xref: /titanic_50/usr/src/uts/common/fs/zfs/arc.c (revision e65e5c2d2f32a99e8c5f740cabae9075dab03ce7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * DVA-based Adjustable Replacement Cache
28  *
29  * While much of the theory of operation used here is
30  * based on the self-tuning, low overhead replacement cache
31  * presented by Megiddo and Modha at FAST 2003, there are some
32  * significant differences:
33  *
34  * 1. The Megiddo and Modha model assumes any page is evictable.
35  * Pages in its cache cannot be "locked" into memory.  This makes
36  * the eviction algorithm simple: evict the last page in the list.
37  * This also make the performance characteristics easy to reason
38  * about.  Our cache is not so simple.  At any given moment, some
39  * subset of the blocks in the cache are un-evictable because we
40  * have handed out a reference to them.  Blocks are only evictable
41  * when there are no external references active.  This makes
42  * eviction far more problematic:  we choose to evict the evictable
43  * blocks that are the "lowest" in the list.
44  *
45  * There are times when it is not possible to evict the requested
46  * space.  In these circumstances we are unable to adjust the cache
47  * size.  To prevent the cache growing unbounded at these times we
48  * implement a "cache throttle" that slows the flow of new data
49  * into the cache until we can make space available.
50  *
51  * 2. The Megiddo and Modha model assumes a fixed cache size.
52  * Pages are evicted when the cache is full and there is a cache
53  * miss.  Our model has a variable sized cache.  It grows with
54  * high use, but also tries to react to memory pressure from the
55  * operating system: decreasing its size when system memory is
56  * tight.
57  *
58  * 3. The Megiddo and Modha model assumes a fixed page size. All
59  * elements of the cache are therefor exactly the same size.  So
60  * when adjusting the cache size following a cache miss, its simply
61  * a matter of choosing a single page to evict.  In our model, we
62  * have variable sized cache blocks (rangeing from 512 bytes to
63  * 128K bytes).  We therefor choose a set of blocks to evict to make
64  * space for a cache miss that approximates as closely as possible
65  * the space used by the new block.
66  *
67  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
68  * by N. Megiddo & D. Modha, FAST 2003
69  */
70 
71 /*
72  * The locking model:
73  *
74  * A new reference to a cache buffer can be obtained in two
75  * ways: 1) via a hash table lookup using the DVA as a key,
76  * or 2) via one of the ARC lists.  The arc_read() interface
77  * uses method 1, while the internal arc algorithms for
78  * adjusting the cache use method 2.  We therefor provide two
79  * types of locks: 1) the hash table lock array, and 2) the
80  * arc list locks.
81  *
82  * Buffers do not have their own mutexs, rather they rely on the
83  * hash table mutexs for the bulk of their protection (i.e. most
84  * fields in the arc_buf_hdr_t are protected by these mutexs).
85  *
86  * buf_hash_find() returns the appropriate mutex (held) when it
87  * locates the requested buffer in the hash table.  It returns
88  * NULL for the mutex if the buffer was not in the table.
89  *
90  * buf_hash_remove() expects the appropriate hash mutex to be
91  * already held before it is invoked.
92  *
93  * Each arc state also has a mutex which is used to protect the
94  * buffer list associated with the state.  When attempting to
95  * obtain a hash table lock while holding an arc list lock you
96  * must use: mutex_tryenter() to avoid deadlock.  Also note that
97  * the active state mutex must be held before the ghost state mutex.
98  *
99  * Arc buffers may have an associated eviction callback function.
100  * This function will be invoked prior to removing the buffer (e.g.
101  * in arc_do_user_evicts()).  Note however that the data associated
102  * with the buffer may be evicted prior to the callback.  The callback
103  * must be made with *no locks held* (to prevent deadlock).  Additionally,
104  * the users of callbacks must ensure that their private data is
105  * protected from simultaneous callbacks from arc_buf_evict()
106  * and arc_do_user_evicts().
107  *
108  * Note that the majority of the performance stats are manipulated
109  * with atomic operations.
110  *
111  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
112  *
113  *	- L2ARC buflist creation
114  *	- L2ARC buflist eviction
115  *	- L2ARC write completion, which walks L2ARC buflists
116  *	- ARC header destruction, as it removes from L2ARC buflists
117  *	- ARC header release, as it removes from L2ARC buflists
118  */
119 
120 #include <sys/spa.h>
121 #include <sys/zio.h>
122 #include <sys/zfs_context.h>
123 #include <sys/arc.h>
124 #include <sys/refcount.h>
125 #include <sys/vdev.h>
126 #include <sys/vdev_impl.h>
127 #ifdef _KERNEL
128 #include <sys/vmsystm.h>
129 #include <vm/anon.h>
130 #include <sys/fs/swapnode.h>
131 #include <sys/dnlc.h>
132 #endif
133 #include <sys/callb.h>
134 #include <sys/kstat.h>
135 #include <zfs_fletcher.h>
136 
137 static kmutex_t		arc_reclaim_thr_lock;
138 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
139 static uint8_t		arc_thread_exit;
140 
141 extern int zfs_write_limit_shift;
142 extern uint64_t zfs_write_limit_max;
143 extern kmutex_t zfs_write_limit_lock;
144 
145 #define	ARC_REDUCE_DNLC_PERCENT	3
146 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
147 
148 typedef enum arc_reclaim_strategy {
149 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
150 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
151 } arc_reclaim_strategy_t;
152 
153 /* number of seconds before growing cache again */
154 static int		arc_grow_retry = 60;
155 
156 /* shift of arc_c for calculating both min and max arc_p */
157 static int		arc_p_min_shift = 4;
158 
159 /* log2(fraction of arc to reclaim) */
160 static int		arc_shrink_shift = 5;
161 
162 /*
163  * minimum lifespan of a prefetch block in clock ticks
164  * (initialized in arc_init())
165  */
166 static int		arc_min_prefetch_lifespan;
167 
168 static int arc_dead;
169 
170 /*
171  * The arc has filled available memory and has now warmed up.
172  */
173 static boolean_t arc_warm;
174 
175 /*
176  * These tunables are for performance analysis.
177  */
178 uint64_t zfs_arc_max;
179 uint64_t zfs_arc_min;
180 uint64_t zfs_arc_meta_limit = 0;
181 int zfs_arc_grow_retry = 0;
182 int zfs_arc_shrink_shift = 0;
183 int zfs_arc_p_min_shift = 0;
184 
185 /*
186  * Note that buffers can be in one of 6 states:
187  *	ARC_anon	- anonymous (discussed below)
188  *	ARC_mru		- recently used, currently cached
189  *	ARC_mru_ghost	- recentely used, no longer in cache
190  *	ARC_mfu		- frequently used, currently cached
191  *	ARC_mfu_ghost	- frequently used, no longer in cache
192  *	ARC_l2c_only	- exists in L2ARC but not other states
193  * When there are no active references to the buffer, they are
194  * are linked onto a list in one of these arc states.  These are
195  * the only buffers that can be evicted or deleted.  Within each
196  * state there are multiple lists, one for meta-data and one for
197  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
198  * etc.) is tracked separately so that it can be managed more
199  * explicitly: favored over data, limited explicitly.
200  *
201  * Anonymous buffers are buffers that are not associated with
202  * a DVA.  These are buffers that hold dirty block copies
203  * before they are written to stable storage.  By definition,
204  * they are "ref'd" and are considered part of arc_mru
205  * that cannot be freed.  Generally, they will aquire a DVA
206  * as they are written and migrate onto the arc_mru list.
207  *
208  * The ARC_l2c_only state is for buffers that are in the second
209  * level ARC but no longer in any of the ARC_m* lists.  The second
210  * level ARC itself may also contain buffers that are in any of
211  * the ARC_m* states - meaning that a buffer can exist in two
212  * places.  The reason for the ARC_l2c_only state is to keep the
213  * buffer header in the hash table, so that reads that hit the
214  * second level ARC benefit from these fast lookups.
215  */
216 
217 typedef struct arc_state {
218 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
219 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
220 	uint64_t arcs_size;	/* total amount of data in this state */
221 	kmutex_t arcs_mtx;
222 } arc_state_t;
223 
224 /* The 6 states: */
225 static arc_state_t ARC_anon;
226 static arc_state_t ARC_mru;
227 static arc_state_t ARC_mru_ghost;
228 static arc_state_t ARC_mfu;
229 static arc_state_t ARC_mfu_ghost;
230 static arc_state_t ARC_l2c_only;
231 
232 typedef struct arc_stats {
233 	kstat_named_t arcstat_hits;
234 	kstat_named_t arcstat_misses;
235 	kstat_named_t arcstat_demand_data_hits;
236 	kstat_named_t arcstat_demand_data_misses;
237 	kstat_named_t arcstat_demand_metadata_hits;
238 	kstat_named_t arcstat_demand_metadata_misses;
239 	kstat_named_t arcstat_prefetch_data_hits;
240 	kstat_named_t arcstat_prefetch_data_misses;
241 	kstat_named_t arcstat_prefetch_metadata_hits;
242 	kstat_named_t arcstat_prefetch_metadata_misses;
243 	kstat_named_t arcstat_mru_hits;
244 	kstat_named_t arcstat_mru_ghost_hits;
245 	kstat_named_t arcstat_mfu_hits;
246 	kstat_named_t arcstat_mfu_ghost_hits;
247 	kstat_named_t arcstat_deleted;
248 	kstat_named_t arcstat_recycle_miss;
249 	kstat_named_t arcstat_mutex_miss;
250 	kstat_named_t arcstat_evict_skip;
251 	kstat_named_t arcstat_evict_l2_cached;
252 	kstat_named_t arcstat_evict_l2_eligible;
253 	kstat_named_t arcstat_evict_l2_ineligible;
254 	kstat_named_t arcstat_hash_elements;
255 	kstat_named_t arcstat_hash_elements_max;
256 	kstat_named_t arcstat_hash_collisions;
257 	kstat_named_t arcstat_hash_chains;
258 	kstat_named_t arcstat_hash_chain_max;
259 	kstat_named_t arcstat_p;
260 	kstat_named_t arcstat_c;
261 	kstat_named_t arcstat_c_min;
262 	kstat_named_t arcstat_c_max;
263 	kstat_named_t arcstat_size;
264 	kstat_named_t arcstat_hdr_size;
265 	kstat_named_t arcstat_data_size;
266 	kstat_named_t arcstat_other_size;
267 	kstat_named_t arcstat_l2_hits;
268 	kstat_named_t arcstat_l2_misses;
269 	kstat_named_t arcstat_l2_feeds;
270 	kstat_named_t arcstat_l2_rw_clash;
271 	kstat_named_t arcstat_l2_read_bytes;
272 	kstat_named_t arcstat_l2_write_bytes;
273 	kstat_named_t arcstat_l2_writes_sent;
274 	kstat_named_t arcstat_l2_writes_done;
275 	kstat_named_t arcstat_l2_writes_error;
276 	kstat_named_t arcstat_l2_writes_hdr_miss;
277 	kstat_named_t arcstat_l2_evict_lock_retry;
278 	kstat_named_t arcstat_l2_evict_reading;
279 	kstat_named_t arcstat_l2_free_on_write;
280 	kstat_named_t arcstat_l2_abort_lowmem;
281 	kstat_named_t arcstat_l2_cksum_bad;
282 	kstat_named_t arcstat_l2_io_error;
283 	kstat_named_t arcstat_l2_size;
284 	kstat_named_t arcstat_l2_hdr_size;
285 	kstat_named_t arcstat_memory_throttle_count;
286 } arc_stats_t;
287 
288 static arc_stats_t arc_stats = {
289 	{ "hits",			KSTAT_DATA_UINT64 },
290 	{ "misses",			KSTAT_DATA_UINT64 },
291 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
292 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
293 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
294 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
295 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
296 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
297 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
298 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
299 	{ "mru_hits",			KSTAT_DATA_UINT64 },
300 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
301 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
302 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
303 	{ "deleted",			KSTAT_DATA_UINT64 },
304 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
305 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
306 	{ "evict_skip",			KSTAT_DATA_UINT64 },
307 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
308 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
309 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
310 	{ "hash_elements",		KSTAT_DATA_UINT64 },
311 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
312 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
313 	{ "hash_chains",		KSTAT_DATA_UINT64 },
314 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
315 	{ "p",				KSTAT_DATA_UINT64 },
316 	{ "c",				KSTAT_DATA_UINT64 },
317 	{ "c_min",			KSTAT_DATA_UINT64 },
318 	{ "c_max",			KSTAT_DATA_UINT64 },
319 	{ "size",			KSTAT_DATA_UINT64 },
320 	{ "hdr_size",			KSTAT_DATA_UINT64 },
321 	{ "data_size",			KSTAT_DATA_UINT64 },
322 	{ "other_size",			KSTAT_DATA_UINT64 },
323 	{ "l2_hits",			KSTAT_DATA_UINT64 },
324 	{ "l2_misses",			KSTAT_DATA_UINT64 },
325 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
326 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
327 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
328 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
329 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
330 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
331 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
332 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
333 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
334 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
335 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
336 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
337 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
338 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
339 	{ "l2_size",			KSTAT_DATA_UINT64 },
340 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
341 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 }
342 };
343 
344 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
345 
346 #define	ARCSTAT_INCR(stat, val) \
347 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
348 
349 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
350 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
351 
352 #define	ARCSTAT_MAX(stat, val) {					\
353 	uint64_t m;							\
354 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
355 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
356 		continue;						\
357 }
358 
359 #define	ARCSTAT_MAXSTAT(stat) \
360 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
361 
362 /*
363  * We define a macro to allow ARC hits/misses to be easily broken down by
364  * two separate conditions, giving a total of four different subtypes for
365  * each of hits and misses (so eight statistics total).
366  */
367 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
368 	if (cond1) {							\
369 		if (cond2) {						\
370 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
371 		} else {						\
372 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
373 		}							\
374 	} else {							\
375 		if (cond2) {						\
376 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
377 		} else {						\
378 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
379 		}							\
380 	}
381 
382 kstat_t			*arc_ksp;
383 static arc_state_t	*arc_anon;
384 static arc_state_t	*arc_mru;
385 static arc_state_t	*arc_mru_ghost;
386 static arc_state_t	*arc_mfu;
387 static arc_state_t	*arc_mfu_ghost;
388 static arc_state_t	*arc_l2c_only;
389 
390 /*
391  * There are several ARC variables that are critical to export as kstats --
392  * but we don't want to have to grovel around in the kstat whenever we wish to
393  * manipulate them.  For these variables, we therefore define them to be in
394  * terms of the statistic variable.  This assures that we are not introducing
395  * the possibility of inconsistency by having shadow copies of the variables,
396  * while still allowing the code to be readable.
397  */
398 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
399 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
400 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
401 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
402 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
403 
404 static int		arc_no_grow;	/* Don't try to grow cache size */
405 static uint64_t		arc_tempreserve;
406 static uint64_t		arc_loaned_bytes;
407 static uint64_t		arc_meta_used;
408 static uint64_t		arc_meta_limit;
409 static uint64_t		arc_meta_max = 0;
410 
411 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
412 
413 typedef struct arc_callback arc_callback_t;
414 
415 struct arc_callback {
416 	void			*acb_private;
417 	arc_done_func_t		*acb_done;
418 	arc_buf_t		*acb_buf;
419 	zio_t			*acb_zio_dummy;
420 	arc_callback_t		*acb_next;
421 };
422 
423 typedef struct arc_write_callback arc_write_callback_t;
424 
425 struct arc_write_callback {
426 	void		*awcb_private;
427 	arc_done_func_t	*awcb_ready;
428 	arc_done_func_t	*awcb_done;
429 	arc_buf_t	*awcb_buf;
430 };
431 
432 struct arc_buf_hdr {
433 	/* protected by hash lock */
434 	dva_t			b_dva;
435 	uint64_t		b_birth;
436 	uint64_t		b_cksum0;
437 
438 	kmutex_t		b_freeze_lock;
439 	zio_cksum_t		*b_freeze_cksum;
440 
441 	arc_buf_hdr_t		*b_hash_next;
442 	arc_buf_t		*b_buf;
443 	uint32_t		b_flags;
444 	uint32_t		b_datacnt;
445 
446 	arc_callback_t		*b_acb;
447 	kcondvar_t		b_cv;
448 
449 	/* immutable */
450 	arc_buf_contents_t	b_type;
451 	uint64_t		b_size;
452 	uint64_t		b_spa;
453 
454 	/* protected by arc state mutex */
455 	arc_state_t		*b_state;
456 	list_node_t		b_arc_node;
457 
458 	/* updated atomically */
459 	clock_t			b_arc_access;
460 
461 	/* self protecting */
462 	refcount_t		b_refcnt;
463 
464 	l2arc_buf_hdr_t		*b_l2hdr;
465 	list_node_t		b_l2node;
466 };
467 
468 static arc_buf_t *arc_eviction_list;
469 static kmutex_t arc_eviction_mtx;
470 static arc_buf_hdr_t arc_eviction_hdr;
471 static void arc_get_data_buf(arc_buf_t *buf);
472 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
473 static int arc_evict_needed(arc_buf_contents_t type);
474 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
475 
476 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
477 
478 #define	GHOST_STATE(state)	\
479 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
480 	(state) == arc_l2c_only)
481 
482 /*
483  * Private ARC flags.  These flags are private ARC only flags that will show up
484  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
485  * be passed in as arc_flags in things like arc_read.  However, these flags
486  * should never be passed and should only be set by ARC code.  When adding new
487  * public flags, make sure not to smash the private ones.
