xref: /titanic_50/usr/src/uts/common/fs/zfs/arc.c (revision ceb97a6a3232437e1f0b4c6b8604bc1b4245ccc5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * DVA-based Adjustable Relpacement Cache
30  *
31  * While much of the theory of operation used here is
32  * based on the self-tuning, low overhead replacement cache
33  * presented by Megiddo and Modha at FAST 2003, there are some
34  * significant differences:
35  *
36  * 1. The Megiddo and Modha model assumes any page is evictable.
37  * Pages in its cache cannot be "locked" into memory.  This makes
38  * the eviction algorithm simple: evict the last page in the list.
39  * This also make the performance characteristics easy to reason
40  * about.  Our cache is not so simple.  At any given moment, some
41  * subset of the blocks in the cache are un-evictable because we
42  * have handed out a reference to them.  Blocks are only evictable
43  * when there are no external references active.  This makes
44  * eviction far more problematic:  we choose to evict the evictable
45  * blocks that are the "lowest" in the list.
46  *
47  * There are times when it is not possible to evict the requested
48  * space.  In these circumstances we are unable to adjust the cache
49  * size.  To prevent the cache growing unbounded at these times we
50  * implement a "cache throttle" that slowes the flow of new data
51  * into the cache until we can make space avaiable.
52  *
53  * 2. The Megiddo and Modha model assumes a fixed cache size.
54  * Pages are evicted when the cache is full and there is a cache
55  * miss.  Our model has a variable sized cache.  It grows with
56  * high use, but also tries to react to memory preasure from the
57  * operating system: decreasing its size when system memory is
58  * tight.
59  *
60  * 3. The Megiddo and Modha model assumes a fixed page size. All
61  * elements of the cache are therefor exactly the same size.  So
62  * when adjusting the cache size following a cache miss, its simply
63  * a matter of choosing a single page to evict.  In our model, we
64  * have variable sized cache blocks (rangeing from 512 bytes to
65  * 128K bytes).  We therefor choose a set of blocks to evict to make
66  * space for a cache miss that approximates as closely as possible
67  * the space used by the new block.
68  *
69  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70  * by N. Megiddo & D. Modha, FAST 2003
71  */
72 
73 /*
74  * The locking model:
75  *
76  * A new reference to a cache buffer can be obtained in two
77  * ways: 1) via a hash table lookup using the DVA as a key,
78  * or 2) via one of the ARC lists.  The arc_read() inerface
79  * uses method 1, while the internal arc algorithms for
80  * adjusting the cache use method 2.  We therefor provide two
81  * types of locks: 1) the hash table lock array, and 2) the
82  * arc list locks.
83  *
84  * Buffers do not have their own mutexs, rather they rely on the
85  * hash table mutexs for the bulk of their protection (i.e. most
86  * fields in the arc_buf_hdr_t are protected by these mutexs).
87  *
88  * buf_hash_find() returns the appropriate mutex (held) when it
89  * locates the requested buffer in the hash table.  It returns
90  * NULL for the mutex if the buffer was not in the table.
91  *
92  * buf_hash_remove() expects the appropriate hash mutex to be
93  * already held before it is invoked.
94  *
95  * Each arc state also has a mutex which is used to protect the
96  * buffer list associated with the state.  When attempting to
97  * obtain a hash table lock while holding an arc list lock you
98  * must use: mutex_tryenter() to avoid deadlock.  Also note that
99  * the active state mutex must be held before the ghost state mutex.
100  *
101  * Arc buffers may have an associated eviction callback function.
102  * This function will be invoked prior to removing the buffer (e.g.
103  * in arc_do_user_evicts()).  Note however that the data associated
104  * with the buffer may be evicted prior to the callback.  The callback
105  * must be made with *no locks held* (to prevent deadlock).  Additionally,
106  * the users of callbacks must ensure that their private data is
107  * protected from simultaneous callbacks from arc_buf_evict()
108  * and arc_do_user_evicts().
109  *
110  * Note that the majority of the performance stats are manipulated
111  * with atomic operations.
112  */
113 
114 #include <sys/spa.h>
115 #include <sys/zio.h>
116 #include <sys/zio_checksum.h>
117 #include <sys/zfs_context.h>
118 #include <sys/arc.h>
119 #include <sys/refcount.h>
120 #ifdef _KERNEL
121 #include <sys/vmsystm.h>
122 #include <vm/anon.h>
123 #include <sys/fs/swapnode.h>
124 #include <sys/dnlc.h>
125 #endif
126 #include <sys/callb.h>
127 
128 static kmutex_t		arc_reclaim_thr_lock;
129 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
130 static uint8_t		arc_thread_exit;
131 
132 #define	ARC_REDUCE_DNLC_PERCENT	3
133 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
134 
135 typedef enum arc_reclaim_strategy {
136 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
137 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
138 } arc_reclaim_strategy_t;
139 
140 /* number of seconds before growing cache again */
141 static int		arc_grow_retry = 60;
142 
143 /*
144  * minimum lifespan of a prefetch block in clock ticks
145  * (initialized in arc_init())
146  */
147 static int		arc_min_prefetch_lifespan;
148 
149 static kmutex_t arc_reclaim_lock;
150 static int arc_dead;
151 
152 /*
153  * These tunables are for performance analysis.
154  */
155 uint64_t zfs_arc_max;
156 uint64_t zfs_arc_min;
157 
158 /*
159  * Note that buffers can be on one of 5 states:
160  *	ARC_anon	- anonymous (discussed below)
161  *	ARC_mru		- recently used, currently cached
162  *	ARC_mru_ghost	- recentely used, no longer in cache
163  *	ARC_mfu		- frequently used, currently cached
164  *	ARC_mfu_ghost	- frequently used, no longer in cache
165  * When there are no active references to the buffer, they
166  * are linked onto one of the lists in arc.  These are the
167  * only buffers that can be evicted or deleted.
168  *
169  * Anonymous buffers are buffers that are not associated with
170  * a DVA.  These are buffers that hold dirty block copies
171  * before they are written to stable storage.  By definition,
172  * they are "ref'd" and are considered part of arc_mru
173  * that cannot be freed.  Generally, they will aquire a DVA
174  * as they are written and migrate onto the arc_mru list.
175  */
176 
177 typedef struct arc_state {
178 	list_t	list;	/* linked list of evictable buffer in state */
179 	uint64_t lsize;	/* total size of buffers in the linked list */
180 	uint64_t size;	/* total size of all buffers in this state */
181 	uint64_t hits;
182 	kmutex_t mtx;
183 } arc_state_t;
184 
185 /* The 5 states: */
186 static arc_state_t ARC_anon;
187 static arc_state_t ARC_mru;
188 static arc_state_t ARC_mru_ghost;
189 static arc_state_t ARC_mfu;
190 static arc_state_t ARC_mfu_ghost;
191 
192 static struct arc {
193 	arc_state_t 	*anon;
194 	arc_state_t	*mru;
195 	arc_state_t	*mru_ghost;
196 	arc_state_t	*mfu;
197 	arc_state_t	*mfu_ghost;
198 	uint64_t	size;		/* Actual total arc size */
199 	uint64_t	p;		/* Target size (in bytes) of mru */
200 	uint64_t	c;		/* Target size of cache (in bytes) */
201 	uint64_t	c_min;		/* Minimum target cache size */
202 	uint64_t	c_max;		/* Maximum target cache size */
203 
204 	/* performance stats */
205 	uint64_t	hits;
206 	uint64_t	misses;
207 	uint64_t	deleted;
208 	uint64_t	recycle_miss;
209 	uint64_t	mutex_miss;
210 	uint64_t	evict_skip;
211 	uint64_t	hash_elements;
212 	uint64_t	hash_elements_max;
213 	uint64_t	hash_collisions;
214 	uint64_t	hash_chains;
215 	uint32_t	hash_chain_max;
216 
217 	int		no_grow;	/* Don't try to grow cache size */
218 } arc;
219 
220 static uint64_t arc_tempreserve;
221 
222 typedef struct arc_callback arc_callback_t;
223 
224 struct arc_callback {
225 	arc_done_func_t		*acb_done;
226 	void			*acb_private;
227 	arc_byteswap_func_t	*acb_byteswap;
228 	arc_buf_t		*acb_buf;
229 	zio_t			*acb_zio_dummy;
230 	arc_callback_t		*acb_next;
231 };
232 
233 struct arc_buf_hdr {
234 	/* immutable */
235 	uint64_t		b_size;
236 	spa_t			*b_spa;
237 
238 	/* protected by hash lock */
239 	dva_t			b_dva;
240 	uint64_t		b_birth;
241 	uint64_t		b_cksum0;
242 
243 	kmutex_t		b_freeze_lock;
244 	zio_cksum_t		*b_freeze_cksum;
245 
246 	arc_buf_hdr_t		*b_hash_next;
247 	arc_buf_t		*b_buf;
248 	uint32_t		b_flags;
249 	uint32_t		b_datacnt;
250 
251 	kcondvar_t		b_cv;
252 	arc_callback_t		*b_acb;
253 
254 	/* protected by arc state mutex */
255 	arc_state_t		*b_state;
256 	list_node_t		b_arc_node;
257 
258 	/* updated atomically */
259 	clock_t			b_arc_access;
260 
261 	/* self protecting */
262 	refcount_t		b_refcnt;
263 };
264 
265 static arc_buf_t *arc_eviction_list;
266 static kmutex_t arc_eviction_mtx;
267 static arc_buf_hdr_t arc_eviction_hdr;
268 static void arc_get_data_buf(arc_buf_t *buf);
269 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
270 
271 #define	GHOST_STATE(state)	\
272 	((state) == arc.mru_ghost || (state) == arc.mfu_ghost)
273 
274 /*
275  * Private ARC flags.  These flags are private ARC only flags that will show up
276  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
277  * be passed in as arc_flags in things like arc_read.  However, these flags
278  * should never be passed and should only be set by ARC code.  When adding new
279  * public flags, make sure not to smash the private ones.
280  */
281 
282 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
283 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
284 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
285 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
286 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
287 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
288 
289 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
290 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
291 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
292 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
293 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
294 
295 /*
296  * Hash table routines
297  */
298 
299 #define	HT_LOCK_PAD	64
300 
301 struct ht_lock {
302 	kmutex_t	ht_lock;
303 #ifdef _KERNEL
304 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
305 #endif
306 };
307 
308 #define	BUF_LOCKS 256
309 typedef struct buf_hash_table {
310 	uint64_t ht_mask;
311 	arc_buf_hdr_t **ht_table;
312 	struct ht_lock ht_locks[BUF_LOCKS];
313 } buf_hash_table_t;
314 
315 static buf_hash_table_t buf_hash_table;
316 
317 #define	BUF_HASH_INDEX(spa, dva, birth) \
318 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
319 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
320 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
321 #define	HDR_LOCK(buf) \
322 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
323 
324 uint64_t zfs_crc64_table[256];
325 
326 static uint64_t
327 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth)
328 {
329 	uintptr_t spav = (uintptr_t)spa;
330 	uint8_t *vdva = (uint8_t *)dva;
331 	uint64_t crc = -1ULL;
332 	int i;
333 
334 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
335 
336 	for (i = 0; i < sizeof (dva_t); i++)
337 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
338 
339 	crc ^= (spav>>8) ^ birth;
340 
341 	return (crc);
342 }
343 
344 #define	BUF_EMPTY(buf)						\
345 	((buf)->b_dva.dva_word[0] == 0 &&			\
346 	(buf)->b_dva.dva_word[1] == 0 &&			\
347 	(buf)->b_birth == 0)
348 
349 #define	BUF_EQUAL(spa, dva, birth, buf)				\
350 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
351 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
352 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
353 
354 static arc_buf_hdr_t *
355 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp)
356 {
357 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
358 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
359 	arc_buf_hdr_t *buf;
360 
361 	mutex_enter(hash_lock);
362 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
363 	    buf = buf->b_hash_next) {
364 		if (BUF_EQUAL(spa, dva, birth, buf)) {
365 			*lockp = hash_lock;
366 			return (buf);
367 		}
368 	}
369 	mutex_exit(hash_lock);
370 	*lockp = NULL;
371 	return (NULL);
372 }
373 
374 /*
375  * Insert an entry into the hash table.  If there is already an element
376  * equal to elem in the hash table, then the already existing element
377  * will be returned and the new element will not be inserted.
