xref: /titanic_50/usr/src/uts/common/fs/zfs/arc.c (revision ce67301fa82625f5594913e8ab6abf9e0aa461d0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * DVA-based Adjustable Replacement Cache
28  *
29  * While much of the theory of operation used here is
30  * based on the self-tuning, low overhead replacement cache
31  * presented by Megiddo and Modha at FAST 2003, there are some
32  * significant differences:
33  *
34  * 1. The Megiddo and Modha model assumes any page is evictable.
35  * Pages in its cache cannot be "locked" into memory.  This makes
36  * the eviction algorithm simple: evict the last page in the list.
37  * This also make the performance characteristics easy to reason
38  * about.  Our cache is not so simple.  At any given moment, some
39  * subset of the blocks in the cache are un-evictable because we
40  * have handed out a reference to them.  Blocks are only evictable
41  * when there are no external references active.  This makes
42  * eviction far more problematic:  we choose to evict the evictable
43  * blocks that are the "lowest" in the list.
44  *
45  * There are times when it is not possible to evict the requested
46  * space.  In these circumstances we are unable to adjust the cache
47  * size.  To prevent the cache growing unbounded at these times we
48  * implement a "cache throttle" that slows the flow of new data
49  * into the cache until we can make space available.
50  *
51  * 2. The Megiddo and Modha model assumes a fixed cache size.
52  * Pages are evicted when the cache is full and there is a cache
53  * miss.  Our model has a variable sized cache.  It grows with
54  * high use, but also tries to react to memory pressure from the
55  * operating system: decreasing its size when system memory is
56  * tight.
57  *
58  * 3. The Megiddo and Modha model assumes a fixed page size. All
59  * elements of the cache are therefor exactly the same size.  So
60  * when adjusting the cache size following a cache miss, its simply
61  * a matter of choosing a single page to evict.  In our model, we
62  * have variable sized cache blocks (rangeing from 512 bytes to
63  * 128K bytes).  We therefor choose a set of blocks to evict to make
64  * space for a cache miss that approximates as closely as possible
65  * the space used by the new block.
66  *
67  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
68  * by N. Megiddo & D. Modha, FAST 2003
69  */
70 
71 /*
72  * The locking model:
73  *
74  * A new reference to a cache buffer can be obtained in two
75  * ways: 1) via a hash table lookup using the DVA as a key,
76  * or 2) via one of the ARC lists.  The arc_read() interface
77  * uses method 1, while the internal arc algorithms for
78  * adjusting the cache use method 2.  We therefor provide two
79  * types of locks: 1) the hash table lock array, and 2) the
80  * arc list locks.
81  *
82  * Buffers do not have their own mutexs, rather they rely on the
83  * hash table mutexs for the bulk of their protection (i.e. most
84  * fields in the arc_buf_hdr_t are protected by these mutexs).
85  *
86  * buf_hash_find() returns the appropriate mutex (held) when it
87  * locates the requested buffer in the hash table.  It returns
88  * NULL for the mutex if the buffer was not in the table.
89  *
90  * buf_hash_remove() expects the appropriate hash mutex to be
91  * already held before it is invoked.
92  *
93  * Each arc state also has a mutex which is used to protect the
94  * buffer list associated with the state.  When attempting to
95  * obtain a hash table lock while holding an arc list lock you
96  * must use: mutex_tryenter() to avoid deadlock.  Also note that
97  * the active state mutex must be held before the ghost state mutex.
98  *
99  * Arc buffers may have an associated eviction callback function.
100  * This function will be invoked prior to removing the buffer (e.g.
101  * in arc_do_user_evicts()).  Note however that the data associated
102  * with the buffer may be evicted prior to the callback.  The callback
103  * must be made with *no locks held* (to prevent deadlock).  Additionally,
104  * the users of callbacks must ensure that their private data is
105  * protected from simultaneous callbacks from arc_buf_evict()
106  * and arc_do_user_evicts().
107  *
108  * Note that the majority of the performance stats are manipulated
109  * with atomic operations.
110  *
111  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
112  *
113  *	- L2ARC buflist creation
114  *	- L2ARC buflist eviction
115  *	- L2ARC write completion, which walks L2ARC buflists
116  *	- ARC header destruction, as it removes from L2ARC buflists
117  *	- ARC header release, as it removes from L2ARC buflists
118  */
119 
120 #include <sys/spa.h>
121 #include <sys/zio.h>
122 #include <sys/zio_checksum.h>
123 #include <sys/zfs_context.h>
124 #include <sys/arc.h>
125 #include <sys/refcount.h>
126 #include <sys/vdev.h>
127 #include <sys/vdev_impl.h>
128 #ifdef _KERNEL
129 #include <sys/vmsystm.h>
130 #include <vm/anon.h>
131 #include <sys/fs/swapnode.h>
132 #include <sys/dnlc.h>
133 #endif
134 #include <sys/callb.h>
135 #include <sys/kstat.h>
136 
137 static kmutex_t		arc_reclaim_thr_lock;
138 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
139 static uint8_t		arc_thread_exit;
140 
141 extern int zfs_write_limit_shift;
142 extern uint64_t zfs_write_limit_max;
143 extern kmutex_t zfs_write_limit_lock;
144 
145 #define	ARC_REDUCE_DNLC_PERCENT	3
146 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
147 
148 typedef enum arc_reclaim_strategy {
149 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
150 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
151 } arc_reclaim_strategy_t;
152 
153 /* number of seconds before growing cache again */
154 static int		arc_grow_retry = 60;
155 
156 /* shift of arc_c for calculating both min and max arc_p */
157 static int		arc_p_min_shift = 4;
158 
159 /* log2(fraction of arc to reclaim) */
160 static int		arc_shrink_shift = 5;
161 
162 /*
163  * minimum lifespan of a prefetch block in clock ticks
164  * (initialized in arc_init())
165  */
166 static int		arc_min_prefetch_lifespan;
167 
168 static int arc_dead;
169 
170 /*
171  * The arc has filled available memory and has now warmed up.
172  */
173 static boolean_t arc_warm;
174 
175 /*
176  * These tunables are for performance analysis.
177  */
178 uint64_t zfs_arc_max;
179 uint64_t zfs_arc_min;
180 uint64_t zfs_arc_meta_limit = 0;
181 int zfs_mdcomp_disable = 0;
182 int zfs_arc_grow_retry = 0;
183 int zfs_arc_shrink_shift = 0;
184 int zfs_arc_p_min_shift = 0;
185 
186 /*
187  * Note that buffers can be in one of 6 states:
188  *	ARC_anon	- anonymous (discussed below)
189  *	ARC_mru		- recently used, currently cached
190  *	ARC_mru_ghost	- recentely used, no longer in cache
191  *	ARC_mfu		- frequently used, currently cached
192  *	ARC_mfu_ghost	- frequently used, no longer in cache
193  *	ARC_l2c_only	- exists in L2ARC but not other states
194  * When there are no active references to the buffer, they are
195  * are linked onto a list in one of these arc states.  These are
196  * the only buffers that can be evicted or deleted.  Within each
197  * state there are multiple lists, one for meta-data and one for
198  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
199  * etc.) is tracked separately so that it can be managed more
200  * explicitly: favored over data, limited explicitly.
201  *
202  * Anonymous buffers are buffers that are not associated with
203  * a DVA.  These are buffers that hold dirty block copies
204  * before they are written to stable storage.  By definition,
205  * they are "ref'd" and are considered part of arc_mru
206  * that cannot be freed.  Generally, they will aquire a DVA
207  * as they are written and migrate onto the arc_mru list.
208  *
209  * The ARC_l2c_only state is for buffers that are in the second
210  * level ARC but no longer in any of the ARC_m* lists.  The second
211  * level ARC itself may also contain buffers that are in any of
212  * the ARC_m* states - meaning that a buffer can exist in two
213  * places.  The reason for the ARC_l2c_only state is to keep the
214  * buffer header in the hash table, so that reads that hit the
215  * second level ARC benefit from these fast lookups.
216  */
217 
218 typedef struct arc_state {
219 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
220 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
221 	uint64_t arcs_size;	/* total amount of data in this state */
222 	kmutex_t arcs_mtx;
223 } arc_state_t;
224 
225 /* The 6 states: */
226 static arc_state_t ARC_anon;
227 static arc_state_t ARC_mru;
228 static arc_state_t ARC_mru_ghost;
229 static arc_state_t ARC_mfu;
230 static arc_state_t ARC_mfu_ghost;
231 static arc_state_t ARC_l2c_only;
232 
233 typedef struct arc_stats {
234 	kstat_named_t arcstat_hits;
235 	kstat_named_t arcstat_misses;
236 	kstat_named_t arcstat_demand_data_hits;
237 	kstat_named_t arcstat_demand_data_misses;
238 	kstat_named_t arcstat_demand_metadata_hits;
239 	kstat_named_t arcstat_demand_metadata_misses;
240 	kstat_named_t arcstat_prefetch_data_hits;
241 	kstat_named_t arcstat_prefetch_data_misses;
242 	kstat_named_t arcstat_prefetch_metadata_hits;
243 	kstat_named_t arcstat_prefetch_metadata_misses;
244 	kstat_named_t arcstat_mru_hits;
245 	kstat_named_t arcstat_mru_ghost_hits;
246 	kstat_named_t arcstat_mfu_hits;
247 	kstat_named_t arcstat_mfu_ghost_hits;
248 	kstat_named_t arcstat_deleted;
249 	kstat_named_t arcstat_recycle_miss;
250 	kstat_named_t arcstat_mutex_miss;
251 	kstat_named_t arcstat_evict_skip;
252 	kstat_named_t arcstat_hash_elements;
253 	kstat_named_t arcstat_hash_elements_max;
254 	kstat_named_t arcstat_hash_collisions;
255 	kstat_named_t arcstat_hash_chains;
256 	kstat_named_t arcstat_hash_chain_max;
257 	kstat_named_t arcstat_p;
258 	kstat_named_t arcstat_c;
259 	kstat_named_t arcstat_c_min;
260 	kstat_named_t arcstat_c_max;
261 	kstat_named_t arcstat_size;
262 	kstat_named_t arcstat_hdr_size;
263 	kstat_named_t arcstat_data_size;
264 	kstat_named_t arcstat_other_size;
265 	kstat_named_t arcstat_l2_hits;
266 	kstat_named_t arcstat_l2_misses;
267 	kstat_named_t arcstat_l2_feeds;
268 	kstat_named_t arcstat_l2_rw_clash;
269 	kstat_named_t arcstat_l2_read_bytes;
270 	kstat_named_t arcstat_l2_write_bytes;
271 	kstat_named_t arcstat_l2_writes_sent;
272 	kstat_named_t arcstat_l2_writes_done;
273 	kstat_named_t arcstat_l2_writes_error;
274 	kstat_named_t arcstat_l2_writes_hdr_miss;
275 	kstat_named_t arcstat_l2_evict_lock_retry;
276 	kstat_named_t arcstat_l2_evict_reading;
277 	kstat_named_t arcstat_l2_free_on_write;
278 	kstat_named_t arcstat_l2_abort_lowmem;
279 	kstat_named_t arcstat_l2_cksum_bad;
280 	kstat_named_t arcstat_l2_io_error;
281 	kstat_named_t arcstat_l2_size;
282 	kstat_named_t arcstat_l2_hdr_size;
283 	kstat_named_t arcstat_memory_throttle_count;
284 } arc_stats_t;
285 
286 static arc_stats_t arc_stats = {
287 	{ "hits",			KSTAT_DATA_UINT64 },
288 	{ "misses",			KSTAT_DATA_UINT64 },
289 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
290 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
291 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
292 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
293 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
294 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
295 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
296 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
297 	{ "mru_hits",			KSTAT_DATA_UINT64 },
298 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
299 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
300 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
301 	{ "deleted",			KSTAT_DATA_UINT64 },
302 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
303 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
304 	{ "evict_skip",			KSTAT_DATA_UINT64 },
305 	{ "hash_elements",		KSTAT_DATA_UINT64 },
306 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
307 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
308 	{ "hash_chains",		KSTAT_DATA_UINT64 },
309 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
310 	{ "p",				KSTAT_DATA_UINT64 },
311 	{ "c",				KSTAT_DATA_UINT64 },
312 	{ "c_min",			KSTAT_DATA_UINT64 },
313 	{ "c_max",			KSTAT_DATA_UINT64 },
314 	{ "size",			KSTAT_DATA_UINT64 },
315 	{ "hdr_size",			KSTAT_DATA_UINT64 },
316 	{ "data_size",			KSTAT_DATA_UINT64 },
317 	{ "other_size",			KSTAT_DATA_UINT64 },
318 	{ "l2_hits",			KSTAT_DATA_UINT64 },
319 	{ "l2_misses",			KSTAT_DATA_UINT64 },
320 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
321 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
322 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
323 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
324 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
325 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
326 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
327 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
328 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
329 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
330 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
331 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
332 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
333 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
334 	{ "l2_size",			KSTAT_DATA_UINT64 },
335 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
336 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 }
337 };
338 
339 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
340 
341 #define	ARCSTAT_INCR(stat, val) \
342 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
343 
344 #define	ARCSTAT_BUMP(stat) 	ARCSTAT_INCR(stat, 1)
345 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
346 
347 #define	ARCSTAT_MAX(stat, val) {					\
348 	uint64_t m;							\
349 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
350 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
351 		continue;						\
352 }
353 
354 #define	ARCSTAT_MAXSTAT(stat) \
355 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
356 
357 /*
358  * We define a macro to allow ARC hits/misses to be easily broken down by
359  * two separate conditions, giving a total of four different subtypes for
360  * each of hits and misses (so eight statistics total).
361  */
362 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
363 	if (cond1) {							\
364 		if (cond2) {						\
365 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
366 		} else {						\
367 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
368 		}							\
369 	} else {							\
370 		if (cond2) {						\
371 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
372 		} else {						\
373 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
374 		}							\
375 	}
376 
377 kstat_t			*arc_ksp;
378 static arc_state_t 	*arc_anon;
379 static arc_state_t	*arc_mru;
380 static arc_state_t	*arc_mru_ghost;
381 static arc_state_t	*arc_mfu;
382 static arc_state_t	*arc_mfu_ghost;
383 static arc_state_t	*arc_l2c_only;
384 
385 /*
386  * There are several ARC variables that are critical to export as kstats --
387  * but we don't want to have to grovel around in the kstat whenever we wish to
388  * manipulate them.  For these variables, we therefore define them to be in
389  * terms of the statistic variable.  This assures that we are not introducing
390  * the possibility of inconsistency by having shadow copies of the variables,
391  * while still allowing the code to be readable.
392  */
393 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
394 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
395 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
396 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
397 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
398 
399 static int		arc_no_grow;	/* Don't try to grow cache size */
400 static uint64_t		arc_tempreserve;
401 static uint64_t		arc_loaned_bytes;
402 static uint64_t		arc_meta_used;
403 static uint64_t		arc_meta_limit;
404 static uint64_t		arc_meta_max = 0;
405 
406 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
407 
408 typedef struct arc_callback arc_callback_t;
409 
410 struct arc_callback {
411 	void			*acb_private;
412 	arc_done_func_t		*acb_done;
413 	arc_buf_t		*acb_buf;
414 	zio_t			*acb_zio_dummy;
415 	arc_callback_t		*acb_next;
416 };
417 
418 typedef struct arc_write_callback arc_write_callback_t;
419 
420 struct arc_write_callback {
421 	void		*awcb_private;
422 	arc_done_func_t	*awcb_ready;
423 	arc_done_func_t	*awcb_done;
424 	arc_buf_t	*awcb_buf;
425 };
426 
427 struct arc_buf_hdr {
428 	/* protected by hash lock */
429 	dva_t			b_dva;
430 	uint64_t		b_birth;
431 	uint64_t		b_cksum0;
432 
433 	kmutex_t		b_freeze_lock;
434 	zio_cksum_t		*b_freeze_cksum;
435 
436 	arc_buf_hdr_t		*b_hash_next;
437 	arc_buf_t		*b_buf;
438 	uint32_t		b_flags;
439 	uint32_t		b_datacnt;
440 
441 	arc_callback_t		*b_acb;
442 	kcondvar_t		b_cv;
443 
444 	/* immutable */
445 	arc_buf_contents_t	b_type;
446 	uint64_t		b_size;
447 	uint64_t		b_spa;
448 
449 	/* protected by arc state mutex */
450 	arc_state_t		*b_state;
451 	list_node_t		b_arc_node;
452 
453 	/* updated atomically */
454 	clock_t			b_arc_access;
455 
456 	/* self protecting */
457 	refcount_t		b_refcnt;
458 
459 	l2arc_buf_hdr_t		*b_l2hdr;
460 	list_node_t		b_l2node;
461 };
462 
463 static arc_buf_t *arc_eviction_list;
464 static kmutex_t arc_eviction_mtx;
465 static arc_buf_hdr_t arc_eviction_hdr;
466 static void arc_get_data_buf(arc_buf_t *buf);
467 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
468 static int arc_evict_needed(arc_buf_contents_t type);
469 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
470 
471 #define	GHOST_STATE(state)	\
472 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
473 	(state) == arc_l2c_only)
474 
475 /*
476  * Private ARC flags.  These flags are private ARC only flags that will show up
477  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
478  * be passed in as arc_flags in things like arc_read.  However, these flags
479  * should never be passed and should only be set by ARC code.  When adding new
480  * public flags, make sure not to smash the private ones.
