstat_hits);
1471 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1472 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1473 	    data, metadata, hits);
1474 }
1475 
1476 /*
1477  * Free the arc data buffer.  If it is an l2arc write in progress,
1478  * the buffer is placed on l2arc_free_on_write to be freed later.
1479  */
1480 static void
1481 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1482 {
1483 	arc_buf_hdr_t *hdr = buf->b_hdr;
1484 
1485 	if (HDR_L2_WRITING(hdr)) {
1486 		l2arc_data_free_t *df;
1487 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1488 		df->l2df_data = buf->b_data;
1489 		df->l2df_size = hdr->b_size;
1490 		df->l2df_func = free_func;
1491 		mutex_enter(&l2arc_free_on_write_mtx);
1492 		list_insert_head(l2arc_free_on_write, df);
1493 		mutex_exit(&l2arc_free_on_write_mtx);
1494 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1495 	} else {
1496 		free_func(buf->b_data, hdr->b_size);
1497 	}
1498 }
1499 
1500 /*
1501  * Free up buf->b_data and if 'remove' is set, then pull the
1502  * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1503  */
1504 static void
1505 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove)
1506 {
1507 	arc_buf_t **bufp;
1508 
1509 	/* free up data associated with the buf */
1510 	if (buf->b_data) {
1511 		arc_state_t *state = buf->b_hdr->b_state;
1512 		uint64_t size = buf->b_hdr->b_size;
1513 		arc_buf_contents_t type = buf->b_hdr->b_type;
1514 
1515 		arc_cksum_verify(buf);
1516 		arc_buf_unwatch(buf);
1517 
1518 		if (!recycle) {
1519 			if (type == ARC_BUFC_METADATA) {
1520 				arc_buf_data_free(buf, zio_buf_free);
1521 				arc_space_return(size, ARC_SPACE_DATA);
1522 			} else {
1523 				ASSERT(type == ARC_BUFC_DATA);
1524 				arc_buf_data_free(buf, zio_data_buf_free);
1525 				ARCSTAT_INCR(arcstat_data_size, -size);
1526 				atomic_add_64(&arc_size, -size);
1527 			}
1528 		}
1529 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1530 			uint64_t *cnt = &state->arcs_lsize[type];
1531 
1532 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1533 			ASSERT(state != arc_anon);
1534 
1535 			ASSERT3U(*cnt, >=, size);
1536 			atomic_add_64(cnt, -size);
1537 		}
1538 		ASSERT3U(state->arcs_size, >=, size);
1539 		atomic_add_64(&state->arcs_size, -size);
1540 		buf->b_data = NULL;
1541 
1542 		/*
1543 		 * If we're destroying a duplicate buffer make sure
1544 		 * that the appropriate statistics are updated.
1545 		 */
1546 		if (buf->b_hdr->b_datacnt > 1 &&
1547 		    buf->b_hdr->b_type == ARC_BUFC_DATA) {
1548 			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1549 			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1550 		}
1551 		ASSERT(buf->b_hdr->b_datacnt > 0);
1552 		buf->b_hdr->b_datacnt -= 1;
1553 	}
1554 
1555 	/* only remove the buf if requested */
1556 	if (!remove)
1557 		return;
1558 
1559 	/* remove the buf from the hdr list */
1560 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1561 		continue;
1562 	*bufp = buf->b_next;
1563 	buf->b_next = NULL;
1564 
1565 	ASSERT(buf->b_efunc == NULL);
1566 
1567 	/* clean up the buf */
1568 	buf->b_hdr = NULL;
1569 	kmem_cache_free(buf_cache, buf);
1570 }
1571 
1572 static void
1573 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1574 {
1575 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1576 	ASSERT3P(hdr->b_state, ==, arc_anon);
1577 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1578 	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1579 
1580 	if (l2hdr != NULL) {
1581 		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1582 		/*
1583 		 * To prevent arc_free() and l2arc_evict() from
1584 		 * attempting to free the same buffer at the same time,
1585 		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1586 		 * give it priority.  l2arc_evict() can't destroy this
1587 		 * header while we are waiting on l2arc_buflist_mtx.
1588 		 *
1589 		 * The hdr may be removed from l2ad_buflist before we
1590 		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1591 		 */
1592 		if (!buflist_held) {
1593 			mutex_enter(&l2arc_buflist_mtx);
1594 			l2hdr = hdr->b_l2hdr;
1595 		}
1596 
1597 		if (l2hdr != NULL) {
1598 			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1599 			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1600 			ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1601 			vdev_space_update(l2hdr->b_dev->l2ad_vdev,
1602 			    -l2hdr->b_asize, 0, 0);
1603 			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1604 			if (hdr->b_state == arc_l2c_only)
1605 				l2arc_hdr_stat_remove();
1606 			hdr->b_l2hdr = NULL;
1607 		}
1608 
1609 		if (!buflist_held)
1610 			mutex_exit(&l2arc_buflist_mtx);
1611 	}
1612 
1613 	if (!BUF_EMPTY(hdr)) {
1614 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1615 		buf_discard_identity(hdr);
1616 	}
1617 	while (hdr->b_buf) {
1618 		arc_buf_t *buf = hdr->b_buf;
1619 
1620 		if (buf->b_efunc) {
1621 			mutex_enter(&arc_eviction_mtx);
1622 			mutex_enter(&buf->b_evict_lock);
1623 			ASSERT(buf->b_hdr != NULL);
1624 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1625 			hdr->b_buf = buf->b_next;
1626 			buf->b_hdr = &arc_eviction_hdr;
1627 			buf->b_next = arc_eviction_list;
1628 			arc_eviction_list = buf;
1629 			mutex_exit(&buf->b_evict_lock);
1630 			mutex_exit(&arc_eviction_mtx);
1631 		} else {
1632 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1633 		}
1634 	}
1635 	if (hdr->b_freeze_cksum != NULL) {
1636 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1637 		hdr->b_freeze_cksum = NULL;
1638 	}
1639 	if (hdr->b_thawed) {
1640 		kmem_free(hdr->b_thawed, 1);
1641 		hdr->b_thawed = NULL;
1642 	}
1643 
1644 	ASSERT(!list_link_active(&hdr->b_arc_node));
1645 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1646 	ASSERT3P(hdr->b_acb, ==, NULL);
1647 	kmem_cache_free(hdr_cache, hdr);
1648 }
1649 
1650 void
1651 arc_buf_free(arc_buf_t *buf, void *tag)
1652 {
1653 	arc_buf_hdr_t *hdr = buf->b_hdr;
1654 	int hashed = hdr->b_state != arc_anon;
1655 
1656 	ASSERT(buf->b_efunc == NULL);
1657 	ASSERT(buf->b_data != NULL);
1658 
1659 	if (hashed) {
1660 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1661 
1662 		mutex_enter(hash_lock);
1663 		hdr = buf->b_hdr;
1664 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1665 
1666 		(void) remove_reference(hdr, hash_lock, tag);
1667 		if (hdr->b_datacnt > 1) {
1668 			arc_buf_destroy(buf, FALSE, TRUE);
1669 		} else {
1670 			ASSERT(buf == hdr->b_buf);
1671 			ASSERT(buf->b_efunc == NULL);
1672 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1673 		}
1674 		mutex_exit(hash_lock);
1675 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1676 		int destroy_hdr;
1677 		/*
1678 		 * We are in the middle of an async write.  Don't destroy
1679 		 * this buffer unless the write completes before we finish
1680 		 * decrementing the reference count.
1681 		 */
1682 		mutex_enter(&arc_eviction_mtx);
1683 		(void) remove_reference(hdr, NULL, tag);
1684 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1685 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1686 		mutex_exit(&arc_eviction_mtx);
1687 		if (destroy_hdr)
1688 			arc_hdr_destroy(hdr);
1689 	} else {
1690 		if (remove_reference(hdr, NULL, tag) > 0)
1691 			arc_buf_destroy(buf, FALSE, TRUE);
1692 		else
1693 			arc_hdr_destroy(hdr);
1694 	}
1695 }
1696 
1697 boolean_t
1698 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1699 {
1700 	arc_buf_hdr_t *hdr = buf->b_hdr;
1701 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1702 	boolean_t no_callback = (buf->b_efunc == NULL);
1703 
1704 	if (hdr->b_state == arc_anon) {
1705 		ASSERT(hdr->b_datacnt == 1);
1706 		arc_buf_free(buf, tag);
1707 		return (no_callback);
1708 	}
1709 
1710 	mutex_enter(hash_lock);
1711 	hdr = buf->b_hdr;
1712 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1713 	ASSERT(hdr->b_state != arc_anon);
1714 	ASSERT(buf->b_data != NULL);
1715 
1716 	(void) remove_reference(hdr, hash_lock, tag);
1717 	if (hdr->b_datacnt > 1) {
1718 		if (no_callback)
1719 			arc_buf_destroy(buf, FALSE, TRUE);
1720 	} else if (no_callback) {
1721 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1722 		ASSERT(buf->b_efunc == NULL);
1723 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1724 	}
1725 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1726 	    refcount_is_zero(&hdr->b_refcnt));
1727 	mutex_exit(hash_lock);
1728 	return (no_callback);
1729 }
1730 
1731 int
1732 arc_buf_size(arc_buf_t *buf)
1733 {
1734 	return (buf->b_hdr->b_size);
1735 }
1736 
1737 /*
1738  * Called from the DMU to determine if the current buffer should be
1739  * evicted. In order to ensure proper locking, the eviction must be initiated
1740  * from the DMU. Return true if the buffer is associated with user data and
1741  * duplicate buffers still exist.
1742  */
1743 boolean_t
1744 arc_buf_eviction_needed(arc_buf_t *buf)
1745 {
1746 	arc_buf_hdr_t *hdr;
1747 	boolean_t evict_needed = B_FALSE;
1748 
1749 	if (zfs_disable_dup_eviction)
1750 		return (B_FALSE);
1751 
1752 	mutex_enter(&buf->b_evict_lock);
1753 	hdr = buf->b_hdr;
1754 	if (hdr == NULL) {
1755 		/*
1756 		 * We are in arc_do_user_evicts(); let that function
1757 		 * perform the eviction.
1758 		 */
1759 		ASSERT(buf->b_data == NULL);
1760 		mutex_exit(&buf->b_evict_lock);
1761 		return (B_FALSE);
1762 	} else if (buf->b_data == NULL) {
1763 		/*
1764 		 * We have already been added to the arc eviction list;
1765 		 * recommend eviction.
1766 		 */
1767 		ASSERT3P(hdr, ==, &arc_eviction_hdr);
1768 		mutex_exit(&buf->b_evict_lock);
1769 		return (B_TRUE);
1770 	}
1771 
1772 	if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1773 		evict_needed = B_TRUE;
1774 
1775 	mutex_exit(&buf->b_evict_lock);
1776 	return (evict_needed);
1777 }
1778 
1779 /*
1780  * Evict buffers from list until we've removed the specified number of
1781  * bytes.  Move the removed buffers to the appropriate evict state.
1782  * If the recycle flag is set, then attempt to "recycle" a buffer:
1783  * - look for a buffer to evict that is `bytes' long.
1784  * - return the data block from this buffer rather than freeing it.
1785  * This flag is used by callers that are trying to make space for a
1786  * new buffer in a full arc cache.
1787  *
1788  * This function makes a "best effort".  It skips over any buffers
1789  * it can't get a hash_lock on, and so may not catch all candidates.
1790  * It may also return without evicting as much space as requested.
1791  */
1792 static void *
1793 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1794     arc_buf_contents_t type)
1795 {
1796 	arc_state_t *evicted_state;
1797 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1798 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1799 	list_t *list = &state->arcs_list[type];
1800 	kmutex_t *hash_lock;
1801 	boolean_t have_lock;
1802 	void *stolen = NULL;
1803 	arc_buf_hdr_t marker = { 0 };
1804 	int count = 0;
1805 
1806 	ASSERT(state == arc_mru || state == arc_mfu);
1807 
1808 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1809 
1810 	mutex_enter(&state->arcs_mtx);
1811 	mutex_enter(&evicted_state->arcs_mtx);
1812 
1813 	for (ab = list_tail(list); ab; ab = ab_prev) {
1814 		ab_prev = list_prev(list, ab);
1815 		/* prefetch buffers have a minimum lifespan */
1816 		if (HDR_IO_IN_PROGRESS(ab) ||
1817 		    (spa && ab->b_spa != spa) ||
1818 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1819 		    ddi_get_lbolt() - ab->b_arc_access <
1820 		    arc_min_prefetch_lifespan)) {
1821 			skipped++;
1822 			continue;
1823 		}
1824 		/* "lookahead" for better eviction candidate */
1825 		if (recycle && ab->b_size != bytes &&
1826 		    ab_prev && ab_prev->b_size == bytes)
1827 			continue;
1828 
1829 		/* ignore markers */
1830 		if (ab->b_spa == 0)
1831 			continue;
1832 
1833 		/*
1834 		 * It may take a long time to evict all the bufs requested.
1835 		 * To avoid blocking all arc activity, periodically drop
1836 		 * the arcs_mtx and give other threads a chance to run
1837 		 * before reacquiring the lock.
1838 		 *
1839 		 * If we are looking for a buffer to recycle, we are in
1840 		 * the hot code path, so don't sleep.
1841 		 */
1842 		if (!recycle && count++ > arc_evict_iterations) {
1843 			list_insert_after(list, ab, &marker);
1844 			mutex_exit(&evicted_state->arcs_mtx);
1845 			mutex_exit(&state->arcs_mtx);
1846 			kpreempt(KPREEMPT_SYNC);
1847 			mutex_enter(&state->arcs_mtx);
1848 			mutex_enter(&evicted_state->arcs_mtx);
1849 			ab_prev = list_prev(list, &marker);
1850 			list_remove(list, &marker);
1851 			count = 0;
1852 			continue;
1853 		}
1854 
1855 		hash_lock = HDR_LOCK(ab);
1856 		have_lock = MUTEX_HELD(hash_lock);
1857 		if (have_lock || mutex_tryenter(hash_lock)) {
1858 			ASSERT0(refcount_count(&ab->b_refcnt));
1859 			ASSERT(ab->b_datacnt > 0);
1860 			while (ab->b_buf) {
1861 				arc_buf_t *buf = ab->b_buf;
1862 				if (!mutex_tryenter(&buf->b_evict_lock)) {
1863 					missed += 1;
1864 					break;
1865 				}
1866 				if (buf->b_data) {
1867 					bytes_evicted += ab->b_size;
1868 					if (recycle && ab->b_type == type &&
1869 					    ab->b_size == bytes &&
1870 					    !HDR_L2_WRITING(ab)) {
1871 						stolen = buf->b_data;
1872 						recycle = FALSE;
1873 					}
1874 				}
1875 				if (buf->b_efunc) {
1876 					mutex_enter(&arc_eviction_mtx);
1877 					arc_buf_destroy(buf,
1878 					    buf->b_data == stolen, FALSE);
1879 					ab->b_buf = buf->b_next;
1880 					buf->b_hdr = &arc_eviction_hdr;
1881 					buf->b_next = arc_eviction_list;
1882 					arc_eviction_list = buf;
1883 					mutex_exit(&arc_eviction_mtx);
1884 					mutex_exit(&buf->b_evict_lock);
1885 				} else {
1886 					mutex_exit(&buf->b_evict_lock);
1887 					arc_buf_destroy(buf,
1888 					    buf->b_data == stolen, TRUE);
1889 				}
1890 			}
1891 
1892 			if (ab->b_l2hdr) {
1893 				ARCSTAT_INCR(arcstat_evict_l2_cached,
1894 				    ab->b_size);
1895 			} else {
1896 				if (l2arc_write_eligible(ab->b_spa, ab)) {
1897 					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1898 					    ab->b_size);
1899 				} else {
1900 					ARCSTAT_INCR(
1901 					    arcstat_evict_l2_ineligible,
1902 					    ab->b_size);
1903 				}
1904 			}
1905 
1906 			if (ab->b_datacnt == 0) {
1907 				arc_change_state(evicted_state, ab, hash_lock);
1908 				ASSERT(HDR_IN_HASH_TABLE(ab));
1909 				ab->b_flags |= ARC_IN_HASH_TABLE;
1910 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1911 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1912 			}
1913 			if (!have_lock)
1914 				mutex_exit(hash_lock);
1915 			if (bytes >= 0 && bytes_evicted >= bytes)
1916 				break;
1917 		} else {
1918 			missed += 1;
1919 		}
1920 	}
1921 
1922 	mutex_exit(&evicted_state->arcs_mtx);
1923 	mutex_exit(&state->arcs_mtx);
1924 
1925 	if (bytes_evicted < bytes)
1926 		dprintf("only evicted %lld bytes from %x",
1927 		    (longlong_t)bytes_evicted, state);
1928 
1929 	if (skipped)
1930 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1931 
1932 	if (missed)
1933 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1934 
1935 	/*
1936 	 * Note: we have just evicted some data into the ghost state,
1937 	 * potentially putting the ghost size over the desired size.  Rather
1938 	 * that evicting from the ghost list in this hot code path, leave
1939 	 * this chore to the arc_reclaim_thread().
