xref: /titanic_50/usr/src/uts/common/fs/zfs/arc.c (revision eaaa4d5f5eed6a67a490a59a60ac9bacbd3ca78b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * DVA-based Adjustable Replacement Cache
29  *
30  * While much of the theory of operation used here is
31  * based on the self-tuning, low overhead replacement cache
32  * presented by Megiddo and Modha at FAST 2003, there are some
33  * significant differences:
34  *
35  * 1. The Megiddo and Modha model assumes any page is evictable.
36  * Pages in its cache cannot be "locked" into memory.  This makes
37  * the eviction algorithm simple: evict the last page in the list.
38  * This also make the performance characteristics easy to reason
39  * about.  Our cache is not so simple.  At any given moment, some
40  * subset of the blocks in the cache are un-evictable because we
41  * have handed out a reference to them.  Blocks are only evictable
42  * when there are no external references active.  This makes
43  * eviction far more problematic:  we choose to evict the evictable
44  * blocks that are the "lowest" in the list.
45  *
46  * There are times when it is not possible to evict the requested
47  * space.  In these circumstances we are unable to adjust the cache
48  * size.  To prevent the cache growing unbounded at these times we
49  * implement a "cache throttle" that slows the flow of new data
50  * into the cache until we can make space available.
51  *
52  * 2. The Megiddo and Modha model assumes a fixed cache size.
53  * Pages are evicted when the cache is full and there is a cache
54  * miss.  Our model has a variable sized cache.  It grows with
55  * high use, but also tries to react to memory pressure from the
56  * operating system: decreasing its size when system memory is
57  * tight.
58  *
59  * 3. The Megiddo and Modha model assumes a fixed page size. All
60  * elements of the cache are therefor exactly the same size.  So
61  * when adjusting the cache size following a cache miss, its simply
62  * a matter of choosing a single page to evict.  In our model, we
63  * have variable sized cache blocks (rangeing from 512 bytes to
64  * 128K bytes).  We therefor choose a set of blocks to evict to make
65  * space for a cache miss that approximates as closely as possible
66  * the space used by the new block.
67  *
68  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
69  * by N. Megiddo & D. Modha, FAST 2003
70  */
71 
72 /*
73  * The locking model:
74  *
75  * A new reference to a cache buffer can be obtained in two
76  * ways: 1) via a hash table lookup using the DVA as a key,
77  * or 2) via one of the ARC lists.  The arc_read() interface
78  * uses method 1, while the internal arc algorithms for
79  * adjusting the cache use method 2.  We therefor provide two
80  * types of locks: 1) the hash table lock array, and 2) the
81  * arc list locks.
82  *
83  * Buffers do not have their own mutexes, rather they rely on the
84  * hash table mutexes for the bulk of their protection (i.e. most
85  * fields in the arc_buf_hdr_t are protected by these mutexes).
86  *
87  * buf_hash_find() returns the appropriate mutex (held) when it
88  * locates the requested buffer in the hash table.  It returns
89  * NULL for the mutex if the buffer was not in the table.
90  *
91  * buf_hash_remove() expects the appropriate hash mutex to be
92  * already held before it is invoked.
93  *
94  * Each arc state also has a mutex which is used to protect the
95  * buffer list associated with the state.  When attempting to
96  * obtain a hash table lock while holding an arc list lock you
97  * must use: mutex_tryenter() to avoid deadlock.  Also note that
98  * the active state mutex must be held before the ghost state mutex.
99  *
100  * Arc buffers may have an associated eviction callback function.
101  * This function will be invoked prior to removing the buffer (e.g.
102  * in arc_do_user_evicts()).  Note however that the data associated
103  * with the buffer may be evicted prior to the callback.  The callback
104  * must be made with *no locks held* (to prevent deadlock).  Additionally,
105  * the users of callbacks must ensure that their private data is
106  * protected from simultaneous callbacks from arc_buf_evict()
107  * and arc_do_user_evicts().
108  *
109  * Note that the majority of the performance stats are manipulated
110  * with atomic operations.
111  *
112  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
113  *
114  *	- L2ARC buflist creation
115  *	- L2ARC buflist eviction
116  *	- L2ARC write completion, which walks L2ARC buflists
117  *	- ARC header destruction, as it removes from L2ARC buflists
118  *	- ARC header release, as it removes from L2ARC buflists
119  */
120 
121 #include <sys/spa.h>
122 #include <sys/zio.h>
123 #include <sys/zfs_context.h>
124 #include <sys/arc.h>
125 #include <sys/refcount.h>
126 #include <sys/vdev.h>
127 #include <sys/vdev_impl.h>
128 #ifdef _KERNEL
129 #include <sys/vmsystm.h>
130 #include <vm/anon.h>
131 #include <sys/fs/swapnode.h>
132 #include <sys/dnlc.h>
133 #endif
134 #include <sys/callb.h>
135 #include <sys/kstat.h>
136 #include <zfs_fletcher.h>
137 
138 #ifndef _KERNEL
139 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
140 boolean_t arc_watch = B_FALSE;
141 int arc_procfd;
142 #endif
143 
144 static kmutex_t		arc_reclaim_thr_lock;
145 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
146 static uint8_t		arc_thread_exit;
147 
148 extern int zfs_write_limit_shift;
149 extern uint64_t zfs_write_limit_max;
150 extern kmutex_t zfs_write_limit_lock;
151 
152 #define	ARC_REDUCE_DNLC_PERCENT	3
153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
154 
155 typedef enum arc_reclaim_strategy {
156 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
157 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
158 } arc_reclaim_strategy_t;
159 
160 /* number of seconds before growing cache again */
161 static int		arc_grow_retry = 60;
162 
163 /* shift of arc_c for calculating both min and max arc_p */
164 static int		arc_p_min_shift = 4;
165 
166 /* log2(fraction of arc to reclaim) */
167 static int		arc_shrink_shift = 5;
168 
169 /*
170  * minimum lifespan of a prefetch block in clock ticks
171  * (initialized in arc_init())
172  */
173 static int		arc_min_prefetch_lifespan;
174 
175 static int arc_dead;
176 
177 /*
178  * The arc has filled available memory and has now warmed up.
179  */
180 static boolean_t arc_warm;
181 
182 /*
183  * These tunables are for performance analysis.
184  */
185 uint64_t zfs_arc_max;
186 uint64_t zfs_arc_min;
187 uint64_t zfs_arc_meta_limit = 0;
188 int zfs_arc_grow_retry = 0;
189 int zfs_arc_shrink_shift = 0;
190 int zfs_arc_p_min_shift = 0;
191 
192 /*
193  * Note that buffers can be in one of 6 states:
194  *	ARC_anon	- anonymous (discussed below)
195  *	ARC_mru		- recently used, currently cached
196  *	ARC_mru_ghost	- recentely used, no longer in cache
197  *	ARC_mfu		- frequently used, currently cached
198  *	ARC_mfu_ghost	- frequently used, no longer in cache
199  *	ARC_l2c_only	- exists in L2ARC but not other states
200  * When there are no active references to the buffer, they are
201  * are linked onto a list in one of these arc states.  These are
202  * the only buffers that can be evicted or deleted.  Within each
203  * state there are multiple lists, one for meta-data and one for
204  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
205  * etc.) is tracked separately so that it can be managed more
206  * explicitly: favored over data, limited explicitly.
207  *
208  * Anonymous buffers are buffers that are not associated with
209  * a DVA.  These are buffers that hold dirty block copies
210  * before they are written to stable storage.  By definition,
211  * they are "ref'd" and are considered part of arc_mru
212  * that cannot be freed.  Generally, they will aquire a DVA
213  * as they are written and migrate onto the arc_mru list.
214  *
215  * The ARC_l2c_only state is for buffers that are in the second
216  * level ARC but no longer in any of the ARC_m* lists.  The second
217  * level ARC itself may also contain buffers that are in any of
218  * the ARC_m* states - meaning that a buffer can exist in two
219  * places.  The reason for the ARC_l2c_only state is to keep the
220  * buffer header in the hash table, so that reads that hit the
221  * second level ARC benefit from these fast lookups.
222  */
223 
224 typedef struct arc_state {
225 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
226 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
227 	uint64_t arcs_size;	/* total amount of data in this state */
228 	kmutex_t arcs_mtx;
229 } arc_state_t;
230 
231 /* The 6 states: */
232 static arc_state_t ARC_anon;
233 static arc_state_t ARC_mru;
234 static arc_state_t ARC_mru_ghost;
235 static arc_state_t ARC_mfu;
236 static arc_state_t ARC_mfu_ghost;
237 static arc_state_t ARC_l2c_only;
238 
239 typedef struct arc_stats {
240 	kstat_named_t arcstat_hits;
241 	kstat_named_t arcstat_misses;
242 	kstat_named_t arcstat_demand_data_hits;
243 	kstat_named_t arcstat_demand_data_misses;
244 	kstat_named_t arcstat_demand_metadata_hits;
245 	kstat_named_t arcstat_demand_metadata_misses;
246 	kstat_named_t arcstat_prefetch_data_hits;
247 	kstat_named_t arcstat_prefetch_data_misses;
248 	kstat_named_t arcstat_prefetch_metadata_hits;
249 	kstat_named_t arcstat_prefetch_metadata_misses;
250 	kstat_named_t arcstat_mru_hits;
251 	kstat_named_t arcstat_mru_ghost_hits;
252 	kstat_named_t arcstat_mfu_hits;
253 	kstat_named_t arcstat_mfu_ghost_hits;
254 	kstat_named_t arcstat_deleted;
255 	kstat_named_t arcstat_recycle_miss;
256 	kstat_named_t arcstat_mutex_miss;
257 	kstat_named_t arcstat_evict_skip;
258 	kstat_named_t arcstat_evict_l2_cached;
259 	kstat_named_t arcstat_evict_l2_eligible;
260 	kstat_named_t arcstat_evict_l2_ineligible;
261 	kstat_named_t arcstat_hash_elements;
262 	kstat_named_t arcstat_hash_elements_max;
263 	kstat_named_t arcstat_hash_collisions;
264 	kstat_named_t arcstat_hash_chains;
265 	kstat_named_t arcstat_hash_chain_max;
266 	kstat_named_t arcstat_p;
267 	kstat_named_t arcstat_c;
268 	kstat_named_t arcstat_c_min;
269 	kstat_named_t arcstat_c_max;
270 	kstat_named_t arcstat_size;
271 	kstat_named_t arcstat_hdr_size;
272 	kstat_named_t arcstat_data_size;
273 	kstat_named_t arcstat_other_size;
274 	kstat_named_t arcstat_l2_hits;
275 	kstat_named_t arcstat_l2_misses;
276 	kstat_named_t arcstat_l2_feeds;
277 	kstat_named_t arcstat_l2_rw_clash;
278 	kstat_named_t arcstat_l2_read_bytes;
279 	kstat_named_t arcstat_l2_write_bytes;
280 	kstat_named_t arcstat_l2_writes_sent;
281 	kstat_named_t arcstat_l2_writes_done;
282 	kstat_named_t arcstat_l2_writes_error;
283 	kstat_named_t arcstat_l2_writes_hdr_miss;
284 	kstat_named_t arcstat_l2_evict_lock_retry;
285 	kstat_named_t arcstat_l2_evict_reading;
286 	kstat_named_t arcstat_l2_free_on_write;
287 	kstat_named_t arcstat_l2_abort_lowmem;
288 	kstat_named_t arcstat_l2_cksum_bad;
289 	kstat_named_t arcstat_l2_io_error;
290 	kstat_named_t arcstat_l2_size;
291 	kstat_named_t arcstat_l2_hdr_size;
292 	kstat_named_t arcstat_memory_throttle_count;
293 } arc_stats_t;
294 
295 static arc_stats_t arc_stats = {
296 	{ "hits",			KSTAT_DATA_UINT64 },
297 	{ "misses",			KSTAT_DATA_UINT64 },
298 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
299 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
300 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
301 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
302 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
303 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
304 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
305 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
306 	{ "mru_hits",			KSTAT_DATA_UINT64 },
307 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
308 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
309 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
310 	{ "deleted",			KSTAT_DATA_UINT64 },
311 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
312 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
313 	{ "evict_skip",			KSTAT_DATA_UINT64 },
314 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
315 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
316 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
317 	{ "hash_elements",		KSTAT_DATA_UINT64 },
318 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
319 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
320 	{ "hash_chains",		KSTAT_DATA_UINT64 },
321 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
322 	{ "p",				KSTAT_DATA_UINT64 },
323 	{ "c",				KSTAT_DATA_UINT64 },
324 	{ "c_min",			KSTAT_DATA_UINT64 },
325 	{ "c_max",			KSTAT_DATA_UINT64 },
326 	{ "size",			KSTAT_DATA_UINT64 },
327 	{ "hdr_size",			KSTAT_DATA_UINT64 },
328 	{ "data_size",			KSTAT_DATA_UINT64 },
329 	{ "other_size",			KSTAT_DATA_UINT64 },
330 	{ "l2_hits",			KSTAT_DATA_UINT64 },
331 	{ "l2_misses",			KSTAT_DATA_UINT64 },
332 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
333 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
334 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
335 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
336 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
337 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
338 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
339 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
340 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
341 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
342 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
343 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
344 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
345 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
346 	{ "l2_size",			KSTAT_DATA_UINT64 },
347 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
348 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 }
349 };
350 
351 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
352 
353 #define	ARCSTAT_INCR(stat, val) \
354 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
355 
356 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
357 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
358 
359 #define	ARCSTAT_MAX(stat, val) {					\
360 	uint64_t m;							\
361 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
362 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
363 		continue;						\
364 }
365 
366 #define	ARCSTAT_MAXSTAT(stat) \
367 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
368 
369 /*
370  * We define a macro to allow ARC hits/misses to be easily broken down by
371  * two separate conditions, giving a total of four different subtypes for
372  * each of hits and misses (so eight statistics total).
373  */
374 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
375 	if (cond1) {							\
376 		if (cond2) {						\
377 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
378 		} else {						\
379 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
380 		}							\
381 	} else {							\
382 		if (cond2) {						\
383 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
384 		} else {						\
385 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
386 		}							\
387 	}
388 
389 kstat_t			*arc_ksp;
390 static arc_state_t	*arc_anon;
391 static arc_state_t	*arc_mru;
392 static arc_state_t	*arc_mru_ghost;
393 static arc_state_t	*arc_mfu;
394 static arc_state_t	*arc_mfu_ghost;
395 static arc_state_t	*arc_l2c_only;
396 
397 /*
398  * There are several ARC variables that are critical to export as kstats --
399  * but we don't want to have to grovel around in the kstat whenever we wish to
400  * manipulate them.  For these variables, we therefore define them to be in
401  * terms of the statistic variable.  This assures that we are not introducing
402  * the possibility of inconsistency by having shadow copies of the variables,
403  * while still allowing the code to be readable.
404  */
405 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
406 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
407 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
408 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
409 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
410 
411 static int		arc_no_grow;	/* Don't try to grow cache size */
412 static uint64_t		arc_tempreserve;
413 static uint64_t		arc_loaned_bytes;
414 static uint64_t		arc_meta_used;
415 static uint64_t		arc_meta_limit;
416 static uint64_t		arc_meta_max = 0;
417 
418 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
419 
420 typedef struct arc_callback arc_callback_t;
421 
422 struct arc_callback {
423 	void			*acb_private;
424 	arc_done_func_t		*acb_done;
425 	arc_buf_t		*acb_buf;
426 	zio_t			*acb_zio_dummy;
427 	arc_callback_t		*acb_next;
428 };
429 
430 typedef struct arc_write_callback arc_write_callback_t;
431 
432 struct arc_write_callback {
433 	void		*awcb_private;
434 	arc_done_func_t	*awcb_ready;
435 	arc_done_func_t	*awcb_done;
436 	arc_buf_t	*awcb_buf;
437 };
438 
439 struct arc_buf_hdr {
440 	/* protected by hash lock */
441 	dva_t			b_dva;
442 	uint64_t		b_birth;
443 	uint64_t		b_cksum0;
444 
445 	kmutex_t		b_freeze_lock;
446 	zio_cksum_t		*b_freeze_cksum;
447 	void			*b_thawed;
448 
449 	arc_buf_hdr_t		*b_hash_next;
450 	arc_buf_t		*b_buf;
451 	uint32_t		b_flags;
452 	uint32_t		b_datacnt;
453 
454 	arc_callback_t		*b_acb;
455 	kcondvar_t		b_cv;
456 
457 	/* immutable */
458 	arc_buf_contents_t	b_type;
459 	uint64_t		b_size;
460 	uint64_t		b_spa;
461 
462 	/* protected by arc state mutex */
463 	arc_state_t		*b_state;
464 	list_node_t		b_arc_node;
465 
466 	/* updated atomically */
467 	clock_t			b_arc_access;
468 
469 	/* self protecting */
470 	refcount_t		b_refcnt;
471 
472 	l2arc_buf_hdr_t		*b_l2hdr;
473 	list_node_t		b_l2node;
474 };
475 
476 static arc_buf_t *arc_eviction_list;
477 static kmutex_t arc_eviction_mtx;
478 static arc_buf_hdr_t arc_eviction_hdr;
479 static void arc_get_data_buf(arc_buf_t *buf);
480 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
481 static int arc_evict_needed(arc_buf_contents_t type);
482 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
483 static void arc_buf_watch(arc_buf_t *buf);
484 
485 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
486 
487 #define	GHOST_STATE(state)	\
488 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
489 	(state) == arc_l2c_only)
490 
491 /*
492  * Private ARC flags.  These flags are private ARC only flags that will show up
493  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
494  * be passed in as arc_flags in things like arc_read.  However, these flags
495  * should never be passed and should only be set by ARC code.  When adding new
496  * public flags, make sure not to smash the private ones.