481  */
482 
483 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
484 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
485 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
486 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
487 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
488 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
489 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
490 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
491 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
492 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
493 #define	ARC_STORED		(1 << 19)	/* has been store()d to */
494 
495 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
496 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
497 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
498 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
499 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
500 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
501 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
502 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
503 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
504 				    (hdr)->b_l2hdr != NULL)
505 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
506 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
507 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
508 
509 /*
510  * Other sizes
511  */
512 
513 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
514 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
515 
516 /*
517  * Hash table routines
518  */
519 
520 #define	HT_LOCK_PAD	64
521 
522 struct ht_lock {
523 	kmutex_t	ht_lock;
524 #ifdef _KERNEL
525 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
526 #endif
527 };
528 
529 #define	BUF_LOCKS 256
530 typedef struct buf_hash_table {
531 	uint64_t ht_mask;
532 	arc_buf_hdr_t **ht_table;
533 	struct ht_lock ht_locks[BUF_LOCKS];
534 } buf_hash_table_t;
535 
536 static buf_hash_table_t buf_hash_table;
537 
538 #define	BUF_HASH_INDEX(spa, dva, birth) \
539 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
540 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
541 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
542 #define	HDR_LOCK(buf) \
543 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
544 
545 uint64_t zfs_crc64_table[256];
546 
547 /*
548  * Level 2 ARC
549  */
550 
551 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
552 #define	L2ARC_HEADROOM		2		/* num of writes */
553 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
554 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
555 
556 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
557 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
558 
559 /*
560  * L2ARC Performance Tunables
561  */
562 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
563 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
564 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
565 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
566 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
567 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
568 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
569 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
570 
571 /*
572  * L2ARC Internals
573  */
574 typedef struct l2arc_dev {
575 	vdev_t			*l2ad_vdev;	/* vdev */
576 	spa_t			*l2ad_spa;	/* spa */
577 	uint64_t		l2ad_hand;	/* next write location */
578 	uint64_t		l2ad_write;	/* desired write size, bytes */
579 	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
580 	uint64_t		l2ad_start;	/* first addr on device */
581 	uint64_t		l2ad_end;	/* last addr on device */
582 	uint64_t		l2ad_evict;	/* last addr eviction reached */
583 	boolean_t		l2ad_first;	/* first sweep through */
584 	boolean_t		l2ad_writing;	/* currently writing */
585 	list_t			*l2ad_buflist;	/* buffer list */
586 	list_node_t		l2ad_node;	/* device list node */
587 } l2arc_dev_t;
588 
589 static list_t L2ARC_dev_list;			/* device list */
590 static list_t *l2arc_dev_list;			/* device list pointer */
591 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
592 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
593 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
594 static list_t L2ARC_free_on_write;		/* free after write buf list */
595 static list_t *l2arc_free_on_write;		/* free after write list ptr */
596 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
597 static uint64_t l2arc_ndev;			/* number of devices */
598 
599 typedef struct l2arc_read_callback {
600 	arc_buf_t	*l2rcb_buf;		/* read buffer */
601 	spa_t		*l2rcb_spa;		/* spa */
602 	blkptr_t	l2rcb_bp;		/* original blkptr */
603 	zbookmark_t	l2rcb_zb;		/* original bookmark */
604 	int		l2rcb_flags;		/* original flags */
605 } l2arc_read_callback_t;
606 
607 typedef struct l2arc_write_callback {
608 	l2arc_dev_t	*l2wcb_dev;		/* device info */
609 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
610 } l2arc_write_callback_t;
611 
612 struct l2arc_buf_hdr {
613 	/* protected by arc_buf_hdr  mutex */
614 	l2arc_dev_t	*b_dev;			/* L2ARC device */
615 	uint64_t	b_daddr;		/* disk address, offset byte */
616 };
617 
618 typedef struct l2arc_data_free {
619 	/* protected by l2arc_free_on_write_mtx */
620 	void		*l2df_data;
621 	size_t		l2df_size;
622 	void		(*l2df_func)(void *, size_t);
623 	list_node_t	l2df_list_node;
624 } l2arc_data_free_t;
625 
626 static kmutex_t l2arc_feed_thr_lock;
627 static kcondvar_t l2arc_feed_thr_cv;
628 static uint8_t l2arc_thread_exit;
629 
630 static void l2arc_read_done(zio_t *zio);
631 static void l2arc_hdr_stat_add(void);
632 static void l2arc_hdr_stat_remove(void);
633 
634 static uint64_t
635 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
636 {
637 	uint8_t *vdva = (uint8_t *)dva;
638 	uint64_t crc = -1ULL;
639 	int i;
640 
641 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
642 
643 	for (i = 0; i < sizeof (dva_t); i++)
644 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
645 
646 	crc ^= (spa>>8) ^ birth;
647 
648 	return (crc);
649 }
650 
651 #define	BUF_EMPTY(buf)						\
652 	((buf)->b_dva.dva_word[0] == 0 &&			\
653 	(buf)->b_dva.dva_word[1] == 0 &&			\
654 	(buf)->b_birth == 0)
655 
656 #define	BUF_EQUAL(spa, dva, birth, buf)				\
657 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
658 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
659 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
660 
661 static arc_buf_hdr_t *
662 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
663 {
664 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
665 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
666 	arc_buf_hdr_t *buf;
667 
668 	mutex_enter(hash_lock);
669 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
670 	    buf = buf->b_hash_next) {
671 		if (BUF_EQUAL(spa, dva, birth, buf)) {
672 			*lockp = hash_lock;
673 			return (buf);
674 		}
675 	}
676 	mutex_exit(hash_lock);
677 	*lockp = NULL;
678 	return (NULL);
679 }
680 
681 /*
682  * Insert an entry into the hash table.  If there is already an element
683  * equal to elem in the hash table, then the already existing element
684  * will be returned and the new element will not be inserted.
685  * Otherwise returns NULL.
686  */
687 static arc_buf_hdr_t *
688 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
689 {
690 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
691 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
692 	arc_buf_hdr_t *fbuf;
693 	uint32_t i;
694 
695 	ASSERT(!HDR_IN_HASH_TABLE(buf));
696 	*lockp = hash_lock;
697 	mutex_enter(hash_lock);
698 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
699 	    fbuf = fbuf->b_hash_next, i++) {
700 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
701 			return (fbuf);
702 	}
703 
704 	buf->b_hash_next = buf_hash_table.ht_table[idx];
705 	buf_hash_table.ht_table[idx] = buf;
706 	buf->b_flags |= ARC_IN_HASH_TABLE;
707 
708 	/* collect some hash table performance data */
709 	if (i > 0) {
710 		ARCSTAT_BUMP(arcstat_hash_collisions);
711 		if (i == 1)
712 			ARCSTAT_BUMP(arcstat_hash_chains);
713 
714 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
715 	}
716 
717 	ARCSTAT_BUMP(arcstat_hash_elements);
718 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
719 
720 	return (NULL);
721 }
722 
723 static void
724 buf_hash_remove(arc_buf_hdr_t *buf)
725 {
726 	arc_buf_hdr_t *fbuf, **bufp;
727 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
728 
729 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
730 	ASSERT(HDR_IN_HASH_TABLE(buf));
731 
732 	bufp = &buf_hash_table.ht_table[idx];
733 	while ((fbuf = *bufp) != buf) {
734 		ASSERT(fbuf != NULL);
735 		bufp = &fbuf->b_hash_next;
736 	}
737 	*bufp = buf->b_hash_next;
738 	buf->b_hash_next = NULL;
739 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
740 
741 	/* collect some hash table performance data */
742 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
743 
744 	if (buf_hash_table.ht_table[idx] &&
745 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
746 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
747 }
748 
749 /*
750  * Global data structures and functions for the buf kmem cache.
751  */
752 static kmem_cache_t *hdr_cache;
753 static kmem_cache_t *buf_cache;
754 
755 static void
756 buf_fini(void)
757 {
758 	int i;
759 
760 	kmem_free(buf_hash_table.ht_table,
761 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
762 	for (i = 0; i < BUF_LOCKS; i++)
763 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
764 	kmem_cache_destroy(hdr_cache);
765 	kmem_cache_destroy(buf_cache);
766 }
767 
768 /*
769  * Constructor callback - called when the cache is empty
770  * and a new buf is requested.
771  */
772 /* ARGSUSED */
773 static int
774 hdr_cons(void *vbuf, void *unused, int kmflag)
775 {
776 	arc_buf_hdr_t *buf = vbuf;
777 
778 	bzero(buf, sizeof (arc_buf_hdr_t));
779 	refcount_create(&buf->b_refcnt);
780 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
781 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
782 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
783 
784 	return (0);
785 }
786 
787 /* ARGSUSED */
788 static int
789 buf_cons(void *vbuf, void *unused, int kmflag)
790 {
791 	arc_buf_t *buf = vbuf;
792 
793 	bzero(buf, sizeof (arc_buf_t));
794 	rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL);
795 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
796 
797 	return (0);
798 }
799 
800 /*
801  * Destructor callback - called when a cached buf is
802  * no longer required.
803  */
804 /* ARGSUSED */
805 static void
806 hdr_dest(void *vbuf, void *unused)
807 {
808 	arc_buf_hdr_t *buf = vbuf;
809 
810 	refcount_destroy(&buf->b_refcnt);
811 	cv_destroy(&buf->b_cv);
812 	mutex_destroy(&buf->b_freeze_lock);
813 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
814 }
815 
816 /* ARGSUSED */
817 static void
818 buf_dest(void *vbuf, void *unused)
819 {
820 	arc_buf_t *buf = vbuf;
821 
822 	rw_destroy(&buf->b_lock);
823 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
824 }
825 
826 /*
827  * Reclaim callback -- invoked when memory is low.
828  */
829 /* ARGSUSED */
830 static void
831 hdr_recl(void *unused)
832 {
833 	dprintf("hdr_recl called\n");
834 	/*
835 	 * umem calls the reclaim func when we destroy the buf cache,
836 	 * which is after we do arc_fini().
837 	 */
838 	if (!arc_dead)
839 		cv_signal(&arc_reclaim_thr_cv);
840 }
841 
842 static void
843 buf_init(void)
844 {
845 	uint64_t *ct;
846 	uint64_t hsize = 1ULL << 12;
847 	int i, j;
848 
849 	/*
850 	 * The hash table is big enough to fill all of physical memory
851 	 * with an average 64K block size.  The table will take up
852 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
853 	 */
854 	while (hsize * 65536 < physmem * PAGESIZE)
855 		hsize <<= 1;
856 retry:
857 	buf_hash_table.ht_mask = hsize - 1;
858 	buf_hash_table.ht_table =
859 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
860 	if (buf_hash_table.ht_table == NULL) {
861 		ASSERT(hsize > (1ULL << 8));
862 		hsize >>= 1;
863 		goto retry;
864 	}
865 
866 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
867 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
868 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
869 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
870 
871 	for (i = 0; i < 256; i++)
872 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
873 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
874 
875 	for (i = 0; i < BUF_LOCKS; i++) {
876 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
877 		    NULL, MUTEX_DEFAULT, NULL);
878 	}
879 }
880 
881 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
882 
883 static void
884 arc_cksum_verify(arc_buf_t *buf)
885 {
886 	zio_cksum_t zc;
887 
888 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
889 		return;
890 
891 	mutex_enter(&buf->b_hdr->b_freeze_lock);
892 	if (buf->b_hdr->b_freeze_cksum == NULL ||
893 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
894 		mutex_exit(&buf->b_hdr->b_freeze_lock);
895 		return;
896 	}
897 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
898 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
899 		panic("buffer modified while frozen!");
900 	mutex_exit(&buf->b_hdr->b_freeze_lock);
901 }
902 
903 static int
904 arc_cksum_equal(arc_buf_t *buf)
905 {
906 	zio_cksum_t zc;
907 	int equal;
908 
909 	mutex_enter(&buf->b_hdr->b_freeze_lock);
910 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
911 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
912 	mutex_exit(&buf->b_hdr->b_freeze_lock);
913 
914 	return (equal);
915 }
916 
917 static void
918 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
919 {
920 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
921 		return;
922 
923 	mutex_enter(&buf->b_hdr->b_freeze_lock);
924 	if (buf->b_hdr->b_freeze_cksum != NULL) {
925 		mutex_exit(&buf->b_hdr->b_freeze_lock);
926 		return;
927 	}
928 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
929 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
930 	    buf->b_hdr->b_freeze_cksum);
931 	mutex_exit(&buf->b_hdr->b_freeze_lock);
932 }
933 
934 void
935 arc_buf_thaw(arc_buf_t *buf)
936 {
937 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
938 		if (buf->b_hdr->b_state != arc_anon)
939 			panic("modifying non-anon buffer!");
940 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
941 			panic("modifying buffer while i/o in progress!");
942 		arc_cksum_verify(buf);
943 	}
944 
945 	mutex_enter(&buf->b_hdr->b_freeze_lock);
946 	if (buf->b_hdr->b_freeze_cksum != NULL) {
947 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
948 		buf->b_hdr->b_freeze_cksum = NULL;
949 	}
950 	mutex_exit(&buf->b_hdr->b_freeze_lock);
951 }
952 
953 void
954 arc_buf_freeze(arc_buf_t *buf)
955 {
956 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
957 		return;
958 
959 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
960 	    buf->b_hdr->b_state == arc_anon);
961 	arc_cksum_compute(buf, B_FALSE);
962 }
963 
964 static void
965 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
966 {
967 	ASSERT(MUTEX_HELD(hash_lock));
968 
969 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
970 	    (ab->b_state != arc_anon)) {
971 		uint64_t delta = ab->b_size * ab->b_datacnt;
972 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
973 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
974 
975 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
976 		mutex_enter(&ab->b_state->arcs_mtx);
977 		ASSERT(list_link_active(&ab->b_arc_node));
978 		list_remove(list, ab);
979 		if (GHOST_STATE(ab->b_state)) {
980 			ASSERT3U(ab->b_datacnt, ==, 0);
981 			ASSERT3P(ab->b_buf, ==, NULL);
982 			delta = ab->b_size;
983 		}
984 		ASSERT(delta > 0);
985 		ASSERT3U(*size, >=, delta);
986 		atomic_add_64(size, -delta);
987 		mutex_exit(&ab->b_state->arcs_mtx);
988 		/* remove the prefetch flag if we get a reference */
989 		if (ab->b_flags & ARC_PREFETCH)
990 			ab->b_flags &= ~ARC_PREFETCH;
991 	}
992 }
993 
994 static int
995 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
996 {
997 	int cnt;
998 	arc_state_t *state = ab->b_state;
999 
1000 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1001 	ASSERT(!GHOST_STATE(state));
1002 
1003 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1004 	    (state != arc_anon)) {
1005 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1006 
1007 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1008 		mutex_enter(&state->arcs_mtx);
1009 		ASSERT(!list_link_active(&ab->b_arc_node));
1010 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1011 		ASSERT(ab->b_datacnt > 0);
1012 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1013 		mutex_exit(&state->arcs_mtx);
1014 	}
1015 	return (cnt);
1016 }
1017 
1018 /*
1019  * Move the supplied buffer to the indicated state.  The mutex
1020  * for the buffer must be held by the caller.
1021  */
1022 static void
1023 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1024 {
1025 	arc_state_t *old_state = ab->b_state;
1026 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1027 	uint64_t from_delta, to_delta;
1028 
1029 	ASSERT(MUTEX_HELD(hash_lock));
1030 	ASSERT(new_state != old_state);
1031 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1032 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1033 
1034 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1035 
1036 	/*
1037 	 * If this buffer is evictable, transfer it from the
1038 	 * old state list to the new state list.
1039 	 */
1040 	if (refcnt == 0) {
1041 		if (old_state != arc_anon) {
1042 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1043 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1044 
1045 			if (use_mutex)
1046 				mutex_enter(&old_state->arcs_mtx);
1047 
1048 			ASSERT(list_link_active(&ab->b_arc_node));
1049 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1050 
1051 			/*
1052 			 * If prefetching out of the ghost cache,
1053 			 * we will have a non-null datacnt.
1054 			 */
1055 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1056 				/* ghost elements have a ghost size */
1057 				ASSERT(ab->b_buf == NULL);
1058 				from_delta = ab->b_size;
1059 			}
1060 			ASSERT3U(*size, >=, from_delta);
1061 			atomic_add_64(size, -from_delta);
1062 
1063 			if (use_mutex)
1064 				mutex_exit(&old_state->arcs_mtx);
1065 		}
1066 		if (new_state != arc_anon) {
1067 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1068 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1069 
1070 			if (use_mutex)
1071 				mutex_enter(&new_state->arcs_mtx);
1072 
1073 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1074 
1075 			/* ghost elements have a ghost size */
1076 			if (GHOST_STATE(new_state)) {
1077 				ASSERT(ab->b_datacnt == 0);
1078 				ASSERT(ab->b_buf == NULL);
1079 				to_delta = ab->b_size;
1080 			}
1081 			atomic_add_64(size, to_delta);
1082 
1083 			if (use_mutex)
1084 				mutex_exit(&new_state->arcs_mtx);
1085 		}
1086 	}
1087 
1088 	ASSERT(!BUF_EMPTY(ab));
1089 	if (new_state == arc_anon) {
1090 		buf_hash_remove(ab);
1091 	}
1092 
1093 	/* adjust state sizes */
1094 	if (to_delta)
1095 		atomic_add_64(&new_state->arcs_size, to_delta);
1096 	if (from_delta) {
1097 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1098 		atomic_add_64(&old_state->arcs_size, -from_delta);
1099 	}
1100 	ab->b_state = new_state;
1101 
1102 	/* adjust l2arc hdr stats */
1103 	if (new_state == arc_l2c_only)
1104 		l2arc_hdr_stat_add();
1105 	else if (old_state == arc_l2c_only)
1106 		l2arc_hdr_stat_remove();
1107 }
1108 
1109 void
1110 arc_space_consume(uint64_t space, arc_space_type_t type)
1111 {
1112 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1113 
1114 	switch (type) {
1115 	case ARC_SPACE_DATA:
1116 		ARCSTAT_INCR(arcstat_data_size, space);
1117 		break;
1118 	case ARC_SPACE_OTHER:
1119 		ARCSTAT_INCR(arcstat_other_size, space);
1120 		break;
1121 	case ARC_SPACE_HDRS:
1122 		ARCSTAT_INCR(arcstat_hdr_size, space);
1123 		break;
1124 	case ARC_SPACE_L2HDRS:
1125 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1126 		break;
1127 	}
1128 
1129 	atomic_add_64(&arc_meta_used, space);
1130 	atomic_add_64(&arc_size, space);
1131 }
1132 
1133 void
1134 arc_space_return(uint64_t space, arc_space_type_t type)
1135 {
1136 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1137 
1138 	switch (type) {
1139 	case ARC_SPACE_DATA:
1140 		ARCSTAT_INCR(arcstat_data_size, -space);
1141 		break;
1142 	case ARC_SPACE_OTHER:
1143 		ARCSTAT_INCR(arcstat_other_size, -space);
1144 		break;
1145 	case ARC_SPACE_HDRS:
1146 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1147 		break;
1148 	case ARC_SPACE_L2HDRS:
1149 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1150 		break;
1151 	}
1152 
1153 	ASSERT(arc_meta_used >= space);
1154 	if (arc_meta_max < arc_meta_used)
1155 		arc_meta_max = arc_meta_used;
1156 	atomic_add_64(&arc_meta_used, -space);
1157 	ASSERT(arc_size >= space);
1158 	atomic_add_64(&arc_size, -space);
1159 }
1160 
1161 void *
1162 arc_data_buf_alloc(uint64_t size)
1163 {
1164 	if (arc_evict_needed(ARC_BUFC_DATA))
1165 		cv_signal(&arc_reclaim_thr_cv);
1166 	atomic_add_64(&arc_size, size);
1167 	return (zio_data_buf_alloc(size));
1168 }
1169 
1170 void
1171 arc_data_buf_free(void *buf, uint64_t size)
1172 {
1173 	zio_data_buf_free(buf, size);
1174 	ASSERT(arc_size >= size);
1175 	atomic_add_64(&arc_size, -size);
1176 }
1177 
1178 arc_buf_t *
1179 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1180 {
1181 	arc_buf_hdr_t *hdr;
1182 	arc_buf_t *buf;
1183 
1184 	ASSERT3U(size, >, 0);
1185 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1186 	ASSERT(BUF_EMPTY(hdr));
1187 	hdr->b_size = size;
1188 	hdr->b_type = type;
1189 	hdr->b_spa = spa_guid(spa);
1190 	hdr->b_state = arc_anon;
1191 	hdr->b_arc_access = 0;
1192 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1193 	buf->b_hdr = hdr;
1194 	buf->b_data = NULL;
1195 	buf->b_efunc = NULL;
1196 	buf->b_private = NULL;
1197 	buf->b_next = NULL;
1198 	hdr->b_buf = buf;
1199 	arc_get_data_buf(buf);
1200 	hdr->b_datacnt = 1;
1201 	hdr->b_flags = 0;
1202 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1203 	(void) refcount_add(&hdr->b_refcnt, tag);
1204 
1205 	return (buf);
1206 }
1207 
1208 static char *arc_onloan_tag = "onloan";
1209 
1210 /*
1211  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1212  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1213  * buffers must be returned to the arc before they can be used by the DMU or
1214  * freed.
1215  */
1216 arc_buf_t *
1217 arc_loan_buf(spa_t *spa, int size)
1218 {
1219 	arc_buf_t *buf;
1220 
1221 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1222 
1223 	atomic_add_64(&arc_loaned_bytes, size);
1224 	return (buf);
1225 }
1226 
1227 /*
1228  * Return a loaned arc buffer to the arc.