1940 	 */
1941 
1942 	return (stolen);
1943 }
1944 
1945 /*
1946  * Remove buffers from list until we've removed the specified number of
1947  * bytes.  Destroy the buffers that are removed.
1948  */
1949 static void
1950 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1951 {
1952 	arc_buf_hdr_t *ab, *ab_prev;
1953 	arc_buf_hdr_t marker = { 0 };
1954 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1955 	kmutex_t *hash_lock;
1956 	uint64_t bytes_deleted = 0;
1957 	uint64_t bufs_skipped = 0;
1958 	int count = 0;
1959 
1960 	ASSERT(GHOST_STATE(state));
1961 top:
1962 	mutex_enter(&state->arcs_mtx);
1963 	for (ab = list_tail(list); ab; ab = ab_prev) {
1964 		ab_prev = list_prev(list, ab);
1965 		if (ab->b_type > ARC_BUFC_NUMTYPES)
1966 			panic("invalid ab=%p", (void *)ab);
1967 		if (spa && ab->b_spa != spa)
1968 			continue;
1969 
1970 		/* ignore markers */
1971 		if (ab->b_spa == 0)
1972 			continue;
1973 
1974 		hash_lock = HDR_LOCK(ab);
1975 		/* caller may be trying to modify this buffer, skip it */
1976 		if (MUTEX_HELD(hash_lock))
1977 			continue;
1978 
1979 		/*
1980 		 * It may take a long time to evict all the bufs requested.
1981 		 * To avoid blocking all arc activity, periodically drop
1982 		 * the arcs_mtx and give other threads a chance to run
1983 		 * before reacquiring the lock.
1984 		 */
1985 		if (count++ > arc_evict_iterations) {
1986 			list_insert_after(list, ab, &marker);
1987 			mutex_exit(&state->arcs_mtx);
1988 			kpreempt(KPREEMPT_SYNC);
1989 			mutex_enter(&state->arcs_mtx);
1990 			ab_prev = list_prev(list, &marker);
1991 			list_remove(list, &marker);
1992 			count = 0;
1993 			continue;
1994 		}
1995 		if (mutex_tryenter(hash_lock)) {
1996 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1997 			ASSERT(ab->b_buf == NULL);
1998 			ARCSTAT_BUMP(arcstat_deleted);
1999 			bytes_deleted += ab->b_size;
2000 
2001 			if (ab->b_l2hdr != NULL) {
2002 				/*
2003 				 * This buffer is cached on the 2nd Level ARC;
2004 				 * don't destroy the header.
2005 				 */
2006 				arc_change_state(arc_l2c_only, ab, hash_lock);
2007 				mutex_exit(hash_lock);
2008 			} else {
2009 				arc_change_state(arc_anon, ab, hash_lock);
2010 				mutex_exit(hash_lock);
2011 				arc_hdr_destroy(ab);
2012 			}
2013 
2014 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2015 			if (bytes >= 0 && bytes_deleted >= bytes)
2016 				break;
2017 		} else if (bytes < 0) {
2018 			/*
2019 			 * Insert a list marker and then wait for the
2020 			 * hash lock to become available. Once its
2021 			 * available, restart from where we left off.
2022 			 */
2023 			list_insert_after(list, ab, &marker);
2024 			mutex_exit(&state->arcs_mtx);
2025 			mutex_enter(hash_lock);
2026 			mutex_exit(hash_lock);
2027 			mutex_enter(&state->arcs_mtx);
2028 			ab_prev = list_prev(list, &marker);
2029 			list_remove(list, &marker);
2030 		} else {
2031 			bufs_skipped += 1;
2032 		}
2033 
2034 	}
2035 	mutex_exit(&state->arcs_mtx);
2036 
2037 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
2038 	    (bytes < 0 || bytes_deleted < bytes)) {
2039 		list = &state->arcs_list[ARC_BUFC_METADATA];
2040 		goto top;
2041 	}
2042 
2043 	if (bufs_skipped) {
2044 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2045 		ASSERT(bytes >= 0);
2046 	}
2047 
2048 	if (bytes_deleted < bytes)
2049 		dprintf("only deleted %lld bytes from %p",
2050 		    (longlong_t)bytes_deleted, state);
2051 }
2052 
2053 static void
2054 arc_adjust(void)
2055 {
2056 	int64_t adjustment, delta;
2057 
2058 	/*
2059 	 * Adjust MRU size
2060 	 */
2061 
2062 	adjustment = MIN((int64_t)(arc_size - arc_c),
2063 	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2064 	    arc_p));
2065 
2066 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2067 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2068 		(void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
2069 		adjustment -= delta;
2070 	}
2071 
2072 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2073 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2074 		(void) arc_evict(arc_mru, NULL, delta, FALSE,
2075 		    ARC_BUFC_METADATA);
2076 	}
2077 
2078 	/*
2079 	 * Adjust MFU size
2080 	 */
2081 
2082 	adjustment = arc_size - arc_c;
2083 
2084 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2085 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2086 		(void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
2087 		adjustment -= delta;
2088 	}
2089 
2090 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2091 		int64_t delta = MIN(adjustment,
2092 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2093 		(void) arc_evict(arc_mfu, NULL, delta, FALSE,
2094 		    ARC_BUFC_METADATA);
2095 	}
2096 
2097 	/*
2098 	 * Adjust ghost lists
2099 	 */
2100 
2101 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2102 
2103 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2104 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2105 		arc_evict_ghost(arc_mru_ghost, NULL, delta);
2106 	}
2107 
2108 	adjustment =
2109 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2110 
2111 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2112 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2113 		arc_evict_ghost(arc_mfu_ghost, NULL, delta);
2114 	}
2115 }
2116 
2117 static void
2118 arc_do_user_evicts(void)
2119 {
2120 	mutex_enter(&arc_eviction_mtx);
2121 	while (arc_eviction_list != NULL) {
2122 		arc_buf_t *buf = arc_eviction_list;
2123 		arc_eviction_list = buf->b_next;
2124 		mutex_enter(&buf->b_evict_lock);
2125 		buf->b_hdr = NULL;
2126 		mutex_exit(&buf->b_evict_lock);
2127 		mutex_exit(&arc_eviction_mtx);
2128 
2129 		if (buf->b_efunc != NULL)
2130 			VERIFY0(buf->b_efunc(buf->b_private));
2131 
2132 		buf->b_efunc = NULL;
2133 		buf->b_private = NULL;
2134 		kmem_cache_free(buf_cache, buf);
2135 		mutex_enter(&arc_eviction_mtx);
2136 	}
2137 	mutex_exit(&arc_eviction_mtx);
2138 }
2139 
2140 /*
2141  * Flush all *evictable* data from the cache for the given spa.
2142  * NOTE: this will not touch "active" (i.e. referenced) data.
2143  */
2144 void
2145 arc_flush(spa_t *spa)
2146 {
2147 	uint64_t guid = 0;
2148 
2149 	if (spa)
2150 		guid = spa_load_guid(spa);
2151 
2152 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
2153 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2154 		if (spa)
2155 			break;
2156 	}
2157 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
2158 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2159 		if (spa)
2160 			break;
2161 	}
2162 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
2163 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2164 		if (spa)
2165 			break;
2166 	}
2167 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
2168 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2169 		if (spa)
2170 			break;
2171 	}
2172 
2173 	arc_evict_ghost(arc_mru_ghost, guid, -1);
2174 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2175 
2176 	mutex_enter(&arc_reclaim_thr_lock);
2177 	arc_do_user_evicts();
2178 	mutex_exit(&arc_reclaim_thr_lock);
2179 	ASSERT(spa || arc_eviction_list == NULL);
2180 }
2181 
2182 void
2183 arc_shrink(void)
2184 {
2185 	if (arc_c > arc_c_min) {
2186 		uint64_t to_free;
2187 
2188 #ifdef _KERNEL
2189 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2190 #else
2191 		to_free = arc_c >> arc_shrink_shift;
2192 #endif
2193 		if (arc_c > arc_c_min + to_free)
2194 			atomic_add_64(&arc_c, -to_free);
2195 		else
2196 			arc_c = arc_c_min;
2197 
2198 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2199 		if (arc_c > arc_size)
2200 			arc_c = MAX(arc_size, arc_c_min);
2201 		if (arc_p > arc_c)
2202 			arc_p = (arc_c >> 1);
2203 		ASSERT(arc_c >= arc_c_min);
2204 		ASSERT((int64_t)arc_p >= 0);
2205 	}
2206 
2207 	if (arc_size > arc_c)
2208 		arc_adjust();
2209 }
2210 
2211 /*
2212  * Determine if the system is under memory pressure and is asking
2213  * to reclaim memory. A return value of 1 indicates that the system
2214  * is under memory pressure and that the arc should adjust accordingly.
2215  */
2216 static int
2217 arc_reclaim_needed(void)
2218 {
2219 	uint64_t extra;
2220 
2221 #ifdef _KERNEL
2222 
2223 	if (needfree)
2224 		return (1);
2225 
2226 	/*
2227 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2228 	 */
2229 	extra = desfree;
2230 
2231 	/*
2232 	 * check that we're out of range of the pageout scanner.  It starts to
2233 	 * schedule paging if freemem is less than lotsfree and needfree.
2234 	 * lotsfree is the high-water mark for pageout, and needfree is the
2235 	 * number of needed free pages.  We add extra pages here to make sure
2236 	 * the scanner doesn't start up while we're freeing memory.
2237 	 */
2238 	if (freemem < lotsfree + needfree + extra)
2239 		return (1);
2240 
2241 	/*
2242 	 * check to make sure that swapfs has enough space so that anon
2243 	 * reservations can still succeed. anon_resvmem() checks that the
2244 	 * availrmem is greater than swapfs_minfree, and the number of reserved
2245 	 * swap pages.  We also add a bit of extra here just to prevent
2246 	 * circumstances from getting really dire.
2247 	 */
2248 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2249 		return (1);
2250 
2251 	/*
2252 	 * Check that we have enough availrmem that memory locking (e.g., via
2253 	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
2254 	 * stores the number of pages that cannot be locked; when availrmem
2255 	 * drops below pages_pp_maximum, page locking mechanisms such as
2256 	 * page_pp_lock() will fail.)
2257 	 */
2258 	if (availrmem <= pages_pp_maximum)
2259 		return (1);
2260 
2261 #if defined(__i386)
2262 	/*
2263 	 * If we're on an i386 platform, it's possible that we'll exhaust the
2264 	 * kernel heap space before we ever run out of available physical
2265 	 * memory.  Most checks of the size of the heap_area compare against
2266 	 * tune.t_minarmem, which is the minimum available real memory that we
2267 	 * can have in the system.  However, this is generally fixed at 25 pages
2268 	 * which is so low that it's useless.  In this comparison, we seek to
2269 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2270 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2271 	 * free)
2272 	 */
2273 	if (vmem_size(heap_arena, VMEM_FREE) <
2274 	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2))
2275 		return (1);
2276 #endif
2277 
2278 	/*
2279 	 * If zio data pages are being allocated out of a separate heap segment,
2280 	 * then enforce that the size of available vmem for this arena remains
2281 	 * above about 1/16th free.
2282 	 *
2283 	 * Note: The 1/16th arena free requirement was put in place
2284 	 * to aggressively evict memory from the arc in order to avoid
2285 	 * memory fragmentation issues.
2286 	 */
2287 	if (zio_arena != NULL &&
2288 	    vmem_size(zio_arena, VMEM_FREE) <
2289 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2290 		return (1);
2291 #else
2292 	if (spa_get_random(100) == 0)
2293 		return (1);
2294 #endif
2295 	return (0);
2296 }
2297 
2298 static void
2299 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2300 {
2301 	size_t			i;
2302 	kmem_cache_t		*prev_cache = NULL;
2303 	kmem_cache_t		*prev_data_cache = NULL;
2304 	extern kmem_cache_t	*zio_buf_cache[];
2305 	extern kmem_cache_t	*zio_data_buf_cache[];
2306 	extern kmem_cache_t	*range_seg_cache;
2307 
2308 #ifdef _KERNEL
2309 	if (arc_meta_used >= arc_meta_limit) {
2310 		/*
2311 		 * We are exceeding our meta-data cache limit.
2312 		 * Purge some DNLC entries to release holds on meta-data.
2313 		 */
2314 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2315 	}
2316 #if defined(__i386)
2317 	/*
2318 	 * Reclaim unused memory from all kmem caches.
2319 	 */
2320 	kmem_reap();
2321 #endif
2322 #endif
2323 
2324 	/*
2325 	 * An aggressive reclamation will shrink the cache size as well as
2326 	 * reap free buffers from the arc kmem caches.
2327 	 */
2328 	if (strat == ARC_RECLAIM_AGGR)
2329 		arc_shrink();
2330 
2331 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2332 		if (zio_buf_cache[i] != prev_cache) {
2333 			prev_cache = zio_buf_cache[i];
2334 			kmem_cache_reap_now(zio_buf_cache[i]);
2335 		}
2336 		if (zio_data_buf_cache[i] != prev_data_cache) {
2337 			prev_data_cache = zio_data_buf_cache[i];
2338 			kmem_cache_reap_now(zio_data_buf_cache[i]);
2339 		}
2340 	}
2341 	kmem_cache_reap_now(buf_cache);
2342 	kmem_cache_reap_now(hdr_cache);
2343 	kmem_cache_reap_now(range_seg_cache);
2344 
2345 	/*
2346 	 * Ask the vmem areana to reclaim unused memory from its
2347 	 * quantum caches.
2348 	 */
2349 	if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2350 		vmem_qcache_reap(zio_arena);
2351 }
2352 
2353 static void
2354 arc_reclaim_thread(void)
2355 {
2356 	clock_t			growtime = 0;
2357 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2358 	callb_cpr_t		cpr;
2359 
2360 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2361 
2362 	mutex_enter(&arc_reclaim_thr_lock);
2363 	while (arc_thread_exit == 0) {
2364 		if (arc_reclaim_needed()) {
2365 
2366 			if (arc_no_grow) {
2367 				if (last_reclaim == ARC_RECLAIM_CONS) {
2368 					last_reclaim = ARC_RECLAIM_AGGR;
2369 				} else {
2370 					last_reclaim = ARC_RECLAIM_CONS;
2371 				}
2372 			} else {
2373 				arc_no_grow = TRUE;
2374 				last_reclaim = ARC_RECLAIM_AGGR;
2375 				membar_producer();
2376 			}
2377 
2378 			/* reset the growth delay for every reclaim */
2379 			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2380 
2381 			arc_kmem_reap_now(last_reclaim);
2382 			arc_warm = B_TRUE;
2383 
2384 		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2385 			arc_no_grow = FALSE;
2386 		}
2387 
2388 		arc_adjust();
2389 
2390 		if (arc_eviction_list != NULL)
2391 			arc_do_user_evicts();
2392 
2393 		/* block until needed, or one second, whichever is shorter */
2394 		CALLB_CPR_SAFE_BEGIN(&cpr);
2395 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2396 		    &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2397 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2398 	}
2399 
2400 	arc_thread_exit = 0;
2401 	cv_broadcast(&arc_reclaim_thr_cv);
2402 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2403 	thread_exit();
2404 }
2405 
2406 /*
2407  * Adapt arc info given the number of bytes we are trying to add and
2408  * the state that we are comming from.  This function is only called
2409  * when we are adding new content to the cache.