488  */
489 
490 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
491 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
492 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
493 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
494 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
495 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
496 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
497 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
498 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
499 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
500 
501 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
502 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
503 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
504 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
505 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
506 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
507 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
508 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
509 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
510 				    (hdr)->b_l2hdr != NULL)
511 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
512 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
513 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
514 
515 /*
516  * Other sizes
517  */
518 
519 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
520 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
521 
522 /*
523  * Hash table routines
524  */
525 
526 #define	HT_LOCK_PAD	64
527 
528 struct ht_lock {
529 	kmutex_t	ht_lock;
530 #ifdef _KERNEL
531 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
532 #endif
533 };
534 
535 #define	BUF_LOCKS 256
536 typedef struct buf_hash_table {
537 	uint64_t ht_mask;
538 	arc_buf_hdr_t **ht_table;
539 	struct ht_lock ht_locks[BUF_LOCKS];
540 } buf_hash_table_t;
541 
542 static buf_hash_table_t buf_hash_table;
543 
544 #define	BUF_HASH_INDEX(spa, dva, birth) \
545 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
546 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
547 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
548 #define	HDR_LOCK(buf) \
549 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
550 
551 uint64_t zfs_crc64_table[256];
552 
553 /*
554  * Level 2 ARC
555  */
556 
557 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
558 #define	L2ARC_HEADROOM		2		/* num of writes */
559 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
560 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
561 
562 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
563 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
564 
565 /*
566  * L2ARC Performance Tunables
567  */
568 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
569 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
570 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
571 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
572 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
573 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
574 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
575 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
576 
577 /*
578  * L2ARC Internals
579  */
580 typedef struct l2arc_dev {
581 	vdev_t			*l2ad_vdev;	/* vdev */
582 	spa_t			*l2ad_spa;	/* spa */
583 	uint64_t		l2ad_hand;	/* next write location */
584 	uint64_t		l2ad_write;	/* desired write size, bytes */
585 	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
586 	uint64_t		l2ad_start;	/* first addr on device */
587 	uint64_t		l2ad_end;	/* last addr on device */
588 	uint64_t		l2ad_evict;	/* last addr eviction reached */
589 	boolean_t		l2ad_first;	/* first sweep through */
590 	boolean_t		l2ad_writing;	/* currently writing */
591 	list_t			*l2ad_buflist;	/* buffer list */
592 	list_node_t		l2ad_node;	/* device list node */
593 } l2arc_dev_t;
594 
595 static list_t L2ARC_dev_list;			/* device list */
596 static list_t *l2arc_dev_list;			/* device list pointer */
597 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
598 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
599 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
600 static list_t L2ARC_free_on_write;		/* free after write buf list */
601 static list_t *l2arc_free_on_write;		/* free after write list ptr */
602 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
603 static uint64_t l2arc_ndev;			/* number of devices */
604 
605 typedef struct l2arc_read_callback {
606 	arc_buf_t	*l2rcb_buf;		/* read buffer */
607 	spa_t		*l2rcb_spa;		/* spa */
608 	blkptr_t	l2rcb_bp;		/* original blkptr */
609 	zbookmark_t	l2rcb_zb;		/* original bookmark */
610 	int		l2rcb_flags;		/* original flags */
611 } l2arc_read_callback_t;
612 
613 typedef struct l2arc_write_callback {
614 	l2arc_dev_t	*l2wcb_dev;		/* device info */
615 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
616 } l2arc_write_callback_t;
617 
618 struct l2arc_buf_hdr {
619 	/* protected by arc_buf_hdr  mutex */
620 	l2arc_dev_t	*b_dev;			/* L2ARC device */
621 	uint64_t	b_daddr;		/* disk address, offset byte */
622 };
623 
624 typedef struct l2arc_data_free {
625 	/* protected by l2arc_free_on_write_mtx */
626 	void		*l2df_data;
627 	size_t		l2df_size;
628 	void		(*l2df_func)(void *, size_t);
629 	list_node_t	l2df_list_node;
630 } l2arc_data_free_t;
631 
632 static kmutex_t l2arc_feed_thr_lock;
633 static kcondvar_t l2arc_feed_thr_cv;
634 static uint8_t l2arc_thread_exit;
635 
636 static void l2arc_read_done(zio_t *zio);
637 static void l2arc_hdr_stat_add(void);
638 static void l2arc_hdr_stat_remove(void);
639 
640 static uint64_t
641 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
642 {
643 	uint8_t *vdva = (uint8_t *)dva;
644 	uint64_t crc = -1ULL;
645 	int i;
646 
647 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
648 
649 	for (i = 0; i < sizeof (dva_t); i++)
650 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
651 
652 	crc ^= (spa>>8) ^ birth;
653 
654 	return (crc);
655 }
656 
657 #define	BUF_EMPTY(buf)						\
658 	((buf)->b_dva.dva_word[0] == 0 &&			\
659 	(buf)->b_dva.dva_word[1] == 0 &&			\
660 	(buf)->b_birth == 0)
661 
662 #define	BUF_EQUAL(spa, dva, birth, buf)				\
663 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
664 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
665 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
666 
667 static arc_buf_hdr_t *
668 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
669 {
670 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
671 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
672 	arc_buf_hdr_t *buf;
673 
674 	mutex_enter(hash_lock);
675 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
676 	    buf = buf->b_hash_next) {
677 		if (BUF_EQUAL(spa, dva, birth, buf)) {
678 			*lockp = hash_lock;
679 			return (buf);
680 		}
681 	}
682 	mutex_exit(hash_lock);
683 	*lockp = NULL;
684 	return (NULL);
685 }
686 
687 /*
688  * Insert an entry into the hash table.  If there is already an element
689  * equal to elem in the hash table, then the already existing element
690  * will be returned and the new element will not be inserted.
691  * Otherwise returns NULL.
692  */
693 static arc_buf_hdr_t *
694 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
695 {
696 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
697 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
698 	arc_buf_hdr_t *fbuf;
699 	uint32_t i;
700 
701 	ASSERT(!HDR_IN_HASH_TABLE(buf));
702 	*lockp = hash_lock;
703 	mutex_enter(hash_lock);
704 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
705 	    fbuf = fbuf->b_hash_next, i++) {
706 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
707 			return (fbuf);
708 	}
709 
710 	buf->b_hash_next = buf_hash_table.ht_table[idx];
711 	buf_hash_table.ht_table[idx] = buf;
712 	buf->b_flags |= ARC_IN_HASH_TABLE;
713 
714 	/* collect some hash table performance data */
715 	if (i > 0) {
716 		ARCSTAT_BUMP(arcstat_hash_collisions);
717 		if (i == 1)
718 			ARCSTAT_BUMP(arcstat_hash_chains);
719 
720 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
721 	}
722 
723 	ARCSTAT_BUMP(arcstat_hash_elements);
724 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
725 
726 	return (NULL);
727 }
728 
729 static void
730 buf_hash_remove(arc_buf_hdr_t *buf)
731 {
732 	arc_buf_hdr_t *fbuf, **bufp;
733 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
734 
735 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
736 	ASSERT(HDR_IN_HASH_TABLE(buf));
737 
738 	bufp = &buf_hash_table.ht_table[idx];
739 	while ((fbuf = *bufp) != buf) {
740 		ASSERT(fbuf != NULL);
741 		bufp = &fbuf->b_hash_next;
742 	}
743 	*bufp = buf->b_hash_next;
744 	buf->b_hash_next = NULL;
745 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
746 
747 	/* collect some hash table performance data */
748 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
749 
750 	if (buf_hash_table.ht_table[idx] &&
751 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
752 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
753 }
754 
755 /*
756  * Global data structures and functions for the buf kmem cache.
757  */
758 static kmem_cache_t *hdr_cache;
759 static kmem_cache_t *buf_cache;
760 
761 static void
762 buf_fini(void)
763 {
764 	int i;
765 
766 	kmem_free(buf_hash_table.ht_table,
767 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
768 	for (i = 0; i < BUF_LOCKS; i++)
769 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
770 	kmem_cache_destroy(hdr_cache);
771 	kmem_cache_destroy(buf_cache);
772 }
773 
774 /*
775  * Constructor callback - called when the cache is empty
776  * and a new buf is requested.
777  */
778 /* ARGSUSED */
779 static int
780 hdr_cons(void *vbuf, void *unused, int kmflag)
781 {
782 	arc_buf_hdr_t *buf = vbuf;
783 
784 	bzero(buf, sizeof (arc_buf_hdr_t));
785 	refcount_create(&buf->b_refcnt);
786 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
787 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
788 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
789 
790 	return (0);
791 }
792 
793 /* ARGSUSED */
794 static int
795 buf_cons(void *vbuf, void *unused, int kmflag)
796 {
797 	arc_buf_t *buf = vbuf;
798 
799 	bzero(buf, sizeof (arc_buf_t));
800 	rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL);
801 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
802 
803 	return (0);
804 }
805 
806 /*
807  * Destructor callback - called when a cached buf is
808  * no longer required.
809  */
810 /* ARGSUSED */
811 static void
812 hdr_dest(void *vbuf, void *unused)
813 {
814 	arc_buf_hdr_t *buf = vbuf;
815 
816 	ASSERT(BUF_EMPTY(buf));
817 	refcount_destroy(&buf->b_refcnt);
818 	cv_destroy(&buf->b_cv);
819 	mutex_destroy(&buf->b_freeze_lock);
820 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
821 }
822 
823 /* ARGSUSED */
824 static void
825 buf_dest(void *vbuf, void *unused)
826 {
827 	arc_buf_t *buf = vbuf;
828 
829 	rw_destroy(&buf->b_lock);
830 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
831 }
832 
833 /*
834  * Reclaim callback -- invoked when memory is low.
835  */
836 /* ARGSUSED */
837 static void
838 hdr_recl(void *unused)
839 {
840 	dprintf("hdr_recl called\n");
841 	/*
842 	 * umem calls the reclaim func when we destroy the buf cache,
843 	 * which is after we do arc_fini().
844 	 */
845 	if (!arc_dead)
846 		cv_signal(&arc_reclaim_thr_cv);
847 }
848 
849 static void
850 buf_init(void)
851 {
852 	uint64_t *ct;
853 	uint64_t hsize = 1ULL << 12;
854 	int i, j;
855 
856 	/*
857 	 * The hash table is big enough to fill all of physical memory
858 	 * with an average 64K block size.  The table will take up
859 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
860 	 */
861 	while (hsize * 65536 < physmem * PAGESIZE)
862 		hsize <<= 1;
863 retry:
864 	buf_hash_table.ht_mask = hsize - 1;
865 	buf_hash_table.ht_table =
866 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
867 	if (buf_hash_table.ht_table == NULL) {
868 		ASSERT(hsize > (1ULL << 8));
869 		hsize >>= 1;
870 		goto retry;
871 	}
872 
873 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
874 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
875 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
876 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
877 
878 	for (i = 0; i < 256; i++)
879 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
880 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
881 
882 	for (i = 0; i < BUF_LOCKS; i++) {
883 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
884 		    NULL, MUTEX_DEFAULT, NULL);
885 	}
886 }
887 
888 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
889 
890 static void
891 arc_cksum_verify(arc_buf_t *buf)
892 {
893 	zio_cksum_t zc;
894 
895 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
896 		return;
897 
898 	mutex_enter(&buf->b_hdr->b_freeze_lock);
899 	if (buf->b_hdr->b_freeze_cksum == NULL ||
900 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
901 		mutex_exit(&buf->b_hdr->b_freeze_lock);
902 		return;
903 	}
904 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
905 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
906 		panic("buffer modified while frozen!");
907 	mutex_exit(&buf->b_hdr->b_freeze_lock);
908 }
909 
910 static int
911 arc_cksum_equal(arc_buf_t *buf)
912 {
913 	zio_cksum_t zc;
914 	int equal;
915 
916 	mutex_enter(&buf->b_hdr->b_freeze_lock);
917 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
918 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
919 	mutex_exit(&buf->b_hdr->b_freeze_lock);
920 
921 	return (equal);
922 }
923 
924 static void
925 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
926 {
927 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
928 		return;
929 
930 	mutex_enter(&buf->b_hdr->b_freeze_lock);
931 	if (buf->b_hdr->b_freeze_cksum != NULL) {
932 		mutex_exit(&buf->b_hdr->b_freeze_lock);
933 		return;
934 	}
935 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
936 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
937 	    buf->b_hdr->b_freeze_cksum);
938 	mutex_exit(&buf->b_hdr->b_freeze_lock);
939 }
940 
941 void
942 arc_buf_thaw(arc_buf_t *buf)
943 {
944 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
945 		if (buf->b_hdr->b_state != arc_anon)
946 			panic("modifying non-anon buffer!");
947 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
948 			panic("modifying buffer while i/o in progress!");
949 		arc_cksum_verify(buf);
950 	}
951 
952 	mutex_enter(&buf->b_hdr->b_freeze_lock);
953 	if (buf->b_hdr->b_freeze_cksum != NULL) {
954 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
955 		buf->b_hdr->b_freeze_cksum = NULL;
956 	}
957 	mutex_exit(&buf->b_hdr->b_freeze_lock);
958 }
959 
960 void
961 arc_buf_freeze(arc_buf_t *buf)
962 {
963 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
964 		return;
965 
966 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
967 	    buf->b_hdr->b_state == arc_anon);
968 	arc_cksum_compute(buf, B_FALSE);
969 }
970 
971 static void
972 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
973 {
974 	ASSERT(MUTEX_HELD(hash_lock));
975 
976 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
977 	    (ab->b_state != arc_anon)) {
978 		uint64_t delta = ab->b_size * ab->b_datacnt;
979 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
980 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
981 
982 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
983 		mutex_enter(&ab->b_state->arcs_mtx);
984 		ASSERT(list_link_active(&ab->b_arc_node));
985 		list_remove(list, ab);
986 		if (GHOST_STATE(ab->b_state)) {
987 			ASSERT3U(ab->b_datacnt, ==, 0);
988 			ASSERT3P(ab->b_buf, ==, NULL);
989 			delta = ab->b_size;
990 		}
991 		ASSERT(delta > 0);
992 		ASSERT3U(*size, >=, delta);
993 		atomic_add_64(size, -delta);
994 		mutex_exit(&ab->b_state->arcs_mtx);
995 		/* remove the prefetch flag if we get a reference */
996 		if (ab->b_flags & ARC_PREFETCH)
997 			ab->b_flags &= ~ARC_PREFETCH;
998 	}
999 }
1000 
1001 static int
1002 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1003 {
1004 	int cnt;
1005 	arc_state_t *state = ab->b_state;
1006 
1007 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1008 	ASSERT(!GHOST_STATE(state));
1009 
1010 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1011 	    (state != arc_anon)) {
1012 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1013 
1014 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1015 		mutex_enter(&state->arcs_mtx);
1016 		ASSERT(!list_link_active(&ab->b_arc_node));
1017 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1018 		ASSERT(ab->b_datacnt > 0);
1019 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1020 		mutex_exit(&state->arcs_mtx);
1021 	}
1022 	return (cnt);
1023 }
1024 
1025 /*
1026  * Move the supplied buffer to the indicated state.  The mutex
1027  * for the buffer must be held by the caller.
1028  */
1029 static void
1030 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1031 {
1032 	arc_state_t *old_state = ab->b_state;
1033 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1034 	uint64_t from_delta, to_delta;
1035 
1036 	ASSERT(MUTEX_HELD(hash_lock));
1037 	ASSERT(new_state != old_state);
1038 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1039 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1040 	ASSERT(ab->b_datacnt <= 1 || new_state != arc_anon);
1041 	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1042 
1043 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1044 
1045 	/*
1046 	 * If this buffer is evictable, transfer it from the
1047 	 * old state list to the new state list.
1048 	 */
1049 	if (refcnt == 0) {
1050 		if (old_state != arc_anon) {
1051 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1052 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1053 
1054 			if (use_mutex)
1055 				mutex_enter(&old_state->arcs_mtx);
1056 
1057 			ASSERT(list_link_active(&ab->b_arc_node));
1058 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1059 
1060 			/*
1061 			 * If prefetching out of the ghost cache,
1062 			 * we will have a non-null datacnt.
1063 			 */
1064 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1065 				/* ghost elements have a ghost size */
1066 				ASSERT(ab->b_buf == NULL);
1067 				from_delta = ab->b_size;
1068 			}
1069 			ASSERT3U(*size, >=, from_delta);
1070 			atomic_add_64(size, -from_delta);
1071 
1072 			if (use_mutex)
1073 				mutex_exit(&old_state->arcs_mtx);
1074 		}
1075 		if (new_state != arc_anon) {
1076 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1077 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1078 
1079 			if (use_mutex)
1080 				mutex_enter(&new_state->arcs_mtx);
1081 
1082 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1083 
1084 			/* ghost elements have a ghost size */
1085 			if (GHOST_STATE(new_state)) {
1086 				ASSERT(ab->b_datacnt == 0);
1087 				ASSERT(ab->b_buf == NULL);
1088 				to_delta = ab->b_size;
1089 			}
1090 			atomic_add_64(size, to_delta);
1091 
1092 			if (use_mutex)
1093 				mutex_exit(&new_state->arcs_mtx);
1094 		}
1095 	}
1096 
1097 	ASSERT(!BUF_EMPTY(ab));
1098 	if (new_state == arc_anon) {
1099 		buf_hash_remove(ab);
1100 	}
1101 
1102 	/* adjust state sizes */
1103 	if (to_delta)
1104 		atomic_add_64(&new_state->arcs_size, to_delta);
1105 	if (from_delta) {
1106 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1107 		atomic_add_64(&old_state->arcs_size, -from_delta);
1108 	}
1109 	ab->b_state = new_state;
1110 
1111 	/* adjust l2arc hdr stats */
1112 	if (new_state == arc_l2c_only)
1113 		l2arc_hdr_stat_add();
1114 	else if (old_state == arc_l2c_only)
1115 		l2arc_hdr_stat_remove();
1116 }
1117 
1118 void
1119 arc_space_consume(uint64_t space, arc_space_type_t type)
1120 {
1121 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1122 
1123 	switch (type) {
1124 	case ARC_SPACE_DATA:
1125 		ARCSTAT_INCR(arcstat_data_size, space);
1126 		break;
1127 	case ARC_SPACE_OTHER:
1128 		ARCSTAT_INCR(arcstat_other_size, space);
1129 		break;
1130 	case ARC_SPACE_HDRS:
1131 		ARCSTAT_INCR(arcstat_hdr_size, space);
1132 		break;
1133 	case ARC_SPACE_L2HDRS:
1134 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1135 		break;
1136 	}
1137 
1138 	atomic_add_64(&arc_meta_used, space);
1139 	atomic_add_64(&arc_size, space);
1140 }
1141 
1142 void
1143 arc_space_return(uint64_t space, arc_space_type_t type)
1144 {
1145 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1146 
1147 	switch (type) {
1148 	case ARC_SPACE_DATA:
1149 		ARCSTAT_INCR(arcstat_data_size, -space);
1150 		break;
1151 	case ARC_SPACE_OTHER:
1152 		ARCSTAT_INCR(arcstat_other_size, -space);
1153 		break;
1154 	case ARC_SPACE_HDRS:
1155 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1156 		break;
1157 	case ARC_SPACE_L2HDRS:
1158 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1159 		break;
1160 	}
1161 
1162 	ASSERT(arc_meta_used >= space);
1163 	if (arc_meta_max < arc_meta_used)
1164 		arc_meta_max = arc_meta_used;
1165 	atomic_add_64(&arc_meta_used, -space);
1166 	ASSERT(arc_size >= space);
1167 	atomic_add_64(&arc_size, -space);
1168 }
1169 
1170 void *
1171 arc_data_buf_alloc(uint64_t size)
1172 {
1173 	if (arc_evict_needed(ARC_BUFC_DATA))
1174 		cv_signal(&arc_reclaim_thr_cv);
1175 	atomic_add_64(&arc_size, size);
1176 	return (zio_data_buf_alloc(size));
1177 }
1178 
1179 void
1180 arc_data_buf_free(void *buf, uint64_t size)
1181 {
1182 	zio_data_buf_free(buf, size);
1183 	ASSERT(arc_size >= size);
1184 	atomic_add_64(&arc_size, -size);
1185 }
1186 
1187 arc_buf_t *
1188 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1189 {
1190 	arc_buf_hdr_t *hdr;
1191 	arc_buf_t *buf;
1192 
1193 	ASSERT3U(size, >, 0);
1194 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1195 	ASSERT(BUF_EMPTY(hdr));
1196 	hdr->b_size = size;
1197 	hdr->b_type = type;
1198 	hdr->b_spa = spa_guid(spa);
1199 	hdr->b_state = arc_anon;
1200 	hdr->b_arc_access = 0;
1201 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1202 	buf->b_hdr = hdr;
1203 	buf->b_data = NULL;
1204 	buf->b_efunc = NULL;
1205 	buf->b_private = NULL;
1206 	buf->b_next = NULL;
1207 	hdr->b_buf = buf;
1208 	arc_get_data_buf(buf);
1209 	hdr->b_datacnt = 1;
1210 	hdr->b_flags = 0;
1211 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1212 	(void) refcount_add(&hdr->b_refcnt, tag);
1213 
1214 	return (buf);
1215 }
1216 
1217 static char *arc_onloan_tag = "onloan";
1218 
1219 /*
1220  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1221  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1222  * buffers must be returned to the arc before they can be used by the DMU or
1223  * freed.