1229  */
1230 void
1231 arc_return_buf(arc_buf_t *buf, void *tag)
1232 {
1233 	arc_buf_hdr_t *hdr = buf->b_hdr;
1234 
1235 	ASSERT(hdr->b_state == arc_anon);
1236 	ASSERT(buf->b_data != NULL);
1237 	VERIFY(refcount_remove(&hdr->b_refcnt, arc_onloan_tag) == 0);
1238 	VERIFY(refcount_add(&hdr->b_refcnt, tag) == 1);
1239 
1240 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1241 }
1242 
1243 static arc_buf_t *
1244 arc_buf_clone(arc_buf_t *from)
1245 {
1246 	arc_buf_t *buf;
1247 	arc_buf_hdr_t *hdr = from->b_hdr;
1248 	uint64_t size = hdr->b_size;
1249 
1250 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1251 	buf->b_hdr = hdr;
1252 	buf->b_data = NULL;
1253 	buf->b_efunc = NULL;
1254 	buf->b_private = NULL;
1255 	buf->b_next = hdr->b_buf;
1256 	hdr->b_buf = buf;
1257 	arc_get_data_buf(buf);
1258 	bcopy(from->b_data, buf->b_data, size);
1259 	hdr->b_datacnt += 1;
1260 	return (buf);
1261 }
1262 
1263 void
1264 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1265 {
1266 	arc_buf_hdr_t *hdr;
1267 	kmutex_t *hash_lock;
1268 
1269 	/*
1270 	 * Check to see if this buffer is evicted.  Callers
1271 	 * must verify b_data != NULL to know if the add_ref
1272 	 * was successful.
1273 	 */
1274 	rw_enter(&buf->b_lock, RW_READER);
1275 	if (buf->b_data == NULL) {
1276 		rw_exit(&buf->b_lock);
1277 		return;
1278 	}
1279 	hdr = buf->b_hdr;
1280 	ASSERT(hdr != NULL);
1281 	hash_lock = HDR_LOCK(hdr);
1282 	mutex_enter(hash_lock);
1283 	rw_exit(&buf->b_lock);
1284 
1285 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1286 	add_reference(hdr, hash_lock, tag);
1287 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1288 	arc_access(hdr, hash_lock);
1289 	mutex_exit(hash_lock);
1290 	ARCSTAT_BUMP(arcstat_hits);
1291 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1292 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1293 	    data, metadata, hits);
1294 }
1295 
1296 /*
1297  * Free the arc data buffer.  If it is an l2arc write in progress,
1298  * the buffer is placed on l2arc_free_on_write to be freed later.
1299  */
1300 static void
1301 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1302     void *data, size_t size)
1303 {
1304 	if (HDR_L2_WRITING(hdr)) {
1305 		l2arc_data_free_t *df;
1306 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1307 		df->l2df_data = data;
1308 		df->l2df_size = size;
1309 		df->l2df_func = free_func;
1310 		mutex_enter(&l2arc_free_on_write_mtx);
1311 		list_insert_head(l2arc_free_on_write, df);
1312 		mutex_exit(&l2arc_free_on_write_mtx);
1313 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1314 	} else {
1315 		free_func(data, size);
1316 	}
1317 }
1318 
1319 static void
1320 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1321 {
1322 	arc_buf_t **bufp;
1323 
1324 	/* free up data associated with the buf */
1325 	if (buf->b_data) {
1326 		arc_state_t *state = buf->b_hdr->b_state;
1327 		uint64_t size = buf->b_hdr->b_size;
1328 		arc_buf_contents_t type = buf->b_hdr->b_type;
1329 
1330 		arc_cksum_verify(buf);
1331 		if (!recycle) {
1332 			if (type == ARC_BUFC_METADATA) {
1333 				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1334 				    buf->b_data, size);
1335 				arc_space_return(size, ARC_SPACE_DATA);
1336 			} else {
1337 				ASSERT(type == ARC_BUFC_DATA);
1338 				arc_buf_data_free(buf->b_hdr,
1339 				    zio_data_buf_free, buf->b_data, size);
1340 				ARCSTAT_INCR(arcstat_data_size, -size);
1341 				atomic_add_64(&arc_size, -size);
1342 			}
1343 		}
1344 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1345 			uint64_t *cnt = &state->arcs_lsize[type];
1346 
1347 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1348 			ASSERT(state != arc_anon);
1349 
1350 			ASSERT3U(*cnt, >=, size);
1351 			atomic_add_64(cnt, -size);
1352 		}
1353 		ASSERT3U(state->arcs_size, >=, size);
1354 		atomic_add_64(&state->arcs_size, -size);
1355 		buf->b_data = NULL;
1356 		ASSERT(buf->b_hdr->b_datacnt > 0);
1357 		buf->b_hdr->b_datacnt -= 1;
1358 	}
1359 
1360 	/* only remove the buf if requested */
1361 	if (!all)
1362 		return;
1363 
1364 	/* remove the buf from the hdr list */
1365 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1366 		continue;
1367 	*bufp = buf->b_next;
1368 
1369 	ASSERT(buf->b_efunc == NULL);
1370 
1371 	/* clean up the buf */
1372 	buf->b_hdr = NULL;
1373 	kmem_cache_free(buf_cache, buf);
1374 }
1375 
1376 static void
1377 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1378 {
1379 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1380 	ASSERT3P(hdr->b_state, ==, arc_anon);
1381 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1382 	ASSERT(!(hdr->b_flags & ARC_STORED));
1383 
1384 	if (hdr->b_l2hdr != NULL) {
1385 		if (!MUTEX_HELD(&l2arc_buflist_mtx)) {
1386 			/*
1387 			 * To prevent arc_free() and l2arc_evict() from
1388 			 * attempting to free the same buffer at the same time,
1389 			 * a FREE_IN_PROGRESS flag is given to arc_free() to
1390 			 * give it priority.  l2arc_evict() can't destroy this
1391 			 * header while we are waiting on l2arc_buflist_mtx.
1392 			 *
1393 			 * The hdr may be removed from l2ad_buflist before we
1394 			 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1395 			 */
1396 			mutex_enter(&l2arc_buflist_mtx);
1397 			if (hdr->b_l2hdr != NULL) {
1398 				list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist,
1399 				    hdr);
1400 			}
1401 			mutex_exit(&l2arc_buflist_mtx);
1402 		} else {
1403 			list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1404 		}
1405 		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1406 		kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t));
1407 		if (hdr->b_state == arc_l2c_only)
1408 			l2arc_hdr_stat_remove();
1409 		hdr->b_l2hdr = NULL;
1410 	}
1411 
1412 	if (!BUF_EMPTY(hdr)) {
1413 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1414 		bzero(&hdr->b_dva, sizeof (dva_t));
1415 		hdr->b_birth = 0;
1416 		hdr->b_cksum0 = 0;
1417 	}
1418 	while (hdr->b_buf) {
1419 		arc_buf_t *buf = hdr->b_buf;
1420 
1421 		if (buf->b_efunc) {
1422 			mutex_enter(&arc_eviction_mtx);
1423 			rw_enter(&buf->b_lock, RW_WRITER);
1424 			ASSERT(buf->b_hdr != NULL);
1425 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1426 			hdr->b_buf = buf->b_next;
1427 			buf->b_hdr = &arc_eviction_hdr;
1428 			buf->b_next = arc_eviction_list;
1429 			arc_eviction_list = buf;
1430 			rw_exit(&buf->b_lock);
1431 			mutex_exit(&arc_eviction_mtx);
1432 		} else {
1433 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1434 		}
1435 	}
1436 	if (hdr->b_freeze_cksum != NULL) {
1437 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1438 		hdr->b_freeze_cksum = NULL;
1439 	}
1440 
1441 	ASSERT(!list_link_active(&hdr->b_arc_node));
1442 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1443 	ASSERT3P(hdr->b_acb, ==, NULL);
1444 	kmem_cache_free(hdr_cache, hdr);
1445 }
1446 
1447 void
1448 arc_buf_free(arc_buf_t *buf, void *tag)
1449 {
1450 	arc_buf_hdr_t *hdr = buf->b_hdr;
1451 	int hashed = hdr->b_state != arc_anon;
1452 
1453 	ASSERT(buf->b_efunc == NULL);
1454 	ASSERT(buf->b_data != NULL);
1455 
1456 	if (hashed) {
1457 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1458 
1459 		mutex_enter(hash_lock);
1460 		(void) remove_reference(hdr, hash_lock, tag);
1461 		if (hdr->b_datacnt > 1)
1462 			arc_buf_destroy(buf, FALSE, TRUE);
1463 		else
1464 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1465 		mutex_exit(hash_lock);
1466 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1467 		int destroy_hdr;
1468 		/*
1469 		 * We are in the middle of an async write.  Don't destroy
1470 		 * this buffer unless the write completes before we finish
1471 		 * decrementing the reference count.
1472 		 */
1473 		mutex_enter(&arc_eviction_mtx);
1474 		(void) remove_reference(hdr, NULL, tag);
1475 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1476 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1477 		mutex_exit(&arc_eviction_mtx);
1478 		if (destroy_hdr)
1479 			arc_hdr_destroy(hdr);
1480 	} else {
1481 		if (remove_reference(hdr, NULL, tag) > 0) {
1482 			ASSERT(HDR_IO_ERROR(hdr));
1483 			arc_buf_destroy(buf, FALSE, TRUE);
1484 		} else {
1485 			arc_hdr_destroy(hdr);
1486 		}
1487 	}
1488 }
1489 
1490 int
1491 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1492 {
1493 	arc_buf_hdr_t *hdr = buf->b_hdr;
1494 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1495 	int no_callback = (buf->b_efunc == NULL);
1496 
1497 	if (hdr->b_state == arc_anon) {
1498 		arc_buf_free(buf, tag);
1499 		return (no_callback);
1500 	}
1501 
1502 	mutex_enter(hash_lock);
1503 	ASSERT(hdr->b_state != arc_anon);
1504 	ASSERT(buf->b_data != NULL);
1505 
1506 	(void) remove_reference(hdr, hash_lock, tag);
1507 	if (hdr->b_datacnt > 1) {
1508 		if (no_callback)
1509 			arc_buf_destroy(buf, FALSE, TRUE);
1510 	} else if (no_callback) {
1511 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1512 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1513 	}
1514 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1515 	    refcount_is_zero(&hdr->b_refcnt));
1516 	mutex_exit(hash_lock);
1517 	return (no_callback);
1518 }
1519 
1520 int
1521 arc_buf_size(arc_buf_t *buf)
1522 {
1523 	return (buf->b_hdr->b_size);
1524 }
1525 
1526 /*
1527  * Evict buffers from list until we've removed the specified number of
1528  * bytes.  Move the removed buffers to the appropriate evict state.
1529  * If the recycle flag is set, then attempt to "recycle" a buffer:
1530  * - look for a buffer to evict that is `bytes' long.
1531  * - return the data block from this buffer rather than freeing it.
1532  * This flag is used by callers that are trying to make space for a
1533  * new buffer in a full arc cache.
1534  *
1535  * This function makes a "best effort".  It skips over any buffers
1536  * it can't get a hash_lock on, and so may not catch all candidates.
1537  * It may also return without evicting as much space as requested.
1538  */
1539 static void *
1540 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1541     arc_buf_contents_t type)
1542 {
1543 	arc_state_t *evicted_state;
1544 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1545 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1546 	list_t *list = &state->arcs_list[type];
1547 	kmutex_t *hash_lock;
1548 	boolean_t have_lock;
1549 	void *stolen = NULL;
1550 
1551 	ASSERT(state == arc_mru || state == arc_mfu);
1552 
1553 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1554 
1555 	mutex_enter(&state->arcs_mtx);
1556 	mutex_enter(&evicted_state->arcs_mtx);
1557 
1558 	for (ab = list_tail(list); ab; ab = ab_prev) {
1559 		ab_prev = list_prev(list, ab);
1560 		/* prefetch buffers have a minimum lifespan */
1561 		if (HDR_IO_IN_PROGRESS(ab) ||
1562 		    (spa && ab->b_spa != spa) ||
1563 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1564 		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1565 			skipped++;
1566 			continue;
1567 		}
1568 		/* "lookahead" for better eviction candidate */
1569 		if (recycle && ab->b_size != bytes &&
1570 		    ab_prev && ab_prev->b_size == bytes)
1571 			continue;
1572 		hash_lock = HDR_LOCK(ab);
1573 		have_lock = MUTEX_HELD(hash_lock);
1574 		if (have_lock || mutex_tryenter(hash_lock)) {
1575 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1576 			ASSERT(ab->b_datacnt > 0);
1577 			while (ab->b_buf) {
1578 				arc_buf_t *buf = ab->b_buf;
1579 				if (!rw_tryenter(&buf->b_lock, RW_WRITER)) {
1580 					missed += 1;
1581 					break;
1582 				}
1583 				if (buf->b_data) {
1584 					bytes_evicted += ab->b_size;
1585 					if (recycle && ab->b_type == type &&
1586 					    ab->b_size == bytes &&
1587 					    !HDR_L2_WRITING(ab)) {
1588 						stolen = buf->b_data;
1589 						recycle = FALSE;
1590 					}
1591 				}
1592 				if (buf->b_efunc) {
1593 					mutex_enter(&arc_eviction_mtx);
1594 					arc_buf_destroy(buf,
1595 					    buf->b_data == stolen, FALSE);
1596 					ab->b_buf = buf->b_next;
1597 					buf->b_hdr = &arc_eviction_hdr;
1598 					buf->b_next = arc_eviction_list;
1599 					arc_eviction_list = buf;
1600 					mutex_exit(&arc_eviction_mtx);
1601 					rw_exit(&buf->b_lock);
1602 				} else {
1603 					rw_exit(&buf->b_lock);
1604 					arc_buf_destroy(buf,
1605 					    buf->b_data == stolen, TRUE);
1606 				}
1607 			}
1608 			if (ab->b_datacnt == 0) {
1609 				arc_change_state(evicted_state, ab, hash_lock);
1610 				ASSERT(HDR_IN_HASH_TABLE(ab));
1611 				ab->b_flags |= ARC_IN_HASH_TABLE;
1612 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1613 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1614 			}
1615 			if (!have_lock)
1616 				mutex_exit(hash_lock);
1617 			if (bytes >= 0 && bytes_evicted >= bytes)
1618 				break;
1619 		} else {
1620 			missed += 1;
1621 		}
1622 	}
1623 
1624 	mutex_exit(&evicted_state->arcs_mtx);
1625 	mutex_exit(&state->arcs_mtx);
1626 
1627 	if (bytes_evicted < bytes)
1628 		dprintf("only evicted %lld bytes from %x",
1629 		    (longlong_t)bytes_evicted, state);
1630 
1631 	if (skipped)
1632 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1633 
1634 	if (missed)
1635 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1636 
1637 	/*
1638 	 * We have just evicted some date into the ghost state, make
1639 	 * sure we also adjust the ghost state size if necessary.
1640 	 */
1641 	if (arc_no_grow &&
1642 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1643 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1644 		    arc_mru_ghost->arcs_size - arc_c;
1645 
1646 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1647 			int64_t todelete =
1648 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1649 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1650 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1651 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1652 			    arc_mru_ghost->arcs_size +
1653 			    arc_mfu_ghost->arcs_size - arc_c);
1654 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1655 		}
1656 	}
1657 
1658 	return (stolen);
1659 }
1660 
1661 /*
1662  * Remove buffers from list until we've removed the specified number of
1663  * bytes.  Destroy the buffers that are removed.
1664  */
1665 static void
1666 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1667 {
1668 	arc_buf_hdr_t *ab, *ab_prev;
1669 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1670 	kmutex_t *hash_lock;
1671 	uint64_t bytes_deleted = 0;
1672 	uint64_t bufs_skipped = 0;
1673 
1674 	ASSERT(GHOST_STATE(state));
1675 top:
1676 	mutex_enter(&state->arcs_mtx);
1677 	for (ab = list_tail(list); ab; ab = ab_prev) {
1678 		ab_prev = list_prev(list, ab);
1679 		if (spa && ab->b_spa != spa)
1680 			continue;
1681 		hash_lock = HDR_LOCK(ab);
1682 		if (mutex_tryenter(hash_lock)) {
1683 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1684 			ASSERT(ab->b_buf == NULL);
1685 			ARCSTAT_BUMP(arcstat_deleted);
1686 			bytes_deleted += ab->b_size;
1687 
1688 			if (ab->b_l2hdr != NULL) {
1689 				/*
1690 				 * This buffer is cached on the 2nd Level ARC;
1691 				 * don't destroy the header.
1692 				 */
1693 				arc_change_state(arc_l2c_only, ab, hash_lock);
1694 				mutex_exit(hash_lock);
1695 			} else {
1696 				arc_change_state(arc_anon, ab, hash_lock);
1697 				mutex_exit(hash_lock);
1698 				arc_hdr_destroy(ab);
1699 			}
1700 
1701 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1702 			if (bytes >= 0 && bytes_deleted >= bytes)
1703 				break;
1704 		} else {
1705 			if (bytes < 0) {
1706 				mutex_exit(&state->arcs_mtx);
1707 				mutex_enter(hash_lock);
1708 				mutex_exit(hash_lock);
1709 				goto top;
1710 			}
1711 			bufs_skipped += 1;
1712 		}
1713 	}
1714 	mutex_exit(&state->arcs_mtx);
1715 
1716 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1717 	    (bytes < 0 || bytes_deleted < bytes)) {
1718 		list = &state->arcs_list[ARC_BUFC_METADATA];
1719 		goto top;
1720 	}
1721 
1722 	if (bufs_skipped) {
1723 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1724 		ASSERT(bytes >= 0);
1725 	}
1726 
1727 	if (bytes_deleted < bytes)
1728 		dprintf("only deleted %lld bytes from %p",
1729 		    (longlong_t)bytes_deleted, state);
1730 }
1731 
1732 static void
1733 arc_adjust(void)
1734 {
1735 	int64_t adjustment, delta;
1736 
1737 	/*
1738 	 * Adjust MRU size
1739 	 */
1740 
1741 	adjustment = MIN(arc_size - arc_c,
1742 	    arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p);
1743 
1744 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1745 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1746 		(void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
1747 		adjustment -= delta;
1748 	}
1749 
1750 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1751 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1752 		(void) arc_evict(arc_mru, NULL, delta, FALSE,
1753 		    ARC_BUFC_METADATA);
1754 	}
1755 
1756 	/*
1757 	 * Adjust MFU size
1758 	 */
1759 
1760 	adjustment = arc_size - arc_c;
1761 
1762 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1763 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1764 		(void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
1765 		adjustment -= delta;
1766 	}
1767 
1768 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1769 		int64_t delta = MIN(adjustment,
1770 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1771 		(void) arc_evict(arc_mfu, NULL, delta, FALSE,
1772 		    ARC_BUFC_METADATA);
1773 	}
1774 
1775 	/*
1776 	 * Adjust ghost lists
1777 	 */
1778 
1779 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1780 
1781 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1782 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
1783 		arc_evict_ghost(arc_mru_ghost, NULL, delta);
1784 	}
1785 
1786 	adjustment =
1787 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
1788 
1789 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1790 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
1791 		arc_evict_ghost(arc_mfu_ghost, NULL, delta);
1792 	}
1793 }
1794 
1795 static void
1796 arc_do_user_evicts(void)
1797 {
1798 	mutex_enter(&arc_eviction_mtx);
1799 	while (arc_eviction_list != NULL) {
1800 		arc_buf_t *buf = arc_eviction_list;
1801 		arc_eviction_list = buf->b_next;
1802 		rw_enter(&buf->b_lock, RW_WRITER);
1803 		buf->b_hdr = NULL;
1804 		rw_exit(&buf->b_lock);
1805 		mutex_exit(&arc_eviction_mtx);
1806 
1807 		if (buf->b_efunc != NULL)
1808 			VERIFY(buf->b_efunc(buf) == 0);
1809 
1810 		buf->b_efunc = NULL;
1811 		buf->b_private = NULL;
1812 		kmem_cache_free(buf_cache, buf);
1813 		mutex_enter(&arc_eviction_mtx);
1814 	}
1815 	mutex_exit(&arc_eviction_mtx);
1816 }
1817 
1818 /*
1819  * Flush all *evictable* data from the cache for the given spa.