2410  */
2411 static void
2412 arc_adapt(int bytes, arc_state_t *state)
2413 {
2414 	int mult;
2415 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2416 
2417 	if (state == arc_l2c_only)
2418 		return;
2419 
2420 	ASSERT(bytes > 0);
2421 	/*
2422 	 * Adapt the target size of the MRU list:
2423 	 *	- if we just hit in the MRU ghost list, then increase
2424 	 *	  the target size of the MRU list.
2425 	 *	- if we just hit in the MFU ghost list, then increase
2426 	 *	  the target size of the MFU list by decreasing the
2427 	 *	  target size of the MRU list.
2428 	 */
2429 	if (state == arc_mru_ghost) {
2430 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2431 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2432 		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2433 
2434 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2435 	} else if (state == arc_mfu_ghost) {
2436 		uint64_t delta;
2437 
2438 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2439 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2440 		mult = MIN(mult, 10);
2441 
2442 		delta = MIN(bytes * mult, arc_p);
2443 		arc_p = MAX(arc_p_min, arc_p - delta);
2444 	}
2445 	ASSERT((int64_t)arc_p >= 0);
2446 
2447 	if (arc_reclaim_needed()) {
2448 		cv_signal(&arc_reclaim_thr_cv);
2449 		return;
2450 	}
2451 
2452 	if (arc_no_grow)
2453 		return;
2454 
2455 	if (arc_c >= arc_c_max)
2456 		return;
2457 
2458 	/*
2459 	 * If we're within (2 * maxblocksize) bytes of the target
2460 	 * cache size, increment the target cache size
2461 	 */
2462 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2463 		atomic_add_64(&arc_c, (int64_t)bytes);
2464 		if (arc_c > arc_c_max)
2465 			arc_c = arc_c_max;
2466 		else if (state == arc_anon)
2467 			atomic_add_64(&arc_p, (int64_t)bytes);
2468 		if (arc_p > arc_c)
2469 			arc_p = arc_c;
2470 	}
2471 	ASSERT((int64_t)arc_p >= 0);
2472 }
2473 
2474 /*
2475  * Check if the cache has reached its limits and eviction is required
2476  * prior to insert.
2477  */
2478 static int
2479 arc_evict_needed(arc_buf_contents_t type)
2480 {
2481 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2482 		return (1);
2483 
2484 	if (arc_reclaim_needed())
2485 		return (1);
2486 
2487 	return (arc_size > arc_c);
2488 }
2489 
2490 /*
2491  * The buffer, supplied as the first argument, needs a data block.
2492  * So, if we are at cache max, determine which cache should be victimized.
2493  * We have the following cases:
2494  *
2495  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2496  * In this situation if we're out of space, but the resident size of the MFU is
2497  * under the limit, victimize the MFU cache to satisfy this insertion request.
2498  *
2499  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2500  * Here, we've used up all of the available space for the MRU, so we need to
2501  * evict from our own cache instead.  Evict from the set of resident MRU
2502  * entries.
2503  *
2504  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2505  * c minus p represents the MFU space in the cache, since p is the size of the
2506  * cache that is dedicated to the MRU.  In this situation there's still space on
2507  * the MFU side, so the MRU side needs to be victimized.
2508  *
2509  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2510  * MFU's resident set is consuming more space than it has been allotted.  In
2511  * this situation, we must victimize our own cache, the MFU, for this insertion.
2512  */
2513 static void
2514 arc_get_data_buf(arc_buf_t *buf)
2515 {
2516 	arc_state_t		*state = buf->b_hdr->b_state;
2517 	uint64_t		size = buf->b_hdr->b_size;
2518 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2519 
2520 	arc_adapt(size, state);
2521 
2522 	/*
2523 	 * We have not yet reached cache maximum size,
2524 	 * just allocate a new buffer.
2525 	 */
2526 	if (!arc_evict_needed(type)) {
2527 		if (type == ARC_BUFC_METADATA) {
2528 			buf->b_data = zio_buf_alloc(size);
2529 			arc_space_consume(size, ARC_SPACE_DATA);
2530 		} else {
2531 			ASSERT(type == ARC_BUFC_DATA);
2532 			buf->b_data = zio_data_buf_alloc(size);
2533 			ARCSTAT_INCR(arcstat_data_size, size);
2534 			atomic_add_64(&arc_size, size);
2535 		}
2536 		goto out;
2537 	}
2538 
2539 	/*
2540 	 * If we are prefetching from the mfu ghost list, this buffer
2541 	 * will end up on the mru list; so steal space from there.
2542 	 */
2543 	if (state == arc_mfu_ghost)
2544 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2545 	else if (state == arc_mru_ghost)
2546 		state = arc_mru;
2547 
2548 	if (state == arc_mru || state == arc_anon) {
2549 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2550 		state = (arc_mfu->arcs_lsize[type] >= size &&
2551 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2552 	} else {
2553 		/* MFU cases */
2554 		uint64_t mfu_space = arc_c - arc_p;
2555 		state =  (arc_mru->arcs_lsize[type] >= size &&
2556 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2557 	}
2558 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2559 		if (type == ARC_BUFC_METADATA) {
2560 			buf->b_data = zio_buf_alloc(size);
2561 			arc_space_consume(size, ARC_SPACE_DATA);
2562 		} else {
2563 			ASSERT(type == ARC_BUFC_DATA);
2564 			buf->b_data = zio_data_buf_alloc(size);
2565 			ARCSTAT_INCR(arcstat_data_size, size);
2566 			atomic_add_64(&arc_size, size);
2567 		}
2568 		ARCSTAT_BUMP(arcstat_recycle_miss);
2569 	}
2570 	ASSERT(buf->b_data != NULL);
2571 out:
2572 	/*
2573 	 * Update the state size.  Note that ghost states have a
2574 	 * "ghost size" and so don't need to be updated.
2575 	 */
2576 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2577 		arc_buf_hdr_t *hdr = buf->b_hdr;
2578 
2579 		atomic_add_64(&hdr->b_state->arcs_size, size);
2580 		if (list_link_active(&hdr->b_arc_node)) {
2581 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2582 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2583 		}
2584 		/*
2585 		 * If we are growing the cache, and we are adding anonymous
2586 		 * data, and we have outgrown arc_p, update arc_p
2587 		 */
2588 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2589 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2590 			arc_p = MIN(arc_c, arc_p + size);
2591 	}
2592 }
2593 
2594 /*
2595  * This routine is called whenever a buffer is accessed.
2596  * NOTE: the hash lock is dropped in this function.
2597  */
2598 static void
2599 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2600 {
2601 	clock_t now;
2602 
2603 	ASSERT(MUTEX_HELD(hash_lock));
2604 
2605 	if (buf->b_state == arc_anon) {
2606 		/*
2607 		 * This buffer is not in the cache, and does not
2608 		 * appear in our "ghost" list.  Add the new buffer
2609 		 * to the MRU state.
2610 		 */
2611 
2612 		ASSERT(buf->b_arc_access == 0);
2613 		buf->b_arc_access = ddi_get_lbolt();
2614 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2615 		arc_change_state(arc_mru, buf, hash_lock);
2616 
2617 	} else if (buf->b_state == arc_mru) {
2618 		now = ddi_get_lbolt();
2619 
2620 		/*
2621 		 * If this buffer is here because of a prefetch, then either:
2622 		 * - clear the flag if this is a "referencing" read
2623 		 *   (any subsequent access will bump this into the MFU state).
2624 		 * or
2625 		 * - move the buffer to the head of the list if this is
2626 		 *   another prefetch (to make it less likely to be evicted).
2627 		 */
2628 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2629 			if (refcount_count(&buf->b_refcnt) == 0) {
2630 				ASSERT(list_link_active(&buf->b_arc_node));
2631 			} else {
2632 				buf->b_flags &= ~ARC_PREFETCH;
2633 				ARCSTAT_BUMP(arcstat_mru_hits);
2634 			}
2635 			buf->b_arc_access = now;
2636 			return;
2637 		}
2638 
2639 		/*
2640 		 * This buffer has been "accessed" only once so far,
2641 		 * but it is still in the cache. Move it to the MFU
2642 		 * state.
2643 		 */
2644 		if (now > buf->b_arc_access + ARC_MINTIME) {
2645 			/*
2646 			 * More than 125ms have passed since we
2647 			 * instantiated this buffer.  Move it to the
2648 			 * most frequently used state.
2649 			 */
2650 			buf->b_arc_access = now;
2651 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2652 			arc_change_state(arc_mfu, buf, hash_lock);
2653 		}
2654 		ARCSTAT_BUMP(arcstat_mru_hits);
2655 	} else if (buf->b_state == arc_mru_ghost) {
2656 		arc_state_t	*new_state;
2657 		/*
2658 		 * This buffer has been "accessed" recently, but
2659 		 * was evicted from the cache.  Move it to the
2660 		 * MFU state.
2661 		 */
2662 
2663 		if (buf->b_flags & ARC_PREFETCH) {
2664 			new_state = arc_mru;
2665 			if (refcount_count(&buf->b_refcnt) > 0)
2666 				buf->b_flags &= ~ARC_PREFETCH;
2667 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2668 		} else {
2669 			new_state = arc_mfu;
2670 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2671 		}
2672 
2673 		buf->b_arc_access = ddi_get_lbolt();
2674 		arc_change_state(new_state, buf, hash_lock);
2675 
2676 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2677 	} else if (buf->b_state == arc_mfu) {
2678 		/*
2679 		 * This buffer has been accessed more than once and is
2680 		 * still in the cache.  Keep it in the MFU state.
2681 		 *
2682 		 * NOTE: an add_reference() that occurred when we did
2683 		 * the arc_read() will have kicked this off the list.
2684 		 * If it was a prefetch, we will explicitly move it to
2685 		 * the head of the list now.
2686 		 */
2687 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2688 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2689 			ASSERT(list_link_active(&buf->b_arc_node));
2690 		}
2691 		ARCSTAT_BUMP(arcstat_mfu_hits);
2692 		buf->b_arc_access = ddi_get_lbolt();
2693 	} else if (buf->b_state == arc_mfu_ghost) {
2694 		arc_state_t	*new_state = arc_mfu;
2695 		/*
2696 		 * This buffer has been accessed more than once but has
2697 		 * been evicted from the cache.  Move it back to the
2698 		 * MFU state.
2699 		 */
2700 
2701 		if (buf->b_flags & ARC_PREFETCH) {
2702 			/*
2703 			 * This is a prefetch access...
2704 			 * move this block back to the MRU state.
2705 			 */
2706 			ASSERT0(refcount_count(&buf->b_refcnt));
2707 			new_state = arc_mru;
2708 		}
2709 
2710 		buf->b_arc_access = ddi_get_lbolt();
2711 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2712 		arc_change_state(new_state, buf, hash_lock);
2713 
2714 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2715 	} else if (buf->b_state == arc_l2c_only) {
2716 		/*
2717 		 * This buffer is on the 2nd Level ARC.
2718 		 */
2719 
2720 		buf->b_arc_access = ddi_get_lbolt();
2721 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2722 		arc_change_state(arc_mfu, buf, hash_lock);
2723 	} else {
2724 		ASSERT(!"invalid arc state");
2725 	}
2726 }
2727 
2728 /* a generic arc_done_func_t which you can use */
2729 /* ARGSUSED */
2730 void
2731 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2732 {
2733 	if (zio == NULL || zio->io_error == 0)
2734 		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2735 	VERIFY(arc_buf_remove_ref(buf, arg));
2736 }
2737 
2738 /* a generic arc_done_func_t */
2739 void
2740 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2741 {
2742 	arc_buf_t **bufp = arg;
2743 	if (zio && zio->io_error) {
2744 		VERIFY(arc_buf_remove_ref(buf, arg));
2745 		*bufp = NULL;
2746 	} else {
2747 		*bufp = buf;
2748 		ASSERT(buf->b_data);
2749 	}
2750 }
2751 
2752 static void
2753 arc_read_done(zio_t *zio)
2754 {
2755 	arc_buf_hdr_t	*hdr;
2756 	arc_buf_t	*buf;
2757 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2758 	kmutex_t	*hash_lock = NULL;
2759 	arc_callback_t	*callback_list, *acb;
2760 	int		freeable = FALSE;
2761 
2762 	buf = zio->io_private;
2763 	hdr = buf->b_hdr;
2764 
2765 	/*
2766 	 * The hdr was inserted into hash-table and removed from lists
2767 	 * prior to starting I/O.  We should find this header, since
2768 	 * it's in the hash table, and it should be legit since it's
2769 	 * not possible to evict it during the I/O.  The only possible
2770 	 * reason for it not to be found is if we were freed during the
2771 	 * read.
2772 	 */
2773 	if (HDR_IN_HASH_TABLE(hdr)) {
2774 		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
2775 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
2776 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
2777 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
2778 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
2779 
2780 		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
2781 		    &hash_lock);
2782 
2783 		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
2784 		    hash_lock == NULL) ||
2785 		    (found == hdr &&
2786 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2787 		    (found == hdr && HDR_L2_READING(hdr)));
2788 	}
2789 
2790 	hdr->b_flags &= ~ARC_L2_EVICTED;
2791 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2792 		hdr->b_flags &= ~ARC_L2CACHE;
2793 
2794 	/* byteswap if necessary */
2795 	callback_list = hdr->b_acb;
2796 	ASSERT(callback_list != NULL);
2797 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2798 		dmu_object_byteswap_t bswap =
2799 		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2800 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2801 		    byteswap_uint64_array :
2802 		    dmu_ot_byteswap[bswap].ob_func;
2803 		func(buf->b_data, hdr->b_size);
2804 	}
2805 
2806 	arc_cksum_compute(buf, B_FALSE);
2807 	arc_buf_watch(buf);
2808 
2809 	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2810 		/*
2811 		 * Only call arc_access on anonymous buffers.  This is because
2812 		 * if we've issued an I/O for an evicted buffer, we've already
2813 		 * called arc_access (to prevent any simultaneous readers from
2814 		 * getting confused).
2815 		 */
2816 		arc_access(hdr, hash_lock);
2817 	}
2818 
2819 	/* create copies of the data buffer for the callers */
2820 	abuf = buf;
2821 	for (acb = callback_list; acb; acb = acb->acb_next) {
2822 		if (acb->acb_done) {
2823 			if (abuf == NULL) {
2824 				ARCSTAT_BUMP(arcstat_duplicate_reads);
2825 				abuf = arc_buf_clone(buf);
2826 			}
2827 			acb->acb_buf = abuf;
2828 			abuf = NULL;
2829 		}
2830 	}
2831 	hdr->b_acb = NULL;
2832 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2833 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2834 	if (abuf == buf) {
2835 		ASSERT(buf->b_efunc == NULL);
2836 		ASSERT(hdr->b_datacnt == 1);
2837 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2838 	}
2839 
2840 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2841 
2842 	if (zio->io_error != 0) {
2843 		hdr->b_flags |= ARC_IO_ERROR;
2844 		if (hdr->b_state != arc_anon)
2845 			arc_change_state(arc_anon, hdr, hash_lock);
2846 		if (HDR_IN_HASH_TABLE(hdr))
2847 			buf_hash_remove(hdr);
2848 		freeable = refcount_is_zero(&hdr->b_refcnt);
2849 	}
2850 
2851 	/*
2852 	 * Broadcast before we drop the hash_lock to avoid the possibility
2853 	 * that the hdr (and hence the cv) might be freed before we get to
2854 	 * the cv_broadcast().
2855 	 */
2856 	cv_broadcast(&hdr->b_cv);
2857 
2858 	if (hash_lock) {
2859 		mutex_exit(hash_lock);
2860 	} else {
2861 		/*
2862 		 * This block was freed while we waited for the read to
2863 		 * complete.  It has been removed from the hash table and
2864 		 * moved to the anonymous state (so that it won't show up
2865 		 * in the cache).