497  */
498 
499 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
500 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
501 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
502 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
503 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
504 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
505 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
506 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
507 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
508 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
509 
510 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
511 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
512 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
513 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
514 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
515 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
516 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
517 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
518 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
519 				    (hdr)->b_l2hdr != NULL)
520 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
521 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
522 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
523 
524 /*
525  * Other sizes
526  */
527 
528 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
529 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
530 
531 /*
532  * Hash table routines
533  */
534 
535 #define	HT_LOCK_PAD	64
536 
537 struct ht_lock {
538 	kmutex_t	ht_lock;
539 #ifdef _KERNEL
540 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
541 #endif
542 };
543 
544 #define	BUF_LOCKS 256
545 typedef struct buf_hash_table {
546 	uint64_t ht_mask;
547 	arc_buf_hdr_t **ht_table;
548 	struct ht_lock ht_locks[BUF_LOCKS];
549 } buf_hash_table_t;
550 
551 static buf_hash_table_t buf_hash_table;
552 
553 #define	BUF_HASH_INDEX(spa, dva, birth) \
554 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
555 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
556 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
557 #define	HDR_LOCK(hdr) \
558 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
559 
560 uint64_t zfs_crc64_table[256];
561 
562 /*
563  * Level 2 ARC
564  */
565 
566 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
567 #define	L2ARC_HEADROOM		2		/* num of writes */
568 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
569 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
570 
571 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
572 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
573 
574 /*
575  * L2ARC Performance Tunables
576  */
577 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
578 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
579 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
580 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
581 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
582 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
583 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
584 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
585 
586 /*
587  * L2ARC Internals
588  */
589 typedef struct l2arc_dev {
590 	vdev_t			*l2ad_vdev;	/* vdev */
591 	spa_t			*l2ad_spa;	/* spa */
592 	uint64_t		l2ad_hand;	/* next write location */
593 	uint64_t		l2ad_write;	/* desired write size, bytes */
594 	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
595 	uint64_t		l2ad_start;	/* first addr on device */
596 	uint64_t		l2ad_end;	/* last addr on device */
597 	uint64_t		l2ad_evict;	/* last addr eviction reached */
598 	boolean_t		l2ad_first;	/* first sweep through */
599 	boolean_t		l2ad_writing;	/* currently writing */
600 	list_t			*l2ad_buflist;	/* buffer list */
601 	list_node_t		l2ad_node;	/* device list node */
602 } l2arc_dev_t;
603 
604 static list_t L2ARC_dev_list;			/* device list */
605 static list_t *l2arc_dev_list;			/* device list pointer */
606 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
607 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
608 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
609 static list_t L2ARC_free_on_write;		/* free after write buf list */
610 static list_t *l2arc_free_on_write;		/* free after write list ptr */
611 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
612 static uint64_t l2arc_ndev;			/* number of devices */
613 
614 typedef struct l2arc_read_callback {
615 	arc_buf_t	*l2rcb_buf;		/* read buffer */
616 	spa_t		*l2rcb_spa;		/* spa */
617 	blkptr_t	l2rcb_bp;		/* original blkptr */
618 	zbookmark_t	l2rcb_zb;		/* original bookmark */
619 	int		l2rcb_flags;		/* original flags */
620 } l2arc_read_callback_t;
621 
622 typedef struct l2arc_write_callback {
623 	l2arc_dev_t	*l2wcb_dev;		/* device info */
624 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
625 } l2arc_write_callback_t;
626 
627 struct l2arc_buf_hdr {
628 	/* protected by arc_buf_hdr  mutex */
629 	l2arc_dev_t	*b_dev;			/* L2ARC device */
630 	uint64_t	b_daddr;		/* disk address, offset byte */
631 };
632 
633 typedef struct l2arc_data_free {
634 	/* protected by l2arc_free_on_write_mtx */
635 	void		*l2df_data;
636 	size_t		l2df_size;
637 	void		(*l2df_func)(void *, size_t);
638 	list_node_t	l2df_list_node;
639 } l2arc_data_free_t;
640 
641 static kmutex_t l2arc_feed_thr_lock;
642 static kcondvar_t l2arc_feed_thr_cv;
643 static uint8_t l2arc_thread_exit;
644 
645 static void l2arc_read_done(zio_t *zio);
646 static void l2arc_hdr_stat_add(void);
647 static void l2arc_hdr_stat_remove(void);
648 
649 static uint64_t
650 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
651 {
652 	uint8_t *vdva = (uint8_t *)dva;
653 	uint64_t crc = -1ULL;
654 	int i;
655 
656 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
657 
658 	for (i = 0; i < sizeof (dva_t); i++)
659 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
660 
661 	crc ^= (spa>>8) ^ birth;
662 
663 	return (crc);
664 }
665 
666 #define	BUF_EMPTY(buf)						\
667 	((buf)->b_dva.dva_word[0] == 0 &&			\
668 	(buf)->b_dva.dva_word[1] == 0 &&			\
669 	(buf)->b_birth == 0)
670 
671 #define	BUF_EQUAL(spa, dva, birth, buf)				\
672 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
673 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
674 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
675 
676 static void
677 buf_discard_identity(arc_buf_hdr_t *hdr)
678 {
679 	hdr->b_dva.dva_word[0] = 0;
680 	hdr->b_dva.dva_word[1] = 0;
681 	hdr->b_birth = 0;
682 	hdr->b_cksum0 = 0;
683 }
684 
685 static arc_buf_hdr_t *
686 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
687 {
688 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
689 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
690 	arc_buf_hdr_t *buf;
691 
692 	mutex_enter(hash_lock);
693 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
694 	    buf = buf->b_hash_next) {
695 		if (BUF_EQUAL(spa, dva, birth, buf)) {
696 			*lockp = hash_lock;
697 			return (buf);
698 		}
699 	}
700 	mutex_exit(hash_lock);
701 	*lockp = NULL;
702 	return (NULL);
703 }
704 
705 /*
706  * Insert an entry into the hash table.  If there is already an element
707  * equal to elem in the hash table, then the already existing element
708  * will be returned and the new element will not be inserted.
709  * Otherwise returns NULL.
710  */
711 static arc_buf_hdr_t *
712 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
713 {
714 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
715 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
716 	arc_buf_hdr_t *fbuf;
717 	uint32_t i;
718 
719 	ASSERT(!HDR_IN_HASH_TABLE(buf));
720 	*lockp = hash_lock;
721 	mutex_enter(hash_lock);
722 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
723 	    fbuf = fbuf->b_hash_next, i++) {
724 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
725 			return (fbuf);
726 	}
727 
728 	buf->b_hash_next = buf_hash_table.ht_table[idx];
729 	buf_hash_table.ht_table[idx] = buf;
730 	buf->b_flags |= ARC_IN_HASH_TABLE;
731 
732 	/* collect some hash table performance data */
733 	if (i > 0) {
734 		ARCSTAT_BUMP(arcstat_hash_collisions);
735 		if (i == 1)
736 			ARCSTAT_BUMP(arcstat_hash_chains);
737 
738 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
739 	}
740 
741 	ARCSTAT_BUMP(arcstat_hash_elements);
742 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
743 
744 	return (NULL);
745 }
746 
747 static void
748 buf_hash_remove(arc_buf_hdr_t *buf)
749 {
750 	arc_buf_hdr_t *fbuf, **bufp;
751 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
752 
753 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
754 	ASSERT(HDR_IN_HASH_TABLE(buf));
755 
756 	bufp = &buf_hash_table.ht_table[idx];
757 	while ((fbuf = *bufp) != buf) {
758 		ASSERT(fbuf != NULL);
759 		bufp = &fbuf->b_hash_next;
760 	}
761 	*bufp = buf->b_hash_next;
762 	buf->b_hash_next = NULL;
763 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
764 
765 	/* collect some hash table performance data */
766 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
767 
768 	if (buf_hash_table.ht_table[idx] &&
769 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
770 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
771 }
772 
773 /*
774  * Global data structures and functions for the buf kmem cache.
775  */
776 static kmem_cache_t *hdr_cache;
777 static kmem_cache_t *buf_cache;
778 
779 static void
780 buf_fini(void)
781 {
782 	int i;
783 
784 	kmem_free(buf_hash_table.ht_table,
785 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
786 	for (i = 0; i < BUF_LOCKS; i++)
787 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
788 	kmem_cache_destroy(hdr_cache);
789 	kmem_cache_destroy(buf_cache);
790 }
791 
792 /*
793  * Constructor callback - called when the cache is empty
794  * and a new buf is requested.
795  */
796 /* ARGSUSED */
797 static int
798 hdr_cons(void *vbuf, void *unused, int kmflag)
799 {
800 	arc_buf_hdr_t *buf = vbuf;
801 
802 	bzero(buf, sizeof (arc_buf_hdr_t));
803 	refcount_create(&buf->b_refcnt);
804 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
805 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
806 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
807 
808 	return (0);
809 }
810 
811 /* ARGSUSED */
812 static int
813 buf_cons(void *vbuf, void *unused, int kmflag)
814 {
815 	arc_buf_t *buf = vbuf;
816 
817 	bzero(buf, sizeof (arc_buf_t));
818 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
819 	rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL);
820 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
821 
822 	return (0);
823 }
824 
825 /*
826  * Destructor callback - called when a cached buf is
827  * no longer required.
828  */
829 /* ARGSUSED */
830 static void
831 hdr_dest(void *vbuf, void *unused)
832 {
833 	arc_buf_hdr_t *buf = vbuf;
834 
835 	ASSERT(BUF_EMPTY(buf));
836 	refcount_destroy(&buf->b_refcnt);
837 	cv_destroy(&buf->b_cv);
838 	mutex_destroy(&buf->b_freeze_lock);
839 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
840 }
841 
842 /* ARGSUSED */
843 static void
844 buf_dest(void *vbuf, void *unused)
845 {
846 	arc_buf_t *buf = vbuf;
847 
848 	mutex_destroy(&buf->b_evict_lock);
849 	rw_destroy(&buf->b_data_lock);
850 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
851 }
852 
853 /*
854  * Reclaim callback -- invoked when memory is low.
855  */
856 /* ARGSUSED */
857 static void
858 hdr_recl(void *unused)
859 {
860 	dprintf("hdr_recl called\n");
861 	/*
862 	 * umem calls the reclaim func when we destroy the buf cache,
863 	 * which is after we do arc_fini().
864 	 */
865 	if (!arc_dead)
866 		cv_signal(&arc_reclaim_thr_cv);
867 }
868 
869 static void
870 buf_init(void)
871 {
872 	uint64_t *ct;
873 	uint64_t hsize = 1ULL << 12;
874 	int i, j;
875 
876 	/*
877 	 * The hash table is big enough to fill all of physical memory
878 	 * with an average 64K block size.  The table will take up
879 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
880 	 */
881 	while (hsize * 65536 < physmem * PAGESIZE)
882 		hsize <<= 1;
883 retry:
884 	buf_hash_table.ht_mask = hsize - 1;
885 	buf_hash_table.ht_table =
886 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
887 	if (buf_hash_table.ht_table == NULL) {
888 		ASSERT(hsize > (1ULL << 8));
889 		hsize >>= 1;
890 		goto retry;
891 	}
892 
893 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
894 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
895 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
896 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
897 
898 	for (i = 0; i < 256; i++)
899 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
900 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
901 
902 	for (i = 0; i < BUF_LOCKS; i++) {
903 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
904 		    NULL, MUTEX_DEFAULT, NULL);
905 	}
906 }
907 
908 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
909 
910 static void
911 arc_cksum_verify(arc_buf_t *buf)
912 {
913 	zio_cksum_t zc;
914 
915 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
916 		return;
917 
918 	mutex_enter(&buf->b_hdr->b_freeze_lock);
919 	if (buf->b_hdr->b_freeze_cksum == NULL ||
920 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
921 		mutex_exit(&buf->b_hdr->b_freeze_lock);
922 		return;
923 	}
924 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
925 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
926 		panic("buffer modified while frozen!");
927 	mutex_exit(&buf->b_hdr->b_freeze_lock);
928 }
929 
930 static int
931 arc_cksum_equal(arc_buf_t *buf)
932 {
933 	zio_cksum_t zc;
934 	int equal;
935 
936 	mutex_enter(&buf->b_hdr->b_freeze_lock);
937 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
938 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
939 	mutex_exit(&buf->b_hdr->b_freeze_lock);
940 
941 	return (equal);
942 }
943 
944 static void
945 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
946 {
947 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
948 		return;
949 
950 	mutex_enter(&buf->b_hdr->b_freeze_lock);
951 	if (buf->b_hdr->b_freeze_cksum != NULL) {
952 		mutex_exit(&buf->b_hdr->b_freeze_lock);
953 		return;
954 	}
955 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
956 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
957 	    buf->b_hdr->b_freeze_cksum);
958 	mutex_exit(&buf->b_hdr->b_freeze_lock);
959 	arc_buf_watch(buf);
960 }
961 
962 #ifndef _KERNEL
963 typedef struct procctl {
964 	long cmd;
965 	prwatch_t prwatch;
966 } procctl_t;
967 #endif
968 
969 /* ARGSUSED */
970 static void
971 arc_buf_unwatch(arc_buf_t *buf)
972 {
973 #ifndef _KERNEL
974 	if (arc_watch) {
975 		int result;
976 		procctl_t ctl;
977 		ctl.cmd = PCWATCH;
978 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
979 		ctl.prwatch.pr_size = 0;
980 		ctl.prwatch.pr_wflags = 0;
981 		result = write(arc_procfd, &ctl, sizeof (ctl));
982 		ASSERT3U(result, ==, sizeof (ctl));
983 	}
984 #endif
985 }
986 
987 /* ARGSUSED */
988 static void
989 arc_buf_watch(arc_buf_t *buf)
990 {
991 #ifndef _KERNEL
992 	if (arc_watch) {
993 		int result;
994 		procctl_t ctl;
995 		ctl.cmd = PCWATCH;
996 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
997 		ctl.prwatch.pr_size = buf->b_hdr->b_size;
998 		ctl.prwatch.pr_wflags = WA_WRITE;
999 		result = write(arc_procfd, &ctl, sizeof (ctl));
1000 		ASSERT3U(result, ==, sizeof (ctl));
1001 	}
1002 #endif
1003 }
1004 
1005 void
1006 arc_buf_thaw(arc_buf_t *buf)
1007 {
1008 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1009 		if (buf->b_hdr->b_state != arc_anon)
1010 			panic("modifying non-anon buffer!");
1011 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1012 			panic("modifying buffer while i/o in progress!");
1013 		arc_cksum_verify(buf);
1014 	}
1015 
1016 	mutex_enter(&buf->b_hdr->b_freeze_lock);
1017 	if (buf->b_hdr->b_freeze_cksum != NULL) {
1018 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1019 		buf->b_hdr->b_freeze_cksum = NULL;
1020 	}
1021 
1022 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1023 		if (buf->b_hdr->b_thawed)
1024 			kmem_free(buf->b_hdr->b_thawed, 1);
1025 		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1026 	}
1027 
1028 	mutex_exit(&buf->b_hdr->b_freeze_lock);
1029 
1030 	arc_buf_unwatch(buf);
1031 }
1032 
1033 void
1034 arc_buf_freeze(arc_buf_t *buf)
1035 {
1036 	kmutex_t *hash_lock;
1037 
1038 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1039 		return;
1040 
1041 	hash_lock = HDR_LOCK(buf->b_hdr);
1042 	mutex_enter(hash_lock);
1043 
1044 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1045 	    buf->b_hdr->b_state == arc_anon);
1046 	arc_cksum_compute(buf, B_FALSE);
1047 	mutex_exit(hash_lock);
1048 
1049 }
1050 
1051 static void
1052 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1053 {
1054 	ASSERT(MUTEX_HELD(hash_lock));
1055 
1056 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1057 	    (ab->b_state != arc_anon)) {
1058 		uint64_t delta = ab->b_size * ab->b_datacnt;
1059 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
1060 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1061 
1062 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1063 		mutex_enter(&ab->b_state->arcs_mtx);
1064 		ASSERT(list_link_active(&ab->b_arc_node));
1065 		list_remove(list, ab);
1066 		if (GHOST_STATE(ab->b_state)) {
1067 			ASSERT0(ab->b_datacnt);
1068 			ASSERT3P(ab->b_buf, ==, NULL);
1069 			delta = ab->b_size;
1070 		}
1071 		ASSERT(delta > 0);
1072 		ASSERT3U(*size, >=, delta);
1073 		atomic_add_64(size, -delta);
1074 		mutex_exit(&ab->b_state->arcs_mtx);
1075 		/* remove the prefetch flag if we get a reference */
1076 		if (ab->b_flags & ARC_PREFETCH)
1077 			ab->b_flags &= ~ARC_PREFETCH;
1078 	}
1079 }
1080 
1081 static int
1082 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1083 {
1084 	int cnt;
1085 	arc_state_t *state = ab->b_state;
1086 
1087 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1088 	ASSERT(!GHOST_STATE(state));
1089 
1090 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1091 	    (state != arc_anon)) {
1092 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1093 
1094 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1095 		mutex_enter(&state->arcs_mtx);
1096 		ASSERT(!list_link_active(&ab->b_arc_node));
1097 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1098 		ASSERT(ab->b_datacnt > 0);
1099 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1100 		mutex_exit(&state->arcs_mtx);
1101 	}
1102 	return (cnt);
1103 }
1104 
1105 /*
1106  * Move the supplied buffer to the indicated state.  The mutex
1107  * for the buffer must be held by the caller.
1108  */
1109 static void
1110 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1111 {
1112 	arc_state_t *old_state = ab->b_state;
1113 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1114 	uint64_t from_delta, to_delta;
1115 
1116 	ASSERT(MUTEX_HELD(hash_lock));
1117 	ASSERT(new_state != old_state);
1118 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1119 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1120 	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1121 
1122 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1123 
1124 	/*
1125 	 * If this buffer is evictable, transfer it from the
1126 	 * old state list to the new state list.
1127 	 */
1128 	if (refcnt == 0) {
1129 		if (old_state != arc_anon) {
1130 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1131 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1132 
1133 			if (use_mutex)
1134 				mutex_enter(&old_state->arcs_mtx);
1135 
1136 			ASSERT(list_link_active(&ab->b_arc_node));
1137 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1138 
1139 			/*
1140 			 * If prefetching out of the ghost cache,
1141 			 * we will have a non-zero datacnt.
1142 			 */
1143 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1144 				/* ghost elements have a ghost size */
1145 				ASSERT(ab->b_buf == NULL);
1146 				from_delta = ab->b_size;
1147 			}
1148 			ASSERT3U(*size, >=, from_delta);
1149 			atomic_add_64(size, -from_delta);
1150 
1151 			if (use_mutex)
1152 				mutex_exit(&old_state->arcs_mtx);
1153 		}
1154 		if (new_state != arc_anon) {
1155 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1156 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1157 
1158 			if (use_mutex)
1159 				mutex_enter(&new_state->arcs_mtx);
1160 
1161 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1162 
1163 			/* ghost elements have a ghost size */
1164 			if (GHOST_STATE(new_state)) {
1165 				ASSERT(ab->b_datacnt == 0);
1166 				ASSERT(ab->b_buf == NULL);
1167 				to_delta = ab->b_size;
1168 			}
1169 			atomic_add_64(size, to_delta);
1170 
1171 			if (use_mutex)
1172 				mutex_exit(&new_state->arcs_mtx);
1173 		}
1174 	}
1175 
1176 	ASSERT(!BUF_EMPTY(ab));
1177 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1178 		buf_hash_remove(ab);
1179 
1180 	/* adjust state sizes */
1181 	if (to_delta)
1182 		atomic_add_64(&new_state->arcs_size, to_delta);
1183 	if (from_delta) {
1184 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1185 		atomic_add_64(&old_state->arcs_size, -from_delta);
1186 	}
1187 	ab->b_state = new_state;
1188 
1189 	/* adjust l2arc hdr stats */
1190 	if (new_state == arc_l2c_only)
1191 		l2arc_hdr_stat_add();
1192 	else if (old_state == arc_l2c_only)
1193 		l2arc_hdr_stat_remove();
1194 }
1195 
1196 void
1197 arc_space_consume(uint64_t space, arc_space_type_t type)
1198 {
1199 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1200 
1201 	switch (type) {
1202 	case ARC_SPACE_DATA:
1203 		ARCSTAT_INCR(arcstat_data_size, space);
1204 		break;
1205 	case ARC_SPACE_OTHER:
1206 		ARCSTAT_INCR(arcstat_other_size, space);
1207 		break;
1208 	case ARC_SPACE_HDRS:
1209 		ARCSTAT_INCR(arcstat_hdr_size, space);
1210 		break;
1211 	case ARC_SPACE_L2HDRS:
1212 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1213 		break;
1214 	}
1215 
1216 	atomic_add_64(&arc_meta_used, space);
1217 	atomic_add_64(&arc_size, space);
1218 }
1219 
1220 void
1221 arc_space_return(uint64_t space, arc_space_type_t type)
1222 {
1223 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1224 
1225 	switch (type) {
1226 	case ARC_SPACE_DATA:
1227 		ARCSTAT_INCR(arcstat_data_size, -space);
1228 		break;
1229 	case ARC_SPACE_OTHER:
1230 		ARCSTAT_INCR(arcstat_other_size, -space);
1231 		break;
1232 	case ARC_SPACE_HDRS:
1233 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1234 		break;
1235 	case ARC_SPACE_L2HDRS:
1236 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1237 		break;
1238 	}
1239 
1240 	ASSERT(arc_meta_used >= space);
1241 	if (arc_meta_max < arc_meta_used)
1242 		arc_meta_max = arc_meta_used;
1243 	atomic_add_64(&arc_meta_used, -space);
1244 	ASSERT(arc_size >= space);
1245 	atomic_add_64(&arc_size, -space);
1246 }
1247 
1248 void *
1249 arc_data_buf_alloc(uint64_t size)
1250 {
1251 	if (arc_evict_needed(ARC_BUFC_DATA))
1252 		cv_signal(&arc_reclaim_thr_cv);
1253 	atomic_add_64(&arc_size, size);
1254 	return (zio_data_buf_alloc(size));
1255 }
1256 
1257 void
1258 arc_data_buf_free(void *buf, uint64_t size)
1259 {
1260 	zio_data_buf_free(buf, size);
1261 	ASSERT(arc_size >= size);
1262 	atomic_add_64(&arc_size, -size);
1263 }
1264 
1265 arc_buf_t *
1266 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1267 {
1268 	arc_buf_hdr_t *hdr;
1269 	arc_buf_t *buf;
1270 
1271 	ASSERT3U(size, >, 0);
1272 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1273 	ASSERT(BUF_EMPTY(hdr));
1274 	hdr->b_size = size;
1275 	hdr->b_type = type;
1276 	hdr->b_spa = spa_load_guid(spa);
1277 	hdr->b_state = arc_anon;
1278 	hdr->b_arc_access = 0;
1279 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1280 	buf->b_hdr = hdr;
1281 	buf->b_data = NULL;
1282 	buf->b_efunc = NULL;
1283 	buf->b_private = NULL;
1284 	buf->b_next = NULL;
1285 	hdr->b_buf = buf;
1286 	arc_get_data_buf(buf);
1287 	hdr->b_datacnt = 1;
1288 	hdr->b_flags = 0;
1289 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1290 	(void) refcount_add(&hdr->b_refcnt, tag);
1291 
1292 	return (buf);
1293 }
1294 
1295 static char *arc_onloan_tag = "onloan";
1296 
1297 /*
1298  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1299  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1300  * buffers must be returned to the arc before they can be used by the DMU or
1301  * freed.
