xref: /titanic_50/usr/src/uts/common/fs/zfs/arc.c (revision ceec9e142e4fe8e2388e7bd73fa65809ab1b0715)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 /*
30  * DVA-based Adjustable Replacement Cache
31  *
32  * While much of the theory of operation used here is
33  * based on the self-tuning, low overhead replacement cache
34  * presented by Megiddo and Modha at FAST 2003, there are some
35  * significant differences:
36  *
37  * 1. The Megiddo and Modha model assumes any page is evictable.
38  * Pages in its cache cannot be "locked" into memory.  This makes
39  * the eviction algorithm simple: evict the last page in the list.
40  * This also make the performance characteristics easy to reason
41  * about.  Our cache is not so simple.  At any given moment, some
42  * subset of the blocks in the cache are un-evictable because we
43  * have handed out a reference to them.  Blocks are only evictable
44  * when there are no external references active.  This makes
45  * eviction far more problematic:  we choose to evict the evictable
46  * blocks that are the "lowest" in the list.
47  *
48  * There are times when it is not possible to evict the requested
49  * space.  In these circumstances we are unable to adjust the cache
50  * size.  To prevent the cache growing unbounded at these times we
51  * implement a "cache throttle" that slows the flow of new data
52  * into the cache until we can make space available.
53  *
54  * 2. The Megiddo and Modha model assumes a fixed cache size.
55  * Pages are evicted when the cache is full and there is a cache
56  * miss.  Our model has a variable sized cache.  It grows with
57  * high use, but also tries to react to memory pressure from the
58  * operating system: decreasing its size when system memory is
59  * tight.
60  *
61  * 3. The Megiddo and Modha model assumes a fixed page size. All
62  * elements of the cache are therefore exactly the same size.  So
63  * when adjusting the cache size following a cache miss, its simply
64  * a matter of choosing a single page to evict.  In our model, we
65  * have variable sized cache blocks (rangeing from 512 bytes to
66  * 128K bytes).  We therefore choose a set of blocks to evict to make
67  * space for a cache miss that approximates as closely as possible
68  * the space used by the new block.
69  *
70  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71  * by N. Megiddo & D. Modha, FAST 2003
72  */
73 
74 /*
75  * The locking model:
76  *
77  * A new reference to a cache buffer can be obtained in two
78  * ways: 1) via a hash table lookup using the DVA as a key,
79  * or 2) via one of the ARC lists.  The arc_read() interface
80  * uses method 1, while the internal arc algorithms for
81  * adjusting the cache use method 2.  We therefore provide two
82  * types of locks: 1) the hash table lock array, and 2) the
83  * arc list locks.
84  *
85  * Buffers do not have their own mutexes, rather they rely on the
86  * hash table mutexes for the bulk of their protection (i.e. most
87  * fields in the arc_buf_hdr_t are protected by these mutexes).
88  *
89  * buf_hash_find() returns the appropriate mutex (held) when it
90  * locates the requested buffer in the hash table.  It returns
91  * NULL for the mutex if the buffer was not in the table.
92  *
93  * buf_hash_remove() expects the appropriate hash mutex to be
94  * already held before it is invoked.
95  *
96  * Each arc state also has a mutex which is used to protect the
97  * buffer list associated with the state.  When attempting to
98  * obtain a hash table lock while holding an arc list lock you
99  * must use: mutex_tryenter() to avoid deadlock.  Also note that
100  * the active state mutex must be held before the ghost state mutex.
101  *
102  * Arc buffers may have an associated eviction callback function.
103  * This function will be invoked prior to removing the buffer (e.g.
104  * in arc_do_user_evicts()).  Note however that the data associated
105  * with the buffer may be evicted prior to the callback.  The callback
106  * must be made with *no locks held* (to prevent deadlock).  Additionally,
107  * the users of callbacks must ensure that their private data is
108  * protected from simultaneous callbacks from arc_clear_callback()
109  * and arc_do_user_evicts().
110  *
111  * Note that the majority of the performance stats are manipulated
112  * with atomic operations.
113  *
114  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
115  *
116  *	- L2ARC buflist creation
117  *	- L2ARC buflist eviction
118  *	- L2ARC write completion, which walks L2ARC buflists
119  *	- ARC header destruction, as it removes from L2ARC buflists
120  *	- ARC header release, as it removes from L2ARC buflists
121  */
122 
123 #include <sys/spa.h>
124 #include <sys/zio.h>
125 #include <sys/zio_compress.h>
126 #include <sys/zfs_context.h>
127 #include <sys/arc.h>
128 #include <sys/refcount.h>
129 #include <sys/vdev.h>
130 #include <sys/vdev_impl.h>
131 #include <sys/dsl_pool.h>
132 #ifdef _KERNEL
133 #include <sys/vmsystm.h>
134 #include <vm/anon.h>
135 #include <sys/fs/swapnode.h>
136 #include <sys/dnlc.h>
137 #endif
138 #include <sys/callb.h>
139 #include <sys/kstat.h>
140 #include <zfs_fletcher.h>
141 
142 #ifndef _KERNEL
143 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
144 boolean_t arc_watch = B_FALSE;
145 int arc_procfd;
146 #endif
147 
148 static kmutex_t		arc_reclaim_thr_lock;
149 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
150 static uint8_t		arc_thread_exit;
151 
152 #define	ARC_REDUCE_DNLC_PERCENT	3
153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
154 
155 typedef enum arc_reclaim_strategy {
156 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
157 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
158 } arc_reclaim_strategy_t;
159 
160 /*
161  * The number of iterations through arc_evict_*() before we
162  * drop & reacquire the lock.
163  */
164 int arc_evict_iterations = 100;
165 
166 /* number of seconds before growing cache again */
167 static int		arc_grow_retry = 60;
168 
169 /* shift of arc_c for calculating both min and max arc_p */
170 static int		arc_p_min_shift = 4;
171 
172 /* log2(fraction of arc to reclaim) */
173 static int		arc_shrink_shift = 5;
174 
175 /*
176  * minimum lifespan of a prefetch block in clock ticks
177  * (initialized in arc_init())
178  */
179 static int		arc_min_prefetch_lifespan;
180 
181 /*
182  * If this percent of memory is free, don't throttle.
183  */
184 int arc_lotsfree_percent = 10;
185 
186 static int arc_dead;
187 
188 /*
189  * The arc has filled available memory and has now warmed up.
190  */
191 static boolean_t arc_warm;
192 
193 /*
194  * These tunables are for performance analysis.
195  */
196 uint64_t zfs_arc_max;
197 uint64_t zfs_arc_min;
198 uint64_t zfs_arc_meta_limit = 0;
199 int zfs_arc_grow_retry = 0;
200 int zfs_arc_shrink_shift = 0;
201 int zfs_arc_p_min_shift = 0;
202 int zfs_disable_dup_eviction = 0;
203 
204 /*
205  * Note that buffers can be in one of 6 states:
206  *	ARC_anon	- anonymous (discussed below)
207  *	ARC_mru		- recently used, currently cached
208  *	ARC_mru_ghost	- recentely used, no longer in cache
209  *	ARC_mfu		- frequently used, currently cached
210  *	ARC_mfu_ghost	- frequently used, no longer in cache
211  *	ARC_l2c_only	- exists in L2ARC but not other states
212  * When there are no active references to the buffer, they are
213  * are linked onto a list in one of these arc states.  These are
214  * the only buffers that can be evicted or deleted.  Within each
215  * state there are multiple lists, one for meta-data and one for
216  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
217  * etc.) is tracked separately so that it can be managed more
218  * explicitly: favored over data, limited explicitly.
219  *
220  * Anonymous buffers are buffers that are not associated with
221  * a DVA.  These are buffers that hold dirty block copies
222  * before they are written to stable storage.  By definition,
223  * they are "ref'd" and are considered part of arc_mru
224  * that cannot be freed.  Generally, they will aquire a DVA
225  * as they are written and migrate onto the arc_mru list.
226  *
227  * The ARC_l2c_only state is for buffers that are in the second
228  * level ARC but no longer in any of the ARC_m* lists.  The second
229  * level ARC itself may also contain buffers that are in any of
230  * the ARC_m* states - meaning that a buffer can exist in two
231  * places.  The reason for the ARC_l2c_only state is to keep the
232  * buffer header in the hash table, so that reads that hit the
233  * second level ARC benefit from these fast lookups.
234  */
235 
236 typedef struct arc_state {
237 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
238 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
239 	uint64_t arcs_size;	/* total amount of data in this state */
240 	kmutex_t arcs_mtx;
241 } arc_state_t;
242 
243 /* The 6 states: */
244 static arc_state_t ARC_anon;
245 static arc_state_t ARC_mru;
246 static arc_state_t ARC_mru_ghost;
247 static arc_state_t ARC_mfu;
248 static arc_state_t ARC_mfu_ghost;
249 static arc_state_t ARC_l2c_only;
250 
251 typedef struct arc_stats {
252 	kstat_named_t arcstat_hits;
253 	kstat_named_t arcstat_misses;
254 	kstat_named_t arcstat_demand_data_hits;
255 	kstat_named_t arcstat_demand_data_misses;
256 	kstat_named_t arcstat_demand_metadata_hits;
257 	kstat_named_t arcstat_demand_metadata_misses;
258 	kstat_named_t arcstat_prefetch_data_hits;
259 	kstat_named_t arcstat_prefetch_data_misses;
260 	kstat_named_t arcstat_prefetch_metadata_hits;
261 	kstat_named_t arcstat_prefetch_metadata_misses;
262 	kstat_named_t arcstat_mru_hits;
263 	kstat_named_t arcstat_mru_ghost_hits;
264 	kstat_named_t arcstat_mfu_hits;
265 	kstat_named_t arcstat_mfu_ghost_hits;
266 	kstat_named_t arcstat_deleted;
267 	kstat_named_t arcstat_recycle_miss;
268 	/*
269 	 * Number of buffers that could not be evicted because the hash lock
270 	 * was held by another thread.  The lock may not necessarily be held
271 	 * by something using the same buffer, since hash locks are shared
272 	 * by multiple buffers.
273 	 */
274 	kstat_named_t arcstat_mutex_miss;
275 	/*
276 	 * Number of buffers skipped because they have I/O in progress, are
277 	 * indrect prefetch buffers that have not lived long enough, or are
278 	 * not from the spa we're trying to evict from.
279 	 */
280 	kstat_named_t arcstat_evict_skip;
281 	kstat_named_t arcstat_evict_l2_cached;
282 	kstat_named_t arcstat_evict_l2_eligible;
283 	kstat_named_t arcstat_evict_l2_ineligible;
284 	kstat_named_t arcstat_hash_elements;
285 	kstat_named_t arcstat_hash_elements_max;
286 	kstat_named_t arcstat_hash_collisions;
287 	kstat_named_t arcstat_hash_chains;
288 	kstat_named_t arcstat_hash_chain_max;
289 	kstat_named_t arcstat_p;
290 	kstat_named_t arcstat_c;
291 	kstat_named_t arcstat_c_min;
292 	kstat_named_t arcstat_c_max;
293 	kstat_named_t arcstat_size;
294 	kstat_named_t arcstat_hdr_size;
295 	kstat_named_t arcstat_data_size;
296 	kstat_named_t arcstat_other_size;
297 	kstat_named_t arcstat_l2_hits;
298 	kstat_named_t arcstat_l2_misses;
299 	kstat_named_t arcstat_l2_feeds;
300 	kstat_named_t arcstat_l2_rw_clash;
301 	kstat_named_t arcstat_l2_read_bytes;
302 	kstat_named_t arcstat_l2_write_bytes;
303 	kstat_named_t arcstat_l2_writes_sent;
304 	kstat_named_t arcstat_l2_writes_done;
305 	kstat_named_t arcstat_l2_writes_error;
306 	kstat_named_t arcstat_l2_writes_hdr_miss;
307 	kstat_named_t arcstat_l2_evict_lock_retry;
308 	kstat_named_t arcstat_l2_evict_reading;
309 	kstat_named_t arcstat_l2_free_on_write;
310 	kstat_named_t arcstat_l2_abort_lowmem;
311 	kstat_named_t arcstat_l2_cksum_bad;
312 	kstat_named_t arcstat_l2_io_error;
313 	kstat_named_t arcstat_l2_size;
314 	kstat_named_t arcstat_l2_asize;
315 	kstat_named_t arcstat_l2_hdr_size;
316 	kstat_named_t arcstat_l2_compress_successes;
317 	kstat_named_t arcstat_l2_compress_zeros;
318 	kstat_named_t arcstat_l2_compress_failures;
319 	kstat_named_t arcstat_memory_throttle_count;
320 	kstat_named_t arcstat_duplicate_buffers;
321 	kstat_named_t arcstat_duplicate_buffers_size;
322 	kstat_named_t arcstat_duplicate_reads;
323 	kstat_named_t arcstat_meta_used;
324 	kstat_named_t arcstat_meta_limit;
325 	kstat_named_t arcstat_meta_max;
326 } arc_stats_t;
327 
328 static arc_stats_t arc_stats = {
329 	{ "hits",			KSTAT_DATA_UINT64 },
330 	{ "misses",			KSTAT_DATA_UINT64 },
331 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
332 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
333 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
334 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
335 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
336 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
337 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
338 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
339 	{ "mru_hits",			KSTAT_DATA_UINT64 },
340 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
341 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
342 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
343 	{ "deleted",			KSTAT_DATA_UINT64 },
344 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
345 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
346 	{ "evict_skip",			KSTAT_DATA_UINT64 },
347 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
348 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
349 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
350 	{ "hash_elements",		KSTAT_DATA_UINT64 },
351 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
352 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
353 	{ "hash_chains",		KSTAT_DATA_UINT64 },
354 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
355 	{ "p",				KSTAT_DATA_UINT64 },
356 	{ "c",				KSTAT_DATA_UINT64 },
357 	{ "c_min",			KSTAT_DATA_UINT64 },
358 	{ "c_max",			KSTAT_DATA_UINT64 },
359 	{ "size",			KSTAT_DATA_UINT64 },
360 	{ "hdr_size",			KSTAT_DATA_UINT64 },
361 	{ "data_size",			KSTAT_DATA_UINT64 },
362 	{ "other_size",			KSTAT_DATA_UINT64 },
363 	{ "l2_hits",			KSTAT_DATA_UINT64 },
364 	{ "l2_misses",			KSTAT_DATA_UINT64 },
365 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
366 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
367 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
368 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
369 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
370 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
371 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
372 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
373 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
374 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
375 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
376 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
377 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
378 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
379 	{ "l2_size",			KSTAT_DATA_UINT64 },
380 	{ "l2_asize",			KSTAT_DATA_UINT64 },
381 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
382 	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
383 	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
384 	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
385 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
386 	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
387 	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
388 	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
389 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
390 	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
391 	{ "arc_meta_max",		KSTAT_DATA_UINT64 }
392 };
393 
394 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
395 
396 #define	ARCSTAT_INCR(stat, val) \
397 	atomic_add_64(&arc_stats.stat.value.ui64, (val))
398 
399 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
400 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
401 
402 #define	ARCSTAT_MAX(stat, val) {					\
403 	uint64_t m;							\
404 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
405 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
406 		continue;						\
407 }
408 
409 #define	ARCSTAT_MAXSTAT(stat) \
410 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
411 
412 /*
413  * We define a macro to allow ARC hits/misses to be easily broken down by
414  * two separate conditions, giving a total of four different subtypes for
415  * each of hits and misses (so eight statistics total).
416  */
417 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
418 	if (cond1) {							\
419 		if (cond2) {						\
420 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
421 		} else {						\
422 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
423 		}							\
424 	} else {							\
425 		if (cond2) {						\
426 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
427 		} else {						\
428 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
429 		}							\
430 	}
431 
432 kstat_t			*arc_ksp;
433 static arc_state_t	*arc_anon;
434 static arc_state_t	*arc_mru;
435 static arc_state_t	*arc_mru_ghost;
436 static arc_state_t	*arc_mfu;
437 static arc_state_t	*arc_mfu_ghost;
438 static arc_state_t	*arc_l2c_only;
439 
440 /*
441  * There are several ARC variables that are critical to export as kstats --
442  * but we don't want to have to grovel around in the kstat whenever we wish to
443  * manipulate them.  For these variables, we therefore define them to be in
444  * terms of the statistic variable.  This assures that we are not introducing
445  * the possibility of inconsistency by having shadow copies of the variables,
446  * while still allowing the code to be readable.
447  */
448 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
449 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
450 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
451 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
452 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
453 #define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
454 #define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
455 #define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
456 
457 #define	L2ARC_IS_VALID_COMPRESS(_c_) \
458 	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
459 
460 static int		arc_no_grow;	/* Don't try to grow cache size */
461 static uint64_t		arc_tempreserve;
462 static uint64_t		arc_loaned_bytes;
463 
464 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
465 
466 typedef struct arc_callback arc_callback_t;
467 
468 struct arc_callback {
469 	void			*acb_private;
470 	arc_done_func_t		*acb_done;
471 	arc_buf_t		*acb_buf;
472 	zio_t			*acb_zio_dummy;
473 	arc_callback_t		*acb_next;
474 };
475 
476 typedef struct arc_write_callback arc_write_callback_t;
477 
478 struct arc_write_callback {
479 	void		*awcb_private;
480 	arc_done_func_t	*awcb_ready;
481 	arc_done_func_t	*awcb_physdone;
482 	arc_done_func_t	*awcb_done;
483 	arc_buf_t	*awcb_buf;
484 };
485 
486 struct arc_buf_hdr {
487 	/* protected by hash lock */
488 	dva_t			b_dva;
489 	uint64_t		b_birth;
490 	uint64_t		b_cksum0;
491 
492 	kmutex_t		b_freeze_lock;
493 	zio_cksum_t		*b_freeze_cksum;
494 	void			*b_thawed;
495 
496 	arc_buf_hdr_t		*b_hash_next;
497 	arc_buf_t		*b_buf;
498 	uint32_t		b_flags;
499 	uint32_t		b_datacnt;
500 
501 	arc_callback_t		*b_acb;
502 	kcondvar_t		b_cv;
503 
504 	/* immutable */
505 	arc_buf_contents_t	b_type;
506 	uint64_t		b_size;
507 	uint64_t		b_spa;
508 
509 	/* protected by arc state mutex */
510 	arc_state_t		*b_state;
511 	list_node_t		b_arc_node;
512 
513 	/* updated atomically */
514 	clock_t			b_arc_access;
515 
516 	/* self protecting */
517 	refcount_t		b_refcnt;
518 
519 	l2arc_buf_hdr_t		*b_l2hdr;
520 	list_node_t		b_l2node;
521 };
522 
523 static arc_buf_t *arc_eviction_list;
524 static kmutex_t arc_eviction_mtx;
525 static arc_buf_hdr_t arc_eviction_hdr;
526 static void arc_get_data_buf(arc_buf_t *buf);
527 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
528 static int arc_evict_needed(arc_buf_contents_t type);
529 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
530 static void arc_buf_watch(arc_buf_t *buf);
531 
532 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
533 
534 #define	GHOST_STATE(state)	\
535 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
536 	(state) == arc_l2c_only)
537 
538 /*
539  * Private ARC flags.  These flags are private ARC only flags that will show up
540  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
541  * be passed in as arc_flags in things like arc_read.  However, these flags
542  * should never be passed and should only be set by ARC code.  When adding new
543  * public flags, make sure not to smash the private ones.
544  */
545 
546 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
547 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
548 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
549 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
550 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
551 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
552 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
553 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
554 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
555 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
556 
557 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
558 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
559 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
560 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
561 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
562 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
563 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
564 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
565 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
566 				    (hdr)->b_l2hdr != NULL)
567 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
568 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
569 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
570 
571 /*
572  * Other sizes
573  */
574 
575 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
576 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
577 
578 /*
579  * Hash table routines
580  */
581 
582 #define	HT_LOCK_PAD	64
583 
584 struct ht_lock {
585 	kmutex_t	ht_lock;
586 #ifdef _KERNEL
587 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
588 #endif
589 };
590 
591 #define	BUF_LOCKS 256
592 typedef struct buf_hash_table {
593 	uint64_t ht_mask;
594 	arc_buf_hdr_t **ht_table;
595 	struct ht_lock ht_locks[BUF_LOCKS];
596 } buf_hash_table_t;
597 
598 static buf_hash_table_t buf_hash_table;
599 
600 #define	BUF_HASH_INDEX(spa, dva, birth) \
601 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
602 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
603 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
604 #define	HDR_LOCK(hdr) \
605 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
606 
607 uint64_t zfs_crc64_table[256];
608 
609 /*
610  * Level 2 ARC
611  */
612 
613 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
614 #define	L2ARC_HEADROOM		2			/* num of writes */
615 /*
616  * If we discover during ARC scan any buffers to be compressed, we boost
617  * our headroom for the next scanning cycle by this percentage multiple.