1224  */
1225 arc_buf_t *
1226 arc_loan_buf(spa_t *spa, int size)
1227 {
1228 	arc_buf_t *buf;
1229 
1230 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1231 
1232 	atomic_add_64(&arc_loaned_bytes, size);
1233 	return (buf);
1234 }
1235 
1236 /*
1237  * Return a loaned arc buffer to the arc.
1238  */
1239 void
1240 arc_return_buf(arc_buf_t *buf, void *tag)
1241 {
1242 	arc_buf_hdr_t *hdr = buf->b_hdr;
1243 
1244 	ASSERT(buf->b_data != NULL);
1245 	(void) refcount_add(&hdr->b_refcnt, tag);
1246 	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1247 
1248 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1249 }
1250 
1251 /* Detach an arc_buf from a dbuf (tag) */
1252 void
1253 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1254 {
1255 	arc_buf_hdr_t *hdr;
1256 
1257 	rw_enter(&buf->b_lock, RW_WRITER);
1258 	ASSERT(buf->b_data != NULL);
1259 	hdr = buf->b_hdr;
1260 	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1261 	(void) refcount_remove(&hdr->b_refcnt, tag);
1262 	buf->b_efunc = NULL;
1263 	buf->b_private = NULL;
1264 
1265 	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1266 	rw_exit(&buf->b_lock);
1267 }
1268 
1269 static arc_buf_t *
1270 arc_buf_clone(arc_buf_t *from)
1271 {
1272 	arc_buf_t *buf;
1273 	arc_buf_hdr_t *hdr = from->b_hdr;
1274 	uint64_t size = hdr->b_size;
1275 
1276 	ASSERT(hdr->b_state != arc_anon);
1277 
1278 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1279 	buf->b_hdr = hdr;
1280 	buf->b_data = NULL;
1281 	buf->b_efunc = NULL;
1282 	buf->b_private = NULL;
1283 	buf->b_next = hdr->b_buf;
1284 	hdr->b_buf = buf;
1285 	arc_get_data_buf(buf);
1286 	bcopy(from->b_data, buf->b_data, size);
1287 	hdr->b_datacnt += 1;
1288 	return (buf);
1289 }
1290 
1291 void
1292 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1293 {
1294 	arc_buf_hdr_t *hdr;
1295 	kmutex_t *hash_lock;
1296 
1297 	/*
1298 	 * Check to see if this buffer is evicted.  Callers
1299 	 * must verify b_data != NULL to know if the add_ref
1300 	 * was successful.
1301 	 */
1302 	rw_enter(&buf->b_lock, RW_READER);
1303 	if (buf->b_data == NULL) {
1304 		rw_exit(&buf->b_lock);
1305 		return;
1306 	}
1307 	hdr = buf->b_hdr;
1308 	ASSERT(hdr != NULL);
1309 	hash_lock = HDR_LOCK(hdr);
1310 	mutex_enter(hash_lock);
1311 	rw_exit(&buf->b_lock);
1312 
1313 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1314 	add_reference(hdr, hash_lock, tag);
1315 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1316 	arc_access(hdr, hash_lock);
1317 	mutex_exit(hash_lock);
1318 	ARCSTAT_BUMP(arcstat_hits);
1319 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1320 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1321 	    data, metadata, hits);
1322 }
1323 
1324 /*
1325  * Free the arc data buffer.  If it is an l2arc write in progress,
1326  * the buffer is placed on l2arc_free_on_write to be freed later.
1327  */
1328 static void
1329 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1330     void *data, size_t size)
1331 {
1332 	if (HDR_L2_WRITING(hdr)) {
1333 		l2arc_data_free_t *df;
1334 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1335 		df->l2df_data = data;
1336 		df->l2df_size = size;
1337 		df->l2df_func = free_func;
1338 		mutex_enter(&l2arc_free_on_write_mtx);
1339 		list_insert_head(l2arc_free_on_write, df);
1340 		mutex_exit(&l2arc_free_on_write_mtx);
1341 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1342 	} else {
1343 		free_func(data, size);
1344 	}
1345 }
1346 
1347 static void
1348 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1349 {
1350 	arc_buf_t **bufp;
1351 
1352 	/* free up data associated with the buf */
1353 	if (buf->b_data) {
1354 		arc_state_t *state = buf->b_hdr->b_state;
1355 		uint64_t size = buf->b_hdr->b_size;
1356 		arc_buf_contents_t type = buf->b_hdr->b_type;
1357 
1358 		arc_cksum_verify(buf);
1359 
1360 		if (!recycle) {
1361 			if (type == ARC_BUFC_METADATA) {
1362 				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1363 				    buf->b_data, size);
1364 				arc_space_return(size, ARC_SPACE_DATA);
1365 			} else {
1366 				ASSERT(type == ARC_BUFC_DATA);
1367 				arc_buf_data_free(buf->b_hdr,
1368 				    zio_data_buf_free, buf->b_data, size);
1369 				ARCSTAT_INCR(arcstat_data_size, -size);
1370 				atomic_add_64(&arc_size, -size);
1371 			}
1372 		}
1373 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1374 			uint64_t *cnt = &state->arcs_lsize[type];
1375 
1376 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1377 			ASSERT(state != arc_anon);
1378 
1379 			ASSERT3U(*cnt, >=, size);
1380 			atomic_add_64(cnt, -size);
1381 		}
1382 		ASSERT3U(state->arcs_size, >=, size);
1383 		atomic_add_64(&state->arcs_size, -size);
1384 		buf->b_data = NULL;
1385 		ASSERT(buf->b_hdr->b_datacnt > 0);
1386 		buf->b_hdr->b_datacnt -= 1;
1387 	}
1388 
1389 	/* only remove the buf if requested */
1390 	if (!all)
1391 		return;
1392 
1393 	/* remove the buf from the hdr list */
1394 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1395 		continue;
1396 	*bufp = buf->b_next;
1397 
1398 	ASSERT(buf->b_efunc == NULL);
1399 
1400 	/* clean up the buf */
1401 	buf->b_hdr = NULL;
1402 	kmem_cache_free(buf_cache, buf);
1403 }
1404 
1405 static void
1406 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1407 {
1408 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1409 	ASSERT3P(hdr->b_state, ==, arc_anon);
1410 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1411 	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1412 
1413 	if (l2hdr != NULL) {
1414 		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1415 		/*
1416 		 * To prevent arc_free() and l2arc_evict() from
1417 		 * attempting to free the same buffer at the same time,
1418 		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1419 		 * give it priority.  l2arc_evict() can't destroy this
1420 		 * header while we are waiting on l2arc_buflist_mtx.
1421 		 *
1422 		 * The hdr may be removed from l2ad_buflist before we
1423 		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1424 		 */
1425 		if (!buflist_held) {
1426 			mutex_enter(&l2arc_buflist_mtx);
1427 			l2hdr = hdr->b_l2hdr;
1428 		}
1429 
1430 		if (l2hdr != NULL) {
1431 			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1432 			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1433 			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1434 			if (hdr->b_state == arc_l2c_only)
1435 				l2arc_hdr_stat_remove();
1436 			hdr->b_l2hdr = NULL;
1437 		}
1438 
1439 		if (!buflist_held)
1440 			mutex_exit(&l2arc_buflist_mtx);
1441 	}
1442 
1443 	if (!BUF_EMPTY(hdr)) {
1444 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1445 		bzero(&hdr->b_dva, sizeof (dva_t));
1446 		hdr->b_birth = 0;
1447 		hdr->b_cksum0 = 0;
1448 	}
1449 	while (hdr->b_buf) {
1450 		arc_buf_t *buf = hdr->b_buf;
1451 
1452 		if (buf->b_efunc) {
1453 			mutex_enter(&arc_eviction_mtx);
1454 			rw_enter(&buf->b_lock, RW_WRITER);
1455 			ASSERT(buf->b_hdr != NULL);
1456 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1457 			hdr->b_buf = buf->b_next;
1458 			buf->b_hdr = &arc_eviction_hdr;
1459 			buf->b_next = arc_eviction_list;
1460 			arc_eviction_list = buf;
1461 			rw_exit(&buf->b_lock);
1462 			mutex_exit(&arc_eviction_mtx);
1463 		} else {
1464 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1465 		}
1466 	}
1467 	if (hdr->b_freeze_cksum != NULL) {
1468 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1469 		hdr->b_freeze_cksum = NULL;
1470 	}
1471 
1472 	ASSERT(!list_link_active(&hdr->b_arc_node));
1473 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1474 	ASSERT3P(hdr->b_acb, ==, NULL);
1475 	kmem_cache_free(hdr_cache, hdr);
1476 }
1477 
1478 void
1479 arc_buf_free(arc_buf_t *buf, void *tag)
1480 {
1481 	arc_buf_hdr_t *hdr = buf->b_hdr;
1482 	int hashed = hdr->b_state != arc_anon;
1483 
1484 	ASSERT(buf->b_efunc == NULL);
1485 	ASSERT(buf->b_data != NULL);
1486 
1487 	if (hashed) {
1488 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1489 
1490 		mutex_enter(hash_lock);
1491 		(void) remove_reference(hdr, hash_lock, tag);
1492 		if (hdr->b_datacnt > 1) {
1493 			arc_buf_destroy(buf, FALSE, TRUE);
1494 		} else {
1495 			ASSERT(buf == hdr->b_buf);
1496 			ASSERT(buf->b_efunc == NULL);
1497 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1498 		}
1499 		mutex_exit(hash_lock);
1500 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1501 		int destroy_hdr;
1502 		/*
1503 		 * We are in the middle of an async write.  Don't destroy
1504 		 * this buffer unless the write completes before we finish
1505 		 * decrementing the reference count.
1506 		 */
1507 		mutex_enter(&arc_eviction_mtx);
1508 		(void) remove_reference(hdr, NULL, tag);
1509 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1510 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1511 		mutex_exit(&arc_eviction_mtx);
1512 		if (destroy_hdr)
1513 			arc_hdr_destroy(hdr);
1514 	} else {
1515 		if (remove_reference(hdr, NULL, tag) > 0) {
1516 			ASSERT(HDR_IO_ERROR(hdr));
1517 			arc_buf_destroy(buf, FALSE, TRUE);
1518 		} else {
1519 			arc_hdr_destroy(hdr);
1520 		}
1521 	}
1522 }
1523 
1524 int
1525 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1526 {
1527 	arc_buf_hdr_t *hdr = buf->b_hdr;
1528 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1529 	int no_callback = (buf->b_efunc == NULL);
1530 
1531 	if (hdr->b_state == arc_anon) {
1532 		ASSERT(hdr->b_datacnt == 1);
1533 		arc_buf_free(buf, tag);
1534 		return (no_callback);
1535 	}
1536 
1537 	mutex_enter(hash_lock);
1538 	ASSERT(hdr->b_state != arc_anon);
1539 	ASSERT(buf->b_data != NULL);
1540 
1541 	(void) remove_reference(hdr, hash_lock, tag);
1542 	if (hdr->b_datacnt > 1) {
1543 		if (no_callback)
1544 			arc_buf_destroy(buf, FALSE, TRUE);
1545 	} else if (no_callback) {
1546 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1547 		ASSERT(buf->b_efunc == NULL);
1548 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1549 	}
1550 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1551 	    refcount_is_zero(&hdr->b_refcnt));
1552 	mutex_exit(hash_lock);
1553 	return (no_callback);
1554 }
1555 
1556 int
1557 arc_buf_size(arc_buf_t *buf)
1558 {
1559 	return (buf->b_hdr->b_size);
1560 }
1561 
1562 /*
1563  * Evict buffers from list until we've removed the specified number of
1564  * bytes.  Move the removed buffers to the appropriate evict state.
1565  * If the recycle flag is set, then attempt to "recycle" a buffer:
1566  * - look for a buffer to evict that is `bytes' long.
1567  * - return the data block from this buffer rather than freeing it.
1568  * This flag is used by callers that are trying to make space for a
1569  * new buffer in a full arc cache.
1570  *
1571  * This function makes a "best effort".  It skips over any buffers
1572  * it can't get a hash_lock on, and so may not catch all candidates.
1573  * It may also return without evicting as much space as requested.
1574  */
1575 static void *
1576 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1577     arc_buf_contents_t type)
1578 {
1579 	arc_state_t *evicted_state;
1580 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1581 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1582 	list_t *list = &state->arcs_list[type];
1583 	kmutex_t *hash_lock;
1584 	boolean_t have_lock;
1585 	void *stolen = NULL;
1586 
1587 	ASSERT(state == arc_mru || state == arc_mfu);
1588 
1589 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1590 
1591 	mutex_enter(&state->arcs_mtx);
1592 	mutex_enter(&evicted_state->arcs_mtx);
1593 
1594 	for (ab = list_tail(list); ab; ab = ab_prev) {
1595 		ab_prev = list_prev(list, ab);
1596 		/* prefetch buffers have a minimum lifespan */
1597 		if (HDR_IO_IN_PROGRESS(ab) ||
1598 		    (spa && ab->b_spa != spa) ||
1599 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1600 		    ddi_get_lbolt() - ab->b_arc_access <
1601 		    arc_min_prefetch_lifespan)) {
1602 			skipped++;
1603 			continue;
1604 		}
1605 		/* "lookahead" for better eviction candidate */
1606 		if (recycle && ab->b_size != bytes &&
1607 		    ab_prev && ab_prev->b_size == bytes)
1608 			continue;
1609 		hash_lock = HDR_LOCK(ab);
1610 		have_lock = MUTEX_HELD(hash_lock);
1611 		if (have_lock || mutex_tryenter(hash_lock)) {
1612 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1613 			ASSERT(ab->b_datacnt > 0);
1614 			while (ab->b_buf) {
1615 				arc_buf_t *buf = ab->b_buf;
1616 				if (!rw_tryenter(&buf->b_lock, RW_WRITER)) {
1617 					missed += 1;
1618 					break;
1619 				}
1620 				if (buf->b_data) {
1621 					bytes_evicted += ab->b_size;
1622 					if (recycle && ab->b_type == type &&
1623 					    ab->b_size == bytes &&
1624 					    !HDR_L2_WRITING(ab)) {
1625 						stolen = buf->b_data;
1626 						recycle = FALSE;
1627 					}
1628 				}
1629 				if (buf->b_efunc) {
1630 					mutex_enter(&arc_eviction_mtx);
1631 					arc_buf_destroy(buf,
1632 					    buf->b_data == stolen, FALSE);
1633 					ab->b_buf = buf->b_next;
1634 					buf->b_hdr = &arc_eviction_hdr;
1635 					buf->b_next = arc_eviction_list;
1636 					arc_eviction_list = buf;
1637 					mutex_exit(&arc_eviction_mtx);
1638 					rw_exit(&buf->b_lock);
1639 				} else {
1640 					rw_exit(&buf->b_lock);
1641 					arc_buf_destroy(buf,
1642 					    buf->b_data == stolen, TRUE);
1643 				}
1644 			}
1645 
1646 			if (ab->b_l2hdr) {
1647 				ARCSTAT_INCR(arcstat_evict_l2_cached,
1648 				    ab->b_size);
1649 			} else {
1650 				if (l2arc_write_eligible(ab->b_spa, ab)) {
1651 					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1652 					    ab->b_size);
1653 				} else {
1654 					ARCSTAT_INCR(
1655 					    arcstat_evict_l2_ineligible,
1656 					    ab->b_size);
1657 				}
1658 			}
1659 
1660 			if (ab->b_datacnt == 0) {
1661 				arc_change_state(evicted_state, ab, hash_lock);
1662 				ASSERT(HDR_IN_HASH_TABLE(ab));
1663 				ab->b_flags |= ARC_IN_HASH_TABLE;
1664 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1665 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1666 			}
1667 			if (!have_lock)
1668 				mutex_exit(hash_lock);
1669 			if (bytes >= 0 && bytes_evicted >= bytes)
1670 				break;
1671 		} else {
1672 			missed += 1;
1673 		}
1674 	}
1675 
1676 	mutex_exit(&evicted_state->arcs_mtx);
1677 	mutex_exit(&state->arcs_mtx);
1678 
1679 	if (bytes_evicted < bytes)
1680 		dprintf("only evicted %lld bytes from %x",
1681 		    (longlong_t)bytes_evicted, state);
1682 
1683 	if (skipped)
1684 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1685 
1686 	if (missed)
1687 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1688 
1689 	/*
1690 	 * We have just evicted some date into the ghost state, make
1691 	 * sure we also adjust the ghost state size if necessary.
1692 	 */
1693 	if (arc_no_grow &&
1694 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1695 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1696 		    arc_mru_ghost->arcs_size - arc_c;
1697 
1698 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1699 			int64_t todelete =
1700 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1701 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1702 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1703 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1704 			    arc_mru_ghost->arcs_size +
1705 			    arc_mfu_ghost->arcs_size - arc_c);
1706 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1707 		}
1708 	}
1709 
1710 	return (stolen);
1711 }
1712 
1713 /*
1714  * Remove buffers from list until we've removed the specified number of
1715  * bytes.  Destroy the buffers that are removed.
1716  */
1717 static void
1718 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1719 {
1720 	arc_buf_hdr_t *ab, *ab_prev;
1721 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1722 	kmutex_t *hash_lock;
1723 	uint64_t bytes_deleted = 0;
1724 	uint64_t bufs_skipped = 0;
1725 	boolean_t have_lock;
1726 
1727 	ASSERT(GHOST_STATE(state));
1728 top:
1729 	mutex_enter(&state->arcs_mtx);
1730 	for (ab = list_tail(list); ab; ab = ab_prev) {
1731 		ab_prev = list_prev(list, ab);
1732 		if (spa && ab->b_spa != spa)
1733 			continue;
1734 		hash_lock = HDR_LOCK(ab);
1735 		have_lock = MUTEX_HELD(hash_lock);
1736 		if (have_lock || mutex_tryenter(hash_lock)) {
1737 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1738 			ASSERT(ab->b_buf == NULL);
1739 			ARCSTAT_BUMP(arcstat_deleted);
1740 			bytes_deleted += ab->b_size;
1741 
1742 			if (ab->b_l2hdr != NULL) {
1743 				/*
1744 				 * This buffer is cached on the 2nd Level ARC;
1745 				 * don't destroy the header.