1302  */
1303 arc_buf_t *
1304 arc_loan_buf(spa_t *spa, int size)
1305 {
1306 	arc_buf_t *buf;
1307 
1308 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1309 
1310 	atomic_add_64(&arc_loaned_bytes, size);
1311 	return (buf);
1312 }
1313 
1314 /*
1315  * Return a loaned arc buffer to the arc.
1316  */
1317 void
1318 arc_return_buf(arc_buf_t *buf, void *tag)
1319 {
1320 	arc_buf_hdr_t *hdr = buf->b_hdr;
1321 
1322 	ASSERT(buf->b_data != NULL);
1323 	(void) refcount_add(&hdr->b_refcnt, tag);
1324 	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1325 
1326 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1327 }
1328 
1329 /* Detach an arc_buf from a dbuf (tag) */
1330 void
1331 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1332 {
1333 	arc_buf_hdr_t *hdr;
1334 
1335 	ASSERT(buf->b_data != NULL);
1336 	hdr = buf->b_hdr;
1337 	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1338 	(void) refcount_remove(&hdr->b_refcnt, tag);
1339 	buf->b_efunc = NULL;
1340 	buf->b_private = NULL;
1341 
1342 	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1343 }
1344 
1345 static arc_buf_t *
1346 arc_buf_clone(arc_buf_t *from)
1347 {
1348 	arc_buf_t *buf;
1349 	arc_buf_hdr_t *hdr = from->b_hdr;
1350 	uint64_t size = hdr->b_size;
1351 
1352 	ASSERT(hdr->b_state != arc_anon);
1353 
1354 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1355 	buf->b_hdr = hdr;
1356 	buf->b_data = NULL;
1357 	buf->b_efunc = NULL;
1358 	buf->b_private = NULL;
1359 	buf->b_next = hdr->b_buf;
1360 	hdr->b_buf = buf;
1361 	arc_get_data_buf(buf);
1362 	bcopy(from->b_data, buf->b_data, size);
1363 	hdr->b_datacnt += 1;
1364 	return (buf);
1365 }
1366 
1367 void
1368 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1369 {
1370 	arc_buf_hdr_t *hdr;
1371 	kmutex_t *hash_lock;
1372 
1373 	/*
1374 	 * Check to see if this buffer is evicted.  Callers
1375 	 * must verify b_data != NULL to know if the add_ref
1376 	 * was successful.
1377 	 */
1378 	mutex_enter(&buf->b_evict_lock);
1379 	if (buf->b_data == NULL) {
1380 		mutex_exit(&buf->b_evict_lock);
1381 		return;
1382 	}
1383 	hash_lock = HDR_LOCK(buf->b_hdr);
1384 	mutex_enter(hash_lock);
1385 	hdr = buf->b_hdr;
1386 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1387 	mutex_exit(&buf->b_evict_lock);
1388 
1389 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1390 	add_reference(hdr, hash_lock, tag);
1391 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1392 	arc_access(hdr, hash_lock);
1393 	mutex_exit(hash_lock);
1394 	ARCSTAT_BUMP(arcstat_hits);
1395 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1396 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1397 	    data, metadata, hits);
1398 }
1399 
1400 /*
1401  * Free the arc data buffer.  If it is an l2arc write in progress,
1402  * the buffer is placed on l2arc_free_on_write to be freed later.
1403  */
1404 static void
1405 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1406 {
1407 	arc_buf_hdr_t *hdr = buf->b_hdr;
1408 
1409 	if (HDR_L2_WRITING(hdr)) {
1410 		l2arc_data_free_t *df;
1411 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1412 		df->l2df_data = buf->b_data;
1413 		df->l2df_size = hdr->b_size;
1414 		df->l2df_func = free_func;
1415 		mutex_enter(&l2arc_free_on_write_mtx);
1416 		list_insert_head(l2arc_free_on_write, df);
1417 		mutex_exit(&l2arc_free_on_write_mtx);
1418 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1419 	} else {
1420 		free_func(buf->b_data, hdr->b_size);
1421 	}
1422 }
1423 
1424 static void
1425 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1426 {
1427 	arc_buf_t **bufp;
1428 
1429 	/* free up data associated with the buf */
1430 	if (buf->b_data) {
1431 		arc_state_t *state = buf->b_hdr->b_state;
1432 		uint64_t size = buf->b_hdr->b_size;
1433 		arc_buf_contents_t type = buf->b_hdr->b_type;
1434 
1435 		arc_cksum_verify(buf);
1436 		arc_buf_unwatch(buf);
1437 
1438 		if (!recycle) {
1439 			if (type == ARC_BUFC_METADATA) {
1440 				arc_buf_data_free(buf, zio_buf_free);
1441 				arc_space_return(size, ARC_SPACE_DATA);
1442 			} else {
1443 				ASSERT(type == ARC_BUFC_DATA);
1444 				arc_buf_data_free(buf, zio_data_buf_free);
1445 				ARCSTAT_INCR(arcstat_data_size, -size);
1446 				atomic_add_64(&arc_size, -size);
1447 			}
1448 		}
1449 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1450 			uint64_t *cnt = &state->arcs_lsize[type];
1451 
1452 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1453 			ASSERT(state != arc_anon);
1454 
1455 			ASSERT3U(*cnt, >=, size);
1456 			atomic_add_64(cnt, -size);
1457 		}
1458 		ASSERT3U(state->arcs_size, >=, size);
1459 		atomic_add_64(&state->arcs_size, -size);
1460 		buf->b_data = NULL;
1461 		ASSERT(buf->b_hdr->b_datacnt > 0);
1462 		buf->b_hdr->b_datacnt -= 1;
1463 	}
1464 
1465 	/* only remove the buf if requested */
1466 	if (!all)
1467 		return;
1468 
1469 	/* remove the buf from the hdr list */
1470 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1471 		continue;
1472 	*bufp = buf->b_next;
1473 	buf->b_next = NULL;
1474 
1475 	ASSERT(buf->b_efunc == NULL);
1476 
1477 	/* clean up the buf */
1478 	buf->b_hdr = NULL;
1479 	kmem_cache_free(buf_cache, buf);
1480 }
1481 
1482 static void
1483 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1484 {
1485 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1486 	ASSERT3P(hdr->b_state, ==, arc_anon);
1487 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1488 	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1489 
1490 	if (l2hdr != NULL) {
1491 		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1492 		/*
1493 		 * To prevent arc_free() and l2arc_evict() from
1494 		 * attempting to free the same buffer at the same time,
1495 		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1496 		 * give it priority.  l2arc_evict() can't destroy this
1497 		 * header while we are waiting on l2arc_buflist_mtx.
1498 		 *
1499 		 * The hdr may be removed from l2ad_buflist before we
1500 		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1501 		 */
1502 		if (!buflist_held) {
1503 			mutex_enter(&l2arc_buflist_mtx);
1504 			l2hdr = hdr->b_l2hdr;
1505 		}
1506 
1507 		if (l2hdr != NULL) {
1508 			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1509 			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1510 			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1511 			if (hdr->b_state == arc_l2c_only)
1512 				l2arc_hdr_stat_remove();
1513 			hdr->b_l2hdr = NULL;
1514 		}
1515 
1516 		if (!buflist_held)
1517 			mutex_exit(&l2arc_buflist_mtx);
1518 	}
1519 
1520 	if (!BUF_EMPTY(hdr)) {
1521 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1522 		buf_discard_identity(hdr);
1523 	}
1524 	while (hdr->b_buf) {
1525 		arc_buf_t *buf = hdr->b_buf;
1526 
1527 		if (buf->b_efunc) {
1528 			mutex_enter(&arc_eviction_mtx);
1529 			mutex_enter(&buf->b_evict_lock);
1530 			ASSERT(buf->b_hdr != NULL);
1531 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1532 			hdr->b_buf = buf->b_next;
1533 			buf->b_hdr = &arc_eviction_hdr;
1534 			buf->b_next = arc_eviction_list;
1535 			arc_eviction_list = buf;
1536 			mutex_exit(&buf->b_evict_lock);
1537 			mutex_exit(&arc_eviction_mtx);
1538 		} else {
1539 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1540 		}
1541 	}
1542 	if (hdr->b_freeze_cksum != NULL) {
1543 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1544 		hdr->b_freeze_cksum = NULL;
1545 	}
1546 	if (hdr->b_thawed) {
1547 		kmem_free(hdr->b_thawed, 1);
1548 		hdr->b_thawed = NULL;
1549 	}
1550 
1551 	ASSERT(!list_link_active(&hdr->b_arc_node));
1552 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1553 	ASSERT3P(hdr->b_acb, ==, NULL);
1554 	kmem_cache_free(hdr_cache, hdr);
1555 }
1556 
1557 void
1558 arc_buf_free(arc_buf_t *buf, void *tag)
1559 {
1560 	arc_buf_hdr_t *hdr = buf->b_hdr;
1561 	int hashed = hdr->b_state != arc_anon;
1562 
1563 	ASSERT(buf->b_efunc == NULL);
1564 	ASSERT(buf->b_data != NULL);
1565 
1566 	if (hashed) {
1567 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1568 
1569 		mutex_enter(hash_lock);
1570 		hdr = buf->b_hdr;
1571 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1572 
1573 		(void) remove_reference(hdr, hash_lock, tag);
1574 		if (hdr->b_datacnt > 1) {
1575 			arc_buf_destroy(buf, FALSE, TRUE);
1576 		} else {
1577 			ASSERT(buf == hdr->b_buf);
1578 			ASSERT(buf->b_efunc == NULL);
1579 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1580 		}
1581 		mutex_exit(hash_lock);
1582 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1583 		int destroy_hdr;
1584 		/*
1585 		 * We are in the middle of an async write.  Don't destroy
1586 		 * this buffer unless the write completes before we finish
1587 		 * decrementing the reference count.
1588 		 */
1589 		mutex_enter(&arc_eviction_mtx);
1590 		(void) remove_reference(hdr, NULL, tag);
1591 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1592 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1593 		mutex_exit(&arc_eviction_mtx);
1594 		if (destroy_hdr)
1595 			arc_hdr_destroy(hdr);
1596 	} else {
1597 		if (remove_reference(hdr, NULL, tag) > 0)
1598 			arc_buf_destroy(buf, FALSE, TRUE);
1599 		else
1600 			arc_hdr_destroy(hdr);
1601 	}
1602 }
1603 
1604 int
1605 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1606 {
1607 	arc_buf_hdr_t *hdr = buf->b_hdr;
1608 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1609 	int no_callback = (buf->b_efunc == NULL);
1610 
1611 	if (hdr->b_state == arc_anon) {
1612 		ASSERT(hdr->b_datacnt == 1);
1613 		arc_buf_free(buf, tag);
1614 		return (no_callback);
1615 	}
1616 
1617 	mutex_enter(hash_lock);
1618 	hdr = buf->b_hdr;
1619 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1620 	ASSERT(hdr->b_state != arc_anon);
1621 	ASSERT(buf->b_data != NULL);
1622 
1623 	(void) remove_reference(hdr, hash_lock, tag);
1624 	if (hdr->b_datacnt > 1) {
1625 		if (no_callback)
1626 			arc_buf_destroy(buf, FALSE, TRUE);
1627 	} else if (no_callback) {
1628 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1629 		ASSERT(buf->b_efunc == NULL);
1630 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1631 	}
1632 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1633 	    refcount_is_zero(&hdr->b_refcnt));
1634 	mutex_exit(hash_lock);
1635 	return (no_callback);
1636 }
1637 
1638 int
1639 arc_buf_size(arc_buf_t *buf)
1640 {
1641 	return (buf->b_hdr->b_size);
1642 }
1643 
1644 /*
1645  * Evict buffers from list until we've removed the specified number of
1646  * bytes.  Move the removed buffers to the appropriate evict state.
1647  * If the recycle flag is set, then attempt to "recycle" a buffer:
1648  * - look for a buffer to evict that is `bytes' long.
1649  * - return the data block from this buffer rather than freeing it.
1650  * This flag is used by callers that are trying to make space for a
1651  * new buffer in a full arc cache.
1652  *
1653  * This function makes a "best effort".  It skips over any buffers
1654  * it can't get a hash_lock on, and so may not catch all candidates.
1655  * It may also return without evicting as much space as requested.
1656  */
1657 static void *
1658 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1659     arc_buf_contents_t type)
1660 {
1661 	arc_state_t *evicted_state;
1662 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1663 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1664 	list_t *list = &state->arcs_list[type];
1665 	kmutex_t *hash_lock;
1666 	boolean_t have_lock;
1667 	void *stolen = NULL;
1668 
1669 	ASSERT(state == arc_mru || state == arc_mfu);
1670 
1671 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1672 
1673 	mutex_enter(&state->arcs_mtx);
1674 	mutex_enter(&evicted_state->arcs_mtx);
1675 
1676 	for (ab = list_tail(list); ab; ab = ab_prev) {
1677 		ab_prev = list_prev(list, ab);
1678 		/* prefetch buffers have a minimum lifespan */
1679 		if (HDR_IO_IN_PROGRESS(ab) ||
1680 		    (spa && ab->b_spa != spa) ||
1681 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1682 		    ddi_get_lbolt() - ab->b_arc_access <
1683 		    arc_min_prefetch_lifespan)) {
1684 			skipped++;
1685 			continue;
1686 		}
1687 		/* "lookahead" for better eviction candidate */
1688 		if (recycle && ab->b_size != bytes &&
1689 		    ab_prev && ab_prev->b_size == bytes)
1690 			continue;
1691 		hash_lock = HDR_LOCK(ab);
1692 		have_lock = MUTEX_HELD(hash_lock);
1693 		if (have_lock || mutex_tryenter(hash_lock)) {
1694 			ASSERT0(refcount_count(&ab->b_refcnt));
1695 			ASSERT(ab->b_datacnt > 0);
1696 			while (ab->b_buf) {
1697 				arc_buf_t *buf = ab->b_buf;
1698 				if (!mutex_tryenter(&buf->b_evict_lock)) {
1699 					missed += 1;
1700 					break;
1701 				}
1702 				if (buf->b_data) {
1703 					bytes_evicted += ab->b_size;
1704 					if (recycle && ab->b_type == type &&
1705 					    ab->b_size == bytes &&
1706 					    !HDR_L2_WRITING(ab)) {
1707 						stolen = buf->b_data;
1708 						recycle = FALSE;
1709 					}
1710 				}
1711 				if (buf->b_efunc) {
1712 					mutex_enter(&arc_eviction_mtx);
1713 					arc_buf_destroy(buf,
1714 					    buf->b_data == stolen, FALSE);
1715 					ab->b_buf = buf->b_next;
1716 					buf->b_hdr = &arc_eviction_hdr;
1717 					buf->b_next = arc_eviction_list;
1718 					arc_eviction_list = buf;
1719 					mutex_exit(&arc_eviction_mtx);
1720 					mutex_exit(&buf->b_evict_lock);
1721 				} else {
1722 					mutex_exit(&buf->b_evict_lock);
1723 					arc_buf_destroy(buf,
1724 					    buf->b_data == stolen, TRUE);
1725 				}
1726 			}
1727 
1728 			if (ab->b_l2hdr) {
1729 				ARCSTAT_INCR(arcstat_evict_l2_cached,
1730 				    ab->b_size);
1731 			} else {
1732 				if (l2arc_write_eligible(ab->b_spa, ab)) {
1733 					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1734 					    ab->b_size);
1735 				} else {
1736 					ARCSTAT_INCR(
1737 					    arcstat_evict_l2_ineligible,
1738 					    ab->b_size);
1739 				}
1740 			}
1741 
1742 			if (ab->b_datacnt == 0) {
1743 				arc_change_state(evicted_state, ab, hash_lock);
1744 				ASSERT(HDR_IN_HASH_TABLE(ab));
1745 				ab->b_flags |= ARC_IN_HASH_TABLE;
1746 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1747 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1748 			}
1749 			if (!have_lock)
1750 				mutex_exit(hash_lock);
1751 			if (bytes >= 0 && bytes_evicted >= bytes)
1752 				break;
1753 		} else {
1754 			missed += 1;
1755 		}
1756 	}
1757 
1758 	mutex_exit(&evicted_state->arcs_mtx);
1759 	mutex_exit(&state->arcs_mtx);
1760 
1761 	if (bytes_evicted < bytes)
1762 		dprintf("only evicted %lld bytes from %x",
1763 		    (longlong_t)bytes_evicted, state);
1764 
1765 	if (skipped)
1766 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1767 
1768 	if (missed)
1769 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1770 
1771 	/*
1772 	 * We have just evicted some date into the ghost state, make
1773 	 * sure we also adjust the ghost state size if necessary.
1774 	 */
1775 	if (arc_no_grow &&
1776 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1777 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1778 		    arc_mru_ghost->arcs_size - arc_c;
1779 
1780 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1781 			int64_t todelete =
1782 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1783 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1784 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1785 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1786 			    arc_mru_ghost->arcs_size +
1787 			    arc_mfu_ghost->arcs_size - arc_c);
1788 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1789 		}
1790 	}
1791 
1792 	return (stolen);
1793 }
1794 
1795 /*
1796  * Remove buffers from list until we've removed the specified number of
1797  * bytes.  Destroy the buffers that are removed.