618  */
619 #define	L2ARC_HEADROOM_BOOST	200
620 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
621 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
622 
623 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
624 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
625 
626 /* L2ARC Performance Tunables */
627 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
628 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
629 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
630 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
631 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
632 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
633 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
634 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
635 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
636 
637 /*
638  * L2ARC Internals
639  */
640 typedef struct l2arc_dev {
641 	vdev_t			*l2ad_vdev;	/* vdev */
642 	spa_t			*l2ad_spa;	/* spa */
643 	uint64_t		l2ad_hand;	/* next write location */
644 	uint64_t		l2ad_start;	/* first addr on device */
645 	uint64_t		l2ad_end;	/* last addr on device */
646 	uint64_t		l2ad_evict;	/* last addr eviction reached */
647 	boolean_t		l2ad_first;	/* first sweep through */
648 	boolean_t		l2ad_writing;	/* currently writing */
649 	list_t			*l2ad_buflist;	/* buffer list */
650 	list_node_t		l2ad_node;	/* device list node */
651 } l2arc_dev_t;
652 
653 static list_t L2ARC_dev_list;			/* device list */
654 static list_t *l2arc_dev_list;			/* device list pointer */
655 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
656 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
657 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
658 static list_t L2ARC_free_on_write;		/* free after write buf list */
659 static list_t *l2arc_free_on_write;		/* free after write list ptr */
660 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
661 static uint64_t l2arc_ndev;			/* number of devices */
662 
663 typedef struct l2arc_read_callback {
664 	arc_buf_t		*l2rcb_buf;		/* read buffer */
665 	spa_t			*l2rcb_spa;		/* spa */
666 	blkptr_t		l2rcb_bp;		/* original blkptr */
667 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
668 	int			l2rcb_flags;		/* original flags */
669 	enum zio_compress	l2rcb_compress;		/* applied compress */
670 } l2arc_read_callback_t;
671 
672 typedef struct l2arc_write_callback {
673 	l2arc_dev_t	*l2wcb_dev;		/* device info */
674 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
675 } l2arc_write_callback_t;
676 
677 struct l2arc_buf_hdr {
678 	/* protected by arc_buf_hdr  mutex */
679 	l2arc_dev_t		*b_dev;		/* L2ARC device */
680 	uint64_t		b_daddr;	/* disk address, offset byte */
681 	/* compression applied to buffer data */
682 	enum zio_compress	b_compress;
683 	/* real alloc'd buffer size depending on b_compress applied */
684 	int			b_asize;
685 	/* temporary buffer holder for in-flight compressed data */
686 	void			*b_tmp_cdata;
687 };
688 
689 typedef struct l2arc_data_free {
690 	/* protected by l2arc_free_on_write_mtx */
691 	void		*l2df_data;
692 	size_t		l2df_size;
693 	void		(*l2df_func)(void *, size_t);
694 	list_node_t	l2df_list_node;
695 } l2arc_data_free_t;
696 
697 static kmutex_t l2arc_feed_thr_lock;
698 static kcondvar_t l2arc_feed_thr_cv;
699 static uint8_t l2arc_thread_exit;
700 
701 static void l2arc_read_done(zio_t *zio);
702 static void l2arc_hdr_stat_add(void);
703 static void l2arc_hdr_stat_remove(void);
704 
705 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
706 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
707     enum zio_compress c);
708 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
709 
710 static uint64_t
711 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
712 {
713 	uint8_t *vdva = (uint8_t *)dva;
714 	uint64_t crc = -1ULL;
715 	int i;
716 
717 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
718 
719 	for (i = 0; i < sizeof (dva_t); i++)
720 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
721 
722 	crc ^= (spa>>8) ^ birth;
723 
724 	return (crc);
725 }
726 
727 #define	BUF_EMPTY(buf)						\
728 	((buf)->b_dva.dva_word[0] == 0 &&			\
729 	(buf)->b_dva.dva_word[1] == 0 &&			\
730 	(buf)->b_cksum0 == 0)
731 
732 #define	BUF_EQUAL(spa, dva, birth, buf)				\
733 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
734 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
735 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
736 
737 static void
738 buf_discard_identity(arc_buf_hdr_t *hdr)
739 {
740 	hdr->b_dva.dva_word[0] = 0;
741 	hdr->b_dva.dva_word[1] = 0;
742 	hdr->b_birth = 0;
743 	hdr->b_cksum0 = 0;
744 }
745 
746 static arc_buf_hdr_t *
747 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
748 {
749 	const dva_t *dva = BP_IDENTITY(bp);
750 	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
751 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
752 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
753 	arc_buf_hdr_t *buf;
754 
755 	mutex_enter(hash_lock);
756 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
757 	    buf = buf->b_hash_next) {
758 		if (BUF_EQUAL(spa, dva, birth, buf)) {
759 			*lockp = hash_lock;
760 			return (buf);
761 		}
762 	}
763 	mutex_exit(hash_lock);
764 	*lockp = NULL;
765 	return (NULL);
766 }
767 
768 /*
769  * Insert an entry into the hash table.  If there is already an element
770  * equal to elem in the hash table, then the already existing element
771  * will be returned and the new element will not be inserted.
772  * Otherwise returns NULL.
773  */
774 static arc_buf_hdr_t *
775 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
776 {
777 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
778 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
779 	arc_buf_hdr_t *fbuf;
780 	uint32_t i;
781 
782 	ASSERT(!DVA_IS_EMPTY(&buf->b_dva));
783 	ASSERT(buf->b_birth != 0);
784 	ASSERT(!HDR_IN_HASH_TABLE(buf));
785 	*lockp = hash_lock;
786 	mutex_enter(hash_lock);
787 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
788 	    fbuf = fbuf->b_hash_next, i++) {
789 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
790 			return (fbuf);
791 	}
792 
793 	buf->b_hash_next = buf_hash_table.ht_table[idx];
794 	buf_hash_table.ht_table[idx] = buf;
795 	buf->b_flags |= ARC_IN_HASH_TABLE;
796 
797 	/* collect some hash table performance data */
798 	if (i > 0) {
799 		ARCSTAT_BUMP(arcstat_hash_collisions);
800 		if (i == 1)
801 			ARCSTAT_BUMP(arcstat_hash_chains);
802 
803 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
804 	}
805 
806 	ARCSTAT_BUMP(arcstat_hash_elements);
807 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
808 
809 	return (NULL);
810 }
811 
812 static void
813 buf_hash_remove(arc_buf_hdr_t *buf)
814 {
815 	arc_buf_hdr_t *fbuf, **bufp;
816 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
817 
818 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
819 	ASSERT(HDR_IN_HASH_TABLE(buf));
820 
821 	bufp = &buf_hash_table.ht_table[idx];
822 	while ((fbuf = *bufp) != buf) {
823 		ASSERT(fbuf != NULL);
824 		bufp = &fbuf->b_hash_next;
825 	}
826 	*bufp = buf->b_hash_next;
827 	buf->b_hash_next = NULL;
828 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
829 
830 	/* collect some hash table performance data */
831 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
832 
833 	if (buf_hash_table.ht_table[idx] &&
834 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
835 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
836 }
837 
838 /*
839  * Global data structures and functions for the buf kmem cache.
840  */
841 static kmem_cache_t *hdr_cache;
842 static kmem_cache_t *buf_cache;
843 
844 static void
845 buf_fini(void)
846 {
847 	int i;
848 
849 	kmem_free(buf_hash_table.ht_table,
850 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
851 	for (i = 0; i < BUF_LOCKS; i++)
852 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
853 	kmem_cache_destroy(hdr_cache);
854 	kmem_cache_destroy(buf_cache);
855 }
856 
857 /*
858  * Constructor callback - called when the cache is empty
859  * and a new buf is requested.
860  */
861 /* ARGSUSED */
862 static int
863 hdr_cons(void *vbuf, void *unused, int kmflag)
864 {
865 	arc_buf_hdr_t *buf = vbuf;
866 
867 	bzero(buf, sizeof (arc_buf_hdr_t));
868 	refcount_create(&buf->b_refcnt);
869 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
870 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
871 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
872 
873 	return (0);
874 }
875 
876 /* ARGSUSED */
877 static int
878 buf_cons(void *vbuf, void *unused, int kmflag)
879 {
880 	arc_buf_t *buf = vbuf;
881 
882 	bzero(buf, sizeof (arc_buf_t));
883 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
884 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
885 
886 	return (0);
887 }
888 
889 /*
890  * Destructor callback - called when a cached buf is
891  * no longer required.
892  */
893 /* ARGSUSED */
894 static void
895 hdr_dest(void *vbuf, void *unused)
896 {
897 	arc_buf_hdr_t *buf = vbuf;
898 
899 	ASSERT(BUF_EMPTY(buf));
900 	refcount_destroy(&buf->b_refcnt);
901 	cv_destroy(&buf->b_cv);
902 	mutex_destroy(&buf->b_freeze_lock);
903 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
904 }
905 
906 /* ARGSUSED */
907 static void
908 buf_dest(void *vbuf, void *unused)
909 {
910 	arc_buf_t *buf = vbuf;
911 
912 	mutex_destroy(&buf->b_evict_lock);
913 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
914 }
915 
916 /*
917  * Reclaim callback -- invoked when memory is low.
918  */
919 /* ARGSUSED */
920 static void
921 hdr_recl(void *unused)
922 {
923 	dprintf("hdr_recl called\n");
924 	/*
925 	 * umem calls the reclaim func when we destroy the buf cache,
926 	 * which is after we do arc_fini().
927 	 */
928 	if (!arc_dead)
929 		cv_signal(&arc_reclaim_thr_cv);
930 }
931 
932 static void
933 buf_init(void)
934 {
935 	uint64_t *ct;
936 	uint64_t hsize = 1ULL << 12;
937 	int i, j;
938 
939 	/*
940 	 * The hash table is big enough to fill all of physical memory
941 	 * with an average 64K block size.  The table will take up
942 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
943 	 */
944 	while (hsize * 65536 < physmem * PAGESIZE)
945 		hsize <<= 1;
946 retry:
947 	buf_hash_table.ht_mask = hsize - 1;
948 	buf_hash_table.ht_table =
949 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
950 	if (buf_hash_table.ht_table == NULL) {
951 		ASSERT(hsize > (1ULL << 8));
952 		hsize >>= 1;
953 		goto retry;
954 	}
955 
956 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
957 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
958 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
959 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
960 
961 	for (i = 0; i < 256; i++)
962 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
963 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
964 
965 	for (i = 0; i < BUF_LOCKS; i++) {
966 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
967 		    NULL, MUTEX_DEFAULT, NULL);
968 	}
969 }
970 
971 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
972 
973 static void
974 arc_cksum_verify(arc_buf_t *buf)
975 {
976 	zio_cksum_t zc;
977 
978 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
979 		return;
980 
981 	mutex_enter(&buf->b_hdr->b_freeze_lock);
982 	if (buf->b_hdr->b_freeze_cksum == NULL ||
983 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
984 		mutex_exit(&buf->b_hdr->b_freeze_lock);
985 		return;
986 	}
987 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
988 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
989 		panic("buffer modified while frozen!");
990 	mutex_exit(&buf->b_hdr->b_freeze_lock);
991 }
992 
993 static int
994 arc_cksum_equal(arc_buf_t *buf)
995 {
996 	zio_cksum_t zc;
997 	int equal;
998 
999 	mutex_enter(&buf->b_hdr->b_freeze_lock);
1000 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1001 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1002 	mutex_exit(&buf->b_hdr->b_freeze_lock);
1003 
1004 	return (equal);
1005 }
1006 
1007 static void
1008 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1009 {
1010 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1011 		return;
1012 
1013 	mutex_enter(&buf->b_hdr->b_freeze_lock);
1014 	if (buf->b_hdr->b_freeze_cksum != NULL) {
1015 		mutex_exit(&buf->b_hdr->b_freeze_lock);
1016 		return;
1017 	}
1018 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1019 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1020 	    buf->b_hdr->b_freeze_cksum);
1021 	mutex_exit(&buf->b_hdr->b_freeze_lock);
1022 	arc_buf_watch(buf);
1023 }
1024 
1025 #ifndef _KERNEL
1026 typedef struct procctl {
1027 	long cmd;
1028 	prwatch_t prwatch;
1029 } procctl_t;
1030 #endif
1031 
1032 /* ARGSUSED */
1033 static void
1034 arc_buf_unwatch(arc_buf_t *buf)
1035 {
1036 #ifndef _KERNEL
1037 	if (arc_watch) {
1038 		int result;
1039 		procctl_t ctl;
1040 		ctl.cmd = PCWATCH;
1041 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1042 		ctl.prwatch.pr_size = 0;
1043 		ctl.prwatch.pr_wflags = 0;
1044 		result = write(arc_procfd, &ctl, sizeof (ctl));
1045 		ASSERT3U(result, ==, sizeof (ctl));
1046 	}
1047 #endif
1048 }
1049 
1050 /* ARGSUSED */
1051 static void
1052 arc_buf_watch(arc_buf_t *buf)
1053 {
1054 #ifndef _KERNEL
1055 	if (arc_watch) {
1056 		int result;
1057 		procctl_t ctl;
1058 		ctl.cmd = PCWATCH;
1059 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1060 		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1061 		ctl.prwatch.pr_wflags = WA_WRITE;
1062 		result = write(arc_procfd, &ctl, sizeof (ctl));
1063 		ASSERT3U(result, ==, sizeof (ctl));
1064 	}
1065 #endif
1066 }
1067 
1068 void
1069 arc_buf_thaw(arc_buf_t *buf)
1070 {
1071 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1072 		if (buf->b_hdr->b_state != arc_anon)
1073 			panic("modifying non-anon buffer!");
1074 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1075 			panic("modifying buffer while i/o in progress!");
1076 		arc_cksum_verify(buf);
1077 	}
1078 
1079 	mutex_enter(&buf->b_hdr->b_freeze_lock);
1080 	if (buf->b_hdr->b_freeze_cksum != NULL) {
1081 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1082 		buf->b_hdr->b_freeze_cksum = NULL;
1083 	}
1084 
1085 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1086 		if (buf->b_hdr->b_thawed)
1087 			kmem_free(buf->b_hdr->b_thawed, 1);
1088 		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1089 	}
1090 
1091 	mutex_exit(&buf->b_hdr->b_freeze_lock);
1092 
1093 	arc_buf_unwatch(buf);
1094 }
1095 
1096 void
1097 arc_buf_freeze(arc_buf_t *buf)
1098 {
1099 	kmutex_t *hash_lock;
1100 
1101 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1102 		return;
1103 
1104 	hash_lock = HDR_LOCK(buf->b_hdr);
1105 	mutex_enter(hash_lock);
1106 
1107 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1108 	    buf->b_hdr->b_state == arc_anon);
1109 	arc_cksum_compute(buf, B_FALSE);
1110 	mutex_exit(hash_lock);
1111 
1112 }
1113 
1114 static void
1115 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1116 {
1117 	ASSERT(MUTEX_HELD(hash_lock));
1118 
1119 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1120 	    (ab->b_state != arc_anon)) {
1121 		uint64_t delta = ab->b_size * ab->b_datacnt;
1122 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
1123 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1124 
1125 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1126 		mutex_enter(&ab->b_state->arcs_mtx);
1127 		ASSERT(list_link_active(&ab->b_arc_node));
1128 		list_remove(list, ab);
1129 		if (GHOST_STATE(ab->b_state)) {
1130 			ASSERT0(ab->b_datacnt);
1131 			ASSERT3P(ab->b_buf, ==, NULL);
1132 			delta = ab->b_size;
1133 		}
1134 		ASSERT(delta > 0);
1135 		ASSERT3U(*size, >=, delta);
1136 		atomic_add_64(size, -delta);
1137 		mutex_exit(&ab->b_state->arcs_mtx);
1138 		/* remove the prefetch flag if we get a reference */
1139 		if (ab->b_flags & ARC_PREFETCH)
1140 			ab->b_flags &= ~ARC_PREFETCH;
1141 	}
1142 }
1143 
1144 static int
1145 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1146 {
1147 	int cnt;
1148 	arc_state_t *state = ab->b_state;
1149 
1150 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1151 	ASSERT(!GHOST_STATE(state));
1152 
1153 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1154 	    (state != arc_anon)) {
1155 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1156 
1157 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1158 		mutex_enter(&state->arcs_mtx);
1159 		ASSERT(!list_link_active(&ab->b_arc_node));
1160 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1161 		ASSERT(ab->b_datacnt > 0);
1162 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1163 		mutex_exit(&state->arcs_mtx);
1164 	}
1165 	return (cnt);
1166 }
1167 
1168 /*
1169  * Move the supplied buffer to the indicated state.  The mutex
1170  * for the buffer must be held by the caller.
1171  */
1172 static void
1173 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1174 {
1175 	arc_state_t *old_state = ab->b_state;
1176 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1177 	uint64_t from_delta, to_delta;
1178 
1179 	ASSERT(MUTEX_HELD(hash_lock));
1180 	ASSERT3P(new_state, !=, old_state);
1181 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1182 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1183 	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1184 
1185 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1186 
1187 	/*
1188 	 * If this buffer is evictable, transfer it from the
1189 	 * old state list to the new state list.
1190 	 */
1191 	if (refcnt == 0) {
1192 		if (old_state != arc_anon) {
1193 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1194 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1195 
1196 			if (use_mutex)
1197 				mutex_enter(&old_state->arcs_mtx);
1198 
1199 			ASSERT(list_link_active(&ab->b_arc_node));
1200 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1201 
1202 			/*
1203 			 * If prefetching out of the ghost cache,
1204 			 * we will have a non-zero datacnt.
1205 			 */
1206 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1207 				/* ghost elements have a ghost size */
1208 				ASSERT(ab->b_buf == NULL);
1209 				from_delta = ab->b_size;
1210 			}
1211 			ASSERT3U(*size, >=, from_delta);
1212 			atomic_add_64(size, -from_delta);
1213 
1214 			if (use_mutex)
1215 				mutex_exit(&old_state->arcs_mtx);
1216 		}
1217 		if (new_state != arc_anon) {
1218 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1219 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1220 
1221 			if (use_mutex)
1222 				mutex_enter(&new_state->arcs_mtx);
1223 
1224 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1225 
1226 			/* ghost elements have a ghost size */
1227 			if (GHOST_STATE(new_state)) {
1228 				ASSERT(ab->b_datacnt == 0);
1229 				ASSERT(ab->b_buf == NULL);
1230 				to_delta = ab->b_size;
1231 			}
1232 			atomic_add_64(size, to_delta);
1233 
1234 			if (use_mutex)
1235 				mutex_exit(&new_state->arcs_mtx);
1236 		}
1237 	}
1238 
1239 	ASSERT(!BUF_EMPTY(ab));
1240 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1241 		buf_hash_remove(ab);
1242 
1243 	/* adjust state sizes */
1244 	if (to_delta)
1245 		atomic_add_64(&new_state->arcs_size, to_delta);
1246 	if (from_delta) {
1247 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1248 		atomic_add_64(&old_state->arcs_size, -from_delta);
1249 	}
1250 	ab->b_state = new_state;
1251 
1252 	/* adjust l2arc hdr stats */
1253 	if (new_state == arc_l2c_only)
1254 		l2arc_hdr_stat_add();
1255 	else if (old_state == arc_l2c_only)
1256 		l2arc_hdr_stat_remove();
1257 }
1258 
1259 void
1260 arc_space_consume(uint64_t space, arc_space_type_t type)
1261 {
1262 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1263 
1264 	switch (type) {
1265 	case ARC_SPACE_DATA:
1266 		ARCSTAT_INCR(arcstat_data_size, space);
1267 		break;
1268 	case ARC_SPACE_OTHER:
1269 		ARCSTAT_INCR(arcstat_other_size, space);
1270 		break;
1271 	case ARC_SPACE_HDRS:
1272 		ARCSTAT_INCR(arcstat_hdr_size, space);
1273 		break;
1274 	case ARC_SPACE_L2HDRS:
1275 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1276 		break;
1277 	}
1278 
1279 	ARCSTAT_INCR(arcstat_meta_used, space);
1280 	atomic_add_64(&arc_size, space);
1281 }
1282 
1283 void
1284 arc_space_return(uint64_t space, arc_space_type_t type)
1285 {
1286 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1287 
1288 	switch (type) {
1289 	case ARC_SPACE_DATA:
1290 		ARCSTAT_INCR(arcstat_data_size, -space);
1291 		break;
1292 	case ARC_SPACE_OTHER:
1293 		ARCSTAT_INCR(arcstat_other_size, -space);
1294 		break;
1295 	case ARC_SPACE_HDRS:
1296 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1297 		break;
1298 	case ARC_SPACE_L2HDRS:
1299 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1300 		break;
1301 	}
1302 
1303 	ASSERT(arc_meta_used >= space);
1304 	if (arc_meta_max < arc_meta_used)
1305 		arc_meta_max = arc_meta_used;
1306 	ARCSTAT_INCR(arcstat_meta_used, -space);
1307 	ASSERT(arc_size >= space);
1308 	atomic_add_64(&arc_size, -space);
1309 }
1310 
1311 void *
1312 arc_data_buf_alloc(uint64_t size)
1313 {
1314 	if (arc_evict_needed(ARC_BUFC_DATA))
1315 		cv_signal(&arc_reclaim_thr_cv);
1316 	atomic_add_64(&arc_size, size);
1317 	return (zio_data_buf_alloc(size));
1318 }
1319 
1320 void
1321 arc_data_buf_free(void *buf, uint64_t size)
1322 {
1323 	zio_data_buf_free(buf, size);
1324 	ASSERT(arc_size >= size);
1325 	atomic_add_64(&arc_size, -size);
1326 }
1327 
1328 arc_buf_t *
1329 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1330 {
1331 	arc_buf_hdr_t *hdr;
1332 	arc_buf_t *buf;
1333 
1334 	ASSERT3U(size, >, 0);
1335 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1336 	ASSERT(BUF_EMPTY(hdr));
1337 	hdr->b_size = size;
1338 	hdr->b_type = type;
1339 	hdr->b_spa = spa_load_guid(spa);
1340 	hdr->b_state = arc_anon;
1341 	hdr->b_arc_access = 0;
1342 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1343 	buf->b_hdr = hdr;
1344 	buf->b_data = NULL;
1345 	buf->b_efunc = NULL;
1346 	buf->b_private = NULL;
1347 	buf->b_next = NULL;
1348 	hdr->b_buf = buf;
1349 	arc_get_data_buf(buf);
1350 	hdr->b_datacnt = 1;
1351 	hdr->b_flags = 0;
1352 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1353 	(void) refcount_add(&hdr->b_refcnt, tag);
1354 
1355 	return (buf);
1356 }
1357 
1358 static char *arc_onloan_tag = "onloan";
1359 
1360 /*
1361  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1362  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1363  * buffers must be returned to the arc before they can be used by the DMU or
1364  * freed.
1365  */
1366 arc_buf_t *
1367 arc_loan_buf(spa_t *spa, int size)
1368 {
1369 	arc_buf_t *buf;
1370 
1371 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1372 
1373 	atomic_add_64(&arc_loaned_bytes, size);
1374 	return (buf);
1375 }
1376 
1377 /*
1378  * Return a loaned arc buffer to the arc.