2866 		 */
2867 		ASSERT3P(hdr->b_state, ==, arc_anon);
2868 		freeable = refcount_is_zero(&hdr->b_refcnt);
2869 	}
2870 
2871 	/* execute each callback and free its structure */
2872 	while ((acb = callback_list) != NULL) {
2873 		if (acb->acb_done)
2874 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2875 
2876 		if (acb->acb_zio_dummy != NULL) {
2877 			acb->acb_zio_dummy->io_error = zio->io_error;
2878 			zio_nowait(acb->acb_zio_dummy);
2879 		}
2880 
2881 		callback_list = acb->acb_next;
2882 		kmem_free(acb, sizeof (arc_callback_t));
2883 	}
2884 
2885 	if (freeable)
2886 		arc_hdr_destroy(hdr);
2887 }
2888 
2889 /*
2890  * "Read" the block at the specified DVA (in bp) via the
2891  * cache.  If the block is found in the cache, invoke the provided
2892  * callback immediately and return.  Note that the `zio' parameter
2893  * in the callback will be NULL in this case, since no IO was
2894  * required.  If the block is not in the cache pass the read request
2895  * on to the spa with a substitute callback function, so that the
2896  * requested block will be added to the cache.
2897  *
2898  * If a read request arrives for a block that has a read in-progress,
2899  * either wait for the in-progress read to complete (and return the
2900  * results); or, if this is a read with a "done" func, add a record
2901  * to the read to invoke the "done" func when the read completes,
2902  * and return; or just return.
2903  *
2904  * arc_read_done() will invoke all the requested "done" functions
2905  * for readers of this block.
2906  */
2907 int
2908 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2909     void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags,
2910     const zbookmark_phys_t *zb)
2911 {
2912 	arc_buf_hdr_t *hdr = NULL;
2913 	arc_buf_t *buf = NULL;
2914 	kmutex_t *hash_lock = NULL;
2915 	zio_t *rzio;
2916 	uint64_t guid = spa_load_guid(spa);
2917 
2918 	ASSERT(!BP_IS_EMBEDDED(bp) ||
2919 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2920 
2921 top:
2922 	if (!BP_IS_EMBEDDED(bp)) {
2923 		/*
2924 		 * Embedded BP's have no DVA and require no I/O to "read".
2925 		 * Create an anonymous arc buf to back it.
2926 		 */
2927 		hdr = buf_hash_find(guid, bp, &hash_lock);
2928 	}
2929 
2930 	if (hdr != NULL && hdr->b_datacnt > 0) {
2931 
2932 		*arc_flags |= ARC_CACHED;
2933 
2934 		if (HDR_IO_IN_PROGRESS(hdr)) {
2935 
2936 			if (*arc_flags & ARC_WAIT) {
2937 				cv_wait(&hdr->b_cv, hash_lock);
2938 				mutex_exit(hash_lock);
2939 				goto top;
2940 			}
2941 			ASSERT(*arc_flags & ARC_NOWAIT);
2942 
2943 			if (done) {
2944 				arc_callback_t	*acb = NULL;
2945 
2946 				acb = kmem_zalloc(sizeof (arc_callback_t),
2947 				    KM_SLEEP);
2948 				acb->acb_done = done;
2949 				acb->acb_private = private;
2950 				if (pio != NULL)
2951 					acb->acb_zio_dummy = zio_null(pio,
2952 					    spa, NULL, NULL, NULL, zio_flags);
2953 
2954 				ASSERT(acb->acb_done != NULL);
2955 				acb->acb_next = hdr->b_acb;
2956 				hdr->b_acb = acb;
2957 				add_reference(hdr, hash_lock, private);
2958 				mutex_exit(hash_lock);
2959 				return (0);
2960 			}
2961 			mutex_exit(hash_lock);
2962 			return (0);
2963 		}
2964 
2965 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2966 
2967 		if (done) {
2968 			add_reference(hdr, hash_lock, private);
2969 			/*
2970 			 * If this block is already in use, create a new
2971 			 * copy of the data so that we will be guaranteed
2972 			 * that arc_release() will always succeed.
2973 			 */
2974 			buf = hdr->b_buf;
2975 			ASSERT(buf);
2976 			ASSERT(buf->b_data);
2977 			if (HDR_BUF_AVAILABLE(hdr)) {
2978 				ASSERT(buf->b_efunc == NULL);
2979 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2980 			} else {
2981 				buf = arc_buf_clone(buf);
2982 			}
2983 
2984 		} else if (*arc_flags & ARC_PREFETCH &&
2985 		    refcount_count(&hdr->b_refcnt) == 0) {
2986 			hdr->b_flags |= ARC_PREFETCH;
2987 		}
2988 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2989 		arc_access(hdr, hash_lock);
2990 		if (*arc_flags & ARC_L2CACHE)
2991 			hdr->b_flags |= ARC_L2CACHE;
2992 		if (*arc_flags & ARC_L2COMPRESS)
2993 			hdr->b_flags |= ARC_L2COMPRESS;
2994 		mutex_exit(hash_lock);
2995 		ARCSTAT_BUMP(arcstat_hits);
2996 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2997 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2998 		    data, metadata, hits);
2999 
3000 		if (done)
3001 			done(NULL, buf, private);
3002 	} else {
3003 		uint64_t size = BP_GET_LSIZE(bp);
3004 		arc_callback_t *acb;
3005 		vdev_t *vd = NULL;
3006 		uint64_t addr = 0;
3007 		boolean_t devw = B_FALSE;
3008 		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
3009 		uint64_t b_asize = 0;
3010 
3011 		if (hdr == NULL) {
3012 			/* this block is not in the cache */
3013 			arc_buf_hdr_t *exists = NULL;
3014 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3015 			buf = arc_buf_alloc(spa, size, private, type);
3016 			hdr = buf->b_hdr;
3017 			if (!BP_IS_EMBEDDED(bp)) {
3018 				hdr->b_dva = *BP_IDENTITY(bp);
3019 				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3020 				hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3021 				exists = buf_hash_insert(hdr, &hash_lock);
3022 			}
3023 			if (exists != NULL) {
3024 				/* somebody beat us to the hash insert */
3025 				mutex_exit(hash_lock);
3026 				buf_discard_identity(hdr);
3027 				(void) arc_buf_remove_ref(buf, private);
3028 				goto top; /* restart the IO request */
3029 			}
3030 			/* if this is a prefetch, we don't have a reference */
3031 			if (*arc_flags & ARC_PREFETCH) {
3032 				(void) remove_reference(hdr, hash_lock,
3033 				    private);
3034 				hdr->b_flags |= ARC_PREFETCH;
3035 			}
3036 			if (*arc_flags & ARC_L2CACHE)
3037 				hdr->b_flags |= ARC_L2CACHE;
3038 			if (*arc_flags & ARC_L2COMPRESS)
3039 				hdr->b_flags |= ARC_L2COMPRESS;
3040 			if (BP_GET_LEVEL(bp) > 0)
3041 				hdr->b_flags |= ARC_INDIRECT;
3042 		} else {
3043 			/* this block is in the ghost cache */
3044 			ASSERT(GHOST_STATE(hdr->b_state));
3045 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3046 			ASSERT0(refcount_count(&hdr->b_refcnt));
3047 			ASSERT(hdr->b_buf == NULL);
3048 
3049 			/* if this is a prefetch, we don't have a reference */
3050 			if (*arc_flags & ARC_PREFETCH)
3051 				hdr->b_flags |= ARC_PREFETCH;
3052 			else
3053 				add_reference(hdr, hash_lock, private);
3054 			if (*arc_flags & ARC_L2CACHE)
3055 				hdr->b_flags |= ARC_L2CACHE;
3056 			if (*arc_flags & ARC_L2COMPRESS)
3057 				hdr->b_flags |= ARC_L2COMPRESS;
3058 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3059 			buf->b_hdr = hdr;
3060 			buf->b_data = NULL;
3061 			buf->b_efunc = NULL;
3062 			buf->b_private = NULL;
3063 			buf->b_next = NULL;
3064 			hdr->b_buf = buf;
3065 			ASSERT(hdr->b_datacnt == 0);
3066 			hdr->b_datacnt = 1;
3067 			arc_get_data_buf(buf);
3068 			arc_access(hdr, hash_lock);
3069 		}
3070 
3071 		ASSERT(!GHOST_STATE(hdr->b_state));
3072 
3073 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
3074 		acb->acb_done = done;
3075 		acb->acb_private = private;
3076 
3077 		ASSERT(hdr->b_acb == NULL);
3078 		hdr->b_acb = acb;
3079 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
3080 
3081 		if (hdr->b_l2hdr != NULL &&
3082 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3083 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3084 			addr = hdr->b_l2hdr->b_daddr;
3085 			b_compress = hdr->b_l2hdr->b_compress;
3086 			b_asize = hdr->b_l2hdr->b_asize;
3087 			/*
3088 			 * Lock out device removal.
3089 			 */
3090 			if (vdev_is_dead(vd) ||
3091 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3092 				vd = NULL;
3093 		}
3094 
3095 		if (hash_lock != NULL)
3096 			mutex_exit(hash_lock);
3097 
3098 		/*
3099 		 * At this point, we have a level 1 cache miss.  Try again in
3100 		 * L2ARC if possible.
3101 		 */
3102 		ASSERT3U(hdr->b_size, ==, size);
3103 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3104 		    uint64_t, size, zbookmark_phys_t *, zb);
3105 		ARCSTAT_BUMP(arcstat_misses);
3106 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3107 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3108 		    data, metadata, misses);
3109 
3110 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3111 			/*
3112 			 * Read from the L2ARC if the following are true:
3113 			 * 1. The L2ARC vdev was previously cached.
3114 			 * 2. This buffer still has L2ARC metadata.
3115 			 * 3. This buffer isn't currently writing to the L2ARC.
3116 			 * 4. The L2ARC entry wasn't evicted, which may
3117 			 *    also have invalidated the vdev.
3118 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
3119 			 */
3120 			if (hdr->b_l2hdr != NULL &&
3121 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3122 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3123 				l2arc_read_callback_t *cb;
3124 
3125 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3126 				ARCSTAT_BUMP(arcstat_l2_hits);
3127 
3128 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3129 				    KM_SLEEP);
3130 				cb->l2rcb_buf = buf;
3131 				cb->l2rcb_spa = spa;
3132 				cb->l2rcb_bp = *bp;
3133 				cb->l2rcb_zb = *zb;
3134 				cb->l2rcb_flags = zio_flags;
3135 				cb->l2rcb_compress = b_compress;
3136 
3137 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3138 				    addr + size < vd->vdev_psize -
3139 				    VDEV_LABEL_END_SIZE);
3140 
3141 				/*
3142 				 * l2arc read.  The SCL_L2ARC lock will be
3143 				 * released by l2arc_read_done().
3144 				 * Issue a null zio if the underlying buffer
3145 				 * was squashed to zero size by compression.
3146 				 */
3147 				if (b_compress == ZIO_COMPRESS_EMPTY) {
3148 					rzio = zio_null(pio, spa, vd,
3149 					    l2arc_read_done, cb,
3150 					    zio_flags | ZIO_FLAG_DONT_CACHE |
3151 					    ZIO_FLAG_CANFAIL |
3152 					    ZIO_FLAG_DONT_PROPAGATE |
3153 					    ZIO_FLAG_DONT_RETRY);
3154 				} else {
3155 					rzio = zio_read_phys(pio, vd, addr,
3156 					    b_asize, buf->b_data,
3157 					    ZIO_CHECKSUM_OFF,
3158 					    l2arc_read_done, cb, priority,
3159 					    zio_flags | ZIO_FLAG_DONT_CACHE |
3160 					    ZIO_FLAG_CANFAIL |
3161 					    ZIO_FLAG_DONT_PROPAGATE |
3162 					    ZIO_FLAG_DONT_RETRY, B_FALSE);
3163 				}
3164 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3165 				    zio_t *, rzio);
3166 				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
3167 
3168 				if (*arc_flags & ARC_NOWAIT) {
3169 					zio_nowait(rzio);
3170 					return (0);
3171 				}
3172 
3173 				ASSERT(*arc_flags & ARC_WAIT);
3174 				if (zio_wait(rzio) == 0)
3175 					return (0);
3176 
3177 				/* l2arc read error; goto zio_read() */
3178 			} else {
3179 				DTRACE_PROBE1(l2arc__miss,
3180 				    arc_buf_hdr_t *, hdr);
3181 				ARCSTAT_BUMP(arcstat_l2_misses);
3182 				if (HDR_L2_WRITING(hdr))
3183 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3184 				spa_config_exit(spa, SCL_L2ARC, vd);
3185 			}
3186 		} else {
3187 			if (vd != NULL)
3188 				spa_config_exit(spa, SCL_L2ARC, vd);
3189 			if (l2arc_ndev != 0) {
3190 				DTRACE_PROBE1(l2arc__miss,
3191 				    arc_buf_hdr_t *, hdr);
3192 				ARCSTAT_BUMP(arcstat_l2_misses);
3193 			}
3194 		}
3195 
3196 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3197 		    arc_read_done, buf, priority, zio_flags, zb);
3198 
3199 		if (*arc_flags & ARC_WAIT)
3200 			return (zio_wait(rzio));
3201 
3202 		ASSERT(*arc_flags & ARC_NOWAIT);
3203 		zio_nowait(rzio);
3204 	}
3205 	return (0);
3206 }
3207 
3208 void
3209 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3210 {
3211 	ASSERT(buf->b_hdr != NULL);
3212 	ASSERT(buf->b_hdr->b_state != arc_anon);
3213 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3214 	ASSERT(buf->b_efunc == NULL);
3215 	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3216 
3217 	buf->b_efunc = func;
3218 	buf->b_private = private;
3219 }
3220 
3221 /*
3222  * Notify the arc that a block was freed, and thus will never be used again.
3223  */
3224 void
3225 arc_freed(spa_t *spa, const blkptr_t *bp)
3226 {
3227 	arc_buf_hdr_t *hdr;
3228 	kmutex_t *hash_lock;
3229 	uint64_t guid = spa_load_guid(spa);
3230 
3231 	ASSERT(!BP_IS_EMBEDDED(bp));
3232 
3233 	hdr = buf_hash_find(guid, bp, &hash_lock);
3234 	if (hdr == NULL)
3235 		return;
3236 	if (HDR_BUF_AVAILABLE(hdr)) {
3237 		arc_buf_t *buf = hdr->b_buf;
3238 		add_reference(hdr, hash_lock, FTAG);
3239 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3240 		mutex_exit(hash_lock);
3241 
3242 		arc_release(buf, FTAG);
3243 		(void) arc_buf_remove_ref(buf, FTAG);
3244 	} else {
3245 		mutex_exit(hash_lock);
3246 	}
3247 
3248 }
3249 
3250 /*
3251  * Clear the user eviction callback set by arc_set_callback(), first calling
3252  * it if it exists.  Because the presence of a callback keeps an arc_buf cached
3253  * clearing the callback may result in the arc_buf being destroyed.  However,
3254  * it will not result in the *last* arc_buf being destroyed, hence the data
3255  * will remain cached in the ARC. We make a copy of the arc buffer here so
3256  * that we can process the callback without holding any locks.
3257  *
3258  * It's possible that the callback is already in the process of being cleared
3259  * by another thread.  In this case we can not clear the callback.
3260  *
3261  * Returns B_TRUE if the callback was successfully called and cleared.
3262  */
3263 boolean_t
3264 arc_clear_callback(arc_buf_t *buf)
3265 {
3266 	arc_buf_hdr_t *hdr;
3267 	kmutex_t *hash_lock;
3268 	arc_evict_func_t *efunc = buf->b_efunc;
3269 	void *private = buf->b_private;
3270 
3271 	mutex_enter(&buf->b_evict_lock);
3272 	hdr = buf->b_hdr;
3273 	if (hdr == NULL) {
3274 		/*
3275 		 * We are in arc_do_user_evicts().
3276 		 */
3277 		ASSERT(buf->b_data == NULL);
3278 		mutex_exit(&buf->b_evict_lock);
3279 		return (B_FALSE);
3280 	} else if (buf->b_data == NULL) {
3281 		/*
3282 		 * We are on the eviction list; process this buffer now
3283 		 * but let arc_do_user_evicts() do the reaping.
