xref: /titanic_50/usr/src/uts/common/fs/zfs/arc.c (revision c8a7b5101f0bf7200e2de00bf56d93ce653f100b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * DVA-based Adjustable Replacement Cache
30  *
31  * While much of the theory of operation used here is
32  * based on the self-tuning, low overhead replacement cache
33  * presented by Megiddo and Modha at FAST 2003, there are some
34  * significant differences:
35  *
36  * 1. The Megiddo and Modha model assumes any page is evictable.
37  * Pages in its cache cannot be "locked" into memory.  This makes
38  * the eviction algorithm simple: evict the last page in the list.
39  * This also make the performance characteristics easy to reason
40  * about.  Our cache is not so simple.  At any given moment, some
41  * subset of the blocks in the cache are un-evictable because we
42  * have handed out a reference to them.  Blocks are only evictable
43  * when there are no external references active.  This makes
44  * eviction far more problematic:  we choose to evict the evictable
45  * blocks that are the "lowest" in the list.
46  *
47  * There are times when it is not possible to evict the requested
48  * space.  In these circumstances we are unable to adjust the cache
49  * size.  To prevent the cache growing unbounded at these times we
50  * implement a "cache throttle" that slows the flow of new data
51  * into the cache until we can make space available.
52  *
53  * 2. The Megiddo and Modha model assumes a fixed cache size.
54  * Pages are evicted when the cache is full and there is a cache
55  * miss.  Our model has a variable sized cache.  It grows with
56  * high use, but also tries to react to memory pressure from the
57  * operating system: decreasing its size when system memory is
58  * tight.
59  *
60  * 3. The Megiddo and Modha model assumes a fixed page size. All
61  * elements of the cache are therefor exactly the same size.  So
62  * when adjusting the cache size following a cache miss, its simply
63  * a matter of choosing a single page to evict.  In our model, we
64  * have variable sized cache blocks (rangeing from 512 bytes to
65  * 128K bytes).  We therefor choose a set of blocks to evict to make
66  * space for a cache miss that approximates as closely as possible
67  * the space used by the new block.
68  *
69  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70  * by N. Megiddo & D. Modha, FAST 2003
71  */
72 
73 /*
74  * The locking model:
75  *
76  * A new reference to a cache buffer can be obtained in two
77  * ways: 1) via a hash table lookup using the DVA as a key,
78  * or 2) via one of the ARC lists.  The arc_read() interface
79  * uses method 1, while the internal arc algorithms for
80  * adjusting the cache use method 2.  We therefor provide two
81  * types of locks: 1) the hash table lock array, and 2) the
82  * arc list locks.
83  *
84  * Buffers do not have their own mutexs, rather they rely on the
85  * hash table mutexs for the bulk of their protection (i.e. most
86  * fields in the arc_buf_hdr_t are protected by these mutexs).
87  *
88  * buf_hash_find() returns the appropriate mutex (held) when it
89  * locates the requested buffer in the hash table.  It returns
90  * NULL for the mutex if the buffer was not in the table.
91  *
92  * buf_hash_remove() expects the appropriate hash mutex to be
93  * already held before it is invoked.
94  *
95  * Each arc state also has a mutex which is used to protect the
96  * buffer list associated with the state.  When attempting to
97  * obtain a hash table lock while holding an arc list lock you
98  * must use: mutex_tryenter() to avoid deadlock.  Also note that
99  * the active state mutex must be held before the ghost state mutex.
100  *
101  * Arc buffers may have an associated eviction callback function.
102  * This function will be invoked prior to removing the buffer (e.g.
103  * in arc_do_user_evicts()).  Note however that the data associated
104  * with the buffer may be evicted prior to the callback.  The callback
105  * must be made with *no locks held* (to prevent deadlock).  Additionally,
106  * the users of callbacks must ensure that their private data is
107  * protected from simultaneous callbacks from arc_buf_evict()
108  * and arc_do_user_evicts().
109  *
110  * Note that the majority of the performance stats are manipulated
111  * with atomic operations.