1379  */
1380 void
1381 arc_return_buf(arc_buf_t *buf, void *tag)
1382 {
1383 	arc_buf_hdr_t *hdr = buf->b_hdr;
1384 
1385 	ASSERT(buf->b_data != NULL);
1386 	(void) refcount_add(&hdr->b_refcnt, tag);
1387 	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1388 
1389 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1390 }
1391 
1392 /* Detach an arc_buf from a dbuf (tag) */
1393 void
1394 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1395 {
1396 	arc_buf_hdr_t *hdr;
1397 
1398 	ASSERT(buf->b_data != NULL);
1399 	hdr = buf->b_hdr;
1400 	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1401 	(void) refcount_remove(&hdr->b_refcnt, tag);
1402 	buf->b_efunc = NULL;
1403 	buf->b_private = NULL;
1404 
1405 	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1406 }
1407 
1408 static arc_buf_t *
1409 arc_buf_clone(arc_buf_t *from)
1410 {
1411 	arc_buf_t *buf;
1412 	arc_buf_hdr_t *hdr = from->b_hdr;
1413 	uint64_t size = hdr->b_size;
1414 
1415 	ASSERT(hdr->b_state != arc_anon);
1416 
1417 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1418 	buf->b_hdr = hdr;
1419 	buf->b_data = NULL;
1420 	buf->b_efunc = NULL;
1421 	buf->b_private = NULL;
1422 	buf->b_next = hdr->b_buf;
1423 	hdr->b_buf = buf;
1424 	arc_get_data_buf(buf);
1425 	bcopy(from->b_data, buf->b_data, size);
1426 
1427 	/*
1428 	 * This buffer already exists in the arc so create a duplicate
1429 	 * copy for the caller.  If the buffer is associated with user data
1430 	 * then track the size and number of duplicates.  These stats will be
1431 	 * updated as duplicate buffers are created and destroyed.
1432 	 */
1433 	if (hdr->b_type == ARC_BUFC_DATA) {
1434 		ARCSTAT_BUMP(arcstat_duplicate_buffers);
1435 		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1436 	}
1437 	hdr->b_datacnt += 1;
1438 	return (buf);
1439 }
1440 
1441 void
1442 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1443 {
1444 	arc_buf_hdr_t *hdr;
1445 	kmutex_t *hash_lock;
1446 
1447 	/*
1448 	 * Check to see if this buffer is evicted.  Callers
1449 	 * must verify b_data != NULL to know if the add_ref
1450 	 * was successful.
1451 	 */
1452 	mutex_enter(&buf->b_evict_lock);
1453 	if (buf->b_data == NULL) {
1454 		mutex_exit(&buf->b_evict_lock);
1455 		return;
1456 	}
1457 	hash_lock = HDR_LOCK(buf->b_hdr);
1458 	mutex_enter(hash_lock);
1459 	hdr = buf->b_hdr;
1460 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1461 	mutex_exit(&buf->b_evict_lock);
1462 
1463 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1464 	add_reference(hdr, hash_lock, tag);
1465 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1466 	arc_access(hdr, hash_lock);
1467 	mutex_exit(hash_lock);
1468 	ARCSTAT_BUMP(arcstat_hits);
1469 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1470 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1471 	    data, metadata, hits);
1472 }
1473 
1474 /*
1475  * Free the arc data buffer.  If it is an l2arc write in progress,
1476  * the buffer is placed on l2arc_free_on_write to be freed later.
1477  */
1478 static void
1479 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1480 {
1481 	arc_buf_hdr_t *hdr = buf->b_hdr;
1482 
1483 	if (HDR_L2_WRITING(hdr)) {
1484 		l2arc_data_free_t *df;
1485 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1486 		df->l2df_data = buf->b_data;
1487 		df->l2df_size = hdr->b_size;
1488 		df->l2df_func = free_func;
1489 		mutex_enter(&l2arc_free_on_write_mtx);
1490 		list_insert_head(l2arc_free_on_write, df);
1491 		mutex_exit(&l2arc_free_on_write_mtx);
1492 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1493 	} else {
1494 		free_func(buf->b_data, hdr->b_size);
1495 	}
1496 }
1497 
1498 /*
1499  * Free up buf->b_data and if 'remove' is set, then pull the
1500  * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1501  */
1502 static void
1503 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove)
1504 {
1505 	arc_buf_t **bufp;
1506 
1507 	/* free up data associated with the buf */
1508 	if (buf->b_data) {
1509 		arc_state_t *state = buf->b_hdr->b_state;
1510 		uint64_t size = buf->b_hdr->b_size;
1511 		arc_buf_contents_t type = buf->b_hdr->b_type;
1512 
1513 		arc_cksum_verify(buf);
1514 		arc_buf_unwatch(buf);
1515 
1516 		if (!recycle) {
1517 			if (type == ARC_BUFC_METADATA) {
1518 				arc_buf_data_free(buf, zio_buf_free);
1519 				arc_space_return(size, ARC_SPACE_DATA);
1520 			} else {
1521 				ASSERT(type == ARC_BUFC_DATA);
1522 				arc_buf_data_free(buf, zio_data_buf_free);
1523 				ARCSTAT_INCR(arcstat_data_size, -size);
1524 				atomic_add_64(&arc_size, -size);
1525 			}
1526 		}
1527 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1528 			uint64_t *cnt = &state->arcs_lsize[type];
1529 
1530 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1531 			ASSERT(state != arc_anon);
1532 
1533 			ASSERT3U(*cnt, >=, size);
1534 			atomic_add_64(cnt, -size);
1535 		}
1536 		ASSERT3U(state->arcs_size, >=, size);
1537 		atomic_add_64(&state->arcs_size, -size);
1538 		buf->b_data = NULL;
1539 
1540 		/*
1541 		 * If we're destroying a duplicate buffer make sure
1542 		 * that the appropriate statistics are updated.
1543 		 */
1544 		if (buf->b_hdr->b_datacnt > 1 &&
1545 		    buf->b_hdr->b_type == ARC_BUFC_DATA) {
1546 			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1547 			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1548 		}
1549 		ASSERT(buf->b_hdr->b_datacnt > 0);
1550 		buf->b_hdr->b_datacnt -= 1;
1551 	}
1552 
1553 	/* only remove the buf if requested */
1554 	if (!remove)
1555 		return;
1556 
1557 	/* remove the buf from the hdr list */
1558 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1559 		continue;
1560 	*bufp = buf->b_next;
1561 	buf->b_next = NULL;
1562 
1563 	ASSERT(buf->b_efunc == NULL);
1564 
1565 	/* clean up the buf */
1566 	buf->b_hdr = NULL;
1567 	kmem_cache_free(buf_cache, buf);
1568 }
1569 
1570 static void
1571 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1572 {
1573 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1574 	ASSERT3P(hdr->b_state, ==, arc_anon);
1575 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1576 	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1577 
1578 	if (l2hdr != NULL) {
1579 		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1580 		/*
1581 		 * To prevent arc_free() and l2arc_evict() from
1582 		 * attempting to free the same buffer at the same time,
1583 		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1584 		 * give it priority.  l2arc_evict() can't destroy this
1585 		 * header while we are waiting on l2arc_buflist_mtx.
1586 		 *
1587 		 * The hdr may be removed from l2ad_buflist before we
1588 		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1589 		 */
1590 		if (!buflist_held) {
1591 			mutex_enter(&l2arc_buflist_mtx);
1592 			l2hdr = hdr->b_l2hdr;
1593 		}
1594 
1595 		if (l2hdr != NULL) {
1596 			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1597 			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1598 			ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1599 			vdev_space_update(l2hdr->b_dev->l2ad_vdev,
1600 			    -l2hdr->b_asize, 0, 0);
1601 			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1602 			if (hdr->b_state == arc_l2c_only)
1603 				l2arc_hdr_stat_remove();
1604 			hdr->b_l2hdr = NULL;
1605 		}
1606 
1607 		if (!buflist_held)
1608 			mutex_exit(&l2arc_buflist_mtx);
1609 	}
1610 
1611 	if (!BUF_EMPTY(hdr)) {
1612 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1613 		buf_discard_identity(hdr);
1614 	}
1615 	while (hdr->b_buf) {
1616 		arc_buf_t *buf = hdr->b_buf;
1617 
1618 		if (buf->b_efunc) {
1619 			mutex_enter(&arc_eviction_mtx);
1620 			mutex_enter(&buf->b_evict_lock);
1621 			ASSERT(buf->b_hdr != NULL);
1622 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1623 			hdr->b_buf = buf->b_next;
1624 			buf->b_hdr = &arc_eviction_hdr;
1625 			buf->b_next = arc_eviction_list;
1626 			arc_eviction_list = buf;
1627 			mutex_exit(&buf->b_evict_lock);
1628 			mutex_exit(&arc_eviction_mtx);
1629 		} else {
1630 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1631 		}
1632 	}
1633 	if (hdr->b_freeze_cksum != NULL) {
1634 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1635 		hdr->b_freeze_cksum = NULL;
1636 	}
1637 	if (hdr->b_thawed) {
1638 		kmem_free(hdr->b_thawed, 1);
1639 		hdr->b_thawed = NULL;
1640 	}
1641 
1642 	ASSERT(!list_link_active(&hdr->b_arc_node));
1643 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1644 	ASSERT3P(hdr->b_acb, ==, NULL);
1645 	kmem_cache_free(hdr_cache, hdr);
1646 }
1647 
1648 void
1649 arc_buf_free(arc_buf_t *buf, void *tag)
1650 {
1651 	arc_buf_hdr_t *hdr = buf->b_hdr;
1652 	int hashed = hdr->b_state != arc_anon;
1653 
1654 	ASSERT(buf->b_efunc == NULL);
1655 	ASSERT(buf->b_data != NULL);
1656 
1657 	if (hashed) {
1658 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1659 
1660 		mutex_enter(hash_lock);
1661 		hdr = buf->b_hdr;
1662 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1663 
1664 		(void) remove_reference(hdr, hash_lock, tag);
1665 		if (hdr->b_datacnt > 1) {
1666 			arc_buf_destroy(buf, FALSE, TRUE);
1667 		} else {
1668 			ASSERT(buf == hdr->b_buf);
1669 			ASSERT(buf->b_efunc == NULL);
1670 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1671 		}
1672 		mutex_exit(hash_lock);
1673 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1674 		int destroy_hdr;
1675 		/*
1676 		 * We are in the middle of an async write.  Don't destroy
1677 		 * this buffer unless the write completes before we finish
1678 		 * decrementing the reference count.
1679 		 */
1680 		mutex_enter(&arc_eviction_mtx);
1681 		(void) remove_reference(hdr, NULL, tag);
1682 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1683 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1684 		mutex_exit(&arc_eviction_mtx);
1685 		if (destroy_hdr)
1686 			arc_hdr_destroy(hdr);
1687 	} else {
1688 		if (remove_reference(hdr, NULL, tag) > 0)
1689 			arc_buf_destroy(buf, FALSE, TRUE);
1690 		else
1691 			arc_hdr_destroy(hdr);
1692 	}
1693 }
1694 
1695 boolean_t
1696 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1697 {
1698 	arc_buf_hdr_t *hdr = buf->b_hdr;
1699 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1700 	boolean_t no_callback = (buf->b_efunc == NULL);
1701 
1702 	if (hdr->b_state == arc_anon) {
1703 		ASSERT(hdr->b_datacnt == 1);
1704 		arc_buf_free(buf, tag);
1705 		return (no_callback);
1706 	}
1707 
1708 	mutex_enter(hash_lock);
1709 	hdr = buf->b_hdr;
1710 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1711 	ASSERT(hdr->b_state != arc_anon);
1712 	ASSERT(buf->b_data != NULL);
1713 
1714 	(void) remove_reference(hdr, hash_lock, tag);
1715 	if (hdr->b_datacnt > 1) {
1716 		if (no_callback)
1717 			arc_buf_destroy(buf, FALSE, TRUE);
1718 	} else if (no_callback) {
1719 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1720 		ASSERT(buf->b_efunc == NULL);
1721 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1722 	}
1723 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1724 	    refcount_is_zero(&hdr->b_refcnt));
1725 	mutex_exit(hash_lock);
1726 	return (no_callback);
1727 }
1728 
1729 int
1730 arc_buf_size(arc_buf_t *buf)
1731 {
1732 	return (buf->b_hdr->b_size);
1733 }
1734 
1735 /*
1736  * Called from the DMU to determine if the current buffer should be
1737  * evicted. In order to ensure proper locking, the eviction must be initiated
1738  * from the DMU. Return true if the buffer is associated with user data and
1739  * duplicate buffers still exist.
1740  */
1741 boolean_t
1742 arc_buf_eviction_needed(arc_buf_t *buf)
1743 {
1744 	arc_buf_hdr_t *hdr;
1745 	boolean_t evict_needed = B_FALSE;
1746 
1747 	if (zfs_disable_dup_eviction)
1748 		return (B_FALSE);
1749 
1750 	mutex_enter(&buf->b_evict_lock);
1751 	hdr = buf->b_hdr;
1752 	if (hdr == NULL) {
1753 		/*
1754 		 * We are in arc_do_user_evicts(); let that function
1755 		 * perform the eviction.
1756 		 */
1757 		ASSERT(buf->b_data == NULL);
1758 		mutex_exit(&buf->b_evict_lock);
1759 		return (B_FALSE);
1760 	} else if (buf->b_data == NULL) {
1761 		/*
1762 		 * We have already been added to the arc eviction list;
1763 		 * recommend eviction.
1764 		 */
1765 		ASSERT3P(hdr, ==, &arc_eviction_hdr);
1766 		mutex_exit(&buf->b_evict_lock);
1767 		return (B_TRUE);
1768 	}
1769 
1770 	if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1771 		evict_needed = B_TRUE;
1772 
1773 	mutex_exit(&buf->b_evict_lock);
1774 	return (evict_needed);
1775 }
1776 
1777 /*
1778  * Evict buffers from list until we've removed the specified number of
1779  * bytes.  Move the removed buffers to the appropriate evict state.
1780  * If the recycle flag is set, then attempt to "recycle" a buffer:
1781  * - look for a buffer to evict that is `bytes' long.
1782  * - return the data block from this buffer rather than freeing it.
1783  * This flag is used by callers that are trying to make space for a
1784  * new buffer in a full arc cache.
1785  *
1786  * This function makes a "best effort".  It skips over any buffers
1787  * it can't get a hash_lock on, and so may not catch all candidates.
1788  * It may also return without evicting as much space as requested.
1789  */
1790 static void *
1791 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1792     arc_buf_contents_t type)
1793 {
1794 	arc_state_t *evicted_state;
1795 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1796 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1797 	list_t *list = &state->arcs_list[type];
1798 	kmutex_t *hash_lock;
1799 	boolean_t have_lock;
1800 	void *stolen = NULL;
1801 	arc_buf_hdr_t marker = { 0 };
1802 	int count = 0;
1803 
1804 	ASSERT(state == arc_mru || state == arc_mfu);
1805 
1806 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1807 
1808 	mutex_enter(&state->arcs_mtx);
1809 	mutex_enter(&evicted_state->arcs_mtx);
1810 
1811 	for (ab = list_tail(list); ab; ab = ab_prev) {
1812 		ab_prev = list_prev(list, ab);
1813 		/* prefetch buffers have a minimum lifespan */
1814 		if (HDR_IO_IN_PROGRESS(ab) ||
1815 		    (spa && ab->b_spa != spa) ||
1816 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1817 		    ddi_get_lbolt() - ab->b_arc_access <
1818 		    arc_min_prefetch_lifespan)) {
1819 			skipped++;
1820 			continue;
1821 		}
1822 		/* "lookahead" for better eviction candidate */
1823 		if (recycle && ab->b_size != bytes &&
1824 		    ab_prev && ab_prev->b_size == bytes)
1825 			continue;
1826 
1827 		/* ignore markers */
1828 		if (ab->b_spa == 0)
1829 			continue;
1830 
1831 		/*
1832 		 * It may take a long time to evict all the bufs requested.
1833 		 * To avoid blocking all arc activity, periodically drop
1834 		 * the arcs_mtx and give other threads a chance to run
1835 		 * before reacquiring the lock.
1836 		 *
1837 		 * If we are looking for a buffer to recycle, we are in
1838 		 * the hot code path, so don't sleep.
1839 		 */
1840 		if (!recycle && count++ > arc_evict_iterations) {
1841 			list_insert_after(list, ab, &marker);
1842 			mutex_exit(&evicted_state->arcs_mtx);
1843 			mutex_exit(&state->arcs_mtx);
1844 			kpreempt(KPREEMPT_SYNC);
1845 			mutex_enter(&state->arcs_mtx);
1846 			mutex_enter(&evicted_state->arcs_mtx);
1847 			ab_prev = list_prev(list, &marker);
1848 			list_remove(list, &marker);
1849 			count = 0;
1850 			continue;
1851 		}
1852 
1853 		hash_lock = HDR_LOCK(ab);
1854 		have_lock = MUTEX_HELD(hash_lock);
1855 		if (have_lock || mutex_tryenter(hash_lock)) {
1856 			ASSERT0(refcount_count(&ab->b_refcnt));
1857 			ASSERT(ab->b_datacnt > 0);
1858 			while (ab->b_buf) {
1859 				arc_buf_t *buf = ab->b_buf;
1860 				if (!mutex_tryenter(&buf->b_evict_lock)) {
1861 					missed += 1;
1862 					break;
1863 				}
1864 				if (buf->b_data) {
1865 					bytes_evicted += ab->b_size;
1866 					if (recycle && ab->b_type == type &&
1867 					    ab->b_size == bytes &&
1868 					    !HDR_L2_WRITING(ab)) {
1869 						stolen = buf->b_data;
1870 						recycle = FALSE;
1871 					}
1872 				}
1873 				if (buf->b_efunc) {
1874 					mutex_enter(&arc_eviction_mtx);
1875 					arc_buf_destroy(buf,
1876 					    buf->b_data == stolen, FALSE);
1877 					ab->b_buf = buf->b_next;
1878 					buf->b_hdr = &arc_eviction_hdr;
1879 					buf->b_next = arc_eviction_list;
1880 					arc_eviction_list = buf;
1881 					mutex_exit(&arc_eviction_mtx);
1882 					mutex_exit(&buf->b_evict_lock);
1883 				} else {
1884 					mutex_exit(&buf->b_evict_lock);
1885 					arc_buf_destroy(buf,
1886 					    buf->b_data == stolen, TRUE);
1887 				}
1888 			}
1889 
1890 			if (ab->b_l2hdr) {
1891 				ARCSTAT_INCR(arcstat_evict_l2_cached,
1892 				    ab->b_size);
1893 			} else {
1894 				if (l2arc_write_eligible(ab->b_spa, ab)) {
1895 					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1896 					    ab->b_size);
1897 				} else {
1898 					ARCSTAT_INCR(
1899 					    arcstat_evict_l2_ineligible,
1900 					    ab->b_size);
1901 				}
1902 			}
1903 
1904 			if (ab->b_datacnt == 0) {
1905 				arc_change_state(evicted_state, ab, hash_lock);
1906 				ASSERT(HDR_IN_HASH_TABLE(ab));
1907 				ab->b_flags |= ARC_IN_HASH_TABLE;
1908 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1909 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1910 			}
1911 			if (!have_lock)
1912 				mutex_exit(hash_lock);
1913 			if (bytes >= 0 && bytes_evicted >= bytes)
1914 				break;
1915 		} else {
1916 			missed += 1;
1917 		}
1918 	}
1919 
1920 	mutex_exit(&evicted_state->arcs_mtx);
1921 	mutex_exit(&state->arcs_mtx);
1922 
1923 	if (bytes_evicted < bytes)
1924 		dprintf("only evicted %lld bytes from %x",
1925 		    (longlong_t)bytes_evicted, state);
1926 
1927 	if (skipped)
1928 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1929 
1930 	if (missed)
1931 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1932 
1933 	/*
1934 	 * Note: we have just evicted some data into the ghost state,
1935 	 * potentially putting the ghost size over the desired size.  Rather
1936 	 * that evicting from the ghost list in this hot code path, leave
1937 	 * this chore to the arc_reclaim_thread().
1938 	 */
1939 
1940 	return (stolen);
1941 }
1942 
1943 /*
1944  * Remove buffers from list until we've removed the specified number of
1945  * bytes.  Destroy the buffers that are removed.
1946  */
1947 static void
1948 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1949 {
1950 	arc_buf_hdr_t *ab, *ab_prev;
1951 	arc_buf_hdr_t marker = { 0 };
1952 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1953 	kmutex_t *hash_lock;
1954 	uint64_t bytes_deleted = 0;
1955 	uint64_t bufs_skipped = 0;
1956 	int count = 0;
1957 
1958 	ASSERT(GHOST_STATE(state));
1959 top:
1960 	mutex_enter(&state->arcs_mtx);
1961 	for (ab = list_tail(list); ab; ab = ab_prev) {
1962 		ab_prev = list_prev(list, ab);
1963 		if (ab->b_type > ARC_BUFC_NUMTYPES)
1964 			panic("invalid ab=%p", (void *)ab);
1965 		if (spa && ab->b_spa != spa)
1966 			continue;
1967 
1968 		/* ignore markers */
1969 		if (ab->b_spa == 0)
1970 			continue;
1971 
1972 		hash_lock = HDR_LOCK(ab);
1973 		/* caller may be trying to modify this buffer, skip it */
1974 		if (MUTEX_HELD(hash_lock))
1975 			continue;
1976 
1977 		/*
1978 		 * It may take a long time to evict all the bufs requested.
1979 		 * To avoid blocking all arc activity, periodically drop
1980 		 * the arcs_mtx and give other threads a chance to run
1981 		 * before reacquiring the lock.