378  * Otherwise returns NULL.
379  */
380 static arc_buf_hdr_t *
381 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
382 {
383 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
384 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
385 	arc_buf_hdr_t *fbuf;
386 	uint32_t max, i;
387 
388 	ASSERT(!HDR_IN_HASH_TABLE(buf));
389 	*lockp = hash_lock;
390 	mutex_enter(hash_lock);
391 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
392 	    fbuf = fbuf->b_hash_next, i++) {
393 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
394 			return (fbuf);
395 	}
396 
397 	buf->b_hash_next = buf_hash_table.ht_table[idx];
398 	buf_hash_table.ht_table[idx] = buf;
399 	buf->b_flags |= ARC_IN_HASH_TABLE;
400 
401 	/* collect some hash table performance data */
402 	if (i > 0) {
403 		atomic_add_64(&arc.hash_collisions, 1);
404 		if (i == 1)
405 			atomic_add_64(&arc.hash_chains, 1);
406 	}
407 	while (i > (max = arc.hash_chain_max) &&
408 	    max != atomic_cas_32(&arc.hash_chain_max, max, i)) {
409 		continue;
410 	}
411 	atomic_add_64(&arc.hash_elements, 1);
412 	if (arc.hash_elements > arc.hash_elements_max)
413 		atomic_add_64(&arc.hash_elements_max, 1);
414 
415 	return (NULL);
416 }
417 
418 static void
419 buf_hash_remove(arc_buf_hdr_t *buf)
420 {
421 	arc_buf_hdr_t *fbuf, **bufp;
422 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
423 
424 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
425 	ASSERT(HDR_IN_HASH_TABLE(buf));
426 
427 	bufp = &buf_hash_table.ht_table[idx];
428 	while ((fbuf = *bufp) != buf) {
429 		ASSERT(fbuf != NULL);
430 		bufp = &fbuf->b_hash_next;
431 	}
432 	*bufp = buf->b_hash_next;
433 	buf->b_hash_next = NULL;
434 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
435 
436 	/* collect some hash table performance data */
437 	atomic_add_64(&arc.hash_elements, -1);
438 	if (buf_hash_table.ht_table[idx] &&
439 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
440 		atomic_add_64(&arc.hash_chains, -1);
441 }
442 
443 /*
444  * Global data structures and functions for the buf kmem cache.
445  */
446 static kmem_cache_t *hdr_cache;
447 static kmem_cache_t *buf_cache;
448 
449 static void
450 buf_fini(void)
451 {
452 	int i;
453 
454 	kmem_free(buf_hash_table.ht_table,
455 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
456 	for (i = 0; i < BUF_LOCKS; i++)
457 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
458 	kmem_cache_destroy(hdr_cache);
459 	kmem_cache_destroy(buf_cache);
460 }
461 
462 /*
463  * Constructor callback - called when the cache is empty
464  * and a new buf is requested.
465  */
466 /* ARGSUSED */
467 static int
468 hdr_cons(void *vbuf, void *unused, int kmflag)
469 {
470 	arc_buf_hdr_t *buf = vbuf;
471 
472 	bzero(buf, sizeof (arc_buf_hdr_t));
473 	refcount_create(&buf->b_refcnt);
474 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
475 	return (0);
476 }
477 
478 /*
479  * Destructor callback - called when a cached buf is
480  * no longer required.
481  */
482 /* ARGSUSED */
483 static void
484 hdr_dest(void *vbuf, void *unused)
485 {
486 	arc_buf_hdr_t *buf = vbuf;
487 
488 	refcount_destroy(&buf->b_refcnt);
489 	cv_destroy(&buf->b_cv);
490 }
491 
492 static int arc_reclaim_needed(void);
493 void arc_kmem_reclaim(void);
494 
495 /*
496  * Reclaim callback -- invoked when memory is low.
497  */
498 /* ARGSUSED */
499 static void
500 hdr_recl(void *unused)
501 {
502 	dprintf("hdr_recl called\n");
503 	if (arc_reclaim_needed())
504 		arc_kmem_reclaim();
505 }
506 
507 static void
508 buf_init(void)
509 {
510 	uint64_t *ct;
511 	uint64_t hsize = 1ULL << 12;
512 	int i, j;
513 
514 	/*
515 	 * The hash table is big enough to fill all of physical memory
516 	 * with an average 64K block size.  The table will take up
517 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
518 	 */
519 	while (hsize * 65536 < physmem * PAGESIZE)
520 		hsize <<= 1;
521 retry:
522 	buf_hash_table.ht_mask = hsize - 1;
523 	buf_hash_table.ht_table =
524 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
525 	if (buf_hash_table.ht_table == NULL) {
526 		ASSERT(hsize > (1ULL << 8));
527 		hsize >>= 1;
528 		goto retry;
529 	}
530 
531 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
532 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
533 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
534 	    0, NULL, NULL, NULL, NULL, NULL, 0);
535 
536 	for (i = 0; i < 256; i++)
537 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
538 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
539 
540 	for (i = 0; i < BUF_LOCKS; i++) {
541 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
542 		    NULL, MUTEX_DEFAULT, NULL);
543 	}
544 }
545 
546 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
547 
548 static void
549 arc_cksum_verify(arc_buf_t *buf)
550 {
551 	zio_cksum_t zc;
552 
553 	if (!zfs_flags & ZFS_DEBUG_MODIFY)
554 		return;
555 
556 	mutex_enter(&buf->b_hdr->b_freeze_lock);
557 	if (buf->b_hdr->b_freeze_cksum == NULL) {
558 		mutex_exit(&buf->b_hdr->b_freeze_lock);
559 		return;
560 	}
561 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
562 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
563 		panic("buffer modified while frozen!");
564 	mutex_exit(&buf->b_hdr->b_freeze_lock);
565 }
566 
567 static void
568 arc_cksum_compute(arc_buf_t *buf)
569 {
570 	if (!zfs_flags & ZFS_DEBUG_MODIFY)
571 		return;
572 
573 	mutex_enter(&buf->b_hdr->b_freeze_lock);
574 	if (buf->b_hdr->b_freeze_cksum != NULL) {
575 		mutex_exit(&buf->b_hdr->b_freeze_lock);
576 		return;
577 	}
578 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
579 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
580 	    buf->b_hdr->b_freeze_cksum);
581 	mutex_exit(&buf->b_hdr->b_freeze_lock);
582 }
583 
584 void
585 arc_buf_thaw(arc_buf_t *buf)
586 {
587 	if (!zfs_flags & ZFS_DEBUG_MODIFY)
588 		return;
589 
590 	if (buf->b_hdr->b_state != arc.anon)
591 		panic("modifying non-anon buffer!");
592 	if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
593 		panic("modifying buffer while i/o in progress!");
594 	arc_cksum_verify(buf);
595 	mutex_enter(&buf->b_hdr->b_freeze_lock);
596 	if (buf->b_hdr->b_freeze_cksum != NULL) {
597 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
598 		buf->b_hdr->b_freeze_cksum = NULL;
599 	}
600 	mutex_exit(&buf->b_hdr->b_freeze_lock);
601 }
602 
603 void
604 arc_buf_freeze(arc_buf_t *buf)
605 {
606 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
607 	    buf->b_hdr->b_state == arc.anon);
608 	arc_cksum_compute(buf);
609 }
610 
611 static void
612 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
613 {
614 	ASSERT(MUTEX_HELD(hash_lock));
615 
616 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
617 	    (ab->b_state != arc.anon)) {
618 		int delta = ab->b_size * ab->b_datacnt;
619 
620 		ASSERT(!MUTEX_HELD(&ab->b_state->mtx));
621 		mutex_enter(&ab->b_state->mtx);
622 		ASSERT(list_link_active(&ab->b_arc_node));
623 		list_remove(&ab->b_state->list, ab);
624 		if (GHOST_STATE(ab->b_state)) {
625 			ASSERT3U(ab->b_datacnt, ==, 0);
626 			ASSERT3P(ab->b_buf, ==, NULL);
627 			delta = ab->b_size;
628 		}
629 		ASSERT(delta > 0);
630 		ASSERT3U(ab->b_state->lsize, >=, delta);
631 		atomic_add_64(&ab->b_state->lsize, -delta);
632 		mutex_exit(&ab->b_state->mtx);
633 		/* remove the prefetch flag is we get a reference */
634 		if (ab->b_flags & ARC_PREFETCH)
635 			ab->b_flags &= ~ARC_PREFETCH;
636 	}
637 }
638 
639 static int
640 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
641 {
642 	int cnt;
643 
644 	ASSERT(ab->b_state == arc.anon || MUTEX_HELD(hash_lock));
645 	ASSERT(!GHOST_STATE(ab->b_state));
646 
647 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
648 	    (ab->b_state != arc.anon)) {
649 
650 		ASSERT(!MUTEX_HELD(&ab->b_state->mtx));
651 		mutex_enter(&ab->b_state->mtx);
652 		ASSERT(!list_link_active(&ab->b_arc_node));
653 		list_insert_head(&ab->b_state->list, ab);
654 		ASSERT(ab->b_datacnt > 0);
655 		atomic_add_64(&ab->b_state->lsize, ab->b_size * ab->b_datacnt);
656 		ASSERT3U(ab->b_state->size, >=, ab->b_state->lsize);
657 		mutex_exit(&ab->b_state->mtx);
658 	}
659 	return (cnt);
660 }
661 
662 /*
663  * Move the supplied buffer to the indicated state.  The mutex
664  * for the buffer must be held by the caller.
665  */
666 static void
667 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
668 {
669 	arc_state_t *old_state = ab->b_state;
670 	int refcnt = refcount_count(&ab->b_refcnt);
671 	int from_delta, to_delta;
672 
673 	ASSERT(MUTEX_HELD(hash_lock));
674 	ASSERT(new_state != old_state);
675 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
676 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
677 
678 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
679 
680 	/*
681 	 * If this buffer is evictable, transfer it from the
682 	 * old state list to the new state list.
683 	 */
684 	if (refcnt == 0) {
685 		if (old_state != arc.anon) {
686 			int use_mutex = !MUTEX_HELD(&old_state->mtx);
687 
688 			if (use_mutex)
689 				mutex_enter(&old_state->mtx);
690 
691 			ASSERT(list_link_active(&ab->b_arc_node));
692 			list_remove(&old_state->list, ab);
693 
694 			/*
695 			 * If prefetching out of the ghost cache,
696 			 * we will have a non-null datacnt.