1820  * NOTE: this will not touch "active" (i.e. referenced) data.
1821  */
1822 void
1823 arc_flush(spa_t *spa)
1824 {
1825 	uint64_t guid = 0;
1826 
1827 	if (spa)
1828 		guid = spa_guid(spa);
1829 
1830 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1831 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
1832 		if (spa)
1833 			break;
1834 	}
1835 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1836 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
1837 		if (spa)
1838 			break;
1839 	}
1840 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1841 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
1842 		if (spa)
1843 			break;
1844 	}
1845 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1846 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
1847 		if (spa)
1848 			break;
1849 	}
1850 
1851 	arc_evict_ghost(arc_mru_ghost, guid, -1);
1852 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
1853 
1854 	mutex_enter(&arc_reclaim_thr_lock);
1855 	arc_do_user_evicts();
1856 	mutex_exit(&arc_reclaim_thr_lock);
1857 	ASSERT(spa || arc_eviction_list == NULL);
1858 }
1859 
1860 void
1861 arc_shrink(void)
1862 {
1863 	if (arc_c > arc_c_min) {
1864 		uint64_t to_free;
1865 
1866 #ifdef _KERNEL
1867 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1868 #else
1869 		to_free = arc_c >> arc_shrink_shift;
1870 #endif
1871 		if (arc_c > arc_c_min + to_free)
1872 			atomic_add_64(&arc_c, -to_free);
1873 		else
1874 			arc_c = arc_c_min;
1875 
1876 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1877 		if (arc_c > arc_size)
1878 			arc_c = MAX(arc_size, arc_c_min);
1879 		if (arc_p > arc_c)
1880 			arc_p = (arc_c >> 1);
1881 		ASSERT(arc_c >= arc_c_min);
1882 		ASSERT((int64_t)arc_p >= 0);
1883 	}
1884 
1885 	if (arc_size > arc_c)
1886 		arc_adjust();
1887 }
1888 
1889 static int
1890 arc_reclaim_needed(void)
1891 {
1892 	uint64_t extra;
1893 
1894 #ifdef _KERNEL
1895 
1896 	if (needfree)
1897 		return (1);
1898 
1899 	/*
1900 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1901 	 */
1902 	extra = desfree;
1903 
1904 	/*
1905 	 * check that we're out of range of the pageout scanner.  It starts to
1906 	 * schedule paging if freemem is less than lotsfree and needfree.
1907 	 * lotsfree is the high-water mark for pageout, and needfree is the
1908 	 * number of needed free pages.  We add extra pages here to make sure
1909 	 * the scanner doesn't start up while we're freeing memory.
1910 	 */
1911 	if (freemem < lotsfree + needfree + extra)
1912 		return (1);
1913 
1914 	/*
1915 	 * check to make sure that swapfs has enough space so that anon
1916 	 * reservations can still succeed. anon_resvmem() checks that the
1917 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1918 	 * swap pages.  We also add a bit of extra here just to prevent
1919 	 * circumstances from getting really dire.
1920 	 */
1921 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1922 		return (1);
1923 
1924 #if defined(__i386)
1925 	/*
1926 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1927 	 * kernel heap space before we ever run out of available physical
1928 	 * memory.  Most checks of the size of the heap_area compare against
1929 	 * tune.t_minarmem, which is the minimum available real memory that we
1930 	 * can have in the system.  However, this is generally fixed at 25 pages
1931 	 * which is so low that it's useless.  In this comparison, we seek to
1932 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1933 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
1934 	 * free)
1935 	 */
1936 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1937 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1938 		return (1);
1939 #endif
1940 
1941 #else
1942 	if (spa_get_random(100) == 0)
1943 		return (1);
1944 #endif
1945 	return (0);
1946 }
1947 
1948 static void
1949 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1950 {
1951 	size_t			i;
1952 	kmem_cache_t		*prev_cache = NULL;
1953 	kmem_cache_t		*prev_data_cache = NULL;
1954 	extern kmem_cache_t	*zio_buf_cache[];
1955 	extern kmem_cache_t	*zio_data_buf_cache[];
1956 
1957 #ifdef _KERNEL
1958 	if (arc_meta_used >= arc_meta_limit) {
1959 		/*
1960 		 * We are exceeding our meta-data cache limit.
1961 		 * Purge some DNLC entries to release holds on meta-data.
1962 		 */
1963 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1964 	}
1965 #if defined(__i386)
1966 	/*
1967 	 * Reclaim unused memory from all kmem caches.
1968 	 */
1969 	kmem_reap();
1970 #endif
1971 #endif
1972 
1973 	/*
1974 	 * An aggressive reclamation will shrink the cache size as well as
1975 	 * reap free buffers from the arc kmem caches.
1976 	 */
1977 	if (strat == ARC_RECLAIM_AGGR)
1978 		arc_shrink();
1979 
1980 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1981 		if (zio_buf_cache[i] != prev_cache) {
1982 			prev_cache = zio_buf_cache[i];
1983 			kmem_cache_reap_now(zio_buf_cache[i]);
1984 		}
1985 		if (zio_data_buf_cache[i] != prev_data_cache) {
1986 			prev_data_cache = zio_data_buf_cache[i];
1987 			kmem_cache_reap_now(zio_data_buf_cache[i]);
1988 		}
1989 	}
1990 	kmem_cache_reap_now(buf_cache);
1991 	kmem_cache_reap_now(hdr_cache);
1992 }
1993 
1994 static void
1995 arc_reclaim_thread(void)
1996 {
1997 	clock_t			growtime = 0;
1998 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1999 	callb_cpr_t		cpr;
2000 
2001 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2002 
2003 	mutex_enter(&arc_reclaim_thr_lock);
2004 	while (arc_thread_exit == 0) {
2005 		if (arc_reclaim_needed()) {
2006 
2007 			if (arc_no_grow) {
2008 				if (last_reclaim == ARC_RECLAIM_CONS) {
2009 					last_reclaim = ARC_RECLAIM_AGGR;
2010 				} else {
2011 					last_reclaim = ARC_RECLAIM_CONS;
2012 				}
2013 			} else {
2014 				arc_no_grow = TRUE;
2015 				last_reclaim = ARC_RECLAIM_AGGR;
2016 				membar_producer();
2017 			}
2018 
2019 			/* reset the growth delay for every reclaim */
2020 			growtime = lbolt + (arc_grow_retry * hz);
2021 
2022 			arc_kmem_reap_now(last_reclaim);
2023 			arc_warm = B_TRUE;
2024 
2025 		} else if (arc_no_grow && lbolt >= growtime) {
2026 			arc_no_grow = FALSE;
2027 		}
2028 
2029 		if (2 * arc_c < arc_size +
2030 		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
2031 			arc_adjust();
2032 
2033 		if (arc_eviction_list != NULL)
2034 			arc_do_user_evicts();
2035 
2036 		/* block until needed, or one second, whichever is shorter */
2037 		CALLB_CPR_SAFE_BEGIN(&cpr);
2038 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2039 		    &arc_reclaim_thr_lock, (lbolt + hz));
2040 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2041 	}
2042 
2043 	arc_thread_exit = 0;
2044 	cv_broadcast(&arc_reclaim_thr_cv);
2045 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2046 	thread_exit();
2047 }
2048 
2049 /*
2050  * Adapt arc info given the number of bytes we are trying to add and
2051  * the state that we are comming from.  This function is only called
2052  * when we are adding new content to the cache.
2053  */
2054 static void
2055 arc_adapt(int bytes, arc_state_t *state)
2056 {
2057 	int mult;
2058 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2059 
2060 	if (state == arc_l2c_only)
2061 		return;
2062 
2063 	ASSERT(bytes > 0);
2064 	/*
2065 	 * Adapt the target size of the MRU list:
2066 	 *	- if we just hit in the MRU ghost list, then increase
2067 	 *	  the target size of the MRU list.
2068 	 *	- if we just hit in the MFU ghost list, then increase
2069 	 *	  the target size of the MFU list by decreasing the
2070 	 *	  target size of the MRU list.
2071 	 */
2072 	if (state == arc_mru_ghost) {
2073 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2074 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2075 
2076 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2077 	} else if (state == arc_mfu_ghost) {
2078 		uint64_t delta;
2079 
2080 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2081 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2082 
2083 		delta = MIN(bytes * mult, arc_p);
2084 		arc_p = MAX(arc_p_min, arc_p - delta);
2085 	}
2086 	ASSERT((int64_t)arc_p >= 0);
2087 
2088 	if (arc_reclaim_needed()) {
2089 		cv_signal(&arc_reclaim_thr_cv);
2090 		return;
2091 	}
2092 
2093 	if (arc_no_grow)
2094 		return;
2095 
2096 	if (arc_c >= arc_c_max)
2097 		return;
2098 
2099 	/*
2100 	 * If we're within (2 * maxblocksize) bytes of the target
2101 	 * cache size, increment the target cache size
2102 	 */
2103 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2104 		atomic_add_64(&arc_c, (int64_t)bytes);
2105 		if (arc_c > arc_c_max)
2106 			arc_c = arc_c_max;
2107 		else if (state == arc_anon)
2108 			atomic_add_64(&arc_p, (int64_t)bytes);
2109 		if (arc_p > arc_c)
2110 			arc_p = arc_c;
2111 	}
2112 	ASSERT((int64_t)arc_p >= 0);
2113 }
2114 
2115 /*
2116  * Check if the cache has reached its limits and eviction is required
2117  * prior to insert.
2118  */
2119 static int
2120 arc_evict_needed(arc_buf_contents_t type)
2121 {
2122 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2123 		return (1);
2124 
2125 #ifdef _KERNEL
2126 	/*
2127 	 * If zio data pages are being allocated out of a separate heap segment,
2128 	 * then enforce that the size of available vmem for this area remains
2129 	 * above about 1/32nd free.
2130 	 */
2131 	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2132 	    vmem_size(zio_arena, VMEM_FREE) <
2133 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2134 		return (1);
2135 #endif
2136 
2137 	if (arc_reclaim_needed())
2138 		return (1);
2139 
2140 	return (arc_size > arc_c);
2141 }
2142 
2143 /*
2144  * The buffer, supplied as the first argument, needs a data block.
2145  * So, if we are at cache max, determine which cache should be victimized.
2146  * We have the following cases:
2147  *
2148  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2149  * In this situation if we're out of space, but the resident size of the MFU is
2150  * under the limit, victimize the MFU cache to satisfy this insertion request.
2151  *
2152  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2153  * Here, we've used up all of the available space for the MRU, so we need to
2154  * evict from our own cache instead.  Evict from the set of resident MRU
2155  * entries.
2156  *
2157  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2158  * c minus p represents the MFU space in the cache, since p is the size of the
2159  * cache that is dedicated to the MRU.  In this situation there's still space on
2160  * the MFU side, so the MRU side needs to be victimized.
2161  *
2162  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2163  * MFU's resident set is consuming more space than it has been allotted.  In
2164  * this situation, we must victimize our own cache, the MFU, for this insertion.
2165  */
2166 static void
2167 arc_get_data_buf(arc_buf_t *buf)
2168 {
2169 	arc_state_t		*state = buf->b_hdr->b_state;
2170 	uint64_t		size = buf->b_hdr->b_size;
2171 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2172 
2173 	arc_adapt(size, state);
2174 
2175 	/*
2176 	 * We have not yet reached cache maximum size,
2177 	 * just allocate a new buffer.
2178 	 */
2179 	if (!arc_evict_needed(type)) {
2180 		if (type == ARC_BUFC_METADATA) {
2181 			buf->b_data = zio_buf_alloc(size);
2182 			arc_space_consume(size, ARC_SPACE_DATA);
2183 		} else {
2184 			ASSERT(type == ARC_BUFC_DATA);
2185 			buf->b_data = zio_data_buf_alloc(size);
2186 			ARCSTAT_INCR(arcstat_data_size, size);
2187 			atomic_add_64(&arc_size, size);
2188 		}
2189 		goto out;
2190 	}
2191 
2192 	/*
2193 	 * If we are prefetching from the mfu ghost list, this buffer
2194 	 * will end up on the mru list; so steal space from there.
2195 	 */
2196 	if (state == arc_mfu_ghost)
2197 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2198 	else if (state == arc_mru_ghost)
2199 		state = arc_mru;
2200 
2201 	if (state == arc_mru || state == arc_anon) {
2202 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2203 		state = (arc_mfu->arcs_lsize[type] >= size &&
2204 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2205 	} else {
2206 		/* MFU cases */
2207 		uint64_t mfu_space = arc_c - arc_p;
2208 		state =  (arc_mru->arcs_lsize[type] >= size &&
2209 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2210 	}
2211 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2212 		if (type == ARC_BUFC_METADATA) {
2213 			buf->b_data = zio_buf_alloc(size);
2214 			arc_space_consume(size, ARC_SPACE_DATA);
2215 		} else {
2216 			ASSERT(type == ARC_BUFC_DATA);
2217 			buf->b_data = zio_data_buf_alloc(size);
2218 			ARCSTAT_INCR(arcstat_data_size, size);
2219 			atomic_add_64(&arc_size, size);
2220 		}
2221 		ARCSTAT_BUMP(arcstat_recycle_miss);
2222 	}
2223 	ASSERT(buf->b_data != NULL);
2224 out:
2225 	/*
2226 	 * Update the state size.  Note that ghost states have a
2227 	 * "ghost size" and so don't need to be updated.
2228 	 */
2229 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2230 		arc_buf_hdr_t *hdr = buf->b_hdr;
2231 
2232 		atomic_add_64(&hdr->b_state->arcs_size, size);
2233 		if (list_link_active(&hdr->b_arc_node)) {
2234 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2235 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2236 		}
2237 		/*
2238 		 * If we are growing the cache, and we are adding anonymous
2239 		 * data, and we have outgrown arc_p, update arc_p
2240 		 */
2241 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2242 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2243 			arc_p = MIN(arc_c, arc_p + size);
2244 	}
2245 }
2246 
2247 /*
2248  * This routine is called whenever a buffer is accessed.
2249  * NOTE: the hash lock is dropped in this function.
2250  */
2251 static void
2252 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2253 {
2254 	ASSERT(MUTEX_HELD(hash_lock));
2255 
2256 	if (buf->b_state == arc_anon) {
2257 		/*
2258 		 * This buffer is not in the cache, and does not
2259 		 * appear in our "ghost" list.  Add the new buffer
2260 		 * to the MRU state.
2261 		 */
2262 
2263 		ASSERT(buf->b_arc_access == 0);
2264 		buf->b_arc_access = lbolt;
2265 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2266 		arc_change_state(arc_mru, buf, hash_lock);
2267 
2268 	} else if (buf->b_state == arc_mru) {
2269 		/*
2270 		 * If this buffer is here because of a prefetch, then either:
2271 		 * - clear the flag if this is a "referencing" read
2272 		 *   (any subsequent access will bump this into the MFU state).
2273 		 * or
2274 		 * - move the buffer to the head of the list if this is
2275 		 *   another prefetch (to make it less likely to be evicted).
2276 		 */
2277 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2278 			if (refcount_count(&buf->b_refcnt) == 0) {
2279 				ASSERT(list_link_active(&buf->b_arc_node));
2280 			} else {
2281 				buf->b_flags &= ~ARC_PREFETCH;
2282 				ARCSTAT_BUMP(arcstat_mru_hits);
2283 			}
2284 			buf->b_arc_access = lbolt;
2285 			return;
2286 		}
2287 
2288 		/*
2289 		 * This buffer has been "accessed" only once so far,
2290 		 * but it is still in the cache. Move it to the MFU
2291 		 * state.
2292 		 */
2293 		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
2294 			/*
2295 			 * More than 125ms have passed since we
2296 			 * instantiated this buffer.  Move it to the
2297 			 * most frequently used state.
2298 			 */
2299 			buf->b_arc_access = lbolt;
2300 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2301 			arc_change_state(arc_mfu, buf, hash_lock);
2302 		}
2303 		ARCSTAT_BUMP(arcstat_mru_hits);
2304 	} else if (buf->b_state == arc_mru_ghost) {
2305 		arc_state_t	*new_state;
2306 		/*
2307 		 * This buffer has been "accessed" recently, but
2308 		 * was evicted from the cache.  Move it to the
2309 		 * MFU state.
2310 		 */
2311 
2312 		if (buf->b_flags & ARC_PREFETCH) {
2313 			new_state = arc_mru;
2314 			if (refcount_count(&buf->b_refcnt) > 0)
2315 				buf->b_flags &= ~ARC_PREFETCH;
2316 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2317 		} else {
2318 			new_state = arc_mfu;
2319 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2320 		}
2321 
2322 		buf->b_arc_access = lbolt;
2323 		arc_change_state(new_state, buf, hash_lock);
2324 
2325 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2326 	} else if (buf->b_state == arc_mfu) {
2327 		/*
2328 		 * This buffer has been accessed more than once and is
2329 		 * still in the cache.  Keep it in the MFU state.
2330 		 *
2331 		 * NOTE: an add_reference() that occurred when we did
2332 		 * the arc_read() will have kicked this off the list.
2333 		 * If it was a prefetch, we will explicitly move it to
2334 		 * the head of the list now.
2335 		 */
2336 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2337 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2338 			ASSERT(list_link_active(&buf->b_arc_node));
2339 		}
2340 		ARCSTAT_BUMP(arcstat_mfu_hits);
2341 		buf->b_arc_access = lbolt;
2342 	} else if (buf->b_state == arc_mfu_ghost) {
2343 		arc_state_t	*new_state = arc_mfu;
2344 		/*
2345 		 * This buffer has been accessed more than once but has
2346 		 * been evicted from the cache.  Move it back to the
2347 		 * MFU state.
2348 		 */
2349 
2350 		if (buf->b_flags & ARC_PREFETCH) {
2351 			/*
2352 			 * This is a prefetch access...
2353 			 * move this block back to the MRU state.
2354 			 */
2355 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2356 			new_state = arc_mru;
2357 		}
2358 
2359 		buf->b_arc_access = lbolt;
2360 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2361 		arc_change_state(new_state, buf, hash_lock);
2362 
2363 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2364 	} else if (buf->b_state == arc_l2c_only) {
2365 		/*
2366 		 * This buffer is on the 2nd Level ARC.