1982 		 */
1983 		if (count++ > arc_evict_iterations) {
1984 			list_insert_after(list, ab, &marker);
1985 			mutex_exit(&state->arcs_mtx);
1986 			kpreempt(KPREEMPT_SYNC);
1987 			mutex_enter(&state->arcs_mtx);
1988 			ab_prev = list_prev(list, &marker);
1989 			list_remove(list, &marker);
1990 			count = 0;
1991 			continue;
1992 		}
1993 		if (mutex_tryenter(hash_lock)) {
1994 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1995 			ASSERT(ab->b_buf == NULL);
1996 			ARCSTAT_BUMP(arcstat_deleted);
1997 			bytes_deleted += ab->b_size;
1998 
1999 			if (ab->b_l2hdr != NULL) {
2000 				/*
2001 				 * This buffer is cached on the 2nd Level ARC;
2002 				 * don't destroy the header.
2003 				 */
2004 				arc_change_state(arc_l2c_only, ab, hash_lock);
2005 				mutex_exit(hash_lock);
2006 			} else {
2007 				arc_change_state(arc_anon, ab, hash_lock);
2008 				mutex_exit(hash_lock);
2009 				arc_hdr_destroy(ab);
2010 			}
2011 
2012 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2013 			if (bytes >= 0 && bytes_deleted >= bytes)
2014 				break;
2015 		} else if (bytes < 0) {
2016 			/*
2017 			 * Insert a list marker and then wait for the
2018 			 * hash lock to become available. Once its
2019 			 * available, restart from where we left off.
2020 			 */
2021 			list_insert_after(list, ab, &marker);
2022 			mutex_exit(&state->arcs_mtx);
2023 			mutex_enter(hash_lock);
2024 			mutex_exit(hash_lock);
2025 			mutex_enter(&state->arcs_mtx);
2026 			ab_prev = list_prev(list, &marker);
2027 			list_remove(list, &marker);
2028 		} else {
2029 			bufs_skipped += 1;
2030 		}
2031 
2032 	}
2033 	mutex_exit(&state->arcs_mtx);
2034 
2035 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
2036 	    (bytes < 0 || bytes_deleted < bytes)) {
2037 		list = &state->arcs_list[ARC_BUFC_METADATA];
2038 		goto top;
2039 	}
2040 
2041 	if (bufs_skipped) {
2042 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2043 		ASSERT(bytes >= 0);
2044 	}
2045 
2046 	if (bytes_deleted < bytes)
2047 		dprintf("only deleted %lld bytes from %p",
2048 		    (longlong_t)bytes_deleted, state);
2049 }
2050 
2051 static void
2052 arc_adjust(void)
2053 {
2054 	int64_t adjustment, delta;
2055 
2056 	/*
2057 	 * Adjust MRU size
2058 	 */
2059 
2060 	adjustment = MIN((int64_t)(arc_size - arc_c),
2061 	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2062 	    arc_p));
2063 
2064 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2065 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2066 		(void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
2067 		adjustment -= delta;
2068 	}
2069 
2070 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2071 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2072 		(void) arc_evict(arc_mru, NULL, delta, FALSE,
2073 		    ARC_BUFC_METADATA);
2074 	}
2075 
2076 	/*
2077 	 * Adjust MFU size
2078 	 */
2079 
2080 	adjustment = arc_size - arc_c;
2081 
2082 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2083 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2084 		(void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
2085 		adjustment -= delta;
2086 	}
2087 
2088 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2089 		int64_t delta = MIN(adjustment,
2090 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2091 		(void) arc_evict(arc_mfu, NULL, delta, FALSE,
2092 		    ARC_BUFC_METADATA);
2093 	}
2094 
2095 	/*
2096 	 * Adjust ghost lists
2097 	 */
2098 
2099 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2100 
2101 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2102 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2103 		arc_evict_ghost(arc_mru_ghost, NULL, delta);
2104 	}
2105 
2106 	adjustment =
2107 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2108 
2109 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2110 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2111 		arc_evict_ghost(arc_mfu_ghost, NULL, delta);
2112 	}
2113 }
2114 
2115 static void
2116 arc_do_user_evicts(void)
2117 {
2118 	mutex_enter(&arc_eviction_mtx);
2119 	while (arc_eviction_list != NULL) {
2120 		arc_buf_t *buf = arc_eviction_list;
2121 		arc_eviction_list = buf->b_next;
2122 		mutex_enter(&buf->b_evict_lock);
2123 		buf->b_hdr = NULL;
2124 		mutex_exit(&buf->b_evict_lock);
2125 		mutex_exit(&arc_eviction_mtx);
2126 
2127 		if (buf->b_efunc != NULL)
2128 			VERIFY0(buf->b_efunc(buf->b_private));
2129 
2130 		buf->b_efunc = NULL;
2131 		buf->b_private = NULL;
2132 		kmem_cache_free(buf_cache, buf);
2133 		mutex_enter(&arc_eviction_mtx);
2134 	}
2135 	mutex_exit(&arc_eviction_mtx);
2136 }
2137 
2138 /*
2139  * Flush all *evictable* data from the cache for the given spa.
2140  * NOTE: this will not touch "active" (i.e. referenced) data.
2141  */
2142 void
2143 arc_flush(spa_t *spa)
2144 {
2145 	uint64_t guid = 0;
2146 
2147 	if (spa)
2148 		guid = spa_load_guid(spa);
2149 
2150 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
2151 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2152 		if (spa)
2153 			break;
2154 	}
2155 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
2156 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2157 		if (spa)
2158 			break;
2159 	}
2160 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
2161 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2162 		if (spa)
2163 			break;
2164 	}
2165 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
2166 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2167 		if (spa)
2168 			break;
2169 	}
2170 
2171 	arc_evict_ghost(arc_mru_ghost, guid, -1);
2172 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2173 
2174 	mutex_enter(&arc_reclaim_thr_lock);
2175 	arc_do_user_evicts();
2176 	mutex_exit(&arc_reclaim_thr_lock);
2177 	ASSERT(spa || arc_eviction_list == NULL);
2178 }
2179 
2180 void
2181 arc_shrink(void)
2182 {
2183 	if (arc_c > arc_c_min) {
2184 		uint64_t to_free;
2185 
2186 #ifdef _KERNEL
2187 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2188 #else
2189 		to_free = arc_c >> arc_shrink_shift;
2190 #endif
2191 		if (arc_c > arc_c_min + to_free)
2192 			atomic_add_64(&arc_c, -to_free);
2193 		else
2194 			arc_c = arc_c_min;
2195 
2196 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2197 		if (arc_c > arc_size)
2198 			arc_c = MAX(arc_size, arc_c_min);
2199 		if (arc_p > arc_c)
2200 			arc_p = (arc_c >> 1);
2201 		ASSERT(arc_c >= arc_c_min);
2202 		ASSERT((int64_t)arc_p >= 0);
2203 	}
2204 
2205 	if (arc_size > arc_c)
2206 		arc_adjust();
2207 }
2208 
2209 /*
2210  * Determine if the system is under memory pressure and is asking
2211  * to reclaim memory. A return value of 1 indicates that the system
2212  * is under memory pressure and that the arc should adjust accordingly.
2213  */
2214 static int
2215 arc_reclaim_needed(void)
2216 {
2217 	uint64_t extra;
2218 
2219 #ifdef _KERNEL
2220 
2221 	if (needfree)
2222 		return (1);
2223 
2224 	/*
2225 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2226 	 */
2227 	extra = desfree;
2228 
2229 	/*
2230 	 * check that we're out of range of the pageout scanner.  It starts to
2231 	 * schedule paging if freemem is less than lotsfree and needfree.
2232 	 * lotsfree is the high-water mark for pageout, and needfree is the
2233 	 * number of needed free pages.  We add extra pages here to make sure
2234 	 * the scanner doesn't start up while we're freeing memory.
2235 	 */
2236 	if (freemem < lotsfree + needfree + extra)
2237 		return (1);
2238 
2239 	/*
2240 	 * check to make sure that swapfs has enough space so that anon
2241 	 * reservations can still succeed. anon_resvmem() checks that the
2242 	 * availrmem is greater than swapfs_minfree, and the number of reserved
2243 	 * swap pages.  We also add a bit of extra here just to prevent
2244 	 * circumstances from getting really dire.
2245 	 */
2246 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2247 		return (1);
2248 
2249 	/*
2250 	 * Check that we have enough availrmem that memory locking (e.g., via
2251 	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
2252 	 * stores the number of pages that cannot be locked; when availrmem
2253 	 * drops below pages_pp_maximum, page locking mechanisms such as
2254 	 * page_pp_lock() will fail.)
2255 	 */
2256 	if (availrmem <= pages_pp_maximum)
2257 		return (1);
2258 
2259 #if defined(__i386)
2260 	/*
2261 	 * If we're on an i386 platform, it's possible that we'll exhaust the
2262 	 * kernel heap space before we ever run out of available physical
2263 	 * memory.  Most checks of the size of the heap_area compare against
2264 	 * tune.t_minarmem, which is the minimum available real memory that we
2265 	 * can have in the system.  However, this is generally fixed at 25 pages
2266 	 * which is so low that it's useless.  In this comparison, we seek to
2267 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2268 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2269 	 * free)
2270 	 */
2271 	if (vmem_size(heap_arena, VMEM_FREE) <
2272 	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2))
2273 		return (1);
2274 #endif
2275 
2276 	/*
2277 	 * If zio data pages are being allocated out of a separate heap segment,
2278 	 * then enforce that the size of available vmem for this arena remains
2279 	 * above about 1/16th free.
2280 	 *
2281 	 * Note: The 1/16th arena free requirement was put in place
2282 	 * to aggressively evict memory from the arc in order to avoid
2283 	 * memory fragmentation issues.
2284 	 */
2285 	if (zio_arena != NULL &&
2286 	    vmem_size(zio_arena, VMEM_FREE) <
2287 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2288 		return (1);
2289 #else
2290 	if (spa_get_random(100) == 0)
2291 		return (1);
2292 #endif
2293 	return (0);
2294 }
2295 
2296 static void
2297 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2298 {
2299 	size_t			i;
2300 	kmem_cache_t		*prev_cache = NULL;
2301 	kmem_cache_t		*prev_data_cache = NULL;
2302 	extern kmem_cache_t	*zio_buf_cache[];
2303 	extern kmem_cache_t	*zio_data_buf_cache[];
2304 
2305 #ifdef _KERNEL
2306 	if (arc_meta_used >= arc_meta_limit) {
2307 		/*
2308 		 * We are exceeding our meta-data cache limit.
2309 		 * Purge some DNLC entries to release holds on meta-data.
2310 		 */
2311 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2312 	}
2313 #if defined(__i386)
2314 	/*
2315 	 * Reclaim unused memory from all kmem caches.
2316 	 */
2317 	kmem_reap();
2318 #endif
2319 #endif
2320 
2321 	/*
2322 	 * An aggressive reclamation will shrink the cache size as well as
2323 	 * reap free buffers from the arc kmem caches.
2324 	 */
2325 	if (strat == ARC_RECLAIM_AGGR)
2326 		arc_shrink();
2327 
2328 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2329 		if (zio_buf_cache[i] != prev_cache) {
2330 			prev_cache = zio_buf_cache[i];
2331 			kmem_cache_reap_now(zio_buf_cache[i]);
2332 		}
2333 		if (zio_data_buf_cache[i] != prev_data_cache) {
2334 			prev_data_cache = zio_data_buf_cache[i];
2335 			kmem_cache_reap_now(zio_data_buf_cache[i]);
2336 		}
2337 	}
2338 	kmem_cache_reap_now(buf_cache);
2339 	kmem_cache_reap_now(hdr_cache);
2340 
2341 	/*
2342 	 * Ask the vmem areana to reclaim unused memory from its
2343 	 * quantum caches.
2344 	 */
2345 	if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2346 		vmem_qcache_reap(zio_arena);
2347 }
2348 
2349 static void
2350 arc_reclaim_thread(void)
2351 {
2352 	clock_t			growtime = 0;
2353 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2354 	callb_cpr_t		cpr;
2355 
2356 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2357 
2358 	mutex_enter(&arc_reclaim_thr_lock);
2359 	while (arc_thread_exit == 0) {
2360 		if (arc_reclaim_needed()) {
2361 
2362 			if (arc_no_grow) {
2363 				if (last_reclaim == ARC_RECLAIM_CONS) {
2364 					last_reclaim = ARC_RECLAIM_AGGR;
2365 				} else {
2366 					last_reclaim = ARC_RECLAIM_CONS;
2367 				}
2368 			} else {
2369 				arc_no_grow = TRUE;
2370 				last_reclaim = ARC_RECLAIM_AGGR;
2371 				membar_producer();
2372 			}
2373 
2374 			/* reset the growth delay for every reclaim */
2375 			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2376 
2377 			arc_kmem_reap_now(last_reclaim);
2378 			arc_warm = B_TRUE;
2379 
2380 		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2381 			arc_no_grow = FALSE;
2382 		}
2383 
2384 		arc_adjust();
2385 
2386 		if (arc_eviction_list != NULL)
2387 			arc_do_user_evicts();
2388 
2389 		/* block until needed, or one second, whichever is shorter */
2390 		CALLB_CPR_SAFE_BEGIN(&cpr);
2391 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2392 		    &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2393 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2394 	}
2395 
2396 	arc_thread_exit = 0;
2397 	cv_broadcast(&arc_reclaim_thr_cv);
2398 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2399 	thread_exit();
2400 }
2401 
2402 /*
2403  * Adapt arc info given the number of bytes we are trying to add and
2404  * the state that we are comming from.  This function is only called
2405  * when we are adding new content to the cache.
2406  */
2407 static void
2408 arc_adapt(int bytes, arc_state_t *state)
2409 {
2410 	int mult;
2411 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2412 
2413 	if (state == arc_l2c_only)
2414 		return;
2415 
2416 	ASSERT(bytes > 0);
2417 	/*
2418 	 * Adapt the target size of the MRU list:
2419 	 *	- if we just hit in the MRU ghost list, then increase
2420 	 *	  the target size of the MRU list.
2421 	 *	- if we just hit in the MFU ghost list, then increase
2422 	 *	  the target size of the MFU list by decreasing the
2423 	 *	  target size of the MRU list.
2424 	 */
2425 	if (state == arc_mru_ghost) {
2426 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2427 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2428 		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2429 
2430 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2431 	} else if (state == arc_mfu_ghost) {
2432 		uint64_t delta;
2433 
2434 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2435 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2436 		mult = MIN(mult, 10);
2437 
2438 		delta = MIN(bytes * mult, arc_p);
2439 		arc_p = MAX(arc_p_min, arc_p - delta);
2440 	}
2441 	ASSERT((int64_t)arc_p >= 0);
2442 
2443 	if (arc_reclaim_needed()) {
2444 		cv_signal(&arc_reclaim_thr_cv);
2445 		return;
2446 	}
2447 
2448 	if (arc_no_grow)
2449 		return;
2450 
2451 	if (arc_c >= arc_c_max)
2452 		return;
2453 
2454 	/*
2455 	 * If we're within (2 * maxblocksize) bytes of the target
2456 	 * cache size, increment the target cache size
2457 	 */
2458 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2459 		atomic_add_64(&arc_c, (int64_t)bytes);
2460 		if (arc_c > arc_c_max)
2461 			arc_c = arc_c_max;
2462 		else if (state == arc_anon)
2463 			atomic_add_64(&arc_p, (int64_t)bytes);
2464 		if (arc_p > arc_c)
2465 			arc_p = arc_c;
2466 	}
2467 	ASSERT((int64_t)arc_p >= 0);
2468 }
2469 
2470 /*
2471  * Check if the cache has reached its limits and eviction is required
2472  * prior to insert.
2473  */
2474 static int
2475 arc_evict_needed(arc_buf_contents_t type)
2476 {
2477 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2478 		return (1);
2479 
2480 	if (arc_reclaim_needed())
2481 		return (1);
2482 
2483 	return (arc_size > arc_c);
2484 }
2485 
2486 /*
2487  * The buffer, supplied as the first argument, needs a data block.
2488  * So, if we are at cache max, determine which cache should be victimized.
2489  * We have the following cases:
2490  *
2491  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2492  * In this situation if we're out of space, but the resident size of the MFU is
2493  * under the limit, victimize the MFU cache to satisfy this insertion request.
2494  *
2495  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2496  * Here, we've used up all of the available space for the MRU, so we need to
2497  * evict from our own cache instead.  Evict from the set of resident MRU
2498  * entries.
2499  *
2500  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2501  * c minus p represents the MFU space in the cache, since p is the size of the
2502  * cache that is dedicated to the MRU.  In this situation there's still space on
2503  * the MFU side, so the MRU side needs to be victimized.
2504  *
2505  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2506  * MFU's resident set is consuming more space than it has been allotted.  In
2507  * this situation, we must victimize our own cache, the MFU, for this insertion.
2508  */
2509 static void
2510 arc_get_data_buf(arc_buf_t *buf)
2511 {
2512 	arc_state_t		*state = buf->b_hdr->b_state;
2513 	uint64_t		size = buf->b_hdr->b_size;
2514 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2515 
2516 	arc_adapt(size, state);
2517 
2518 	/*
2519 	 * We have not yet reached cache maximum size,
2520 	 * just allocate a new buffer.
2521 	 */
2522 	if (!arc_evict_needed(type)) {
2523 		if (type == ARC_BUFC_METADATA) {
2524 			buf->b_data = zio_buf_alloc(size);
2525 			arc_space_consume(size, ARC_SPACE_DATA);
2526 		} else {
2527 			ASSERT(type == ARC_BUFC_DATA);
2528 			buf->b_data = zio_data_buf_alloc(size);
2529 			ARCSTAT_INCR(arcstat_data_size, size);
2530 			atomic_add_64(&arc_size, size);
2531 		}
2532 		goto out;
2533 	}
2534 
2535 	/*
2536 	 * If we are prefetching from the mfu ghost list, this buffer
2537 	 * will end up on the mru list; so steal space from there.
2538 	 */
2539 	if (state == arc_mfu_ghost)
2540 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2541 	else if (state == arc_mru_ghost)
2542 		state = arc_mru;
2543 
2544 	if (state == arc_mru || state == arc_anon) {
2545 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2546 		state = (arc_mfu->arcs_lsize[type] >= size &&
2547 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2548 	} else {
2549 		/* MFU cases */
2550 		uint64_t mfu_space = arc_c - arc_p;
2551 		state =  (arc_mru->arcs_lsize[type] >= size &&
2552 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2553 	}
2554 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2555 		if (type == ARC_BUFC_METADATA) {
2556 			buf->b_data = zio_buf_alloc(size);
2557 			arc_space_consume(size, ARC_SPACE_DATA);
2558 		} else {
2559 			ASSERT(type == ARC_BUFC_DATA);
2560 			buf->b_data = zio_data_buf_alloc(size);
2561 			ARCSTAT_INCR(arcstat_data_size, size);
2562 			atomic_add_64(&arc_size, size);
2563 		}
2564 		ARCSTAT_BUMP(arcstat_recycle_miss);
2565 	}
2566 	ASSERT(buf->b_data != NULL);
2567 out:
2568 	/*
2569 	 * Update the state size.  Note that ghost states have a
2570 	 * "ghost size" and so don't need to be updated.
2571 	 */
2572 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2573 		arc_buf_hdr_t *hdr = buf->b_hdr;
2574 
2575 		atomic_add_64(&hdr->b_state->arcs_size, size);
2576 		if (list_link_active(&hdr->b_arc_node)) {
2577 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2578 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2579 		}
2580 		/*
2581 		 * If we are growing the cache, and we are adding anonymous
2582 		 * data, and we have outgrown arc_p, update arc_p
2583 		 */
2584 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2585 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2586 			arc_p = MIN(arc_c, arc_p + size);
2587 	}
2588 }
2589 
2590 /*
2591  * This routine is called whenever a buffer is accessed.
2592  * NOTE: the hash lock is dropped in this function.
2593  */
2594 static void
2595 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2596 {
2597 	clock_t now;
2598 
2599 	ASSERT(MUTEX_HELD(hash_lock));
2600 
2601 	if (buf->b_state == arc_anon) {
2602 		/*
2603 		 * This buffer is not in the cache, and does not
2604 		 * appear in our "ghost" list.  Add the new buffer
2605 		 * to the MRU state.
2606 		 */
2607 
2608 		ASSERT(buf->b_arc_access == 0);
2609 		buf->b_arc_access = ddi_get_lbolt();
2610 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2611 		arc_change_state(arc_mru, buf, hash_lock);
2612 
2613 	} else if (buf->b_state == arc_mru) {
2614 		now = ddi_get_lbolt();
2615 
2616 		/*
2617 		 * If this buffer is here because of a prefetch, then either:
2618 		 * - clear the flag if this is a "referencing" read
2619 		 *   (any subsequent access will bump this into the MFU state).
2620 		 * or
2621 		 * - move the buffer to the head of the list if this is
2622 		 *   another prefetch (to make it less likely to be evicted).
2623 		 */
2624 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2625 			if (refcount_count(&buf->b_refcnt) == 0) {
2626 				ASSERT(list_link_active(&buf->b_arc_node));
2627 			} else {
2628 				buf->b_flags &= ~ARC_PREFETCH;
2629 				ARCSTAT_BUMP(arcstat_mru_hits);
2630 			}
2631 			buf->b_arc_access = now;
2632 			return;
2633 		}
2634 
2635 		/*
2636 		 * This buffer has been "accessed" only once so far,
2637 		 * but it is still in the cache. Move it to the MFU
2638 		 * state.
2639 		 */
2640 		if (now > buf->b_arc_access + ARC_MINTIME) {
2641 			/*
2642 			 * More than 125ms have passed since we
2643 			 * instantiated this buffer.  Move it to the
2644 			 * most frequently used state.
2645 			 */
2646 			buf->b_arc_access = now;
2647 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2648 			arc_change_state(arc_mfu, buf, hash_lock);
2649 		}
2650 		ARCSTAT_BUMP(arcstat_mru_hits);
2651 	} else if (buf->b_state == arc_mru_ghost) {
2652 		arc_state_t	*new_state;
2653 		/*
2654 		 * This buffer has been "accessed" recently, but
2655 		 * was evicted from the cache.  Move it to the
2656 		 * MFU state.