3284 		 */
3285 		buf->b_efunc = NULL;
3286 		mutex_exit(&buf->b_evict_lock);
3287 		VERIFY0(efunc(private));
3288 		return (B_TRUE);
3289 	}
3290 	hash_lock = HDR_LOCK(hdr);
3291 	mutex_enter(hash_lock);
3292 	hdr = buf->b_hdr;
3293 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3294 
3295 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3296 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3297 
3298 	buf->b_efunc = NULL;
3299 	buf->b_private = NULL;
3300 
3301 	if (hdr->b_datacnt > 1) {
3302 		mutex_exit(&buf->b_evict_lock);
3303 		arc_buf_destroy(buf, FALSE, TRUE);
3304 	} else {
3305 		ASSERT(buf == hdr->b_buf);
3306 		hdr->b_flags |= ARC_BUF_AVAILABLE;
3307 		mutex_exit(&buf->b_evict_lock);
3308 	}
3309 
3310 	mutex_exit(hash_lock);
3311 	VERIFY0(efunc(private));
3312 	return (B_TRUE);
3313 }
3314 
3315 /*
3316  * Release this buffer from the cache, making it an anonymous buffer.  This
3317  * must be done after a read and prior to modifying the buffer contents.
3318  * If the buffer has more than one reference, we must make
3319  * a new hdr for the buffer.
3320  */
3321 void
3322 arc_release(arc_buf_t *buf, void *tag)
3323 {
3324 	arc_buf_hdr_t *hdr;
3325 	kmutex_t *hash_lock = NULL;
3326 	l2arc_buf_hdr_t *l2hdr;
3327 	uint64_t buf_size;
3328 
3329 	/*
3330 	 * It would be nice to assert that if it's DMU metadata (level >
3331 	 * 0 || it's the dnode file), then it must be syncing context.
3332 	 * But we don't know that information at this level.
3333 	 */
3334 
3335 	mutex_enter(&buf->b_evict_lock);
3336 	hdr = buf->b_hdr;
3337 
3338 	/* this buffer is not on any list */
3339 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3340 
3341 	if (hdr->b_state == arc_anon) {
3342 		/* this buffer is already released */
3343 		ASSERT(buf->b_efunc == NULL);
3344 	} else {
3345 		hash_lock = HDR_LOCK(hdr);
3346 		mutex_enter(hash_lock);
3347 		hdr = buf->b_hdr;
3348 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3349 	}
3350 
3351 	l2hdr = hdr->b_l2hdr;
3352 	if (l2hdr) {
3353 		mutex_enter(&l2arc_buflist_mtx);
3354 		hdr->b_l2hdr = NULL;
3355 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3356 	}
3357 	buf_size = hdr->b_size;
3358 
3359 	/*
3360 	 * Do we have more than one buf?
3361 	 */
3362 	if (hdr->b_datacnt > 1) {
3363 		arc_buf_hdr_t *nhdr;
3364 		arc_buf_t **bufp;
3365 		uint64_t blksz = hdr->b_size;
3366 		uint64_t spa = hdr->b_spa;
3367 		arc_buf_contents_t type = hdr->b_type;
3368 		uint32_t flags = hdr->b_flags;
3369 
3370 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3371 		/*
3372 		 * Pull the data off of this hdr and attach it to
3373 		 * a new anonymous hdr.
3374 		 */
3375 		(void) remove_reference(hdr, hash_lock, tag);
3376 		bufp = &hdr->b_buf;
3377 		while (*bufp != buf)
3378 			bufp = &(*bufp)->b_next;
3379 		*bufp = buf->b_next;
3380 		buf->b_next = NULL;
3381 
3382 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3383 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3384 		if (refcount_is_zero(&hdr->b_refcnt)) {
3385 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3386 			ASSERT3U(*size, >=, hdr->b_size);
3387 			atomic_add_64(size, -hdr->b_size);
3388 		}
3389 
3390 		/*
3391 		 * We're releasing a duplicate user data buffer, update
3392 		 * our statistics accordingly.
3393 		 */
3394 		if (hdr->b_type == ARC_BUFC_DATA) {
3395 			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3396 			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3397 			    -hdr->b_size);
3398 		}
3399 		hdr->b_datacnt -= 1;
3400 		arc_cksum_verify(buf);
3401 		arc_buf_unwatch(buf);
3402 
3403 		mutex_exit(hash_lock);
3404 
3405 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3406 		nhdr->b_size = blksz;
3407 		nhdr->b_spa = spa;
3408 		nhdr->b_type = type;
3409 		nhdr->b_buf = buf;
3410 		nhdr->b_state = arc_anon;
3411 		nhdr->b_arc_access = 0;
3412 		nhdr->b_flags = flags & ARC_L2_WRITING;
3413 		nhdr->b_l2hdr = NULL;
3414 		nhdr->b_datacnt = 1;
3415 		nhdr->b_freeze_cksum = NULL;
3416 		(void) refcount_add(&nhdr->b_refcnt, tag);
3417 		buf->b_hdr = nhdr;
3418 		mutex_exit(&buf->b_evict_lock);
3419 		atomic_add_64(&arc_anon->arcs_size, blksz);
3420 	} else {
3421 		mutex_exit(&buf->b_evict_lock);
3422 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3423 		ASSERT(!list_link_active(&hdr->b_arc_node));
3424 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3425 		if (hdr->b_state != arc_anon)
3426 			arc_change_state(arc_anon, hdr, hash_lock);
3427 		hdr->b_arc_access = 0;
3428 		if (hash_lock)
3429 			mutex_exit(hash_lock);
3430 
3431 		buf_discard_identity(hdr);
3432 		arc_buf_thaw(buf);
3433 	}
3434 	buf->b_efunc = NULL;
3435 	buf->b_private = NULL;
3436 
3437 	if (l2hdr) {
3438 		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3439 		vdev_space_update(l2hdr->b_dev->l2ad_vdev,
3440 		    -l2hdr->b_asize, 0, 0);
3441 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3442 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3443 		mutex_exit(&l2arc_buflist_mtx);
3444 	}
3445 }
3446 
3447 int
3448 arc_released(arc_buf_t *buf)
3449 {
3450 	int released;
3451 
3452 	mutex_enter(&buf->b_evict_lock);
3453 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3454 	mutex_exit(&buf->b_evict_lock);
3455 	return (released);
3456 }
3457 
3458 #ifdef ZFS_DEBUG
3459 int
3460 arc_referenced(arc_buf_t *buf)
3461 {
3462 	int referenced;
3463 
3464 	mutex_enter(&buf->b_evict_lock);
3465 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3466 	mutex_exit(&buf->b_evict_lock);
3467 	return (referenced);
3468 }
3469 #endif
3470 
3471 static void
3472 arc_write_ready(zio_t *zio)
3473 {
3474 	arc_write_callback_t *callback = zio->io_private;
3475 	arc_buf_t *buf = callback->awcb_buf;
3476 	arc_buf_hdr_t *hdr = buf->b_hdr;
3477 
3478 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3479 	callback->awcb_ready(zio, buf, callback->awcb_private);
3480 
3481 	/*
3482 	 * If the IO is already in progress, then this is a re-write
3483 	 * attempt, so we need to thaw and re-compute the cksum.
3484 	 * It is the responsibility of the callback to handle the
3485 	 * accounting for any re-write attempt.
3486 	 */
3487 	if (HDR_IO_IN_PROGRESS(hdr)) {
3488 		mutex_enter(&hdr->b_freeze_lock);
3489 		if (hdr->b_freeze_cksum != NULL) {
3490 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3491 			hdr->b_freeze_cksum = NULL;
3492 		}
3493 		mutex_exit(&hdr->b_freeze_lock);
3494 	}
3495 	arc_cksum_compute(buf, B_FALSE);
3496 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3497 }
3498 
3499 /*
3500  * The SPA calls this callback for each physical write that happens on behalf
3501  * of a logical write.  See the comment in dbuf_write_physdone() for details.
3502  */
3503 static void
3504 arc_write_physdone(zio_t *zio)
3505 {
3506 	arc_write_callback_t *cb = zio->io_private;
3507 	if (cb->awcb_physdone != NULL)
3508 		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3509 }
3510 
3511 static void
3512 arc_write_done(zio_t *zio)
3513 {
3514 	arc_write_callback_t *callback = zio->io_private;
3515 	arc_buf_t *buf = callback->awcb_buf;
3516 	arc_buf_hdr_t *hdr = buf->b_hdr;
3517 
3518 	ASSERT(hdr->b_acb == NULL);
3519 
3520 	if (zio->io_error == 0) {
3521 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
3522 			buf_discard_identity(hdr);
3523 		} else {
3524 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3525 			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3526 			hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3527 		}
3528 	} else {
3529 		ASSERT(BUF_EMPTY(hdr));
3530 	}
3531 
3532 	/*
3533 	 * If the block to be written was all-zero or compressed enough to be
3534 	 * embedded in the BP, no write was performed so there will be no
3535 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
3536 	 * (and uncached).
3537 	 */
3538 	if (!BUF_EMPTY(hdr)) {
3539 		arc_buf_hdr_t *exists;
3540 		kmutex_t *hash_lock;
3541 
3542 		ASSERT(zio->io_error == 0);
3543 
3544 		arc_cksum_verify(buf);
3545 
3546 		exists = buf_hash_insert(hdr, &hash_lock);
3547 		if (exists) {
3548 			/*
3549 			 * This can only happen if we overwrite for
3550 			 * sync-to-convergence, because we remove
3551 			 * buffers from the hash table when we arc_free().
3552 			 */
3553 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3554 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3555 					panic("bad overwrite, hdr=%p exists=%p",
3556 					    (void *)hdr, (void *)exists);
3557 				ASSERT(refcount_is_zero(&exists->b_refcnt));
3558 				arc_change_state(arc_anon, exists, hash_lock);
3559 				mutex_exit(hash_lock);
3560 				arc_hdr_destroy(exists);
3561 				exists = buf_hash_insert(hdr, &hash_lock);
3562 				ASSERT3P(exists, ==, NULL);
3563 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3564 				/* nopwrite */
3565 				ASSERT(zio->io_prop.zp_nopwrite);
3566 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3567 					panic("bad nopwrite, hdr=%p exists=%p",
3568 					    (void *)hdr, (void *)exists);
3569 			} else {
3570 				/* Dedup */
3571 				ASSERT(hdr->b_datacnt == 1);
3572 				ASSERT(hdr->b_state == arc_anon);
3573 				ASSERT(BP_GET_DEDUP(zio->io_bp));
3574 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3575 			}
3576 		}
3577 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3578 		/* if it's not anon, we are doing a scrub */
3579 		if (!exists && hdr->b_state == arc_anon)
3580 			arc_access(hdr, hash_lock);
3581 		mutex_exit(hash_lock);
3582 	} else {
3583 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3584 	}
3585 
3586 	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3587 	callback->awcb_done(zio, buf, callback->awcb_private);
3588 
3589 	kmem_free(callback, sizeof (arc_write_callback_t));
3590 }
3591 
3592 zio_t *
3593 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3594     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
3595     const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
3596     arc_done_func_t *done, void *private, zio_priority_t priority,
3597     int zio_flags, const zbookmark_phys_t *zb)
3598 {
3599 	arc_buf_hdr_t *hdr = buf->b_hdr;
3600 	arc_write_callback_t *callback;
3601 	zio_t *zio;
3602 
3603 	ASSERT(ready != NULL);
3604 	ASSERT(done != NULL);
3605 	ASSERT(!HDR_IO_ERROR(hdr));
3606 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3607 	ASSERT(hdr->b_acb == NULL);
3608 	if (l2arc)
3609 		hdr->b_flags |= ARC_L2CACHE;
3610 	if (l2arc_compress)
3611 		hdr->b_flags |= ARC_L2COMPRESS;
3612 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3613 	callback->awcb_ready = ready;
3614 	callback->awcb_physdone = physdone;
3615 	callback->awcb_done = done;
3616 	callback->awcb_private = private;
3617 	callback->awcb_buf = buf;
3618 
3619 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3620 	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
3621 	    priority, zio_flags, zb);
3622 
3623 	return (zio);
3624 }
3625 
3626 static int
3627 arc_memory_throttle(uint64_t reserve, uint64_t txg)
3628 {
3629 #ifdef _KERNEL
3630 	uint64_t available_memory = ptob(freemem);
3631 	static uint64_t page_load = 0;
3632 	static uint64_t last_txg = 0;
3633 
3634 #if defined(__i386)
3635 	available_memory =
3636 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3637 #endif
3638 
3639 	if (freemem > physmem * arc_lotsfree_percent / 100)
3640 		return (0);
3641 
3642 	if (txg > last_txg) {
3643 		last_txg = txg;
3644 		page_load = 0;
3645 	}
3646 	/*
3647 	 * If we are in pageout, we know that memory is already tight,
3648 	 * the arc is already going to be evicting, so we just want to
3649 	 * continue to let page writes occur as quickly as possible.
3650 	 */
3651 	if (curproc == proc_pageout) {
3652 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3653 			return (SET_ERROR(ERESTART));
3654 		/* Note: reserve is inflated, so we deflate */
3655 		page_load += reserve / 8;
3656 		return (0);
3657 	} else if (page_load > 0 && arc_reclaim_needed()) {
3658 		/* memory is low, delay before restarting */
3659 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3660 		return (SET_ERROR(EAGAIN));
3661 	}
3662 	page_load = 0;
3663 #endif
3664 	return (0);
3665 }
3666 
3667 void
3668 arc_tempreserve_clear(uint64_t reserve)
3669 {
3670 	atomic_add_64(&arc_tempreserve, -reserve);
3671 	ASSERT((int64_t)arc_tempreserve >= 0);
3672 }
3673 
3674 int
3675 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3676 {
3677 	int error;
3678 	uint64_t anon_size;
3679 
3680 	if (reserve > arc_c/4 && !arc_no_grow)
3681 		arc_c = MIN(arc_c_max, reserve * 4);
3682 	if (reserve > arc_c)
3683 		return (SET_ERROR(ENOMEM));
3684 
3685 	/*
3686 	 * Don't count loaned bufs as in flight dirty data to prevent long
3687 	 * network delays from blocking transactions that are ready to be
3688 	 * assigned to a txg.
3689 	 */
3690 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3691 
3692 	/*
3693 	 * Writes will, almost always, require additional memory allocations
3694 	 * in order to compress/encrypt/etc the data.  We therefore need to
3695 	 * make sure that there is sufficient available memory for this.
3696 	 */
3697 	error = arc_memory_throttle(reserve, txg);
3698 	if (error != 0)
3699 		return (error);
3700 
3701 	/*
3702 	 * Throttle writes when the amount of dirty data in the cache
3703 	 * gets too large.  We try to keep the cache less than half full
3704 	 * of dirty blocks so that our sync times don't grow too large.
3705 	 * Note: if two requests come in concurrently, we might let them
3706 	 * both succeed, when one of them should fail.  Not a huge deal.
3707 	 */
3708 
3709 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3710 	    anon_size > arc_c / 4) {
3711 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3712 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3713 		    arc_tempreserve>>10,
3714 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3715 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3716 		    reserve>>10, arc_c>>10);
3717 		return (SET_ERROR(ERESTART));
3718 	}
3719 	atomic_add_64(&arc_tempreserve, reserve);
3720 	return (0);
3721 }
3722 
3723 void
3724 arc_init(void)
3725 {
3726 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3727 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3728 
3729 	/* Convert seconds to clock ticks */
3730 	arc_min_prefetch_lifespan = 1 * hz;
3731 
3732 	/* Start out with 1/8 of all memory */
3733 	arc_c = physmem * PAGESIZE / 8;
3734 
3735 #ifdef _KERNEL
3736 	/*
3737 	 * On architectures where the physical memory can be larger
3738 	 * than the addressable space (intel in 32-bit mode), we may
3739 	 * need to limit the cache to 1/8 of VM size.