697 			 */
698 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
699 				/* ghost elements have a ghost size */
700 				ASSERT(ab->b_buf == NULL);
701 				from_delta = ab->b_size;
702 			}
703 			ASSERT3U(old_state->lsize, >=, from_delta);
704 			atomic_add_64(&old_state->lsize, -from_delta);
705 
706 			if (use_mutex)
707 				mutex_exit(&old_state->mtx);
708 		}
709 		if (new_state != arc.anon) {
710 			int use_mutex = !MUTEX_HELD(&new_state->mtx);
711 
712 			if (use_mutex)
713 				mutex_enter(&new_state->mtx);
714 
715 			list_insert_head(&new_state->list, ab);
716 
717 			/* ghost elements have a ghost size */
718 			if (GHOST_STATE(new_state)) {
719 				ASSERT(ab->b_datacnt == 0);
720 				ASSERT(ab->b_buf == NULL);
721 				to_delta = ab->b_size;
722 			}
723 			atomic_add_64(&new_state->lsize, to_delta);
724 			ASSERT3U(new_state->size + to_delta, >=,
725 			    new_state->lsize);
726 
727 			if (use_mutex)
728 				mutex_exit(&new_state->mtx);
729 		}
730 	}
731 
732 	ASSERT(!BUF_EMPTY(ab));
733 	if (new_state == arc.anon && old_state != arc.anon) {
734 		buf_hash_remove(ab);
735 	}
736 
737 	/* adjust state sizes */
738 	if (to_delta)
739 		atomic_add_64(&new_state->size, to_delta);
740 	if (from_delta) {
741 		ASSERT3U(old_state->size, >=, from_delta);
742 		atomic_add_64(&old_state->size, -from_delta);
743 	}
744 	ab->b_state = new_state;
745 }
746 
747 arc_buf_t *
748 arc_buf_alloc(spa_t *spa, int size, void *tag)
749 {
750 	arc_buf_hdr_t *hdr;
751 	arc_buf_t *buf;
752 
753 	ASSERT3U(size, >, 0);
754 	hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
755 	ASSERT(BUF_EMPTY(hdr));
756 	hdr->b_size = size;
757 	hdr->b_spa = spa;
758 	hdr->b_state = arc.anon;
759 	hdr->b_arc_access = 0;
760 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
761 	buf->b_hdr = hdr;
762 	buf->b_data = NULL;
763 	buf->b_efunc = NULL;
764 	buf->b_private = NULL;
765 	buf->b_next = NULL;
766 	hdr->b_buf = buf;
767 	arc_get_data_buf(buf);
768 	hdr->b_datacnt = 1;
769 	hdr->b_flags = 0;
770 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
771 	(void) refcount_add(&hdr->b_refcnt, tag);
772 
773 	return (buf);
774 }
775 
776 static arc_buf_t *
777 arc_buf_clone(arc_buf_t *from)
778 {
779 	arc_buf_t *buf;
780 	arc_buf_hdr_t *hdr = from->b_hdr;
781 	uint64_t size = hdr->b_size;
782 
783 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
784 	buf->b_hdr = hdr;
785 	buf->b_data = NULL;
786 	buf->b_efunc = NULL;
787 	buf->b_private = NULL;
788 	buf->b_next = hdr->b_buf;
789 	hdr->b_buf = buf;
790 	arc_get_data_buf(buf);
791 	bcopy(from->b_data, buf->b_data, size);
792 	hdr->b_datacnt += 1;
793 	return (buf);
794 }
795 
796 void
797 arc_buf_add_ref(arc_buf_t *buf, void* tag)
798 {
799 	arc_buf_hdr_t *hdr;
800 	kmutex_t *hash_lock;
801 
802 	/*
803 	 * Check to see if this buffer is currently being evicted via
804 	 * arc_do_user_evicts().
805 	 */
806 	mutex_enter(&arc_eviction_mtx);
807 	hdr = buf->b_hdr;
808 	if (hdr == NULL) {
809 		mutex_exit(&arc_eviction_mtx);
810 		return;
811 	}
812 	hash_lock = HDR_LOCK(hdr);
813 	mutex_exit(&arc_eviction_mtx);
814 
815 	mutex_enter(hash_lock);
816 	if (buf->b_data == NULL) {
817 		/*
818 		 * This buffer is evicted.
819 		 */
820 		mutex_exit(hash_lock);
821 		return;
822 	}
823 
824 	ASSERT(buf->b_hdr == hdr);
825 	ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu);
826 	add_reference(hdr, hash_lock, tag);
827 	arc_access(hdr, hash_lock);
828 	mutex_exit(hash_lock);
829 	atomic_add_64(&arc.hits, 1);
830 }
831 
832 static void
833 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
834 {
835 	arc_buf_t **bufp;
836 
837 	/* free up data associated with the buf */
838 	if (buf->b_data) {
839 		arc_state_t *state = buf->b_hdr->b_state;
840 		uint64_t size = buf->b_hdr->b_size;
841 
842 		arc_cksum_verify(buf);
843 		if (!recycle) {
844 			zio_buf_free(buf->b_data, size);
845 			atomic_add_64(&arc.size, -size);
846 		}
847 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
848 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
849 			ASSERT(state != arc.anon);
850 			ASSERT3U(state->lsize, >=, size);
851 			atomic_add_64(&state->lsize, -size);
852 		}
853 		ASSERT3U(state->size, >=, size);
854 		atomic_add_64(&state->size, -size);
855 		buf->b_data = NULL;
856 		ASSERT(buf->b_hdr->b_datacnt > 0);
857 		buf->b_hdr->b_datacnt -= 1;
858 	}
859 
860 	/* only remove the buf if requested */
861 	if (!all)
862 		return;
863 
864 	/* remove the buf from the hdr list */
865 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
866 		continue;
867 	*bufp = buf->b_next;
868 
869 	ASSERT(buf->b_efunc == NULL);
870 
871 	/* clean up the buf */
872 	buf->b_hdr = NULL;
873 	kmem_cache_free(buf_cache, buf);
874 }
875 
876 static void
877 arc_hdr_destroy(arc_buf_hdr_t *hdr)
878 {
879 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
880 	ASSERT3P(hdr->b_state, ==, arc.anon);
881 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
882 
883 	if (!BUF_EMPTY(hdr)) {
884 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
885 		bzero(&hdr->b_dva, sizeof (dva_t));
886 		hdr->b_birth = 0;
887 		hdr->b_cksum0 = 0;
888 	}
889 	while (hdr->b_buf) {
890 		arc_buf_t *buf = hdr->b_buf;
891 
892 		if (buf->b_efunc) {
893 			mutex_enter(&arc_eviction_mtx);
894 			ASSERT(buf->b_hdr != NULL);
895 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
896 			hdr->b_buf = buf->b_next;
897 			buf->b_hdr = &arc_eviction_hdr;
898 			buf->b_next = arc_eviction_list;
899 			arc_eviction_list = buf;
900 			mutex_exit(&arc_eviction_mtx);
901 		} else {
902 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
903 		}
904 	}
905 	if (hdr->b_freeze_cksum != NULL) {
906 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
907 		hdr->b_freeze_cksum = NULL;
908 	}
909 
910 	ASSERT(!list_link_active(&hdr->b_arc_node));
911 	ASSERT3P(hdr->b_hash_next, ==, NULL);
912 	ASSERT3P(hdr->b_acb, ==, NULL);
913 	kmem_cache_free(hdr_cache, hdr);
914 }
915 
916 void
917 arc_buf_free(arc_buf_t *buf, void *tag)
918 {
919 	arc_buf_hdr_t *hdr = buf->b_hdr;
920 	int hashed = hdr->b_state != arc.anon;
921 
922 	ASSERT(buf->b_efunc == NULL);
923 	ASSERT(buf->b_data != NULL);
924 
925 	if (hashed) {
926 		kmutex_t *hash_lock = HDR_LOCK(hdr);
927 
928 		mutex_enter(hash_lock);
929 		(void) remove_reference(hdr, hash_lock, tag);
930 		if (hdr->b_datacnt > 1)
931 			arc_buf_destroy(buf, FALSE, TRUE);
932 		else
933 			hdr->b_flags |= ARC_BUF_AVAILABLE;
934 		mutex_exit(hash_lock);
935 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
936 		int destroy_hdr;
937 		/*
938 		 * We are in the middle of an async write.  Don't destroy
939 		 * this buffer unless the write completes before we finish
940 		 * decrementing the reference count.
941 		 */
942 		mutex_enter(&arc_eviction_mtx);
943 		(void) remove_reference(hdr, NULL, tag);
944 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
945 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
946 		mutex_exit(&arc_eviction_mtx);
947 		if (destroy_hdr)
948 			arc_hdr_destroy(hdr);
949 	} else {
950 		if (remove_reference(hdr, NULL, tag) > 0) {
951 			ASSERT(HDR_IO_ERROR(hdr));
952 			arc_buf_destroy(buf, FALSE, TRUE);
953 		} else {
954 			arc_hdr_destroy(hdr);
955 		}
956 	}
957 }
958 
959 int
960 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
961 {
962 	arc_buf_hdr_t *hdr = buf->b_hdr;
963 	kmutex_t *hash_lock = HDR_LOCK(hdr);
964 	int no_callback = (buf->b_efunc == NULL);
965 
966 	if (hdr->b_state == arc.anon) {
967 		arc_buf_free(buf, tag);
968 		return (no_callback);
969 	}
970 
971 	mutex_enter(hash_lock);
972 	ASSERT(hdr->b_state != arc.anon);
973 	ASSERT(buf->b_data != NULL);
974 
975 	(void) remove_reference(hdr, hash_lock, tag);
976 	if (hdr->b_datacnt > 1) {
977 		if (no_callback)
978 			arc_buf_destroy(buf, FALSE, TRUE);
979 	} else if (no_callback) {
980 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
981 		hdr->b_flags |= ARC_BUF_AVAILABLE;
982 	}
983 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
984 	    refcount_is_zero(&hdr->b_refcnt));
985 	mutex_exit(hash_lock);
986 	return (no_callback);
987 }
988 
989 int
990 arc_buf_size(arc_buf_t *buf)
991 {
992 	return (buf->b_hdr->b_size);
993 }
994 
995 /*
996  * Evict buffers from list until we've removed the specified number of
997  * bytes.  Move the removed buffers to the appropriate evict state.
998  * If the recycle flag is set, then attempt to "recycle" a buffer:
999  * - look for a buffer to evict that is `bytes' long.
1000  * - return the data block from this buffer rather than freeing it.
1001  * This flag is used by callers that are trying to make space for a
1002  * new buffer in a full arc cache.
1003  */
1004 static void *
1005 arc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle)
1006 {
1007 	arc_state_t *evicted_state;
1008 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1009 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1010 	kmutex_t *hash_lock;
1011 	boolean_t have_lock;
1012 	void *stolen = NULL;
1013 
1014 	ASSERT(state == arc.mru || state == arc.mfu);
1015 
1016 	evicted_state = (state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost;
1017 
1018 	mutex_enter(&state->mtx);
1019 	mutex_enter(&evicted_state->mtx);
1020 
1021 	for (ab = list_tail(&state->list); ab; ab = ab_prev) {
1022 		ab_prev = list_prev(&state->list, ab);
1023 		/* prefetch buffers have a minimum lifespan */
1024 		if (HDR_IO_IN_PROGRESS(ab) ||
1025 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1026 		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1027 			skipped++;
1028 			continue;
1029 		}
1030 		/* "lookahead" for better eviction candidate */
1031 		if (recycle && ab->b_size != bytes &&
1032 		    ab_prev && ab_prev->b_size == bytes)
1033 			continue;
1034 		hash_lock = HDR_LOCK(ab);
1035 		have_lock = MUTEX_HELD(hash_lock);
1036 		if (have_lock || mutex_tryenter(hash_lock)) {
1037 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1038 			ASSERT(ab->b_datacnt > 0);
1039 			while (ab->b_buf) {
1040 				arc_buf_t *buf = ab->b_buf;
1041 				if (buf->b_data) {
1042 					bytes_evicted += ab->b_size;
1043 					if (recycle && ab->b_size == bytes) {
1044 						stolen = buf->b_data;
1045 						recycle = FALSE;
1046 					}
1047 				}
1048 				if (buf->b_efunc) {
1049 					mutex_enter(&arc_eviction_mtx);
1050 					arc_buf_destroy(buf,
1051 					    buf->b_data == stolen, FALSE);
1052 					ab->b_buf = buf->b_next;
1053 					buf->b_hdr = &arc_eviction_hdr;
1054 					buf->b_next = arc_eviction_list;
1055 					arc_eviction_list = buf;
1056 					mutex_exit(&arc_eviction_mtx);
1057 				} else {
1058 					arc_buf_destroy(buf,
1059 					    buf->b_data == stolen, TRUE);
1060 				}
1061 			}
1062 			ASSERT(ab->b_datacnt == 0);
1063 			arc_change_state(evicted_state, ab, hash_lock);
1064 			ASSERT(HDR_IN_HASH_TABLE(ab));
1065 			ab->b_flags = ARC_IN_HASH_TABLE;
1066 			DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1067 			if (!have_lock)
1068 				mutex_exit(hash_lock);
1069 			if (bytes >= 0 && bytes_evicted >= bytes)
1070 				break;
1071 		} else {
1072 			missed += 1;
1073 		}
1074 	}
1075 	mutex_exit(&evicted_state->mtx);
1076 	mutex_exit(&state->mtx);
1077 
1078 	if (bytes_evicted < bytes)
1079 		dprintf("only evicted %lld bytes from %x",
1080 		    (longlong_t)bytes_evicted, state);
1081 
1082 	if (skipped)
1083 		atomic_add_64(&arc.evict_skip, skipped);
1084 	if (missed)
1085 		atomic_add_64(&arc.mutex_miss, missed);
1086 	return (stolen);
1087 }
1088 
1089 /*
1090  * Remove buffers from list until we've removed the specified number of
1091  * bytes.  Destroy the buffers that are removed.