112  *
113  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
114  *
115  *	- L2ARC buflist creation
116  *	- L2ARC buflist eviction
117  *	- L2ARC write completion, which walks L2ARC buflists
118  *	- ARC header destruction, as it removes from L2ARC buflists
119  *	- ARC header release, as it removes from L2ARC buflists
120  */
121 
122 #include <sys/spa.h>
123 #include <sys/zio.h>
124 #include <sys/zio_checksum.h>
125 #include <sys/zfs_context.h>
126 #include <sys/arc.h>
127 #include <sys/refcount.h>
128 #include <sys/vdev.h>
129 #ifdef _KERNEL
130 #include <sys/vmsystm.h>
131 #include <vm/anon.h>
132 #include <sys/fs/swapnode.h>
133 #include <sys/dnlc.h>
134 #endif
135 #include <sys/callb.h>
136 #include <sys/kstat.h>
137 
138 static kmutex_t		arc_reclaim_thr_lock;
139 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
140 static uint8_t		arc_thread_exit;
141 
142 extern int zfs_write_limit_shift;
143 extern uint64_t zfs_write_limit_max;
144 extern uint64_t zfs_write_limit_inflated;
145 
146 #define	ARC_REDUCE_DNLC_PERCENT	3
147 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
148 
149 typedef enum arc_reclaim_strategy {
150 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
151 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
152 } arc_reclaim_strategy_t;
153 
154 /* number of seconds before growing cache again */
155 static int		arc_grow_retry = 60;
156 
157 /*
158  * minimum lifespan of a prefetch block in clock ticks
159  * (initialized in arc_init())
160  */
161 static int		arc_min_prefetch_lifespan;
162 
163 static int arc_dead;
164 
165 /*
166  * These tunables are for performance analysis.
167  */
168 uint64_t zfs_arc_max;
169 uint64_t zfs_arc_min;
170 uint64_t zfs_arc_meta_limit = 0;
171 
172 /*
173  * Note that buffers can be in one of 6 states:
174  *	ARC_anon	- anonymous (discussed below)
175  *	ARC_mru		- recently used, currently cached
176  *	ARC_mru_ghost	- recentely used, no longer in cache
177  *	ARC_mfu		- frequently used, currently cached
178  *	ARC_mfu_ghost	- frequently used, no longer in cache
179  *	ARC_l2c_only	- exists in L2ARC but not other states
180  * When there are no active references to the buffer, they are
181  * are linked onto a list in one of these arc states.  These are
182  * the only buffers that can be evicted or deleted.  Within each
183  * state there are multiple lists, one for meta-data and one for
184  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
185  * etc.) is tracked separately so that it can be managed more
186  * explicitly: favored over data, limited explicitly.
187  *
188  * Anonymous buffers are buffers that are not associated with
189  * a DVA.  These are buffers that hold dirty block copies
190  * before they are written to stable storage.  By definition,
191  * they are "ref'd" and are considered part of arc_mru
192  * that cannot be freed.  Generally, they will aquire a DVA
193  * as they are written and migrate onto the arc_mru list.
194  *
195  * The ARC_l2c_only state is for buffers that are in the second
196  * level ARC but no longer in any of the ARC_m* lists.  The second
197  * level ARC itself may also contain buffers that are in any of
198  * the ARC_m* states - meaning that a buffer can exist in two
199  * places.  The reason for the ARC_l2c_only state is to keep the
200  * buffer header in the hash table, so that reads that hit the
201  * second level ARC benefit from these fast lookups.
202  */
203 
204 typedef struct arc_state {
205 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
206 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
207 	uint64_t arcs_size;	/* total amount of data in this state */
208 	kmutex_t arcs_mtx;
209 } arc_state_t;
210 
211 /* The 6 states: */
212 static arc_state_t ARC_anon;
213 static arc_state_t ARC_mru;
214 static arc_state_t ARC_mru_ghost;
215 static arc_state_t ARC_mfu;
216 static arc_state_t ARC_mfu_ghost;
217 static arc_state_t ARC_l2c_only;
218 
219 typedef struct arc_stats {
220 	kstat_named_t arcstat_hits;
221 	kstat_named_t arcstat_misses;
222 	kstat_named_t arcstat_demand_data_hits;
223 	kstat_named_t arcstat_demand_data_misses;
224 	kstat_named_t arcstat_demand_metadata_hits;
225 	kstat_named_t arcstat_demand_metadata_misses;
226 	kstat_named_t arcstat_prefetch_data_hits;
227 	kstat_named_t arcstat_prefetch_data_misses;
228 	kstat_named_t arcstat_prefetch_metadata_hits;
229 	kstat_named_t arcstat_prefetch_metadata_misses;
230 	kstat_named_t arcstat_mru_hits;
231 	kstat_named_t arcstat_mru_ghost_hits;
232 	kstat_named_t arcstat_mfu_hits;
233 	kstat_named_t arcstat_mfu_ghost_hits;
234 	kstat_named_t arcstat_deleted;
235 	kstat_named_t arcstat_recycle_miss;
236 	kstat_named_t arcstat_mutex_miss;
237 	kstat_named_t arcstat_evict_skip;
238 	kstat_named_t arcstat_hash_elements;
239 	kstat_named_t arcstat_hash_elements_max;
240 	kstat_named_t arcstat_hash_collisions;
241 	kstat_named_t arcstat_hash_chains;
242 	kstat_named_t arcstat_hash_chain_max;
243 	kstat_named_t arcstat_p;
244 	kstat_named_t arcstat_c;
245 	kstat_named_t arcstat_c_min;
246 	kstat_named_t arcstat_c_max;
247 	kstat_named_t arcstat_size;
248 	kstat_named_t arcstat_hdr_size;