3740 	 */
3741 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3742 #endif
3743 
3744 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3745 	arc_c_min = MAX(arc_c / 4, 64<<20);
3746 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3747 	if (arc_c * 8 >= 1<<30)
3748 		arc_c_max = (arc_c * 8) - (1<<30);
3749 	else
3750 		arc_c_max = arc_c_min;
3751 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3752 
3753 	/*
3754 	 * Allow the tunables to override our calculations if they are
3755 	 * reasonable (ie. over 64MB)
3756 	 */
3757 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3758 		arc_c_max = zfs_arc_max;
3759 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3760 		arc_c_min = zfs_arc_min;
3761 
3762 	arc_c = arc_c_max;
3763 	arc_p = (arc_c >> 1);
3764 
3765 	/* limit meta-data to 1/4 of the arc capacity */
3766 	arc_meta_limit = arc_c_max / 4;
3767 
3768 	/* Allow the tunable to override if it is reasonable */
3769 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3770 		arc_meta_limit = zfs_arc_meta_limit;
3771 
3772 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3773 		arc_c_min = arc_meta_limit / 2;
3774 
3775 	if (zfs_arc_grow_retry > 0)
3776 		arc_grow_retry = zfs_arc_grow_retry;
3777 
3778 	if (zfs_arc_shrink_shift > 0)
3779 		arc_shrink_shift = zfs_arc_shrink_shift;
3780 
3781 	if (zfs_arc_p_min_shift > 0)
3782 		arc_p_min_shift = zfs_arc_p_min_shift;
3783 
3784 	/* if kmem_flags are set, lets try to use less memory */
3785 	if (kmem_debugging())
3786 		arc_c = arc_c / 2;
3787 	if (arc_c < arc_c_min)
3788 		arc_c = arc_c_min;
3789 
3790 	arc_anon = &ARC_anon;
3791 	arc_mru = &ARC_mru;
3792 	arc_mru_ghost = &ARC_mru_ghost;
3793 	arc_mfu = &ARC_mfu;
3794 	arc_mfu_ghost = &ARC_mfu_ghost;
3795 	arc_l2c_only = &ARC_l2c_only;
3796 	arc_size = 0;
3797 
3798 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3799 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3800 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3801 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3802 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3803 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3804 
3805 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3806 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3807 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3808 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3809 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3810 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3811 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3812 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3813 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3814 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3815 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3816 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3817 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3818 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3819 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3820 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3821 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3822 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3823 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3824 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3825 
3826 	buf_init();
3827 
3828 	arc_thread_exit = 0;
3829 	arc_eviction_list = NULL;
3830 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3831 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3832 
3833 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3834 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3835 
3836 	if (arc_ksp != NULL) {
3837 		arc_ksp->ks_data = &arc_stats;
3838 		kstat_install(arc_ksp);
3839 	}
3840 
3841 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3842 	    TS_RUN, minclsyspri);
3843 
3844 	arc_dead = FALSE;
3845 	arc_warm = B_FALSE;
3846 
3847 	/*
3848 	 * Calculate maximum amount of dirty data per pool.
3849 	 *
3850 	 * If it has been set by /etc/system, take that.
3851 	 * Otherwise, use a percentage of physical memory defined by
3852 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
3853 	 * zfs_dirty_data_max_max (default 4GB).
3854 	 */
3855 	if (zfs_dirty_data_max == 0) {
3856 		zfs_dirty_data_max = physmem * PAGESIZE *
3857 		    zfs_dirty_data_max_percent / 100;
3858 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
3859 		    zfs_dirty_data_max_max);
3860 	}
3861 }
3862 
3863 void
3864 arc_fini(void)
3865 {
3866 	mutex_enter(&arc_reclaim_thr_lock);
3867 	arc_thread_exit = 1;
3868 	while (arc_thread_exit != 0)
3869 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3870 	mutex_exit(&arc_reclaim_thr_lock);
3871 
3872 	arc_flush(NULL);
3873 
3874 	arc_dead = TRUE;
3875 
3876 	if (arc_ksp != NULL) {
3877 		kstat_delete(arc_ksp);
3878 		arc_ksp = NULL;
3879 	}
3880 
3881 	mutex_destroy(&arc_eviction_mtx);
3882 	mutex_destroy(&arc_reclaim_thr_lock);
3883 	cv_destroy(&arc_reclaim_thr_cv);
3884 
3885 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3886 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3887 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3888 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3889 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3890 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3891 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3892 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3893 
3894 	mutex_destroy(&arc_anon->arcs_mtx);
3895 	mutex_destroy(&arc_mru->arcs_mtx);
3896 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3897 	mutex_destroy(&arc_mfu->arcs_mtx);
3898 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3899 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3900 
3901 	buf_fini();
3902 
3903 	ASSERT(arc_loaned_bytes == 0);
3904 }
3905 
3906 /*
3907  * Level 2 ARC
3908  *
3909  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3910  * It uses dedicated storage devices to hold cached data, which are populated
3911  * using large infrequent writes.  The main role of this cache is to boost
3912  * the performance of random read workloads.  The intended L2ARC devices
3913  * include short-stroked disks, solid state disks, and other media with
3914  * substantially faster read latency than disk.
3915  *
3916  *                 +-----------------------+
3917  *                 |         ARC           |
3918  *                 +-----------------------+
3919  *                    |         ^     ^
3920  *                    |         |     |
3921  *      l2arc_feed_thread()    arc_read()
3922  *                    |         |     |
3923  *                    |  l2arc read   |
3924  *                    V         |     |
3925  *               +---------------+    |
3926  *               |     L2ARC     |    |
3927  *               +---------------+    |
3928  *                   |    ^           |
3929  *          l2arc_write() |           |
3930  *                   |    |           |
3931  *                   V    |           |
3932  *                 +-------+      +-------+
3933  *                 | vdev  |      | vdev  |
3934  *                 | cache |      | cache |
3935  *                 +-------+      +-------+
3936  *                 +=========+     .-----.
3937  *                 :  L2ARC  :    |-_____-|
3938  *                 : devices :    | Disks |
3939  *                 +=========+    `-_____-'
3940  *
3941  * Read requests are satisfied from the following sources, in order:
3942  *
3943  *	1) ARC
3944  *	2) vdev cache of L2ARC devices
3945  *	3) L2ARC devices
3946  *	4) vdev cache of disks
3947  *	5) disks
3948  *
3949  * Some L2ARC device types exhibit extremely slow write performance.
3950  * To accommodate for this there are some significant differences between
3951  * the L2ARC and traditional cache design:
3952  *
3953  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3954  * the ARC behave as usual, freeing buffers and placing headers on ghost
3955  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3956  * this would add inflated write latencies for all ARC memory pressure.
3957  *
3958  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3959  * It does this by periodically scanning buffers from the eviction-end of
3960  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3961  * not already there. It scans until a headroom of buffers is satisfied,
3962  * which itself is a buffer for ARC eviction. If a compressible buffer is
3963  * found during scanning and selected for writing to an L2ARC device, we
3964  * temporarily boost scanning headroom during the next scan cycle to make
3965  * sure we adapt to compression effects (which might significantly reduce
3966  * the data volume we write to L2ARC). The thread that does this is
3967  * l2arc_feed_thread(), illustrated below; example sizes are included to
3968  * provide a better sense of ratio than this diagram:
3969  *
3970  *	       head -->                        tail
3971  *	        +---------------------+----------+
3972  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3973  *	        +---------------------+----------+   |   o L2ARC eligible
3974  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3975  *	        +---------------------+----------+   |
3976  *	             15.9 Gbytes      ^ 32 Mbytes    |
3977  *	                           headroom          |
3978  *	                                      l2arc_feed_thread()
3979  *	                                             |
3980  *	                 l2arc write hand <--[oooo]--'
3981  *	                         |           8 Mbyte
3982  *	                         |          write max
3983  *	                         V
3984  *		  +==============================+
3985  *	L2ARC dev |####|#|###|###|    |####| ... |
3986  *	          +==============================+
3987  *	                     32 Gbytes
3988  *
3989  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3990  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3991  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3992  * safe to say that this is an uncommon case, since buffers at the end of
3993  * the ARC lists have moved there due to inactivity.
3994  *
3995  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3996  * then the L2ARC simply misses copying some buffers.  This serves as a
3997  * pressure valve to prevent heavy read workloads from both stalling the ARC
3998  * with waits and clogging the L2ARC with writes.  This also helps prevent
3999  * the potential for the L2ARC to churn if it attempts to cache content too
4000  * quickly, such as during backups of the entire pool.
4001  *
4002  * 5. After system boot and before the ARC has filled main memory, there are
4003  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4004  * lists can remain mostly static.  Instead of searching from tail of these
4005  * lists as pictured, the l2arc_feed_thread() will search from the list heads
4006  * for eligible buffers, greatly increasing its chance of finding them.
4007  *
4008  * The L2ARC device write speed is also boosted during this time so that
4009  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
4010  * there are no L2ARC reads, and no fear of degrading read performance
4011  * through increased writes.
4012  *
4013  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4014  * the vdev queue can aggregate them into larger and fewer writes.  Each
4015  * device is written to in a rotor fashion, sweeping writes through
4016  * available space then repeating.
4017  *
4018  * 7. The L2ARC does not store dirty content.  It never needs to flush
4019  * write buffers back to disk based storage.
4020  *
4021  * 8. If an ARC buffer is written (and dirtied) which also exists in the
4022  * L2ARC, the now stale L2ARC buffer is immediately dropped.
4023  *
4024  * The performance of the L2ARC can be tweaked by a number of tunables, which
4025  * may be necessary for different workloads:
4026  *
4027  *	l2arc_write_max		max write bytes per interval
4028  *	l2arc_write_boost	extra write bytes during device warmup
4029  *	l2arc_noprefetch	skip caching prefetched buffers
4030  *	l2arc_headroom		number of max device writes to precache
4031  *	l2arc_headroom_boost	when we find compressed buffers during ARC
4032  *				scanning, we multiply headroom by this
4033  *				percentage factor for the next scan cycle,
4034  *				since more compressed buffers are likely to
4035  *				be present
4036  *	l2arc_feed_secs		seconds between L2ARC writing
4037  *
4038  * Tunables may be removed or added as future performance improvements are
4039  * integrated, and also may become zpool properties.
4040  *
4041  * There are three key functions that control how the L2ARC warms up:
4042  *
4043  *	l2arc_write_eligible()	check if a buffer is eligible to cache
4044  *	l2arc_write_size()	calculate how much to write
4045  *	l2arc_write_interval()	calculate sleep delay between writes
4046  *
4047  * These three functions determine what to write, how much, and how quickly
4048  * to send writes.
4049  */
4050 
4051 static boolean_t
4052 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4053 {
4054 	/*
4055 	 * A buffer is *not* eligible for the L2ARC if it:
4056 	 * 1. belongs to a different spa.
4057 	 * 2. is already cached on the L2ARC.
4058 	 * 3. has an I/O in progress (it may be an incomplete read).
4059 	 * 4. is flagged not eligible (zfs property).
4060 	 */
4061 	if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
4062 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
4063 		return (B_FALSE);
4064 
4065 	return (B_TRUE);
4066 }
4067 
4068 static uint64_t
4069 l2arc_write_size(void)
4070 {
4071 	uint64_t size;
4072 
4073 	/*
4074 	 * Make sure our globals have meaningful values in case the user
4075 	 * altered them.
4076 	 */
4077 	size = l2arc_write_max;
4078 	if (size == 0) {
4079 		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4080 		    "be greater than zero, resetting it to the default (%d)",
4081 		    L2ARC_WRITE_SIZE);
4082 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
4083 	}
4084 
4085 	if (arc_warm == B_FALSE)
4086 		size += l2arc_write_boost;
4087 
4088 	return (size);
4089 
4090 }
4091 
4092 static clock_t
4093 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4094 {
4095 	clock_t interval, next, now;
4096 
4097 	/*
4098 	 * If the ARC lists are busy, increase our write rate; if the
4099 	 * lists are stale, idle back.  This is achieved by checking
4100 	 * how much we previously wrote - if it was more than half of
4101 	 * what we wanted, schedule the next write much sooner.
4102 	 */
4103 	if (l2arc_feed_again && wrote > (wanted / 2))
4104 		interval = (hz * l2arc_feed_min_ms) / 1000;
4105 	else
4106 		interval = hz * l2arc_feed_secs;
4107 
4108 	now = ddi_get_lbolt();
4109 	next = MAX(now, MIN(now + interval, began + interval));
4110 
4111 	return (next);
4112 }
4113 
4114 static void
4115 l2arc_hdr_stat_add(void)
4116 {
4117 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4118 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4119 }
4120 
4121 static void
4122 l2arc_hdr_stat_remove(void)
4123 {
4124 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4125 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4126 }
4127 
4128 /*
4129  * Cycle through L2ARC devices.  This is how L2ARC load balances.
4130  * If a device is returned, this also returns holding the spa config lock.
4131  */
4132 static l2arc_dev_t *
4133 l2arc_dev_get_next(void)
4134 {
4135 	l2arc_dev_t *first, *next = NULL;
4136 
4137 	/*
4138 	 * Lock out the removal of spas (spa_namespace_lock), then removal
4139 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4140 	 * both locks will be dropped and a spa config lock held instead.
4141 	 */
4142 	mutex_enter(&spa_namespace_lock);
4143 	mutex_enter(&l2arc_dev_mtx);
4144 
4145 	/* if there are no vdevs, there is nothing to do */
4146 	if (l2arc_ndev == 0)
4147 		goto out;
4148 
4149 	first = NULL;
4150 	next = l2arc_dev_last;
4151 	do {
4152 		/* loop around the list looking for a non-faulted vdev */
4153 		if (next == NULL) {
4154 			next = list_head(l2arc_dev_list);
4155 		} else {
4156 			next = list_next(l2arc_dev_list, next);
4157 			if (next == NULL)
4158 				next = list_head(l2arc_dev_list);
4159 		}
4160 
4161 		/* if we have come back to the start, bail out */
4162 		if (first == NULL)
4163 			first = next;
4164 		else if (next == first)
4165 			break;
4166 
4167 	} while (vdev_is_dead(next->l2ad_vdev));
4168 
4169 	/* if we were unable to find any usable vdevs, return NULL */
4170 	if (vdev_is_dead(next->l2ad_vdev))
4171 		next = NULL;
4172 
4173 	l2arc_dev_last = next;
4174 
4175 out:
4176 	mutex_exit(&l2arc_dev_mtx);
4177 
4178 	/*
4179 	 * Grab the config lock to prevent the 'next' device from being
4180 	 * removed while we are writing to it.
4181 	 */
4182 	if (next != NULL)
4183 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4184 	mutex_exit(&spa_namespace_lock);
4185 
4186 	return (next);
4187 }
4188 
4189 /*
4190  * Free buffers that were tagged for destruction.
4191  */
4192 static void
4193 l2arc_do_free_on_write()
4194 {
4195 	list_t *buflist;
4196 	l2arc_data_free_t *df, *df_prev;
4197 
4198 	mutex_enter(&l2arc_free_on_write_mtx);
4199 	buflist = l2arc_free_on_write;
4200 
4201 	for (df = list_tail(buflist); df; df = df_prev) {
4202 		df_prev = list_prev(buflist, df);
4203 		ASSERT(df->l2df_data != NULL);
4204 		ASSERT(df->l2df_func != NULL);
4205 		df->l2df_func(df->l2df_data, df->l2df_size);
4206 		list_remove(buflist, df);
4207 		kmem_free(df, sizeof (l2arc_data_free_t));
4208 	}
4209 
4210 	mutex_exit(&l2arc_free_on_write_mtx);
4211 }
4212 
4213 /*
4214  * A write to a cache device has completed.  Update all headers to allow
4215  * reads from these buffers to begin.
4216  */
4217 static void
4218 l2arc_write_done(zio_t *zio)
4219 {
4220 	l2arc_write_callback_t *cb;
4221 	l2arc_dev_t *dev;
4222 	list_t *buflist;
4223 	arc_buf_hdr_t *head, *ab, *ab_prev;
4224 	l2arc_buf_hdr_t *abl2;
4225 	kmutex_t *hash_lock;
4226 	int64_t bytes_dropped = 0;
4227 
4228 	cb = zio->io_private;
4229 	ASSERT(cb != NULL);
4230 	dev = cb->l2wcb_dev;
4231 	ASSERT(dev != NULL);
4232 	head = cb->l2wcb_head;
4233 	ASSERT(head != NULL);
4234 	buflist = dev->l2ad_buflist;
4235 	ASSERT(buflist != NULL);
4236 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4237 	    l2arc_write_callback_t *, cb);
4238 
4239 	if (zio->io_error != 0)
4240 		ARCSTAT_BUMP(arcstat_l2_writes_error);
4241 
4242 	mutex_enter(&l2arc_buflist_mtx);
4243 
4244 	/*
4245 	 * All writes completed, or an error was hit.
4246 	 */
4247 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4248 		ab_prev = list_prev(buflist, ab);
4249 		abl2 = ab->b_l2hdr;
4250 
4251 		/*
4252 		 * Release the temporary compressed buffer as soon as possible.