1092  */
1093 static void
1094 arc_evict_ghost(arc_state_t *state, int64_t bytes)
1095 {
1096 	arc_buf_hdr_t *ab, *ab_prev;
1097 	kmutex_t *hash_lock;
1098 	uint64_t bytes_deleted = 0;
1099 	uint_t bufs_skipped = 0;
1100 
1101 	ASSERT(GHOST_STATE(state));
1102 top:
1103 	mutex_enter(&state->mtx);
1104 	for (ab = list_tail(&state->list); ab; ab = ab_prev) {
1105 		ab_prev = list_prev(&state->list, ab);
1106 		hash_lock = HDR_LOCK(ab);
1107 		if (mutex_tryenter(hash_lock)) {
1108 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1109 			ASSERT(ab->b_buf == NULL);
1110 			arc_change_state(arc.anon, ab, hash_lock);
1111 			mutex_exit(hash_lock);
1112 			atomic_add_64(&arc.deleted, 1);
1113 			bytes_deleted += ab->b_size;
1114 			arc_hdr_destroy(ab);
1115 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1116 			if (bytes >= 0 && bytes_deleted >= bytes)
1117 				break;
1118 		} else {
1119 			if (bytes < 0) {
1120 				mutex_exit(&state->mtx);
1121 				mutex_enter(hash_lock);
1122 				mutex_exit(hash_lock);
1123 				goto top;
1124 			}
1125 			bufs_skipped += 1;
1126 		}
1127 	}
1128 	mutex_exit(&state->mtx);
1129 
1130 	if (bufs_skipped) {
1131 		atomic_add_64(&arc.mutex_miss, bufs_skipped);
1132 		ASSERT(bytes >= 0);
1133 	}
1134 
1135 	if (bytes_deleted < bytes)
1136 		dprintf("only deleted %lld bytes from %p",
1137 		    (longlong_t)bytes_deleted, state);
1138 }
1139 
1140 static void
1141 arc_adjust(void)
1142 {
1143 	int64_t top_sz, mru_over, arc_over;
1144 
1145 	top_sz = arc.anon->size + arc.mru->size;
1146 
1147 	if (top_sz > arc.p && arc.mru->lsize > 0) {
1148 		int64_t toevict = MIN(arc.mru->lsize, top_sz-arc.p);
1149 		(void) arc_evict(arc.mru, toevict, FALSE);
1150 		top_sz = arc.anon->size + arc.mru->size;
1151 	}
1152 
1153 	mru_over = top_sz + arc.mru_ghost->size - arc.c;
1154 
1155 	if (mru_over > 0) {
1156 		if (arc.mru_ghost->lsize > 0) {
1157 			int64_t todelete = MIN(arc.mru_ghost->lsize, mru_over);
1158 			arc_evict_ghost(arc.mru_ghost, todelete);
1159 		}
1160 	}
1161 
1162 	if ((arc_over = arc.size - arc.c) > 0) {
1163 		int64_t tbl_over;
1164 
1165 		if (arc.mfu->lsize > 0) {
1166 			int64_t toevict = MIN(arc.mfu->lsize, arc_over);
1167 			(void) arc_evict(arc.mfu, toevict, FALSE);
1168 		}
1169 
1170 		tbl_over = arc.size + arc.mru_ghost->lsize +
1171 		    arc.mfu_ghost->lsize - arc.c*2;
1172 
1173 		if (tbl_over > 0 && arc.mfu_ghost->lsize > 0) {
1174 			int64_t todelete = MIN(arc.mfu_ghost->lsize, tbl_over);
1175 			arc_evict_ghost(arc.mfu_ghost, todelete);
1176 		}
1177 	}
1178 }
1179 
1180 static void
1181 arc_do_user_evicts(void)
1182 {
1183 	mutex_enter(&arc_eviction_mtx);
1184 	while (arc_eviction_list != NULL) {
1185 		arc_buf_t *buf = arc_eviction_list;
1186 		arc_eviction_list = buf->b_next;
1187 		buf->b_hdr = NULL;
1188 		mutex_exit(&arc_eviction_mtx);
1189 
1190 		if (buf->b_efunc != NULL)
1191 			VERIFY(buf->b_efunc(buf) == 0);
1192 
1193 		buf->b_efunc = NULL;
1194 		buf->b_private = NULL;
1195 		kmem_cache_free(buf_cache, buf);
1196 		mutex_enter(&arc_eviction_mtx);
1197 	}
1198 	mutex_exit(&arc_eviction_mtx);
1199 }
1200 
1201 /*
1202  * Flush all *evictable* data from the cache.
1203  * NOTE: this will not touch "active" (i.e. referenced) data.
1204  */
1205 void
1206 arc_flush(void)
1207 {
1208 	while (list_head(&arc.mru->list))
1209 		(void) arc_evict(arc.mru, -1, FALSE);
1210 	while (list_head(&arc.mfu->list))
1211 		(void) arc_evict(arc.mfu, -1, FALSE);
1212 
1213 	arc_evict_ghost(arc.mru_ghost, -1);
1214 	arc_evict_ghost(arc.mfu_ghost, -1);
1215 
1216 	mutex_enter(&arc_reclaim_thr_lock);
1217 	arc_do_user_evicts();
1218 	mutex_exit(&arc_reclaim_thr_lock);
1219 	ASSERT(arc_eviction_list == NULL);
1220 }
1221 
1222 int arc_kmem_reclaim_shift = 5;		/* log2(fraction of arc to reclaim) */
1223 
1224 void
1225 arc_kmem_reclaim(void)
1226 {
1227 	uint64_t to_free;
1228 
1229 	/*
1230 	 * We need arc_reclaim_lock because we don't want multiple
1231 	 * threads trying to reclaim concurrently.
1232 	 */
1233 
1234 	/*
1235 	 * umem calls the reclaim func when we destroy the buf cache,
1236 	 * which is after we do arc_fini().  So we set a flag to prevent
1237 	 * accessing the destroyed mutexes and lists.
1238 	 */
1239 	if (arc_dead)
1240 		return;
1241 
1242 	if (arc.c <= arc.c_min)
1243 		return;
1244 
1245 	mutex_enter(&arc_reclaim_lock);
1246 
1247 #ifdef _KERNEL
1248 	to_free = MAX(arc.c >> arc_kmem_reclaim_shift, ptob(needfree));
1249 #else
1250 	to_free = arc.c >> arc_kmem_reclaim_shift;
1251 #endif
1252 	if (arc.c > to_free)
1253 		atomic_add_64(&arc.c, -to_free);
1254 	else
1255 		arc.c = arc.c_min;
1256 
1257 	atomic_add_64(&arc.p, -(arc.p >> arc_kmem_reclaim_shift));
1258 	if (arc.c > arc.size)
1259 		arc.c = arc.size;
1260 	if (arc.c < arc.c_min)
1261 		arc.c = arc.c_min;
1262 	if (arc.p > arc.c)
1263 		arc.p = (arc.c >> 1);
1264 	ASSERT((int64_t)arc.p >= 0);
1265 
1266 	arc_adjust();
1267 
1268 	mutex_exit(&arc_reclaim_lock);
1269 }
1270 
1271 static int
1272 arc_reclaim_needed(void)
1273 {
1274 	uint64_t extra;
1275 
1276 #ifdef _KERNEL
1277 
1278 	if (needfree)
1279 		return (1);
1280 
1281 	/*
1282 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1283 	 */
1284 	extra = desfree;
1285 
1286 	/*
1287 	 * check that we're out of range of the pageout scanner.  It starts to
1288 	 * schedule paging if freemem is less than lotsfree and needfree.
1289 	 * lotsfree is the high-water mark for pageout, and needfree is the
1290 	 * number of needed free pages.  We add extra pages here to make sure
1291 	 * the scanner doesn't start up while we're freeing memory.
1292 	 */
1293 	if (freemem < lotsfree + needfree + extra)
1294 		return (1);
1295 
1296 	/*
1297 	 * check to make sure that swapfs has enough space so that anon
1298 	 * reservations can still succeeed. anon_resvmem() checks that the
1299 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1300 	 * swap pages.  We also add a bit of extra here just to prevent
1301 	 * circumstances from getting really dire.
1302 	 */
1303 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1304 		return (1);
1305 
1306 #if defined(__i386)
1307 	/*
1308 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1309 	 * kernel heap space before we ever run out of available physical
1310 	 * memory.  Most checks of the size of the heap_area compare against
1311 	 * tune.t_minarmem, which is the minimum available real memory that we
1312 	 * can have in the system.  However, this is generally fixed at 25 pages
1313 	 * which is so low that it's useless.  In this comparison, we seek to
1314 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1315 	 * heap is allocated.  (Or, in the caclulation, if less than 1/4th is
1316 	 * free)
1317 	 */
1318 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1319 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1320 		return (1);
1321 #endif
1322 
1323 #else
1324 	if (spa_get_random(100) == 0)
1325 		return (1);
1326 #endif
1327 	return (0);
1328 }
1329 
1330 static void
1331 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1332 {
1333 	size_t			i;
1334 	kmem_cache_t		*prev_cache = NULL;
1335 	extern kmem_cache_t	*zio_buf_cache[];
1336 
1337 #ifdef _KERNEL
1338 	/*
1339 	 * First purge some DNLC entries, in case the DNLC is using
1340 	 * up too much memory.
1341 	 */
1342 	dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1343 
1344 #if defined(__i386)
1345 	/*
1346 	 * Reclaim unused memory from all kmem caches.
1347 	 */
1348 	kmem_reap();
1349 #endif
1350 #endif
1351 
1352 	/*
1353 	 * An agressive reclamation will shrink the cache size as well as
1354 	 * reap free buffers from the arc kmem caches.