2367 		 */
2368 
2369 		buf->b_arc_access = lbolt;
2370 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2371 		arc_change_state(arc_mfu, buf, hash_lock);
2372 	} else {
2373 		ASSERT(!"invalid arc state");
2374 	}
2375 }
2376 
2377 /* a generic arc_done_func_t which you can use */
2378 /* ARGSUSED */
2379 void
2380 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2381 {
2382 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2383 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2384 }
2385 
2386 /* a generic arc_done_func_t */
2387 void
2388 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2389 {
2390 	arc_buf_t **bufp = arg;
2391 	if (zio && zio->io_error) {
2392 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2393 		*bufp = NULL;
2394 	} else {
2395 		*bufp = buf;
2396 	}
2397 }
2398 
2399 static void
2400 arc_read_done(zio_t *zio)
2401 {
2402 	arc_buf_hdr_t	*hdr, *found;
2403 	arc_buf_t	*buf;
2404 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2405 	kmutex_t	*hash_lock;
2406 	arc_callback_t	*callback_list, *acb;
2407 	int		freeable = FALSE;
2408 
2409 	buf = zio->io_private;
2410 	hdr = buf->b_hdr;
2411 
2412 	/*
2413 	 * The hdr was inserted into hash-table and removed from lists
2414 	 * prior to starting I/O.  We should find this header, since
2415 	 * it's in the hash table, and it should be legit since it's
2416 	 * not possible to evict it during the I/O.  The only possible
2417 	 * reason for it not to be found is if we were freed during the
2418 	 * read.
2419 	 */
2420 	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2421 	    &hash_lock);
2422 
2423 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2424 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2425 	    (found == hdr && HDR_L2_READING(hdr)));
2426 
2427 	hdr->b_flags &= ~ARC_L2_EVICTED;
2428 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2429 		hdr->b_flags &= ~ARC_L2CACHE;
2430 
2431 	/* byteswap if necessary */
2432 	callback_list = hdr->b_acb;
2433 	ASSERT(callback_list != NULL);
2434 	if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
2435 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2436 		    byteswap_uint64_array :
2437 		    dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2438 		func(buf->b_data, hdr->b_size);
2439 	}
2440 
2441 	arc_cksum_compute(buf, B_FALSE);
2442 
2443 	/* create copies of the data buffer for the callers */
2444 	abuf = buf;
2445 	for (acb = callback_list; acb; acb = acb->acb_next) {
2446 		if (acb->acb_done) {
2447 			if (abuf == NULL)
2448 				abuf = arc_buf_clone(buf);
2449 			acb->acb_buf = abuf;
2450 			abuf = NULL;
2451 		}
2452 	}
2453 	hdr->b_acb = NULL;
2454 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2455 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2456 	if (abuf == buf)
2457 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2458 
2459 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2460 
2461 	if (zio->io_error != 0) {
2462 		hdr->b_flags |= ARC_IO_ERROR;
2463 		if (hdr->b_state != arc_anon)
2464 			arc_change_state(arc_anon, hdr, hash_lock);
2465 		if (HDR_IN_HASH_TABLE(hdr))
2466 			buf_hash_remove(hdr);
2467 		freeable = refcount_is_zero(&hdr->b_refcnt);
2468 	}
2469 
2470 	/*
2471 	 * Broadcast before we drop the hash_lock to avoid the possibility
2472 	 * that the hdr (and hence the cv) might be freed before we get to
2473 	 * the cv_broadcast().
2474 	 */
2475 	cv_broadcast(&hdr->b_cv);
2476 
2477 	if (hash_lock) {
2478 		/*
2479 		 * Only call arc_access on anonymous buffers.  This is because
2480 		 * if we've issued an I/O for an evicted buffer, we've already
2481 		 * called arc_access (to prevent any simultaneous readers from
2482 		 * getting confused).
2483 		 */
2484 		if (zio->io_error == 0 && hdr->b_state == arc_anon)
2485 			arc_access(hdr, hash_lock);
2486 		mutex_exit(hash_lock);
2487 	} else {
2488 		/*
2489 		 * This block was freed while we waited for the read to
2490 		 * complete.  It has been removed from the hash table and
2491 		 * moved to the anonymous state (so that it won't show up
2492 		 * in the cache).
2493 		 */
2494 		ASSERT3P(hdr->b_state, ==, arc_anon);
2495 		freeable = refcount_is_zero(&hdr->b_refcnt);
2496 	}
2497 
2498 	/* execute each callback and free its structure */
2499 	while ((acb = callback_list) != NULL) {
2500 		if (acb->acb_done)
2501 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2502 
2503 		if (acb->acb_zio_dummy != NULL) {
2504 			acb->acb_zio_dummy->io_error = zio->io_error;
2505 			zio_nowait(acb->acb_zio_dummy);
2506 		}
2507 
2508 		callback_list = acb->acb_next;
2509 		kmem_free(acb, sizeof (arc_callback_t));
2510 	}
2511 
2512 	if (freeable)
2513 		arc_hdr_destroy(hdr);
2514 }
2515 
2516 /*
2517  * "Read" the block block at the specified DVA (in bp) via the
2518  * cache.  If the block is found in the cache, invoke the provided
2519  * callback immediately and return.  Note that the `zio' parameter
2520  * in the callback will be NULL in this case, since no IO was
2521  * required.  If the block is not in the cache pass the read request
2522  * on to the spa with a substitute callback function, so that the
2523  * requested block will be added to the cache.
2524  *
2525  * If a read request arrives for a block that has a read in-progress,
2526  * either wait for the in-progress read to complete (and return the
2527  * results); or, if this is a read with a "done" func, add a record
2528  * to the read to invoke the "done" func when the read completes,
2529  * and return; or just return.
2530  *
2531  * arc_read_done() will invoke all the requested "done" functions
2532  * for readers of this block.
2533  *
2534  * Normal callers should use arc_read and pass the arc buffer and offset
2535  * for the bp.  But if you know you don't need locking, you can use
2536  * arc_read_bp.
2537  */
2538 int
2539 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf,
2540     arc_done_func_t *done, void *private, int priority, int zio_flags,
2541     uint32_t *arc_flags, const zbookmark_t *zb)
2542 {
2543 	int err;
2544 
2545 	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2546 	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2547 	rw_enter(&pbuf->b_lock, RW_READER);
2548 
2549 	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2550 	    zio_flags, arc_flags, zb);
2551 	rw_exit(&pbuf->b_lock);
2552 
2553 	return (err);
2554 }
2555 
2556 int
2557 arc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp,
2558     arc_done_func_t *done, void *private, int priority, int zio_flags,
2559     uint32_t *arc_flags, const zbookmark_t *zb)
2560 {
2561 	arc_buf_hdr_t *hdr;
2562 	arc_buf_t *buf;
2563 	kmutex_t *hash_lock;
2564 	zio_t *rzio;
2565 	uint64_t guid = spa_guid(spa);
2566 
2567 top:
2568 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2569 	if (hdr && hdr->b_datacnt > 0) {
2570 
2571 		*arc_flags |= ARC_CACHED;
2572 
2573 		if (HDR_IO_IN_PROGRESS(hdr)) {
2574 
2575 			if (*arc_flags & ARC_WAIT) {
2576 				cv_wait(&hdr->b_cv, hash_lock);
2577 				mutex_exit(hash_lock);
2578 				goto top;
2579 			}
2580 			ASSERT(*arc_flags & ARC_NOWAIT);
2581 
2582 			if (done) {
2583 				arc_callback_t	*acb = NULL;
2584 
2585 				acb = kmem_zalloc(sizeof (arc_callback_t),
2586 				    KM_SLEEP);
2587 				acb->acb_done = done;
2588 				acb->acb_private = private;
2589 				if (pio != NULL)
2590 					acb->acb_zio_dummy = zio_null(pio,
2591 					    spa, NULL, NULL, NULL, zio_flags);
2592 
2593 				ASSERT(acb->acb_done != NULL);
2594 				acb->acb_next = hdr->b_acb;
2595 				hdr->b_acb = acb;
2596 				add_reference(hdr, hash_lock, private);
2597 				mutex_exit(hash_lock);
2598 				return (0);
2599 			}
2600 			mutex_exit(hash_lock);
2601 			return (0);
2602 		}
2603 
2604 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2605 
2606 		if (done) {
2607 			add_reference(hdr, hash_lock, private);
2608 			/*
2609 			 * If this block is already in use, create a new
2610 			 * copy of the data so that we will be guaranteed
2611 			 * that arc_release() will always succeed.
2612 			 */
2613 			buf = hdr->b_buf;
2614 			ASSERT(buf);
2615 			ASSERT(buf->b_data);
2616 			if (HDR_BUF_AVAILABLE(hdr)) {
2617 				ASSERT(buf->b_efunc == NULL);
2618 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2619 			} else {
2620 				buf = arc_buf_clone(buf);
2621 			}
2622 		} else if (*arc_flags & ARC_PREFETCH &&
2623 		    refcount_count(&hdr->b_refcnt) == 0) {
2624 			hdr->b_flags |= ARC_PREFETCH;
2625 		}
2626 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2627 		arc_access(hdr, hash_lock);
2628 		if (*arc_flags & ARC_L2CACHE)
2629 			hdr->b_flags |= ARC_L2CACHE;
2630 		mutex_exit(hash_lock);
2631 		ARCSTAT_BUMP(arcstat_hits);
2632 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2633 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2634 		    data, metadata, hits);
2635 
2636 		if (done)
2637 			done(NULL, buf, private);
2638 	} else {
2639 		uint64_t size = BP_GET_LSIZE(bp);
2640 		arc_callback_t	*acb;
2641 		vdev_t *vd = NULL;
2642 		uint64_t addr;
2643 		boolean_t devw = B_FALSE;
2644 
2645 		if (hdr == NULL) {
2646 			/* this block is not in the cache */
2647 			arc_buf_hdr_t	*exists;
2648 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2649 			buf = arc_buf_alloc(spa, size, private, type);
2650 			hdr = buf->b_hdr;
2651 			hdr->b_dva = *BP_IDENTITY(bp);
2652 			hdr->b_birth = bp->blk_birth;
2653 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2654 			exists = buf_hash_insert(hdr, &hash_lock);
2655 			if (exists) {
2656 				/* somebody beat us to the hash insert */
2657 				mutex_exit(hash_lock);
2658 				bzero(&hdr->b_dva, sizeof (dva_t));
2659 				hdr->b_birth = 0;
2660 				hdr->b_cksum0 = 0;
2661 				(void) arc_buf_remove_ref(buf, private);
2662 				goto top; /* restart the IO request */
2663 			}
2664 			/* if this is a prefetch, we don't have a reference */
2665 			if (*arc_flags & ARC_PREFETCH) {
2666 				(void) remove_reference(hdr, hash_lock,
2667 				    private);
2668 				hdr->b_flags |= ARC_PREFETCH;
2669 			}
2670 			if (*arc_flags & ARC_L2CACHE)
2671 				hdr->b_flags |= ARC_L2CACHE;
2672 			if (BP_GET_LEVEL(bp) > 0)
2673 				hdr->b_flags |= ARC_INDIRECT;
2674 		} else {
2675 			/* this block is in the ghost cache */
2676 			ASSERT(GHOST_STATE(hdr->b_state));
2677 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2678 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2679 			ASSERT(hdr->b_buf == NULL);
2680 
2681 			/* if this is a prefetch, we don't have a reference */
2682 			if (*arc_flags & ARC_PREFETCH)
2683 				hdr->b_flags |= ARC_PREFETCH;
2684 			else
2685 				add_reference(hdr, hash_lock, private);
2686 			if (*arc_flags & ARC_L2CACHE)
2687 				hdr->b_flags |= ARC_L2CACHE;
2688 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2689 			buf->b_hdr = hdr;
2690 			buf->b_data = NULL;
2691 			buf->b_efunc = NULL;
2692 			buf->b_private = NULL;
2693 			buf->b_next = NULL;
2694 			hdr->b_buf = buf;
2695 			arc_get_data_buf(buf);
2696 			ASSERT(hdr->b_datacnt == 0);
2697 			hdr->b_datacnt = 1;
2698 
2699 		}
2700 
2701 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2702 		acb->acb_done = done;
2703 		acb->acb_private = private;
2704 
2705 		ASSERT(hdr->b_acb == NULL);
2706 		hdr->b_acb = acb;
2707 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2708 
2709 		/*
2710 		 * If the buffer has been evicted, migrate it to a present state
2711 		 * before issuing the I/O.  Once we drop the hash-table lock,
2712 		 * the header will be marked as I/O in progress and have an
2713 		 * attached buffer.  At this point, anybody who finds this
2714 		 * buffer ought to notice that it's legit but has a pending I/O.
2715 		 */
2716 
2717 		if (GHOST_STATE(hdr->b_state))
2718 			arc_access(hdr, hash_lock);
2719 
2720 		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2721 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2722 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2723 			addr = hdr->b_l2hdr->b_daddr;
2724 			/*
2725 			 * Lock out device removal.
2726 			 */
2727 			if (vdev_is_dead(vd) ||
2728 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2729 				vd = NULL;
2730 		}
2731 
2732 		mutex_exit(hash_lock);
2733 
2734 		ASSERT3U(hdr->b_size, ==, size);
2735 		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
2736 		    zbookmark_t *, zb);
2737 		ARCSTAT_BUMP(arcstat_misses);
2738 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2739 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2740 		    data, metadata, misses);
2741 
2742 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2743 			/*
2744 			 * Read from the L2ARC if the following are true:
2745 			 * 1. The L2ARC vdev was previously cached.
2746 			 * 2. This buffer still has L2ARC metadata.
2747 			 * 3. This buffer isn't currently writing to the L2ARC.
2748 			 * 4. The L2ARC entry wasn't evicted, which may
2749 			 *    also have invalidated the vdev.
2750 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
2751 			 */
2752 			if (hdr->b_l2hdr != NULL &&
2753 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2754 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2755 				l2arc_read_callback_t *cb;
2756 
2757 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2758 				ARCSTAT_BUMP(arcstat_l2_hits);
2759 
2760 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2761 				    KM_SLEEP);
2762 				cb->l2rcb_buf = buf;
2763 				cb->l2rcb_spa = spa;
2764 				cb->l2rcb_bp = *bp;
2765 				cb->l2rcb_zb = *zb;
2766 				cb->l2rcb_flags = zio_flags;
2767 
2768 				/*
2769 				 * l2arc read.  The SCL_L2ARC lock will be
2770 				 * released by l2arc_read_done().
2771 				 */
2772 				rzio = zio_read_phys(pio, vd, addr, size,
2773 				    buf->b_data, ZIO_CHECKSUM_OFF,
2774 				    l2arc_read_done, cb, priority, zio_flags |
2775 				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2776 				    ZIO_FLAG_DONT_PROPAGATE |
2777 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
2778 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2779 				    zio_t *, rzio);
2780 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
2781 
2782 				if (*arc_flags & ARC_NOWAIT) {
2783 					zio_nowait(rzio);
2784 					return (0);
2785 				}
2786 
2787 				ASSERT(*arc_flags & ARC_WAIT);
2788 				if (zio_wait(rzio) == 0)
2789 					return (0);
2790 
2791 				/* l2arc read error; goto zio_read() */
2792 			} else {
2793 				DTRACE_PROBE1(l2arc__miss,
2794 				    arc_buf_hdr_t *, hdr);
2795 				ARCSTAT_BUMP(arcstat_l2_misses);
2796 				if (HDR_L2_WRITING(hdr))
2797 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2798 				spa_config_exit(spa, SCL_L2ARC, vd);
2799 			}
2800 		} else {
2801 			if (vd != NULL)
2802 				spa_config_exit(spa, SCL_L2ARC, vd);
2803 			if (l2arc_ndev != 0) {
2804 				DTRACE_PROBE1(l2arc__miss,
2805 				    arc_buf_hdr_t *, hdr);
2806 				ARCSTAT_BUMP(arcstat_l2_misses);
2807 			}
2808 		}
2809 
2810 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2811 		    arc_read_done, buf, priority, zio_flags, zb);
2812 
2813 		if (*arc_flags & ARC_WAIT)
2814 			return (zio_wait(rzio));
2815 
2816 		ASSERT(*arc_flags & ARC_NOWAIT);
2817 		zio_nowait(rzio);
2818 	}
2819 	return (0);
2820 }
2821 
2822 /*
2823  * arc_read() variant to support pool traversal.  If the block is already
2824  * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
2825  * The idea is that we don't want pool traversal filling up memory, but
2826  * if the ARC already has the data anyway, we shouldn't pay for the I/O.
2827  */
2828 int
2829 arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
2830 {
2831 	arc_buf_hdr_t *hdr;
2832 	kmutex_t *hash_mtx;
2833 	uint64_t guid = spa_guid(spa);
2834 	int rc = 0;
2835 
2836 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
2837 
2838 	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
2839 		arc_buf_t *buf = hdr->b_buf;
2840 
2841 		ASSERT(buf);
2842 		while (buf->b_data == NULL) {
2843 			buf = buf->b_next;
2844 			ASSERT(buf);
2845 		}
2846 		bcopy(buf->b_data, data, hdr->b_size);
2847 	} else {
2848 		rc = ENOENT;
2849 	}
2850 
2851 	if (hash_mtx)
2852 		mutex_exit(hash_mtx);
2853 
2854 	return (rc);
2855 }
2856 
2857 void
2858 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2859 {
2860 	ASSERT(buf->b_hdr != NULL);
2861 	ASSERT(buf->b_hdr->b_state != arc_anon);
2862 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2863 	buf->b_efunc = func;
2864 	buf->b_private = private;
2865 }
2866 
2867 /*
2868  * This is used by the DMU to let the ARC know that a buffer is
2869  * being evicted, so the ARC should clean up.  If this arc buf
2870  * is not yet in the evicted state, it will be put there.
2871  */
2872 int
2873 arc_buf_evict(arc_buf_t *buf)
2874 {
2875 	arc_buf_hdr_t *hdr;
2876 	kmutex_t *hash_lock;
2877 	arc_buf_t **bufp;
2878 
2879 	rw_enter(&buf->b_lock, RW_WRITER);
2880 	hdr = buf->b_hdr;
2881 	if (hdr == NULL) {
2882 		/*
2883 		 * We are in arc_do_user_evicts().
2884 		 */
2885 		ASSERT(buf->b_data == NULL);
2886 		rw_exit(&buf->b_lock);
2887 		return (0);
2888 	} else if (buf->b_data == NULL) {
2889 		arc_buf_t copy = *buf; /* structure assignment */
2890 		/*
2891 		 * We are on the eviction list; process this buffer now
2892 		 * but let arc_do_user_evicts() do the reaping.
2893 		 */
2894 		buf->b_efunc = NULL;
2895 		rw_exit(&buf->b_lock);
2896 		VERIFY(copy.b_efunc(&copy) == 0);
2897 		return (1);
2898 	}
2899 	hash_lock = HDR_LOCK(hdr);
2900 	mutex_enter(hash_lock);
2901 
2902 	ASSERT(buf->b_hdr == hdr);
2903 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2904 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2905 
2906 	/*
2907 	 * Pull this buffer off of the hdr
2908 	 */
2909 	bufp = &hdr->b_buf;
2910 	while (*bufp != buf)
2911 		bufp = &(*bufp)->b_next;
2912 	*bufp = buf->b_next;
2913 
2914 	ASSERT(buf->b_data != NULL);
2915 	arc_buf_destroy(buf, FALSE, FALSE);
2916 
2917 	if (hdr->b_datacnt == 0) {
2918 		arc_state_t *old_state = hdr->b_state;
2919 		arc_state_t *evicted_state;
2920 
2921 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2922 
2923 		evicted_state =
2924 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2925 
2926 		mutex_enter(&old_state->arcs_mtx);
2927 		mutex_enter(&evicted_state->arcs_mtx);
2928 
2929 		arc_change_state(evicted_state, hdr, hash_lock);
2930 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2931 		hdr->b_flags |= ARC_IN_HASH_TABLE;
2932 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2933 
2934 		mutex_exit(&evicted_state->arcs_mtx);
2935 		mutex_exit(&old_state->arcs_mtx);
2936 	}
2937 	mutex_exit(hash_lock);
2938 	rw_exit(&buf->b_lock);
2939 
2940 	VERIFY(buf->b_efunc(buf) == 0);
2941 	buf->b_efunc = NULL;
2942 	buf->b_private = NULL;
2943 	buf->b_hdr = NULL;
2944 	kmem_cache_free(buf_cache, buf);
2945 	return (1);
2946 }
2947 
2948 /*
2949  * Release this buffer from the cache.  This must be done
2950  * after a read and prior to modifying the buffer contents.