249 	kstat_named_t arcstat_l2_hits;
250 	kstat_named_t arcstat_l2_misses;
251 	kstat_named_t arcstat_l2_feeds;
252 	kstat_named_t arcstat_l2_rw_clash;
253 	kstat_named_t arcstat_l2_writes_sent;
254 	kstat_named_t arcstat_l2_writes_done;
255 	kstat_named_t arcstat_l2_writes_error;
256 	kstat_named_t arcstat_l2_writes_hdr_miss;
257 	kstat_named_t arcstat_l2_evict_lock_retry;
258 	kstat_named_t arcstat_l2_evict_reading;
259 	kstat_named_t arcstat_l2_free_on_write;
260 	kstat_named_t arcstat_l2_abort_lowmem;
261 	kstat_named_t arcstat_l2_cksum_bad;
262 	kstat_named_t arcstat_l2_io_error;
263 	kstat_named_t arcstat_l2_size;
264 	kstat_named_t arcstat_l2_hdr_size;
265 	kstat_named_t arcstat_memory_throttle_count;
266 } arc_stats_t;
267 
268 static arc_stats_t arc_stats = {
269 	{ "hits",			KSTAT_DATA_UINT64 },
270 	{ "misses",			KSTAT_DATA_UINT64 },
271 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
272 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
273 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
274 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
275 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
276 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
277 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
278 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
279 	{ "mru_hits",			KSTAT_DATA_UINT64 },
280 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
281 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
282 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
283 	{ "deleted",			KSTAT_DATA_UINT64 },
284 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
285 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
286 	{ "evict_skip",			KSTAT_DATA_UINT64 },
287 	{ "hash_elements",		KSTAT_DATA_UINT64 },
288 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
289 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
290 	{ "hash_chains",		KSTAT_DATA_UINT64 },
291 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
292 	{ "p",				KSTAT_DATA_UINT64 },
293 	{ "c",				KSTAT_DATA_UINT64 },
294 	{ "c_min",			KSTAT_DATA_UINT64 },
295 	{ "c_max",			KSTAT_DATA_UINT64 },
296 	{ "size",			KSTAT_DATA_UINT64 },
297 	{ "hdr_size",			KSTAT_DATA_UINT64 },
298 	{ "l2_hits",			KSTAT_DATA_UINT64 },
299 	{ "l2_misses",			KSTAT_DATA_UINT64 },
300 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
301 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
302 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
303 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
304 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
305 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
306 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
307 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
308 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
309 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
310 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
311 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
312 	{ "l2_size",			KSTAT_DATA_UINT64 },
313 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
314 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 }
315 };
316 
317 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
318 
319 #define	ARCSTAT_INCR(stat, val) \
320 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
321 
322 #define	ARCSTAT_BUMP(stat) 	ARCSTAT_INCR(stat, 1)
323 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
324 
325 #define	ARCSTAT_MAX(stat, val) {					\
326 	uint64_t m;							\
327 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
328 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
329 		continue;						\
330 }
331 
332 #define	ARCSTAT_MAXSTAT(stat) \
333 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
334 
335 /*
336  * We define a macro to allow ARC hits/misses to be easily broken down by
337  * two separate conditions, giving a total of four different subtypes for
338  * each of hits and misses (so eight statistics total).
339  */
340 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
341 	if (cond1) {							\
342 		if (cond2) {						\
343 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
344 		} else {						\
345 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
346 		}							\
347 	} else {							\
348 		if (cond2) {						\
349 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
350 		} else {						\
351 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
352 		}							\
353 	}
354 
355 kstat_t			*arc_ksp;
356 static arc_state_t 	*arc_anon;
357 static arc_state_t	*arc_mru;
358 static arc_state_t	*arc_mru_ghost;
359 static arc_state_t	*arc_mfu;
360 static arc_state_t	*arc_mfu_ghost;
361 static arc_state_t	*arc_l2c_only;
362 
363 /*
364  * There are several ARC variables that are critical to export as kstats --
365  * but we don't want to have to grovel around in the kstat whenever we wish to
366  * manipulate them.  For these variables, we therefore define them to be in
367  * terms of the statistic variable.  This assures that we are not introducing
368  * the possibility of inconsistency by having shadow copies of the variables,
369  * while still allowing the code to be readable.