1746 				 */
1747 				arc_change_state(arc_l2c_only, ab, hash_lock);
1748 				if (!have_lock)
1749 					mutex_exit(hash_lock);
1750 			} else {
1751 				arc_change_state(arc_anon, ab, hash_lock);
1752 				if (!have_lock)
1753 					mutex_exit(hash_lock);
1754 				arc_hdr_destroy(ab);
1755 			}
1756 
1757 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1758 			if (bytes >= 0 && bytes_deleted >= bytes)
1759 				break;
1760 		} else {
1761 			if (bytes < 0) {
1762 				mutex_exit(&state->arcs_mtx);
1763 				mutex_enter(hash_lock);
1764 				mutex_exit(hash_lock);
1765 				goto top;
1766 			}
1767 			bufs_skipped += 1;
1768 		}
1769 	}
1770 	mutex_exit(&state->arcs_mtx);
1771 
1772 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1773 	    (bytes < 0 || bytes_deleted < bytes)) {
1774 		list = &state->arcs_list[ARC_BUFC_METADATA];
1775 		goto top;
1776 	}
1777 
1778 	if (bufs_skipped) {
1779 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1780 		ASSERT(bytes >= 0);
1781 	}
1782 
1783 	if (bytes_deleted < bytes)
1784 		dprintf("only deleted %lld bytes from %p",
1785 		    (longlong_t)bytes_deleted, state);
1786 }
1787 
1788 static void
1789 arc_adjust(void)
1790 {
1791 	int64_t adjustment, delta;
1792 
1793 	/*
1794 	 * Adjust MRU size
1795 	 */
1796 
1797 	adjustment = MIN(arc_size - arc_c,
1798 	    arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p);
1799 
1800 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1801 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1802 		(void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
1803 		adjustment -= delta;
1804 	}
1805 
1806 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1807 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1808 		(void) arc_evict(arc_mru, NULL, delta, FALSE,
1809 		    ARC_BUFC_METADATA);
1810 	}
1811 
1812 	/*
1813 	 * Adjust MFU size
1814 	 */
1815 
1816 	adjustment = arc_size - arc_c;
1817 
1818 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1819 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1820 		(void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
1821 		adjustment -= delta;
1822 	}
1823 
1824 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1825 		int64_t delta = MIN(adjustment,
1826 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1827 		(void) arc_evict(arc_mfu, NULL, delta, FALSE,
1828 		    ARC_BUFC_METADATA);
1829 	}
1830 
1831 	/*
1832 	 * Adjust ghost lists
1833 	 */
1834 
1835 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1836 
1837 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1838 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
1839 		arc_evict_ghost(arc_mru_ghost, NULL, delta);
1840 	}
1841 
1842 	adjustment =
1843 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
1844 
1845 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1846 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
1847 		arc_evict_ghost(arc_mfu_ghost, NULL, delta);
1848 	}
1849 }
1850 
1851 static void
1852 arc_do_user_evicts(void)
1853 {
1854 	mutex_enter(&arc_eviction_mtx);
1855 	while (arc_eviction_list != NULL) {
1856 		arc_buf_t *buf = arc_eviction_list;
1857 		arc_eviction_list = buf->b_next;
1858 		rw_enter(&buf->b_lock, RW_WRITER);
1859 		buf->b_hdr = NULL;
1860 		rw_exit(&buf->b_lock);
1861 		mutex_exit(&arc_eviction_mtx);
1862 
1863 		if (buf->b_efunc != NULL)
1864 			VERIFY(buf->b_efunc(buf) == 0);
1865 
1866 		buf->b_efunc = NULL;
1867 		buf->b_private = NULL;
1868 		kmem_cache_free(buf_cache, buf);
1869 		mutex_enter(&arc_eviction_mtx);
1870 	}
1871 	mutex_exit(&arc_eviction_mtx);
1872 }
1873 
1874 /*
1875  * Flush all *evictable* data from the cache for the given spa.
1876  * NOTE: this will not touch "active" (i.e. referenced) data.
1877  */
1878 void
1879 arc_flush(spa_t *spa)
1880 {
1881 	uint64_t guid = 0;
1882 
1883 	if (spa)
1884 		guid = spa_guid(spa);
1885 
1886 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1887 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
1888 		if (spa)
1889 			break;
1890 	}
1891 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1892 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
1893 		if (spa)
1894 			break;
1895 	}
1896 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1897 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
1898 		if (spa)
1899 			break;
1900 	}
1901 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1902 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
1903 		if (spa)
1904 			break;
1905 	}
1906 
1907 	arc_evict_ghost(arc_mru_ghost, guid, -1);
1908 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
1909 
1910 	mutex_enter(&arc_reclaim_thr_lock);
1911 	arc_do_user_evicts();
1912 	mutex_exit(&arc_reclaim_thr_lock);
1913 	ASSERT(spa || arc_eviction_list == NULL);
1914 }
1915 
1916 void
1917 arc_shrink(void)
1918 {
1919 	if (arc_c > arc_c_min) {
1920 		uint64_t to_free;
1921 
1922 #ifdef _KERNEL
1923 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1924 #else
1925 		to_free = arc_c >> arc_shrink_shift;
1926 #endif
1927 		if (arc_c > arc_c_min + to_free)
1928 			atomic_add_64(&arc_c, -to_free);
1929 		else
1930 			arc_c = arc_c_min;
1931 
1932 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1933 		if (arc_c > arc_size)
1934 			arc_c = MAX(arc_size, arc_c_min);
1935 		if (arc_p > arc_c)
1936 			arc_p = (arc_c >> 1);
1937 		ASSERT(arc_c >= arc_c_min);
1938 		ASSERT((int64_t)arc_p >= 0);
1939 	}
1940 
1941 	if (arc_size > arc_c)
1942 		arc_adjust();
1943 }
1944 
1945 static int
1946 arc_reclaim_needed(void)
1947 {
1948 	uint64_t extra;
1949 
1950 #ifdef _KERNEL
1951 
1952 	if (needfree)
1953 		return (1);
1954 
1955 	/*
1956 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1957 	 */
1958 	extra = desfree;
1959 
1960 	/*
1961 	 * check that we're out of range of the pageout scanner.  It starts to
1962 	 * schedule paging if freemem is less than lotsfree and needfree.
1963 	 * lotsfree is the high-water mark for pageout, and needfree is the
1964 	 * number of needed free pages.  We add extra pages here to make sure
1965 	 * the scanner doesn't start up while we're freeing memory.
1966 	 */
1967 	if (freemem < lotsfree + needfree + extra)
1968 		return (1);
1969 
1970 	/*
1971 	 * check to make sure that swapfs has enough space so that anon
1972 	 * reservations can still succeed. anon_resvmem() checks that the
1973 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1974 	 * swap pages.  We also add a bit of extra here just to prevent
1975 	 * circumstances from getting really dire.
1976 	 */
1977 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1978 		return (1);
1979 
1980 #if defined(__i386)
1981 	/*
1982 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1983 	 * kernel heap space before we ever run out of available physical
1984 	 * memory.  Most checks of the size of the heap_area compare against
1985 	 * tune.t_minarmem, which is the minimum available real memory that we
1986 	 * can have in the system.  However, this is generally fixed at 25 pages
1987 	 * which is so low that it's useless.  In this comparison, we seek to
1988 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1989 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
1990 	 * free)
1991 	 */
1992 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1993 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1994 		return (1);
1995 #endif
1996 
1997 #else
1998 	if (spa_get_random(100) == 0)
1999 		return (1);
2000 #endif
2001 	return (0);
2002 }
2003 
2004 static void
2005 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2006 {
2007 	size_t			i;
2008 	kmem_cache_t		*prev_cache = NULL;
2009 	kmem_cache_t		*prev_data_cache = NULL;
2010 	extern kmem_cache_t	*zio_buf_cache[];
2011 	extern kmem_cache_t	*zio_data_buf_cache[];
2012 
2013 #ifdef _KERNEL
2014 	if (arc_meta_used >= arc_meta_limit) {
2015 		/*
2016 		 * We are exceeding our meta-data cache limit.
2017 		 * Purge some DNLC entries to release holds on meta-data.
2018 		 */
2019 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2020 	}
2021 #if defined(__i386)
2022 	/*
2023 	 * Reclaim unused memory from all kmem caches.
2024 	 */
2025 	kmem_reap();
2026 #endif
2027 #endif
2028 
2029 	/*
2030 	 * An aggressive reclamation will shrink the cache size as well as
2031 	 * reap free buffers from the arc kmem caches.
2032 	 */
2033 	if (strat == ARC_RECLAIM_AGGR)
2034 		arc_shrink();
2035 
2036 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2037 		if (zio_buf_cache[i] != prev_cache) {
2038 			prev_cache = zio_buf_cache[i];
2039 			kmem_cache_reap_now(zio_buf_cache[i]);
2040 		}
2041 		if (zio_data_buf_cache[i] != prev_data_cache) {
2042 			prev_data_cache = zio_data_buf_cache[i];
2043 			kmem_cache_reap_now(zio_data_buf_cache[i]);
2044 		}
2045 	}
2046 	kmem_cache_reap_now(buf_cache);
2047 	kmem_cache_reap_now(hdr_cache);
2048 }
2049 
2050 static void
2051 arc_reclaim_thread(void)
2052 {
2053 	clock_t			growtime = 0;
2054 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2055 	callb_cpr_t		cpr;
2056 
2057 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2058 
2059 	mutex_enter(&arc_reclaim_thr_lock);
2060 	while (arc_thread_exit == 0) {
2061 		if (arc_reclaim_needed()) {
2062 
2063 			if (arc_no_grow) {
2064 				if (last_reclaim == ARC_RECLAIM_CONS) {
2065 					last_reclaim = ARC_RECLAIM_AGGR;
2066 				} else {
2067 					last_reclaim = ARC_RECLAIM_CONS;
2068 				}
2069 			} else {
2070 				arc_no_grow = TRUE;
2071 				last_reclaim = ARC_RECLAIM_AGGR;
2072 				membar_producer();
2073 			}
2074 
2075 			/* reset the growth delay for every reclaim */
2076 			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2077 
2078 			arc_kmem_reap_now(last_reclaim);
2079 			arc_warm = B_TRUE;
2080 
2081 		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2082 			arc_no_grow = FALSE;
2083 		}
2084 
2085 		if (2 * arc_c < arc_size +
2086 		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
2087 			arc_adjust();
2088 
2089 		if (arc_eviction_list != NULL)
2090 			arc_do_user_evicts();
2091 
2092 		/* block until needed, or one second, whichever is shorter */
2093 		CALLB_CPR_SAFE_BEGIN(&cpr);
2094 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2095 		    &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2096 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2097 	}
2098 
2099 	arc_thread_exit = 0;
2100 	cv_broadcast(&arc_reclaim_thr_cv);
2101 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2102 	thread_exit();
2103 }
2104 
2105 /*
2106  * Adapt arc info given the number of bytes we are trying to add and
2107  * the state that we are comming from.  This function is only called
2108  * when we are adding new content to the cache.
2109  */
2110 static void
2111 arc_adapt(int bytes, arc_state_t *state)
2112 {
2113 	int mult;
2114 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2115 
2116 	if (state == arc_l2c_only)
2117 		return;
2118 
2119 	ASSERT(bytes > 0);
2120 	/*
2121 	 * Adapt the target size of the MRU list:
2122 	 *	- if we just hit in the MRU ghost list, then increase
2123 	 *	  the target size of the MRU list.
2124 	 *	- if we just hit in the MFU ghost list, then increase
2125 	 *	  the target size of the MFU list by decreasing the
2126 	 *	  target size of the MRU list.
2127 	 */
2128 	if (state == arc_mru_ghost) {
2129 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2130 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2131 
2132 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2133 	} else if (state == arc_mfu_ghost) {
2134 		uint64_t delta;
2135 
2136 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2137 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2138 
2139 		delta = MIN(bytes * mult, arc_p);
2140 		arc_p = MAX(arc_p_min, arc_p - delta);
2141 	}
2142 	ASSERT((int64_t)arc_p >= 0);
2143 
2144 	if (arc_reclaim_needed()) {
2145 		cv_signal(&arc_reclaim_thr_cv);
2146 		return;
2147 	}
2148 
2149 	if (arc_no_grow)
2150 		return;
2151 
2152 	if (arc_c >= arc_c_max)
2153 		return;
2154 
2155 	/*
2156 	 * If we're within (2 * maxblocksize) bytes of the target
2157 	 * cache size, increment the target cache size
2158 	 */
2159 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2160 		atomic_add_64(&arc_c, (int64_t)bytes);
2161 		if (arc_c > arc_c_max)
2162 			arc_c = arc_c_max;
2163 		else if (state == arc_anon)
2164 			atomic_add_64(&arc_p, (int64_t)bytes);
2165 		if (arc_p > arc_c)
2166 			arc_p = arc_c;
2167 	}
2168 	ASSERT((int64_t)arc_p >= 0);
2169 }
2170 
2171 /*
2172  * Check if the cache has reached its limits and eviction is required
2173  * prior to insert.
2174  */
2175 static int
2176 arc_evict_needed(arc_buf_contents_t type)
2177 {
2178 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2179 		return (1);
2180 
2181 #ifdef _KERNEL
2182 	/*
2183 	 * If zio data pages are being allocated out of a separate heap segment,
2184 	 * then enforce that the size of available vmem for this area remains
2185 	 * above about 1/32nd free.
2186 	 */
2187 	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2188 	    vmem_size(zio_arena, VMEM_FREE) <
2189 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2190 		return (1);
2191 #endif
2192 
2193 	if (arc_reclaim_needed())
2194 		return (1);
2195 
2196 	return (arc_size > arc_c);
2197 }
2198 
2199 /*
2200  * The buffer, supplied as the first argument, needs a data block.
2201  * So, if we are at cache max, determine which cache should be victimized.
2202  * We have the following cases:
2203  *
2204  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2205  * In this situation if we're out of space, but the resident size of the MFU is
2206  * under the limit, victimize the MFU cache to satisfy this insertion request.
2207  *
2208  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2209  * Here, we've used up all of the available space for the MRU, so we need to
2210  * evict from our own cache instead.  Evict from the set of resident MRU
2211  * entries.
2212  *
2213  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2214  * c minus p represents the MFU space in the cache, since p is the size of the
2215  * cache that is dedicated to the MRU.  In this situation there's still space on
2216  * the MFU side, so the MRU side needs to be victimized.
2217  *
2218  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2219  * MFU's resident set is consuming more space than it has been allotted.  In
2220  * this situation, we must victimize our own cache, the MFU, for this insertion.
2221  */
2222 static void
2223 arc_get_data_buf(arc_buf_t *buf)
2224 {
2225 	arc_state_t		*state = buf->b_hdr->b_state;
2226 	uint64_t		size = buf->b_hdr->b_size;
2227 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2228 
2229 	arc_adapt(size, state);
2230 
2231 	/*
2232 	 * We have not yet reached cache maximum size,
2233 	 * just allocate a new buffer.
2234 	 */
2235 	if (!arc_evict_needed(type)) {
2236 		if (type == ARC_BUFC_METADATA) {
2237 			buf->b_data = zio_buf_alloc(size);
2238 			arc_space_consume(size, ARC_SPACE_DATA);
2239 		} else {
2240 			ASSERT(type == ARC_BUFC_DATA);
2241 			buf->b_data = zio_data_buf_alloc(size);
2242 			ARCSTAT_INCR(arcstat_data_size, size);
2243 			atomic_add_64(&arc_size, size);
2244 		}
2245 		goto out;
2246 	}
2247 
2248 	/*
2249 	 * If we are prefetching from the mfu ghost list, this buffer
2250 	 * will end up on the mru list; so steal space from there.
2251 	 */
2252 	if (state == arc_mfu_ghost)
2253 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2254 	else if (state == arc_mru_ghost)
2255 		state = arc_mru;
2256 
2257 	if (state == arc_mru || state == arc_anon) {
2258 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2259 		state = (arc_mfu->arcs_lsize[type] >= size &&
2260 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2261 	} else {
2262 		/* MFU cases */
2263 		uint64_t mfu_space = arc_c - arc_p;
2264 		state =  (arc_mru->arcs_lsize[type] >= size &&
2265 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2266 	}
2267 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2268 		if (type == ARC_BUFC_METADATA) {
2269 			buf->b_data = zio_buf_alloc(size);
2270 			arc_space_consume(size, ARC_SPACE_DATA);
2271 		} else {
2272 			ASSERT(type == ARC_BUFC_DATA);
2273 			buf->b_data = zio_data_buf_alloc(size);
2274 			ARCSTAT_INCR(arcstat_data_size, size);
2275 			atomic_add_64(&arc_size, size);
2276 		}
2277 		ARCSTAT_BUMP(arcstat_recycle_miss);
2278 	}
2279 	ASSERT(buf->b_data != NULL);
2280 out:
2281 	/*
2282 	 * Update the state size.  Note that ghost states have a
2283 	 * "ghost size" and so don't need to be updated.
2284 	 */
2285 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2286 		arc_buf_hdr_t *hdr = buf->b_hdr;
2287 
2288 		atomic_add_64(&hdr->b_state->arcs_size, size);
2289 		if (list_link_active(&hdr->b_arc_node)) {
2290 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2291 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2292 		}
2293 		/*
2294 		 * If we are growing the cache, and we are adding anonymous
2295 		 * data, and we have outgrown arc_p, update arc_p
2296 		 */
2297 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2298 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2299 			arc_p = MIN(arc_c, arc_p + size);
2300 	}
2301 }
2302 
2303 /*
2304  * This routine is called whenever a buffer is accessed.
2305  * NOTE: the hash lock is dropped in this function.
2306  */
2307 static void
2308 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2309 {
2310 	clock_t now;
2311 
2312 	ASSERT(MUTEX_HELD(hash_lock));
2313 
2314 	if (buf->b_state == arc_anon) {
2315 		/*
2316 		 * This buffer is not in the cache, and does not
2317 		 * appear in our "ghost" list.  Add the new buffer
2318 		 * to the MRU state.
2319 		 */
2320 
2321 		ASSERT(buf->b_arc_access == 0);
2322 		buf->b_arc_access = ddi_get_lbolt();
2323 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2324 		arc_change_state(arc_mru, buf, hash_lock);
2325 
2326 	} else if (buf->b_state == arc_mru) {
2327 		now = ddi_get_lbolt();
2328 
2329 		/*
2330 		 * If this buffer is here because of a prefetch, then either:
2331 		 * - clear the flag if this is a "referencing" read
2332 		 *   (any subsequent access will bump this into the MFU state).
2333 		 * or
2334 		 * - move the buffer to the head of the list if this is
2335 		 *   another prefetch (to make it less likely to be evicted).
2336 		 */
2337 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2338 			if (refcount_count(&buf->b_refcnt) == 0) {
2339 				ASSERT(list_link_active(&buf->b_arc_node));
2340 			} else {
2341 				buf->b_flags &= ~ARC_PREFETCH;
2342 				ARCSTAT_BUMP(arcstat_mru_hits);
2343 			}
2344 			buf->b_arc_access = now;
2345 			return;
2346 		}
2347 
2348 		/*
2349 		 * This buffer has been "accessed" only once so far,
2350 		 * but it is still in the cache. Move it to the MFU
2351 		 * state.
2352 		 */
2353 		if (now > buf->b_arc_access + ARC_MINTIME) {
2354 			/*
2355 			 * More than 125ms have passed since we
2356 			 * instantiated this buffer.  Move it to the
2357 			 * most frequently used state.