2951  * If the buffer has more than one reference, we must make
2952  * a new hdr for the buffer.
2953  */
2954 void
2955 arc_release(arc_buf_t *buf, void *tag)
2956 {
2957 	arc_buf_hdr_t *hdr;
2958 	kmutex_t *hash_lock;
2959 	l2arc_buf_hdr_t *l2hdr;
2960 	uint64_t buf_size;
2961 	boolean_t released = B_FALSE;
2962 
2963 	rw_enter(&buf->b_lock, RW_WRITER);
2964 	hdr = buf->b_hdr;
2965 
2966 	/* this buffer is not on any list */
2967 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2968 	ASSERT(!(hdr->b_flags & ARC_STORED));
2969 
2970 	if (hdr->b_state == arc_anon) {
2971 		/* this buffer is already released */
2972 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2973 		ASSERT(BUF_EMPTY(hdr));
2974 		ASSERT(buf->b_efunc == NULL);
2975 		arc_buf_thaw(buf);
2976 		rw_exit(&buf->b_lock);
2977 		released = B_TRUE;
2978 	} else {
2979 		hash_lock = HDR_LOCK(hdr);
2980 		mutex_enter(hash_lock);
2981 	}
2982 
2983 	l2hdr = hdr->b_l2hdr;
2984 	if (l2hdr) {
2985 		mutex_enter(&l2arc_buflist_mtx);
2986 		hdr->b_l2hdr = NULL;
2987 		buf_size = hdr->b_size;
2988 	}
2989 
2990 	if (released)
2991 		goto out;
2992 
2993 	/*
2994 	 * Do we have more than one buf?
2995 	 */
2996 	if (hdr->b_datacnt > 1) {
2997 		arc_buf_hdr_t *nhdr;
2998 		arc_buf_t **bufp;
2999 		uint64_t blksz = hdr->b_size;
3000 		uint64_t spa = hdr->b_spa;
3001 		arc_buf_contents_t type = hdr->b_type;
3002 		uint32_t flags = hdr->b_flags;
3003 
3004 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3005 		/*
3006 		 * Pull the data off of this buf and attach it to
3007 		 * a new anonymous buf.
3008 		 */
3009 		(void) remove_reference(hdr, hash_lock, tag);
3010 		bufp = &hdr->b_buf;
3011 		while (*bufp != buf)
3012 			bufp = &(*bufp)->b_next;
3013 		*bufp = (*bufp)->b_next;
3014 		buf->b_next = NULL;
3015 
3016 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3017 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3018 		if (refcount_is_zero(&hdr->b_refcnt)) {
3019 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3020 			ASSERT3U(*size, >=, hdr->b_size);
3021 			atomic_add_64(size, -hdr->b_size);
3022 		}
3023 		hdr->b_datacnt -= 1;
3024 		arc_cksum_verify(buf);
3025 
3026 		mutex_exit(hash_lock);
3027 
3028 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3029 		nhdr->b_size = blksz;
3030 		nhdr->b_spa = spa;
3031 		nhdr->b_type = type;
3032 		nhdr->b_buf = buf;
3033 		nhdr->b_state = arc_anon;
3034 		nhdr->b_arc_access = 0;
3035 		nhdr->b_flags = flags & ARC_L2_WRITING;
3036 		nhdr->b_l2hdr = NULL;
3037 		nhdr->b_datacnt = 1;
3038 		nhdr->b_freeze_cksum = NULL;
3039 		(void) refcount_add(&nhdr->b_refcnt, tag);
3040 		buf->b_hdr = nhdr;
3041 		rw_exit(&buf->b_lock);
3042 		atomic_add_64(&arc_anon->arcs_size, blksz);
3043 	} else {
3044 		rw_exit(&buf->b_lock);
3045 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3046 		ASSERT(!list_link_active(&hdr->b_arc_node));
3047 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3048 		arc_change_state(arc_anon, hdr, hash_lock);
3049 		hdr->b_arc_access = 0;
3050 		mutex_exit(hash_lock);
3051 
3052 		bzero(&hdr->b_dva, sizeof (dva_t));
3053 		hdr->b_birth = 0;
3054 		hdr->b_cksum0 = 0;
3055 		arc_buf_thaw(buf);
3056 	}
3057 	buf->b_efunc = NULL;
3058 	buf->b_private = NULL;
3059 
3060 out:
3061 	if (l2hdr) {
3062 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3063 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3064 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3065 		mutex_exit(&l2arc_buflist_mtx);
3066 	}
3067 }
3068 
3069 int
3070 arc_released(arc_buf_t *buf)
3071 {
3072 	int released;
3073 
3074 	rw_enter(&buf->b_lock, RW_READER);
3075 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3076 	rw_exit(&buf->b_lock);
3077 	return (released);
3078 }
3079 
3080 int
3081 arc_has_callback(arc_buf_t *buf)
3082 {
3083 	int callback;
3084 
3085 	rw_enter(&buf->b_lock, RW_READER);
3086 	callback = (buf->b_efunc != NULL);
3087 	rw_exit(&buf->b_lock);
3088 	return (callback);
3089 }
3090 
3091 #ifdef ZFS_DEBUG
3092 int
3093 arc_referenced(arc_buf_t *buf)
3094 {
3095 	int referenced;
3096 
3097 	rw_enter(&buf->b_lock, RW_READER);
3098 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3099 	rw_exit(&buf->b_lock);
3100 	return (referenced);
3101 }
3102 #endif
3103 
3104 static void
3105 arc_write_ready(zio_t *zio)
3106 {
3107 	arc_write_callback_t *callback = zio->io_private;
3108 	arc_buf_t *buf = callback->awcb_buf;
3109 	arc_buf_hdr_t *hdr = buf->b_hdr;
3110 
3111 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3112 	callback->awcb_ready(zio, buf, callback->awcb_private);
3113 
3114 	/*
3115 	 * If the IO is already in progress, then this is a re-write
3116 	 * attempt, so we need to thaw and re-compute the cksum.
3117 	 * It is the responsibility of the callback to handle the
3118 	 * accounting for any re-write attempt.
3119 	 */
3120 	if (HDR_IO_IN_PROGRESS(hdr)) {
3121 		mutex_enter(&hdr->b_freeze_lock);
3122 		if (hdr->b_freeze_cksum != NULL) {
3123 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3124 			hdr->b_freeze_cksum = NULL;
3125 		}
3126 		mutex_exit(&hdr->b_freeze_lock);
3127 	}
3128 	arc_cksum_compute(buf, B_FALSE);
3129 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3130 }
3131 
3132 static void
3133 arc_write_done(zio_t *zio)
3134 {
3135 	arc_write_callback_t *callback = zio->io_private;
3136 	arc_buf_t *buf = callback->awcb_buf;
3137 	arc_buf_hdr_t *hdr = buf->b_hdr;
3138 
3139 	hdr->b_acb = NULL;
3140 
3141 	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3142 	hdr->b_birth = zio->io_bp->blk_birth;
3143 	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3144 	/*
3145 	 * If the block to be written was all-zero, we may have
3146 	 * compressed it away.  In this case no write was performed
3147 	 * so there will be no dva/birth-date/checksum.  The buffer
3148 	 * must therefor remain anonymous (and uncached).
3149 	 */
3150 	if (!BUF_EMPTY(hdr)) {
3151 		arc_buf_hdr_t *exists;
3152 		kmutex_t *hash_lock;
3153 
3154 		arc_cksum_verify(buf);
3155 
3156 		exists = buf_hash_insert(hdr, &hash_lock);
3157 		if (exists) {
3158 			/*
3159 			 * This can only happen if we overwrite for
3160 			 * sync-to-convergence, because we remove
3161 			 * buffers from the hash table when we arc_free().
3162 			 */
3163 			ASSERT(zio->io_flags & ZIO_FLAG_IO_REWRITE);
3164 			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
3165 			    BP_IDENTITY(zio->io_bp)));
3166 			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
3167 			    zio->io_bp->blk_birth);
3168 
3169 			ASSERT(refcount_is_zero(&exists->b_refcnt));
3170 			arc_change_state(arc_anon, exists, hash_lock);
3171 			mutex_exit(hash_lock);
3172 			arc_hdr_destroy(exists);
3173 			exists = buf_hash_insert(hdr, &hash_lock);
3174 			ASSERT3P(exists, ==, NULL);
3175 		}
3176 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3177 		/* if it's not anon, we are doing a scrub */
3178 		if (hdr->b_state == arc_anon)
3179 			arc_access(hdr, hash_lock);
3180 		mutex_exit(hash_lock);
3181 	} else if (callback->awcb_done == NULL) {
3182 		int destroy_hdr;
3183 		/*
3184 		 * This is an anonymous buffer with no user callback,
3185 		 * destroy it if there are no active references.
3186 		 */
3187 		mutex_enter(&arc_eviction_mtx);
3188 		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
3189 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3190 		mutex_exit(&arc_eviction_mtx);
3191 		if (destroy_hdr)
3192 			arc_hdr_destroy(hdr);
3193 	} else {
3194 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3195 	}
3196 	hdr->b_flags &= ~ARC_STORED;
3197 
3198 	if (callback->awcb_done) {
3199 		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3200 		callback->awcb_done(zio, buf, callback->awcb_private);
3201 	}
3202 
3203 	kmem_free(callback, sizeof (arc_write_callback_t));
3204 }
3205 
3206 void
3207 write_policy(spa_t *spa, const writeprops_t *wp, zio_prop_t *zp)
3208 {
3209 	boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata);
3210 
3211 	/* Determine checksum setting */
3212 	if (ismd) {
3213 		/*
3214 		 * Metadata always gets checksummed.  If the data
3215 		 * checksum is multi-bit correctable, and it's not a
3216 		 * ZBT-style checksum, then it's suitable for metadata
3217 		 * as well.  Otherwise, the metadata checksum defaults
3218 		 * to fletcher4.
3219 		 */
3220 		if (zio_checksum_table[wp->wp_oschecksum].ci_correctable &&
3221 		    !zio_checksum_table[wp->wp_oschecksum].ci_zbt)
3222 			zp->zp_checksum = wp->wp_oschecksum;
3223 		else
3224 			zp->zp_checksum = ZIO_CHECKSUM_FLETCHER_4;
3225 	} else {
3226 		zp->zp_checksum = zio_checksum_select(wp->wp_dnchecksum,
3227 		    wp->wp_oschecksum);
3228 	}
3229 
3230 	/* Determine compression setting */
3231 	if (ismd) {
3232 		/*
3233 		 * XXX -- we should design a compression algorithm
3234 		 * that specializes in arrays of bps.
3235 		 */
3236 		zp->zp_compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
3237 		    ZIO_COMPRESS_LZJB;
3238 	} else {
3239 		zp->zp_compress = zio_compress_select(wp->wp_dncompress,
3240 		    wp->wp_oscompress);
3241 	}
3242 
3243 	zp->zp_type = wp->wp_type;
3244 	zp->zp_level = wp->wp_level;
3245 	zp->zp_ndvas = MIN(wp->wp_copies + ismd, spa_max_replication(spa));
3246 }
3247 
3248 zio_t *
3249 arc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp,
3250     boolean_t l2arc, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
3251     arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
3252     int zio_flags, const zbookmark_t *zb)
3253 {
3254 	arc_buf_hdr_t *hdr = buf->b_hdr;
3255 	arc_write_callback_t *callback;
3256 	zio_t *zio;
3257 	zio_prop_t zp;
3258 
3259 	ASSERT(ready != NULL);
3260 	ASSERT(!HDR_IO_ERROR(hdr));
3261 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3262 	ASSERT(hdr->b_acb == 0);
3263 	if (l2arc)
3264 		hdr->b_flags |= ARC_L2CACHE;
3265 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3266 	callback->awcb_ready = ready;
3267 	callback->awcb_done = done;
3268 	callback->awcb_private = private;
3269 	callback->awcb_buf = buf;
3270 
3271 	write_policy(spa, wp, &zp);
3272 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, &zp,
3273 	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3274 
3275 	return (zio);
3276 }
3277 
3278 int
3279 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
3280     zio_done_func_t *done, void *private, uint32_t arc_flags)
3281 {
3282 	arc_buf_hdr_t *ab;
3283 	kmutex_t *hash_lock;
3284 	zio_t	*zio;
3285 	uint64_t guid = spa_guid(spa);
3286 
3287 	/*
3288 	 * If this buffer is in the cache, release it, so it
3289 	 * can be re-used.
3290 	 */
3291 	ab = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
3292 	if (ab != NULL) {
3293 		/*
3294 		 * The checksum of blocks to free is not always
3295 		 * preserved (eg. on the deadlist).  However, if it is
3296 		 * nonzero, it should match what we have in the cache.
3297 		 */
3298 		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
3299 		    bp->blk_cksum.zc_word[0] == ab->b_cksum0 ||
3300 		    bp->blk_fill == BLK_FILL_ALREADY_FREED);
3301 
3302 		if (ab->b_state != arc_anon)
3303 			arc_change_state(arc_anon, ab, hash_lock);
3304 		if (HDR_IO_IN_PROGRESS(ab)) {
3305 			/*
3306 			 * This should only happen when we prefetch.
3307 			 */
3308 			ASSERT(ab->b_flags & ARC_PREFETCH);
3309 			ASSERT3U(ab->b_datacnt, ==, 1);
3310 			ab->b_flags |= ARC_FREED_IN_READ;
3311 			if (HDR_IN_HASH_TABLE(ab))
3312 				buf_hash_remove(ab);
3313 			ab->b_arc_access = 0;
3314 			bzero(&ab->b_dva, sizeof (dva_t));
3315 			ab->b_birth = 0;
3316 			ab->b_cksum0 = 0;
3317 			ab->b_buf->b_efunc = NULL;
3318 			ab->b_buf->b_private = NULL;
3319 			mutex_exit(hash_lock);
3320 		} else if (refcount_is_zero(&ab->b_refcnt)) {
3321 			ab->b_flags |= ARC_FREE_IN_PROGRESS;
3322 			mutex_exit(hash_lock);
3323 			arc_hdr_destroy(ab);
3324 			ARCSTAT_BUMP(arcstat_deleted);
3325 		} else {
3326 			/*
3327 			 * We still have an active reference on this
3328 			 * buffer.  This can happen, e.g., from
3329 			 * dbuf_unoverride().
3330 			 */
3331 			ASSERT(!HDR_IN_HASH_TABLE(ab));
3332 			ab->b_arc_access = 0;
3333 			bzero(&ab->b_dva, sizeof (dva_t));
3334 			ab->b_birth = 0;
3335 			ab->b_cksum0 = 0;
3336 			ab->b_buf->b_efunc = NULL;
3337 			ab->b_buf->b_private = NULL;
3338 			mutex_exit(hash_lock);
3339 		}
3340 	}
3341 
3342 	zio = zio_free(pio, spa, txg, bp, done, private, ZIO_FLAG_MUSTSUCCEED);
3343 
3344 	if (arc_flags & ARC_WAIT)
3345 		return (zio_wait(zio));
3346 
3347 	ASSERT(arc_flags & ARC_NOWAIT);
3348 	zio_nowait(zio);
3349 
3350 	return (0);
3351 }
3352 
3353 static int
3354 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3355 {
3356 #ifdef _KERNEL
3357 	uint64_t available_memory = ptob(freemem);
3358 	static uint64_t page_load = 0;
3359 	static uint64_t last_txg = 0;
3360 
3361 #if defined(__i386)
3362 	available_memory =
3363 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3364 #endif
3365 	if (available_memory >= zfs_write_limit_max)
3366 		return (0);
3367 
3368 	if (txg > last_txg) {
3369 		last_txg = txg;
3370 		page_load = 0;
3371 	}
3372 	/*
3373 	 * If we are in pageout, we know that memory is already tight,
3374 	 * the arc is already going to be evicting, so we just want to
3375 	 * continue to let page writes occur as quickly as possible.
3376 	 */
3377 	if (curproc == proc_pageout) {
3378 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3379 			return (ERESTART);
3380 		/* Note: reserve is inflated, so we deflate */
3381 		page_load += reserve / 8;
3382 		return (0);
3383 	} else if (page_load > 0 && arc_reclaim_needed()) {
3384 		/* memory is low, delay before restarting */
3385 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3386 		return (EAGAIN);
3387 	}
3388 	page_load = 0;
3389 
3390 	if (arc_size > arc_c_min) {
3391 		uint64_t evictable_memory =
3392 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3393 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3394 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3395 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3396 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3397 	}
3398 
3399 	if (inflight_data > available_memory / 4) {
3400 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3401 		return (ERESTART);
3402 	}
3403 #endif
3404 	return (0);
3405 }
3406 
3407 void
3408 arc_tempreserve_clear(uint64_t reserve)
3409 {
3410 	atomic_add_64(&arc_tempreserve, -reserve);
3411 	ASSERT((int64_t)arc_tempreserve >= 0);
3412 }
3413 
3414 int
3415 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3416 {
3417 	int error;
3418 	uint64_t anon_size;
3419 
3420 #ifdef ZFS_DEBUG
3421 	/*
3422 	 * Once in a while, fail for no reason.  Everything should cope.
3423 	 */
3424 	if (spa_get_random(10000) == 0) {
3425 		dprintf("forcing random failure\n");
3426 		return (ERESTART);
3427 	}
3428 #endif
3429 	if (reserve > arc_c/4 && !arc_no_grow)
3430 		arc_c = MIN(arc_c_max, reserve * 4);
3431 	if (reserve > arc_c)
3432 		return (ENOMEM);
3433 
3434 	/*
3435 	 * Don't count loaned bufs as in flight dirty data to prevent long
3436 	 * network delays from blocking transactions that are ready to be
3437 	 * assigned to a txg.
3438 	 */
3439 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3440 
3441 	/*
3442 	 * Writes will, almost always, require additional memory allocations
3443 	 * in order to compress/encrypt/etc the data.  We therefor need to
3444 	 * make sure that there is sufficient available memory for this.
3445 	 */
3446 	if (error = arc_memory_throttle(reserve, anon_size, txg))
3447 		return (error);
3448 
3449 	/*
3450 	 * Throttle writes when the amount of dirty data in the cache
3451 	 * gets too large.  We try to keep the cache less than half full
3452 	 * of dirty blocks so that our sync times don't grow too large.
3453 	 * Note: if two requests come in concurrently, we might let them
3454 	 * both succeed, when one of them should fail.  Not a huge deal.
3455 	 */
3456 
3457 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3458 	    anon_size > arc_c / 4) {
3459 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3460 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3461 		    arc_tempreserve>>10,
3462 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3463 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3464 		    reserve>>10, arc_c>>10);
3465 		return (ERESTART);
3466 	}
3467 	atomic_add_64(&arc_tempreserve, reserve);
3468 	return (0);
3469 }
3470 
3471 void
3472 arc_init(void)
3473 {
3474 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3475 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3476 
3477 	/* Convert seconds to clock ticks */
3478 	arc_min_prefetch_lifespan = 1 * hz;
3479 
3480 	/* Start out with 1/8 of all memory */
3481 	arc_c = physmem * PAGESIZE / 8;
3482 
3483 #ifdef _KERNEL
3484 	/*
3485 	 * On architectures where the physical memory can be larger
3486 	 * than the addressable space (intel in 32-bit mode), we may
3487 	 * need to limit the cache to 1/8 of VM size.