2657 		 */
2658 
2659 		if (buf->b_flags & ARC_PREFETCH) {
2660 			new_state = arc_mru;
2661 			if (refcount_count(&buf->b_refcnt) > 0)
2662 				buf->b_flags &= ~ARC_PREFETCH;
2663 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2664 		} else {
2665 			new_state = arc_mfu;
2666 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2667 		}
2668 
2669 		buf->b_arc_access = ddi_get_lbolt();
2670 		arc_change_state(new_state, buf, hash_lock);
2671 
2672 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2673 	} else if (buf->b_state == arc_mfu) {
2674 		/*
2675 		 * This buffer has been accessed more than once and is
2676 		 * still in the cache.  Keep it in the MFU state.
2677 		 *
2678 		 * NOTE: an add_reference() that occurred when we did
2679 		 * the arc_read() will have kicked this off the list.
2680 		 * If it was a prefetch, we will explicitly move it to
2681 		 * the head of the list now.
2682 		 */
2683 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2684 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2685 			ASSERT(list_link_active(&buf->b_arc_node));
2686 		}
2687 		ARCSTAT_BUMP(arcstat_mfu_hits);
2688 		buf->b_arc_access = ddi_get_lbolt();
2689 	} else if (buf->b_state == arc_mfu_ghost) {
2690 		arc_state_t	*new_state = arc_mfu;
2691 		/*
2692 		 * This buffer has been accessed more than once but has
2693 		 * been evicted from the cache.  Move it back to the
2694 		 * MFU state.
2695 		 */
2696 
2697 		if (buf->b_flags & ARC_PREFETCH) {
2698 			/*
2699 			 * This is a prefetch access...
2700 			 * move this block back to the MRU state.
2701 			 */
2702 			ASSERT0(refcount_count(&buf->b_refcnt));
2703 			new_state = arc_mru;
2704 		}
2705 
2706 		buf->b_arc_access = ddi_get_lbolt();
2707 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2708 		arc_change_state(new_state, buf, hash_lock);
2709 
2710 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2711 	} else if (buf->b_state == arc_l2c_only) {
2712 		/*
2713 		 * This buffer is on the 2nd Level ARC.
2714 		 */
2715 
2716 		buf->b_arc_access = ddi_get_lbolt();
2717 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2718 		arc_change_state(arc_mfu, buf, hash_lock);
2719 	} else {
2720 		ASSERT(!"invalid arc state");
2721 	}
2722 }
2723 
2724 /* a generic arc_done_func_t which you can use */
2725 /* ARGSUSED */
2726 void
2727 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2728 {
2729 	if (zio == NULL || zio->io_error == 0)
2730 		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2731 	VERIFY(arc_buf_remove_ref(buf, arg));
2732 }
2733 
2734 /* a generic arc_done_func_t */
2735 void
2736 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2737 {
2738 	arc_buf_t **bufp = arg;
2739 	if (zio && zio->io_error) {
2740 		VERIFY(arc_buf_remove_ref(buf, arg));
2741 		*bufp = NULL;
2742 	} else {
2743 		*bufp = buf;
2744 		ASSERT(buf->b_data);
2745 	}
2746 }
2747 
2748 static void
2749 arc_read_done(zio_t *zio)
2750 {
2751 	arc_buf_hdr_t	*hdr;
2752 	arc_buf_t	*buf;
2753 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2754 	kmutex_t	*hash_lock = NULL;
2755 	arc_callback_t	*callback_list, *acb;
2756 	int		freeable = FALSE;
2757 
2758 	buf = zio->io_private;
2759 	hdr = buf->b_hdr;
2760 
2761 	/*
2762 	 * The hdr was inserted into hash-table and removed from lists
2763 	 * prior to starting I/O.  We should find this header, since
2764 	 * it's in the hash table, and it should be legit since it's
2765 	 * not possible to evict it during the I/O.  The only possible
2766 	 * reason for it not to be found is if we were freed during the
2767 	 * read.
2768 	 */
2769 	if (HDR_IN_HASH_TABLE(hdr)) {
2770 		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
2771 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
2772 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
2773 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
2774 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
2775 
2776 		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
2777 		    &hash_lock);
2778 
2779 		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
2780 		    hash_lock == NULL) ||
2781 		    (found == hdr &&
2782 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2783 		    (found == hdr && HDR_L2_READING(hdr)));
2784 	}
2785 
2786 	hdr->b_flags &= ~ARC_L2_EVICTED;
2787 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2788 		hdr->b_flags &= ~ARC_L2CACHE;
2789 
2790 	/* byteswap if necessary */
2791 	callback_list = hdr->b_acb;
2792 	ASSERT(callback_list != NULL);
2793 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2794 		dmu_object_byteswap_t bswap =
2795 		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2796 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2797 		    byteswap_uint64_array :
2798 		    dmu_ot_byteswap[bswap].ob_func;
2799 		func(buf->b_data, hdr->b_size);
2800 	}
2801 
2802 	arc_cksum_compute(buf, B_FALSE);
2803 	arc_buf_watch(buf);
2804 
2805 	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2806 		/*
2807 		 * Only call arc_access on anonymous buffers.  This is because
2808 		 * if we've issued an I/O for an evicted buffer, we've already
2809 		 * called arc_access (to prevent any simultaneous readers from
2810 		 * getting confused).
2811 		 */
2812 		arc_access(hdr, hash_lock);
2813 	}
2814 
2815 	/* create copies of the data buffer for the callers */
2816 	abuf = buf;
2817 	for (acb = callback_list; acb; acb = acb->acb_next) {
2818 		if (acb->acb_done) {
2819 			if (abuf == NULL) {
2820 				ARCSTAT_BUMP(arcstat_duplicate_reads);
2821 				abuf = arc_buf_clone(buf);
2822 			}
2823 			acb->acb_buf = abuf;
2824 			abuf = NULL;
2825 		}
2826 	}
2827 	hdr->b_acb = NULL;
2828 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2829 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2830 	if (abuf == buf) {
2831 		ASSERT(buf->b_efunc == NULL);
2832 		ASSERT(hdr->b_datacnt == 1);
2833 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2834 	}
2835 
2836 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2837 
2838 	if (zio->io_error != 0) {
2839 		hdr->b_flags |= ARC_IO_ERROR;
2840 		if (hdr->b_state != arc_anon)
2841 			arc_change_state(arc_anon, hdr, hash_lock);
2842 		if (HDR_IN_HASH_TABLE(hdr))
2843 			buf_hash_remove(hdr);
2844 		freeable = refcount_is_zero(&hdr->b_refcnt);
2845 	}
2846 
2847 	/*
2848 	 * Broadcast before we drop the hash_lock to avoid the possibility
2849 	 * that the hdr (and hence the cv) might be freed before we get to
2850 	 * the cv_broadcast().
2851 	 */
2852 	cv_broadcast(&hdr->b_cv);
2853 
2854 	if (hash_lock) {
2855 		mutex_exit(hash_lock);
2856 	} else {
2857 		/*
2858 		 * This block was freed while we waited for the read to
2859 		 * complete.  It has been removed from the hash table and
2860 		 * moved to the anonymous state (so that it won't show up
2861 		 * in the cache).
2862 		 */
2863 		ASSERT3P(hdr->b_state, ==, arc_anon);
2864 		freeable = refcount_is_zero(&hdr->b_refcnt);
2865 	}
2866 
2867 	/* execute each callback and free its structure */
2868 	while ((acb = callback_list) != NULL) {
2869 		if (acb->acb_done)
2870 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2871 
2872 		if (acb->acb_zio_dummy != NULL) {
2873 			acb->acb_zio_dummy->io_error = zio->io_error;
2874 			zio_nowait(acb->acb_zio_dummy);
2875 		}
2876 
2877 		callback_list = acb->acb_next;
2878 		kmem_free(acb, sizeof (arc_callback_t));
2879 	}
2880 
2881 	if (freeable)
2882 		arc_hdr_destroy(hdr);
2883 }
2884 
2885 /*
2886  * "Read" the block at the specified DVA (in bp) via the
2887  * cache.  If the block is found in the cache, invoke the provided
2888  * callback immediately and return.  Note that the `zio' parameter
2889  * in the callback will be NULL in this case, since no IO was
2890  * required.  If the block is not in the cache pass the read request
2891  * on to the spa with a substitute callback function, so that the
2892  * requested block will be added to the cache.
2893  *
2894  * If a read request arrives for a block that has a read in-progress,
2895  * either wait for the in-progress read to complete (and return the
2896  * results); or, if this is a read with a "done" func, add a record
2897  * to the read to invoke the "done" func when the read completes,
2898  * and return; or just return.
2899  *
2900  * arc_read_done() will invoke all the requested "done" functions
2901  * for readers of this block.
2902  */
2903 int
2904 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2905     void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags,
2906     const zbookmark_phys_t *zb)
2907 {
2908 	arc_buf_hdr_t *hdr = NULL;
2909 	arc_buf_t *buf = NULL;
2910 	kmutex_t *hash_lock = NULL;
2911 	zio_t *rzio;
2912 	uint64_t guid = spa_load_guid(spa);
2913 
2914 	ASSERT(!BP_IS_EMBEDDED(bp) ||
2915 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2916 
2917 top:
2918 	if (!BP_IS_EMBEDDED(bp)) {
2919 		/*
2920 		 * Embedded BP's have no DVA and require no I/O to "read".
2921 		 * Create an anonymous arc buf to back it.
2922 		 */
2923 		hdr = buf_hash_find(guid, bp, &hash_lock);
2924 	}
2925 
2926 	if (hdr != NULL && hdr->b_datacnt > 0) {
2927 
2928 		*arc_flags |= ARC_CACHED;
2929 
2930 		if (HDR_IO_IN_PROGRESS(hdr)) {
2931 
2932 			if (*arc_flags & ARC_WAIT) {
2933 				cv_wait(&hdr->b_cv, hash_lock);
2934 				mutex_exit(hash_lock);
2935 				goto top;
2936 			}
2937 			ASSERT(*arc_flags & ARC_NOWAIT);
2938 
2939 			if (done) {
2940 				arc_callback_t	*acb = NULL;
2941 
2942 				acb = kmem_zalloc(sizeof (arc_callback_t),
2943 				    KM_SLEEP);
2944 				acb->acb_done = done;
2945 				acb->acb_private = private;
2946 				if (pio != NULL)
2947 					acb->acb_zio_dummy = zio_null(pio,
2948 					    spa, NULL, NULL, NULL, zio_flags);
2949 
2950 				ASSERT(acb->acb_done != NULL);
2951 				acb->acb_next = hdr->b_acb;
2952 				hdr->b_acb = acb;
2953 				add_reference(hdr, hash_lock, private);
2954 				mutex_exit(hash_lock);
2955 				return (0);
2956 			}
2957 			mutex_exit(hash_lock);
2958 			return (0);
2959 		}
2960 
2961 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2962 
2963 		if (done) {
2964 			add_reference(hdr, hash_lock, private);
2965 			/*
2966 			 * If this block is already in use, create a new
2967 			 * copy of the data so that we will be guaranteed
2968 			 * that arc_release() will always succeed.
2969 			 */
2970 			buf = hdr->b_buf;
2971 			ASSERT(buf);
2972 			ASSERT(buf->b_data);
2973 			if (HDR_BUF_AVAILABLE(hdr)) {
2974 				ASSERT(buf->b_efunc == NULL);
2975 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2976 			} else {
2977 				buf = arc_buf_clone(buf);
2978 			}
2979 
2980 		} else if (*arc_flags & ARC_PREFETCH &&
2981 		    refcount_count(&hdr->b_refcnt) == 0) {
2982 			hdr->b_flags |= ARC_PREFETCH;
2983 		}
2984 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2985 		arc_access(hdr, hash_lock);
2986 		if (*arc_flags & ARC_L2CACHE)
2987 			hdr->b_flags |= ARC_L2CACHE;
2988 		if (*arc_flags & ARC_L2COMPRESS)
2989 			hdr->b_flags |= ARC_L2COMPRESS;
2990 		mutex_exit(hash_lock);
2991 		ARCSTAT_BUMP(arcstat_hits);
2992 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2993 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2994 		    data, metadata, hits);
2995 
2996 		if (done)
2997 			done(NULL, buf, private);
2998 	} else {
2999 		uint64_t size = BP_GET_LSIZE(bp);
3000 		arc_callback_t *acb;
3001 		vdev_t *vd = NULL;
3002 		uint64_t addr = 0;
3003 		boolean_t devw = B_FALSE;
3004 		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
3005 		uint64_t b_asize = 0;
3006 
3007 		if (hdr == NULL) {
3008 			/* this block is not in the cache */
3009 			arc_buf_hdr_t *exists = NULL;
3010 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3011 			buf = arc_buf_alloc(spa, size, private, type);
3012 			hdr = buf->b_hdr;
3013 			if (!BP_IS_EMBEDDED(bp)) {
3014 				hdr->b_dva = *BP_IDENTITY(bp);
3015 				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3016 				hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3017 				exists = buf_hash_insert(hdr, &hash_lock);
3018 			}
3019 			if (exists != NULL) {
3020 				/* somebody beat us to the hash insert */
3021 				mutex_exit(hash_lock);
3022 				buf_discard_identity(hdr);
3023 				(void) arc_buf_remove_ref(buf, private);
3024 				goto top; /* restart the IO request */
3025 			}
3026 			/* if this is a prefetch, we don't have a reference */
3027 			if (*arc_flags & ARC_PREFETCH) {
3028 				(void) remove_reference(hdr, hash_lock,
3029 				    private);
3030 				hdr->b_flags |= ARC_PREFETCH;
3031 			}
3032 			if (*arc_flags & ARC_L2CACHE)
3033 				hdr->b_flags |= ARC_L2CACHE;
3034 			if (*arc_flags & ARC_L2COMPRESS)
3035 				hdr->b_flags |= ARC_L2COMPRESS;
3036 			if (BP_GET_LEVEL(bp) > 0)
3037 				hdr->b_flags |= ARC_INDIRECT;
3038 		} else {
3039 			/* this block is in the ghost cache */
3040 			ASSERT(GHOST_STATE(hdr->b_state));
3041 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3042 			ASSERT0(refcount_count(&hdr->b_refcnt));
3043 			ASSERT(hdr->b_buf == NULL);
3044 
3045 			/* if this is a prefetch, we don't have a reference */
3046 			if (*arc_flags & ARC_PREFETCH)
3047 				hdr->b_flags |= ARC_PREFETCH;
3048 			else
3049 				add_reference(hdr, hash_lock, private);
3050 			if (*arc_flags & ARC_L2CACHE)
3051 				hdr->b_flags |= ARC_L2CACHE;
3052 			if (*arc_flags & ARC_L2COMPRESS)
3053 				hdr->b_flags |= ARC_L2COMPRESS;
3054 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3055 			buf->b_hdr = hdr;
3056 			buf->b_data = NULL;
3057 			buf->b_efunc = NULL;
3058 			buf->b_private = NULL;
3059 			buf->b_next = NULL;
3060 			hdr->b_buf = buf;
3061 			ASSERT(hdr->b_datacnt == 0);
3062 			hdr->b_datacnt = 1;
3063 			arc_get_data_buf(buf);
3064 			arc_access(hdr, hash_lock);
3065 		}
3066 
3067 		ASSERT(!GHOST_STATE(hdr->b_state));
3068 
3069 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
3070 		acb->acb_done = done;
3071 		acb->acb_private = private;
3072 
3073 		ASSERT(hdr->b_acb == NULL);
3074 		hdr->b_acb = acb;
3075 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
3076 
3077 		if (hdr->b_l2hdr != NULL &&
3078 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3079 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3080 			addr = hdr->b_l2hdr->b_daddr;
3081 			b_compress = hdr->b_l2hdr->b_compress;
3082 			b_asize = hdr->b_l2hdr->b_asize;
3083 			/*
3084 			 * Lock out device removal.
3085 			 */
3086 			if (vdev_is_dead(vd) ||
3087 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3088 				vd = NULL;
3089 		}
3090 
3091 		if (hash_lock != NULL)
3092 			mutex_exit(hash_lock);
3093 
3094 		/*
3095 		 * At this point, we have a level 1 cache miss.  Try again in
3096 		 * L2ARC if possible.
3097 		 */
3098 		ASSERT3U(hdr->b_size, ==, size);
3099 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3100 		    uint64_t, size, zbookmark_phys_t *, zb);
3101 		ARCSTAT_BUMP(arcstat_misses);
3102 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3103 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3104 		    data, metadata, misses);
3105 
3106 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3107 			/*
3108 			 * Read from the L2ARC if the following are true:
3109 			 * 1. The L2ARC vdev was previously cached.
3110 			 * 2. This buffer still has L2ARC metadata.
3111 			 * 3. This buffer isn't currently writing to the L2ARC.
3112 			 * 4. The L2ARC entry wasn't evicted, which may
3113 			 *    also have invalidated the vdev.
3114 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
3115 			 */
3116 			if (hdr->b_l2hdr != NULL &&
3117 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3118 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3119 				l2arc_read_callback_t *cb;
3120 
3121 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3122 				ARCSTAT_BUMP(arcstat_l2_hits);
3123 
3124 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3125 				    KM_SLEEP);
3126 				cb->l2rcb_buf = buf;
3127 				cb->l2rcb_spa = spa;
3128 				cb->l2rcb_bp = *bp;
3129 				cb->l2rcb_zb = *zb;
3130 				cb->l2rcb_flags = zio_flags;
3131 				cb->l2rcb_compress = b_compress;
3132 
3133 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3134 				    addr + size < vd->vdev_psize -
3135 				    VDEV_LABEL_END_SIZE);
3136 
3137 				/*
3138 				 * l2arc read.  The SCL_L2ARC lock will be
3139 				 * released by l2arc_read_done().
3140 				 * Issue a null zio if the underlying buffer
3141 				 * was squashed to zero size by compression.
3142 				 */
3143 				if (b_compress == ZIO_COMPRESS_EMPTY) {
3144 					rzio = zio_null(pio, spa, vd,
3145 					    l2arc_read_done, cb,
3146 					    zio_flags | ZIO_FLAG_DONT_CACHE |
3147 					    ZIO_FLAG_CANFAIL |
3148 					    ZIO_FLAG_DONT_PROPAGATE |
3149 					    ZIO_FLAG_DONT_RETRY);
3150 				} else {
3151 					rzio = zio_read_phys(pio, vd, addr,
3152 					    b_asize, buf->b_data,
3153 					    ZIO_CHECKSUM_OFF,
3154 					    l2arc_read_done, cb, priority,
3155 					    zio_flags | ZIO_FLAG_DONT_CACHE |
3156 					    ZIO_FLAG_CANFAIL |
3157 					    ZIO_FLAG_DONT_PROPAGATE |
3158 					    ZIO_FLAG_DONT_RETRY, B_FALSE);
3159 				}
3160 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3161 				    zio_t *, rzio);
3162 				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
3163 
3164 				if (*arc_flags & ARC_NOWAIT) {
3165 					zio_nowait(rzio);
3166 					return (0);
3167 				}
3168 
3169 				ASSERT(*arc_flags & ARC_WAIT);
3170 				if (zio_wait(rzio) == 0)
3171 					return (0);
3172 
3173 				/* l2arc read error; goto zio_read() */
3174 			} else {
3175 				DTRACE_PROBE1(l2arc__miss,
3176 				    arc_buf_hdr_t *, hdr);
3177 				ARCSTAT_BUMP(arcstat_l2_misses);
3178 				if (HDR_L2_WRITING(hdr))
3179 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3180 				spa_config_exit(spa, SCL_L2ARC, vd);
3181 			}
3182 		} else {
3183 			if (vd != NULL)
3184 				spa_config_exit(spa, SCL_L2ARC, vd);
3185 			if (l2arc_ndev != 0) {
3186 				DTRACE_PROBE1(l2arc__miss,
3187 				    arc_buf_hdr_t *, hdr);
3188 				ARCSTAT_BUMP(arcstat_l2_misses);
3189 			}
3190 		}
3191 
3192 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3193 		    arc_read_done, buf, priority, zio_flags, zb);
3194 
3195 		if (*arc_flags & ARC_WAIT)
3196 			return (zio_wait(rzio));
3197 
3198 		ASSERT(*arc_flags & ARC_NOWAIT);
3199 		zio_nowait(rzio);
3200 	}
3201 	return (0);
3202 }
3203 
3204 void
3205 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3206 {
3207 	ASSERT(buf->b_hdr != NULL);
3208 	ASSERT(buf->b_hdr->b_state != arc_anon);
3209 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3210 	ASSERT(buf->b_efunc == NULL);
3211 	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3212 
3213 	buf->b_efunc = func;
3214 	buf->b_private = private;
3215 }
3216 
3217 /*
3218  * Notify the arc that a block was freed, and thus will never be used again.
3219  */
3220 void
3221 arc_freed(spa_t *spa, const blkptr_t *bp)
3222 {
3223 	arc_buf_hdr_t *hdr;
3224 	kmutex_t *hash_lock;
3225 	uint64_t guid = spa_load_guid(spa);
3226 
3227 	ASSERT(!BP_IS_EMBEDDED(bp));
3228 
3229 	hdr = buf_hash_find(guid, bp, &hash_lock);
3230 	if (hdr == NULL)
3231 		return;
3232 	if (HDR_BUF_AVAILABLE(hdr)) {
3233 		arc_buf_t *buf = hdr->b_buf;
3234 		add_reference(hdr, hash_lock, FTAG);
3235 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3236 		mutex_exit(hash_lock);
3237 
3238 		arc_release(buf, FTAG);
3239 		(void) arc_buf_remove_ref(buf, FTAG);
3240 	} else {
3241 		mutex_exit(hash_lock);
3242 	}
3243 
3244 }
3245 
3246 /*
3247  * Clear the user eviction callback set by arc_set_callback(), first calling
3248  * it if it exists.  Because the presence of a callback keeps an arc_buf cached
3249  * clearing the callback may result in the arc_buf being destroyed.  However,
3250  * it will not result in the *last* arc_buf being destroyed, hence the data
3251  * will remain cached in the ARC. We make a copy of the arc buffer here so
3252  * that we can process the callback without holding any locks.
3253  *
3254  * It's possible that the callback is already in the process of being cleared
3255  * by another thread.  In this case we can not clear the callback.