4253 		 */
4254 		if (abl2->b_compress != ZIO_COMPRESS_OFF)
4255 			l2arc_release_cdata_buf(ab);
4256 
4257 		hash_lock = HDR_LOCK(ab);
4258 		if (!mutex_tryenter(hash_lock)) {
4259 			/*
4260 			 * This buffer misses out.  It may be in a stage
4261 			 * of eviction.  Its ARC_L2_WRITING flag will be
4262 			 * left set, denying reads to this buffer.
4263 			 */
4264 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4265 			continue;
4266 		}
4267 
4268 		if (zio->io_error != 0) {
4269 			/*
4270 			 * Error - drop L2ARC entry.
4271 			 */
4272 			list_remove(buflist, ab);
4273 			ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4274 			bytes_dropped += abl2->b_asize;
4275 			ab->b_l2hdr = NULL;
4276 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4277 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4278 		}
4279 
4280 		/*
4281 		 * Allow ARC to begin reads to this L2ARC entry.
4282 		 */
4283 		ab->b_flags &= ~ARC_L2_WRITING;
4284 
4285 		mutex_exit(hash_lock);
4286 	}
4287 
4288 	atomic_inc_64(&l2arc_writes_done);
4289 	list_remove(buflist, head);
4290 	kmem_cache_free(hdr_cache, head);
4291 	mutex_exit(&l2arc_buflist_mtx);
4292 
4293 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
4294 
4295 	l2arc_do_free_on_write();
4296 
4297 	kmem_free(cb, sizeof (l2arc_write_callback_t));
4298 }
4299 
4300 /*
4301  * A read to a cache device completed.  Validate buffer contents before
4302  * handing over to the regular ARC routines.
4303  */
4304 static void
4305 l2arc_read_done(zio_t *zio)
4306 {
4307 	l2arc_read_callback_t *cb;
4308 	arc_buf_hdr_t *hdr;
4309 	arc_buf_t *buf;
4310 	kmutex_t *hash_lock;
4311 	int equal;
4312 
4313 	ASSERT(zio->io_vd != NULL);
4314 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4315 
4316 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4317 
4318 	cb = zio->io_private;
4319 	ASSERT(cb != NULL);
4320 	buf = cb->l2rcb_buf;
4321 	ASSERT(buf != NULL);
4322 
4323 	hash_lock = HDR_LOCK(buf->b_hdr);
4324 	mutex_enter(hash_lock);
4325 	hdr = buf->b_hdr;
4326 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4327 
4328 	/*
4329 	 * If the buffer was compressed, decompress it first.
4330 	 */
4331 	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4332 		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4333 	ASSERT(zio->io_data != NULL);
4334 
4335 	/*
4336 	 * Check this survived the L2ARC journey.
4337 	 */
4338 	equal = arc_cksum_equal(buf);
4339 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4340 		mutex_exit(hash_lock);
4341 		zio->io_private = buf;
4342 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4343 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4344 		arc_read_done(zio);
4345 	} else {
4346 		mutex_exit(hash_lock);
4347 		/*
4348 		 * Buffer didn't survive caching.  Increment stats and
4349 		 * reissue to the original storage device.
4350 		 */
4351 		if (zio->io_error != 0) {
4352 			ARCSTAT_BUMP(arcstat_l2_io_error);
4353 		} else {
4354 			zio->io_error = SET_ERROR(EIO);
4355 		}
4356 		if (!equal)
4357 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4358 
4359 		/*
4360 		 * If there's no waiter, issue an async i/o to the primary
4361 		 * storage now.  If there *is* a waiter, the caller must
4362 		 * issue the i/o in a context where it's OK to block.
4363 		 */
4364 		if (zio->io_waiter == NULL) {
4365 			zio_t *pio = zio_unique_parent(zio);
4366 
4367 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4368 
4369 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4370 			    buf->b_data, zio->io_size, arc_read_done, buf,
4371 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4372 		}
4373 	}
4374 
4375 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4376 }
4377 
4378 /*
4379  * This is the list priority from which the L2ARC will search for pages to
4380  * cache.  This is used within loops (0..3) to cycle through lists in the
4381  * desired order.  This order can have a significant effect on cache
4382  * performance.
4383  *
4384  * Currently the metadata lists are hit first, MFU then MRU, followed by
4385  * the data lists.  This function returns a locked list, and also returns
4386  * the lock pointer.
4387  */
4388 static list_t *
4389 l2arc_list_locked(int list_num, kmutex_t **lock)
4390 {
4391 	list_t *list = NULL;
4392 
4393 	ASSERT(list_num >= 0 && list_num <= 3);
4394 
4395 	switch (list_num) {
4396 	case 0:
4397 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4398 		*lock = &arc_mfu->arcs_mtx;
4399 		break;
4400 	case 1:
4401 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4402 		*lock = &arc_mru->arcs_mtx;
4403 		break;
4404 	case 2:
4405 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4406 		*lock = &arc_mfu->arcs_mtx;
4407 		break;
4408 	case 3:
4409 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4410 		*lock = &arc_mru->arcs_mtx;
4411 		break;
4412 	}
4413 
4414 	ASSERT(!(MUTEX_HELD(*lock)));
4415 	mutex_enter(*lock);
4416 	return (list);
4417 }
4418 
4419 /*
4420  * Evict buffers from the device write hand to the distance specified in
4421  * bytes.  This distance may span populated buffers, it may span nothing.
4422  * This is clearing a region on the L2ARC device ready for writing.
4423  * If the 'all' boolean is set, every buffer is evicted.
4424  */
4425 static void
4426 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4427 {
4428 	list_t *buflist;
4429 	l2arc_buf_hdr_t *abl2;
4430 	arc_buf_hdr_t *ab, *ab_prev;
4431 	kmutex_t *hash_lock;
4432 	uint64_t taddr;
4433 	int64_t bytes_evicted = 0;
4434 
4435 	buflist = dev->l2ad_buflist;
4436 
4437 	if (buflist == NULL)
4438 		return;
4439 
4440 	if (!all && dev->l2ad_first) {
4441 		/*
4442 		 * This is the first sweep through the device.  There is
4443 		 * nothing to evict.
4444 		 */
4445 		return;
4446 	}
4447 
4448 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4449 		/*
4450 		 * When nearing the end of the device, evict to the end
4451 		 * before the device write hand jumps to the start.
4452 		 */
4453 		taddr = dev->l2ad_end;
4454 	} else {
4455 		taddr = dev->l2ad_hand + distance;
4456 	}
4457 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4458 	    uint64_t, taddr, boolean_t, all);
4459 
4460 top:
4461 	mutex_enter(&l2arc_buflist_mtx);
4462 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4463 		ab_prev = list_prev(buflist, ab);
4464 
4465 		hash_lock = HDR_LOCK(ab);
4466 		if (!mutex_tryenter(hash_lock)) {
4467 			/*
4468 			 * Missed the hash lock.  Retry.
4469 			 */
4470 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4471 			mutex_exit(&l2arc_buflist_mtx);
4472 			mutex_enter(hash_lock);
4473 			mutex_exit(hash_lock);
4474 			goto top;
4475 		}
4476 
4477 		if (HDR_L2_WRITE_HEAD(ab)) {
4478 			/*
4479 			 * We hit a write head node.  Leave it for
4480 			 * l2arc_write_done().
4481 			 */
4482 			list_remove(buflist, ab);
4483 			mutex_exit(hash_lock);
4484 			continue;
4485 		}
4486 
4487 		if (!all && ab->b_l2hdr != NULL &&
4488 		    (ab->b_l2hdr->b_daddr > taddr ||
4489 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4490 			/*
4491 			 * We've evicted to the target address,
4492 			 * or the end of the device.
4493 			 */
4494 			mutex_exit(hash_lock);
4495 			break;
4496 		}
4497 
4498 		if (HDR_FREE_IN_PROGRESS(ab)) {
4499 			/*
4500 			 * Already on the path to destruction.
4501 			 */
4502 			mutex_exit(hash_lock);
4503 			continue;
4504 		}
4505 
4506 		if (ab->b_state == arc_l2c_only) {
4507 			ASSERT(!HDR_L2_READING(ab));
4508 			/*
4509 			 * This doesn't exist in the ARC.  Destroy.
4510 			 * arc_hdr_destroy() will call list_remove()
4511 			 * and decrement arcstat_l2_size.
4512 			 */
4513 			arc_change_state(arc_anon, ab, hash_lock);
4514 			arc_hdr_destroy(ab);
4515 		} else {
4516 			/*
4517 			 * Invalidate issued or about to be issued
4518 			 * reads, since we may be about to write
4519 			 * over this location.
4520 			 */
4521 			if (HDR_L2_READING(ab)) {
4522 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4523 				ab->b_flags |= ARC_L2_EVICTED;
4524 			}
4525 
4526 			/*
4527 			 * Tell ARC this no longer exists in L2ARC.
4528 			 */
4529 			if (ab->b_l2hdr != NULL) {
4530 				abl2 = ab->b_l2hdr;
4531 				ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4532 				bytes_evicted += abl2->b_asize;
4533 				ab->b_l2hdr = NULL;
4534 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4535 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4536 			}
4537 			list_remove(buflist, ab);
4538 
4539 			/*
4540 			 * This may have been leftover after a
4541 			 * failed write.
4542 			 */
4543 			ab->b_flags &= ~ARC_L2_WRITING;
4544 		}
4545 		mutex_exit(hash_lock);
4546 	}
4547 	mutex_exit(&l2arc_buflist_mtx);
4548 
4549 	vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0);
4550 	dev->l2ad_evict = taddr;
4551 }
4552 
4553 /*
4554  * Find and write ARC buffers to the L2ARC device.
4555  *
4556  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4557  * for reading until they have completed writing.
4558  * The headroom_boost is an in-out parameter used to maintain headroom boost
4559  * state between calls to this function.
4560  *
4561  * Returns the number of bytes actually written (which may be smaller than
4562  * the delta by which the device hand has changed due to alignment).
4563  */
4564 static uint64_t
4565 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4566     boolean_t *headroom_boost)
4567 {
4568 	arc_buf_hdr_t *ab, *ab_prev, *head;
4569 	list_t *list;
4570 	uint64_t write_asize, write_psize, write_sz, headroom,
4571 	    buf_compress_minsz;
4572 	void *buf_data;
4573 	kmutex_t *list_lock;
4574 	boolean_t full;
4575 	l2arc_write_callback_t *cb;
4576 	zio_t *pio, *wzio;
4577 	uint64_t guid = spa_load_guid(spa);
4578 	const boolean_t do_headroom_boost = *headroom_boost;
4579 
4580 	ASSERT(dev->l2ad_vdev != NULL);
4581 
4582 	/* Lower the flag now, we might want to raise it again later. */
4583 	*headroom_boost = B_FALSE;
4584 
4585 	pio = NULL;
4586 	write_sz = write_asize = write_psize = 0;
4587 	full = B_FALSE;
4588 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4589 	head->b_flags |= ARC_L2_WRITE_HEAD;
4590 
4591 	/*
4592 	 * We will want to try to compress buffers that are at least 2x the
4593 	 * device sector size.
4594 	 */
4595 	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4596 
4597 	/*
4598 	 * Copy buffers for L2ARC writing.
4599 	 */
4600 	mutex_enter(&l2arc_buflist_mtx);
4601 	for (int try = 0; try <= 3; try++) {
4602 		uint64_t passed_sz = 0;
4603 
4604 		list = l2arc_list_locked(try, &list_lock);
4605 
4606 		/*
4607 		 * L2ARC fast warmup.
4608 		 *
4609 		 * Until the ARC is warm and starts to evict, read from the
4610 		 * head of the ARC lists rather than the tail.
4611 		 */
4612 		if (arc_warm == B_FALSE)
4613 			ab = list_head(list);
4614 		else
4615 			ab = list_tail(list);
4616 
4617 		headroom = target_sz * l2arc_headroom;
4618 		if (do_headroom_boost)
4619 			headroom = (headroom * l2arc_headroom_boost) / 100;
4620 
4621 		for (; ab; ab = ab_prev) {
4622 			l2arc_buf_hdr_t *l2hdr;
4623 			kmutex_t *hash_lock;
4624 			uint64_t buf_sz;
4625 
4626 			if (arc_warm == B_FALSE)
4627 				ab_prev = list_next(list, ab);
4628 			else
4629 				ab_prev = list_prev(list, ab);
4630 
4631 			hash_lock = HDR_LOCK(ab);
4632 			if (!mutex_tryenter(hash_lock)) {
4633 				/*
4634 				 * Skip this buffer rather than waiting.
4635 				 */
4636 				continue;
4637 			}
4638 
4639 			passed_sz += ab->b_size;
4640 			if (passed_sz > headroom) {
4641 				/*
4642 				 * Searched too far.
4643 				 */
4644 				mutex_exit(hash_lock);
4645 				break;
4646 			}
4647 
4648 			if (!l2arc_write_eligible(guid, ab)) {
4649 				mutex_exit(hash_lock);
4650 				continue;
4651 			}
4652 
4653 			if ((write_sz + ab->b_size) > target_sz) {
4654 				full = B_TRUE;
4655 				mutex_exit(hash_lock);
4656 				break;
4657 			}
4658 
4659 			if (pio == NULL) {
4660 				/*
4661 				 * Insert a dummy header on the buflist so
4662 				 * l2arc_write_done() can find where the
4663 				 * write buffers begin without searching.
4664 				 */
4665 				list_insert_head(dev->l2ad_buflist, head);
4666 
4667 				cb = kmem_alloc(
4668 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4669 				cb->l2wcb_dev = dev;
4670 				cb->l2wcb_head = head;
4671 				pio = zio_root(spa, l2arc_write_done, cb,
4672 				    ZIO_FLAG_CANFAIL);
4673 			}
4674 
4675 			/*
4676 			 * Create and add a new L2ARC header.
4677 			 */
4678 			l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4679 			l2hdr->b_dev = dev;
4680 			ab->b_flags |= ARC_L2_WRITING;
4681 
4682 			/*
4683 			 * Temporarily stash the data buffer in b_tmp_cdata.
4684 			 * The subsequent write step will pick it up from
4685 			 * there. This is because can't access ab->b_buf
4686 			 * without holding the hash_lock, which we in turn
4687 			 * can't access without holding the ARC list locks
4688 			 * (which we want to avoid during compression/writing).
4689 			 */
4690 			l2hdr->b_compress = ZIO_COMPRESS_OFF;
4691 			l2hdr->b_asize = ab->b_size;
4692 			l2hdr->b_tmp_cdata = ab->b_buf->b_data;
4693 
4694 			buf_sz = ab->b_size;
4695 			ab->b_l2hdr = l2hdr;
4696 
4697 			list_insert_head(dev->l2ad_buflist, ab);
4698 
4699 			/*
4700 			 * Compute and store the buffer cksum before
4701 			 * writing.  On debug the cksum is verified first.
4702 			 */
4703 			arc_cksum_verify(ab->b_buf);
4704 			arc_cksum_compute(ab->b_buf, B_TRUE);
4705 
4706 			mutex_exit(hash_lock);
4707 
4708 			write_sz += buf_sz;
4709 		}
4710 
4711 		mutex_exit(list_lock);
4712 
4713 		if (full == B_TRUE)
4714 			break;
4715 	}
4716 
4717 	/* No buffers selected for writing? */
4718 	if (pio == NULL) {
4719 		ASSERT0(write_sz);
4720 		mutex_exit(&l2arc_buflist_mtx);
4721 		kmem_cache_free(hdr_cache, head);
4722 		return (0);
4723 	}
4724 
4725 	/*
4726 	 * Now start writing the buffers. We're starting at the write head
4727 	 * and work backwards, retracing the course of the buffer selector
4728 	 * loop above.
4729 	 */
4730 	for (ab = list_prev(dev->l2ad_buflist, head); ab;
4731 	    ab = list_prev(dev->l2ad_buflist, ab)) {
4732 		l2arc_buf_hdr_t *l2hdr;
4733 		uint64_t buf_sz;
4734 
4735 		/*
4736 		 * We shouldn't need to lock the buffer here, since we flagged
4737 		 * it as ARC_L2_WRITING in the previous step, but we must take
4738 		 * care to only access its L2 cache parameters. In particular,
4739 		 * ab->b_buf may be invalid by now due to ARC eviction.