2358 			 */
2359 			buf->b_arc_access = now;
2360 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2361 			arc_change_state(arc_mfu, buf, hash_lock);
2362 		}
2363 		ARCSTAT_BUMP(arcstat_mru_hits);
2364 	} else if (buf->b_state == arc_mru_ghost) {
2365 		arc_state_t	*new_state;
2366 		/*
2367 		 * This buffer has been "accessed" recently, but
2368 		 * was evicted from the cache.  Move it to the
2369 		 * MFU state.
2370 		 */
2371 
2372 		if (buf->b_flags & ARC_PREFETCH) {
2373 			new_state = arc_mru;
2374 			if (refcount_count(&buf->b_refcnt) > 0)
2375 				buf->b_flags &= ~ARC_PREFETCH;
2376 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2377 		} else {
2378 			new_state = arc_mfu;
2379 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2380 		}
2381 
2382 		buf->b_arc_access = ddi_get_lbolt();
2383 		arc_change_state(new_state, buf, hash_lock);
2384 
2385 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2386 	} else if (buf->b_state == arc_mfu) {
2387 		/*
2388 		 * This buffer has been accessed more than once and is
2389 		 * still in the cache.  Keep it in the MFU state.
2390 		 *
2391 		 * NOTE: an add_reference() that occurred when we did
2392 		 * the arc_read() will have kicked this off the list.
2393 		 * If it was a prefetch, we will explicitly move it to
2394 		 * the head of the list now.
2395 		 */
2396 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2397 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2398 			ASSERT(list_link_active(&buf->b_arc_node));
2399 		}
2400 		ARCSTAT_BUMP(arcstat_mfu_hits);
2401 		buf->b_arc_access = ddi_get_lbolt();
2402 	} else if (buf->b_state == arc_mfu_ghost) {
2403 		arc_state_t	*new_state = arc_mfu;
2404 		/*
2405 		 * This buffer has been accessed more than once but has
2406 		 * been evicted from the cache.  Move it back to the
2407 		 * MFU state.
2408 		 */
2409 
2410 		if (buf->b_flags & ARC_PREFETCH) {
2411 			/*
2412 			 * This is a prefetch access...
2413 			 * move this block back to the MRU state.
2414 			 */
2415 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2416 			new_state = arc_mru;
2417 		}
2418 
2419 		buf->b_arc_access = ddi_get_lbolt();
2420 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2421 		arc_change_state(new_state, buf, hash_lock);
2422 
2423 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2424 	} else if (buf->b_state == arc_l2c_only) {
2425 		/*
2426 		 * This buffer is on the 2nd Level ARC.
2427 		 */
2428 
2429 		buf->b_arc_access = ddi_get_lbolt();
2430 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2431 		arc_change_state(arc_mfu, buf, hash_lock);
2432 	} else {
2433 		ASSERT(!"invalid arc state");
2434 	}
2435 }
2436 
2437 /* a generic arc_done_func_t which you can use */
2438 /* ARGSUSED */
2439 void
2440 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2441 {
2442 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2443 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2444 }
2445 
2446 /* a generic arc_done_func_t */
2447 void
2448 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2449 {
2450 	arc_buf_t **bufp = arg;
2451 	if (zio && zio->io_error) {
2452 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2453 		*bufp = NULL;
2454 	} else {
2455 		*bufp = buf;
2456 	}
2457 }
2458 
2459 static void
2460 arc_read_done(zio_t *zio)
2461 {
2462 	arc_buf_hdr_t	*hdr, *found;
2463 	arc_buf_t	*buf;
2464 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2465 	kmutex_t	*hash_lock;
2466 	arc_callback_t	*callback_list, *acb;
2467 	int		freeable = FALSE;
2468 
2469 	buf = zio->io_private;
2470 	hdr = buf->b_hdr;
2471 
2472 	/*
2473 	 * The hdr was inserted into hash-table and removed from lists
2474 	 * prior to starting I/O.  We should find this header, since
2475 	 * it's in the hash table, and it should be legit since it's
2476 	 * not possible to evict it during the I/O.  The only possible
2477 	 * reason for it not to be found is if we were freed during the
2478 	 * read.
2479 	 */
2480 	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2481 	    &hash_lock);
2482 
2483 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2484 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2485 	    (found == hdr && HDR_L2_READING(hdr)));
2486 
2487 	hdr->b_flags &= ~ARC_L2_EVICTED;
2488 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2489 		hdr->b_flags &= ~ARC_L2CACHE;
2490 
2491 	/* byteswap if necessary */
2492 	callback_list = hdr->b_acb;
2493 	ASSERT(callback_list != NULL);
2494 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2495 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2496 		    byteswap_uint64_array :
2497 		    dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2498 		func(buf->b_data, hdr->b_size);
2499 	}
2500 
2501 	arc_cksum_compute(buf, B_FALSE);
2502 
2503 	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2504 		/*
2505 		 * Only call arc_access on anonymous buffers.  This is because
2506 		 * if we've issued an I/O for an evicted buffer, we've already
2507 		 * called arc_access (to prevent any simultaneous readers from
2508 		 * getting confused).
2509 		 */
2510 		arc_access(hdr, hash_lock);
2511 	}
2512 
2513 	/* create copies of the data buffer for the callers */
2514 	abuf = buf;
2515 	for (acb = callback_list; acb; acb = acb->acb_next) {
2516 		if (acb->acb_done) {
2517 			if (abuf == NULL)
2518 				abuf = arc_buf_clone(buf);
2519 			acb->acb_buf = abuf;
2520 			abuf = NULL;
2521 		}
2522 	}
2523 	hdr->b_acb = NULL;
2524 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2525 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2526 	if (abuf == buf) {
2527 		ASSERT(buf->b_efunc == NULL);
2528 		ASSERT(hdr->b_datacnt == 1);
2529 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2530 	}
2531 
2532 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2533 
2534 	if (zio->io_error != 0) {
2535 		hdr->b_flags |= ARC_IO_ERROR;
2536 		if (hdr->b_state != arc_anon)
2537 			arc_change_state(arc_anon, hdr, hash_lock);
2538 		if (HDR_IN_HASH_TABLE(hdr))
2539 			buf_hash_remove(hdr);
2540 		freeable = refcount_is_zero(&hdr->b_refcnt);
2541 	}
2542 
2543 	/*
2544 	 * Broadcast before we drop the hash_lock to avoid the possibility
2545 	 * that the hdr (and hence the cv) might be freed before we get to
2546 	 * the cv_broadcast().
2547 	 */
2548 	cv_broadcast(&hdr->b_cv);
2549 
2550 	if (hash_lock) {
2551 		mutex_exit(hash_lock);
2552 	} else {
2553 		/*
2554 		 * This block was freed while we waited for the read to
2555 		 * complete.  It has been removed from the hash table and
2556 		 * moved to the anonymous state (so that it won't show up
2557 		 * in the cache).
2558 		 */
2559 		ASSERT3P(hdr->b_state, ==, arc_anon);
2560 		freeable = refcount_is_zero(&hdr->b_refcnt);
2561 	}
2562 
2563 	/* execute each callback and free its structure */
2564 	while ((acb = callback_list) != NULL) {
2565 		if (acb->acb_done)
2566 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2567 
2568 		if (acb->acb_zio_dummy != NULL) {
2569 			acb->acb_zio_dummy->io_error = zio->io_error;
2570 			zio_nowait(acb->acb_zio_dummy);
2571 		}
2572 
2573 		callback_list = acb->acb_next;
2574 		kmem_free(acb, sizeof (arc_callback_t));
2575 	}
2576 
2577 	if (freeable)
2578 		arc_hdr_destroy(hdr);
2579 }
2580 
2581 /*
2582  * "Read" the block block at the specified DVA (in bp) via the
2583  * cache.  If the block is found in the cache, invoke the provided
2584  * callback immediately and return.  Note that the `zio' parameter
2585  * in the callback will be NULL in this case, since no IO was
2586  * required.  If the block is not in the cache pass the read request
2587  * on to the spa with a substitute callback function, so that the
2588  * requested block will be added to the cache.
2589  *
2590  * If a read request arrives for a block that has a read in-progress,
2591  * either wait for the in-progress read to complete (and return the
2592  * results); or, if this is a read with a "done" func, add a record
2593  * to the read to invoke the "done" func when the read completes,
2594  * and return; or just return.
2595  *
2596  * arc_read_done() will invoke all the requested "done" functions
2597  * for readers of this block.
2598  *
2599  * Normal callers should use arc_read and pass the arc buffer and offset
2600  * for the bp.  But if you know you don't need locking, you can use
2601  * arc_read_bp.
2602  */
2603 int
2604 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
2605     arc_done_func_t *done, void *private, int priority, int zio_flags,
2606     uint32_t *arc_flags, const zbookmark_t *zb)
2607 {
2608 	int err;
2609 
2610 	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2611 	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2612 	rw_enter(&pbuf->b_lock, RW_READER);
2613 
2614 	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2615 	    zio_flags, arc_flags, zb);
2616 	rw_exit(&pbuf->b_lock);
2617 
2618 	return (err);
2619 }
2620 
2621 int
2622 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
2623     arc_done_func_t *done, void *private, int priority, int zio_flags,
2624     uint32_t *arc_flags, const zbookmark_t *zb)
2625 {
2626 	arc_buf_hdr_t *hdr;
2627 	arc_buf_t *buf;
2628 	kmutex_t *hash_lock;
2629 	zio_t *rzio;
2630 	uint64_t guid = spa_guid(spa);
2631 
2632 top:
2633 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2634 	    &hash_lock);
2635 	if (hdr && hdr->b_datacnt > 0) {
2636 
2637 		*arc_flags |= ARC_CACHED;
2638 
2639 		if (HDR_IO_IN_PROGRESS(hdr)) {
2640 
2641 			if (*arc_flags & ARC_WAIT) {
2642 				cv_wait(&hdr->b_cv, hash_lock);
2643 				mutex_exit(hash_lock);
2644 				goto top;
2645 			}
2646 			ASSERT(*arc_flags & ARC_NOWAIT);
2647 
2648 			if (done) {
2649 				arc_callback_t	*acb = NULL;
2650 
2651 				acb = kmem_zalloc(sizeof (arc_callback_t),
2652 				    KM_SLEEP);
2653 				acb->acb_done = done;
2654 				acb->acb_private = private;
2655 				if (pio != NULL)
2656 					acb->acb_zio_dummy = zio_null(pio,
2657 					    spa, NULL, NULL, NULL, zio_flags);
2658 
2659 				ASSERT(acb->acb_done != NULL);
2660 				acb->acb_next = hdr->b_acb;
2661 				hdr->b_acb = acb;
2662 				add_reference(hdr, hash_lock, private);
2663 				mutex_exit(hash_lock);
2664 				return (0);
2665 			}
2666 			mutex_exit(hash_lock);
2667 			return (0);
2668 		}
2669 
2670 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2671 
2672 		if (done) {
2673 			add_reference(hdr, hash_lock, private);
2674 			/*
2675 			 * If this block is already in use, create a new
2676 			 * copy of the data so that we will be guaranteed
2677 			 * that arc_release() will always succeed.
2678 			 */
2679 			buf = hdr->b_buf;
2680 			ASSERT(buf);
2681 			ASSERT(buf->b_data);
2682 			if (HDR_BUF_AVAILABLE(hdr)) {
2683 				ASSERT(buf->b_efunc == NULL);
2684 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2685 			} else {
2686 				buf = arc_buf_clone(buf);
2687 			}
2688 
2689 		} else if (*arc_flags & ARC_PREFETCH &&
2690 		    refcount_count(&hdr->b_refcnt) == 0) {
2691 			hdr->b_flags |= ARC_PREFETCH;
2692 		}
2693 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2694 		arc_access(hdr, hash_lock);
2695 		if (*arc_flags & ARC_L2CACHE)
2696 			hdr->b_flags |= ARC_L2CACHE;
2697 		mutex_exit(hash_lock);
2698 		ARCSTAT_BUMP(arcstat_hits);
2699 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2700 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2701 		    data, metadata, hits);
2702 
2703 		if (done)
2704 			done(NULL, buf, private);
2705 	} else {
2706 		uint64_t size = BP_GET_LSIZE(bp);
2707 		arc_callback_t	*acb;
2708 		vdev_t *vd = NULL;
2709 		uint64_t addr;
2710 		boolean_t devw = B_FALSE;
2711 
2712 		if (hdr == NULL) {
2713 			/* this block is not in the cache */
2714 			arc_buf_hdr_t	*exists;
2715 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2716 			buf = arc_buf_alloc(spa, size, private, type);
2717 			hdr = buf->b_hdr;
2718 			hdr->b_dva = *BP_IDENTITY(bp);
2719 			hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2720 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2721 			exists = buf_hash_insert(hdr, &hash_lock);
2722 			if (exists) {
2723 				/* somebody beat us to the hash insert */
2724 				mutex_exit(hash_lock);
2725 				bzero(&hdr->b_dva, sizeof (dva_t));
2726 				hdr->b_birth = 0;
2727 				hdr->b_cksum0 = 0;
2728 				(void) arc_buf_remove_ref(buf, private);
2729 				goto top; /* restart the IO request */
2730 			}
2731 			/* if this is a prefetch, we don't have a reference */
2732 			if (*arc_flags & ARC_PREFETCH) {
2733 				(void) remove_reference(hdr, hash_lock,
2734 				    private);
2735 				hdr->b_flags |= ARC_PREFETCH;
2736 			}
2737 			if (*arc_flags & ARC_L2CACHE)
2738 				hdr->b_flags |= ARC_L2CACHE;
2739 			if (BP_GET_LEVEL(bp) > 0)
2740 				hdr->b_flags |= ARC_INDIRECT;
2741 		} else {
2742 			/* this block is in the ghost cache */
2743 			ASSERT(GHOST_STATE(hdr->b_state));
2744 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2745 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2746 			ASSERT(hdr->b_buf == NULL);
2747 
2748 			/* if this is a prefetch, we don't have a reference */
2749 			if (*arc_flags & ARC_PREFETCH)
2750 				hdr->b_flags |= ARC_PREFETCH;
2751 			else
2752 				add_reference(hdr, hash_lock, private);
2753 			if (*arc_flags & ARC_L2CACHE)
2754 				hdr->b_flags |= ARC_L2CACHE;
2755 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2756 			buf->b_hdr = hdr;
2757 			buf->b_data = NULL;
2758 			buf->b_efunc = NULL;
2759 			buf->b_private = NULL;
2760 			buf->b_next = NULL;
2761 			hdr->b_buf = buf;
2762 			ASSERT(hdr->b_datacnt == 0);
2763 			hdr->b_datacnt = 1;
2764 			arc_access(hdr, hash_lock);
2765 			arc_get_data_buf(buf);
2766 		}
2767 
2768 		ASSERT(!GHOST_STATE(hdr->b_state));
2769 
2770 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2771 		acb->acb_done = done;
2772 		acb->acb_private = private;
2773 
2774 		ASSERT(hdr->b_acb == NULL);
2775 		hdr->b_acb = acb;
2776 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2777 
2778 		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2779 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2780 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2781 			addr = hdr->b_l2hdr->b_daddr;
2782 			/*
2783 			 * Lock out device removal.
2784 			 */
2785 			if (vdev_is_dead(vd) ||
2786 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2787 				vd = NULL;
2788 		}
2789 
2790 		mutex_exit(hash_lock);
2791 
2792 		ASSERT3U(hdr->b_size, ==, size);
2793 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2794 		    uint64_t, size, zbookmark_t *, zb);
2795 		ARCSTAT_BUMP(arcstat_misses);
2796 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2797 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2798 		    data, metadata, misses);
2799 
2800 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2801 			/*
2802 			 * Read from the L2ARC if the following are true:
2803 			 * 1. The L2ARC vdev was previously cached.
2804 			 * 2. This buffer still has L2ARC metadata.
2805 			 * 3. This buffer isn't currently writing to the L2ARC.
2806 			 * 4. The L2ARC entry wasn't evicted, which may
2807 			 *    also have invalidated the vdev.
2808 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
2809 			 */
2810 			if (hdr->b_l2hdr != NULL &&
2811 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2812 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2813 				l2arc_read_callback_t *cb;
2814 
2815 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2816 				ARCSTAT_BUMP(arcstat_l2_hits);
2817 
2818 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2819 				    KM_SLEEP);
2820 				cb->l2rcb_buf = buf;
2821 				cb->l2rcb_spa = spa;
2822 				cb->l2rcb_bp = *bp;
2823 				cb->l2rcb_zb = *zb;
2824 				cb->l2rcb_flags = zio_flags;
2825 
2826 				/*
2827 				 * l2arc read.  The SCL_L2ARC lock will be
2828 				 * released by l2arc_read_done().
2829 				 */
2830 				rzio = zio_read_phys(pio, vd, addr, size,
2831 				    buf->b_data, ZIO_CHECKSUM_OFF,
2832 				    l2arc_read_done, cb, priority, zio_flags |
2833 				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2834 				    ZIO_FLAG_DONT_PROPAGATE |
2835 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
2836 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2837 				    zio_t *, rzio);
2838 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
2839 
2840 				if (*arc_flags & ARC_NOWAIT) {
2841 					zio_nowait(rzio);
2842 					return (0);
2843 				}
2844 
2845 				ASSERT(*arc_flags & ARC_WAIT);
2846 				if (zio_wait(rzio) == 0)
2847 					return (0);
2848 
2849 				/* l2arc read error; goto zio_read() */
2850 			} else {
2851 				DTRACE_PROBE1(l2arc__miss,
2852 				    arc_buf_hdr_t *, hdr);
2853 				ARCSTAT_BUMP(arcstat_l2_misses);
2854 				if (HDR_L2_WRITING(hdr))
2855 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2856 				spa_config_exit(spa, SCL_L2ARC, vd);
2857 			}
2858 		} else {
2859 			if (vd != NULL)
2860 				spa_config_exit(spa, SCL_L2ARC, vd);
2861 			if (l2arc_ndev != 0) {
2862 				DTRACE_PROBE1(l2arc__miss,
2863 				    arc_buf_hdr_t *, hdr);
2864 				ARCSTAT_BUMP(arcstat_l2_misses);
2865 			}
2866 		}
2867 
2868 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2869 		    arc_read_done, buf, priority, zio_flags, zb);
2870 
2871 		if (*arc_flags & ARC_WAIT)
2872 			return (zio_wait(rzio));
2873 
2874 		ASSERT(*arc_flags & ARC_NOWAIT);
2875 		zio_nowait(rzio);
2876 	}
2877 	return (0);
2878 }
2879 
2880 void
2881 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2882 {
2883 	ASSERT(buf->b_hdr != NULL);
2884 	ASSERT(buf->b_hdr->b_state != arc_anon);
2885 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2886 	ASSERT(buf->b_efunc == NULL);
2887 	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
2888 
2889 	buf->b_efunc = func;
2890 	buf->b_private = private;
2891 }
2892 
2893 /*
2894  * This is used by the DMU to let the ARC know that a buffer is
2895  * being evicted, so the ARC should clean up.  If this arc buf
2896  * is not yet in the evicted state, it will be put there.