3488 	 */
3489 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3490 #endif
3491 
3492 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3493 	arc_c_min = MAX(arc_c / 4, 64<<20);
3494 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3495 	if (arc_c * 8 >= 1<<30)
3496 		arc_c_max = (arc_c * 8) - (1<<30);
3497 	else
3498 		arc_c_max = arc_c_min;
3499 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3500 
3501 	/*
3502 	 * Allow the tunables to override our calculations if they are
3503 	 * reasonable (ie. over 64MB)
3504 	 */
3505 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3506 		arc_c_max = zfs_arc_max;
3507 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3508 		arc_c_min = zfs_arc_min;
3509 
3510 	arc_c = arc_c_max;
3511 	arc_p = (arc_c >> 1);
3512 
3513 	/* limit meta-data to 1/4 of the arc capacity */
3514 	arc_meta_limit = arc_c_max / 4;
3515 
3516 	/* Allow the tunable to override if it is reasonable */
3517 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3518 		arc_meta_limit = zfs_arc_meta_limit;
3519 
3520 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3521 		arc_c_min = arc_meta_limit / 2;
3522 
3523 	if (zfs_arc_grow_retry > 0)
3524 		arc_grow_retry = zfs_arc_grow_retry;
3525 
3526 	if (zfs_arc_shrink_shift > 0)
3527 		arc_shrink_shift = zfs_arc_shrink_shift;
3528 
3529 	if (zfs_arc_p_min_shift > 0)
3530 		arc_p_min_shift = zfs_arc_p_min_shift;
3531 
3532 	/* if kmem_flags are set, lets try to use less memory */
3533 	if (kmem_debugging())
3534 		arc_c = arc_c / 2;
3535 	if (arc_c < arc_c_min)
3536 		arc_c = arc_c_min;
3537 
3538 	arc_anon = &ARC_anon;
3539 	arc_mru = &ARC_mru;
3540 	arc_mru_ghost = &ARC_mru_ghost;
3541 	arc_mfu = &ARC_mfu;
3542 	arc_mfu_ghost = &ARC_mfu_ghost;
3543 	arc_l2c_only = &ARC_l2c_only;
3544 	arc_size = 0;
3545 
3546 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3547 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3548 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3549 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3550 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3551 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3552 
3553 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3554 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3555 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3556 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3557 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3558 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3559 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3560 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3561 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3562 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3563 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3564 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3565 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3566 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3567 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3568 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3569 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3570 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3571 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3572 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3573 
3574 	buf_init();
3575 
3576 	arc_thread_exit = 0;
3577 	arc_eviction_list = NULL;
3578 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3579 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3580 
3581 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3582 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3583 
3584 	if (arc_ksp != NULL) {
3585 		arc_ksp->ks_data = &arc_stats;
3586 		kstat_install(arc_ksp);
3587 	}
3588 
3589 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3590 	    TS_RUN, minclsyspri);
3591 
3592 	arc_dead = FALSE;
3593 	arc_warm = B_FALSE;
3594 
3595 	if (zfs_write_limit_max == 0)
3596 		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3597 	else
3598 		zfs_write_limit_shift = 0;
3599 	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3600 }
3601 
3602 void
3603 arc_fini(void)
3604 {
3605 	mutex_enter(&arc_reclaim_thr_lock);
3606 	arc_thread_exit = 1;
3607 	while (arc_thread_exit != 0)
3608 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3609 	mutex_exit(&arc_reclaim_thr_lock);
3610 
3611 	arc_flush(NULL);
3612 
3613 	arc_dead = TRUE;
3614 
3615 	if (arc_ksp != NULL) {
3616 		kstat_delete(arc_ksp);
3617 		arc_ksp = NULL;
3618 	}
3619 
3620 	mutex_destroy(&arc_eviction_mtx);
3621 	mutex_destroy(&arc_reclaim_thr_lock);
3622 	cv_destroy(&arc_reclaim_thr_cv);
3623 
3624 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3625 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3626 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3627 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3628 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3629 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3630 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3631 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3632 
3633 	mutex_destroy(&arc_anon->arcs_mtx);
3634 	mutex_destroy(&arc_mru->arcs_mtx);
3635 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3636 	mutex_destroy(&arc_mfu->arcs_mtx);
3637 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3638 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3639 
3640 	mutex_destroy(&zfs_write_limit_lock);
3641 
3642 	buf_fini();
3643 
3644 	ASSERT(arc_loaned_bytes == 0);
3645 }
3646 
3647 /*
3648  * Level 2 ARC
3649  *
3650  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3651  * It uses dedicated storage devices to hold cached data, which are populated
3652  * using large infrequent writes.  The main role of this cache is to boost
3653  * the performance of random read workloads.  The intended L2ARC devices
3654  * include short-stroked disks, solid state disks, and other media with
3655  * substantially faster read latency than disk.
3656  *
3657  *                 +-----------------------+
3658  *                 |         ARC           |
3659  *                 +-----------------------+
3660  *                    |         ^     ^
3661  *                    |         |     |
3662  *      l2arc_feed_thread()    arc_read()
3663  *                    |         |     |
3664  *                    |  l2arc read   |
3665  *                    V         |     |
3666  *               +---------------+    |
3667  *               |     L2ARC     |    |
3668  *               +---------------+    |
3669  *                   |    ^           |
3670  *          l2arc_write() |           |
3671  *                   |    |           |
3672  *                   V    |           |
3673  *                 +-------+      +-------+
3674  *                 | vdev  |      | vdev  |
3675  *                 | cache |      | cache |
3676  *                 +-------+      +-------+
3677  *                 +=========+     .-----.
3678  *                 :  L2ARC  :    |-_____-|
3679  *                 : devices :    | Disks |
3680  *                 +=========+    `-_____-'
3681  *
3682  * Read requests are satisfied from the following sources, in order:
3683  *
3684  *	1) ARC
3685  *	2) vdev cache of L2ARC devices
3686  *	3) L2ARC devices
3687  *	4) vdev cache of disks
3688  *	5) disks
3689  *
3690  * Some L2ARC device types exhibit extremely slow write performance.
3691  * To accommodate for this there are some significant differences between
3692  * the L2ARC and traditional cache design:
3693  *
3694  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3695  * the ARC behave as usual, freeing buffers and placing headers on ghost
3696  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3697  * this would add inflated write latencies for all ARC memory pressure.
3698  *
3699  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3700  * It does this by periodically scanning buffers from the eviction-end of
3701  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3702  * not already there.  It scans until a headroom of buffers is satisfied,
3703  * which itself is a buffer for ARC eviction.  The thread that does this is
3704  * l2arc_feed_thread(), illustrated below; example sizes are included to
3705  * provide a better sense of ratio than this diagram:
3706  *
3707  *	       head -->                        tail
3708  *	        +---------------------+----------+
3709  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3710  *	        +---------------------+----------+   |   o L2ARC eligible
3711  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3712  *	        +---------------------+----------+   |
3713  *	             15.9 Gbytes      ^ 32 Mbytes    |
3714  *	                           headroom          |
3715  *	                                      l2arc_feed_thread()
3716  *	                                             |
3717  *	                 l2arc write hand <--[oooo]--'
3718  *	                         |           8 Mbyte
3719  *	                         |          write max
3720  *	                         V
3721  *		  +==============================+
3722  *	L2ARC dev |####|#|###|###|    |####| ... |
3723  *	          +==============================+
3724  *	                     32 Gbytes
3725  *
3726  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3727  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3728  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3729  * safe to say that this is an uncommon case, since buffers at the end of
3730  * the ARC lists have moved there due to inactivity.
3731  *
3732  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3733  * then the L2ARC simply misses copying some buffers.  This serves as a
3734  * pressure valve to prevent heavy read workloads from both stalling the ARC
3735  * with waits and clogging the L2ARC with writes.  This also helps prevent
3736  * the potential for the L2ARC to churn if it attempts to cache content too
3737  * quickly, such as during backups of the entire pool.
3738  *
3739  * 5. After system boot and before the ARC has filled main memory, there are
3740  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3741  * lists can remain mostly static.  Instead of searching from tail of these
3742  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3743  * for eligible buffers, greatly increasing its chance of finding them.
3744  *
3745  * The L2ARC device write speed is also boosted during this time so that
3746  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3747  * there are no L2ARC reads, and no fear of degrading read performance
3748  * through increased writes.
3749  *
3750  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3751  * the vdev queue can aggregate them into larger and fewer writes.  Each
3752  * device is written to in a rotor fashion, sweeping writes through
3753  * available space then repeating.
3754  *
3755  * 7. The L2ARC does not store dirty content.  It never needs to flush
3756  * write buffers back to disk based storage.
3757  *
3758  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3759  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3760  *
3761  * The performance of the L2ARC can be tweaked by a number of tunables, which
3762  * may be necessary for different workloads:
3763  *
3764  *	l2arc_write_max		max write bytes per interval
3765  *	l2arc_write_boost	extra write bytes during device warmup
3766  *	l2arc_noprefetch	skip caching prefetched buffers
3767  *	l2arc_headroom		number of max device writes to precache
3768  *	l2arc_feed_secs		seconds between L2ARC writing
3769  *
3770  * Tunables may be removed or added as future performance improvements are
3771  * integrated, and also may become zpool properties.
3772  *
3773  * There are three key functions that control how the L2ARC warms up:
3774  *
3775  *	l2arc_write_eligible()	check if a buffer is eligible to cache
3776  *	l2arc_write_size()	calculate how much to write
3777  *	l2arc_write_interval()	calculate sleep delay between writes
3778  *
3779  * These three functions determine what to write, how much, and how quickly
3780  * to send writes.
3781  */
3782 
3783 static boolean_t
3784 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3785 {
3786 	/*
3787 	 * A buffer is *not* eligible for the L2ARC if it:
3788 	 * 1. belongs to a different spa.
3789 	 * 2. has no attached buffer.
3790 	 * 3. is already cached on the L2ARC.
3791 	 * 4. has an I/O in progress (it may be an incomplete read).
3792 	 * 5. is flagged not eligible (zfs property).
3793 	 */
3794 	if (ab->b_spa != spa_guid || ab->b_buf == NULL || ab->b_l2hdr != NULL ||
3795 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3796 		return (B_FALSE);
3797 
3798 	return (B_TRUE);
3799 }
3800 
3801 static uint64_t
3802 l2arc_write_size(l2arc_dev_t *dev)
3803 {
3804 	uint64_t size;
3805 
3806 	size = dev->l2ad_write;
3807 
3808 	if (arc_warm == B_FALSE)
3809 		size += dev->l2ad_boost;
3810 
3811 	return (size);
3812 
3813 }
3814 
3815 static clock_t
3816 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3817 {
3818 	clock_t interval, next;
3819 
3820 	/*
3821 	 * If the ARC lists are busy, increase our write rate; if the
3822 	 * lists are stale, idle back.  This is achieved by checking
3823 	 * how much we previously wrote - if it was more than half of
3824 	 * what we wanted, schedule the next write much sooner.
3825 	 */
3826 	if (l2arc_feed_again && wrote > (wanted / 2))
3827 		interval = (hz * l2arc_feed_min_ms) / 1000;
3828 	else
3829 		interval = hz * l2arc_feed_secs;
3830 
3831 	next = MAX(lbolt, MIN(lbolt + interval, began + interval));
3832 
3833 	return (next);
3834 }
3835 
3836 static void
3837 l2arc_hdr_stat_add(void)
3838 {
3839 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3840 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3841 }
3842 
3843 static void
3844 l2arc_hdr_stat_remove(void)
3845 {
3846 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3847 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3848 }
3849 
3850 /*
3851  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3852  * If a device is returned, this also returns holding the spa config lock.
3853  */
3854 static l2arc_dev_t *
3855 l2arc_dev_get_next(void)
3856 {
3857 	l2arc_dev_t *first, *next = NULL;
3858 
3859 	/*
3860 	 * Lock out the removal of spas (spa_namespace_lock), then removal
3861 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
3862 	 * both locks will be dropped and a spa config lock held instead.
3863 	 */
3864 	mutex_enter(&spa_namespace_lock);
3865 	mutex_enter(&l2arc_dev_mtx);
3866 
3867 	/* if there are no vdevs, there is nothing to do */
3868 	if (l2arc_ndev == 0)
3869 		goto out;
3870 
3871 	first = NULL;
3872 	next = l2arc_dev_last;
3873 	do {
3874 		/* loop around the list looking for a non-faulted vdev */
3875 		if (next == NULL) {
3876 			next = list_head(l2arc_dev_list);
3877 		} else {
3878 			next = list_next(l2arc_dev_list, next);
3879 			if (next == NULL)
3880 				next = list_head(l2arc_dev_list);
3881 		}
3882 
3883 		/* if we have come back to the start, bail out */
3884 		if (first == NULL)
3885 			first = next;
3886 		else if (next == first)
3887 			break;
3888 
3889 	} while (vdev_is_dead(next->l2ad_vdev));
3890 
3891 	/* if we were unable to find any usable vdevs, return NULL */
3892 	if (vdev_is_dead(next->l2ad_vdev))
3893 		next = NULL;
3894 
3895 	l2arc_dev_last = next;
3896 
3897 out:
3898 	mutex_exit(&l2arc_dev_mtx);
3899 
3900 	/*
3901 	 * Grab the config lock to prevent the 'next' device from being
3902 	 * removed while we are writing to it.
3903 	 */
3904 	if (next != NULL)
3905 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3906 	mutex_exit(&spa_namespace_lock);
3907 
3908 	return (next);
3909 }
3910 
3911 /*
3912  * Free buffers that were tagged for destruction.
3913  */
3914 static void
3915 l2arc_do_free_on_write()
3916 {
3917 	list_t *buflist;
3918 	l2arc_data_free_t *df, *df_prev;
3919 
3920 	mutex_enter(&l2arc_free_on_write_mtx);
3921 	buflist = l2arc_free_on_write;
3922 
3923 	for (df = list_tail(buflist); df; df = df_prev) {
3924 		df_prev = list_prev(buflist, df);
3925 		ASSERT(df->l2df_data != NULL);
3926 		ASSERT(df->l2df_func != NULL);
3927 		df->l2df_func(df->l2df_data, df->l2df_size);
3928 		list_remove(buflist, df);
3929 		kmem_free(df, sizeof (l2arc_data_free_t));
3930 	}
3931 
3932 	mutex_exit(&l2arc_free_on_write_mtx);
3933 }
3934 
3935 /*
3936  * A write to a cache device has completed.  Update all headers to allow
3937  * reads from these buffers to begin.
3938  */
3939 static void
3940 l2arc_write_done(zio_t *zio)
3941 {
3942 	l2arc_write_callback_t *cb;
3943 	l2arc_dev_t *dev;
3944 	list_t *buflist;
3945 	arc_buf_hdr_t *head, *ab, *ab_prev;
3946 	l2arc_buf_hdr_t *abl2;
3947 	kmutex_t *hash_lock;
3948 
3949 	cb = zio->io_private;
3950 	ASSERT(cb != NULL);
3951 	dev = cb->l2wcb_dev;
3952 	ASSERT(dev != NULL);
3953 	head = cb->l2wcb_head;
3954 	ASSERT(head != NULL);
3955 	buflist = dev->l2ad_buflist;
3956 	ASSERT(buflist != NULL);
3957 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3958 	    l2arc_write_callback_t *, cb);
3959 
3960 	if (zio->io_error != 0)
3961 		ARCSTAT_BUMP(arcstat_l2_writes_error);
3962 
3963 	mutex_enter(&l2arc_buflist_mtx);
3964 
3965 	/*
3966 	 * All writes completed, or an error was hit.
3967 	 */
3968 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3969 		ab_prev = list_prev(buflist, ab);
3970 
3971 		hash_lock = HDR_LOCK(ab);
3972 		if (!mutex_tryenter(hash_lock)) {
3973 			/*
3974 			 * This buffer misses out.  It may be in a stage
3975 			 * of eviction.  Its ARC_L2_WRITING flag will be
3976 			 * left set, denying reads to this buffer.
3977 			 */
3978 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3979 			continue;
3980 		}
3981 
3982 		if (zio->io_error != 0) {
3983 			/*
3984 			 * Error - drop L2ARC entry.
3985 			 */
3986 			list_remove(buflist, ab);
3987 			abl2 = ab->b_l2hdr;
3988 			ab->b_l2hdr = NULL;
3989 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3990 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3991 		}
3992 
3993 		/*
3994 		 * Allow ARC to begin reads to this L2ARC entry.
3995 		 */
3996 		ab->b_flags &= ~ARC_L2_WRITING;
3997 
3998 		mutex_exit(hash_lock);
3999 	}
4000 
4001 	atomic_inc_64(&l2arc_writes_done);
4002 	list_remove(buflist, head);
4003 	kmem_cache_free(hdr_cache, head);
4004 	mutex_exit(&l2arc_buflist_mtx);
4005 
4006 	l2arc_do_free_on_write();
4007 
4008 	kmem_free(cb, sizeof (l2arc_write_callback_t));
4009 }
4010 
4011 /*
4012  * A read to a cache device completed.  Validate buffer contents before
4013  * handing over to the regular ARC routines.
4014  */
4015 static void
4016 l2arc_read_done(zio_t *zio)
4017 {
4018 	l2arc_read_callback_t *cb;
4019 	arc_buf_hdr_t *hdr;
4020 	arc_buf_t *buf;
4021 	kmutex_t *hash_lock;
4022 	int equal;
4023 
4024 	ASSERT(zio->io_vd != NULL);
4025 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4026 
4027 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4028 
4029 	cb = zio->io_private;
4030 	ASSERT(cb != NULL);
4031 	buf = cb->l2rcb_buf;
4032 	ASSERT(buf != NULL);
4033 	hdr = buf->b_hdr;
4034 	ASSERT(hdr != NULL);
4035 
4036 	hash_lock = HDR_LOCK(hdr);
4037 	mutex_enter(hash_lock);
4038 
4039 	/*
4040 	 * Check this survived the L2ARC journey.
4041 	 */
4042 	equal = arc_cksum_equal(buf);
4043 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4044 		mutex_exit(hash_lock);
4045 		zio->io_private = buf;
4046 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4047 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4048 		arc_read_done(zio);
4049 	} else {
4050 		mutex_exit(hash_lock);
4051 		/*
4052 		 * Buffer didn't survive caching.  Increment stats and
4053 		 * reissue to the original storage device.
4054 		 */
4055 		if (zio->io_error != 0) {
4056 			ARCSTAT_BUMP(arcstat_l2_io_error);
4057 		} else {
4058 			zio->io_error = EIO;
4059 		}
4060 		if (!equal)
4061 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4062 
4063 		/*
4064 		 * If there's no waiter, issue an async i/o to the primary
4065 		 * storage now.  If there *is* a waiter, the caller must
4066 		 * issue the i/o in a context where it's OK to block.
4067 		 */
4068 		if (zio->io_waiter == NULL) {
4069 			zio_t *pio = zio_unique_parent(zio);
4070 
4071 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4072 
4073 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4074 			    buf->b_data, zio->io_size, arc_read_done, buf,
4075 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4076 		}
4077 	}
4078 
4079 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4080 }
4081 
4082 /*
4083  * This is the list priority from which the L2ARC will search for pages to
4084  * cache.  This is used within loops (0..3) to cycle through lists in the
4085  * desired order.  This order can have a significant effect on cache
4086  * performance.