1798  */
1799 static void
1800 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1801 {
1802 	arc_buf_hdr_t *ab, *ab_prev;
1803 	arc_buf_hdr_t marker = { 0 };
1804 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1805 	kmutex_t *hash_lock;
1806 	uint64_t bytes_deleted = 0;
1807 	uint64_t bufs_skipped = 0;
1808 
1809 	ASSERT(GHOST_STATE(state));
1810 top:
1811 	mutex_enter(&state->arcs_mtx);
1812 	for (ab = list_tail(list); ab; ab = ab_prev) {
1813 		ab_prev = list_prev(list, ab);
1814 		if (spa && ab->b_spa != spa)
1815 			continue;
1816 
1817 		/* ignore markers */
1818 		if (ab->b_spa == 0)
1819 			continue;
1820 
1821 		hash_lock = HDR_LOCK(ab);
1822 		/* caller may be trying to modify this buffer, skip it */
1823 		if (MUTEX_HELD(hash_lock))
1824 			continue;
1825 		if (mutex_tryenter(hash_lock)) {
1826 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1827 			ASSERT(ab->b_buf == NULL);
1828 			ARCSTAT_BUMP(arcstat_deleted);
1829 			bytes_deleted += ab->b_size;
1830 
1831 			if (ab->b_l2hdr != NULL) {
1832 				/*
1833 				 * This buffer is cached on the 2nd Level ARC;
1834 				 * don't destroy the header.
1835 				 */
1836 				arc_change_state(arc_l2c_only, ab, hash_lock);
1837 				mutex_exit(hash_lock);
1838 			} else {
1839 				arc_change_state(arc_anon, ab, hash_lock);
1840 				mutex_exit(hash_lock);
1841 				arc_hdr_destroy(ab);
1842 			}
1843 
1844 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1845 			if (bytes >= 0 && bytes_deleted >= bytes)
1846 				break;
1847 		} else if (bytes < 0) {
1848 			/*
1849 			 * Insert a list marker and then wait for the
1850 			 * hash lock to become available. Once its
1851 			 * available, restart from where we left off.
1852 			 */
1853 			list_insert_after(list, ab, &marker);
1854 			mutex_exit(&state->arcs_mtx);
1855 			mutex_enter(hash_lock);
1856 			mutex_exit(hash_lock);
1857 			mutex_enter(&state->arcs_mtx);
1858 			ab_prev = list_prev(list, &marker);
1859 			list_remove(list, &marker);
1860 		} else
1861 			bufs_skipped += 1;
1862 	}
1863 	mutex_exit(&state->arcs_mtx);
1864 
1865 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1866 	    (bytes < 0 || bytes_deleted < bytes)) {
1867 		list = &state->arcs_list[ARC_BUFC_METADATA];
1868 		goto top;
1869 	}
1870 
1871 	if (bufs_skipped) {
1872 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1873 		ASSERT(bytes >= 0);
1874 	}
1875 
1876 	if (bytes_deleted < bytes)
1877 		dprintf("only deleted %lld bytes from %p",
1878 		    (longlong_t)bytes_deleted, state);
1879 }
1880 
1881 static void
1882 arc_adjust(void)
1883 {
1884 	int64_t adjustment, delta;
1885 
1886 	/*
1887 	 * Adjust MRU size
1888 	 */
1889 
1890 	adjustment = MIN((int64_t)(arc_size - arc_c),
1891 	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1892 	    arc_p));
1893 
1894 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1895 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1896 		(void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
1897 		adjustment -= delta;
1898 	}
1899 
1900 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1901 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1902 		(void) arc_evict(arc_mru, NULL, delta, FALSE,
1903 		    ARC_BUFC_METADATA);
1904 	}
1905 
1906 	/*
1907 	 * Adjust MFU size
1908 	 */
1909 
1910 	adjustment = arc_size - arc_c;
1911 
1912 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1913 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1914 		(void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
1915 		adjustment -= delta;
1916 	}
1917 
1918 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1919 		int64_t delta = MIN(adjustment,
1920 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1921 		(void) arc_evict(arc_mfu, NULL, delta, FALSE,
1922 		    ARC_BUFC_METADATA);
1923 	}
1924 
1925 	/*
1926 	 * Adjust ghost lists
1927 	 */
1928 
1929 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1930 
1931 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1932 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
1933 		arc_evict_ghost(arc_mru_ghost, NULL, delta);
1934 	}
1935 
1936 	adjustment =
1937 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
1938 
1939 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1940 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
1941 		arc_evict_ghost(arc_mfu_ghost, NULL, delta);
1942 	}
1943 }
1944 
1945 static void
1946 arc_do_user_evicts(void)
1947 {
1948 	mutex_enter(&arc_eviction_mtx);
1949 	while (arc_eviction_list != NULL) {
1950 		arc_buf_t *buf = arc_eviction_list;
1951 		arc_eviction_list = buf->b_next;
1952 		mutex_enter(&buf->b_evict_lock);
1953 		buf->b_hdr = NULL;
1954 		mutex_exit(&buf->b_evict_lock);
1955 		mutex_exit(&arc_eviction_mtx);
1956 
1957 		if (buf->b_efunc != NULL)
1958 			VERIFY(buf->b_efunc(buf) == 0);
1959 
1960 		buf->b_efunc = NULL;
1961 		buf->b_private = NULL;
1962 		kmem_cache_free(buf_cache, buf);
1963 		mutex_enter(&arc_eviction_mtx);
1964 	}
1965 	mutex_exit(&arc_eviction_mtx);
1966 }
1967 
1968 /*
1969  * Flush all *evictable* data from the cache for the given spa.
1970  * NOTE: this will not touch "active" (i.e. referenced) data.
1971  */
1972 void
1973 arc_flush(spa_t *spa)
1974 {
1975 	uint64_t guid = 0;
1976 
1977 	if (spa)
1978 		guid = spa_load_guid(spa);
1979 
1980 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1981 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
1982 		if (spa)
1983 			break;
1984 	}
1985 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1986 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
1987 		if (spa)
1988 			break;
1989 	}
1990 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1991 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
1992 		if (spa)
1993 			break;
1994 	}
1995 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1996 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
1997 		if (spa)
1998 			break;
1999 	}
2000 
2001 	arc_evict_ghost(arc_mru_ghost, guid, -1);
2002 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2003 
2004 	mutex_enter(&arc_reclaim_thr_lock);
2005 	arc_do_user_evicts();
2006 	mutex_exit(&arc_reclaim_thr_lock);
2007 	ASSERT(spa || arc_eviction_list == NULL);
2008 }
2009 
2010 void
2011 arc_shrink(void)
2012 {
2013 	if (arc_c > arc_c_min) {
2014 		uint64_t to_free;
2015 
2016 #ifdef _KERNEL
2017 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2018 #else
2019 		to_free = arc_c >> arc_shrink_shift;
2020 #endif
2021 		if (arc_c > arc_c_min + to_free)
2022 			atomic_add_64(&arc_c, -to_free);
2023 		else
2024 			arc_c = arc_c_min;
2025 
2026 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2027 		if (arc_c > arc_size)
2028 			arc_c = MAX(arc_size, arc_c_min);
2029 		if (arc_p > arc_c)
2030 			arc_p = (arc_c >> 1);
2031 		ASSERT(arc_c >= arc_c_min);
2032 		ASSERT((int64_t)arc_p >= 0);
2033 	}
2034 
2035 	if (arc_size > arc_c)
2036 		arc_adjust();
2037 }
2038 
2039 /*
2040  * Determine if the system is under memory pressure and is asking
2041  * to reclaim memory. A return value of 1 indicates that the system
2042  * is under memory pressure and that the arc should adjust accordingly.
2043  */
2044 static int
2045 arc_reclaim_needed(void)
2046 {
2047 	uint64_t extra;
2048 
2049 #ifdef _KERNEL
2050 
2051 	if (needfree)
2052 		return (1);
2053 
2054 	/*
2055 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2056 	 */
2057 	extra = desfree;
2058 
2059 	/*
2060 	 * check that we're out of range of the pageout scanner.  It starts to
2061 	 * schedule paging if freemem is less than lotsfree and needfree.
2062 	 * lotsfree is the high-water mark for pageout, and needfree is the
2063 	 * number of needed free pages.  We add extra pages here to make sure
2064 	 * the scanner doesn't start up while we're freeing memory.
2065 	 */
2066 	if (freemem < lotsfree + needfree + extra)
2067 		return (1);
2068 
2069 	/*
2070 	 * check to make sure that swapfs has enough space so that anon
2071 	 * reservations can still succeed. anon_resvmem() checks that the
2072 	 * availrmem is greater than swapfs_minfree, and the number of reserved
2073 	 * swap pages.  We also add a bit of extra here just to prevent
2074 	 * circumstances from getting really dire.
2075 	 */
2076 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2077 		return (1);
2078 
2079 #if defined(__i386)
2080 	/*
2081 	 * If we're on an i386 platform, it's possible that we'll exhaust the
2082 	 * kernel heap space before we ever run out of available physical
2083 	 * memory.  Most checks of the size of the heap_area compare against
2084 	 * tune.t_minarmem, which is the minimum available real memory that we
2085 	 * can have in the system.  However, this is generally fixed at 25 pages
2086 	 * which is so low that it's useless.  In this comparison, we seek to
2087 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2088 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2089 	 * free)
2090 	 */
2091 	if (vmem_size(heap_arena, VMEM_FREE) <
2092 	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2))
2093 		return (1);
2094 #endif
2095 
2096 	/*
2097 	 * If zio data pages are being allocated out of a separate heap segment,
2098 	 * then enforce that the size of available vmem for this arena remains
2099 	 * above about 1/16th free.
2100 	 *
2101 	 * Note: The 1/16th arena free requirement was put in place
2102 	 * to aggressively evict memory from the arc in order to avoid
2103 	 * memory fragmentation issues.
2104 	 */
2105 	if (zio_arena != NULL &&
2106 	    vmem_size(zio_arena, VMEM_FREE) <
2107 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2108 		return (1);
2109 #else
2110 	if (spa_get_random(100) == 0)
2111 		return (1);
2112 #endif
2113 	return (0);
2114 }
2115 
2116 static void
2117 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2118 {
2119 	size_t			i;
2120 	kmem_cache_t		*prev_cache = NULL;
2121 	kmem_cache_t		*prev_data_cache = NULL;
2122 	extern kmem_cache_t	*zio_buf_cache[];
2123 	extern kmem_cache_t	*zio_data_buf_cache[];
2124 
2125 #ifdef _KERNEL
2126 	if (arc_meta_used >= arc_meta_limit) {
2127 		/*
2128 		 * We are exceeding our meta-data cache limit.
2129 		 * Purge some DNLC entries to release holds on meta-data.
2130 		 */
2131 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2132 	}
2133 #if defined(__i386)
2134 	/*
2135 	 * Reclaim unused memory from all kmem caches.
2136 	 */
2137 	kmem_reap();
2138 #endif
2139 #endif
2140 
2141 	/*
2142 	 * An aggressive reclamation will shrink the cache size as well as
2143 	 * reap free buffers from the arc kmem caches.
2144 	 */
2145 	if (strat == ARC_RECLAIM_AGGR)
2146 		arc_shrink();
2147 
2148 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2149 		if (zio_buf_cache[i] != prev_cache) {
2150 			prev_cache = zio_buf_cache[i];
2151 			kmem_cache_reap_now(zio_buf_cache[i]);
2152 		}
2153 		if (zio_data_buf_cache[i] != prev_data_cache) {
2154 			prev_data_cache = zio_data_buf_cache[i];
2155 			kmem_cache_reap_now(zio_data_buf_cache[i]);
2156 		}
2157 	}
2158 	kmem_cache_reap_now(buf_cache);
2159 	kmem_cache_reap_now(hdr_cache);
2160 
2161 	/*
2162 	 * Ask the vmem areana to reclaim unused memory from its
2163 	 * quantum caches.
2164 	 */
2165 	if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2166 		vmem_qcache_reap(zio_arena);
2167 }
2168 
2169 static void
2170 arc_reclaim_thread(void)
2171 {
2172 	clock_t			growtime = 0;
2173 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2174 	callb_cpr_t		cpr;
2175 
2176 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2177 
2178 	mutex_enter(&arc_reclaim_thr_lock);
2179 	while (arc_thread_exit == 0) {
2180 		if (arc_reclaim_needed()) {
2181 
2182 			if (arc_no_grow) {
2183 				if (last_reclaim == ARC_RECLAIM_CONS) {
2184 					last_reclaim = ARC_RECLAIM_AGGR;
2185 				} else {
2186 					last_reclaim = ARC_RECLAIM_CONS;
2187 				}
2188 			} else {
2189 				arc_no_grow = TRUE;
2190 				last_reclaim = ARC_RECLAIM_AGGR;
2191 				membar_producer();
2192 			}
2193 
2194 			/* reset the growth delay for every reclaim */
2195 			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2196 
2197 			arc_kmem_reap_now(last_reclaim);
2198 			arc_warm = B_TRUE;
2199 
2200 		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2201 			arc_no_grow = FALSE;
2202 		}
2203 
2204 		arc_adjust();
2205 
2206 		if (arc_eviction_list != NULL)
2207 			arc_do_user_evicts();
2208 
2209 		/* block until needed, or one second, whichever is shorter */
2210 		CALLB_CPR_SAFE_BEGIN(&cpr);
2211 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2212 		    &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2213 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2214 	}
2215 
2216 	arc_thread_exit = 0;
2217 	cv_broadcast(&arc_reclaim_thr_cv);
2218 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2219 	thread_exit();
2220 }
2221 
2222 /*
2223  * Adapt arc info given the number of bytes we are trying to add and
2224  * the state that we are comming from.  This function is only called
2225  * when we are adding new content to the cache.
2226  */
2227 static void
2228 arc_adapt(int bytes, arc_state_t *state)
2229 {
2230 	int mult;
2231 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2232 
2233 	if (state == arc_l2c_only)
2234 		return;
2235 
2236 	ASSERT(bytes > 0);
2237 	/*
2238 	 * Adapt the target size of the MRU list:
2239 	 *	- if we just hit in the MRU ghost list, then increase
2240 	 *	  the target size of the MRU list.
2241 	 *	- if we just hit in the MFU ghost list, then increase
2242 	 *	  the target size of the MFU list by decreasing the
2243 	 *	  target size of the MRU list.
2244 	 */
2245 	if (state == arc_mru_ghost) {
2246 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2247 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2248 		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2249 
2250 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2251 	} else if (state == arc_mfu_ghost) {
2252 		uint64_t delta;
2253 
2254 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2255 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2256 		mult = MIN(mult, 10);
2257 
2258 		delta = MIN(bytes * mult, arc_p);
2259 		arc_p = MAX(arc_p_min, arc_p - delta);
2260 	}
2261 	ASSERT((int64_t)arc_p >= 0);
2262 
2263 	if (arc_reclaim_needed()) {
2264 		cv_signal(&arc_reclaim_thr_cv);
2265 		return;
2266 	}
2267 
2268 	if (arc_no_grow)
2269 		return;
2270 
2271 	if (arc_c >= arc_c_max)
2272 		return;
2273 
2274 	/*
2275 	 * If we're within (2 * maxblocksize) bytes of the target
2276 	 * cache size, increment the target cache size
2277 	 */
2278 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2279 		atomic_add_64(&arc_c, (int64_t)bytes);
2280 		if (arc_c > arc_c_max)
2281 			arc_c = arc_c_max;
2282 		else if (state == arc_anon)
2283 			atomic_add_64(&arc_p, (int64_t)bytes);
2284 		if (arc_p > arc_c)
2285 			arc_p = arc_c;
2286 	}
2287 	ASSERT((int64_t)arc_p >= 0);
2288 }
2289 
2290 /*
2291  * Check if the cache has reached its limits and eviction is required
2292  * prior to insert.
2293  */
2294 static int
2295 arc_evict_needed(arc_buf_contents_t type)
2296 {
2297 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2298 		return (1);
2299 
2300 	if (arc_reclaim_needed())
2301 		return (1);
2302 
2303 	return (arc_size > arc_c);
2304 }
2305 
2306 /*
2307  * The buffer, supplied as the first argument, needs a data block.
2308  * So, if we are at cache max, determine which cache should be victimized.
2309  * We have the following cases:
2310  *
2311  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2312  * In this situation if we're out of space, but the resident size of the MFU is
2313  * under the limit, victimize the MFU cache to satisfy this insertion request.
2314  *
2315  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2316  * Here, we've used up all of the available space for the MRU, so we need to
2317  * evict from our own cache instead.  Evict from the set of resident MRU
2318  * entries.
2319  *
2320  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2321  * c minus p represents the MFU space in the cache, since p is the size of the
2322  * cache that is dedicated to the MRU.  In this situation there's still space on
2323  * the MFU side, so the MRU side needs to be victimized.
2324  *
2325  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2326  * MFU's resident set is consuming more space than it has been allotted.  In
2327  * this situation, we must victimize our own cache, the MFU, for this insertion.
2328  */
2329 static void
2330 arc_get_data_buf(arc_buf_t *buf)
2331 {
2332 	arc_state_t		*state = buf->b_hdr->b_state;
2333 	uint64_t		size = buf->b_hdr->b_size;
2334 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2335 
2336 	arc_adapt(size, state);
2337 
2338 	/*
2339 	 * We have not yet reached cache maximum size,
2340 	 * just allocate a new buffer.
2341 	 */
2342 	if (!arc_evict_needed(type)) {
2343 		if (type == ARC_BUFC_METADATA) {
2344 			buf->b_data = zio_buf_alloc(size);
2345 			arc_space_consume(size, ARC_SPACE_DATA);
2346 		} else {
2347 			ASSERT(type == ARC_BUFC_DATA);
2348 			buf->b_data = zio_data_buf_alloc(size);
2349 			ARCSTAT_INCR(arcstat_data_size, size);
2350 			atomic_add_64(&arc_size, size);
2351 		}
2352 		goto out;
2353 	}
2354 
2355 	/*
2356 	 * If we are prefetching from the mfu ghost list, this buffer
2357 	 * will end up on the mru list; so steal space from there.
2358 	 */
2359 	if (state == arc_mfu_ghost)
2360 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2361 	else if (state == arc_mru_ghost)
2362 		state = arc_mru;
2363 
2364 	if (state == arc_mru || state == arc_anon) {
2365 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2366 		state = (arc_mfu->arcs_lsize[type] >= size &&
2367 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2368 	} else {
2369 		/* MFU cases */
2370 		uint64_t mfu_space = arc_c - arc_p;
2371 		state =  (arc_mru->arcs_lsize[type] >= size &&
2372 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2373 	}
2374 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2375 		if (type == ARC_BUFC_METADATA) {
2376 			buf->b_data = zio_buf_alloc(size);
2377 			arc_space_consume(size, ARC_SPACE_DATA);
2378 		} else {
2379 			ASSERT(type == ARC_BUFC_DATA);
2380 			buf->b_data = zio_data_buf_alloc(size);
2381 			ARCSTAT_INCR(arcstat_data_size, size);
2382 			atomic_add_64(&arc_size, size);
2383 		}
2384 		ARCSTAT_BUMP(arcstat_recycle_miss);
2385 	}
2386 	ASSERT(buf->b_data != NULL);
2387 out:
2388 	/*
2389 	 * Update the state size.  Note that ghost states have a
2390 	 * "ghost size" and so don't need to be updated.