4740 		 */
4741 		l2hdr = ab->b_l2hdr;
4742 		l2hdr->b_daddr = dev->l2ad_hand;
4743 
4744 		if ((ab->b_flags & ARC_L2COMPRESS) &&
4745 		    l2hdr->b_asize >= buf_compress_minsz) {
4746 			if (l2arc_compress_buf(l2hdr)) {
4747 				/*
4748 				 * If compression succeeded, enable headroom
4749 				 * boost on the next scan cycle.
4750 				 */
4751 				*headroom_boost = B_TRUE;
4752 			}
4753 		}
4754 
4755 		/*
4756 		 * Pick up the buffer data we had previously stashed away
4757 		 * (and now potentially also compressed).
4758 		 */
4759 		buf_data = l2hdr->b_tmp_cdata;
4760 		buf_sz = l2hdr->b_asize;
4761 
4762 		/* Compression may have squashed the buffer to zero length. */
4763 		if (buf_sz != 0) {
4764 			uint64_t buf_p_sz;
4765 
4766 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4767 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4768 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4769 			    ZIO_FLAG_CANFAIL, B_FALSE);
4770 
4771 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4772 			    zio_t *, wzio);
4773 			(void) zio_nowait(wzio);
4774 
4775 			write_asize += buf_sz;
4776 			/*
4777 			 * Keep the clock hand suitably device-aligned.
4778 			 */
4779 			buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4780 			write_psize += buf_p_sz;
4781 			dev->l2ad_hand += buf_p_sz;
4782 		}
4783 	}
4784 
4785 	mutex_exit(&l2arc_buflist_mtx);
4786 
4787 	ASSERT3U(write_asize, <=, target_sz);
4788 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4789 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
4790 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4791 	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
4792 	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
4793 
4794 	/*
4795 	 * Bump device hand to the device start if it is approaching the end.
4796 	 * l2arc_evict() will already have evicted ahead for this case.
4797 	 */
4798 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4799 		dev->l2ad_hand = dev->l2ad_start;
4800 		dev->l2ad_evict = dev->l2ad_start;
4801 		dev->l2ad_first = B_FALSE;
4802 	}
4803 
4804 	dev->l2ad_writing = B_TRUE;
4805 	(void) zio_wait(pio);
4806 	dev->l2ad_writing = B_FALSE;
4807 
4808 	return (write_asize);
4809 }
4810 
4811 /*
4812  * Compresses an L2ARC buffer.
4813  * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
4814  * size in l2hdr->b_asize. This routine tries to compress the data and
4815  * depending on the compression result there are three possible outcomes:
4816  * *) The buffer was incompressible. The original l2hdr contents were left
4817  *    untouched and are ready for writing to an L2 device.
4818  * *) The buffer was all-zeros, so there is no need to write it to an L2
4819  *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
4820  *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
4821  * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
4822  *    data buffer which holds the compressed data to be written, and b_asize
4823  *    tells us how much data there is. b_compress is set to the appropriate
4824  *    compression algorithm. Once writing is done, invoke
4825  *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
4826  *
4827  * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
4828  * buffer was incompressible).
4829  */
4830 static boolean_t
4831 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
4832 {
4833 	void *cdata;
4834 	size_t csize, len, rounded;
4835 
4836 	ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
4837 	ASSERT(l2hdr->b_tmp_cdata != NULL);
4838 
4839 	len = l2hdr->b_asize;
4840 	cdata = zio_data_buf_alloc(len);
4841 	csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
4842 	    cdata, l2hdr->b_asize);
4843 
4844 	rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
4845 	if (rounded > csize) {
4846 		bzero((char *)cdata + csize, rounded - csize);
4847 		csize = rounded;
4848 	}
4849 
4850 	if (csize == 0) {
4851 		/* zero block, indicate that there's nothing to write */
4852 		zio_data_buf_free(cdata, len);
4853 		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
4854 		l2hdr->b_asize = 0;
4855 		l2hdr->b_tmp_cdata = NULL;
4856 		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
4857 		return (B_TRUE);
4858 	} else if (csize > 0 && csize < len) {
4859 		/*
4860 		 * Compression succeeded, we'll keep the cdata around for
4861 		 * writing and release it afterwards.
4862 		 */
4863 		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
4864 		l2hdr->b_asize = csize;
4865 		l2hdr->b_tmp_cdata = cdata;
4866 		ARCSTAT_BUMP(arcstat_l2_compress_successes);
4867 		return (B_TRUE);
4868 	} else {
4869 		/*
4870 		 * Compression failed, release the compressed buffer.
4871 		 * l2hdr will be left unmodified.
4872 		 */
4873 		zio_data_buf_free(cdata, len);
4874 		ARCSTAT_BUMP(arcstat_l2_compress_failures);
4875 		return (B_FALSE);
4876 	}
4877 }
4878 
4879 /*
4880  * Decompresses a zio read back from an l2arc device. On success, the
4881  * underlying zio's io_data buffer is overwritten by the uncompressed
4882  * version. On decompression error (corrupt compressed stream), the
4883  * zio->io_error value is set to signal an I/O error.
4884  *
4885  * Please note that the compressed data stream is not checksummed, so
4886  * if the underlying device is experiencing data corruption, we may feed
4887  * corrupt data to the decompressor, so the decompressor needs to be
4888  * able to handle this situation (LZ4 does).
4889  */
4890 static void
4891 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
4892 {
4893 	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
4894 
4895 	if (zio->io_error != 0) {
4896 		/*
4897 		 * An io error has occured, just restore the original io
4898 		 * size in preparation for a main pool read.
4899 		 */
4900 		zio->io_orig_size = zio->io_size = hdr->b_size;
4901 		return;
4902 	}
4903 
4904 	if (c == ZIO_COMPRESS_EMPTY) {
4905 		/*
4906 		 * An empty buffer results in a null zio, which means we
4907 		 * need to fill its io_data after we're done restoring the
4908 		 * buffer's contents.
4909 		 */
4910 		ASSERT(hdr->b_buf != NULL);
4911 		bzero(hdr->b_buf->b_data, hdr->b_size);
4912 		zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
4913 	} else {
4914 		ASSERT(zio->io_data != NULL);
4915 		/*
4916 		 * We copy the compressed data from the start of the arc buffer
4917 		 * (the zio_read will have pulled in only what we need, the
4918 		 * rest is garbage which we will overwrite at decompression)
4919 		 * and then decompress back to the ARC data buffer. This way we
4920 		 * can minimize copying by simply decompressing back over the
4921 		 * original compressed data (rather than decompressing to an
4922 		 * aux buffer and then copying back the uncompressed buffer,
4923 		 * which is likely to be much larger).
4924 		 */
4925 		uint64_t csize;
4926 		void *cdata;
4927 
4928 		csize = zio->io_size;
4929 		cdata = zio_data_buf_alloc(csize);
4930 		bcopy(zio->io_data, cdata, csize);
4931 		if (zio_decompress_data(c, cdata, zio->io_data, csize,
4932 		    hdr->b_size) != 0)
4933 			zio->io_error = EIO;
4934 		zio_data_buf_free(cdata, csize);
4935 	}
4936 
4937 	/* Restore the expected uncompressed IO size. */
4938 	zio->io_orig_size = zio->io_size = hdr->b_size;
4939 }
4940 
4941 /*
4942  * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
4943  * This buffer serves as a temporary holder of compressed data while
4944  * the buffer entry is being written to an l2arc device. Once that is
4945  * done, we can dispose of it.
4946  */
4947 static void
4948 l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
4949 {
4950 	l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
4951 
4952 	if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
4953 		/*
4954 		 * If the data was compressed, then we've allocated a
4955 		 * temporary buffer for it, so now we need to release it.
4956 		 */
4957 		ASSERT(l2hdr->b_tmp_cdata != NULL);
4958 		zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
4959 	}
4960 	l2hdr->b_tmp_cdata = NULL;
4961 }
4962 
4963 /*
4964  * This thread feeds the L2ARC at regular intervals.  This is the beating
4965  * heart of the L2ARC.
4966  */
4967 static void
4968 l2arc_feed_thread(void)
4969 {
4970 	callb_cpr_t cpr;
4971 	l2arc_dev_t *dev;
4972 	spa_t *spa;
4973 	uint64_t size, wrote;
4974 	clock_t begin, next = ddi_get_lbolt();
4975 	boolean_t headroom_boost = B_FALSE;
4976 
4977 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4978 
4979 	mutex_enter(&l2arc_feed_thr_lock);
4980 
4981 	while (l2arc_thread_exit == 0) {
4982 		CALLB_CPR_SAFE_BEGIN(&cpr);
4983 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4984 		    next);
4985 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4986 		next = ddi_get_lbolt() + hz;
4987 
4988 		/*
4989 		 * Quick check for L2ARC devices.
4990 		 */
4991 		mutex_enter(&l2arc_dev_mtx);
4992 		if (l2arc_ndev == 0) {
4993 			mutex_exit(&l2arc_dev_mtx);
4994 			continue;
4995 		}
4996 		mutex_exit(&l2arc_dev_mtx);
4997 		begin = ddi_get_lbolt();
4998 
4999 		/*
5000 		 * This selects the next l2arc device to write to, and in
5001 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
5002 		 * will return NULL if there are now no l2arc devices or if
5003 		 * they are all faulted.
5004 		 *
5005 		 * If a device is returned, its spa's config lock is also
5006 		 * held to prevent device removal.  l2arc_dev_get_next()
5007 		 * will grab and release l2arc_dev_mtx.
5008 		 */
5009 		if ((dev = l2arc_dev_get_next()) == NULL)
5010 			continue;
5011 
5012 		spa = dev->l2ad_spa;
5013 		ASSERT(spa != NULL);
5014 
5015 		/*
5016 		 * If the pool is read-only then force the feed thread to
5017 		 * sleep a little longer.
5018 		 */
5019 		if (!spa_writeable(spa)) {
5020 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5021 			spa_config_exit(spa, SCL_L2ARC, dev);
5022 			continue;
5023 		}
5024 
5025 		/*
5026 		 * Avoid contributing to memory pressure.
5027 		 */
5028 		if (arc_reclaim_needed()) {
5029 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5030 			spa_config_exit(spa, SCL_L2ARC, dev);
5031 			continue;
5032 		}
5033 
5034 		ARCSTAT_BUMP(arcstat_l2_feeds);
5035 
5036 		size = l2arc_write_size();
5037 
5038 		/*
5039 		 * Evict L2ARC buffers that will be overwritten.
5040 		 */
5041 		l2arc_evict(dev, size, B_FALSE);
5042 
5043 		/*
5044 		 * Write ARC buffers.
5045 		 */
5046 		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
5047 
5048 		/*
5049 		 * Calculate interval between writes.
5050 		 */
5051 		next = l2arc_write_interval(begin, size, wrote);
5052 		spa_config_exit(spa, SCL_L2ARC, dev);
5053 	}
5054 
5055 	l2arc_thread_exit = 0;
5056 	cv_broadcast(&l2arc_feed_thr_cv);
5057 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
5058 	thread_exit();
5059 }
5060 
5061 boolean_t
5062 l2arc_vdev_present(vdev_t *vd)
5063 {
5064 	l2arc_dev_t *dev;
5065 
5066 	mutex_enter(&l2arc_dev_mtx);
5067 	for (dev = list_head(l2arc_dev_list); dev != NULL;
5068 	    dev = list_next(l2arc_dev_list, dev)) {
5069 		if (dev->l2ad_vdev == vd)
5070 			break;
5071 	}
5072 	mutex_exit(&l2arc_dev_mtx);
5073 
5074 	return (dev != NULL);
5075 }
5076 
5077 /*
5078  * Add a vdev for use by the L2ARC.  By this point the spa has already
5079  * validated the vdev and opened it.
5080  */
5081 void
5082 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
5083 {
5084 	l2arc_dev_t *adddev;
5085 
5086 	ASSERT(!l2arc_vdev_present(vd));
5087 
5088 	/*
5089 	 * Create a new l2arc device entry.
5090 	 */
5091 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5092 	adddev->l2ad_spa = spa;
5093 	adddev->l2ad_vdev = vd;
5094 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5095 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5096 	adddev->l2ad_hand = adddev->l2ad_start;
5097 	adddev->l2ad_evict = adddev->l2ad_start;
5098 	adddev->l2ad_first = B_TRUE;
5099 	adddev->l2ad_writing = B_FALSE;
5100 
5101 	/*
5102 	 * This is a list of all ARC buffers that are still valid on the
5103 	 * device.
5104 	 */
5105 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5106 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5107 	    offsetof(arc_buf_hdr_t, b_l2node));
5108 
5109 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5110 
5111 	/*
5112 	 * Add device to global list
5113 	 */
5114 	mutex_enter(&l2arc_dev_mtx);
5115 	list_insert_head(l2arc_dev_list, adddev);
5116 	atomic_inc_64(&l2arc_ndev);
5117 	mutex_exit(&l2arc_dev_mtx);
5118 }
5119 
5120 /*
5121  * Remove a vdev from the L2ARC.
5122  */
5123 void
5124 l2arc_remove_vdev(vdev_t *vd)
5125 {
5126 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5127 
5128 	/*
5129 	 * Find the device by vdev
5130 	 */
5131 	mutex_enter(&l2arc_dev_mtx);
5132 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5133 		nextdev = list_next(l2arc_dev_list, dev);
5134 		if (vd == dev->l2ad_vdev) {
5135 			remdev = dev;
5136 			break;
5137 		}
5138 	}
5139 	ASSERT(remdev != NULL);
5140 
5141 	/*
5142 	 * Remove device from global list
5143 	 */
5144 	list_remove(l2arc_dev_list, remdev);
5145 	l2arc_dev_last = NULL;		/* may have been invalidated */
5146 	atomic_dec_64(&l2arc_ndev);
5147 	mutex_exit(&l2arc_dev_mtx);
5148 
5149 	/*
5150 	 * Clear all buflists and ARC references.  L2ARC device flush.
5151 	 */
5152 	l2arc_evict(remdev, 0, B_TRUE);
5153 	list_destroy(remdev->l2ad_buflist);
5154 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5155 	kmem_free(remdev, sizeof (l2arc_dev_t));
5156 }
5157 
5158 void
5159 l2arc_init(void)
5160 {
5161 	l2arc_thread_exit = 0;
5162 	l2arc_ndev = 0;
5163 	l2arc_writes_sent = 0;
5164 	l2arc_writes_done = 0;
5165 
5166 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5167 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5168 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5169 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5170 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5171 
5172 	l2arc_dev_list = &L2ARC_dev_list;
5173 	l2arc_free_on_write = &L2ARC_free_on_write;
5174 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5175 	    offsetof(l2arc_dev_t, l2ad_node));
5176 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5177 	    offsetof(l2arc_data_free_t, l2df_list_node));
5178 }
5179 
5180 void
5181 l2arc_fini(void)
5182 {
5183 	/*
5184 	 * This is called from dmu_fini(), which is called from spa_fini();
5185 	 * Because of this, we can assume that all l2arc devices have
5186 	 * already been removed when the pools themselves were removed.
5187 	 */
5188 
5189 	l2arc_do_free_on_write();
5190 
5191 	mutex_destroy(&l2arc_feed_thr_lock);
5192 	cv_destroy(&l2arc_feed_thr_cv);
5193 	mutex_destroy(&l2arc_dev_mtx);
5194 	mutex_destroy(&l2arc_buflist_mtx);
5195 	mutex_destroy(&l2arc_free_on_write_mtx);
5196 
5197 	list_destroy(l2arc_dev_list);
5198 	list_destroy(l2arc_free_on_write);
5199 }
5200 
5201 void
5202 l2arc_start(void)
5203 {
5204 	if (!(spa_mode_global & FWRITE))
5205 		return;
5206 
5207 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5208 	    TS_RUN, minclsyspri);
5209 }
5210 
5211 void
5212 l2arc_stop(void)
5213 {
5214 	if (!(spa_mode_global & FWRITE))
5215 		return;
5216 
5217 	mutex_enter(&l2arc_feed_thr_lock);
5218 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
5219 	l2arc_thread_exit = 1;
5220 	while (l2arc_thread_exit != 0)
5221 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5222 	mutex_exit(&l2arc_feed_thr_lock);
5223 }
5224