2897  */
2898 int
2899 arc_buf_evict(arc_buf_t *buf)
2900 {
2901 	arc_buf_hdr_t *hdr;
2902 	kmutex_t *hash_lock;
2903 	arc_buf_t **bufp;
2904 
2905 	rw_enter(&buf->b_lock, RW_WRITER);
2906 	hdr = buf->b_hdr;
2907 	if (hdr == NULL) {
2908 		/*
2909 		 * We are in arc_do_user_evicts().
2910 		 */
2911 		ASSERT(buf->b_data == NULL);
2912 		rw_exit(&buf->b_lock);
2913 		return (0);
2914 	} else if (buf->b_data == NULL) {
2915 		arc_buf_t copy = *buf; /* structure assignment */
2916 		/*
2917 		 * We are on the eviction list; process this buffer now
2918 		 * but let arc_do_user_evicts() do the reaping.
2919 		 */
2920 		buf->b_efunc = NULL;
2921 		rw_exit(&buf->b_lock);
2922 		VERIFY(copy.b_efunc(&copy) == 0);
2923 		return (1);
2924 	}
2925 	hash_lock = HDR_LOCK(hdr);
2926 	mutex_enter(hash_lock);
2927 
2928 	ASSERT(buf->b_hdr == hdr);
2929 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2930 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2931 
2932 	/*
2933 	 * Pull this buffer off of the hdr
2934 	 */
2935 	bufp = &hdr->b_buf;
2936 	while (*bufp != buf)
2937 		bufp = &(*bufp)->b_next;
2938 	*bufp = buf->b_next;
2939 
2940 	ASSERT(buf->b_data != NULL);
2941 	arc_buf_destroy(buf, FALSE, FALSE);
2942 
2943 	if (hdr->b_datacnt == 0) {
2944 		arc_state_t *old_state = hdr->b_state;
2945 		arc_state_t *evicted_state;
2946 
2947 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2948 
2949 		evicted_state =
2950 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2951 
2952 		mutex_enter(&old_state->arcs_mtx);
2953 		mutex_enter(&evicted_state->arcs_mtx);
2954 
2955 		arc_change_state(evicted_state, hdr, hash_lock);
2956 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2957 		hdr->b_flags |= ARC_IN_HASH_TABLE;
2958 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2959 
2960 		mutex_exit(&evicted_state->arcs_mtx);
2961 		mutex_exit(&old_state->arcs_mtx);
2962 	}
2963 	mutex_exit(hash_lock);
2964 	rw_exit(&buf->b_lock);
2965 
2966 	VERIFY(buf->b_efunc(buf) == 0);
2967 	buf->b_efunc = NULL;
2968 	buf->b_private = NULL;
2969 	buf->b_hdr = NULL;
2970 	kmem_cache_free(buf_cache, buf);
2971 	return (1);
2972 }
2973 
2974 /*
2975  * Release this buffer from the cache.  This must be done
2976  * after a read and prior to modifying the buffer contents.
2977  * If the buffer has more than one reference, we must make
2978  * a new hdr for the buffer.
2979  */
2980 void
2981 arc_release(arc_buf_t *buf, void *tag)
2982 {
2983 	arc_buf_hdr_t *hdr;
2984 	kmutex_t *hash_lock;
2985 	l2arc_buf_hdr_t *l2hdr;
2986 	uint64_t buf_size;
2987 	boolean_t released = B_FALSE;
2988 
2989 	rw_enter(&buf->b_lock, RW_WRITER);
2990 	hdr = buf->b_hdr;
2991 
2992 	/* this buffer is not on any list */
2993 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2994 
2995 	if (hdr->b_state == arc_anon) {
2996 		/* this buffer is already released */
2997 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2998 		ASSERT(BUF_EMPTY(hdr));
2999 		ASSERT(buf->b_efunc == NULL);
3000 		arc_buf_thaw(buf);
3001 		rw_exit(&buf->b_lock);
3002 		released = B_TRUE;
3003 	} else {
3004 		hash_lock = HDR_LOCK(hdr);
3005 		mutex_enter(hash_lock);
3006 	}
3007 
3008 	l2hdr = hdr->b_l2hdr;
3009 	if (l2hdr) {
3010 		mutex_enter(&l2arc_buflist_mtx);
3011 		hdr->b_l2hdr = NULL;
3012 		buf_size = hdr->b_size;
3013 	}
3014 
3015 	if (released)
3016 		goto out;
3017 
3018 	/*
3019 	 * Do we have more than one buf?
3020 	 */
3021 	if (hdr->b_datacnt > 1) {
3022 		arc_buf_hdr_t *nhdr;
3023 		arc_buf_t **bufp;
3024 		uint64_t blksz = hdr->b_size;
3025 		uint64_t spa = hdr->b_spa;
3026 		arc_buf_contents_t type = hdr->b_type;
3027 		uint32_t flags = hdr->b_flags;
3028 
3029 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3030 		/*
3031 		 * Pull the data off of this buf and attach it to
3032 		 * a new anonymous buf.
3033 		 */
3034 		(void) remove_reference(hdr, hash_lock, tag);
3035 		bufp = &hdr->b_buf;
3036 		while (*bufp != buf)
3037 			bufp = &(*bufp)->b_next;
3038 		*bufp = (*bufp)->b_next;
3039 		buf->b_next = NULL;
3040 
3041 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3042 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3043 		if (refcount_is_zero(&hdr->b_refcnt)) {
3044 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3045 			ASSERT3U(*size, >=, hdr->b_size);
3046 			atomic_add_64(size, -hdr->b_size);
3047 		}
3048 		hdr->b_datacnt -= 1;
3049 		arc_cksum_verify(buf);
3050 
3051 		mutex_exit(hash_lock);
3052 
3053 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3054 		nhdr->b_size = blksz;
3055 		nhdr->b_spa = spa;
3056 		nhdr->b_type = type;
3057 		nhdr->b_buf = buf;
3058 		nhdr->b_state = arc_anon;
3059 		nhdr->b_arc_access = 0;
3060 		nhdr->b_flags = flags & ARC_L2_WRITING;
3061 		nhdr->b_l2hdr = NULL;
3062 		nhdr->b_datacnt = 1;
3063 		nhdr->b_freeze_cksum = NULL;
3064 		(void) refcount_add(&nhdr->b_refcnt, tag);
3065 		buf->b_hdr = nhdr;
3066 		rw_exit(&buf->b_lock);
3067 		atomic_add_64(&arc_anon->arcs_size, blksz);
3068 	} else {
3069 		rw_exit(&buf->b_lock);
3070 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3071 		ASSERT(!list_link_active(&hdr->b_arc_node));
3072 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3073 		arc_change_state(arc_anon, hdr, hash_lock);
3074 		hdr->b_arc_access = 0;
3075 		mutex_exit(hash_lock);
3076 
3077 		bzero(&hdr->b_dva, sizeof (dva_t));
3078 		hdr->b_birth = 0;
3079 		hdr->b_cksum0 = 0;
3080 		arc_buf_thaw(buf);
3081 	}
3082 	buf->b_efunc = NULL;
3083 	buf->b_private = NULL;
3084 
3085 out:
3086 	if (l2hdr) {
3087 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3088 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3089 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3090 		mutex_exit(&l2arc_buflist_mtx);
3091 	}
3092 }
3093 
3094 int
3095 arc_released(arc_buf_t *buf)
3096 {
3097 	int released;
3098 
3099 	rw_enter(&buf->b_lock, RW_READER);
3100 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3101 	rw_exit(&buf->b_lock);
3102 	return (released);
3103 }
3104 
3105 int
3106 arc_has_callback(arc_buf_t *buf)
3107 {
3108 	int callback;
3109 
3110 	rw_enter(&buf->b_lock, RW_READER);
3111 	callback = (buf->b_efunc != NULL);
3112 	rw_exit(&buf->b_lock);
3113 	return (callback);
3114 }
3115 
3116 #ifdef ZFS_DEBUG
3117 int
3118 arc_referenced(arc_buf_t *buf)
3119 {
3120 	int referenced;
3121 
3122 	rw_enter(&buf->b_lock, RW_READER);
3123 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3124 	rw_exit(&buf->b_lock);
3125 	return (referenced);
3126 }
3127 #endif
3128 
3129 static void
3130 arc_write_ready(zio_t *zio)
3131 {
3132 	arc_write_callback_t *callback = zio->io_private;
3133 	arc_buf_t *buf = callback->awcb_buf;
3134 	arc_buf_hdr_t *hdr = buf->b_hdr;
3135 
3136 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3137 	callback->awcb_ready(zio, buf, callback->awcb_private);
3138 
3139 	/*
3140 	 * If the IO is already in progress, then this is a re-write
3141 	 * attempt, so we need to thaw and re-compute the cksum.
3142 	 * It is the responsibility of the callback to handle the
3143 	 * accounting for any re-write attempt.
3144 	 */
3145 	if (HDR_IO_IN_PROGRESS(hdr)) {
3146 		mutex_enter(&hdr->b_freeze_lock);
3147 		if (hdr->b_freeze_cksum != NULL) {
3148 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3149 			hdr->b_freeze_cksum = NULL;
3150 		}
3151 		mutex_exit(&hdr->b_freeze_lock);
3152 	}
3153 	arc_cksum_compute(buf, B_FALSE);
3154 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3155 }
3156 
3157 static void
3158 arc_write_done(zio_t *zio)
3159 {
3160 	arc_write_callback_t *callback = zio->io_private;
3161 	arc_buf_t *buf = callback->awcb_buf;
3162 	arc_buf_hdr_t *hdr = buf->b_hdr;
3163 
3164 	ASSERT(hdr->b_acb == NULL);
3165 
3166 	if (zio->io_error == 0) {
3167 		hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3168 		hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3169 		hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3170 	} else {
3171 		ASSERT(BUF_EMPTY(hdr));
3172 	}
3173 
3174 	/*
3175 	 * If the block to be written was all-zero, we may have
3176 	 * compressed it away.  In this case no write was performed
3177 	 * so there will be no dva/birth-date/checksum.  The buffer
3178 	 * must therefor remain anonymous (and uncached).
3179 	 */
3180 	if (!BUF_EMPTY(hdr)) {
3181 		arc_buf_hdr_t *exists;
3182 		kmutex_t *hash_lock;
3183 
3184 		ASSERT(zio->io_error == 0);
3185 
3186 		arc_cksum_verify(buf);
3187 
3188 		exists = buf_hash_insert(hdr, &hash_lock);
3189 		if (exists) {
3190 			/*
3191 			 * This can only happen if we overwrite for
3192 			 * sync-to-convergence, because we remove
3193 			 * buffers from the hash table when we arc_free().
3194 			 */
3195 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3196 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3197 					panic("bad overwrite, hdr=%p exists=%p",
3198 					    (void *)hdr, (void *)exists);
3199 				ASSERT(refcount_is_zero(&exists->b_refcnt));
3200 				arc_change_state(arc_anon, exists, hash_lock);
3201 				mutex_exit(hash_lock);
3202 				arc_hdr_destroy(exists);
3203 				exists = buf_hash_insert(hdr, &hash_lock);
3204 				ASSERT3P(exists, ==, NULL);
3205 			} else {
3206 				/* Dedup */
3207 				ASSERT(hdr->b_datacnt == 1);
3208 				ASSERT(hdr->b_state == arc_anon);
3209 				ASSERT(BP_GET_DEDUP(zio->io_bp));
3210 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3211 			}
3212 		}
3213 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3214 		/* if it's not anon, we are doing a scrub */
3215 		if (!exists && hdr->b_state == arc_anon)
3216 			arc_access(hdr, hash_lock);
3217 		mutex_exit(hash_lock);
3218 	} else {
3219 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3220 	}
3221 
3222 	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3223 	callback->awcb_done(zio, buf, callback->awcb_private);
3224 
3225 	kmem_free(callback, sizeof (arc_write_callback_t));
3226 }
3227 
3228 zio_t *
3229 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3230     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3231     arc_done_func_t *ready, arc_done_func_t *done, void *private,
3232     int priority, int zio_flags, const zbookmark_t *zb)
3233 {
3234 	arc_buf_hdr_t *hdr = buf->b_hdr;
3235 	arc_write_callback_t *callback;
3236 	zio_t *zio;
3237 
3238 	ASSERT(ready != NULL);
3239 	ASSERT(done != NULL);
3240 	ASSERT(!HDR_IO_ERROR(hdr));
3241 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3242 	ASSERT(hdr->b_acb == NULL);
3243 	if (l2arc)
3244 		hdr->b_flags |= ARC_L2CACHE;
3245 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3246 	callback->awcb_ready = ready;
3247 	callback->awcb_done = done;
3248 	callback->awcb_private = private;
3249 	callback->awcb_buf = buf;
3250 
3251 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3252 	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3253 
3254 	return (zio);
3255 }
3256 
3257 void
3258 arc_free(spa_t *spa, const blkptr_t *bp)
3259 {
3260 	arc_buf_hdr_t *ab;
3261 	kmutex_t *hash_lock;
3262 	uint64_t guid = spa_guid(spa);
3263 
3264 	/*
3265 	 * If this buffer is in the cache, release it, so it can be re-used.
3266 	 */
3267 	ab = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3268 	    &hash_lock);
3269 	if (ab != NULL) {
3270 		if (ab->b_state != arc_anon)
3271 			arc_change_state(arc_anon, ab, hash_lock);
3272 		if (HDR_IO_IN_PROGRESS(ab)) {
3273 			/*
3274 			 * This should only happen when we prefetch.
3275 			 */
3276 			ASSERT(ab->b_flags & ARC_PREFETCH);
3277 			ASSERT3U(ab->b_datacnt, ==, 1);
3278 			ab->b_flags |= ARC_FREED_IN_READ;
3279 			if (HDR_IN_HASH_TABLE(ab))
3280 				buf_hash_remove(ab);
3281 			ab->b_arc_access = 0;
3282 			bzero(&ab->b_dva, sizeof (dva_t));
3283 			ab->b_birth = 0;
3284 			ab->b_cksum0 = 0;
3285 			ab->b_buf->b_efunc = NULL;
3286 			ab->b_buf->b_private = NULL;
3287 			mutex_exit(hash_lock);
3288 		} else {
3289 			ASSERT(refcount_is_zero(&ab->b_refcnt));
3290 			ab->b_flags |= ARC_FREE_IN_PROGRESS;
3291 			mutex_exit(hash_lock);
3292 			arc_hdr_destroy(ab);
3293 			ARCSTAT_BUMP(arcstat_deleted);
3294 		}
3295 	}
3296 }
3297 
3298 static int
3299 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3300 {
3301 #ifdef _KERNEL
3302 	uint64_t available_memory = ptob(freemem);
3303 	static uint64_t page_load = 0;
3304 	static uint64_t last_txg = 0;
3305 
3306 #if defined(__i386)
3307 	available_memory =
3308 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3309 #endif
3310 	if (available_memory >= zfs_write_limit_max)
3311 		return (0);
3312 
3313 	if (txg > last_txg) {
3314 		last_txg = txg;
3315 		page_load = 0;
3316 	}
3317 	/*
3318 	 * If we are in pageout, we know that memory is already tight,
3319 	 * the arc is already going to be evicting, so we just want to
3320 	 * continue to let page writes occur as quickly as possible.
3321 	 */
3322 	if (curproc == proc_pageout) {
3323 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3324 			return (ERESTART);
3325 		/* Note: reserve is inflated, so we deflate */
3326 		page_load += reserve / 8;
3327 		return (0);
3328 	} else if (page_load > 0 && arc_reclaim_needed()) {
3329 		/* memory is low, delay before restarting */
3330 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3331 		return (EAGAIN);
3332 	}
3333 	page_load = 0;
3334 
3335 	if (arc_size > arc_c_min) {
3336 		uint64_t evictable_memory =
3337 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3338 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3339 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3340 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3341 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3342 	}
3343 
3344 	if (inflight_data > available_memory / 4) {
3345 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3346 		return (ERESTART);
3347 	}
3348 #endif
3349 	return (0);
3350 }
3351 
3352 void
3353 arc_tempreserve_clear(uint64_t reserve)
3354 {
3355 	atomic_add_64(&arc_tempreserve, -reserve);
3356 	ASSERT((int64_t)arc_tempreserve >= 0);
3357 }
3358 
3359 int
3360 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3361 {
3362 	int error;
3363 	uint64_t anon_size;
3364 
3365 #ifdef ZFS_DEBUG
3366 	/*
3367 	 * Once in a while, fail for no reason.  Everything should cope.
3368 	 */
3369 	if (spa_get_random(10000) == 0) {
3370 		dprintf("forcing random failure\n");
3371 		return (ERESTART);
3372 	}
3373 #endif
3374 	if (reserve > arc_c/4 && !arc_no_grow)
3375 		arc_c = MIN(arc_c_max, reserve * 4);
3376 	if (reserve > arc_c)
3377 		return (ENOMEM);
3378 
3379 	/*
3380 	 * Don't count loaned bufs as in flight dirty data to prevent long
3381 	 * network delays from blocking transactions that are ready to be
3382 	 * assigned to a txg.
3383 	 */
3384 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3385 
3386 	/*
3387 	 * Writes will, almost always, require additional memory allocations
3388 	 * in order to compress/encrypt/etc the data.  We therefor need to
3389 	 * make sure that there is sufficient available memory for this.
3390 	 */
3391 	if (error = arc_memory_throttle(reserve, anon_size, txg))
3392 		return (error);
3393 
3394 	/*
3395 	 * Throttle writes when the amount of dirty data in the cache
3396 	 * gets too large.  We try to keep the cache less than half full
3397 	 * of dirty blocks so that our sync times don't grow too large.
3398 	 * Note: if two requests come in concurrently, we might let them
3399 	 * both succeed, when one of them should fail.  Not a huge deal.
3400 	 */
3401 
3402 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3403 	    anon_size > arc_c / 4) {
3404 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3405 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3406 		    arc_tempreserve>>10,
3407 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3408 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3409 		    reserve>>10, arc_c>>10);
3410 		return (ERESTART);
3411 	}
3412 	atomic_add_64(&arc_tempreserve, reserve);
3413 	return (0);
3414 }
3415 
3416 void
3417 arc_init(void)
3418 {
3419 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3420 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3421 
3422 	/* Convert seconds to clock ticks */
3423 	arc_min_prefetch_lifespan = 1 * hz;
3424 
3425 	/* Start out with 1/8 of all memory */
3426 	arc_c = physmem * PAGESIZE / 8;
3427 
3428 #ifdef _KERNEL
3429 	/*
3430 	 * On architectures where the physical memory can be larger
3431 	 * than the addressable space (intel in 32-bit mode), we may
3432 	 * need to limit the cache to 1/8 of VM size.