3256  *
3257  * Returns B_TRUE if the callback was successfully called and cleared.
3258  */
3259 boolean_t
3260 arc_clear_callback(arc_buf_t *buf)
3261 {
3262 	arc_buf_hdr_t *hdr;
3263 	kmutex_t *hash_lock;
3264 	arc_evict_func_t *efunc = buf->b_efunc;
3265 	void *private = buf->b_private;
3266 
3267 	mutex_enter(&buf->b_evict_lock);
3268 	hdr = buf->b_hdr;
3269 	if (hdr == NULL) {
3270 		/*
3271 		 * We are in arc_do_user_evicts().
3272 		 */
3273 		ASSERT(buf->b_data == NULL);
3274 		mutex_exit(&buf->b_evict_lock);
3275 		return (B_FALSE);
3276 	} else if (buf->b_data == NULL) {
3277 		/*
3278 		 * We are on the eviction list; process this buffer now
3279 		 * but let arc_do_user_evicts() do the reaping.
3280 		 */
3281 		buf->b_efunc = NULL;
3282 		mutex_exit(&buf->b_evict_lock);
3283 		VERIFY0(efunc(private));
3284 		return (B_TRUE);
3285 	}
3286 	hash_lock = HDR_LOCK(hdr);
3287 	mutex_enter(hash_lock);
3288 	hdr = buf->b_hdr;
3289 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3290 
3291 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3292 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3293 
3294 	buf->b_efunc = NULL;
3295 	buf->b_private = NULL;
3296 
3297 	if (hdr->b_datacnt > 1) {
3298 		mutex_exit(&buf->b_evict_lock);
3299 		arc_buf_destroy(buf, FALSE, TRUE);
3300 	} else {
3301 		ASSERT(buf == hdr->b_buf);
3302 		hdr->b_flags |= ARC_BUF_AVAILABLE;
3303 		mutex_exit(&buf->b_evict_lock);
3304 	}
3305 
3306 	mutex_exit(hash_lock);
3307 	VERIFY0(efunc(private));
3308 	return (B_TRUE);
3309 }
3310 
3311 /*
3312  * Release this buffer from the cache, making it an anonymous buffer.  This
3313  * must be done after a read and prior to modifying the buffer contents.
3314  * If the buffer has more than one reference, we must make
3315  * a new hdr for the buffer.
3316  */
3317 void
3318 arc_release(arc_buf_t *buf, void *tag)
3319 {
3320 	arc_buf_hdr_t *hdr;
3321 	kmutex_t *hash_lock = NULL;
3322 	l2arc_buf_hdr_t *l2hdr;
3323 	uint64_t buf_size;
3324 
3325 	/*
3326 	 * It would be nice to assert that if it's DMU metadata (level >
3327 	 * 0 || it's the dnode file), then it must be syncing context.
3328 	 * But we don't know that information at this level.
3329 	 */
3330 
3331 	mutex_enter(&buf->b_evict_lock);
3332 	hdr = buf->b_hdr;
3333 
3334 	/* this buffer is not on any list */
3335 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3336 
3337 	if (hdr->b_state == arc_anon) {
3338 		/* this buffer is already released */
3339 		ASSERT(buf->b_efunc == NULL);
3340 	} else {
3341 		hash_lock = HDR_LOCK(hdr);
3342 		mutex_enter(hash_lock);
3343 		hdr = buf->b_hdr;
3344 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3345 	}
3346 
3347 	l2hdr = hdr->b_l2hdr;
3348 	if (l2hdr) {
3349 		mutex_enter(&l2arc_buflist_mtx);
3350 		hdr->b_l2hdr = NULL;
3351 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3352 	}
3353 	buf_size = hdr->b_size;
3354 
3355 	/*
3356 	 * Do we have more than one buf?
3357 	 */
3358 	if (hdr->b_datacnt > 1) {
3359 		arc_buf_hdr_t *nhdr;
3360 		arc_buf_t **bufp;
3361 		uint64_t blksz = hdr->b_size;
3362 		uint64_t spa = hdr->b_spa;
3363 		arc_buf_contents_t type = hdr->b_type;
3364 		uint32_t flags = hdr->b_flags;
3365 
3366 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3367 		/*
3368 		 * Pull the data off of this hdr and attach it to
3369 		 * a new anonymous hdr.
3370 		 */
3371 		(void) remove_reference(hdr, hash_lock, tag);
3372 		bufp = &hdr->b_buf;
3373 		while (*bufp != buf)
3374 			bufp = &(*bufp)->b_next;
3375 		*bufp = buf->b_next;
3376 		buf->b_next = NULL;
3377 
3378 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3379 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3380 		if (refcount_is_zero(&hdr->b_refcnt)) {
3381 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3382 			ASSERT3U(*size, >=, hdr->b_size);
3383 			atomic_add_64(size, -hdr->b_size);
3384 		}
3385 
3386 		/*
3387 		 * We're releasing a duplicate user data buffer, update
3388 		 * our statistics accordingly.
3389 		 */
3390 		if (hdr->b_type == ARC_BUFC_DATA) {
3391 			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3392 			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3393 			    -hdr->b_size);
3394 		}
3395 		hdr->b_datacnt -= 1;
3396 		arc_cksum_verify(buf);
3397 		arc_buf_unwatch(buf);
3398 
3399 		mutex_exit(hash_lock);
3400 
3401 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3402 		nhdr->b_size = blksz;
3403 		nhdr->b_spa = spa;
3404 		nhdr->b_type = type;
3405 		nhdr->b_buf = buf;
3406 		nhdr->b_state = arc_anon;
3407 		nhdr->b_arc_access = 0;
3408 		nhdr->b_flags = flags & ARC_L2_WRITING;
3409 		nhdr->b_l2hdr = NULL;
3410 		nhdr->b_datacnt = 1;
3411 		nhdr->b_freeze_cksum = NULL;
3412 		(void) refcount_add(&nhdr->b_refcnt, tag);
3413 		buf->b_hdr = nhdr;
3414 		mutex_exit(&buf->b_evict_lock);
3415 		atomic_add_64(&arc_anon->arcs_size, blksz);
3416 	} else {
3417 		mutex_exit(&buf->b_evict_lock);
3418 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3419 		ASSERT(!list_link_active(&hdr->b_arc_node));
3420 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3421 		if (hdr->b_state != arc_anon)
3422 			arc_change_state(arc_anon, hdr, hash_lock);
3423 		hdr->b_arc_access = 0;
3424 		if (hash_lock)
3425 			mutex_exit(hash_lock);
3426 
3427 		buf_discard_identity(hdr);
3428 		arc_buf_thaw(buf);
3429 	}
3430 	buf->b_efunc = NULL;
3431 	buf->b_private = NULL;
3432 
3433 	if (l2hdr) {
3434 		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3435 		vdev_space_update(l2hdr->b_dev->l2ad_vdev,
3436 		    -l2hdr->b_asize, 0, 0);
3437 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3438 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3439 		mutex_exit(&l2arc_buflist_mtx);
3440 	}
3441 }
3442 
3443 int
3444 arc_released(arc_buf_t *buf)
3445 {
3446 	int released;
3447 
3448 	mutex_enter(&buf->b_evict_lock);
3449 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3450 	mutex_exit(&buf->b_evict_lock);
3451 	return (released);
3452 }
3453 
3454 #ifdef ZFS_DEBUG
3455 int
3456 arc_referenced(arc_buf_t *buf)
3457 {
3458 	int referenced;
3459 
3460 	mutex_enter(&buf->b_evict_lock);
3461 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3462 	mutex_exit(&buf->b_evict_lock);
3463 	return (referenced);
3464 }
3465 #endif
3466 
3467 static void
3468 arc_write_ready(zio_t *zio)
3469 {
3470 	arc_write_callback_t *callback = zio->io_private;
3471 	arc_buf_t *buf = callback->awcb_buf;
3472 	arc_buf_hdr_t *hdr = buf->b_hdr;
3473 
3474 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3475 	callback->awcb_ready(zio, buf, callback->awcb_private);
3476 
3477 	/*
3478 	 * If the IO is already in progress, then this is a re-write
3479 	 * attempt, so we need to thaw and re-compute the cksum.
3480 	 * It is the responsibility of the callback to handle the
3481 	 * accounting for any re-write attempt.
3482 	 */
3483 	if (HDR_IO_IN_PROGRESS(hdr)) {
3484 		mutex_enter(&hdr->b_freeze_lock);
3485 		if (hdr->b_freeze_cksum != NULL) {
3486 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3487 			hdr->b_freeze_cksum = NULL;
3488 		}
3489 		mutex_exit(&hdr->b_freeze_lock);
3490 	}
3491 	arc_cksum_compute(buf, B_FALSE);
3492 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3493 }
3494 
3495 /*
3496  * The SPA calls this callback for each physical write that happens on behalf
3497  * of a logical write.  See the comment in dbuf_write_physdone() for details.
3498  */
3499 static void
3500 arc_write_physdone(zio_t *zio)
3501 {
3502 	arc_write_callback_t *cb = zio->io_private;
3503 	if (cb->awcb_physdone != NULL)
3504 		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3505 }
3506 
3507 static void
3508 arc_write_done(zio_t *zio)
3509 {
3510 	arc_write_callback_t *callback = zio->io_private;
3511 	arc_buf_t *buf = callback->awcb_buf;
3512 	arc_buf_hdr_t *hdr = buf->b_hdr;
3513 
3514 	ASSERT(hdr->b_acb == NULL);
3515 
3516 	if (zio->io_error == 0) {
3517 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
3518 			buf_discard_identity(hdr);
3519 		} else {
3520 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3521 			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3522 			hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3523 		}
3524 	} else {
3525 		ASSERT(BUF_EMPTY(hdr));
3526 	}
3527 
3528 	/*
3529 	 * If the block to be written was all-zero or compressed enough to be
3530 	 * embedded in the BP, no write was performed so there will be no
3531 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
3532 	 * (and uncached).
3533 	 */
3534 	if (!BUF_EMPTY(hdr)) {
3535 		arc_buf_hdr_t *exists;
3536 		kmutex_t *hash_lock;
3537 
3538 		ASSERT(zio->io_error == 0);
3539 
3540 		arc_cksum_verify(buf);
3541 
3542 		exists = buf_hash_insert(hdr, &hash_lock);
3543 		if (exists) {
3544 			/*
3545 			 * This can only happen if we overwrite for
3546 			 * sync-to-convergence, because we remove
3547 			 * buffers from the hash table when we arc_free().
3548 			 */
3549 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3550 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3551 					panic("bad overwrite, hdr=%p exists=%p",
3552 					    (void *)hdr, (void *)exists);
3553 				ASSERT(refcount_is_zero(&exists->b_refcnt));
3554 				arc_change_state(arc_anon, exists, hash_lock);
3555 				mutex_exit(hash_lock);
3556 				arc_hdr_destroy(exists);
3557 				exists = buf_hash_insert(hdr, &hash_lock);
3558 				ASSERT3P(exists, ==, NULL);
3559 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3560 				/* nopwrite */
3561 				ASSERT(zio->io_prop.zp_nopwrite);
3562 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3563 					panic("bad nopwrite, hdr=%p exists=%p",
3564 					    (void *)hdr, (void *)exists);
3565 			} else {
3566 				/* Dedup */
3567 				ASSERT(hdr->b_datacnt == 1);
3568 				ASSERT(hdr->b_state == arc_anon);
3569 				ASSERT(BP_GET_DEDUP(zio->io_bp));
3570 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3571 			}
3572 		}
3573 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3574 		/* if it's not anon, we are doing a scrub */
3575 		if (!exists && hdr->b_state == arc_anon)
3576 			arc_access(hdr, hash_lock);
3577 		mutex_exit(hash_lock);
3578 	} else {
3579 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3580 	}
3581 
3582 	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3583 	callback->awcb_done(zio, buf, callback->awcb_private);
3584 
3585 	kmem_free(callback, sizeof (arc_write_callback_t));
3586 }
3587 
3588 zio_t *
3589 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3590     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
3591     const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
3592     arc_done_func_t *done, void *private, zio_priority_t priority,
3593     int zio_flags, const zbookmark_phys_t *zb)
3594 {
3595 	arc_buf_hdr_t *hdr = buf->b_hdr;
3596 	arc_write_callback_t *callback;
3597 	zio_t *zio;
3598 
3599 	ASSERT(ready != NULL);
3600 	ASSERT(done != NULL);
3601 	ASSERT(!HDR_IO_ERROR(hdr));
3602 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3603 	ASSERT(hdr->b_acb == NULL);
3604 	if (l2arc)
3605 		hdr->b_flags |= ARC_L2CACHE;
3606 	if (l2arc_compress)
3607 		hdr->b_flags |= ARC_L2COMPRESS;
3608 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3609 	callback->awcb_ready = ready;
3610 	callback->awcb_physdone = physdone;
3611 	callback->awcb_done = done;
3612 	callback->awcb_private = private;
3613 	callback->awcb_buf = buf;
3614 
3615 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3616 	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
3617 	    priority, zio_flags, zb);
3618 
3619 	return (zio);
3620 }
3621 
3622 static int
3623 arc_memory_throttle(uint64_t reserve, uint64_t txg)
3624 {
3625 #ifdef _KERNEL
3626 	uint64_t available_memory = ptob(freemem);
3627 	static uint64_t page_load = 0;
3628 	static uint64_t last_txg = 0;
3629 
3630 #if defined(__i386)
3631 	available_memory =
3632 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3633 #endif
3634 
3635 	if (freemem > physmem * arc_lotsfree_percent / 100)
3636 		return (0);
3637 
3638 	if (txg > last_txg) {
3639 		last_txg = txg;
3640 		page_load = 0;
3641 	}
3642 	/*
3643 	 * If we are in pageout, we know that memory is already tight,
3644 	 * the arc is already going to be evicting, so we just want to
3645 	 * continue to let page writes occur as quickly as possible.
3646 	 */
3647 	if (curproc == proc_pageout) {
3648 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3649 			return (SET_ERROR(ERESTART));
3650 		/* Note: reserve is inflated, so we deflate */
3651 		page_load += reserve / 8;
3652 		return (0);
3653 	} else if (page_load > 0 && arc_reclaim_needed()) {
3654 		/* memory is low, delay before restarting */
3655 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3656 		return (SET_ERROR(EAGAIN));
3657 	}
3658 	page_load = 0;
3659 #endif
3660 	return (0);
3661 }
3662 
3663 void
3664 arc_tempreserve_clear(uint64_t reserve)
3665 {
3666 	atomic_add_64(&arc_tempreserve, -reserve);
3667 	ASSERT((int64_t)arc_tempreserve >= 0);
3668 }
3669 
3670 int
3671 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3672 {
3673 	int error;
3674 	uint64_t anon_size;
3675 
3676 	if (reserve > arc_c/4 && !arc_no_grow)
3677 		arc_c = MIN(arc_c_max, reserve * 4);
3678 	if (reserve > arc_c)
3679 		return (SET_ERROR(ENOMEM));
3680 
3681 	/*
3682 	 * Don't count loaned bufs as in flight dirty data to prevent long
3683 	 * network delays from blocking transactions that are ready to be
3684 	 * assigned to a txg.
3685 	 */
3686 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3687 
3688 	/*
3689 	 * Writes will, almost always, require additional memory allocations
3690 	 * in order to compress/encrypt/etc the data.  We therefore need to
3691 	 * make sure that there is sufficient available memory for this.
3692 	 */
3693 	error = arc_memory_throttle(reserve, txg);
3694 	if (error != 0)
3695 		return (error);
3696 
3697 	/*
3698 	 * Throttle writes when the amount of dirty data in the cache
3699 	 * gets too large.  We try to keep the cache less than half full
3700 	 * of dirty blocks so that our sync times don't grow too large.
3701 	 * Note: if two requests come in concurrently, we might let them
3702 	 * both succeed, when one of them should fail.  Not a huge deal.
3703 	 */
3704 
3705 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3706 	    anon_size > arc_c / 4) {
3707 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3708 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3709 		    arc_tempreserve>>10,
3710 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3711 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3712 		    reserve>>10, arc_c>>10);
3713 		return (SET_ERROR(ERESTART));
3714 	}
3715 	atomic_add_64(&arc_tempreserve, reserve);
3716 	return (0);
3717 }
3718 
3719 void
3720 arc_init(void)
3721 {
3722 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3723 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3724 
3725 	/* Convert seconds to clock ticks */
3726 	arc_min_prefetch_lifespan = 1 * hz;
3727 
3728 	/* Start out with 1/8 of all memory */
3729 	arc_c = physmem * PAGESIZE / 8;
3730 
3731 #ifdef _KERNEL
3732 	/*
3733 	 * On architectures where the physical memory can be larger
3734 	 * than the addressable space (intel in 32-bit mode), we may
3735 	 * need to limit the cache to 1/8 of VM size.
3736 	 */
3737 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3738 #endif
3739 
3740 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3741 	arc_c_min = MAX(arc_c / 4, 64<<20);
3742 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3743 	if (arc_c * 8 >= 1<<30)
3744 		arc_c_max = (arc_c * 8) - (1<<30);
3745 	else
3746 		arc_c_max = arc_c_min;
3747 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3748 
3749 	/*
3750 	 * Allow the tunables to override our calculations if they are
3751 	 * reasonable (ie. over 64MB)
3752 	 */
3753 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3754 		arc_c_max = zfs_arc_max;
3755 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3756 		arc_c_min = zfs_arc_min;
3757 
3758 	arc_c = arc_c_max;
3759 	arc_p = (arc_c >> 1);
3760 
3761 	/* limit meta-data to 1/4 of the arc capacity */
3762 	arc_meta_limit = arc_c_max / 4;
3763 
3764 	/* Allow the tunable to override if it is reasonable */
3765 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3766 		arc_meta_limit = zfs_arc_meta_limit;
3767 
3768 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3769 		arc_c_min = arc_meta_limit / 2;
3770 
3771 	if (zfs_arc_grow_retry > 0)
3772 		arc_grow_retry = zfs_arc_grow_retry;
3773 
3774 	if (zfs_arc_shrink_shift > 0)
3775 		arc_shrink_shift = zfs_arc_shrink_shift;
3776 
3777 	if (zfs_arc_p_min_shift > 0)
3778 		arc_p_min_shift = zfs_arc_p_min_shift;
3779 
3780 	/* if kmem_flags are set, lets try to use less memory */
3781 	if (kmem_debugging())
3782 		arc_c = arc_c / 2;
3783 	if (arc_c < arc_c_min)
3784 		arc_c = arc_c_min;
3785 
3786 	arc_anon = &ARC_anon;
3787 	arc_mru = &ARC_mru;
3788 	arc_mru_ghost = &ARC_mru_ghost;
3789 	arc_mfu = &ARC_mfu;
3790 	arc_mfu_ghost = &ARC_mfu_ghost;
3791 	arc_l2c_only = &ARC_l2c_only;
3792 	arc_size = 0;
3793 
3794 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3795 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3796 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3797 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3798 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3799 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3800 
3801 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3802 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3803 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3804 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3805 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3806 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3807 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3808 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3809 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3810 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3811 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3812 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3813 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3814 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3815 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3816 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3817 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3818 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3819 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3820 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3821 
3822 	buf_init();
3823 
3824 	arc_thread_exit = 0;
3825 	arc_eviction_list = NULL;
3826 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3827 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3828 
3829 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3830 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3831 
3832 	if (arc_ksp != NULL) {
3833 		arc_ksp->ks_data = &arc_stats;
3834 		kstat_install(arc_ksp);
3835 	}
3836 
3837 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3838 	    TS_RUN, minclsyspri);
3839 
3840 	arc_dead = FALSE;
3841 	arc_warm = B_FALSE;
3842 
3843 	/*
3844 	 * Calculate maximum amount of dirty data per pool.
3845 	 *
3846 	 * If it has been set by /etc/system, take that.
3847 	 * Otherwise, use a percentage of physical memory defined by
3848 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
3849 	 * zfs_dirty_data_max_max (default 4GB).
3850 	 */
3851 	if (zfs_dirty_data_max == 0) {
3852 		zfs_dirty_data_max = physmem * PAGESIZE *
3853 		    zfs_dirty_data_max_percent / 100;
3854 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
3855 		    zfs_dirty_data_max_max);
3856 	}
3857 }
3858 
3859 void
3860 arc_fini(void)
3861 {
3862 	mutex_enter(&arc_reclaim_thr_lock);
3863 	arc_thread_exit = 1;
3864 	while (arc_thread_exit != 0)
3865 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3866 	mutex_exit(&arc_reclaim_thr_lock);
3867 
3868 	arc_flush(NULL);
3869 
3870 	arc_dead = TRUE;
3871 
3872 	if (arc_ksp != NULL) {
3873 		kstat_delete(arc_ksp);
3874 		arc_ksp = NULL;
3875 	}
3876 
3877 	mutex_destroy(&arc_eviction_mtx);
3878 	mutex_destroy(&arc_reclaim_thr_lock);
3879 	cv_destroy(&arc_reclaim_thr_cv);
3880 
3881 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3882 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3883 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3884 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3885 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3886 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3887 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3888 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3889 
3890 	mutex_destroy(&arc_anon->arcs_mtx);
3891 	mutex_destroy(&arc_mru->arcs_mtx);
3892 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3893 	mutex_destroy(&arc_mfu->arcs_mtx);
3894 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3895 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3896 
3897 	buf_fini();
3898 
3899 	ASSERT(arc_loaned_bytes == 0);
3900 }
3901 
3902 /*
3903  * Level 2 ARC
3904  *
3905  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3906  * It uses dedicated storage devices to hold cached data, which are populated
3907  * using large infrequent writes.  The main role of this cache is to boost
3908  * the performance of random read workloads.  The intended L2ARC devices
3909  * include short-stroked disks, solid state disks, and other media with
3910  * substantially faster read latency than disk.