1355 	 */
1356 	if (strat == ARC_RECLAIM_AGGR)
1357 		arc_kmem_reclaim();
1358 
1359 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1360 		if (zio_buf_cache[i] != prev_cache) {
1361 			prev_cache = zio_buf_cache[i];
1362 			kmem_cache_reap_now(zio_buf_cache[i]);
1363 		}
1364 	}
1365 	kmem_cache_reap_now(buf_cache);
1366 	kmem_cache_reap_now(hdr_cache);
1367 }
1368 
1369 static void
1370 arc_reclaim_thread(void)
1371 {
1372 	clock_t			growtime = 0;
1373 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1374 	callb_cpr_t		cpr;
1375 
1376 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1377 
1378 	mutex_enter(&arc_reclaim_thr_lock);
1379 	while (arc_thread_exit == 0) {
1380 		if (arc_reclaim_needed()) {
1381 
1382 			if (arc.no_grow) {
1383 				if (last_reclaim == ARC_RECLAIM_CONS) {
1384 					last_reclaim = ARC_RECLAIM_AGGR;
1385 				} else {
1386 					last_reclaim = ARC_RECLAIM_CONS;
1387 				}
1388 			} else {
1389 				arc.no_grow = TRUE;
1390 				last_reclaim = ARC_RECLAIM_AGGR;
1391 				membar_producer();
1392 			}
1393 
1394 			/* reset the growth delay for every reclaim */
1395 			growtime = lbolt + (arc_grow_retry * hz);
1396 			ASSERT(growtime > 0);
1397 
1398 			arc_kmem_reap_now(last_reclaim);
1399 
1400 		} else if ((growtime > 0) && ((growtime - lbolt) <= 0)) {
1401 			arc.no_grow = FALSE;
1402 		}
1403 
1404 		if (arc_eviction_list != NULL)
1405 			arc_do_user_evicts();
1406 
1407 		/* block until needed, or one second, whichever is shorter */
1408 		CALLB_CPR_SAFE_BEGIN(&cpr);
1409 		(void) cv_timedwait(&arc_reclaim_thr_cv,
1410 		    &arc_reclaim_thr_lock, (lbolt + hz));
1411 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1412 	}
1413 
1414 	arc_thread_exit = 0;
1415 	cv_broadcast(&arc_reclaim_thr_cv);
1416 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
1417 	thread_exit();
1418 }
1419 
1420 /*
1421  * Adapt arc info given the number of bytes we are trying to add and
1422  * the state that we are comming from.  This function is only called
1423  * when we are adding new content to the cache.
1424  */
1425 static void
1426 arc_adapt(int bytes, arc_state_t *state)
1427 {
1428 	int mult;
1429 
1430 	ASSERT(bytes > 0);
1431 	/*
1432 	 * Adapt the target size of the MRU list:
1433 	 *	- if we just hit in the MRU ghost list, then increase
1434 	 *	  the target size of the MRU list.
1435 	 *	- if we just hit in the MFU ghost list, then increase
1436 	 *	  the target size of the MFU list by decreasing the
1437 	 *	  target size of the MRU list.
1438 	 */
1439 	if (state == arc.mru_ghost) {
1440 		mult = ((arc.mru_ghost->size >= arc.mfu_ghost->size) ?
1441 		    1 : (arc.mfu_ghost->size/arc.mru_ghost->size));
1442 
1443 		arc.p = MIN(arc.c, arc.p + bytes * mult);
1444 	} else if (state == arc.mfu_ghost) {
1445 		mult = ((arc.mfu_ghost->size >= arc.mru_ghost->size) ?
1446 		    1 : (arc.mru_ghost->size/arc.mfu_ghost->size));
1447 
1448 		arc.p = MAX(0, (int64_t)arc.p - bytes * mult);
1449 	}
1450 	ASSERT((int64_t)arc.p >= 0);
1451 
1452 	if (arc_reclaim_needed()) {
1453 		cv_signal(&arc_reclaim_thr_cv);
1454 		return;
1455 	}
1456 
1457 	if (arc.no_grow)
1458 		return;
1459 
1460 	if (arc.c >= arc.c_max)
1461 		return;
1462 
1463 	/*
1464 	 * If we're within (2 * maxblocksize) bytes of the target
1465 	 * cache size, increment the target cache size
1466 	 */
1467 	if (arc.size > arc.c - (2ULL << SPA_MAXBLOCKSHIFT)) {
1468 		atomic_add_64(&arc.c, (int64_t)bytes);
1469 		if (arc.c > arc.c_max)
1470 			arc.c = arc.c_max;
1471 		else if (state == arc.anon)
1472 			atomic_add_64(&arc.p, (int64_t)bytes);
1473 		if (arc.p > arc.c)
1474 			arc.p = arc.c;
1475 	}
1476 	ASSERT((int64_t)arc.p >= 0);
1477 }
1478 
1479 /*
1480  * Check if the cache has reached its limits and eviction is required
1481  * prior to insert.
1482  */
1483 static int
1484 arc_evict_needed()
1485 {
1486 	if (arc_reclaim_needed())
1487 		return (1);
1488 
1489 	return (arc.size > arc.c);
1490 }
1491 
1492 /*
1493  * The buffer, supplied as the first argument, needs a data block.
1494  * So, if we are at cache max, determine which cache should be victimized.
1495  * We have the following cases:
1496  *
1497  * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru) ->
1498  * In this situation if we're out of space, but the resident size of the MFU is
1499  * under the limit, victimize the MFU cache to satisfy this insertion request.
1500  *
1501  * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru) ->
1502  * Here, we've used up all of the available space for the MRU, so we need to
1503  * evict from our own cache instead.  Evict from the set of resident MRU
1504  * entries.
1505  *
1506  * 3. Insert for MFU (c - p) > sizeof(arc.mfu) ->
1507  * c minus p represents the MFU space in the cache, since p is the size of the
1508  * cache that is dedicated to the MRU.  In this situation there's still space on
1509  * the MFU side, so the MRU side needs to be victimized.
1510  *
1511  * 4. Insert for MFU (c - p) < sizeof(arc.mfu) ->
1512  * MFU's resident set is consuming more space than it has been allotted.  In
1513  * this situation, we must victimize our own cache, the MFU, for this insertion.
1514  */
1515 static void
1516 arc_get_data_buf(arc_buf_t *buf)
1517 {
1518 	arc_state_t	*state = buf->b_hdr->b_state;
1519 	uint64_t	size = buf->b_hdr->b_size;
1520 
1521 	arc_adapt(size, state);
1522 
1523 	/*
1524 	 * We have not yet reached cache maximum size,
1525 	 * just allocate a new buffer.
1526 	 */
1527 	if (!arc_evict_needed()) {
1528 		buf->b_data = zio_buf_alloc(size);
1529 		atomic_add_64(&arc.size, size);
1530 		goto out;
1531 	}
1532 
1533 	/*
1534 	 * If we are prefetching from the mfu ghost list, this buffer
1535 	 * will end up on the mru list; so steal space from there.
1536 	 */
1537 	if (state == arc.mfu_ghost)
1538 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc.mru : arc.mfu;
1539 	else if (state == arc.mru_ghost)
1540 		state = arc.mru;
1541 
1542 	if (state == arc.mru || state == arc.anon) {
1543 		uint64_t mru_used = arc.anon->size + arc.mru->size;
1544 		state = (arc.p > mru_used) ? arc.mfu : arc.mru;
1545 	} else {
1546 		/* MFU cases */
1547 		uint64_t mfu_space = arc.c - arc.p;
1548 		state =  (mfu_space > arc.mfu->size) ? arc.mru : arc.mfu;
1549 	}
1550 	if ((buf->b_data = arc_evict(state, size, TRUE)) == NULL) {
1551 		buf->b_data = zio_buf_alloc(size);
1552 		atomic_add_64(&arc.size, size);
1553 		atomic_add_64(&arc.recycle_miss, 1);
1554 	}
1555 	ASSERT(buf->b_data != NULL);
1556 out:
1557 	/*
1558 	 * Update the state size.  Note that ghost states have a
1559 	 * "ghost size" and so don't need to be updated.
1560 	 */
1561 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
1562 		arc_buf_hdr_t *hdr = buf->b_hdr;
1563 
1564 		atomic_add_64(&hdr->b_state->size, size);
1565 		if (list_link_active(&hdr->b_arc_node)) {
1566 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
1567 			atomic_add_64(&hdr->b_state->lsize, size);
1568 		}
1569 	}
1570 }
1571 
1572 /*
1573  * This routine is called whenever a buffer is accessed.
1574  * NOTE: the hash lock is dropped in this function.
1575  */
1576 static void
1577 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
1578 {
1579 	ASSERT(MUTEX_HELD(hash_lock));
1580 
1581 	if (buf->b_state == arc.anon) {
1582 		/*
1583 		 * This buffer is not in the cache, and does not
1584 		 * appear in our "ghost" list.  Add the new buffer
1585 		 * to the MRU state.
1586 		 */
1587 
1588 		ASSERT(buf->b_arc_access == 0);
1589 		buf->b_arc_access = lbolt;
1590 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1591 		arc_change_state(arc.mru, buf, hash_lock);
1592 
1593 	} else if (buf->b_state == arc.mru) {
1594 		/*
1595 		 * If this buffer is here because of a prefetch, then either:
1596 		 * - clear the flag if this is a "referencing" read
1597 		 *   (any subsequent access will bump this into the MFU state).
1598 		 * or
1599 		 * - move the buffer to the head of the list if this is
1600 		 *   another prefetch (to make it less likely to be evicted).
1601 		 */
1602 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1603 			if (refcount_count(&buf->b_refcnt) == 0) {
1604 				ASSERT(list_link_active(&buf->b_arc_node));
1605 				mutex_enter(&arc.mru->mtx);
1606 				list_remove(&arc.mru->list, buf);
1607 				list_insert_head(&arc.mru->list, buf);
1608 				mutex_exit(&arc.mru->mtx);
1609 			} else {
1610 				buf->b_flags &= ~ARC_PREFETCH;
1611 				atomic_add_64(&arc.mru->hits, 1);
1612 			}
1613 			buf->b_arc_access = lbolt;
1614 			return;
1615 		}
1616 
1617 		/*
1618 		 * This buffer has been "accessed" only once so far,
1619 		 * but it is still in the cache. Move it to the MFU
1620 		 * state.
1621 		 */
1622 		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
1623 			/*
1624 			 * More than 125ms have passed since we
1625 			 * instantiated this buffer.  Move it to the
1626 			 * most frequently used state.
1627 			 */
1628 			buf->b_arc_access = lbolt;
1629 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1630 			arc_change_state(arc.mfu, buf, hash_lock);
1631 		}
1632 		atomic_add_64(&arc.mru->hits, 1);
1633 	} else if (buf->b_state == arc.mru_ghost) {
1634 		arc_state_t	*new_state;
1635 		/*
1636 		 * This buffer has been "accessed" recently, but
1637 		 * was evicted from the cache.  Move it to the
1638 		 * MFU state.
1639 		 */
1640 
1641 		if (buf->b_flags & ARC_PREFETCH) {
1642 			new_state = arc.mru;
1643 			if (refcount_count(&buf->b_refcnt) > 0)
1644 				buf->b_flags &= ~ARC_PREFETCH;
1645 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1646 		} else {
1647 			new_state = arc.mfu;
1648 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1649 		}
1650 
1651 		buf->b_arc_access = lbolt;
1652 		arc_change_state(new_state, buf, hash_lock);
1653 
1654 		atomic_add_64(&arc.mru_ghost->hits, 1);
1655 	} else if (buf->b_state == arc.mfu) {
1656 		/*
1657 		 * This buffer has been accessed more than once and is
1658 		 * still in the cache.  Keep it in the MFU state.
1659 		 *
1660 		 * NOTE: an add_reference() that occurred when we did
1661 		 * the arc_read() will have kicked this off the list.
1662 		 * If it was a prefetch, we will explicitly move it to
1663 		 * the head of the list now.
1664 		 */
1665 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1666 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
1667 			ASSERT(list_link_active(&buf->b_arc_node));
1668 			mutex_enter(&arc.mfu->mtx);
1669 			list_remove(&arc.mfu->list, buf);
1670 			list_insert_head(&arc.mfu->list, buf);
1671 			mutex_exit(&arc.mfu->mtx);
1672 		}
1673 		atomic_add_64(&arc.mfu->hits, 1);
1674 		buf->b_arc_access = lbolt;
1675 	} else if (buf->b_state == arc.mfu_ghost) {
1676 		arc_state_t	*new_state = arc.mfu;
1677 		/*
1678 		 * This buffer has been accessed more than once but has
1679 		 * been evicted from the cache.  Move it back to the
1680 		 * MFU state.