3433 	 */
3434 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3435 #endif
3436 
3437 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3438 	arc_c_min = MAX(arc_c / 4, 64<<20);
3439 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3440 	if (arc_c * 8 >= 1<<30)
3441 		arc_c_max = (arc_c * 8) - (1<<30);
3442 	else
3443 		arc_c_max = arc_c_min;
3444 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3445 
3446 	/*
3447 	 * Allow the tunables to override our calculations if they are
3448 	 * reasonable (ie. over 64MB)
3449 	 */
3450 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3451 		arc_c_max = zfs_arc_max;
3452 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3453 		arc_c_min = zfs_arc_min;
3454 
3455 	arc_c = arc_c_max;
3456 	arc_p = (arc_c >> 1);
3457 
3458 	/* limit meta-data to 1/4 of the arc capacity */
3459 	arc_meta_limit = arc_c_max / 4;
3460 
3461 	/* Allow the tunable to override if it is reasonable */
3462 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3463 		arc_meta_limit = zfs_arc_meta_limit;
3464 
3465 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3466 		arc_c_min = arc_meta_limit / 2;
3467 
3468 	if (zfs_arc_grow_retry > 0)
3469 		arc_grow_retry = zfs_arc_grow_retry;
3470 
3471 	if (zfs_arc_shrink_shift > 0)
3472 		arc_shrink_shift = zfs_arc_shrink_shift;
3473 
3474 	if (zfs_arc_p_min_shift > 0)
3475 		arc_p_min_shift = zfs_arc_p_min_shift;
3476 
3477 	/* if kmem_flags are set, lets try to use less memory */
3478 	if (kmem_debugging())
3479 		arc_c = arc_c / 2;
3480 	if (arc_c < arc_c_min)
3481 		arc_c = arc_c_min;
3482 
3483 	arc_anon = &ARC_anon;
3484 	arc_mru = &ARC_mru;
3485 	arc_mru_ghost = &ARC_mru_ghost;
3486 	arc_mfu = &ARC_mfu;
3487 	arc_mfu_ghost = &ARC_mfu_ghost;
3488 	arc_l2c_only = &ARC_l2c_only;
3489 	arc_size = 0;
3490 
3491 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3492 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3493 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3494 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3495 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3496 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3497 
3498 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3499 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3500 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3501 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3502 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3503 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3504 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3505 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3506 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3507 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3508 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3509 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3510 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3511 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3512 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3513 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3514 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3515 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3516 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3517 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3518 
3519 	buf_init();
3520 
3521 	arc_thread_exit = 0;
3522 	arc_eviction_list = NULL;
3523 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3524 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3525 
3526 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3527 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3528 
3529 	if (arc_ksp != NULL) {
3530 		arc_ksp->ks_data = &arc_stats;
3531 		kstat_install(arc_ksp);
3532 	}
3533 
3534 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3535 	    TS_RUN, minclsyspri);
3536 
3537 	arc_dead = FALSE;
3538 	arc_warm = B_FALSE;
3539 
3540 	if (zfs_write_limit_max == 0)
3541 		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3542 	else
3543 		zfs_write_limit_shift = 0;
3544 	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3545 }
3546 
3547 void
3548 arc_fini(void)
3549 {
3550 	mutex_enter(&arc_reclaim_thr_lock);
3551 	arc_thread_exit = 1;
3552 	while (arc_thread_exit != 0)
3553 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3554 	mutex_exit(&arc_reclaim_thr_lock);
3555 
3556 	arc_flush(NULL);
3557 
3558 	arc_dead = TRUE;
3559 
3560 	if (arc_ksp != NULL) {
3561 		kstat_delete(arc_ksp);
3562 		arc_ksp = NULL;
3563 	}
3564 
3565 	mutex_destroy(&arc_eviction_mtx);
3566 	mutex_destroy(&arc_reclaim_thr_lock);
3567 	cv_destroy(&arc_reclaim_thr_cv);
3568 
3569 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3570 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3571 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3572 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3573 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3574 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3575 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3576 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3577 
3578 	mutex_destroy(&arc_anon->arcs_mtx);
3579 	mutex_destroy(&arc_mru->arcs_mtx);
3580 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3581 	mutex_destroy(&arc_mfu->arcs_mtx);
3582 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3583 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3584 
3585 	mutex_destroy(&zfs_write_limit_lock);
3586 
3587 	buf_fini();
3588 
3589 	ASSERT(arc_loaned_bytes == 0);
3590 }
3591 
3592 /*
3593  * Level 2 ARC
3594  *
3595  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3596  * It uses dedicated storage devices to hold cached data, which are populated
3597  * using large infrequent writes.  The main role of this cache is to boost
3598  * the performance of random read workloads.  The intended L2ARC devices
3599  * include short-stroked disks, solid state disks, and other media with
3600  * substantially faster read latency than disk.
3601  *
3602  *                 +-----------------------+
3603  *                 |         ARC           |
3604  *                 +-----------------------+
3605  *                    |         ^     ^
3606  *                    |         |     |
3607  *      l2arc_feed_thread()    arc_read()
3608  *                    |         |     |
3609  *                    |  l2arc read   |
3610  *                    V         |     |
3611  *               +---------------+    |
3612  *               |     L2ARC     |    |
3613  *               +---------------+    |
3614  *                   |    ^           |
3615  *          l2arc_write() |           |
3616  *                   |    |           |
3617  *                   V    |           |
3618  *                 +-------+      +-------+
3619  *                 | vdev  |      | vdev  |
3620  *                 | cache |      | cache |
3621  *                 +-------+      +-------+
3622  *                 +=========+     .-----.
3623  *                 :  L2ARC  :    |-_____-|
3624  *                 : devices :    | Disks |
3625  *                 +=========+    `-_____-'
3626  *
3627  * Read requests are satisfied from the following sources, in order:
3628  *
3629  *	1) ARC
3630  *	2) vdev cache of L2ARC devices
3631  *	3) L2ARC devices
3632  *	4) vdev cache of disks
3633  *	5) disks
3634  *
3635  * Some L2ARC device types exhibit extremely slow write performance.
3636  * To accommodate for this there are some significant differences between
3637  * the L2ARC and traditional cache design:
3638  *
3639  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3640  * the ARC behave as usual, freeing buffers and placing headers on ghost
3641  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3642  * this would add inflated write latencies for all ARC memory pressure.
3643  *
3644  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3645  * It does this by periodically scanning buffers from the eviction-end of
3646  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3647  * not already there.  It scans until a headroom of buffers is satisfied,
3648  * which itself is a buffer for ARC eviction.  The thread that does this is
3649  * l2arc_feed_thread(), illustrated below; example sizes are included to
3650  * provide a better sense of ratio than this diagram:
3651  *
3652  *	       head -->                        tail
3653  *	        +---------------------+----------+
3654  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3655  *	        +---------------------+----------+   |   o L2ARC eligible
3656  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3657  *	        +---------------------+----------+   |
3658  *	             15.9 Gbytes      ^ 32 Mbytes    |
3659  *	                           headroom          |
3660  *	                                      l2arc_feed_thread()
3661  *	                                             |
3662  *	                 l2arc write hand <--[oooo]--'
3663  *	                         |           8 Mbyte
3664  *	                         |          write max
3665  *	                         V
3666  *		  +==============================+
3667  *	L2ARC dev |####|#|###|###|    |####| ... |
3668  *	          +==============================+
3669  *	                     32 Gbytes
3670  *
3671  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3672  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3673  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3674  * safe to say that this is an uncommon case, since buffers at the end of
3675  * the ARC lists have moved there due to inactivity.
3676  *
3677  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3678  * then the L2ARC simply misses copying some buffers.  This serves as a
3679  * pressure valve to prevent heavy read workloads from both stalling the ARC
3680  * with waits and clogging the L2ARC with writes.  This also helps prevent
3681  * the potential for the L2ARC to churn if it attempts to cache content too
3682  * quickly, such as during backups of the entire pool.
3683  *
3684  * 5. After system boot and before the ARC has filled main memory, there are
3685  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3686  * lists can remain mostly static.  Instead of searching from tail of these
3687  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3688  * for eligible buffers, greatly increasing its chance of finding them.
3689  *
3690  * The L2ARC device write speed is also boosted during this time so that
3691  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3692  * there are no L2ARC reads, and no fear of degrading read performance
3693  * through increased writes.
3694  *
3695  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3696  * the vdev queue can aggregate them into larger and fewer writes.  Each
3697  * device is written to in a rotor fashion, sweeping writes through
3698  * available space then repeating.
3699  *
3700  * 7. The L2ARC does not store dirty content.  It never needs to flush
3701  * write buffers back to disk based storage.
3702  *
3703  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3704  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3705  *
3706  * The performance of the L2ARC can be tweaked by a number of tunables, which
3707  * may be necessary for different workloads:
3708  *
3709  *	l2arc_write_max		max write bytes per interval
3710  *	l2arc_write_boost	extra write bytes during device warmup
3711  *	l2arc_noprefetch	skip caching prefetched buffers
3712  *	l2arc_headroom		number of max device writes to precache
3713  *	l2arc_feed_secs		seconds between L2ARC writing
3714  *
3715  * Tunables may be removed or added as future performance improvements are
3716  * integrated, and also may become zpool properties.
3717  *
3718  * There are three key functions that control how the L2ARC warms up:
3719  *
3720  *	l2arc_write_eligible()	check if a buffer is eligible to cache
3721  *	l2arc_write_size()	calculate how much to write
3722  *	l2arc_write_interval()	calculate sleep delay between writes
3723  *
3724  * These three functions determine what to write, how much, and how quickly
3725  * to send writes.
3726  */
3727 
3728 static boolean_t
3729 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3730 {
3731 	/*
3732 	 * A buffer is *not* eligible for the L2ARC if it:
3733 	 * 1. belongs to a different spa.
3734 	 * 2. is already cached on the L2ARC.
3735 	 * 3. has an I/O in progress (it may be an incomplete read).
3736 	 * 4. is flagged not eligible (zfs property).
3737 	 */
3738 	if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
3739 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3740 		return (B_FALSE);
3741 
3742 	return (B_TRUE);
3743 }
3744 
3745 static uint64_t
3746 l2arc_write_size(l2arc_dev_t *dev)
3747 {
3748 	uint64_t size;
3749 
3750 	size = dev->l2ad_write;
3751 
3752 	if (arc_warm == B_FALSE)
3753 		size += dev->l2ad_boost;
3754 
3755 	return (size);
3756 
3757 }
3758 
3759 static clock_t
3760 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3761 {
3762 	clock_t interval, next, now;
3763 
3764 	/*
3765 	 * If the ARC lists are busy, increase our write rate; if the
3766 	 * lists are stale, idle back.  This is achieved by checking
3767 	 * how much we previously wrote - if it was more than half of
3768 	 * what we wanted, schedule the next write much sooner.
3769 	 */
3770 	if (l2arc_feed_again && wrote > (wanted / 2))
3771 		interval = (hz * l2arc_feed_min_ms) / 1000;
3772 	else
3773 		interval = hz * l2arc_feed_secs;
3774 
3775 	now = ddi_get_lbolt();
3776 	next = MAX(now, MIN(now + interval, began + interval));
3777 
3778 	return (next);
3779 }
3780 
3781 static void
3782 l2arc_hdr_stat_add(void)
3783 {
3784 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3785 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3786 }
3787 
3788 static void
3789 l2arc_hdr_stat_remove(void)
3790 {
3791 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3792 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3793 }
3794 
3795 /*
3796  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3797  * If a device is returned, this also returns holding the spa config lock.
3798  */
3799 static l2arc_dev_t *
3800 l2arc_dev_get_next(void)
3801 {
3802 	l2arc_dev_t *first, *next = NULL;
3803 
3804 	/*
3805 	 * Lock out the removal of spas (spa_namespace_lock), then removal
3806 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
3807 	 * both locks will be dropped and a spa config lock held instead.
3808 	 */
3809 	mutex_enter(&spa_namespace_lock);
3810 	mutex_enter(&l2arc_dev_mtx);
3811 
3812 	/* if there are no vdevs, there is nothing to do */
3813 	if (l2arc_ndev == 0)
3814 		goto out;
3815 
3816 	first = NULL;
3817 	next = l2arc_dev_last;
3818 	do {
3819 		/* loop around the list looking for a non-faulted vdev */
3820 		if (next == NULL) {
3821 			next = list_head(l2arc_dev_list);
3822 		} else {
3823 			next = list_next(l2arc_dev_list, next);
3824 			if (next == NULL)
3825 				next = list_head(l2arc_dev_list);
3826 		}
3827 
3828 		/* if we have come back to the start, bail out */
3829 		if (first == NULL)
3830 			first = next;
3831 		else if (next == first)
3832 			break;
3833 
3834 	} while (vdev_is_dead(next->l2ad_vdev));
3835 
3836 	/* if we were unable to find any usable vdevs, return NULL */
3837 	if (vdev_is_dead(next->l2ad_vdev))
3838 		next = NULL;
3839 
3840 	l2arc_dev_last = next;
3841 
3842 out:
3843 	mutex_exit(&l2arc_dev_mtx);
3844 
3845 	/*
3846 	 * Grab the config lock to prevent the 'next' device from being
3847 	 * removed while we are writing to it.
3848 	 */
3849 	if (next != NULL)
3850 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3851 	mutex_exit(&spa_namespace_lock);
3852 
3853 	return (next);
3854 }
3855 
3856 /*
3857  * Free buffers that were tagged for destruction.
3858  */
3859 static void
3860 l2arc_do_free_on_write()
3861 {
3862 	list_t *buflist;
3863 	l2arc_data_free_t *df, *df_prev;
3864 
3865 	mutex_enter(&l2arc_free_on_write_mtx);
3866 	buflist = l2arc_free_on_write;
3867 
3868 	for (df = list_tail(buflist); df; df = df_prev) {
3869 		df_prev = list_prev(buflist, df);
3870 		ASSERT(df->l2df_data != NULL);
3871 		ASSERT(df->l2df_func != NULL);
3872 		df->l2df_func(df->l2df_data, df->l2df_size);
3873 		list_remove(buflist, df);
3874 		kmem_free(df, sizeof (l2arc_data_free_t));
3875 	}
3876 
3877 	mutex_exit(&l2arc_free_on_write_mtx);
3878 }
3879 
3880 /*
3881  * A write to a cache device has completed.  Update all headers to allow
3882  * reads from these buffers to begin.
3883  */
3884 static void
3885 l2arc_write_done(zio_t *zio)
3886 {
3887 	l2arc_write_callback_t *cb;
3888 	l2arc_dev_t *dev;
3889 	list_t *buflist;
3890 	arc_buf_hdr_t *head, *ab, *ab_prev;
3891 	l2arc_buf_hdr_t *abl2;
3892 	kmutex_t *hash_lock;
3893 
3894 	cb = zio->io_private;
3895 	ASSERT(cb != NULL);
3896 	dev = cb->l2wcb_dev;
3897 	ASSERT(dev != NULL);
3898 	head = cb->l2wcb_head;
3899 	ASSERT(head != NULL);
3900 	buflist = dev->l2ad_buflist;
3901 	ASSERT(buflist != NULL);
3902 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3903 	    l2arc_write_callback_t *, cb);
3904 
3905 	if (zio->io_error != 0)
3906 		ARCSTAT_BUMP(arcstat_l2_writes_error);
3907 
3908 	mutex_enter(&l2arc_buflist_mtx);
3909 
3910 	/*
3911 	 * All writes completed, or an error was hit.
3912 	 */
3913 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3914 		ab_prev = list_prev(buflist, ab);
3915 
3916 		hash_lock = HDR_LOCK(ab);
3917 		if (!mutex_tryenter(hash_lock)) {
3918 			/*
3919 			 * This buffer misses out.  It may be in a stage
3920 			 * of eviction.  Its ARC_L2_WRITING flag will be
3921 			 * left set, denying reads to this buffer.
3922 			 */
3923 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3924 			continue;
3925 		}
3926 
3927 		if (zio->io_error != 0) {
3928 			/*
3929 			 * Error - drop L2ARC entry.
3930 			 */
3931 			list_remove(buflist, ab);
3932 			abl2 = ab->b_l2hdr;
3933 			ab->b_l2hdr = NULL;
3934 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3935 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3936 		}
3937 
3938 		/*
3939 		 * Allow ARC to begin reads to this L2ARC entry.
3940 		 */
3941 		ab->b_flags &= ~ARC_L2_WRITING;
3942 
3943 		mutex_exit(hash_lock);
3944 	}
3945 
3946 	atomic_inc_64(&l2arc_writes_done);
3947 	list_remove(buflist, head);
3948 	kmem_cache_free(hdr_cache, head);
3949 	mutex_exit(&l2arc_buflist_mtx);
3950 
3951 	l2arc_do_free_on_write();
3952 
3953 	kmem_free(cb, sizeof (l2arc_write_callback_t));
3954 }
3955 
3956 /*
3957  * A read to a cache device completed.  Validate buffer contents before
3958  * handing over to the regular ARC routines.
3959  */
3960 static void
3961 l2arc_read_done(zio_t *zio)
3962 {
3963 	l2arc_read_callback_t *cb;
3964 	arc_buf_hdr_t *hdr;
3965 	arc_buf_t *buf;
3966 	kmutex_t *hash_lock;
3967 	int equal;
3968 
3969 	ASSERT(zio->io_vd != NULL);
3970 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
3971 
3972 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
3973 
3974 	cb = zio->io_private;
3975 	ASSERT(cb != NULL);
3976 	buf = cb->l2rcb_buf;
3977 	ASSERT(buf != NULL);
3978 	hdr = buf->b_hdr;
3979 	ASSERT(hdr != NULL);
3980 
3981 	hash_lock = HDR_LOCK(hdr);
3982 	mutex_enter(hash_lock);
3983 
3984 	/*
3985 	 * Check this survived the L2ARC journey.
3986 	 */
3987 	equal = arc_cksum_equal(buf);
3988 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
3989 		mutex_exit(hash_lock);
3990 		zio->io_private = buf;
3991 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
3992 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
3993 		arc_read_done(zio);
3994 	} else {
3995 		mutex_exit(hash_lock);
3996 		/*
3997 		 * Buffer didn't survive caching.  Increment stats and
3998 		 * reissue to the original storage device.
3999 		 */
4000 		if (zio->io_error != 0) {
4001 			ARCSTAT_BUMP(arcstat_l2_io_error);
4002 		} else {
4003 			zio->io_error = EIO;
4004 		}
4005 		if (!equal)
4006 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4007 
4008 		/*
4009 		 * If there's no waiter, issue an async i/o to the primary
4010 		 * storage now.  If there *is* a waiter, the caller must
4011 		 * issue the i/o in a context where it's OK to block.
4012 		 */
4013 		if (zio->io_waiter == NULL) {
4014 			zio_t *pio = zio_unique_parent(zio);
4015 
4016 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4017 
4018 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4019 			    buf->b_data, zio->io_size, arc_read_done, buf,
4020 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4021 		}
4022 	}
4023 
4024 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4025 }
4026 
4027 /*
4028  * This is the list priority from which the L2ARC will search for pages to
4029  * cache.  This is used within loops (0..3) to cycle through lists in the
4030  * desired order.  This order can have a significant effect on cache
4031  * performance.
4032  *
4033  * Currently the metadata lists are hit first, MFU then MRU, followed by
4034  * the data lists.  This function returns a locked list, and also returns
4035  * the lock pointer.