2391 	 */
2392 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2393 		arc_buf_hdr_t *hdr = buf->b_hdr;
2394 
2395 		atomic_add_64(&hdr->b_state->arcs_size, size);
2396 		if (list_link_active(&hdr->b_arc_node)) {
2397 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2398 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2399 		}
2400 		/*
2401 		 * If we are growing the cache, and we are adding anonymous
2402 		 * data, and we have outgrown arc_p, update arc_p
2403 		 */
2404 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2405 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2406 			arc_p = MIN(arc_c, arc_p + size);
2407 	}
2408 }
2409 
2410 /*
2411  * This routine is called whenever a buffer is accessed.
2412  * NOTE: the hash lock is dropped in this function.
2413  */
2414 static void
2415 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2416 {
2417 	clock_t now;
2418 
2419 	ASSERT(MUTEX_HELD(hash_lock));
2420 
2421 	if (buf->b_state == arc_anon) {
2422 		/*
2423 		 * This buffer is not in the cache, and does not
2424 		 * appear in our "ghost" list.  Add the new buffer
2425 		 * to the MRU state.
2426 		 */
2427 
2428 		ASSERT(buf->b_arc_access == 0);
2429 		buf->b_arc_access = ddi_get_lbolt();
2430 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2431 		arc_change_state(arc_mru, buf, hash_lock);
2432 
2433 	} else if (buf->b_state == arc_mru) {
2434 		now = ddi_get_lbolt();
2435 
2436 		/*
2437 		 * If this buffer is here because of a prefetch, then either:
2438 		 * - clear the flag if this is a "referencing" read
2439 		 *   (any subsequent access will bump this into the MFU state).
2440 		 * or
2441 		 * - move the buffer to the head of the list if this is
2442 		 *   another prefetch (to make it less likely to be evicted).
2443 		 */
2444 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2445 			if (refcount_count(&buf->b_refcnt) == 0) {
2446 				ASSERT(list_link_active(&buf->b_arc_node));
2447 			} else {
2448 				buf->b_flags &= ~ARC_PREFETCH;
2449 				ARCSTAT_BUMP(arcstat_mru_hits);
2450 			}
2451 			buf->b_arc_access = now;
2452 			return;
2453 		}
2454 
2455 		/*
2456 		 * This buffer has been "accessed" only once so far,
2457 		 * but it is still in the cache. Move it to the MFU
2458 		 * state.
2459 		 */
2460 		if (now > buf->b_arc_access + ARC_MINTIME) {
2461 			/*
2462 			 * More than 125ms have passed since we
2463 			 * instantiated this buffer.  Move it to the
2464 			 * most frequently used state.
2465 			 */
2466 			buf->b_arc_access = now;
2467 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2468 			arc_change_state(arc_mfu, buf, hash_lock);
2469 		}
2470 		ARCSTAT_BUMP(arcstat_mru_hits);
2471 	} else if (buf->b_state == arc_mru_ghost) {
2472 		arc_state_t	*new_state;
2473 		/*
2474 		 * This buffer has been "accessed" recently, but
2475 		 * was evicted from the cache.  Move it to the
2476 		 * MFU state.
2477 		 */
2478 
2479 		if (buf->b_flags & ARC_PREFETCH) {
2480 			new_state = arc_mru;
2481 			if (refcount_count(&buf->b_refcnt) > 0)
2482 				buf->b_flags &= ~ARC_PREFETCH;
2483 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2484 		} else {
2485 			new_state = arc_mfu;
2486 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2487 		}
2488 
2489 		buf->b_arc_access = ddi_get_lbolt();
2490 		arc_change_state(new_state, buf, hash_lock);
2491 
2492 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2493 	} else if (buf->b_state == arc_mfu) {
2494 		/*
2495 		 * This buffer has been accessed more than once and is
2496 		 * still in the cache.  Keep it in the MFU state.
2497 		 *
2498 		 * NOTE: an add_reference() that occurred when we did
2499 		 * the arc_read() will have kicked this off the list.
2500 		 * If it was a prefetch, we will explicitly move it to
2501 		 * the head of the list now.
2502 		 */
2503 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2504 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2505 			ASSERT(list_link_active(&buf->b_arc_node));
2506 		}
2507 		ARCSTAT_BUMP(arcstat_mfu_hits);
2508 		buf->b_arc_access = ddi_get_lbolt();
2509 	} else if (buf->b_state == arc_mfu_ghost) {
2510 		arc_state_t	*new_state = arc_mfu;
2511 		/*
2512 		 * This buffer has been accessed more than once but has
2513 		 * been evicted from the cache.  Move it back to the
2514 		 * MFU state.
2515 		 */
2516 
2517 		if (buf->b_flags & ARC_PREFETCH) {
2518 			/*
2519 			 * This is a prefetch access...
2520 			 * move this block back to the MRU state.
2521 			 */
2522 			ASSERT0(refcount_count(&buf->b_refcnt));
2523 			new_state = arc_mru;
2524 		}
2525 
2526 		buf->b_arc_access = ddi_get_lbolt();
2527 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2528 		arc_change_state(new_state, buf, hash_lock);
2529 
2530 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2531 	} else if (buf->b_state == arc_l2c_only) {
2532 		/*
2533 		 * This buffer is on the 2nd Level ARC.
2534 		 */
2535 
2536 		buf->b_arc_access = ddi_get_lbolt();
2537 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2538 		arc_change_state(arc_mfu, buf, hash_lock);
2539 	} else {
2540 		ASSERT(!"invalid arc state");
2541 	}
2542 }
2543 
2544 /* a generic arc_done_func_t which you can use */
2545 /* ARGSUSED */
2546 void
2547 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2548 {
2549 	if (zio == NULL || zio->io_error == 0)
2550 		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2551 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2552 }
2553 
2554 /* a generic arc_done_func_t */
2555 void
2556 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2557 {
2558 	arc_buf_t **bufp = arg;
2559 	if (zio && zio->io_error) {
2560 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2561 		*bufp = NULL;
2562 	} else {
2563 		*bufp = buf;
2564 		ASSERT(buf->b_data);
2565 	}
2566 }
2567 
2568 static void
2569 arc_read_done(zio_t *zio)
2570 {
2571 	arc_buf_hdr_t	*hdr, *found;
2572 	arc_buf_t	*buf;
2573 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2574 	kmutex_t	*hash_lock;
2575 	arc_callback_t	*callback_list, *acb;
2576 	int		freeable = FALSE;
2577 
2578 	buf = zio->io_private;
2579 	hdr = buf->b_hdr;
2580 
2581 	/*
2582 	 * The hdr was inserted into hash-table and removed from lists
2583 	 * prior to starting I/O.  We should find this header, since
2584 	 * it's in the hash table, and it should be legit since it's
2585 	 * not possible to evict it during the I/O.  The only possible
2586 	 * reason for it not to be found is if we were freed during the
2587 	 * read.
2588 	 */
2589 	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2590 	    &hash_lock);
2591 
2592 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2593 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2594 	    (found == hdr && HDR_L2_READING(hdr)));
2595 
2596 	hdr->b_flags &= ~ARC_L2_EVICTED;
2597 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2598 		hdr->b_flags &= ~ARC_L2CACHE;
2599 
2600 	/* byteswap if necessary */
2601 	callback_list = hdr->b_acb;
2602 	ASSERT(callback_list != NULL);
2603 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2604 		dmu_object_byteswap_t bswap =
2605 		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2606 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2607 		    byteswap_uint64_array :
2608 		    dmu_ot_byteswap[bswap].ob_func;
2609 		func(buf->b_data, hdr->b_size);
2610 	}
2611 
2612 	arc_cksum_compute(buf, B_FALSE);
2613 	arc_buf_watch(buf);
2614 
2615 	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2616 		/*
2617 		 * Only call arc_access on anonymous buffers.  This is because
2618 		 * if we've issued an I/O for an evicted buffer, we've already
2619 		 * called arc_access (to prevent any simultaneous readers from
2620 		 * getting confused).
2621 		 */
2622 		arc_access(hdr, hash_lock);
2623 	}
2624 
2625 	/* create copies of the data buffer for the callers */
2626 	abuf = buf;
2627 	for (acb = callback_list; acb; acb = acb->acb_next) {
2628 		if (acb->acb_done) {
2629 			if (abuf == NULL)
2630 				abuf = arc_buf_clone(buf);
2631 			acb->acb_buf = abuf;
2632 			abuf = NULL;
2633 		}
2634 	}
2635 	hdr->b_acb = NULL;
2636 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2637 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2638 	if (abuf == buf) {
2639 		ASSERT(buf->b_efunc == NULL);
2640 		ASSERT(hdr->b_datacnt == 1);
2641 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2642 	}
2643 
2644 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2645 
2646 	if (zio->io_error != 0) {
2647 		hdr->b_flags |= ARC_IO_ERROR;
2648 		if (hdr->b_state != arc_anon)
2649 			arc_change_state(arc_anon, hdr, hash_lock);
2650 		if (HDR_IN_HASH_TABLE(hdr))
2651 			buf_hash_remove(hdr);
2652 		freeable = refcount_is_zero(&hdr->b_refcnt);
2653 	}
2654 
2655 	/*
2656 	 * Broadcast before we drop the hash_lock to avoid the possibility
2657 	 * that the hdr (and hence the cv) might be freed before we get to
2658 	 * the cv_broadcast().
2659 	 */
2660 	cv_broadcast(&hdr->b_cv);
2661 
2662 	if (hash_lock) {
2663 		mutex_exit(hash_lock);
2664 	} else {
2665 		/*
2666 		 * This block was freed while we waited for the read to
2667 		 * complete.  It has been removed from the hash table and
2668 		 * moved to the anonymous state (so that it won't show up
2669 		 * in the cache).
2670 		 */
2671 		ASSERT3P(hdr->b_state, ==, arc_anon);
2672 		freeable = refcount_is_zero(&hdr->b_refcnt);
2673 	}
2674 
2675 	/* execute each callback and free its structure */
2676 	while ((acb = callback_list) != NULL) {
2677 		if (acb->acb_done)
2678 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2679 
2680 		if (acb->acb_zio_dummy != NULL) {
2681 			acb->acb_zio_dummy->io_error = zio->io_error;
2682 			zio_nowait(acb->acb_zio_dummy);
2683 		}
2684 
2685 		callback_list = acb->acb_next;
2686 		kmem_free(acb, sizeof (arc_callback_t));
2687 	}
2688 
2689 	if (freeable)
2690 		arc_hdr_destroy(hdr);
2691 }
2692 
2693 /*
2694  * "Read" the block at the specified DVA (in bp) via the
2695  * cache.  If the block is found in the cache, invoke the provided
2696  * callback immediately and return.  Note that the `zio' parameter
2697  * in the callback will be NULL in this case, since no IO was
2698  * required.  If the block is not in the cache pass the read request
2699  * on to the spa with a substitute callback function, so that the
2700  * requested block will be added to the cache.
2701  *
2702  * If a read request arrives for a block that has a read in-progress,
2703  * either wait for the in-progress read to complete (and return the
2704  * results); or, if this is a read with a "done" func, add a record
2705  * to the read to invoke the "done" func when the read completes,
2706  * and return; or just return.
2707  *
2708  * arc_read_done() will invoke all the requested "done" functions
2709  * for readers of this block.
2710  *
2711  * Normal callers should use arc_read and pass the arc buffer and offset
2712  * for the bp.  But if you know you don't need locking, you can use
2713  * arc_read_bp.
2714  */
2715 int
2716 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
2717     arc_done_func_t *done, void *private, int priority, int zio_flags,
2718     uint32_t *arc_flags, const zbookmark_t *zb)
2719 {
2720 	int err;
2721 
2722 	if (pbuf == NULL) {
2723 		/*
2724 		 * XXX This happens from traverse callback funcs, for
2725 		 * the objset_phys_t block.
2726 		 */
2727 		return (arc_read_nolock(pio, spa, bp, done, private, priority,
2728 		    zio_flags, arc_flags, zb));
2729 	}
2730 
2731 	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2732 	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2733 	rw_enter(&pbuf->b_data_lock, RW_READER);
2734 
2735 	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2736 	    zio_flags, arc_flags, zb);
2737 	rw_exit(&pbuf->b_data_lock);
2738 
2739 	return (err);
2740 }
2741 
2742 int
2743 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
2744     arc_done_func_t *done, void *private, int priority, int zio_flags,
2745     uint32_t *arc_flags, const zbookmark_t *zb)
2746 {
2747 	arc_buf_hdr_t *hdr;
2748 	arc_buf_t *buf;
2749 	kmutex_t *hash_lock;
2750 	zio_t *rzio;
2751 	uint64_t guid = spa_load_guid(spa);
2752 
2753 top:
2754 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2755 	    &hash_lock);
2756 	if (hdr && hdr->b_datacnt > 0) {
2757 
2758 		*arc_flags |= ARC_CACHED;
2759 
2760 		if (HDR_IO_IN_PROGRESS(hdr)) {
2761 
2762 			if (*arc_flags & ARC_WAIT) {
2763 				cv_wait(&hdr->b_cv, hash_lock);
2764 				mutex_exit(hash_lock);
2765 				goto top;
2766 			}
2767 			ASSERT(*arc_flags & ARC_NOWAIT);
2768 
2769 			if (done) {
2770 				arc_callback_t	*acb = NULL;
2771 
2772 				acb = kmem_zalloc(sizeof (arc_callback_t),
2773 				    KM_SLEEP);
2774 				acb->acb_done = done;
2775 				acb->acb_private = private;
2776 				if (pio != NULL)
2777 					acb->acb_zio_dummy = zio_null(pio,
2778 					    spa, NULL, NULL, NULL, zio_flags);
2779 
2780 				ASSERT(acb->acb_done != NULL);
2781 				acb->acb_next = hdr->b_acb;
2782 				hdr->b_acb = acb;
2783 				add_reference(hdr, hash_lock, private);
2784 				mutex_exit(hash_lock);
2785 				return (0);
2786 			}
2787 			mutex_exit(hash_lock);
2788 			return (0);
2789 		}
2790 
2791 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2792 
2793 		if (done) {
2794 			add_reference(hdr, hash_lock, private);
2795 			/*
2796 			 * If this block is already in use, create a new
2797 			 * copy of the data so that we will be guaranteed
2798 			 * that arc_release() will always succeed.
2799 			 */
2800 			buf = hdr->b_buf;
2801 			ASSERT(buf);
2802 			ASSERT(buf->b_data);
2803 			if (HDR_BUF_AVAILABLE(hdr)) {
2804 				ASSERT(buf->b_efunc == NULL);
2805 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2806 			} else {
2807 				buf = arc_buf_clone(buf);
2808 			}
2809 
2810 		} else if (*arc_flags & ARC_PREFETCH &&
2811 		    refcount_count(&hdr->b_refcnt) == 0) {
2812 			hdr->b_flags |= ARC_PREFETCH;
2813 		}
2814 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2815 		arc_access(hdr, hash_lock);
2816 		if (*arc_flags & ARC_L2CACHE)
2817 			hdr->b_flags |= ARC_L2CACHE;
2818 		mutex_exit(hash_lock);
2819 		ARCSTAT_BUMP(arcstat_hits);
2820 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2821 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2822 		    data, metadata, hits);
2823 
2824 		if (done)
2825 			done(NULL, buf, private);
2826 	} else {
2827 		uint64_t size = BP_GET_LSIZE(bp);
2828 		arc_callback_t	*acb;
2829 		vdev_t *vd = NULL;
2830 		uint64_t addr;
2831 		boolean_t devw = B_FALSE;
2832 
2833 		if (hdr == NULL) {
2834 			/* this block is not in the cache */
2835 			arc_buf_hdr_t	*exists;
2836 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2837 			buf = arc_buf_alloc(spa, size, private, type);
2838 			hdr = buf->b_hdr;
2839 			hdr->b_dva = *BP_IDENTITY(bp);
2840 			hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2841 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2842 			exists = buf_hash_insert(hdr, &hash_lock);
2843 			if (exists) {
2844 				/* somebody beat us to the hash insert */
2845 				mutex_exit(hash_lock);
2846 				buf_discard_identity(hdr);
2847 				(void) arc_buf_remove_ref(buf, private);
2848 				goto top; /* restart the IO request */
2849 			}
2850 			/* if this is a prefetch, we don't have a reference */
2851 			if (*arc_flags & ARC_PREFETCH) {
2852 				(void) remove_reference(hdr, hash_lock,
2853 				    private);
2854 				hdr->b_flags |= ARC_PREFETCH;
2855 			}
2856 			if (*arc_flags & ARC_L2CACHE)
2857 				hdr->b_flags |= ARC_L2CACHE;
2858 			if (BP_GET_LEVEL(bp) > 0)
2859 				hdr->b_flags |= ARC_INDIRECT;
2860 		} else {
2861 			/* this block is in the ghost cache */
2862 			ASSERT(GHOST_STATE(hdr->b_state));
2863 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2864 			ASSERT0(refcount_count(&hdr->b_refcnt));
2865 			ASSERT(hdr->b_buf == NULL);
2866 
2867 			/* if this is a prefetch, we don't have a reference */
2868 			if (*arc_flags & ARC_PREFETCH)
2869 				hdr->b_flags |= ARC_PREFETCH;
2870 			else
2871 				add_reference(hdr, hash_lock, private);
2872 			if (*arc_flags & ARC_L2CACHE)
2873 				hdr->b_flags |= ARC_L2CACHE;
2874 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2875 			buf->b_hdr = hdr;
2876 			buf->b_data = NULL;
2877 			buf->b_efunc = NULL;
2878 			buf->b_private = NULL;
2879 			buf->b_next = NULL;
2880 			hdr->b_buf = buf;
2881 			ASSERT(hdr->b_datacnt == 0);
2882 			hdr->b_datacnt = 1;
2883 			arc_get_data_buf(buf);
2884 			arc_access(hdr, hash_lock);
2885 		}
2886 
2887 		ASSERT(!GHOST_STATE(hdr->b_state));
2888 
2889 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2890 		acb->acb_done = done;
2891 		acb->acb_private = private;
2892 
2893 		ASSERT(hdr->b_acb == NULL);
2894 		hdr->b_acb = acb;
2895 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2896 
2897 		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2898 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2899 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2900 			addr = hdr->b_l2hdr->b_daddr;
2901 			/*
2902 			 * Lock out device removal.
2903 			 */
2904 			if (vdev_is_dead(vd) ||
2905 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2906 				vd = NULL;
2907 		}
2908 
2909 		mutex_exit(hash_lock);
2910 
2911 		ASSERT3U(hdr->b_size, ==, size);
2912 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2913 		    uint64_t, size, zbookmark_t *, zb);
2914 		ARCSTAT_BUMP(arcstat_misses);
2915 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2916 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2917 		    data, metadata, misses);
2918 
2919 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2920 			/*
2921 			 * Read from the L2ARC if the following are true:
2922 			 * 1. The L2ARC vdev was previously cached.
2923 			 * 2. This buffer still has L2ARC metadata.
2924 			 * 3. This buffer isn't currently writing to the L2ARC.
2925 			 * 4. The L2ARC entry wasn't evicted, which may
2926 			 *    also have invalidated the vdev.
2927 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
2928 			 */
2929 			if (hdr->b_l2hdr != NULL &&
2930 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2931 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2932 				l2arc_read_callback_t *cb;
2933 
2934 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2935 				ARCSTAT_BUMP(arcstat_l2_hits);
2936 
2937 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2938 				    KM_SLEEP);
2939 				cb->l2rcb_buf = buf;
2940 				cb->l2rcb_spa = spa;
2941 				cb->l2rcb_bp = *bp;
2942 				cb->l2rcb_zb = *zb;
2943 				cb->l2rcb_flags = zio_flags;
2944 
2945 				/*
2946 				 * l2arc read.  The SCL_L2ARC lock will be
2947 				 * released by l2arc_read_done().