4087  *
4088  * Currently the metadata lists are hit first, MFU then MRU, followed by
4089  * the data lists.  This function returns a locked list, and also returns
4090  * the lock pointer.
4091  */
4092 static list_t *
4093 l2arc_list_locked(int list_num, kmutex_t **lock)
4094 {
4095 	list_t *list;
4096 
4097 	ASSERT(list_num >= 0 && list_num <= 3);
4098 
4099 	switch (list_num) {
4100 	case 0:
4101 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4102 		*lock = &arc_mfu->arcs_mtx;
4103 		break;
4104 	case 1:
4105 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4106 		*lock = &arc_mru->arcs_mtx;
4107 		break;
4108 	case 2:
4109 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4110 		*lock = &arc_mfu->arcs_mtx;
4111 		break;
4112 	case 3:
4113 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4114 		*lock = &arc_mru->arcs_mtx;
4115 		break;
4116 	}
4117 
4118 	ASSERT(!(MUTEX_HELD(*lock)));
4119 	mutex_enter(*lock);
4120 	return (list);
4121 }
4122 
4123 /*
4124  * Evict buffers from the device write hand to the distance specified in
4125  * bytes.  This distance may span populated buffers, it may span nothing.
4126  * This is clearing a region on the L2ARC device ready for writing.
4127  * If the 'all' boolean is set, every buffer is evicted.
4128  */
4129 static void
4130 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4131 {
4132 	list_t *buflist;
4133 	l2arc_buf_hdr_t *abl2;
4134 	arc_buf_hdr_t *ab, *ab_prev;
4135 	kmutex_t *hash_lock;
4136 	uint64_t taddr;
4137 
4138 	buflist = dev->l2ad_buflist;
4139 
4140 	if (buflist == NULL)
4141 		return;
4142 
4143 	if (!all && dev->l2ad_first) {
4144 		/*
4145 		 * This is the first sweep through the device.  There is
4146 		 * nothing to evict.
4147 		 */
4148 		return;
4149 	}
4150 
4151 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4152 		/*
4153 		 * When nearing the end of the device, evict to the end
4154 		 * before the device write hand jumps to the start.
4155 		 */
4156 		taddr = dev->l2ad_end;
4157 	} else {
4158 		taddr = dev->l2ad_hand + distance;
4159 	}
4160 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4161 	    uint64_t, taddr, boolean_t, all);
4162 
4163 top:
4164 	mutex_enter(&l2arc_buflist_mtx);
4165 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4166 		ab_prev = list_prev(buflist, ab);
4167 
4168 		hash_lock = HDR_LOCK(ab);
4169 		if (!mutex_tryenter(hash_lock)) {
4170 			/*
4171 			 * Missed the hash lock.  Retry.
4172 			 */
4173 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4174 			mutex_exit(&l2arc_buflist_mtx);
4175 			mutex_enter(hash_lock);
4176 			mutex_exit(hash_lock);
4177 			goto top;
4178 		}
4179 
4180 		if (HDR_L2_WRITE_HEAD(ab)) {
4181 			/*
4182 			 * We hit a write head node.  Leave it for
4183 			 * l2arc_write_done().
4184 			 */
4185 			list_remove(buflist, ab);
4186 			mutex_exit(hash_lock);
4187 			continue;
4188 		}
4189 
4190 		if (!all && ab->b_l2hdr != NULL &&
4191 		    (ab->b_l2hdr->b_daddr > taddr ||
4192 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4193 			/*
4194 			 * We've evicted to the target address,
4195 			 * or the end of the device.
4196 			 */
4197 			mutex_exit(hash_lock);
4198 			break;
4199 		}
4200 
4201 		if (HDR_FREE_IN_PROGRESS(ab)) {
4202 			/*
4203 			 * Already on the path to destruction.
4204 			 */
4205 			mutex_exit(hash_lock);
4206 			continue;
4207 		}
4208 
4209 		if (ab->b_state == arc_l2c_only) {
4210 			ASSERT(!HDR_L2_READING(ab));
4211 			/*
4212 			 * This doesn't exist in the ARC.  Destroy.
4213 			 * arc_hdr_destroy() will call list_remove()
4214 			 * and decrement arcstat_l2_size.
4215 			 */
4216 			arc_change_state(arc_anon, ab, hash_lock);
4217 			arc_hdr_destroy(ab);
4218 		} else {
4219 			/*
4220 			 * Invalidate issued or about to be issued
4221 			 * reads, since we may be about to write
4222 			 * over this location.
4223 			 */
4224 			if (HDR_L2_READING(ab)) {
4225 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4226 				ab->b_flags |= ARC_L2_EVICTED;
4227 			}
4228 
4229 			/*
4230 			 * Tell ARC this no longer exists in L2ARC.
4231 			 */
4232 			if (ab->b_l2hdr != NULL) {
4233 				abl2 = ab->b_l2hdr;
4234 				ab->b_l2hdr = NULL;
4235 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4236 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4237 			}
4238 			list_remove(buflist, ab);
4239 
4240 			/*
4241 			 * This may have been leftover after a
4242 			 * failed write.
4243 			 */
4244 			ab->b_flags &= ~ARC_L2_WRITING;
4245 		}
4246 		mutex_exit(hash_lock);
4247 	}
4248 	mutex_exit(&l2arc_buflist_mtx);
4249 
4250 	spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict));
4251 	dev->l2ad_evict = taddr;
4252 }
4253 
4254 /*
4255  * Find and write ARC buffers to the L2ARC device.
4256  *
4257  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4258  * for reading until they have completed writing.
4259  */
4260 static uint64_t
4261 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4262 {
4263 	arc_buf_hdr_t *ab, *ab_prev, *head;
4264 	l2arc_buf_hdr_t *hdrl2;
4265 	list_t *list;
4266 	uint64_t passed_sz, write_sz, buf_sz, headroom;
4267 	void *buf_data;
4268 	kmutex_t *hash_lock, *list_lock;
4269 	boolean_t have_lock, full;
4270 	l2arc_write_callback_t *cb;
4271 	zio_t *pio, *wzio;
4272 	uint64_t guid = spa_guid(spa);
4273 
4274 	ASSERT(dev->l2ad_vdev != NULL);
4275 
4276 	pio = NULL;
4277 	write_sz = 0;
4278 	full = B_FALSE;
4279 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4280 	head->b_flags |= ARC_L2_WRITE_HEAD;
4281 
4282 	/*
4283 	 * Copy buffers for L2ARC writing.
4284 	 */
4285 	mutex_enter(&l2arc_buflist_mtx);
4286 	for (int try = 0; try <= 3; try++) {
4287 		list = l2arc_list_locked(try, &list_lock);
4288 		passed_sz = 0;
4289 
4290 		/*
4291 		 * L2ARC fast warmup.
4292 		 *
4293 		 * Until the ARC is warm and starts to evict, read from the
4294 		 * head of the ARC lists rather than the tail.
4295 		 */
4296 		headroom = target_sz * l2arc_headroom;
4297 		if (arc_warm == B_FALSE)
4298 			ab = list_head(list);
4299 		else
4300 			ab = list_tail(list);
4301 
4302 		for (; ab; ab = ab_prev) {
4303 			if (arc_warm == B_FALSE)
4304 				ab_prev = list_next(list, ab);
4305 			else
4306 				ab_prev = list_prev(list, ab);
4307 
4308 			hash_lock = HDR_LOCK(ab);
4309 			have_lock = MUTEX_HELD(hash_lock);
4310 			if (!have_lock && !mutex_tryenter(hash_lock)) {
4311 				/*
4312 				 * Skip this buffer rather than waiting.
4313 				 */
4314 				continue;
4315 			}
4316 
4317 			passed_sz += ab->b_size;
4318 			if (passed_sz > headroom) {
4319 				/*
4320 				 * Searched too far.
4321 				 */
4322 				mutex_exit(hash_lock);
4323 				break;
4324 			}
4325 
4326 			if (!l2arc_write_eligible(guid, ab)) {
4327 				mutex_exit(hash_lock);
4328 				continue;
4329 			}
4330 
4331 			if ((write_sz + ab->b_size) > target_sz) {
4332 				full = B_TRUE;
4333 				mutex_exit(hash_lock);
4334 				break;
4335 			}
4336 
4337 			if (pio == NULL) {
4338 				/*
4339 				 * Insert a dummy header on the buflist so
4340 				 * l2arc_write_done() can find where the
4341 				 * write buffers begin without searching.
4342 				 */
4343 				list_insert_head(dev->l2ad_buflist, head);
4344 
4345 				cb = kmem_alloc(
4346 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4347 				cb->l2wcb_dev = dev;
4348 				cb->l2wcb_head = head;
4349 				pio = zio_root(spa, l2arc_write_done, cb,
4350 				    ZIO_FLAG_CANFAIL);
4351 			}
4352 
4353 			/*
4354 			 * Create and add a new L2ARC header.
4355 			 */
4356 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4357 			hdrl2->b_dev = dev;
4358 			hdrl2->b_daddr = dev->l2ad_hand;
4359 
4360 			ab->b_flags |= ARC_L2_WRITING;
4361 			ab->b_l2hdr = hdrl2;
4362 			list_insert_head(dev->l2ad_buflist, ab);
4363 			buf_data = ab->b_buf->b_data;
4364 			buf_sz = ab->b_size;
4365 
4366 			/*
4367 			 * Compute and store the buffer cksum before
4368 			 * writing.  On debug the cksum is verified first.
4369 			 */
4370 			arc_cksum_verify(ab->b_buf);
4371 			arc_cksum_compute(ab->b_buf, B_TRUE);
4372 
4373 			mutex_exit(hash_lock);
4374 
4375 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4376 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4377 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4378 			    ZIO_FLAG_CANFAIL, B_FALSE);
4379 
4380 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4381 			    zio_t *, wzio);
4382 			(void) zio_nowait(wzio);
4383 
4384 			/*
4385 			 * Keep the clock hand suitably device-aligned.
4386 			 */
4387 			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4388 
4389 			write_sz += buf_sz;
4390 			dev->l2ad_hand += buf_sz;
4391 		}
4392 
4393 		mutex_exit(list_lock);
4394 
4395 		if (full == B_TRUE)
4396 			break;
4397 	}
4398 	mutex_exit(&l2arc_buflist_mtx);
4399 
4400 	if (pio == NULL) {
4401 		ASSERT3U(write_sz, ==, 0);
4402 		kmem_cache_free(hdr_cache, head);
4403 		return (0);
4404 	}
4405 
4406 	ASSERT3U(write_sz, <=, target_sz);
4407 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4408 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4409 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4410 	spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz);
4411 
4412 	/*
4413 	 * Bump device hand to the device start if it is approaching the end.
4414 	 * l2arc_evict() will already have evicted ahead for this case.
4415 	 */
4416 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4417 		spa_l2cache_space_update(dev->l2ad_vdev, 0,
4418 		    dev->l2ad_end - dev->l2ad_hand);
4419 		dev->l2ad_hand = dev->l2ad_start;
4420 		dev->l2ad_evict = dev->l2ad_start;
4421 		dev->l2ad_first = B_FALSE;
4422 	}
4423 
4424 	dev->l2ad_writing = B_TRUE;
4425 	(void) zio_wait(pio);
4426 	dev->l2ad_writing = B_FALSE;
4427 
4428 	return (write_sz);
4429 }
4430 
4431 /*
4432  * This thread feeds the L2ARC at regular intervals.  This is the beating
4433  * heart of the L2ARC.
4434  */
4435 static void
4436 l2arc_feed_thread(void)
4437 {
4438 	callb_cpr_t cpr;
4439 	l2arc_dev_t *dev;
4440 	spa_t *spa;
4441 	uint64_t size, wrote;
4442 	clock_t begin, next = lbolt;
4443 
4444 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4445 
4446 	mutex_enter(&l2arc_feed_thr_lock);
4447 
4448 	while (l2arc_thread_exit == 0) {
4449 		CALLB_CPR_SAFE_BEGIN(&cpr);
4450 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4451 		    next);
4452 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4453 		next = lbolt + hz;
4454 
4455 		/*
4456 		 * Quick check for L2ARC devices.
4457 		 */
4458 		mutex_enter(&l2arc_dev_mtx);
4459 		if (l2arc_ndev == 0) {
4460 			mutex_exit(&l2arc_dev_mtx);
4461 			continue;
4462 		}
4463 		mutex_exit(&l2arc_dev_mtx);
4464 		begin = lbolt;
4465 
4466 		/*
4467 		 * This selects the next l2arc device to write to, and in
4468 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4469 		 * will return NULL if there are now no l2arc devices or if
4470 		 * they are all faulted.
4471 		 *
4472 		 * If a device is returned, its spa's config lock is also
4473 		 * held to prevent device removal.  l2arc_dev_get_next()
4474 		 * will grab and release l2arc_dev_mtx.
4475 		 */
4476 		if ((dev = l2arc_dev_get_next()) == NULL)
4477 			continue;
4478 
4479 		spa = dev->l2ad_spa;
4480 		ASSERT(spa != NULL);
4481 
4482 		/*
4483 		 * Avoid contributing to memory pressure.
4484 		 */
4485 		if (arc_reclaim_needed()) {
4486 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4487 			spa_config_exit(spa, SCL_L2ARC, dev);
4488 			continue;
4489 		}
4490 
4491 		ARCSTAT_BUMP(arcstat_l2_feeds);
4492 
4493 		size = l2arc_write_size(dev);
4494 
4495 		/*
4496 		 * Evict L2ARC buffers that will be overwritten.
4497 		 */
4498 		l2arc_evict(dev, size, B_FALSE);
4499 
4500 		/*
4501 		 * Write ARC buffers.
4502 		 */
4503 		wrote = l2arc_write_buffers(spa, dev, size);
4504 
4505 		/*
4506 		 * Calculate interval between writes.
4507 		 */
4508 		next = l2arc_write_interval(begin, size, wrote);
4509 		spa_config_exit(spa, SCL_L2ARC, dev);
4510 	}
4511 
4512 	l2arc_thread_exit = 0;
4513 	cv_broadcast(&l2arc_feed_thr_cv);
4514 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4515 	thread_exit();
4516 }
4517 
4518 boolean_t
4519 l2arc_vdev_present(vdev_t *vd)
4520 {
4521 	l2arc_dev_t *dev;
4522 
4523 	mutex_enter(&l2arc_dev_mtx);
4524 	for (dev = list_head(l2arc_dev_list); dev != NULL;
4525 	    dev = list_next(l2arc_dev_list, dev)) {
4526 		if (dev->l2ad_vdev == vd)
4527 			break;
4528 	}
4529 	mutex_exit(&l2arc_dev_mtx);
4530 
4531 	return (dev != NULL);
4532 }
4533 
4534 /*
4535  * Add a vdev for use by the L2ARC.  By this point the spa has already
4536  * validated the vdev and opened it.
4537  */
4538 void
4539 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4540 {
4541 	l2arc_dev_t *adddev;
4542 
4543 	ASSERT(!l2arc_vdev_present(vd));
4544 
4545 	/*
4546 	 * Create a new l2arc device entry.
4547 	 */
4548 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4549 	adddev->l2ad_spa = spa;
4550 	adddev->l2ad_vdev = vd;
4551 	adddev->l2ad_write = l2arc_write_max;
4552 	adddev->l2ad_boost = l2arc_write_boost;
4553 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4554 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4555 	adddev->l2ad_hand = adddev->l2ad_start;
4556 	adddev->l2ad_evict = adddev->l2ad_start;
4557 	adddev->l2ad_first = B_TRUE;
4558 	adddev->l2ad_writing = B_FALSE;
4559 	ASSERT3U(adddev->l2ad_write, >, 0);
4560 
4561 	/*
4562 	 * This is a list of all ARC buffers that are still valid on the
4563 	 * device.
4564 	 */
4565 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4566 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4567 	    offsetof(arc_buf_hdr_t, b_l2node));
4568 
4569 	spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0);
4570 
4571 	/*
4572 	 * Add device to global list
4573 	 */
4574 	mutex_enter(&l2arc_dev_mtx);
4575 	list_insert_head(l2arc_dev_list, adddev);
4576 	atomic_inc_64(&l2arc_ndev);
4577 	mutex_exit(&l2arc_dev_mtx);
4578 }
4579 
4580 /*
4581  * Remove a vdev from the L2ARC.
4582  */
4583 void
4584 l2arc_remove_vdev(vdev_t *vd)
4585 {
4586 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4587 
4588 	/*
4589 	 * Find the device by vdev
4590 	 */
4591 	mutex_enter(&l2arc_dev_mtx);
4592 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4593 		nextdev = list_next(l2arc_dev_list, dev);
4594 		if (vd == dev->l2ad_vdev) {
4595 			remdev = dev;
4596 			break;
4597 		}
4598 	}
4599 	ASSERT(remdev != NULL);
4600 
4601 	/*
4602 	 * Remove device from global list
4603 	 */
4604 	list_remove(l2arc_dev_list, remdev);
4605 	l2arc_dev_last = NULL;		/* may have been invalidated */
4606 	atomic_dec_64(&l2arc_ndev);
4607 	mutex_exit(&l2arc_dev_mtx);
4608 
4609 	/*
4610 	 * Clear all buflists and ARC references.  L2ARC device flush.
4611 	 */
4612 	l2arc_evict(remdev, 0, B_TRUE);
4613 	list_destroy(remdev->l2ad_buflist);
4614 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4615 	kmem_free(remdev, sizeof (l2arc_dev_t));
4616 }
4617 
4618 void
4619 l2arc_init(void)
4620 {
4621 	l2arc_thread_exit = 0;
4622 	l2arc_ndev = 0;
4623 	l2arc_writes_sent = 0;
4624 	l2arc_writes_done = 0;
4625 
4626 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4627 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4628 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4629 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4630 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4631 
4632 	l2arc_dev_list = &L2ARC_dev_list;
4633 	l2arc_free_on_write = &L2ARC_free_on_write;
4634 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4635 	    offsetof(l2arc_dev_t, l2ad_node));
4636 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4637 	    offsetof(l2arc_data_free_t, l2df_list_node));
4638 }
4639 
4640 void
4641 l2arc_fini(void)
4642 {
4643 	/*
4644 	 * This is called from dmu_fini(), which is called from spa_fini();
4645 	 * Because of this, we can assume that all l2arc devices have
4646 	 * already been removed when the pools themselves were removed.
4647 	 */
4648 
4649 	l2arc_do_free_on_write();
4650 
4651 	mutex_destroy(&l2arc_feed_thr_lock);
4652 	cv_destroy(&l2arc_feed_thr_cv);
4653 	mutex_destroy(&l2arc_dev_mtx);
4654 	mutex_destroy(&l2arc_buflist_mtx);
4655 	mutex_destroy(&l2arc_free_on_write_mtx);
4656 
4657 	list_destroy(l2arc_dev_list);
4658 	list_destroy(l2arc_free_on_write);
4659 }
4660 
4661 void
4662 l2arc_start(void)
4663 {
4664 	if (!(spa_mode_global & FWRITE))
4665 		return;
4666 
4667 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4668 	    TS_RUN, minclsyspri);
4669 }
4670 
4671 void
4672 l2arc_stop(void)
4673 {
4674 	if (!(spa_mode_global & FWRITE))
4675 		return;
4676 
4677 	mutex_enter(&l2arc_feed_thr_lock);
4678 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4679 	l2arc_thread_exit = 1;
4680 	while (l2arc_thread_exit != 0)
4681 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4682 	mutex_exit(&l2arc_feed_thr_lock);
4683 }
4684