1681 		 */
1682 
1683 		if (buf->b_flags & ARC_PREFETCH) {
1684 			/*
1685 			 * This is a prefetch access...
1686 			 * move this block back to the MRU state.
1687 			 */
1688 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
1689 			new_state = arc.mru;
1690 		}
1691 
1692 		buf->b_arc_access = lbolt;
1693 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1694 		arc_change_state(new_state, buf, hash_lock);
1695 
1696 		atomic_add_64(&arc.mfu_ghost->hits, 1);
1697 	} else {
1698 		ASSERT(!"invalid arc state");
1699 	}
1700 }
1701 
1702 /* a generic arc_done_func_t which you can use */
1703 /* ARGSUSED */
1704 void
1705 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
1706 {
1707 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
1708 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1709 }
1710 
1711 /* a generic arc_done_func_t which you can use */
1712 void
1713 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
1714 {
1715 	arc_buf_t **bufp = arg;
1716 	if (zio && zio->io_error) {
1717 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1718 		*bufp = NULL;
1719 	} else {
1720 		*bufp = buf;
1721 	}
1722 }
1723 
1724 static void
1725 arc_read_done(zio_t *zio)
1726 {
1727 	arc_buf_hdr_t	*hdr, *found;
1728 	arc_buf_t	*buf;
1729 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
1730 	kmutex_t	*hash_lock;
1731 	arc_callback_t	*callback_list, *acb;
1732 	int		freeable = FALSE;
1733 
1734 	buf = zio->io_private;
1735 	hdr = buf->b_hdr;
1736 
1737 	/*
1738 	 * The hdr was inserted into hash-table and removed from lists
1739 	 * prior to starting I/O.  We should find this header, since
1740 	 * it's in the hash table, and it should be legit since it's
1741 	 * not possible to evict it during the I/O.  The only possible
1742 	 * reason for it not to be found is if we were freed during the
1743 	 * read.
1744 	 */
1745 	found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
1746 	    &hash_lock);
1747 
1748 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
1749 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))));
1750 
1751 	/* byteswap if necessary */
1752 	callback_list = hdr->b_acb;
1753 	ASSERT(callback_list != NULL);
1754 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap)
1755 		callback_list->acb_byteswap(buf->b_data, hdr->b_size);
1756 
1757 	arc_cksum_compute(buf);
1758 
1759 	/* create copies of the data buffer for the callers */
1760 	abuf = buf;
1761 	for (acb = callback_list; acb; acb = acb->acb_next) {
1762 		if (acb->acb_done) {
1763 			if (abuf == NULL)
1764 				abuf = arc_buf_clone(buf);
1765 			acb->acb_buf = abuf;
1766 			abuf = NULL;
1767 		}
1768 	}
1769 	hdr->b_acb = NULL;
1770 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
1771 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
1772 	if (abuf == buf)
1773 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1774 
1775 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
1776 
1777 	if (zio->io_error != 0) {
1778 		hdr->b_flags |= ARC_IO_ERROR;
1779 		if (hdr->b_state != arc.anon)
1780 			arc_change_state(arc.anon, hdr, hash_lock);
1781 		if (HDR_IN_HASH_TABLE(hdr))
1782 			buf_hash_remove(hdr);
1783 		freeable = refcount_is_zero(&hdr->b_refcnt);
1784 		/* convert checksum errors into IO errors */
1785 		if (zio->io_error == ECKSUM)
1786 			zio->io_error = EIO;
1787 	}
1788 
1789 	/*
1790 	 * Broadcast before we drop the hash_lock to avoid the possibility
1791 	 * that the hdr (and hence the cv) might be freed before we get to
1792 	 * the cv_broadcast().
1793 	 */
1794 	cv_broadcast(&hdr->b_cv);
1795 
1796 	if (hash_lock) {
1797 		/*
1798 		 * Only call arc_access on anonymous buffers.  This is because
1799 		 * if we've issued an I/O for an evicted buffer, we've already
1800 		 * called arc_access (to prevent any simultaneous readers from
1801 		 * getting confused).
1802 		 */
1803 		if (zio->io_error == 0 && hdr->b_state == arc.anon)
1804 			arc_access(hdr, hash_lock);
1805 		mutex_exit(hash_lock);
1806 	} else {
1807 		/*
1808 		 * This block was freed while we waited for the read to
1809 		 * complete.  It has been removed from the hash table and
1810 		 * moved to the anonymous state (so that it won't show up
1811 		 * in the cache).
1812 		 */
1813 		ASSERT3P(hdr->b_state, ==, arc.anon);
1814 		freeable = refcount_is_zero(&hdr->b_refcnt);
1815 	}
1816 
1817 	/* execute each callback and free its structure */
1818 	while ((acb = callback_list) != NULL) {
1819 		if (acb->acb_done)
1820 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
1821 
1822 		if (acb->acb_zio_dummy != NULL) {
1823 			acb->acb_zio_dummy->io_error = zio->io_error;
1824 			zio_nowait(acb->acb_zio_dummy);
1825 		}
1826 
1827 		callback_list = acb->acb_next;
1828 		kmem_free(acb, sizeof (arc_callback_t));
1829 	}
1830 
1831 	if (freeable)
1832 		arc_hdr_destroy(hdr);
1833 }
1834 
1835 /*
1836  * "Read" the block block at the specified DVA (in bp) via the
1837  * cache.  If the block is found in the cache, invoke the provided
1838  * callback immediately and return.  Note that the `zio' parameter
1839  * in the callback will be NULL in this case, since no IO was
1840  * required.  If the block is not in the cache pass the read request
1841  * on to the spa with a substitute callback function, so that the
1842  * requested block will be added to the cache.
1843  *
1844  * If a read request arrives for a block that has a read in-progress,
1845  * either wait for the in-progress read to complete (and return the
1846  * results); or, if this is a read with a "done" func, add a record
1847  * to the read to invoke the "done" func when the read completes,
1848  * and return; or just return.
1849  *
1850  * arc_read_done() will invoke all the requested "done" functions
1851  * for readers of this block.
1852  */
1853 int
1854 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap,
1855     arc_done_func_t *done, void *private, int priority, int flags,
1856     uint32_t *arc_flags, zbookmark_t *zb)
1857 {
1858 	arc_buf_hdr_t *hdr;
1859 	arc_buf_t *buf;
1860 	kmutex_t *hash_lock;
1861 	zio_t	*rzio;
1862 
1863 top:
1864 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
1865 	if (hdr && hdr->b_datacnt > 0) {
1866 
1867 		*arc_flags |= ARC_CACHED;
1868 
1869 		if (HDR_IO_IN_PROGRESS(hdr)) {
1870 
1871 			if (*arc_flags & ARC_WAIT) {
1872 				cv_wait(&hdr->b_cv, hash_lock);
1873 				mutex_exit(hash_lock);
1874 				goto top;
1875 			}
1876 			ASSERT(*arc_flags & ARC_NOWAIT);
1877 
1878 			if (done) {
1879 				arc_callback_t	*acb = NULL;
1880 
1881 				acb = kmem_zalloc(sizeof (arc_callback_t),
1882 				    KM_SLEEP);
1883 				acb->acb_done = done;
1884 				acb->acb_private = private;
1885 				acb->acb_byteswap = swap;
1886 				if (pio != NULL)
1887 					acb->acb_zio_dummy = zio_null(pio,
1888 					    spa, NULL, NULL, flags);
1889 
1890 				ASSERT(acb->acb_done != NULL);
1891 				acb->acb_next = hdr->b_acb;
1892 				hdr->b_acb = acb;
1893 				add_reference(hdr, hash_lock, private);
1894 				mutex_exit(hash_lock);
1895 				return (0);
1896 			}
1897 			mutex_exit(hash_lock);
1898 			return (0);
1899 		}
1900 
1901 		ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu);
1902 
1903 		if (done) {
1904 			add_reference(hdr, hash_lock, private);
1905 			/*
1906 			 * If this block is already in use, create a new
1907 			 * copy of the data so that we will be guaranteed
1908 			 * that arc_release() will always succeed.
1909 			 */
1910 			buf = hdr->b_buf;
1911 			ASSERT(buf);
1912 			ASSERT(buf->b_data);
1913 			if (HDR_BUF_AVAILABLE(hdr)) {
1914 				ASSERT(buf->b_efunc == NULL);
1915 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
1916 			} else {
1917 				buf = arc_buf_clone(buf);
1918 			}
1919 		} else if (*arc_flags & ARC_PREFETCH &&
1920 		    refcount_count(&hdr->b_refcnt) == 0) {
1921 			hdr->b_flags |= ARC_PREFETCH;
1922 		}
1923 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1924 		arc_access(hdr, hash_lock);
1925 		mutex_exit(hash_lock);
1926 		atomic_add_64(&arc.hits, 1);
1927 		if (done)
1928 			done(NULL, buf, private);
1929 	} else {
1930 		uint64_t size = BP_GET_LSIZE(bp);
1931 		arc_callback_t	*acb;
1932 
1933 		if (hdr == NULL) {
1934 			/* this block is not in the cache */
1935 			arc_buf_hdr_t	*exists;
1936 
1937 			buf = arc_buf_alloc(spa, size, private);
1938 			hdr = buf->b_hdr;
1939 			hdr->b_dva = *BP_IDENTITY(bp);
1940 			hdr->b_birth = bp->blk_birth;
1941 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
1942 			exists = buf_hash_insert(hdr, &hash_lock);
1943 			if (exists) {
1944 				/* somebody beat us to the hash insert */
1945 				mutex_exit(hash_lock);
1946 				bzero(&hdr->b_dva, sizeof (dva_t));
1947 				hdr->b_birth = 0;
1948 				hdr->b_cksum0 = 0;
1949 				(void) arc_buf_remove_ref(buf, private);
1950 				goto top; /* restart the IO request */
1951 			}
1952 			/* if this is a prefetch, we don't have a reference */
1953 			if (*arc_flags & ARC_PREFETCH) {
1954 				(void) remove_reference(hdr, hash_lock,
1955 				    private);
1956 				hdr->b_flags |= ARC_PREFETCH;
1957 			}
1958 			if (BP_GET_LEVEL(bp) > 0)
1959 				hdr->b_flags |= ARC_INDIRECT;
1960 		} else {
1961 			/* this block is in the ghost cache */
1962 			ASSERT(GHOST_STATE(hdr->b_state));
1963 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1964 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
1965 			ASSERT(hdr->b_buf == NULL);
1966 
1967 			/* if this is a prefetch, we don't have a reference */
1968 			if (*arc_flags & ARC_PREFETCH)
1969 				hdr->b_flags |= ARC_PREFETCH;
1970 			else
1971 				add_reference(hdr, hash_lock, private);
1972 			buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
1973 			buf->b_hdr = hdr;
1974 			buf->b_data = NULL;
1975 			buf->b_efunc = NULL;
1976 			buf->b_private = NULL;
1977 			buf->b_next = NULL;
1978 			hdr->b_buf = buf;
1979 			arc_get_data_buf(buf);
1980 			ASSERT(hdr->b_datacnt == 0);
1981 			hdr->b_datacnt = 1;
1982 
1983 		}
1984 
1985 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
1986 		acb->acb_done = done;
1987 		acb->acb_private = private;
1988 		acb->acb_byteswap = swap;
1989 
1990 		ASSERT(hdr->b_acb == NULL);
1991 		hdr->b_acb = acb;
1992 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
1993 
1994 		/*
1995 		 * If the buffer has been evicted, migrate it to a present state
1996 		 * before issuing the I/O.  Once we drop the hash-table lock,
1997 		 * the header will be marked as I/O in progress and have an
1998 		 * attached buffer.  At this point, anybody who finds this
1999 		 * buffer ought to notice that it's legit but has a pending I/O.