2948 				 */
2949 				rzio = zio_read_phys(pio, vd, addr, size,
2950 				    buf->b_data, ZIO_CHECKSUM_OFF,
2951 				    l2arc_read_done, cb, priority, zio_flags |
2952 				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2953 				    ZIO_FLAG_DONT_PROPAGATE |
2954 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
2955 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2956 				    zio_t *, rzio);
2957 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
2958 
2959 				if (*arc_flags & ARC_NOWAIT) {
2960 					zio_nowait(rzio);
2961 					return (0);
2962 				}
2963 
2964 				ASSERT(*arc_flags & ARC_WAIT);
2965 				if (zio_wait(rzio) == 0)
2966 					return (0);
2967 
2968 				/* l2arc read error; goto zio_read() */
2969 			} else {
2970 				DTRACE_PROBE1(l2arc__miss,
2971 				    arc_buf_hdr_t *, hdr);
2972 				ARCSTAT_BUMP(arcstat_l2_misses);
2973 				if (HDR_L2_WRITING(hdr))
2974 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2975 				spa_config_exit(spa, SCL_L2ARC, vd);
2976 			}
2977 		} else {
2978 			if (vd != NULL)
2979 				spa_config_exit(spa, SCL_L2ARC, vd);
2980 			if (l2arc_ndev != 0) {
2981 				DTRACE_PROBE1(l2arc__miss,
2982 				    arc_buf_hdr_t *, hdr);
2983 				ARCSTAT_BUMP(arcstat_l2_misses);
2984 			}
2985 		}
2986 
2987 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2988 		    arc_read_done, buf, priority, zio_flags, zb);
2989 
2990 		if (*arc_flags & ARC_WAIT)
2991 			return (zio_wait(rzio));
2992 
2993 		ASSERT(*arc_flags & ARC_NOWAIT);
2994 		zio_nowait(rzio);
2995 	}
2996 	return (0);
2997 }
2998 
2999 void
3000 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3001 {
3002 	ASSERT(buf->b_hdr != NULL);
3003 	ASSERT(buf->b_hdr->b_state != arc_anon);
3004 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3005 	ASSERT(buf->b_efunc == NULL);
3006 	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3007 
3008 	buf->b_efunc = func;
3009 	buf->b_private = private;
3010 }
3011 
3012 /*
3013  * This is used by the DMU to let the ARC know that a buffer is
3014  * being evicted, so the ARC should clean up.  If this arc buf
3015  * is not yet in the evicted state, it will be put there.
3016  */
3017 int
3018 arc_buf_evict(arc_buf_t *buf)
3019 {
3020 	arc_buf_hdr_t *hdr;
3021 	kmutex_t *hash_lock;
3022 	arc_buf_t **bufp;
3023 
3024 	mutex_enter(&buf->b_evict_lock);
3025 	hdr = buf->b_hdr;
3026 	if (hdr == NULL) {
3027 		/*
3028 		 * We are in arc_do_user_evicts().
3029 		 */
3030 		ASSERT(buf->b_data == NULL);
3031 		mutex_exit(&buf->b_evict_lock);
3032 		return (0);
3033 	} else if (buf->b_data == NULL) {
3034 		arc_buf_t copy = *buf; /* structure assignment */
3035 		/*
3036 		 * We are on the eviction list; process this buffer now
3037 		 * but let arc_do_user_evicts() do the reaping.
3038 		 */
3039 		buf->b_efunc = NULL;
3040 		mutex_exit(&buf->b_evict_lock);
3041 		VERIFY(copy.b_efunc(&copy) == 0);
3042 		return (1);
3043 	}
3044 	hash_lock = HDR_LOCK(hdr);
3045 	mutex_enter(hash_lock);
3046 	hdr = buf->b_hdr;
3047 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3048 
3049 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3050 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3051 
3052 	/*
3053 	 * Pull this buffer off of the hdr
3054 	 */
3055 	bufp = &hdr->b_buf;
3056 	while (*bufp != buf)
3057 		bufp = &(*bufp)->b_next;
3058 	*bufp = buf->b_next;
3059 
3060 	ASSERT(buf->b_data != NULL);
3061 	arc_buf_destroy(buf, FALSE, FALSE);
3062 
3063 	if (hdr->b_datacnt == 0) {
3064 		arc_state_t *old_state = hdr->b_state;
3065 		arc_state_t *evicted_state;
3066 
3067 		ASSERT(hdr->b_buf == NULL);
3068 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
3069 
3070 		evicted_state =
3071 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3072 
3073 		mutex_enter(&old_state->arcs_mtx);
3074 		mutex_enter(&evicted_state->arcs_mtx);
3075 
3076 		arc_change_state(evicted_state, hdr, hash_lock);
3077 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3078 		hdr->b_flags |= ARC_IN_HASH_TABLE;
3079 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3080 
3081 		mutex_exit(&evicted_state->arcs_mtx);
3082 		mutex_exit(&old_state->arcs_mtx);
3083 	}
3084 	mutex_exit(hash_lock);
3085 	mutex_exit(&buf->b_evict_lock);
3086 
3087 	VERIFY(buf->b_efunc(buf) == 0);
3088 	buf->b_efunc = NULL;
3089 	buf->b_private = NULL;
3090 	buf->b_hdr = NULL;
3091 	buf->b_next = NULL;
3092 	kmem_cache_free(buf_cache, buf);
3093 	return (1);
3094 }
3095 
3096 /*
3097  * Release this buffer from the cache.  This must be done
3098  * after a read and prior to modifying the buffer contents.
3099  * If the buffer has more than one reference, we must make
3100  * a new hdr for the buffer.
3101  */
3102 void
3103 arc_release(arc_buf_t *buf, void *tag)
3104 {
3105 	arc_buf_hdr_t *hdr;
3106 	kmutex_t *hash_lock = NULL;
3107 	l2arc_buf_hdr_t *l2hdr;
3108 	uint64_t buf_size;
3109 
3110 	/*
3111 	 * It would be nice to assert that if it's DMU metadata (level >
3112 	 * 0 || it's the dnode file), then it must be syncing context.
3113 	 * But we don't know that information at this level.
3114 	 */
3115 
3116 	mutex_enter(&buf->b_evict_lock);
3117 	hdr = buf->b_hdr;
3118 
3119 	/* this buffer is not on any list */
3120 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3121 
3122 	if (hdr->b_state == arc_anon) {
3123 		/* this buffer is already released */
3124 		ASSERT(buf->b_efunc == NULL);
3125 	} else {
3126 		hash_lock = HDR_LOCK(hdr);
3127 		mutex_enter(hash_lock);
3128 		hdr = buf->b_hdr;
3129 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3130 	}
3131 
3132 	l2hdr = hdr->b_l2hdr;
3133 	if (l2hdr) {
3134 		mutex_enter(&l2arc_buflist_mtx);
3135 		hdr->b_l2hdr = NULL;
3136 		buf_size = hdr->b_size;
3137 	}
3138 
3139 	/*
3140 	 * Do we have more than one buf?
3141 	 */
3142 	if (hdr->b_datacnt > 1) {
3143 		arc_buf_hdr_t *nhdr;
3144 		arc_buf_t **bufp;
3145 		uint64_t blksz = hdr->b_size;
3146 		uint64_t spa = hdr->b_spa;
3147 		arc_buf_contents_t type = hdr->b_type;
3148 		uint32_t flags = hdr->b_flags;
3149 
3150 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3151 		/*
3152 		 * Pull the data off of this hdr and attach it to
3153 		 * a new anonymous hdr.
3154 		 */
3155 		(void) remove_reference(hdr, hash_lock, tag);
3156 		bufp = &hdr->b_buf;
3157 		while (*bufp != buf)
3158 			bufp = &(*bufp)->b_next;
3159 		*bufp = buf->b_next;
3160 		buf->b_next = NULL;
3161 
3162 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3163 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3164 		if (refcount_is_zero(&hdr->b_refcnt)) {
3165 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3166 			ASSERT3U(*size, >=, hdr->b_size);
3167 			atomic_add_64(size, -hdr->b_size);
3168 		}
3169 		hdr->b_datacnt -= 1;
3170 		arc_cksum_verify(buf);
3171 		arc_buf_unwatch(buf);
3172 
3173 		mutex_exit(hash_lock);
3174 
3175 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3176 		nhdr->b_size = blksz;
3177 		nhdr->b_spa = spa;
3178 		nhdr->b_type = type;
3179 		nhdr->b_buf = buf;
3180 		nhdr->b_state = arc_anon;
3181 		nhdr->b_arc_access = 0;
3182 		nhdr->b_flags = flags & ARC_L2_WRITING;
3183 		nhdr->b_l2hdr = NULL;
3184 		nhdr->b_datacnt = 1;
3185 		nhdr->b_freeze_cksum = NULL;
3186 		(void) refcount_add(&nhdr->b_refcnt, tag);
3187 		buf->b_hdr = nhdr;
3188 		mutex_exit(&buf->b_evict_lock);
3189 		atomic_add_64(&arc_anon->arcs_size, blksz);
3190 	} else {
3191 		mutex_exit(&buf->b_evict_lock);
3192 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3193 		ASSERT(!list_link_active(&hdr->b_arc_node));
3194 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3195 		if (hdr->b_state != arc_anon)
3196 			arc_change_state(arc_anon, hdr, hash_lock);
3197 		hdr->b_arc_access = 0;
3198 		if (hash_lock)
3199 			mutex_exit(hash_lock);
3200 
3201 		buf_discard_identity(hdr);
3202 		arc_buf_thaw(buf);
3203 	}
3204 	buf->b_efunc = NULL;
3205 	buf->b_private = NULL;
3206 
3207 	if (l2hdr) {
3208 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3209 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3210 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3211 		mutex_exit(&l2arc_buflist_mtx);
3212 	}
3213 }
3214 
3215 /*
3216  * Release this buffer.  If it does not match the provided BP, fill it
3217  * with that block's contents.
3218  */
3219 /* ARGSUSED */
3220 int
3221 arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa,
3222     zbookmark_t *zb)
3223 {
3224 	arc_release(buf, tag);
3225 	return (0);
3226 }
3227 
3228 int
3229 arc_released(arc_buf_t *buf)
3230 {
3231 	int released;
3232 
3233 	mutex_enter(&buf->b_evict_lock);
3234 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3235 	mutex_exit(&buf->b_evict_lock);
3236 	return (released);
3237 }
3238 
3239 int
3240 arc_has_callback(arc_buf_t *buf)
3241 {
3242 	int callback;
3243 
3244 	mutex_enter(&buf->b_evict_lock);
3245 	callback = (buf->b_efunc != NULL);
3246 	mutex_exit(&buf->b_evict_lock);
3247 	return (callback);
3248 }
3249 
3250 #ifdef ZFS_DEBUG
3251 int
3252 arc_referenced(arc_buf_t *buf)
3253 {
3254 	int referenced;
3255 
3256 	mutex_enter(&buf->b_evict_lock);
3257 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3258 	mutex_exit(&buf->b_evict_lock);
3259 	return (referenced);
3260 }
3261 #endif
3262 
3263 static void
3264 arc_write_ready(zio_t *zio)
3265 {
3266 	arc_write_callback_t *callback = zio->io_private;
3267 	arc_buf_t *buf = callback->awcb_buf;
3268 	arc_buf_hdr_t *hdr = buf->b_hdr;
3269 
3270 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3271 	callback->awcb_ready(zio, buf, callback->awcb_private);
3272 
3273 	/*
3274 	 * If the IO is already in progress, then this is a re-write
3275 	 * attempt, so we need to thaw and re-compute the cksum.
3276 	 * It is the responsibility of the callback to handle the
3277 	 * accounting for any re-write attempt.
3278 	 */
3279 	if (HDR_IO_IN_PROGRESS(hdr)) {
3280 		mutex_enter(&hdr->b_freeze_lock);
3281 		if (hdr->b_freeze_cksum != NULL) {
3282 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3283 			hdr->b_freeze_cksum = NULL;
3284 		}
3285 		mutex_exit(&hdr->b_freeze_lock);
3286 	}
3287 	arc_cksum_compute(buf, B_FALSE);
3288 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3289 }
3290 
3291 static void
3292 arc_write_done(zio_t *zio)
3293 {
3294 	arc_write_callback_t *callback = zio->io_private;
3295 	arc_buf_t *buf = callback->awcb_buf;
3296 	arc_buf_hdr_t *hdr = buf->b_hdr;
3297 
3298 	ASSERT(hdr->b_acb == NULL);
3299 
3300 	if (zio->io_error == 0) {
3301 		hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3302 		hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3303 		hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3304 	} else {
3305 		ASSERT(BUF_EMPTY(hdr));
3306 	}
3307 
3308 	/*
3309 	 * If the block to be written was all-zero, we may have
3310 	 * compressed it away.  In this case no write was performed
3311 	 * so there will be no dva/birth/checksum.  The buffer must
3312 	 * therefore remain anonymous (and uncached).
3313 	 */
3314 	if (!BUF_EMPTY(hdr)) {
3315 		arc_buf_hdr_t *exists;
3316 		kmutex_t *hash_lock;
3317 
3318 		ASSERT(zio->io_error == 0);
3319 
3320 		arc_cksum_verify(buf);
3321 
3322 		exists = buf_hash_insert(hdr, &hash_lock);
3323 		if (exists) {
3324 			/*
3325 			 * This can only happen if we overwrite for
3326 			 * sync-to-convergence, because we remove
3327 			 * buffers from the hash table when we arc_free().
3328 			 */
3329 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3330 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3331 					panic("bad overwrite, hdr=%p exists=%p",
3332 					    (void *)hdr, (void *)exists);
3333 				ASSERT(refcount_is_zero(&exists->b_refcnt));
3334 				arc_change_state(arc_anon, exists, hash_lock);
3335 				mutex_exit(hash_lock);
3336 				arc_hdr_destroy(exists);
3337 				exists = buf_hash_insert(hdr, &hash_lock);
3338 				ASSERT3P(exists, ==, NULL);
3339 			} else {
3340 				/* Dedup */
3341 				ASSERT(hdr->b_datacnt == 1);
3342 				ASSERT(hdr->b_state == arc_anon);
3343 				ASSERT(BP_GET_DEDUP(zio->io_bp));
3344 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3345 			}
3346 		}
3347 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3348 		/* if it's not anon, we are doing a scrub */
3349 		if (!exists && hdr->b_state == arc_anon)
3350 			arc_access(hdr, hash_lock);
3351 		mutex_exit(hash_lock);
3352 	} else {
3353 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3354 	}
3355 
3356 	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3357 	callback->awcb_done(zio, buf, callback->awcb_private);
3358 
3359 	kmem_free(callback, sizeof (arc_write_callback_t));
3360 }
3361 
3362 zio_t *
3363 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3364     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3365     arc_done_func_t *ready, arc_done_func_t *done, void *private,
3366     int priority, int zio_flags, const zbookmark_t *zb)
3367 {
3368 	arc_buf_hdr_t *hdr = buf->b_hdr;
3369 	arc_write_callback_t *callback;
3370 	zio_t *zio;
3371 
3372 	ASSERT(ready != NULL);
3373 	ASSERT(done != NULL);
3374 	ASSERT(!HDR_IO_ERROR(hdr));
3375 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3376 	ASSERT(hdr->b_acb == NULL);
3377 	if (l2arc)
3378 		hdr->b_flags |= ARC_L2CACHE;
3379 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3380 	callback->awcb_ready = ready;
3381 	callback->awcb_done = done;
3382 	callback->awcb_private = private;
3383 	callback->awcb_buf = buf;
3384 
3385 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3386 	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3387 
3388 	return (zio);
3389 }
3390 
3391 static int
3392 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3393 {
3394 #ifdef _KERNEL
3395 	uint64_t available_memory = ptob(freemem);
3396 	static uint64_t page_load = 0;
3397 	static uint64_t last_txg = 0;
3398 
3399 #if defined(__i386)
3400 	available_memory =
3401 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3402 #endif
3403 	if (available_memory >= zfs_write_limit_max)
3404 		return (0);
3405 
3406 	if (txg > last_txg) {
3407 		last_txg = txg;
3408 		page_load = 0;
3409 	}
3410 	/*
3411 	 * If we are in pageout, we know that memory is already tight,
3412 	 * the arc is already going to be evicting, so we just want to
3413 	 * continue to let page writes occur as quickly as possible.
3414 	 */
3415 	if (curproc == proc_pageout) {
3416 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3417 			return (ERESTART);
3418 		/* Note: reserve is inflated, so we deflate */
3419 		page_load += reserve / 8;
3420 		return (0);
3421 	} else if (page_load > 0 && arc_reclaim_needed()) {
3422 		/* memory is low, delay before restarting */
3423 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3424 		return (EAGAIN);
3425 	}
3426 	page_load = 0;
3427 
3428 	if (arc_size > arc_c_min) {
3429 		uint64_t evictable_memory =
3430 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3431 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3432 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3433 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3434 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3435 	}
3436 
3437 	if (inflight_data > available_memory / 4) {
3438 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3439 		return (ERESTART);
3440 	}
3441 #endif
3442 	return (0);
3443 }
3444 
3445 void
3446 arc_tempreserve_clear(uint64_t reserve)
3447 {
3448 	atomic_add_64(&arc_tempreserve, -reserve);
3449 	ASSERT((int64_t)arc_tempreserve >= 0);
3450 }
3451 
3452 int
3453 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3454 {
3455 	int error;
3456 	uint64_t anon_size;
3457 
3458 #ifdef ZFS_DEBUG
3459 	/*
3460 	 * Once in a while, fail for no reason.  Everything should cope.
3461 	 */
3462 	if (spa_get_random(10000) == 0) {
3463 		dprintf("forcing random failure\n");
3464 		return (ERESTART);
3465 	}
3466 #endif
3467 	if (reserve > arc_c/4 && !arc_no_grow)
3468 		arc_c = MIN(arc_c_max, reserve * 4);
3469 	if (reserve > arc_c)
3470 		return (ENOMEM);
3471 
3472 	/*
3473 	 * Don't count loaned bufs as in flight dirty data to prevent long
3474 	 * network delays from blocking transactions that are ready to be
3475 	 * assigned to a txg.
3476 	 */
3477 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3478 
3479 	/*
3480 	 * Writes will, almost always, require additional memory allocations
3481 	 * in order to compress/encrypt/etc the data.  We therefor need to
3482 	 * make sure that there is sufficient available memory for this.
3483 	 */
3484 	if (error = arc_memory_throttle(reserve, anon_size, txg))
3485 		return (error);
3486 
3487 	/*
3488 	 * Throttle writes when the amount of dirty data in the cache
3489 	 * gets too large.  We try to keep the cache less than half full
3490 	 * of dirty blocks so that our sync times don't grow too large.
3491 	 * Note: if two requests come in concurrently, we might let them
3492 	 * both succeed, when one of them should fail.  Not a huge deal.
3493 	 */
3494 
3495 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3496 	    anon_size > arc_c / 4) {
3497 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3498 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3499 		    arc_tempreserve>>10,
3500 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3501 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3502 		    reserve>>10, arc_c>>10);
3503 		return (ERESTART);
3504 	}
3505 	atomic_add_64(&arc_tempreserve, reserve);
3506 	return (0);
3507 }
3508 
3509 void
3510 arc_init(void)
3511 {
3512 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3513 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3514 
3515 	/* Convert seconds to clock ticks */
3516 	arc_min_prefetch_lifespan = 1 * hz;
3517 
3518 	/* Start out with 1/8 of all memory */
3519 	arc_c = physmem * PAGESIZE / 8;
3520 
3521 #ifdef _KERNEL
3522 	/*
3523 	 * On architectures where the physical memory can be larger
3524 	 * than the addressable space (intel in 32-bit mode), we may
3525 	 * need to limit the cache to 1/8 of VM size.