3911  *
3912  *                 +-----------------------+
3913  *                 |         ARC           |
3914  *                 +-----------------------+
3915  *                    |         ^     ^
3916  *                    |         |     |
3917  *      l2arc_feed_thread()    arc_read()
3918  *                    |         |     |
3919  *                    |  l2arc read   |
3920  *                    V         |     |
3921  *               +---------------+    |
3922  *               |     L2ARC     |    |
3923  *               +---------------+    |
3924  *                   |    ^           |
3925  *          l2arc_write() |           |
3926  *                   |    |           |
3927  *                   V    |           |
3928  *                 +-------+      +-------+
3929  *                 | vdev  |      | vdev  |
3930  *                 | cache |      | cache |
3931  *                 +-------+      +-------+
3932  *                 +=========+     .-----.
3933  *                 :  L2ARC  :    |-_____-|
3934  *                 : devices :    | Disks |
3935  *                 +=========+    `-_____-'
3936  *
3937  * Read requests are satisfied from the following sources, in order:
3938  *
3939  *	1) ARC
3940  *	2) vdev cache of L2ARC devices
3941  *	3) L2ARC devices
3942  *	4) vdev cache of disks
3943  *	5) disks
3944  *
3945  * Some L2ARC device types exhibit extremely slow write performance.
3946  * To accommodate for this there are some significant differences between
3947  * the L2ARC and traditional cache design:
3948  *
3949  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3950  * the ARC behave as usual, freeing buffers and placing headers on ghost
3951  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3952  * this would add inflated write latencies for all ARC memory pressure.
3953  *
3954  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3955  * It does this by periodically scanning buffers from the eviction-end of
3956  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3957  * not already there. It scans until a headroom of buffers is satisfied,
3958  * which itself is a buffer for ARC eviction. If a compressible buffer is
3959  * found during scanning and selected for writing to an L2ARC device, we
3960  * temporarily boost scanning headroom during the next scan cycle to make
3961  * sure we adapt to compression effects (which might significantly reduce
3962  * the data volume we write to L2ARC). The thread that does this is
3963  * l2arc_feed_thread(), illustrated below; example sizes are included to
3964  * provide a better sense of ratio than this diagram:
3965  *
3966  *	       head -->                        tail
3967  *	        +---------------------+----------+
3968  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3969  *	        +---------------------+----------+   |   o L2ARC eligible
3970  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3971  *	        +---------------------+----------+   |
3972  *	             15.9 Gbytes      ^ 32 Mbytes    |
3973  *	                           headroom          |
3974  *	                                      l2arc_feed_thread()
3975  *	                                             |
3976  *	                 l2arc write hand <--[oooo]--'
3977  *	                         |           8 Mbyte
3978  *	                         |          write max
3979  *	                         V
3980  *		  +==============================+
3981  *	L2ARC dev |####|#|###|###|    |####| ... |
3982  *	          +==============================+
3983  *	                     32 Gbytes
3984  *
3985  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3986  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3987  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3988  * safe to say that this is an uncommon case, since buffers at the end of
3989  * the ARC lists have moved there due to inactivity.
3990  *
3991  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3992  * then the L2ARC simply misses copying some buffers.  This serves as a
3993  * pressure valve to prevent heavy read workloads from both stalling the ARC
3994  * with waits and clogging the L2ARC with writes.  This also helps prevent
3995  * the potential for the L2ARC to churn if it attempts to cache content too
3996  * quickly, such as during backups of the entire pool.
3997  *
3998  * 5. After system boot and before the ARC has filled main memory, there are
3999  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4000  * lists can remain mostly static.  Instead of searching from tail of these
4001  * lists as pictured, the l2arc_feed_thread() will search from the list heads
4002  * for eligible buffers, greatly increasing its chance of finding them.
4003  *
4004  * The L2ARC device write speed is also boosted during this time so that
4005  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
4006  * there are no L2ARC reads, and no fear of degrading read performance
4007  * through increased writes.
4008  *
4009  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4010  * the vdev queue can aggregate them into larger and fewer writes.  Each
4011  * device is written to in a rotor fashion, sweeping writes through
4012  * available space then repeating.
4013  *
4014  * 7. The L2ARC does not store dirty content.  It never needs to flush
4015  * write buffers back to disk based storage.
4016  *
4017  * 8. If an ARC buffer is written (and dirtied) which also exists in the
4018  * L2ARC, the now stale L2ARC buffer is immediately dropped.
4019  *
4020  * The performance of the L2ARC can be tweaked by a number of tunables, which
4021  * may be necessary for different workloads:
4022  *
4023  *	l2arc_write_max		max write bytes per interval
4024  *	l2arc_write_boost	extra write bytes during device warmup
4025  *	l2arc_noprefetch	skip caching prefetched buffers
4026  *	l2arc_headroom		number of max device writes to precache
4027  *	l2arc_headroom_boost	when we find compressed buffers during ARC
4028  *				scanning, we multiply headroom by this
4029  *				percentage factor for the next scan cycle,
4030  *				since more compressed buffers are likely to
4031  *				be present
4032  *	l2arc_feed_secs		seconds between L2ARC writing
4033  *
4034  * Tunables may be removed or added as future performance improvements are
4035  * integrated, and also may become zpool properties.
4036  *
4037  * There are three key functions that control how the L2ARC warms up:
4038  *
4039  *	l2arc_write_eligible()	check if a buffer is eligible to cache
4040  *	l2arc_write_size()	calculate how much to write
4041  *	l2arc_write_interval()	calculate sleep delay between writes
4042  *
4043  * These three functions determine what to write, how much, and how quickly
4044  * to send writes.
4045  */
4046 
4047 static boolean_t
4048 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4049 {
4050 	/*
4051 	 * A buffer is *not* eligible for the L2ARC if it:
4052 	 * 1. belongs to a different spa.
4053 	 * 2. is already cached on the L2ARC.
4054 	 * 3. has an I/O in progress (it may be an incomplete read).
4055 	 * 4. is flagged not eligible (zfs property).
4056 	 */
4057 	if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
4058 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
4059 		return (B_FALSE);
4060 
4061 	return (B_TRUE);
4062 }
4063 
4064 static uint64_t
4065 l2arc_write_size(void)
4066 {
4067 	uint64_t size;
4068 
4069 	/*
4070 	 * Make sure our globals have meaningful values in case the user
4071 	 * altered them.
4072 	 */
4073 	size = l2arc_write_max;
4074 	if (size == 0) {
4075 		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4076 		    "be greater than zero, resetting it to the default (%d)",
4077 		    L2ARC_WRITE_SIZE);
4078 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
4079 	}
4080 
4081 	if (arc_warm == B_FALSE)
4082 		size += l2arc_write_boost;
4083 
4084 	return (size);
4085 
4086 }
4087 
4088 static clock_t
4089 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4090 {
4091 	clock_t interval, next, now;
4092 
4093 	/*
4094 	 * If the ARC lists are busy, increase our write rate; if the
4095 	 * lists are stale, idle back.  This is achieved by checking
4096 	 * how much we previously wrote - if it was more than half of
4097 	 * what we wanted, schedule the next write much sooner.
4098 	 */
4099 	if (l2arc_feed_again && wrote > (wanted / 2))
4100 		interval = (hz * l2arc_feed_min_ms) / 1000;
4101 	else
4102 		interval = hz * l2arc_feed_secs;
4103 
4104 	now = ddi_get_lbolt();
4105 	next = MAX(now, MIN(now + interval, began + interval));
4106 
4107 	return (next);
4108 }
4109 
4110 static void
4111 l2arc_hdr_stat_add(void)
4112 {
4113 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4114 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4115 }
4116 
4117 static void
4118 l2arc_hdr_stat_remove(void)
4119 {
4120 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4121 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4122 }
4123 
4124 /*
4125  * Cycle through L2ARC devices.  This is how L2ARC load balances.
4126  * If a device is returned, this also returns holding the spa config lock.
4127  */
4128 static l2arc_dev_t *
4129 l2arc_dev_get_next(void)
4130 {
4131 	l2arc_dev_t *first, *next = NULL;
4132 
4133 	/*
4134 	 * Lock out the removal of spas (spa_namespace_lock), then removal
4135 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4136 	 * both locks will be dropped and a spa config lock held instead.
4137 	 */
4138 	mutex_enter(&spa_namespace_lock);
4139 	mutex_enter(&l2arc_dev_mtx);
4140 
4141 	/* if there are no vdevs, there is nothing to do */
4142 	if (l2arc_ndev == 0)
4143 		goto out;
4144 
4145 	first = NULL;
4146 	next = l2arc_dev_last;
4147 	do {
4148 		/* loop around the list looking for a non-faulted vdev */
4149 		if (next == NULL) {
4150 			next = list_head(l2arc_dev_list);
4151 		} else {
4152 			next = list_next(l2arc_dev_list, next);
4153 			if (next == NULL)
4154 				next = list_head(l2arc_dev_list);
4155 		}
4156 
4157 		/* if we have come back to the start, bail out */
4158 		if (first == NULL)
4159 			first = next;
4160 		else if (next == first)
4161 			break;
4162 
4163 	} while (vdev_is_dead(next->l2ad_vdev));
4164 
4165 	/* if we were unable to find any usable vdevs, return NULL */
4166 	if (vdev_is_dead(next->l2ad_vdev))
4167 		next = NULL;
4168 
4169 	l2arc_dev_last = next;
4170 
4171 out:
4172 	mutex_exit(&l2arc_dev_mtx);
4173 
4174 	/*
4175 	 * Grab the config lock to prevent the 'next' device from being
4176 	 * removed while we are writing to it.
4177 	 */
4178 	if (next != NULL)
4179 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4180 	mutex_exit(&spa_namespace_lock);
4181 
4182 	return (next);
4183 }
4184 
4185 /*
4186  * Free buffers that were tagged for destruction.
4187  */
4188 static void
4189 l2arc_do_free_on_write()
4190 {
4191 	list_t *buflist;
4192 	l2arc_data_free_t *df, *df_prev;
4193 
4194 	mutex_enter(&l2arc_free_on_write_mtx);
4195 	buflist = l2arc_free_on_write;
4196 
4197 	for (df = list_tail(buflist); df; df = df_prev) {
4198 		df_prev = list_prev(buflist, df);
4199 		ASSERT(df->l2df_data != NULL);
4200 		ASSERT(df->l2df_func != NULL);
4201 		df->l2df_func(df->l2df_data, df->l2df_size);
4202 		list_remove(buflist, df);
4203 		kmem_free(df, sizeof (l2arc_data_free_t));
4204 	}
4205 
4206 	mutex_exit(&l2arc_free_on_write_mtx);
4207 }
4208 
4209 /*
4210  * A write to a cache device has completed.  Update all headers to allow
4211  * reads from these buffers to begin.
4212  */
4213 static void
4214 l2arc_write_done(zio_t *zio)
4215 {
4216 	l2arc_write_callback_t *cb;
4217 	l2arc_dev_t *dev;
4218 	list_t *buflist;
4219 	arc_buf_hdr_t *head, *ab, *ab_prev;
4220 	l2arc_buf_hdr_t *abl2;
4221 	kmutex_t *hash_lock;
4222 	int64_t bytes_dropped = 0;
4223 
4224 	cb = zio->io_private;
4225 	ASSERT(cb != NULL);
4226 	dev = cb->l2wcb_dev;
4227 	ASSERT(dev != NULL);
4228 	head = cb->l2wcb_head;
4229 	ASSERT(head != NULL);
4230 	buflist = dev->l2ad_buflist;
4231 	ASSERT(buflist != NULL);
4232 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4233 	    l2arc_write_callback_t *, cb);
4234 
4235 	if (zio->io_error != 0)
4236 		ARCSTAT_BUMP(arcstat_l2_writes_error);
4237 
4238 	mutex_enter(&l2arc_buflist_mtx);
4239 
4240 	/*
4241 	 * All writes completed, or an error was hit.
4242 	 */
4243 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4244 		ab_prev = list_prev(buflist, ab);
4245 		abl2 = ab->b_l2hdr;
4246 
4247 		/*
4248 		 * Release the temporary compressed buffer as soon as possible.
4249 		 */
4250 		if (abl2->b_compress != ZIO_COMPRESS_OFF)
4251 			l2arc_release_cdata_buf(ab);
4252 
4253 		hash_lock = HDR_LOCK(ab);
4254 		if (!mutex_tryenter(hash_lock)) {
4255 			/*
4256 			 * This buffer misses out.  It may be in a stage
4257 			 * of eviction.  Its ARC_L2_WRITING flag will be
4258 			 * left set, denying reads to this buffer.
4259 			 */
4260 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4261 			continue;
4262 		}
4263 
4264 		if (zio->io_error != 0) {
4265 			/*
4266 			 * Error - drop L2ARC entry.
4267 			 */
4268 			list_remove(buflist, ab);
4269 			ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4270 			bytes_dropped += abl2->b_asize;
4271 			ab->b_l2hdr = NULL;
4272 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4273 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4274 		}
4275 
4276 		/*
4277 		 * Allow ARC to begin reads to this L2ARC entry.
4278 		 */
4279 		ab->b_flags &= ~ARC_L2_WRITING;
4280 
4281 		mutex_exit(hash_lock);
4282 	}
4283 
4284 	atomic_inc_64(&l2arc_writes_done);
4285 	list_remove(buflist, head);
4286 	kmem_cache_free(hdr_cache, head);
4287 	mutex_exit(&l2arc_buflist_mtx);
4288 
4289 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
4290 
4291 	l2arc_do_free_on_write();
4292 
4293 	kmem_free(cb, sizeof (l2arc_write_callback_t));
4294 }
4295 
4296 /*
4297  * A read to a cache device completed.  Validate buffer contents before
4298  * handing over to the regular ARC routines.
4299  */
4300 static void
4301 l2arc_read_done(zio_t *zio)
4302 {
4303 	l2arc_read_callback_t *cb;
4304 	arc_buf_hdr_t *hdr;
4305 	arc_buf_t *buf;
4306 	kmutex_t *hash_lock;
4307 	int equal;
4308 
4309 	ASSERT(zio->io_vd != NULL);
4310 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4311 
4312 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4313 
4314 	cb = zio->io_private;
4315 	ASSERT(cb != NULL);
4316 	buf = cb->l2rcb_buf;
4317 	ASSERT(buf != NULL);
4318 
4319 	hash_lock = HDR_LOCK(buf->b_hdr);
4320 	mutex_enter(hash_lock);
4321 	hdr = buf->b_hdr;
4322 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4323 
4324 	/*
4325 	 * If the buffer was compressed, decompress it first.
4326 	 */
4327 	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4328 		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4329 	ASSERT(zio->io_data != NULL);
4330 
4331 	/*
4332 	 * Check this survived the L2ARC journey.
4333 	 */
4334 	equal = arc_cksum_equal(buf);
4335 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4336 		mutex_exit(hash_lock);
4337 		zio->io_private = buf;
4338 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4339 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4340 		arc_read_done(zio);
4341 	} else {
4342 		mutex_exit(hash_lock);
4343 		/*
4344 		 * Buffer didn't survive caching.  Increment stats and
4345 		 * reissue to the original storage device.
4346 		 */
4347 		if (zio->io_error != 0) {
4348 			ARCSTAT_BUMP(arcstat_l2_io_error);
4349 		} else {
4350 			zio->io_error = SET_ERROR(EIO);
4351 		}
4352 		if (!equal)
4353 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4354 
4355 		/*
4356 		 * If there's no waiter, issue an async i/o to the primary
4357 		 * storage now.  If there *is* a waiter, the caller must
4358 		 * issue the i/o in a context where it's OK to block.
4359 		 */
4360 		if (zio->io_waiter == NULL) {
4361 			zio_t *pio = zio_unique_parent(zio);
4362 
4363 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4364 
4365 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4366 			    buf->b_data, zio->io_size, arc_read_done, buf,
4367 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4368 		}
4369 	}
4370 
4371 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4372 }
4373 
4374 /*
4375  * This is the list priority from which the L2ARC will search for pages to
4376  * cache.  This is used within loops (0..3) to cycle through lists in the
4377  * desired order.  This order can have a significant effect on cache
4378  * performance.
4379  *
4380  * Currently the metadata lists are hit first, MFU then MRU, followed by
4381  * the data lists.  This function returns a locked list, and also returns
4382  * the lock pointer.
4383  */
4384 static list_t *
4385 l2arc_list_locked(int list_num, kmutex_t **lock)
4386 {
4387 	list_t *list = NULL;
4388 
4389 	ASSERT(list_num >= 0 && list_num <= 3);
4390 
4391 	switch (list_num) {
4392 	case 0:
4393 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4394 		*lock = &arc_mfu->arcs_mtx;
4395 		break;
4396 	case 1:
4397 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4398 		*lock = &arc_mru->arcs_mtx;
4399 		break;
4400 	case 2:
4401 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4402 		*lock = &arc_mfu->arcs_mtx;
4403 		break;
4404 	case 3:
4405 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4406 		*lock = &arc_mru->arcs_mtx;
4407 		break;
4408 	}
4409 
4410 	ASSERT(!(MUTEX_HELD(*lock)));
4411 	mutex_enter(*lock);
4412 	return (list);
4413 }
4414 
4415 /*
4416  * Evict buffers from the device write hand to the distance specified in
4417  * bytes.  This distance may span populated buffers, it may span nothing.
4418  * This is clearing a region on the L2ARC device ready for writing.
4419  * If the 'all' boolean is set, every buffer is evicted.
4420  */
4421 static void
4422 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4423 {
4424 	list_t *buflist;
4425 	l2arc_buf_hdr_t *abl2;
4426 	arc_buf_hdr_t *ab, *ab_prev;
4427 	kmutex_t *hash_lock;
4428 	uint64_t taddr;
4429 	int64_t bytes_evicted = 0;
4430 
4431 	buflist = dev->l2ad_buflist;
4432 
4433 	if (buflist == NULL)
4434 		return;
4435 
4436 	if (!all && dev->l2ad_first) {
4437 		/*
4438 		 * This is the first sweep through the device.  There is
4439 		 * nothing to evict.
4440 		 */
4441 		return;
4442 	}
4443 
4444 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4445 		/*
4446 		 * When nearing the end of the device, evict to the end
4447 		 * before the device write hand jumps to the start.
4448 		 */
4449 		taddr = dev->l2ad_end;
4450 	} else {
4451 		taddr = dev->l2ad_hand + distance;
4452 	}
4453 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4454 	    uint64_t, taddr, boolean_t, all);
4455 
4456 top:
4457 	mutex_enter(&l2arc_buflist_mtx);
4458 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4459 		ab_prev = list_prev(buflist, ab);
4460 
4461 		hash_lock = HDR_LOCK(ab);
4462 		if (!mutex_tryenter(hash_lock)) {
4463 			/*
4464 			 * Missed the hash lock.  Retry.
4465 			 */
4466 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4467 			mutex_exit(&l2arc_buflist_mtx);
4468 			mutex_enter(hash_lock);
4469 			mutex_exit(hash_lock);
4470 			goto top;
4471 		}
4472 
4473 		if (HDR_L2_WRITE_HEAD(ab)) {
4474 			/*
4475 			 * We hit a write head node.  Leave it for
4476 			 * l2arc_write_done().
4477 			 */
4478 			list_remove(buflist, ab);
4479 			mutex_exit(hash_lock);
4480 			continue;
4481 		}
4482 
4483 		if (!all && ab->b_l2hdr != NULL &&
4484 		    (ab->b_l2hdr->b_daddr > taddr ||
4485 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4486 			/*
4487 			 * We've evicted to the target address,
4488 			 * or the end of the device.
4489 			 */
4490 			mutex_exit(hash_lock);
4491 			break;
4492 		}
4493 
4494 		if (HDR_FREE_IN_PROGRESS(ab)) {
4495 			/*
4496 			 * Already on the path to destruction.
4497 			 */
4498 			mutex_exit(hash_lock);
4499 			continue;
4500 		}
4501 
4502 		if (ab->b_state == arc_l2c_only) {
4503 			ASSERT(!HDR_L2_READING(ab));
4504 			/*
4505 			 * This doesn't exist in the ARC.  Destroy.
4506 			 * arc_hdr_destroy() will call list_remove()
4507 			 * and decrement arcstat_l2_size.
4508 			 */
4509 			arc_change_state(arc_anon, ab, hash_lock);
4510 			arc_hdr_destroy(ab);
4511 		} else {
4512 			/*
4513 			 * Invalidate issued or about to be issued
4514 			 * reads, since we may be about to write
4515 			 * over this location.
4516 			 */
4517 			if (HDR_L2_READING(ab)) {
4518 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4519 				ab->b_flags |= ARC_L2_EVICTED;
4520 			}
4521 
4522 			/*
4523 			 * Tell ARC this no longer exists in L2ARC.
4524 			 */
4525 			if (ab->b_l2hdr != NULL) {
4526 				abl2 = ab->b_l2hdr;
4527 				ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4528 				bytes_evicted += abl2->b_asize;
4529 				ab->b_l2hdr = NULL;
4530 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4531 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4532 			}
4533 			list_remove(buflist, ab);
4534 
4535 			/*
4536 			 * This may have been leftover after a
4537 			 * failed write.
4538 			 */
4539 			ab->b_flags &= ~ARC_L2_WRITING;
4540 		}
4541 		mutex_exit(hash_lock);
4542 	}
4543 	mutex_exit(&l2arc_buflist_mtx);
4544 
4545 	vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0);
4546 	dev->l2ad_evict = taddr;
4547 }
4548 
4549 /*
4550  * Find and write ARC buffers to the L2ARC device.
4551  *
4552  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4553  * for reading until they have completed writing.
4554  * The headroom_boost is an in-out parameter used to maintain headroom boost
4555  * state between calls to this function.
4556  *
4557  * Returns the number of bytes actually written (which may be smaller than
4558  * the delta by which the device hand has changed due to alignment).