2000 		 */
2001 
2002 		if (GHOST_STATE(hdr->b_state))
2003 			arc_access(hdr, hash_lock);
2004 		mutex_exit(hash_lock);
2005 
2006 		ASSERT3U(hdr->b_size, ==, size);
2007 		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
2008 		    zbookmark_t *, zb);
2009 		atomic_add_64(&arc.misses, 1);
2010 
2011 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2012 		    arc_read_done, buf, priority, flags, zb);
2013 
2014 		if (*arc_flags & ARC_WAIT)
2015 			return (zio_wait(rzio));
2016 
2017 		ASSERT(*arc_flags & ARC_NOWAIT);
2018 		zio_nowait(rzio);
2019 	}
2020 	return (0);
2021 }
2022 
2023 /*
2024  * arc_read() variant to support pool traversal.  If the block is already
2025  * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
2026  * The idea is that we don't want pool traversal filling up memory, but
2027  * if the ARC already has the data anyway, we shouldn't pay for the I/O.
2028  */
2029 int
2030 arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
2031 {
2032 	arc_buf_hdr_t *hdr;
2033 	kmutex_t *hash_mtx;
2034 	int rc = 0;
2035 
2036 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
2037 
2038 	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
2039 		arc_buf_t *buf = hdr->b_buf;
2040 
2041 		ASSERT(buf);
2042 		while (buf->b_data == NULL) {
2043 			buf = buf->b_next;
2044 			ASSERT(buf);
2045 		}
2046 		bcopy(buf->b_data, data, hdr->b_size);
2047 	} else {
2048 		rc = ENOENT;
2049 	}
2050 
2051 	if (hash_mtx)
2052 		mutex_exit(hash_mtx);
2053 
2054 	return (rc);
2055 }
2056 
2057 void
2058 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2059 {
2060 	ASSERT(buf->b_hdr != NULL);
2061 	ASSERT(buf->b_hdr->b_state != arc.anon);
2062 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2063 	buf->b_efunc = func;
2064 	buf->b_private = private;
2065 }
2066 
2067 /*
2068  * This is used by the DMU to let the ARC know that a buffer is
2069  * being evicted, so the ARC should clean up.  If this arc buf
2070  * is not yet in the evicted state, it will be put there.
2071  */
2072 int
2073 arc_buf_evict(arc_buf_t *buf)
2074 {
2075 	arc_buf_hdr_t *hdr;
2076 	kmutex_t *hash_lock;
2077 	arc_buf_t **bufp;
2078 
2079 	mutex_enter(&arc_eviction_mtx);
2080 	hdr = buf->b_hdr;
2081 	if (hdr == NULL) {
2082 		/*
2083 		 * We are in arc_do_user_evicts().
2084 		 */
2085 		ASSERT(buf->b_data == NULL);
2086 		mutex_exit(&arc_eviction_mtx);
2087 		return (0);
2088 	}
2089 	hash_lock = HDR_LOCK(hdr);
2090 	mutex_exit(&arc_eviction_mtx);
2091 
2092 	mutex_enter(hash_lock);
2093 
2094 	if (buf->b_data == NULL) {
2095 		/*
2096 		 * We are on the eviction list.
2097 		 */
2098 		mutex_exit(hash_lock);
2099 		mutex_enter(&arc_eviction_mtx);
2100 		if (buf->b_hdr == NULL) {
2101 			/*
2102 			 * We are already in arc_do_user_evicts().
2103 			 */
2104 			mutex_exit(&arc_eviction_mtx);
2105 			return (0);
2106 		} else {
2107 			arc_buf_t copy = *buf; /* structure assignment */
2108 			/*
2109 			 * Process this buffer now
2110 			 * but let arc_do_user_evicts() do the reaping.
2111 			 */
2112 			buf->b_efunc = NULL;
2113 			mutex_exit(&arc_eviction_mtx);
2114 			VERIFY(copy.b_efunc(&copy) == 0);
2115 			return (1);
2116 		}
2117 	}
2118 
2119 	ASSERT(buf->b_hdr == hdr);
2120 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2121 	ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu);
2122 
2123 	/*
2124 	 * Pull this buffer off of the hdr
2125 	 */
2126 	bufp = &hdr->b_buf;
2127 	while (*bufp != buf)
2128 		bufp = &(*bufp)->b_next;
2129 	*bufp = buf->b_next;
2130 
2131 	ASSERT(buf->b_data != NULL);
2132 	arc_buf_destroy(buf, FALSE, FALSE);
2133 
2134 	if (hdr->b_datacnt == 0) {
2135 		arc_state_t *old_state = hdr->b_state;
2136 		arc_state_t *evicted_state;
2137 
2138 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2139 
2140 		evicted_state =
2141 		    (old_state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost;
2142 
2143 		mutex_enter(&old_state->mtx);
2144 		mutex_enter(&evicted_state->mtx);
2145 
2146 		arc_change_state(evicted_state, hdr, hash_lock);
2147 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2148 		hdr->b_flags = ARC_IN_HASH_TABLE;
2149 
2150 		mutex_exit(&evicted_state->mtx);
2151 		mutex_exit(&old_state->mtx);
2152 	}
2153 	mutex_exit(hash_lock);
2154 
2155 	VERIFY(buf->b_efunc(buf) == 0);
2156 	buf->b_efunc = NULL;
2157 	buf->b_private = NULL;
2158 	buf->b_hdr = NULL;
2159 	kmem_cache_free(buf_cache, buf);
2160 	return (1);
2161 }
2162 
2163 /*
2164  * Release this buffer from the cache.  This must be done
2165  * after a read and prior to modifying the buffer contents.
2166  * If the buffer has more than one reference, we must make
2167  * make a new hdr for the buffer.
2168  */
2169 void
2170 arc_release(arc_buf_t *buf, void *tag)
2171 {
2172 	arc_buf_hdr_t *hdr = buf->b_hdr;
2173 	kmutex_t *hash_lock = HDR_LOCK(hdr);
2174 
2175 	/* this buffer is not on any list */
2176 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2177 
2178 	if (hdr->b_state == arc.anon) {
2179 		/* this buffer is already released */
2180 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2181 		ASSERT(BUF_EMPTY(hdr));
2182 		ASSERT(buf->b_efunc == NULL);
2183 		arc_buf_thaw(buf);
2184 		return;
2185 	}
2186 
2187 	mutex_enter(hash_lock);
2188 
2189 	/*
2190 	 * Do we have more than one buf?
2191 	 */
2192 	if (hdr->b_buf != buf || buf->b_next != NULL) {
2193 		arc_buf_hdr_t *nhdr;
2194 		arc_buf_t **bufp;
2195 		uint64_t blksz = hdr->b_size;
2196 		spa_t *spa = hdr->b_spa;
2197 
2198 		ASSERT(hdr->b_datacnt > 1);
2199 		/*
2200 		 * Pull the data off of this buf and attach it to
2201 		 * a new anonymous buf.
2202 		 */
2203 		(void) remove_reference(hdr, hash_lock, tag);
2204 		bufp = &hdr->b_buf;
2205 		while (*bufp != buf)
2206 			bufp = &(*bufp)->b_next;
2207 		*bufp = (*bufp)->b_next;
2208 
2209 		ASSERT3U(hdr->b_state->size, >=, hdr->b_size);
2210 		atomic_add_64(&hdr->b_state->size, -hdr->b_size);
2211 		if (refcount_is_zero(&hdr->b_refcnt)) {
2212 			ASSERT3U(hdr->b_state->lsize, >=, hdr->b_size);
2213 			atomic_add_64(&hdr->b_state->lsize, -hdr->b_size);
2214 		}
2215 		hdr->b_datacnt -= 1;
2216 
2217 		mutex_exit(hash_lock);
2218 
2219 		nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
2220 		nhdr->b_size = blksz;
2221 		nhdr->b_spa = spa;
2222 		nhdr->b_buf = buf;
2223 		nhdr->b_state = arc.anon;
2224 		nhdr->b_arc_access = 0;
2225 		nhdr->b_flags = 0;
2226 		nhdr->b_datacnt = 1;
2227 		nhdr->b_freeze_cksum =
2228 		    kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
2229 		*nhdr->b_freeze_cksum = *hdr->b_freeze_cksum; /* struct copy */
2230 		buf->b_hdr = nhdr;
2231 		buf->b_next = NULL;
2232 		(void) refcount_add(&nhdr->b_refcnt, tag);
2233 		atomic_add_64(&arc.anon->size, blksz);
2234 
2235 		hdr = nhdr;
2236 	} else {
2237 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2238 		ASSERT(!list_link_active(&hdr->b_arc_node));
2239 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2240 		arc_change_state(arc.anon, hdr, hash_lock);
2241 		hdr->b_arc_access = 0;
2242 		mutex_exit(hash_lock);
2243 		bzero(&hdr->b_dva, sizeof (dva_t));
2244 		hdr->b_birth = 0;
2245 		hdr->b_cksum0 = 0;
2246 	}
2247 	buf->b_efunc = NULL;
2248 	buf->b_private = NULL;
2249 	arc_buf_thaw(buf);
2250 }
2251 
2252 int
2253 arc_released(arc_buf_t *buf)
2254 {
2255 	return (buf->b_data != NULL && buf->b_hdr->b_state == arc.anon);
2256 }
2257 
2258 int
2259 arc_has_callback(arc_buf_t *buf)
2260 {
2261 	return (buf->b_efunc != NULL);
2262 }
2263 
2264 #ifdef ZFS_DEBUG
2265 int
2266 arc_referenced(arc_buf_t *buf)
2267 {
2268 	return (refcount_count(&buf->b_hdr->b_refcnt));
2269 }
2270 #endif
2271 
2272 static void
2273 arc_write_done(zio_t *zio)
2274 {
2275 	arc_buf_t *buf;
2276 	arc_buf_hdr_t *hdr;
2277 	arc_callback_t *acb;
2278 
2279 	buf = zio->io_private;
2280 	hdr = buf->b_hdr;
2281 	acb = hdr->b_acb;
2282 	hdr->b_acb = NULL;
2283 	ASSERT(acb != NULL);
2284 
2285 	/* this buffer is on no lists and is not in the hash table */
2286 	ASSERT3P(hdr->b_state, ==, arc.anon);
2287 
2288 	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
2289 	hdr->b_birth = zio->io_bp->blk_birth;
2290 	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
2291 	/*
2292 	 * If the block to be written was all-zero, we may have
2293 	 * compressed it away.  In this case no write was performed
2294 	 * so there will be no dva/birth-date/checksum.  The buffer
2295 	 * must therefor remain anonymous (and uncached).
2296 	 */
2297 	if (!BUF_EMPTY(hdr)) {
2298 		arc_buf_hdr_t *exists;
2299 		kmutex_t *hash_lock;
2300 
2301 		arc_cksum_verify(buf);
2302 
2303 		exists = buf_hash_insert(hdr, &hash_lock);
2304 		if (exists) {
2305 			/*
2306 			 * This can only happen if we overwrite for
2307 			 * sync-to-convergence, because we remove
2308 			 * buffers from the hash table when we arc_free().
2309 			 */
2310 			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
2311 			    BP_IDENTITY(zio->io_bp)));
2312 			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
2313 			    zio->io_bp->blk_birth);
2314 
2315 			ASSERT(refcount_is_zero(&exists->b_refcnt));
2316 			arc_change_state(arc.anon, exists, hash_lock);
2317 			mutex_exit(hash_lock);
2318 			arc_hdr_destroy(exists);
2319 			exists = buf_hash_insert(hdr, &hash_lock);
2320 			ASSERT3P(exists, ==, NULL);
2321 		}
2322 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2323 		arc_access(hdr, hash_lock);
2324 		mutex_exit(hash_lock);
2325 	} else if (acb->acb_done == NULL) {
2326 		int destroy_hdr;
2327 		/*
2328 		 * This is an anonymous buffer with no user callback,
2329 		 * destroy it if there are no active references.