3526 	 */
3527 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3528 #endif
3529 
3530 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3531 	arc_c_min = MAX(arc_c / 4, 64<<20);
3532 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3533 	if (arc_c * 8 >= 1<<30)
3534 		arc_c_max = (arc_c * 8) - (1<<30);
3535 	else
3536 		arc_c_max = arc_c_min;
3537 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3538 
3539 	/*
3540 	 * Allow the tunables to override our calculations if they are
3541 	 * reasonable (ie. over 64MB)
3542 	 */
3543 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3544 		arc_c_max = zfs_arc_max;
3545 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3546 		arc_c_min = zfs_arc_min;
3547 
3548 	arc_c = arc_c_max;
3549 	arc_p = (arc_c >> 1);
3550 
3551 	/* limit meta-data to 1/4 of the arc capacity */
3552 	arc_meta_limit = arc_c_max / 4;
3553 
3554 	/* Allow the tunable to override if it is reasonable */
3555 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3556 		arc_meta_limit = zfs_arc_meta_limit;
3557 
3558 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3559 		arc_c_min = arc_meta_limit / 2;
3560 
3561 	if (zfs_arc_grow_retry > 0)
3562 		arc_grow_retry = zfs_arc_grow_retry;
3563 
3564 	if (zfs_arc_shrink_shift > 0)
3565 		arc_shrink_shift = zfs_arc_shrink_shift;
3566 
3567 	if (zfs_arc_p_min_shift > 0)
3568 		arc_p_min_shift = zfs_arc_p_min_shift;
3569 
3570 	/* if kmem_flags are set, lets try to use less memory */
3571 	if (kmem_debugging())
3572 		arc_c = arc_c / 2;
3573 	if (arc_c < arc_c_min)
3574 		arc_c = arc_c_min;
3575 
3576 	arc_anon = &ARC_anon;
3577 	arc_mru = &ARC_mru;
3578 	arc_mru_ghost = &ARC_mru_ghost;
3579 	arc_mfu = &ARC_mfu;
3580 	arc_mfu_ghost = &ARC_mfu_ghost;
3581 	arc_l2c_only = &ARC_l2c_only;
3582 	arc_size = 0;
3583 
3584 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3585 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3586 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3587 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3588 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3589 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3590 
3591 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3592 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3593 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3594 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3595 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3596 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3597 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3598 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3599 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3600 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3601 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3602 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3603 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3604 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3605 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3606 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3607 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3608 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3609 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3610 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3611 
3612 	buf_init();
3613 
3614 	arc_thread_exit = 0;
3615 	arc_eviction_list = NULL;
3616 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3617 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3618 
3619 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3620 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3621 
3622 	if (arc_ksp != NULL) {
3623 		arc_ksp->ks_data = &arc_stats;
3624 		kstat_install(arc_ksp);
3625 	}
3626 
3627 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3628 	    TS_RUN, minclsyspri);
3629 
3630 	arc_dead = FALSE;
3631 	arc_warm = B_FALSE;
3632 
3633 	if (zfs_write_limit_max == 0)
3634 		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3635 	else
3636 		zfs_write_limit_shift = 0;
3637 	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3638 }
3639 
3640 void
3641 arc_fini(void)
3642 {
3643 	mutex_enter(&arc_reclaim_thr_lock);
3644 	arc_thread_exit = 1;
3645 	while (arc_thread_exit != 0)
3646 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3647 	mutex_exit(&arc_reclaim_thr_lock);
3648 
3649 	arc_flush(NULL);
3650 
3651 	arc_dead = TRUE;
3652 
3653 	if (arc_ksp != NULL) {
3654 		kstat_delete(arc_ksp);
3655 		arc_ksp = NULL;
3656 	}
3657 
3658 	mutex_destroy(&arc_eviction_mtx);
3659 	mutex_destroy(&arc_reclaim_thr_lock);
3660 	cv_destroy(&arc_reclaim_thr_cv);
3661 
3662 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3663 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3664 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3665 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3666 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3667 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3668 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3669 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3670 
3671 	mutex_destroy(&arc_anon->arcs_mtx);
3672 	mutex_destroy(&arc_mru->arcs_mtx);
3673 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3674 	mutex_destroy(&arc_mfu->arcs_mtx);
3675 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3676 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3677 
3678 	mutex_destroy(&zfs_write_limit_lock);
3679 
3680 	buf_fini();
3681 
3682 	ASSERT(arc_loaned_bytes == 0);
3683 }
3684 
3685 /*
3686  * Level 2 ARC
3687  *
3688  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3689  * It uses dedicated storage devices to hold cached data, which are populated
3690  * using large infrequent writes.  The main role of this cache is to boost
3691  * the performance of random read workloads.  The intended L2ARC devices
3692  * include short-stroked disks, solid state disks, and other media with
3693  * substantially faster read latency than disk.
3694  *
3695  *                 +-----------------------+
3696  *                 |         ARC           |
3697  *                 +-----------------------+
3698  *                    |         ^     ^
3699  *                    |         |     |
3700  *      l2arc_feed_thread()    arc_read()
3701  *                    |         |     |
3702  *                    |  l2arc read   |
3703  *                    V         |     |
3704  *               +---------------+    |
3705  *               |     L2ARC     |    |
3706  *               +---------------+    |
3707  *                   |    ^           |
3708  *          l2arc_write() |           |
3709  *                   |    |           |
3710  *                   V    |           |
3711  *                 +-------+      +-------+
3712  *                 | vdev  |      | vdev  |
3713  *                 | cache |      | cache |
3714  *                 +-------+      +-------+
3715  *                 +=========+     .-----.
3716  *                 :  L2ARC  :    |-_____-|
3717  *                 : devices :    | Disks |
3718  *                 +=========+    `-_____-'
3719  *
3720  * Read requests are satisfied from the following sources, in order:
3721  *
3722  *	1) ARC
3723  *	2) vdev cache of L2ARC devices
3724  *	3) L2ARC devices
3725  *	4) vdev cache of disks
3726  *	5) disks
3727  *
3728  * Some L2ARC device types exhibit extremely slow write performance.
3729  * To accommodate for this there are some significant differences between
3730  * the L2ARC and traditional cache design:
3731  *
3732  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3733  * the ARC behave as usual, freeing buffers and placing headers on ghost
3734  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3735  * this would add inflated write latencies for all ARC memory pressure.
3736  *
3737  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3738  * It does this by periodically scanning buffers from the eviction-end of
3739  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3740  * not already there.  It scans until a headroom of buffers is satisfied,
3741  * which itself is a buffer for ARC eviction.  The thread that does this is
3742  * l2arc_feed_thread(), illustrated below; example sizes are included to
3743  * provide a better sense of ratio than this diagram:
3744  *
3745  *	       head -->                        tail
3746  *	        +---------------------+----------+
3747  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3748  *	        +---------------------+----------+   |   o L2ARC eligible
3749  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3750  *	        +---------------------+----------+   |
3751  *	             15.9 Gbytes      ^ 32 Mbytes    |
3752  *	                           headroom          |
3753  *	                                      l2arc_feed_thread()
3754  *	                                             |
3755  *	                 l2arc write hand <--[oooo]--'
3756  *	                         |           8 Mbyte
3757  *	                         |          write max
3758  *	                         V
3759  *		  +==============================+
3760  *	L2ARC dev |####|#|###|###|    |####| ... |
3761  *	          +==============================+
3762  *	                     32 Gbytes
3763  *
3764  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3765  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3766  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3767  * safe to say that this is an uncommon case, since buffers at the end of
3768  * the ARC lists have moved there due to inactivity.
3769  *
3770  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3771  * then the L2ARC simply misses copying some buffers.  This serves as a
3772  * pressure valve to prevent heavy read workloads from both stalling the ARC
3773  * with waits and clogging the L2ARC with writes.  This also helps prevent
3774  * the potential for the L2ARC to churn if it attempts to cache content too
3775  * quickly, such as during backups of the entire pool.
3776  *
3777  * 5. After system boot and before the ARC has filled main memory, there are
3778  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3779  * lists can remain mostly static.  Instead of searching from tail of these
3780  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3781  * for eligible buffers, greatly increasing its chance of finding them.
3782  *
3783  * The L2ARC device write speed is also boosted during this time so that
3784  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3785  * there are no L2ARC reads, and no fear of degrading read performance
3786  * through increased writes.
3787  *
3788  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3789  * the vdev queue can aggregate them into larger and fewer writes.  Each
3790  * device is written to in a rotor fashion, sweeping writes through
3791  * available space then repeating.
3792  *
3793  * 7. The L2ARC does not store dirty content.  It never needs to flush
3794  * write buffers back to disk based storage.
3795  *
3796  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3797  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3798  *
3799  * The performance of the L2ARC can be tweaked by a number of tunables, which
3800  * may be necessary for different workloads:
3801  *
3802  *	l2arc_write_max		max write bytes per interval
3803  *	l2arc_write_boost	extra write bytes during device warmup
3804  *	l2arc_noprefetch	skip caching prefetched buffers
3805  *	l2arc_headroom		number of max device writes to precache
3806  *	l2arc_feed_secs		seconds between L2ARC writing
3807  *
3808  * Tunables may be removed or added as future performance improvements are
3809  * integrated, and also may become zpool properties.
3810  *
3811  * There are three key functions that control how the L2ARC warms up:
3812  *
3813  *	l2arc_write_eligible()	check if a buffer is eligible to cache
3814  *	l2arc_write_size()	calculate how much to write
3815  *	l2arc_write_interval()	calculate sleep delay between writes
3816  *
3817  * These three functions determine what to write, how much, and how quickly
3818  * to send writes.
3819  */
3820 
3821 static boolean_t
3822 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3823 {
3824 	/*
3825 	 * A buffer is *not* eligible for the L2ARC if it:
3826 	 * 1. belongs to a different spa.
3827 	 * 2. is already cached on the L2ARC.
3828 	 * 3. has an I/O in progress (it may be an incomplete read).
3829 	 * 4. is flagged not eligible (zfs property).
3830 	 */
3831 	if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
3832 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3833 		return (B_FALSE);
3834 
3835 	return (B_TRUE);
3836 }
3837 
3838 static uint64_t
3839 l2arc_write_size(l2arc_dev_t *dev)
3840 {
3841 	uint64_t size;
3842 
3843 	size = dev->l2ad_write;
3844 
3845 	if (arc_warm == B_FALSE)
3846 		size += dev->l2ad_boost;
3847 
3848 	return (size);
3849 
3850 }
3851 
3852 static clock_t
3853 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3854 {
3855 	clock_t interval, next, now;
3856 
3857 	/*
3858 	 * If the ARC lists are busy, increase our write rate; if the
3859 	 * lists are stale, idle back.  This is achieved by checking
3860 	 * how much we previously wrote - if it was more than half of
3861 	 * what we wanted, schedule the next write much sooner.
3862 	 */
3863 	if (l2arc_feed_again && wrote > (wanted / 2))
3864 		interval = (hz * l2arc_feed_min_ms) / 1000;
3865 	else
3866 		interval = hz * l2arc_feed_secs;
3867 
3868 	now = ddi_get_lbolt();
3869 	next = MAX(now, MIN(now + interval, began + interval));
3870 
3871 	return (next);
3872 }
3873 
3874 static void
3875 l2arc_hdr_stat_add(void)
3876 {
3877 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3878 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3879 }
3880 
3881 static void
3882 l2arc_hdr_stat_remove(void)
3883 {
3884 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3885 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3886 }
3887 
3888 /*
3889  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3890  * If a device is returned, this also returns holding the spa config lock.
3891  */
3892 static l2arc_dev_t *
3893 l2arc_dev_get_next(void)
3894 {
3895 	l2arc_dev_t *first, *next = NULL;
3896 
3897 	/*
3898 	 * Lock out the removal of spas (spa_namespace_lock), then removal
3899 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
3900 	 * both locks will be dropped and a spa config lock held instead.
3901 	 */
3902 	mutex_enter(&spa_namespace_lock);
3903 	mutex_enter(&l2arc_dev_mtx);
3904 
3905 	/* if there are no vdevs, there is nothing to do */
3906 	if (l2arc_ndev == 0)
3907 		goto out;
3908 
3909 	first = NULL;
3910 	next = l2arc_dev_last;
3911 	do {
3912 		/* loop around the list looking for a non-faulted vdev */
3913 		if (next == NULL) {
3914 			next = list_head(l2arc_dev_list);
3915 		} else {
3916 			next = list_next(l2arc_dev_list, next);
3917 			if (next == NULL)
3918 				next = list_head(l2arc_dev_list);
3919 		}
3920 
3921 		/* if we have come back to the start, bail out */
3922 		if (first == NULL)
3923 			first = next;
3924 		else if (next == first)
3925 			break;
3926 
3927 	} while (vdev_is_dead(next->l2ad_vdev));
3928 
3929 	/* if we were unable to find any usable vdevs, return NULL */
3930 	if (vdev_is_dead(next->l2ad_vdev))
3931 		next = NULL;
3932 
3933 	l2arc_dev_last = next;
3934 
3935 out:
3936 	mutex_exit(&l2arc_dev_mtx);
3937 
3938 	/*
3939 	 * Grab the config lock to prevent the 'next' device from being
3940 	 * removed while we are writing to it.
3941 	 */
3942 	if (next != NULL)
3943 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3944 	mutex_exit(&spa_namespace_lock);
3945 
3946 	return (next);
3947 }
3948 
3949 /*
3950  * Free buffers that were tagged for destruction.
3951  */
3952 static void
3953 l2arc_do_free_on_write()
3954 {
3955 	list_t *buflist;
3956 	l2arc_data_free_t *df, *df_prev;
3957 
3958 	mutex_enter(&l2arc_free_on_write_mtx);
3959 	buflist = l2arc_free_on_write;
3960 
3961 	for (df = list_tail(buflist); df; df = df_prev) {
3962 		df_prev = list_prev(buflist, df);
3963 		ASSERT(df->l2df_data != NULL);
3964 		ASSERT(df->l2df_func != NULL);
3965 		df->l2df_func(df->l2df_data, df->l2df_size);
3966 		list_remove(buflist, df);
3967 		kmem_free(df, sizeof (l2arc_data_free_t));
3968 	}
3969 
3970 	mutex_exit(&l2arc_free_on_write_mtx);
3971 }
3972 
3973 /*
3974  * A write to a cache device has completed.  Update all headers to allow
3975  * reads from these buffers to begin.
3976  */
3977 static void
3978 l2arc_write_done(zio_t *zio)
3979 {
3980 	l2arc_write_callback_t *cb;
3981 	l2arc_dev_t *dev;
3982 	list_t *buflist;
3983 	arc_buf_hdr_t *head, *ab, *ab_prev;
3984 	l2arc_buf_hdr_t *abl2;
3985 	kmutex_t *hash_lock;
3986 
3987 	cb = zio->io_private;
3988 	ASSERT(cb != NULL);
3989 	dev = cb->l2wcb_dev;
3990 	ASSERT(dev != NULL);
3991 	head = cb->l2wcb_head;
3992 	ASSERT(head != NULL);
3993 	buflist = dev->l2ad_buflist;
3994 	ASSERT(buflist != NULL);
3995 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3996 	    l2arc_write_callback_t *, cb);
3997 
3998 	if (zio->io_error != 0)
3999 		ARCSTAT_BUMP(arcstat_l2_writes_error);
4000 
4001 	mutex_enter(&l2arc_buflist_mtx);
4002 
4003 	/*
4004 	 * All writes completed, or an error was hit.
4005 	 */
4006 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4007 		ab_prev = list_prev(buflist, ab);
4008 
4009 		hash_lock = HDR_LOCK(ab);
4010 		if (!mutex_tryenter(hash_lock)) {
4011 			/*
4012 			 * This buffer misses out.  It may be in a stage
4013 			 * of eviction.  Its ARC_L2_WRITING flag will be
4014 			 * left set, denying reads to this buffer.
4015 			 */
4016 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4017 			continue;
4018 		}
4019 
4020 		if (zio->io_error != 0) {
4021 			/*
4022 			 * Error - drop L2ARC entry.
4023 			 */
4024 			list_remove(buflist, ab);
4025 			abl2 = ab->b_l2hdr;
4026 			ab->b_l2hdr = NULL;
4027 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4028 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4029 		}
4030 
4031 		/*
4032 		 * Allow ARC to begin reads to this L2ARC entry.
4033 		 */
4034 		ab->b_flags &= ~ARC_L2_WRITING;
4035 
4036 		mutex_exit(hash_lock);
4037 	}
4038 
4039 	atomic_inc_64(&l2arc_writes_done);
4040 	list_remove(buflist, head);
4041 	kmem_cache_free(hdr_cache, head);
4042 	mutex_exit(&l2arc_buflist_mtx);
4043 
4044 	l2arc_do_free_on_write();
4045 
4046 	kmem_free(cb, sizeof (l2arc_write_callback_t));
4047 }
4048 
4049 /*
4050  * A read to a cache device completed.  Validate buffer contents before
4051  * handing over to the regular ARC routines.
4052  */
4053 static void
4054 l2arc_read_done(zio_t *zio)
4055 {
4056 	l2arc_read_callback_t *cb;
4057 	arc_buf_hdr_t *hdr;
4058 	arc_buf_t *buf;
4059 	kmutex_t *hash_lock;
4060 	int equal;
4061 
4062 	ASSERT(zio->io_vd != NULL);
4063 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4064 
4065 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4066 
4067 	cb = zio->io_private;
4068 	ASSERT(cb != NULL);
4069 	buf = cb->l2rcb_buf;
4070 	ASSERT(buf != NULL);
4071 
4072 	hash_lock = HDR_LOCK(buf->b_hdr);
4073 	mutex_enter(hash_lock);
4074 	hdr = buf->b_hdr;
4075 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4076 
4077 	/*
4078 	 * Check this survived the L2ARC journey.
4079 	 */
4080 	equal = arc_cksum_equal(buf);
4081 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4082 		mutex_exit(hash_lock);
4083 		zio->io_private = buf;
4084 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4085 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4086 		arc_read_done(zio);
4087 	} else {
4088 		mutex_exit(hash_lock);
4089 		/*
4090 		 * Buffer didn't survive caching.  Increment stats and
4091 		 * reissue to the original storage device.
4092 		 */
4093 		if (zio->io_error != 0) {
4094 			ARCSTAT_BUMP(arcstat_l2_io_error);
4095 		} else {
4096 			zio->io_error = EIO;
4097 		}
4098 		if (!equal)
4099 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4100 
4101 		/*
4102 		 * If there's no waiter, issue an async i/o to the primary
4103 		 * storage now.  If there *is* a waiter, the caller must
4104 		 * issue the i/o in a context where it's OK to block.
4105 		 */
4106 		if (zio->io_waiter == NULL) {
4107 			zio_t *pio = zio_unique_parent(zio);
4108 
4109 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4110 
4111 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4112 			    buf->b_data, zio->io_size, arc_read_done, buf,
4113 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4114 		}
4115 	}
4116 
4117 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4118 }
4119 
4120 /*
4121  * This is the list priority from which the L2ARC will search for pages to
4122  * cache.  This is used within loops (0..3) to cycle through lists in the
4123  * desired order.  This order can have a significant effect on cache
4124  * performance.
4125  *
4126  * Currently the metadata lists are hit first, MFU then MRU, followed by
4127  * the data lists.  This function returns a locked list, and also returns
4128  * the lock pointer.