4559  */
4560 static uint64_t
4561 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4562     boolean_t *headroom_boost)
4563 {
4564 	arc_buf_hdr_t *ab, *ab_prev, *head;
4565 	list_t *list;
4566 	uint64_t write_asize, write_psize, write_sz, headroom,
4567 	    buf_compress_minsz;
4568 	void *buf_data;
4569 	kmutex_t *list_lock;
4570 	boolean_t full;
4571 	l2arc_write_callback_t *cb;
4572 	zio_t *pio, *wzio;
4573 	uint64_t guid = spa_load_guid(spa);
4574 	const boolean_t do_headroom_boost = *headroom_boost;
4575 
4576 	ASSERT(dev->l2ad_vdev != NULL);
4577 
4578 	/* Lower the flag now, we might want to raise it again later. */
4579 	*headroom_boost = B_FALSE;
4580 
4581 	pio = NULL;
4582 	write_sz = write_asize = write_psize = 0;
4583 	full = B_FALSE;
4584 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4585 	head->b_flags |= ARC_L2_WRITE_HEAD;
4586 
4587 	/*
4588 	 * We will want to try to compress buffers that are at least 2x the
4589 	 * device sector size.
4590 	 */
4591 	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4592 
4593 	/*
4594 	 * Copy buffers for L2ARC writing.
4595 	 */
4596 	mutex_enter(&l2arc_buflist_mtx);
4597 	for (int try = 0; try <= 3; try++) {
4598 		uint64_t passed_sz = 0;
4599 
4600 		list = l2arc_list_locked(try, &list_lock);
4601 
4602 		/*
4603 		 * L2ARC fast warmup.
4604 		 *
4605 		 * Until the ARC is warm and starts to evict, read from the
4606 		 * head of the ARC lists rather than the tail.
4607 		 */
4608 		if (arc_warm == B_FALSE)
4609 			ab = list_head(list);
4610 		else
4611 			ab = list_tail(list);
4612 
4613 		headroom = target_sz * l2arc_headroom;
4614 		if (do_headroom_boost)
4615 			headroom = (headroom * l2arc_headroom_boost) / 100;
4616 
4617 		for (; ab; ab = ab_prev) {
4618 			l2arc_buf_hdr_t *l2hdr;
4619 			kmutex_t *hash_lock;
4620 			uint64_t buf_sz;
4621 
4622 			if (arc_warm == B_FALSE)
4623 				ab_prev = list_next(list, ab);
4624 			else
4625 				ab_prev = list_prev(list, ab);
4626 
4627 			hash_lock = HDR_LOCK(ab);
4628 			if (!mutex_tryenter(hash_lock)) {
4629 				/*
4630 				 * Skip this buffer rather than waiting.
4631 				 */
4632 				continue;
4633 			}
4634 
4635 			passed_sz += ab->b_size;
4636 			if (passed_sz > headroom) {
4637 				/*
4638 				 * Searched too far.
4639 				 */
4640 				mutex_exit(hash_lock);
4641 				break;
4642 			}
4643 
4644 			if (!l2arc_write_eligible(guid, ab)) {
4645 				mutex_exit(hash_lock);
4646 				continue;
4647 			}
4648 
4649 			if ((write_sz + ab->b_size) > target_sz) {
4650 				full = B_TRUE;
4651 				mutex_exit(hash_lock);
4652 				break;
4653 			}
4654 
4655 			if (pio == NULL) {
4656 				/*
4657 				 * Insert a dummy header on the buflist so
4658 				 * l2arc_write_done() can find where the
4659 				 * write buffers begin without searching.
4660 				 */
4661 				list_insert_head(dev->l2ad_buflist, head);
4662 
4663 				cb = kmem_alloc(
4664 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4665 				cb->l2wcb_dev = dev;
4666 				cb->l2wcb_head = head;
4667 				pio = zio_root(spa, l2arc_write_done, cb,
4668 				    ZIO_FLAG_CANFAIL);
4669 			}
4670 
4671 			/*
4672 			 * Create and add a new L2ARC header.
4673 			 */
4674 			l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4675 			l2hdr->b_dev = dev;
4676 			ab->b_flags |= ARC_L2_WRITING;
4677 
4678 			/*
4679 			 * Temporarily stash the data buffer in b_tmp_cdata.
4680 			 * The subsequent write step will pick it up from
4681 			 * there. This is because can't access ab->b_buf
4682 			 * without holding the hash_lock, which we in turn
4683 			 * can't access without holding the ARC list locks
4684 			 * (which we want to avoid during compression/writing).
4685 			 */
4686 			l2hdr->b_compress = ZIO_COMPRESS_OFF;
4687 			l2hdr->b_asize = ab->b_size;
4688 			l2hdr->b_tmp_cdata = ab->b_buf->b_data;
4689 
4690 			buf_sz = ab->b_size;
4691 			ab->b_l2hdr = l2hdr;
4692 
4693 			list_insert_head(dev->l2ad_buflist, ab);
4694 
4695 			/*
4696 			 * Compute and store the buffer cksum before
4697 			 * writing.  On debug the cksum is verified first.
4698 			 */
4699 			arc_cksum_verify(ab->b_buf);
4700 			arc_cksum_compute(ab->b_buf, B_TRUE);
4701 
4702 			mutex_exit(hash_lock);
4703 
4704 			write_sz += buf_sz;
4705 		}
4706 
4707 		mutex_exit(list_lock);
4708 
4709 		if (full == B_TRUE)
4710 			break;
4711 	}
4712 
4713 	/* No buffers selected for writing? */
4714 	if (pio == NULL) {
4715 		ASSERT0(write_sz);
4716 		mutex_exit(&l2arc_buflist_mtx);
4717 		kmem_cache_free(hdr_cache, head);
4718 		return (0);
4719 	}
4720 
4721 	/*
4722 	 * Now start writing the buffers. We're starting at the write head
4723 	 * and work backwards, retracing the course of the buffer selector
4724 	 * loop above.
4725 	 */
4726 	for (ab = list_prev(dev->l2ad_buflist, head); ab;
4727 	    ab = list_prev(dev->l2ad_buflist, ab)) {
4728 		l2arc_buf_hdr_t *l2hdr;
4729 		uint64_t buf_sz;
4730 
4731 		/*
4732 		 * We shouldn't need to lock the buffer here, since we flagged
4733 		 * it as ARC_L2_WRITING in the previous step, but we must take
4734 		 * care to only access its L2 cache parameters. In particular,
4735 		 * ab->b_buf may be invalid by now due to ARC eviction.
4736 		 */
4737 		l2hdr = ab->b_l2hdr;
4738 		l2hdr->b_daddr = dev->l2ad_hand;
4739 
4740 		if ((ab->b_flags & ARC_L2COMPRESS) &&
4741 		    l2hdr->b_asize >= buf_compress_minsz) {
4742 			if (l2arc_compress_buf(l2hdr)) {
4743 				/*
4744 				 * If compression succeeded, enable headroom
4745 				 * boost on the next scan cycle.
4746 				 */
4747 				*headroom_boost = B_TRUE;
4748 			}
4749 		}
4750 
4751 		/*
4752 		 * Pick up the buffer data we had previously stashed away
4753 		 * (and now potentially also compressed).
4754 		 */
4755 		buf_data = l2hdr->b_tmp_cdata;
4756 		buf_sz = l2hdr->b_asize;
4757 
4758 		/* Compression may have squashed the buffer to zero length. */
4759 		if (buf_sz != 0) {
4760 			uint64_t buf_p_sz;
4761 
4762 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4763 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4764 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4765 			    ZIO_FLAG_CANFAIL, B_FALSE);
4766 
4767 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4768 			    zio_t *, wzio);
4769 			(void) zio_nowait(wzio);
4770 
4771 			write_asize += buf_sz;
4772 			/*
4773 			 * Keep the clock hand suitably device-aligned.
4774 			 */
4775 			buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4776 			write_psize += buf_p_sz;
4777 			dev->l2ad_hand += buf_p_sz;
4778 		}
4779 	}
4780 
4781 	mutex_exit(&l2arc_buflist_mtx);
4782 
4783 	ASSERT3U(write_asize, <=, target_sz);
4784 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4785 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
4786 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4787 	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
4788 	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
4789 
4790 	/*
4791 	 * Bump device hand to the device start if it is approaching the end.
4792 	 * l2arc_evict() will already have evicted ahead for this case.
4793 	 */
4794 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4795 		dev->l2ad_hand = dev->l2ad_start;
4796 		dev->l2ad_evict = dev->l2ad_start;
4797 		dev->l2ad_first = B_FALSE;
4798 	}
4799 
4800 	dev->l2ad_writing = B_TRUE;
4801 	(void) zio_wait(pio);
4802 	dev->l2ad_writing = B_FALSE;
4803 
4804 	return (write_asize);
4805 }
4806 
4807 /*
4808  * Compresses an L2ARC buffer.
4809  * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
4810  * size in l2hdr->b_asize. This routine tries to compress the data and
4811  * depending on the compression result there are three possible outcomes:
4812  * *) The buffer was incompressible. The original l2hdr contents were left
4813  *    untouched and are ready for writing to an L2 device.
4814  * *) The buffer was all-zeros, so there is no need to write it to an L2
4815  *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
4816  *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
4817  * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
4818  *    data buffer which holds the compressed data to be written, and b_asize
4819  *    tells us how much data there is. b_compress is set to the appropriate
4820  *    compression algorithm. Once writing is done, invoke
4821  *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
4822  *
4823  * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
4824  * buffer was incompressible).
4825  */
4826 static boolean_t
4827 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
4828 {
4829 	void *cdata;
4830 	size_t csize, len, rounded;
4831 
4832 	ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
4833 	ASSERT(l2hdr->b_tmp_cdata != NULL);
4834 
4835 	len = l2hdr->b_asize;
4836 	cdata = zio_data_buf_alloc(len);
4837 	csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
4838 	    cdata, l2hdr->b_asize);
4839 
4840 	rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
4841 	if (rounded > csize) {
4842 		bzero((char *)cdata + csize, rounded - csize);
4843 		csize = rounded;
4844 	}
4845 
4846 	if (csize == 0) {
4847 		/* zero block, indicate that there's nothing to write */
4848 		zio_data_buf_free(cdata, len);
4849 		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
4850 		l2hdr->b_asize = 0;
4851 		l2hdr->b_tmp_cdata = NULL;
4852 		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
4853 		return (B_TRUE);
4854 	} else if (csize > 0 && csize < len) {
4855 		/*
4856 		 * Compression succeeded, we'll keep the cdata around for
4857 		 * writing and release it afterwards.
4858 		 */
4859 		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
4860 		l2hdr->b_asize = csize;
4861 		l2hdr->b_tmp_cdata = cdata;
4862 		ARCSTAT_BUMP(arcstat_l2_compress_successes);
4863 		return (B_TRUE);
4864 	} else {
4865 		/*
4866 		 * Compression failed, release the compressed buffer.
4867 		 * l2hdr will be left unmodified.
4868 		 */
4869 		zio_data_buf_free(cdata, len);
4870 		ARCSTAT_BUMP(arcstat_l2_compress_failures);
4871 		return (B_FALSE);
4872 	}
4873 }
4874 
4875 /*
4876  * Decompresses a zio read back from an l2arc device. On success, the
4877  * underlying zio's io_data buffer is overwritten by the uncompressed
4878  * version. On decompression error (corrupt compressed stream), the
4879  * zio->io_error value is set to signal an I/O error.
4880  *
4881  * Please note that the compressed data stream is not checksummed, so
4882  * if the underlying device is experiencing data corruption, we may feed
4883  * corrupt data to the decompressor, so the decompressor needs to be
4884  * able to handle this situation (LZ4 does).
4885  */
4886 static void
4887 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
4888 {
4889 	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
4890 
4891 	if (zio->io_error != 0) {
4892 		/*
4893 		 * An io error has occured, just restore the original io
4894 		 * size in preparation for a main pool read.
4895 		 */
4896 		zio->io_orig_size = zio->io_size = hdr->b_size;
4897 		return;
4898 	}
4899 
4900 	if (c == ZIO_COMPRESS_EMPTY) {
4901 		/*
4902 		 * An empty buffer results in a null zio, which means we
4903 		 * need to fill its io_data after we're done restoring the
4904 		 * buffer's contents.
4905 		 */
4906 		ASSERT(hdr->b_buf != NULL);
4907 		bzero(hdr->b_buf->b_data, hdr->b_size);
4908 		zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
4909 	} else {
4910 		ASSERT(zio->io_data != NULL);
4911 		/*
4912 		 * We copy the compressed data from the start of the arc buffer
4913 		 * (the zio_read will have pulled in only what we need, the
4914 		 * rest is garbage which we will overwrite at decompression)
4915 		 * and then decompress back to the ARC data buffer. This way we
4916 		 * can minimize copying by simply decompressing back over the
4917 		 * original compressed data (rather than decompressing to an
4918 		 * aux buffer and then copying back the uncompressed buffer,
4919 		 * which is likely to be much larger).
4920 		 */
4921 		uint64_t csize;
4922 		void *cdata;
4923 
4924 		csize = zio->io_size;
4925 		cdata = zio_data_buf_alloc(csize);
4926 		bcopy(zio->io_data, cdata, csize);
4927 		if (zio_decompress_data(c, cdata, zio->io_data, csize,
4928 		    hdr->b_size) != 0)
4929 			zio->io_error = EIO;
4930 		zio_data_buf_free(cdata, csize);
4931 	}
4932 
4933 	/* Restore the expected uncompressed IO size. */
4934 	zio->io_orig_size = zio->io_size = hdr->b_size;
4935 }
4936 
4937 /*
4938  * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
4939  * This buffer serves as a temporary holder of compressed data while
4940  * the buffer entry is being written to an l2arc device. Once that is
4941  * done, we can dispose of it.
4942  */
4943 static void
4944 l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
4945 {
4946 	l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
4947 
4948 	if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
4949 		/*
4950 		 * If the data was compressed, then we've allocated a
4951 		 * temporary buffer for it, so now we need to release it.
4952 		 */
4953 		ASSERT(l2hdr->b_tmp_cdata != NULL);
4954 		zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
4955 	}
4956 	l2hdr->b_tmp_cdata = NULL;
4957 }
4958 
4959 /*
4960  * This thread feeds the L2ARC at regular intervals.  This is the beating
4961  * heart of the L2ARC.
4962  */
4963 static void
4964 l2arc_feed_thread(void)
4965 {
4966 	callb_cpr_t cpr;
4967 	l2arc_dev_t *dev;
4968 	spa_t *spa;
4969 	uint64_t size, wrote;
4970 	clock_t begin, next = ddi_get_lbolt();
4971 	boolean_t headroom_boost = B_FALSE;
4972 
4973 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4974 
4975 	mutex_enter(&l2arc_feed_thr_lock);
4976 
4977 	while (l2arc_thread_exit == 0) {
4978 		CALLB_CPR_SAFE_BEGIN(&cpr);
4979 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4980 		    next);
4981 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4982 		next = ddi_get_lbolt() + hz;
4983 
4984 		/*
4985 		 * Quick check for L2ARC devices.
4986 		 */
4987 		mutex_enter(&l2arc_dev_mtx);
4988 		if (l2arc_ndev == 0) {
4989 			mutex_exit(&l2arc_dev_mtx);
4990 			continue;
4991 		}
4992 		mutex_exit(&l2arc_dev_mtx);
4993 		begin = ddi_get_lbolt();
4994 
4995 		/*
4996 		 * This selects the next l2arc device to write to, and in
4997 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4998 		 * will return NULL if there are now no l2arc devices or if
4999 		 * they are all faulted.
5000 		 *
5001 		 * If a device is returned, its spa's config lock is also
5002 		 * held to prevent device removal.  l2arc_dev_get_next()
5003 		 * will grab and release l2arc_dev_mtx.
5004 		 */
5005 		if ((dev = l2arc_dev_get_next()) == NULL)
5006 			continue;
5007 
5008 		spa = dev->l2ad_spa;
5009 		ASSERT(spa != NULL);
5010 
5011 		/*
5012 		 * If the pool is read-only then force the feed thread to
5013 		 * sleep a little longer.
5014 		 */
5015 		if (!spa_writeable(spa)) {
5016 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5017 			spa_config_exit(spa, SCL_L2ARC, dev);
5018 			continue;
5019 		}
5020 
5021 		/*
5022 		 * Avoid contributing to memory pressure.
5023 		 */
5024 		if (arc_reclaim_needed()) {
5025 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5026 			spa_config_exit(spa, SCL_L2ARC, dev);
5027 			continue;
5028 		}
5029 
5030 		ARCSTAT_BUMP(arcstat_l2_feeds);
5031 
5032 		size = l2arc_write_size();
5033 
5034 		/*
5035 		 * Evict L2ARC buffers that will be overwritten.
5036 		 */
5037 		l2arc_evict(dev, size, B_FALSE);
5038 
5039 		/*
5040 		 * Write ARC buffers.
5041 		 */
5042 		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
5043 
5044 		/*
5045 		 * Calculate interval between writes.
5046 		 */
5047 		next = l2arc_write_interval(begin, size, wrote);
5048 		spa_config_exit(spa, SCL_L2ARC, dev);
5049 	}
5050 
5051 	l2arc_thread_exit = 0;
5052 	cv_broadcast(&l2arc_feed_thr_cv);
5053 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
5054 	thread_exit();
5055 }
5056 
5057 boolean_t
5058 l2arc_vdev_present(vdev_t *vd)
5059 {
5060 	l2arc_dev_t *dev;
5061 
5062 	mutex_enter(&l2arc_dev_mtx);
5063 	for (dev = list_head(l2arc_dev_list); dev != NULL;
5064 	    dev = list_next(l2arc_dev_list, dev)) {
5065 		if (dev->l2ad_vdev == vd)
5066 			break;
5067 	}
5068 	mutex_exit(&l2arc_dev_mtx);
5069 
5070 	return (dev != NULL);
5071 }
5072 
5073 /*
5074  * Add a vdev for use by the L2ARC.  By this point the spa has already
5075  * validated the vdev and opened it.
5076  */
5077 void
5078 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
5079 {
5080 	l2arc_dev_t *adddev;
5081 
5082 	ASSERT(!l2arc_vdev_present(vd));
5083 
5084 	/*
5085 	 * Create a new l2arc device entry.
5086 	 */
5087 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5088 	adddev->l2ad_spa = spa;
5089 	adddev->l2ad_vdev = vd;
5090 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5091 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5092 	adddev->l2ad_hand = adddev->l2ad_start;
5093 	adddev->l2ad_evict = adddev->l2ad_start;
5094 	adddev->l2ad_first = B_TRUE;
5095 	adddev->l2ad_writing = B_FALSE;
5096 
5097 	/*
5098 	 * This is a list of all ARC buffers that are still valid on the
5099 	 * device.
5100 	 */
5101 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5102 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5103 	    offsetof(arc_buf_hdr_t, b_l2node));
5104 
5105 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5106 
5107 	/*
5108 	 * Add device to global list
5109 	 */
5110 	mutex_enter(&l2arc_dev_mtx);
5111 	list_insert_head(l2arc_dev_list, adddev);
5112 	atomic_inc_64(&l2arc_ndev);
5113 	mutex_exit(&l2arc_dev_mtx);
5114 }
5115 
5116 /*
5117  * Remove a vdev from the L2ARC.
5118  */
5119 void
5120 l2arc_remove_vdev(vdev_t *vd)
5121 {
5122 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5123 
5124 	/*
5125 	 * Find the device by vdev
5126 	 */
5127 	mutex_enter(&l2arc_dev_mtx);
5128 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5129 		nextdev = list_next(l2arc_dev_list, dev);
5130 		if (vd == dev->l2ad_vdev) {
5131 			remdev = dev;
5132 			break;
5133 		}
5134 	}
5135 	ASSERT(remdev != NULL);
5136 
5137 	/*
5138 	 * Remove device from global list
5139 	 */
5140 	list_remove(l2arc_dev_list, remdev);
5141 	l2arc_dev_last = NULL;		/* may have been invalidated */
5142 	atomic_dec_64(&l2arc_ndev);
5143 	mutex_exit(&l2arc_dev_mtx);
5144 
5145 	/*
5146 	 * Clear all buflists and ARC references.  L2ARC device flush.
5147 	 */
5148 	l2arc_evict(remdev, 0, B_TRUE);
5149 	list_destroy(remdev->l2ad_buflist);
5150 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5151 	kmem_free(remdev, sizeof (l2arc_dev_t));
5152 }
5153 
5154 void
5155 l2arc_init(void)
5156 {
5157 	l2arc_thread_exit = 0;
5158 	l2arc_ndev = 0;
5159 	l2arc_writes_sent = 0;
5160 	l2arc_writes_done = 0;
5161 
5162 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5163 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5164 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5165 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5166 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5167 
5168 	l2arc_dev_list = &L2ARC_dev_list;
5169 	l2arc_free_on_write = &L2ARC_free_on_write;
5170 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5171 	    offsetof(l2arc_dev_t, l2ad_node));
5172 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5173 	    offsetof(l2arc_data_free_t, l2df_list_node));
5174 }
5175 
5176 void
5177 l2arc_fini(void)
5178 {
5179 	/*
5180 	 * This is called from dmu_fini(), which is called from spa_fini();
5181 	 * Because of this, we can assume that all l2arc devices have
5182 	 * already been removed when the pools themselves were removed.
5183 	 */
5184 
5185 	l2arc_do_free_on_write();
5186 
5187 	mutex_destroy(&l2arc_feed_thr_lock);
5188 	cv_destroy(&l2arc_feed_thr_cv);
5189 	mutex_destroy(&l2arc_dev_mtx);
5190 	mutex_destroy(&l2arc_buflist_mtx);
5191 	mutex_destroy(&l2arc_free_on_write_mtx);
5192 
5193 	list_destroy(l2arc_dev_list);
5194 	list_destroy(l2arc_free_on_write);
5195 }
5196 
5197 void
5198 l2arc_start(void)
5199 {
5200 	if (!(spa_mode_global & FWRITE))
5201 		return;
5202 
5203 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5204 	    TS_RUN, minclsyspri);
5205 }
5206 
5207 void
5208 l2arc_stop(void)
5209 {
5210 	if (!(spa_mode_global & FWRITE))
5211 		return;
5212 
5213 	mutex_enter(&l2arc_feed_thr_lock);
5214 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
5215 	l2arc_thread_exit = 1;
5216 	while (l2arc_thread_exit != 0)
5217 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5218 	mutex_exit(&l2arc_feed_thr_lock);
5219 }
5220