2330 		 */
2331 		mutex_enter(&arc_eviction_mtx);
2332 		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
2333 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2334 		mutex_exit(&arc_eviction_mtx);
2335 		if (destroy_hdr)
2336 			arc_hdr_destroy(hdr);
2337 	} else {
2338 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2339 	}
2340 
2341 	if (acb->acb_done) {
2342 		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
2343 		acb->acb_done(zio, buf, acb->acb_private);
2344 	}
2345 
2346 	kmem_free(acb, sizeof (arc_callback_t));
2347 }
2348 
2349 int
2350 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies,
2351     uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
2352     arc_done_func_t *done, void *private, int priority, int flags,
2353     uint32_t arc_flags, zbookmark_t *zb)
2354 {
2355 	arc_buf_hdr_t *hdr = buf->b_hdr;
2356 	arc_callback_t	*acb;
2357 	zio_t	*rzio;
2358 
2359 	/* this is a private buffer - no locking required */
2360 	ASSERT3P(hdr->b_state, ==, arc.anon);
2361 	ASSERT(BUF_EMPTY(hdr));
2362 	ASSERT(!HDR_IO_ERROR(hdr));
2363 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
2364 	ASSERT(hdr->b_acb == 0);
2365 	acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2366 	acb->acb_done = done;
2367 	acb->acb_private = private;
2368 	acb->acb_byteswap = (arc_byteswap_func_t *)-1;
2369 	hdr->b_acb = acb;
2370 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
2371 	arc_cksum_compute(buf);
2372 	rzio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp,
2373 	    buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags, zb);
2374 
2375 	if (arc_flags & ARC_WAIT)
2376 		return (zio_wait(rzio));
2377 
2378 	ASSERT(arc_flags & ARC_NOWAIT);
2379 	zio_nowait(rzio);
2380 
2381 	return (0);
2382 }
2383 
2384 int
2385 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
2386     zio_done_func_t *done, void *private, uint32_t arc_flags)
2387 {
2388 	arc_buf_hdr_t *ab;
2389 	kmutex_t *hash_lock;
2390 	zio_t	*zio;
2391 
2392 	/*
2393 	 * If this buffer is in the cache, release it, so it
2394 	 * can be re-used.
2395 	 */
2396 	ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2397 	if (ab != NULL) {
2398 		/*
2399 		 * The checksum of blocks to free is not always
2400 		 * preserved (eg. on the deadlist).  However, if it is
2401 		 * nonzero, it should match what we have in the cache.
2402 		 */
2403 		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
2404 		    ab->b_cksum0 == bp->blk_cksum.zc_word[0]);
2405 		if (ab->b_state != arc.anon)
2406 			arc_change_state(arc.anon, ab, hash_lock);
2407 		if (HDR_IO_IN_PROGRESS(ab)) {
2408 			/*
2409 			 * This should only happen when we prefetch.
2410 			 */
2411 			ASSERT(ab->b_flags & ARC_PREFETCH);
2412 			ASSERT3U(ab->b_datacnt, ==, 1);
2413 			ab->b_flags |= ARC_FREED_IN_READ;
2414 			if (HDR_IN_HASH_TABLE(ab))
2415 				buf_hash_remove(ab);
2416 			ab->b_arc_access = 0;
2417 			bzero(&ab->b_dva, sizeof (dva_t));
2418 			ab->b_birth = 0;
2419 			ab->b_cksum0 = 0;
2420 			ab->b_buf->b_efunc = NULL;
2421 			ab->b_buf->b_private = NULL;
2422 			mutex_exit(hash_lock);
2423 		} else if (refcount_is_zero(&ab->b_refcnt)) {
2424 			mutex_exit(hash_lock);
2425 			arc_hdr_destroy(ab);
2426 			atomic_add_64(&arc.deleted, 1);
2427 		} else {
2428 			/*
2429 			 * We still have an active reference on this
2430 			 * buffer.  This can happen, e.g., from
2431 			 * dbuf_unoverride().
2432 			 */
2433 			ASSERT(!HDR_IN_HASH_TABLE(ab));
2434 			ab->b_arc_access = 0;
2435 			bzero(&ab->b_dva, sizeof (dva_t));
2436 			ab->b_birth = 0;
2437 			ab->b_cksum0 = 0;
2438 			ab->b_buf->b_efunc = NULL;
2439 			ab->b_buf->b_private = NULL;
2440 			mutex_exit(hash_lock);
2441 		}
2442 	}
2443 
2444 	zio = zio_free(pio, spa, txg, bp, done, private);
2445 
2446 	if (arc_flags & ARC_WAIT)
2447 		return (zio_wait(zio));
2448 
2449 	ASSERT(arc_flags & ARC_NOWAIT);
2450 	zio_nowait(zio);
2451 
2452 	return (0);
2453 }
2454 
2455 void
2456 arc_tempreserve_clear(uint64_t tempreserve)
2457 {
2458 	atomic_add_64(&arc_tempreserve, -tempreserve);
2459 	ASSERT((int64_t)arc_tempreserve >= 0);
2460 }
2461 
2462 int
2463 arc_tempreserve_space(uint64_t tempreserve)
2464 {
2465 #ifdef ZFS_DEBUG
2466 	/*
2467 	 * Once in a while, fail for no reason.  Everything should cope.
2468 	 */
2469 	if (spa_get_random(10000) == 0) {
2470 		dprintf("forcing random failure\n");
2471 		return (ERESTART);
2472 	}
2473 #endif
2474 	if (tempreserve > arc.c/4 && !arc.no_grow)
2475 		arc.c = MIN(arc.c_max, tempreserve * 4);
2476 	if (tempreserve > arc.c)
2477 		return (ENOMEM);
2478 
2479 	/*
2480 	 * Throttle writes when the amount of dirty data in the cache
2481 	 * gets too large.  We try to keep the cache less than half full
2482 	 * of dirty blocks so that our sync times don't grow too large.
2483 	 * Note: if two requests come in concurrently, we might let them
2484 	 * both succeed, when one of them should fail.  Not a huge deal.
2485 	 *
2486 	 * XXX The limit should be adjusted dynamically to keep the time
2487 	 * to sync a dataset fixed (around 1-5 seconds?).
2488 	 */
2489 
2490 	if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 &&
2491 	    arc_tempreserve + arc.anon->size > arc.c / 4) {
2492 		dprintf("failing, arc_tempreserve=%lluK anon=%lluK "
2493 		    "tempreserve=%lluK arc.c=%lluK\n",
2494 		    arc_tempreserve>>10, arc.anon->lsize>>10,
2495 		    tempreserve>>10, arc.c>>10);
2496 		return (ERESTART);
2497 	}
2498 	atomic_add_64(&arc_tempreserve, tempreserve);
2499 	return (0);
2500 }
2501 
2502 void
2503 arc_init(void)
2504 {
2505 	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
2506 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
2507 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
2508 
2509 	/* Convert seconds to clock ticks */
2510 	arc_min_prefetch_lifespan = 1 * hz;
2511 
2512 	/* Start out with 1/8 of all memory */
2513 	arc.c = physmem * PAGESIZE / 8;
2514 
2515 #ifdef _KERNEL
2516 	/*
2517 	 * On architectures where the physical memory can be larger
2518 	 * than the addressable space (intel in 32-bit mode), we may
2519 	 * need to limit the cache to 1/8 of VM size.
2520 	 */
2521 	arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
2522 #endif
2523 
2524 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
2525 	arc.c_min = MAX(arc.c / 4, 64<<20);
2526 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
2527 	if (arc.c * 8 >= 1<<30)
2528 		arc.c_max = (arc.c * 8) - (1<<30);
2529 	else
2530 		arc.c_max = arc.c_min;
2531 	arc.c_max = MAX(arc.c * 6, arc.c_max);
2532 
2533 	/*
2534 	 * Allow the tunables to override our calculations if they are
2535 	 * reasonable (ie. over 64MB)
2536 	 */
2537 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
2538 		arc.c_max = zfs_arc_max;
2539 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc.c_max)
2540 		arc.c_min = zfs_arc_min;
2541 
2542 	arc.c = arc.c_max;
2543 	arc.p = (arc.c >> 1);
2544 
2545 	/* if kmem_flags are set, lets try to use less memory */
2546 	if (kmem_debugging())
2547 		arc.c = arc.c / 2;
2548 	if (arc.c < arc.c_min)
2549 		arc.c = arc.c_min;
2550 
2551 	arc.anon = &ARC_anon;
2552 	arc.mru = &ARC_mru;
2553 	arc.mru_ghost = &ARC_mru_ghost;
2554 	arc.mfu = &ARC_mfu;
2555 	arc.mfu_ghost = &ARC_mfu_ghost;
2556 	arc.size = 0;
2557 
2558 	arc.hits = 0;
2559 	arc.recycle_miss = 0;
2560 	arc.evict_skip = 0;
2561 	arc.mutex_miss = 0;
2562 
2563 	mutex_init(&arc.anon->mtx, NULL, MUTEX_DEFAULT, NULL);
2564 	mutex_init(&arc.mru->mtx, NULL, MUTEX_DEFAULT, NULL);
2565 	mutex_init(&arc.mru_ghost->mtx, NULL, MUTEX_DEFAULT, NULL);
2566 	mutex_init(&arc.mfu->mtx, NULL, MUTEX_DEFAULT, NULL);
2567 	mutex_init(&arc.mfu_ghost->mtx, NULL, MUTEX_DEFAULT, NULL);
2568 
2569 	list_create(&arc.mru->list, sizeof (arc_buf_hdr_t),
2570 	    offsetof(arc_buf_hdr_t, b_arc_node));
2571 	list_create(&arc.mru_ghost->list, sizeof (arc_buf_hdr_t),
2572 	    offsetof(arc_buf_hdr_t, b_arc_node));
2573 	list_create(&arc.mfu->list, sizeof (arc_buf_hdr_t),
2574 	    offsetof(arc_buf_hdr_t, b_arc_node));
2575 	list_create(&arc.mfu_ghost->list, sizeof (arc_buf_hdr_t),
2576 	    offsetof(arc_buf_hdr_t, b_arc_node));
2577 
2578 	buf_init();
2579 
2580 	arc_thread_exit = 0;
2581 	arc_eviction_list = NULL;
2582 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
2583 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
2584 
2585 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
2586 	    TS_RUN, minclsyspri);
2587 }
2588 
2589 void
2590 arc_fini(void)
2591 {
2592 	mutex_enter(&arc_reclaim_thr_lock);
2593 	arc_thread_exit = 1;
2594 	while (arc_thread_exit != 0)
2595 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
2596 	mutex_exit(&arc_reclaim_thr_lock);
2597 
2598 	arc_flush();
2599 
2600 	arc_dead = TRUE;
2601 
2602 	mutex_destroy(&arc_eviction_mtx);
2603 	mutex_destroy(&arc_reclaim_lock);
2604 	mutex_destroy(&arc_reclaim_thr_lock);
2605 	cv_destroy(&arc_reclaim_thr_cv);
2606 
2607 	list_destroy(&arc.mru->list);
2608 	list_destroy(&arc.mru_ghost->list);
2609 	list_destroy(&arc.mfu->list);
2610 	list_destroy(&arc.mfu_ghost->list);
2611 
2612 	mutex_destroy(&arc.anon->mtx);
2613 	mutex_destroy(&arc.mru->mtx);
2614 	mutex_destroy(&arc.mru_ghost->mtx);
2615 	mutex_destroy(&arc.mfu->mtx);
2616 	mutex_destroy(&arc.mfu_ghost->mtx);
2617 
2618 	buf_fini();
2619 }
2620