4129  */
4130 static list_t *
4131 l2arc_list_locked(int list_num, kmutex_t **lock)
4132 {
4133 	list_t *list;
4134 
4135 	ASSERT(list_num >= 0 && list_num <= 3);
4136 
4137 	switch (list_num) {
4138 	case 0:
4139 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4140 		*lock = &arc_mfu->arcs_mtx;
4141 		break;
4142 	case 1:
4143 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4144 		*lock = &arc_mru->arcs_mtx;
4145 		break;
4146 	case 2:
4147 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4148 		*lock = &arc_mfu->arcs_mtx;
4149 		break;
4150 	case 3:
4151 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4152 		*lock = &arc_mru->arcs_mtx;
4153 		break;
4154 	}
4155 
4156 	ASSERT(!(MUTEX_HELD(*lock)));
4157 	mutex_enter(*lock);
4158 	return (list);
4159 }
4160 
4161 /*
4162  * Evict buffers from the device write hand to the distance specified in
4163  * bytes.  This distance may span populated buffers, it may span nothing.
4164  * This is clearing a region on the L2ARC device ready for writing.
4165  * If the 'all' boolean is set, every buffer is evicted.
4166  */
4167 static void
4168 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4169 {
4170 	list_t *buflist;
4171 	l2arc_buf_hdr_t *abl2;
4172 	arc_buf_hdr_t *ab, *ab_prev;
4173 	kmutex_t *hash_lock;
4174 	uint64_t taddr;
4175 
4176 	buflist = dev->l2ad_buflist;
4177 
4178 	if (buflist == NULL)
4179 		return;
4180 
4181 	if (!all && dev->l2ad_first) {
4182 		/*
4183 		 * This is the first sweep through the device.  There is
4184 		 * nothing to evict.
4185 		 */
4186 		return;
4187 	}
4188 
4189 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4190 		/*
4191 		 * When nearing the end of the device, evict to the end
4192 		 * before the device write hand jumps to the start.
4193 		 */
4194 		taddr = dev->l2ad_end;
4195 	} else {
4196 		taddr = dev->l2ad_hand + distance;
4197 	}
4198 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4199 	    uint64_t, taddr, boolean_t, all);
4200 
4201 top:
4202 	mutex_enter(&l2arc_buflist_mtx);
4203 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4204 		ab_prev = list_prev(buflist, ab);
4205 
4206 		hash_lock = HDR_LOCK(ab);
4207 		if (!mutex_tryenter(hash_lock)) {
4208 			/*
4209 			 * Missed the hash lock.  Retry.
4210 			 */
4211 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4212 			mutex_exit(&l2arc_buflist_mtx);
4213 			mutex_enter(hash_lock);
4214 			mutex_exit(hash_lock);
4215 			goto top;
4216 		}
4217 
4218 		if (HDR_L2_WRITE_HEAD(ab)) {
4219 			/*
4220 			 * We hit a write head node.  Leave it for
4221 			 * l2arc_write_done().
4222 			 */
4223 			list_remove(buflist, ab);
4224 			mutex_exit(hash_lock);
4225 			continue;
4226 		}
4227 
4228 		if (!all && ab->b_l2hdr != NULL &&
4229 		    (ab->b_l2hdr->b_daddr > taddr ||
4230 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4231 			/*
4232 			 * We've evicted to the target address,
4233 			 * or the end of the device.
4234 			 */
4235 			mutex_exit(hash_lock);
4236 			break;
4237 		}
4238 
4239 		if (HDR_FREE_IN_PROGRESS(ab)) {
4240 			/*
4241 			 * Already on the path to destruction.
4242 			 */
4243 			mutex_exit(hash_lock);
4244 			continue;
4245 		}
4246 
4247 		if (ab->b_state == arc_l2c_only) {
4248 			ASSERT(!HDR_L2_READING(ab));
4249 			/*
4250 			 * This doesn't exist in the ARC.  Destroy.
4251 			 * arc_hdr_destroy() will call list_remove()
4252 			 * and decrement arcstat_l2_size.
4253 			 */
4254 			arc_change_state(arc_anon, ab, hash_lock);
4255 			arc_hdr_destroy(ab);
4256 		} else {
4257 			/*
4258 			 * Invalidate issued or about to be issued
4259 			 * reads, since we may be about to write
4260 			 * over this location.
4261 			 */
4262 			if (HDR_L2_READING(ab)) {
4263 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4264 				ab->b_flags |= ARC_L2_EVICTED;
4265 			}
4266 
4267 			/*
4268 			 * Tell ARC this no longer exists in L2ARC.
4269 			 */
4270 			if (ab->b_l2hdr != NULL) {
4271 				abl2 = ab->b_l2hdr;
4272 				ab->b_l2hdr = NULL;
4273 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4274 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4275 			}
4276 			list_remove(buflist, ab);
4277 
4278 			/*
4279 			 * This may have been leftover after a
4280 			 * failed write.
4281 			 */
4282 			ab->b_flags &= ~ARC_L2_WRITING;
4283 		}
4284 		mutex_exit(hash_lock);
4285 	}
4286 	mutex_exit(&l2arc_buflist_mtx);
4287 
4288 	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4289 	dev->l2ad_evict = taddr;
4290 }
4291 
4292 /*
4293  * Find and write ARC buffers to the L2ARC device.
4294  *
4295  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4296  * for reading until they have completed writing.
4297  */
4298 static uint64_t
4299 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4300 {
4301 	arc_buf_hdr_t *ab, *ab_prev, *head;
4302 	l2arc_buf_hdr_t *hdrl2;
4303 	list_t *list;
4304 	uint64_t passed_sz, write_sz, buf_sz, headroom;
4305 	void *buf_data;
4306 	kmutex_t *hash_lock, *list_lock;
4307 	boolean_t have_lock, full;
4308 	l2arc_write_callback_t *cb;
4309 	zio_t *pio, *wzio;
4310 	uint64_t guid = spa_load_guid(spa);
4311 
4312 	ASSERT(dev->l2ad_vdev != NULL);
4313 
4314 	pio = NULL;
4315 	write_sz = 0;
4316 	full = B_FALSE;
4317 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4318 	head->b_flags |= ARC_L2_WRITE_HEAD;
4319 
4320 	/*
4321 	 * Copy buffers for L2ARC writing.
4322 	 */
4323 	mutex_enter(&l2arc_buflist_mtx);
4324 	for (int try = 0; try <= 3; try++) {
4325 		list = l2arc_list_locked(try, &list_lock);
4326 		passed_sz = 0;
4327 
4328 		/*
4329 		 * L2ARC fast warmup.
4330 		 *
4331 		 * Until the ARC is warm and starts to evict, read from the
4332 		 * head of the ARC lists rather than the tail.
4333 		 */
4334 		headroom = target_sz * l2arc_headroom;
4335 		if (arc_warm == B_FALSE)
4336 			ab = list_head(list);
4337 		else
4338 			ab = list_tail(list);
4339 
4340 		for (; ab; ab = ab_prev) {
4341 			if (arc_warm == B_FALSE)
4342 				ab_prev = list_next(list, ab);
4343 			else
4344 				ab_prev = list_prev(list, ab);
4345 
4346 			hash_lock = HDR_LOCK(ab);
4347 			have_lock = MUTEX_HELD(hash_lock);
4348 			if (!have_lock && !mutex_tryenter(hash_lock)) {
4349 				/*
4350 				 * Skip this buffer rather than waiting.
4351 				 */
4352 				continue;
4353 			}
4354 
4355 			passed_sz += ab->b_size;
4356 			if (passed_sz > headroom) {
4357 				/*
4358 				 * Searched too far.
4359 				 */
4360 				mutex_exit(hash_lock);
4361 				break;
4362 			}
4363 
4364 			if (!l2arc_write_eligible(guid, ab)) {
4365 				mutex_exit(hash_lock);
4366 				continue;
4367 			}
4368 
4369 			if ((write_sz + ab->b_size) > target_sz) {
4370 				full = B_TRUE;
4371 				mutex_exit(hash_lock);
4372 				break;
4373 			}
4374 
4375 			if (pio == NULL) {
4376 				/*
4377 				 * Insert a dummy header on the buflist so
4378 				 * l2arc_write_done() can find where the
4379 				 * write buffers begin without searching.
4380 				 */
4381 				list_insert_head(dev->l2ad_buflist, head);
4382 
4383 				cb = kmem_alloc(
4384 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4385 				cb->l2wcb_dev = dev;
4386 				cb->l2wcb_head = head;
4387 				pio = zio_root(spa, l2arc_write_done, cb,
4388 				    ZIO_FLAG_CANFAIL);
4389 			}
4390 
4391 			/*
4392 			 * Create and add a new L2ARC header.
4393 			 */
4394 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4395 			hdrl2->b_dev = dev;
4396 			hdrl2->b_daddr = dev->l2ad_hand;
4397 
4398 			ab->b_flags |= ARC_L2_WRITING;
4399 			ab->b_l2hdr = hdrl2;
4400 			list_insert_head(dev->l2ad_buflist, ab);
4401 			buf_data = ab->b_buf->b_data;
4402 			buf_sz = ab->b_size;
4403 
4404 			/*
4405 			 * Compute and store the buffer cksum before
4406 			 * writing.  On debug the cksum is verified first.
4407 			 */
4408 			arc_cksum_verify(ab->b_buf);
4409 			arc_cksum_compute(ab->b_buf, B_TRUE);
4410 
4411 			mutex_exit(hash_lock);
4412 
4413 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4414 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4415 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4416 			    ZIO_FLAG_CANFAIL, B_FALSE);
4417 
4418 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4419 			    zio_t *, wzio);
4420 			(void) zio_nowait(wzio);
4421 
4422 			/*
4423 			 * Keep the clock hand suitably device-aligned.
4424 			 */
4425 			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4426 
4427 			write_sz += buf_sz;
4428 			dev->l2ad_hand += buf_sz;
4429 		}
4430 
4431 		mutex_exit(list_lock);
4432 
4433 		if (full == B_TRUE)
4434 			break;
4435 	}
4436 	mutex_exit(&l2arc_buflist_mtx);
4437 
4438 	if (pio == NULL) {
4439 		ASSERT0(write_sz);
4440 		kmem_cache_free(hdr_cache, head);
4441 		return (0);
4442 	}
4443 
4444 	ASSERT3U(write_sz, <=, target_sz);
4445 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4446 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4447 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4448 	vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4449 
4450 	/*
4451 	 * Bump device hand to the device start if it is approaching the end.
4452 	 * l2arc_evict() will already have evicted ahead for this case.
4453 	 */
4454 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4455 		vdev_space_update(dev->l2ad_vdev,
4456 		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
4457 		dev->l2ad_hand = dev->l2ad_start;
4458 		dev->l2ad_evict = dev->l2ad_start;
4459 		dev->l2ad_first = B_FALSE;
4460 	}
4461 
4462 	dev->l2ad_writing = B_TRUE;
4463 	(void) zio_wait(pio);
4464 	dev->l2ad_writing = B_FALSE;
4465 
4466 	return (write_sz);
4467 }
4468 
4469 /*
4470  * This thread feeds the L2ARC at regular intervals.  This is the beating
4471  * heart of the L2ARC.
4472  */
4473 static void
4474 l2arc_feed_thread(void)
4475 {
4476 	callb_cpr_t cpr;
4477 	l2arc_dev_t *dev;
4478 	spa_t *spa;
4479 	uint64_t size, wrote;
4480 	clock_t begin, next = ddi_get_lbolt();
4481 
4482 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4483 
4484 	mutex_enter(&l2arc_feed_thr_lock);
4485 
4486 	while (l2arc_thread_exit == 0) {
4487 		CALLB_CPR_SAFE_BEGIN(&cpr);
4488 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4489 		    next);
4490 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4491 		next = ddi_get_lbolt() + hz;
4492 
4493 		/*
4494 		 * Quick check for L2ARC devices.
4495 		 */
4496 		mutex_enter(&l2arc_dev_mtx);
4497 		if (l2arc_ndev == 0) {
4498 			mutex_exit(&l2arc_dev_mtx);
4499 			continue;
4500 		}
4501 		mutex_exit(&l2arc_dev_mtx);
4502 		begin = ddi_get_lbolt();
4503 
4504 		/*
4505 		 * This selects the next l2arc device to write to, and in
4506 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4507 		 * will return NULL if there are now no l2arc devices or if
4508 		 * they are all faulted.
4509 		 *
4510 		 * If a device is returned, its spa's config lock is also
4511 		 * held to prevent device removal.  l2arc_dev_get_next()
4512 		 * will grab and release l2arc_dev_mtx.
4513 		 */
4514 		if ((dev = l2arc_dev_get_next()) == NULL)
4515 			continue;
4516 
4517 		spa = dev->l2ad_spa;
4518 		ASSERT(spa != NULL);
4519 
4520 		/*
4521 		 * If the pool is read-only then force the feed thread to
4522 		 * sleep a little longer.
4523 		 */
4524 		if (!spa_writeable(spa)) {
4525 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4526 			spa_config_exit(spa, SCL_L2ARC, dev);
4527 			continue;
4528 		}
4529 
4530 		/*
4531 		 * Avoid contributing to memory pressure.
4532 		 */
4533 		if (arc_reclaim_needed()) {
4534 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4535 			spa_config_exit(spa, SCL_L2ARC, dev);
4536 			continue;
4537 		}
4538 
4539 		ARCSTAT_BUMP(arcstat_l2_feeds);
4540 
4541 		size = l2arc_write_size(dev);
4542 
4543 		/*
4544 		 * Evict L2ARC buffers that will be overwritten.
4545 		 */
4546 		l2arc_evict(dev, size, B_FALSE);
4547 
4548 		/*
4549 		 * Write ARC buffers.
4550 		 */
4551 		wrote = l2arc_write_buffers(spa, dev, size);
4552 
4553 		/*
4554 		 * Calculate interval between writes.
4555 		 */
4556 		next = l2arc_write_interval(begin, size, wrote);
4557 		spa_config_exit(spa, SCL_L2ARC, dev);
4558 	}
4559 
4560 	l2arc_thread_exit = 0;
4561 	cv_broadcast(&l2arc_feed_thr_cv);
4562 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4563 	thread_exit();
4564 }
4565 
4566 boolean_t
4567 l2arc_vdev_present(vdev_t *vd)
4568 {
4569 	l2arc_dev_t *dev;
4570 
4571 	mutex_enter(&l2arc_dev_mtx);
4572 	for (dev = list_head(l2arc_dev_list); dev != NULL;
4573 	    dev = list_next(l2arc_dev_list, dev)) {
4574 		if (dev->l2ad_vdev == vd)
4575 			break;
4576 	}
4577 	mutex_exit(&l2arc_dev_mtx);
4578 
4579 	return (dev != NULL);
4580 }
4581 
4582 /*
4583  * Add a vdev for use by the L2ARC.  By this point the spa has already
4584  * validated the vdev and opened it.
4585  */
4586 void
4587 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4588 {
4589 	l2arc_dev_t *adddev;
4590 
4591 	ASSERT(!l2arc_vdev_present(vd));
4592 
4593 	/*
4594 	 * Create a new l2arc device entry.
4595 	 */
4596 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4597 	adddev->l2ad_spa = spa;
4598 	adddev->l2ad_vdev = vd;
4599 	adddev->l2ad_write = l2arc_write_max;
4600 	adddev->l2ad_boost = l2arc_write_boost;
4601 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4602 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4603 	adddev->l2ad_hand = adddev->l2ad_start;
4604 	adddev->l2ad_evict = adddev->l2ad_start;
4605 	adddev->l2ad_first = B_TRUE;
4606 	adddev->l2ad_writing = B_FALSE;
4607 	ASSERT3U(adddev->l2ad_write, >, 0);
4608 
4609 	/*
4610 	 * This is a list of all ARC buffers that are still valid on the
4611 	 * device.
4612 	 */
4613 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4614 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4615 	    offsetof(arc_buf_hdr_t, b_l2node));
4616 
4617 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
4618 
4619 	/*
4620 	 * Add device to global list
4621 	 */
4622 	mutex_enter(&l2arc_dev_mtx);
4623 	list_insert_head(l2arc_dev_list, adddev);
4624 	atomic_inc_64(&l2arc_ndev);
4625 	mutex_exit(&l2arc_dev_mtx);
4626 }
4627 
4628 /*
4629  * Remove a vdev from the L2ARC.
4630  */
4631 void
4632 l2arc_remove_vdev(vdev_t *vd)
4633 {
4634 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4635 
4636 	/*
4637 	 * Find the device by vdev
4638 	 */
4639 	mutex_enter(&l2arc_dev_mtx);
4640 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4641 		nextdev = list_next(l2arc_dev_list, dev);
4642 		if (vd == dev->l2ad_vdev) {
4643 			remdev = dev;
4644 			break;
4645 		}
4646 	}
4647 	ASSERT(remdev != NULL);
4648 
4649 	/*
4650 	 * Remove device from global list
4651 	 */
4652 	list_remove(l2arc_dev_list, remdev);
4653 	l2arc_dev_last = NULL;		/* may have been invalidated */
4654 	atomic_dec_64(&l2arc_ndev);
4655 	mutex_exit(&l2arc_dev_mtx);
4656 
4657 	/*
4658 	 * Clear all buflists and ARC references.  L2ARC device flush.
4659 	 */
4660 	l2arc_evict(remdev, 0, B_TRUE);
4661 	list_destroy(remdev->l2ad_buflist);
4662 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4663 	kmem_free(remdev, sizeof (l2arc_dev_t));
4664 }
4665 
4666 void
4667 l2arc_init(void)
4668 {
4669 	l2arc_thread_exit = 0;
4670 	l2arc_ndev = 0;
4671 	l2arc_writes_sent = 0;
4672 	l2arc_writes_done = 0;
4673 
4674 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4675 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4676 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4677 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4678 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4679 
4680 	l2arc_dev_list = &L2ARC_dev_list;
4681 	l2arc_free_on_write = &L2ARC_free_on_write;
4682 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4683 	    offsetof(l2arc_dev_t, l2ad_node));
4684 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4685 	    offsetof(l2arc_data_free_t, l2df_list_node));
4686 }
4687 
4688 void
4689 l2arc_fini(void)
4690 {
4691 	/*
4692 	 * This is called from dmu_fini(), which is called from spa_fini();
4693 	 * Because of this, we can assume that all l2arc devices have
4694 	 * already been removed when the pools themselves were removed.
4695 	 */
4696 
4697 	l2arc_do_free_on_write();
4698 
4699 	mutex_destroy(&l2arc_feed_thr_lock);
4700 	cv_destroy(&l2arc_feed_thr_cv);
4701 	mutex_destroy(&l2arc_dev_mtx);
4702 	mutex_destroy(&l2arc_buflist_mtx);
4703 	mutex_destroy(&l2arc_free_on_write_mtx);
4704 
4705 	list_destroy(l2arc_dev_list);
4706 	list_destroy(l2arc_free_on_write);
4707 }
4708 
4709 void
4710 l2arc_start(void)
4711 {
4712 	if (!(spa_mode_global & FWRITE))
4713 		return;
4714 
4715 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4716 	    TS_RUN, minclsyspri);
4717 }
4718 
4719 void
4720 l2arc_stop(void)
4721 {
4722 	if (!(spa_mode_global & FWRITE))
4723 		return;
4724 
4725 	mutex_enter(&l2arc_feed_thr_lock);
4726 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4727 	l2arc_thread_exit = 1;
4728 	while (l2arc_thread_exit != 0)
4729 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4730 	mutex_exit(&l2arc_feed_thr_lock);
4731 }
4732