4036  */
4037 static list_t *
4038 l2arc_list_locked(int list_num, kmutex_t **lock)
4039 {
4040 	list_t *list;
4041 
4042 	ASSERT(list_num >= 0 && list_num <= 3);
4043 
4044 	switch (list_num) {
4045 	case 0:
4046 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4047 		*lock = &arc_mfu->arcs_mtx;
4048 		break;
4049 	case 1:
4050 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4051 		*lock = &arc_mru->arcs_mtx;
4052 		break;
4053 	case 2:
4054 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4055 		*lock = &arc_mfu->arcs_mtx;
4056 		break;
4057 	case 3:
4058 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4059 		*lock = &arc_mru->arcs_mtx;
4060 		break;
4061 	}
4062 
4063 	ASSERT(!(MUTEX_HELD(*lock)));
4064 	mutex_enter(*lock);
4065 	return (list);
4066 }
4067 
4068 /*
4069  * Evict buffers from the device write hand to the distance specified in
4070  * bytes.  This distance may span populated buffers, it may span nothing.
4071  * This is clearing a region on the L2ARC device ready for writing.
4072  * If the 'all' boolean is set, every buffer is evicted.
4073  */
4074 static void
4075 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4076 {
4077 	list_t *buflist;
4078 	l2arc_buf_hdr_t *abl2;
4079 	arc_buf_hdr_t *ab, *ab_prev;
4080 	kmutex_t *hash_lock;
4081 	uint64_t taddr;
4082 
4083 	buflist = dev->l2ad_buflist;
4084 
4085 	if (buflist == NULL)
4086 		return;
4087 
4088 	if (!all && dev->l2ad_first) {
4089 		/*
4090 		 * This is the first sweep through the device.  There is
4091 		 * nothing to evict.
4092 		 */
4093 		return;
4094 	}
4095 
4096 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4097 		/*
4098 		 * When nearing the end of the device, evict to the end
4099 		 * before the device write hand jumps to the start.
4100 		 */
4101 		taddr = dev->l2ad_end;
4102 	} else {
4103 		taddr = dev->l2ad_hand + distance;
4104 	}
4105 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4106 	    uint64_t, taddr, boolean_t, all);
4107 
4108 top:
4109 	mutex_enter(&l2arc_buflist_mtx);
4110 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4111 		ab_prev = list_prev(buflist, ab);
4112 
4113 		hash_lock = HDR_LOCK(ab);
4114 		if (!mutex_tryenter(hash_lock)) {
4115 			/*
4116 			 * Missed the hash lock.  Retry.
4117 			 */
4118 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4119 			mutex_exit(&l2arc_buflist_mtx);
4120 			mutex_enter(hash_lock);
4121 			mutex_exit(hash_lock);
4122 			goto top;
4123 		}
4124 
4125 		if (HDR_L2_WRITE_HEAD(ab)) {
4126 			/*
4127 			 * We hit a write head node.  Leave it for
4128 			 * l2arc_write_done().
4129 			 */
4130 			list_remove(buflist, ab);
4131 			mutex_exit(hash_lock);
4132 			continue;
4133 		}
4134 
4135 		if (!all && ab->b_l2hdr != NULL &&
4136 		    (ab->b_l2hdr->b_daddr > taddr ||
4137 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4138 			/*
4139 			 * We've evicted to the target address,
4140 			 * or the end of the device.
4141 			 */
4142 			mutex_exit(hash_lock);
4143 			break;
4144 		}
4145 
4146 		if (HDR_FREE_IN_PROGRESS(ab)) {
4147 			/*
4148 			 * Already on the path to destruction.
4149 			 */
4150 			mutex_exit(hash_lock);
4151 			continue;
4152 		}
4153 
4154 		if (ab->b_state == arc_l2c_only) {
4155 			ASSERT(!HDR_L2_READING(ab));
4156 			/*
4157 			 * This doesn't exist in the ARC.  Destroy.
4158 			 * arc_hdr_destroy() will call list_remove()
4159 			 * and decrement arcstat_l2_size.
4160 			 */
4161 			arc_change_state(arc_anon, ab, hash_lock);
4162 			arc_hdr_destroy(ab);
4163 		} else {
4164 			/*
4165 			 * Invalidate issued or about to be issued
4166 			 * reads, since we may be about to write
4167 			 * over this location.
4168 			 */
4169 			if (HDR_L2_READING(ab)) {
4170 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4171 				ab->b_flags |= ARC_L2_EVICTED;
4172 			}
4173 
4174 			/*
4175 			 * Tell ARC this no longer exists in L2ARC.
4176 			 */
4177 			if (ab->b_l2hdr != NULL) {
4178 				abl2 = ab->b_l2hdr;
4179 				ab->b_l2hdr = NULL;
4180 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4181 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4182 			}
4183 			list_remove(buflist, ab);
4184 
4185 			/*
4186 			 * This may have been leftover after a
4187 			 * failed write.
4188 			 */
4189 			ab->b_flags &= ~ARC_L2_WRITING;
4190 		}
4191 		mutex_exit(hash_lock);
4192 	}
4193 	mutex_exit(&l2arc_buflist_mtx);
4194 
4195 	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4196 	dev->l2ad_evict = taddr;
4197 }
4198 
4199 /*
4200  * Find and write ARC buffers to the L2ARC device.
4201  *
4202  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4203  * for reading until they have completed writing.
4204  */
4205 static uint64_t
4206 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4207 {
4208 	arc_buf_hdr_t *ab, *ab_prev, *head;
4209 	l2arc_buf_hdr_t *hdrl2;
4210 	list_t *list;
4211 	uint64_t passed_sz, write_sz, buf_sz, headroom;
4212 	void *buf_data;
4213 	kmutex_t *hash_lock, *list_lock;
4214 	boolean_t have_lock, full;
4215 	l2arc_write_callback_t *cb;
4216 	zio_t *pio, *wzio;
4217 	uint64_t guid = spa_guid(spa);
4218 
4219 	ASSERT(dev->l2ad_vdev != NULL);
4220 
4221 	pio = NULL;
4222 	write_sz = 0;
4223 	full = B_FALSE;
4224 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4225 	head->b_flags |= ARC_L2_WRITE_HEAD;
4226 
4227 	/*
4228 	 * Copy buffers for L2ARC writing.
4229 	 */
4230 	mutex_enter(&l2arc_buflist_mtx);
4231 	for (int try = 0; try <= 3; try++) {
4232 		list = l2arc_list_locked(try, &list_lock);
4233 		passed_sz = 0;
4234 
4235 		/*
4236 		 * L2ARC fast warmup.
4237 		 *
4238 		 * Until the ARC is warm and starts to evict, read from the
4239 		 * head of the ARC lists rather than the tail.
4240 		 */
4241 		headroom = target_sz * l2arc_headroom;
4242 		if (arc_warm == B_FALSE)
4243 			ab = list_head(list);
4244 		else
4245 			ab = list_tail(list);
4246 
4247 		for (; ab; ab = ab_prev) {
4248 			if (arc_warm == B_FALSE)
4249 				ab_prev = list_next(list, ab);
4250 			else
4251 				ab_prev = list_prev(list, ab);
4252 
4253 			hash_lock = HDR_LOCK(ab);
4254 			have_lock = MUTEX_HELD(hash_lock);
4255 			if (!have_lock && !mutex_tryenter(hash_lock)) {
4256 				/*
4257 				 * Skip this buffer rather than waiting.
4258 				 */
4259 				continue;
4260 			}
4261 
4262 			passed_sz += ab->b_size;
4263 			if (passed_sz > headroom) {
4264 				/*
4265 				 * Searched too far.
4266 				 */
4267 				mutex_exit(hash_lock);
4268 				break;
4269 			}
4270 
4271 			if (!l2arc_write_eligible(guid, ab)) {
4272 				mutex_exit(hash_lock);
4273 				continue;
4274 			}
4275 
4276 			if ((write_sz + ab->b_size) > target_sz) {
4277 				full = B_TRUE;
4278 				mutex_exit(hash_lock);
4279 				break;
4280 			}
4281 
4282 			if (pio == NULL) {
4283 				/*
4284 				 * Insert a dummy header on the buflist so
4285 				 * l2arc_write_done() can find where the
4286 				 * write buffers begin without searching.
4287 				 */
4288 				list_insert_head(dev->l2ad_buflist, head);
4289 
4290 				cb = kmem_alloc(
4291 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4292 				cb->l2wcb_dev = dev;
4293 				cb->l2wcb_head = head;
4294 				pio = zio_root(spa, l2arc_write_done, cb,
4295 				    ZIO_FLAG_CANFAIL);
4296 			}
4297 
4298 			/*
4299 			 * Create and add a new L2ARC header.
4300 			 */
4301 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4302 			hdrl2->b_dev = dev;
4303 			hdrl2->b_daddr = dev->l2ad_hand;
4304 
4305 			ab->b_flags |= ARC_L2_WRITING;
4306 			ab->b_l2hdr = hdrl2;
4307 			list_insert_head(dev->l2ad_buflist, ab);
4308 			buf_data = ab->b_buf->b_data;
4309 			buf_sz = ab->b_size;
4310 
4311 			/*
4312 			 * Compute and store the buffer cksum before
4313 			 * writing.  On debug the cksum is verified first.
4314 			 */
4315 			arc_cksum_verify(ab->b_buf);
4316 			arc_cksum_compute(ab->b_buf, B_TRUE);
4317 
4318 			mutex_exit(hash_lock);
4319 
4320 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4321 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4322 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4323 			    ZIO_FLAG_CANFAIL, B_FALSE);
4324 
4325 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4326 			    zio_t *, wzio);
4327 			(void) zio_nowait(wzio);
4328 
4329 			/*
4330 			 * Keep the clock hand suitably device-aligned.
4331 			 */
4332 			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4333 
4334 			write_sz += buf_sz;
4335 			dev->l2ad_hand += buf_sz;
4336 		}
4337 
4338 		mutex_exit(list_lock);
4339 
4340 		if (full == B_TRUE)
4341 			break;
4342 	}
4343 	mutex_exit(&l2arc_buflist_mtx);
4344 
4345 	if (pio == NULL) {
4346 		ASSERT3U(write_sz, ==, 0);
4347 		kmem_cache_free(hdr_cache, head);
4348 		return (0);
4349 	}
4350 
4351 	ASSERT3U(write_sz, <=, target_sz);
4352 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4353 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4354 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4355 	vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4356 
4357 	/*
4358 	 * Bump device hand to the device start if it is approaching the end.
4359 	 * l2arc_evict() will already have evicted ahead for this case.
4360 	 */
4361 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4362 		vdev_space_update(dev->l2ad_vdev,
4363 		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
4364 		dev->l2ad_hand = dev->l2ad_start;
4365 		dev->l2ad_evict = dev->l2ad_start;
4366 		dev->l2ad_first = B_FALSE;
4367 	}
4368 
4369 	dev->l2ad_writing = B_TRUE;
4370 	(void) zio_wait(pio);
4371 	dev->l2ad_writing = B_FALSE;
4372 
4373 	return (write_sz);
4374 }
4375 
4376 /*
4377  * This thread feeds the L2ARC at regular intervals.  This is the beating
4378  * heart of the L2ARC.
4379  */
4380 static void
4381 l2arc_feed_thread(void)
4382 {
4383 	callb_cpr_t cpr;
4384 	l2arc_dev_t *dev;
4385 	spa_t *spa;
4386 	uint64_t size, wrote;
4387 	clock_t begin, next = ddi_get_lbolt();
4388 
4389 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4390 
4391 	mutex_enter(&l2arc_feed_thr_lock);
4392 
4393 	while (l2arc_thread_exit == 0) {
4394 		CALLB_CPR_SAFE_BEGIN(&cpr);
4395 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4396 		    next);
4397 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4398 		next = ddi_get_lbolt() + hz;
4399 
4400 		/*
4401 		 * Quick check for L2ARC devices.
4402 		 */
4403 		mutex_enter(&l2arc_dev_mtx);
4404 		if (l2arc_ndev == 0) {
4405 			mutex_exit(&l2arc_dev_mtx);
4406 			continue;
4407 		}
4408 		mutex_exit(&l2arc_dev_mtx);
4409 		begin = ddi_get_lbolt();
4410 
4411 		/*
4412 		 * This selects the next l2arc device to write to, and in
4413 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4414 		 * will return NULL if there are now no l2arc devices or if
4415 		 * they are all faulted.
4416 		 *
4417 		 * If a device is returned, its spa's config lock is also
4418 		 * held to prevent device removal.  l2arc_dev_get_next()
4419 		 * will grab and release l2arc_dev_mtx.
4420 		 */
4421 		if ((dev = l2arc_dev_get_next()) == NULL)
4422 			continue;
4423 
4424 		spa = dev->l2ad_spa;
4425 		ASSERT(spa != NULL);
4426 
4427 		/*
4428 		 * Avoid contributing to memory pressure.
4429 		 */
4430 		if (arc_reclaim_needed()) {
4431 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4432 			spa_config_exit(spa, SCL_L2ARC, dev);
4433 			continue;
4434 		}
4435 
4436 		ARCSTAT_BUMP(arcstat_l2_feeds);
4437 
4438 		size = l2arc_write_size(dev);
4439 
4440 		/*
4441 		 * Evict L2ARC buffers that will be overwritten.
4442 		 */
4443 		l2arc_evict(dev, size, B_FALSE);
4444 
4445 		/*
4446 		 * Write ARC buffers.
4447 		 */
4448 		wrote = l2arc_write_buffers(spa, dev, size);
4449 
4450 		/*
4451 		 * Calculate interval between writes.
4452 		 */
4453 		next = l2arc_write_interval(begin, size, wrote);
4454 		spa_config_exit(spa, SCL_L2ARC, dev);
4455 	}
4456 
4457 	l2arc_thread_exit = 0;
4458 	cv_broadcast(&l2arc_feed_thr_cv);
4459 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4460 	thread_exit();
4461 }
4462 
4463 boolean_t
4464 l2arc_vdev_present(vdev_t *vd)
4465 {
4466 	l2arc_dev_t *dev;
4467 
4468 	mutex_enter(&l2arc_dev_mtx);
4469 	for (dev = list_head(l2arc_dev_list); dev != NULL;
4470 	    dev = list_next(l2arc_dev_list, dev)) {
4471 		if (dev->l2ad_vdev == vd)
4472 			break;
4473 	}
4474 	mutex_exit(&l2arc_dev_mtx);
4475 
4476 	return (dev != NULL);
4477 }
4478 
4479 /*
4480  * Add a vdev for use by the L2ARC.  By this point the spa has already
4481  * validated the vdev and opened it.
4482  */
4483 void
4484 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4485 {
4486 	l2arc_dev_t *adddev;
4487 
4488 	ASSERT(!l2arc_vdev_present(vd));
4489 
4490 	/*
4491 	 * Create a new l2arc device entry.
4492 	 */
4493 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4494 	adddev->l2ad_spa = spa;
4495 	adddev->l2ad_vdev = vd;
4496 	adddev->l2ad_write = l2arc_write_max;
4497 	adddev->l2ad_boost = l2arc_write_boost;
4498 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4499 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4500 	adddev->l2ad_hand = adddev->l2ad_start;
4501 	adddev->l2ad_evict = adddev->l2ad_start;
4502 	adddev->l2ad_first = B_TRUE;
4503 	adddev->l2ad_writing = B_FALSE;
4504 	ASSERT3U(adddev->l2ad_write, >, 0);
4505 
4506 	/*
4507 	 * This is a list of all ARC buffers that are still valid on the
4508 	 * device.
4509 	 */
4510 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4511 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4512 	    offsetof(arc_buf_hdr_t, b_l2node));
4513 
4514 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
4515 
4516 	/*
4517 	 * Add device to global list
4518 	 */
4519 	mutex_enter(&l2arc_dev_mtx);
4520 	list_insert_head(l2arc_dev_list, adddev);
4521 	atomic_inc_64(&l2arc_ndev);
4522 	mutex_exit(&l2arc_dev_mtx);
4523 }
4524 
4525 /*
4526  * Remove a vdev from the L2ARC.
4527  */
4528 void
4529 l2arc_remove_vdev(vdev_t *vd)
4530 {
4531 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4532 
4533 	/*
4534 	 * Find the device by vdev
4535 	 */
4536 	mutex_enter(&l2arc_dev_mtx);
4537 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4538 		nextdev = list_next(l2arc_dev_list, dev);
4539 		if (vd == dev->l2ad_vdev) {
4540 			remdev = dev;
4541 			break;
4542 		}
4543 	}
4544 	ASSERT(remdev != NULL);
4545 
4546 	/*
4547 	 * Remove device from global list
4548 	 */
4549 	list_remove(l2arc_dev_list, remdev);
4550 	l2arc_dev_last = NULL;		/* may have been invalidated */
4551 	atomic_dec_64(&l2arc_ndev);
4552 	mutex_exit(&l2arc_dev_mtx);
4553 
4554 	/*
4555 	 * Clear all buflists and ARC references.  L2ARC device flush.
4556 	 */
4557 	l2arc_evict(remdev, 0, B_TRUE);
4558 	list_destroy(remdev->l2ad_buflist);
4559 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4560 	kmem_free(remdev, sizeof (l2arc_dev_t));
4561 }
4562 
4563 void
4564 l2arc_init(void)
4565 {
4566 	l2arc_thread_exit = 0;
4567 	l2arc_ndev = 0;
4568 	l2arc_writes_sent = 0;
4569 	l2arc_writes_done = 0;
4570 
4571 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4572 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4573 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4574 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4575 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4576 
4577 	l2arc_dev_list = &L2ARC_dev_list;
4578 	l2arc_free_on_write = &L2ARC_free_on_write;
4579 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4580 	    offsetof(l2arc_dev_t, l2ad_node));
4581 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4582 	    offsetof(l2arc_data_free_t, l2df_list_node));
4583 }
4584 
4585 void
4586 l2arc_fini(void)
4587 {
4588 	/*
4589 	 * This is called from dmu_fini(), which is called from spa_fini();
4590 	 * Because of this, we can assume that all l2arc devices have
4591 	 * already been removed when the pools themselves were removed.
4592 	 */
4593 
4594 	l2arc_do_free_on_write();
4595 
4596 	mutex_destroy(&l2arc_feed_thr_lock);
4597 	cv_destroy(&l2arc_feed_thr_cv);
4598 	mutex_destroy(&l2arc_dev_mtx);
4599 	mutex_destroy(&l2arc_buflist_mtx);
4600 	mutex_destroy(&l2arc_free_on_write_mtx);
4601 
4602 	list_destroy(l2arc_dev_list);
4603 	list_destroy(l2arc_free_on_write);
4604 }
4605 
4606 void
4607 l2arc_start(void)
4608 {
4609 	if (!(spa_mode_global & FWRITE))
4610 		return;
4611 
4612 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4613 	    TS_RUN, minclsyspri);
4614 }
4615 
4616 void
4617 l2arc_stop(void)
4618 {
4619 	if (!(spa_mode_global & FWRITE))
4620 		return;
4621 
4622 	mutex_enter(&l2arc_feed_thr_lock);
4623 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4624 	l2arc_thread_exit = 1;
4625 	while (l2arc_thread_exit != 0)
4626 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4627 	mutex_exit(&l2arc_feed_thr_lock);
4628 }
4629