370  */
371 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
372 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
373 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
374 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
375 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
376 
377 static int		arc_no_grow;	/* Don't try to grow cache size */
378 static uint64_t		arc_tempreserve;
379 static uint64_t		arc_meta_used;
380 static uint64_t		arc_meta_limit;
381 static uint64_t		arc_meta_max = 0;
382 
383 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
384 
385 typedef struct arc_callback arc_callback_t;
386 
387 struct arc_callback {
388 	void			*acb_private;
389 	arc_done_func_t		*acb_done;
390 	arc_byteswap_func_t	*acb_byteswap;
391 	arc_buf_t		*acb_buf;
392 	zio_t			*acb_zio_dummy;
393 	arc_callback_t		*acb_next;
394 };
395 
396 typedef struct arc_write_callback arc_write_callback_t;
397 
398 struct arc_write_callback {
399 	void		*awcb_private;
400 	arc_done_func_t	*awcb_ready;
401 	arc_done_func_t	*awcb_done;
402 	arc_buf_t	*awcb_buf;
403 };
404 
405 struct arc_buf_hdr {
406 	/* protected by hash lock */
407 	dva_t			b_dva;
408 	uint64_t		b_birth;
409 	uint64_t		b_cksum0;
410 
411 	kmutex_t		b_freeze_lock;
412 	zio_cksum_t		*b_freeze_cksum;
413 
414 	arc_buf_hdr_t		*b_hash_next;
415 	arc_buf_t		*b_buf;
416 	uint32_t		b_flags;
417 	uint32_t		b_datacnt;
418 
419 	arc_callback_t		*b_acb;
420 	kcondvar_t		b_cv;
421 
422 	/* immutable */
423 	arc_buf_contents_t	b_type;
424 	uint64_t		b_size;
425 	spa_t			*b_spa;
426 
427 	/* protected by arc state mutex */
428 	arc_state_t		*b_state;
429 	list_node_t		b_arc_node;
430 
431 	/* updated atomically */
432 	clock_t			b_arc_access;
433 
434 	/* self protecting */
435 	refcount_t		b_refcnt;
436 
437 	l2arc_buf_hdr_t		*b_l2hdr;
438 	list_node_t		b_l2node;
439 };
440 
441 static arc_buf_t *arc_eviction_list;
442 static kmutex_t arc_eviction_mtx;
443 static arc_buf_hdr_t arc_eviction_hdr;
444 static void arc_get_data_buf(arc_buf_t *buf);
445 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
446 static int arc_evict_needed(arc_buf_contents_t type);
447 static void arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes);
448 
449 #define	GHOST_STATE(state)	\
450 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
451 	(state) == arc_l2c_only)
452 
453 /*
454  * Private ARC flags.  These flags are private ARC only flags that will show up
455  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
456  * be passed in as arc_flags in things like arc_read.  However, these flags
457  * should never be passed and should only be set by ARC code.  When adding new
458  * public flags, make sure not to smash the private ones.
459  */
460 
461 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
462 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
463 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
464 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
465 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
466 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
467 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
468 #define	ARC_DONT_L2CACHE	(1 << 16)	/* originated by prefetch */
469 #define	ARC_L2_READING		(1 << 17)	/* L2ARC read in progress */
470 #define	ARC_L2_WRITING		(1 << 18)	/* L2ARC write in progress */
471 #define	ARC_L2_EVICTED		(1 << 19)	/* evicted during I/O */
472 #define	ARC_L2_WRITE_HEAD	(1 << 20)	/* head of write list */
473 
474 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
475 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
476 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
477 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
478 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
479 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
480 #define	HDR_DONT_L2CACHE(hdr)	((hdr)->b_flags & ARC_DONT_L2CACHE)
481 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_L2_READING)
482 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
483 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
484 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
485 
486 /*
487  * Other sizes
488  */
489 
490 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
491 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
492 
493 /*
494  * Hash table routines
495  */
496 
497 #define	HT_LOCK_PAD	64
498 
499 struct ht_lock {
500 	kmutex_t	ht_lock;
501 #ifdef _KERNEL
502 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
503 #endif
504 };
505 
506 #define	BUF_LOCKS 256
507 typedef struct buf_hash_table {
508 	uint64_t ht_mask;
509 	arc_buf_hdr_t **ht_table;
510 	struct ht_lock ht_locks[BUF_LOCKS];
511 } buf_hash_table_t;
512 
513 static buf_hash_table_t buf_hash_table;
514 
515 #define	BUF_HASH_INDEX(spa, dva, birth) \
516 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
517 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
518 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
519 #define	HDR_LOCK(buf) \
520 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
521 
522 uint64_t zfs_crc64_table[256];
523 
524 /*
525  * Level 2 ARC
526  */
527 
528 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
529 #define	L2ARC_HEADROOM		4		/* num of writes */
530 #define	L2ARC_FEED_DELAY	180		/* starting grace */
531 #define	L2ARC_FEED_SECS		1		/* caching interval */
532 
533 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
534 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
535 
536 /*
537  * L2ARC Performance Tunables
538  */
539 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
540 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
541 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
542 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
543 
544 /*
545  * L2ARC Internals
546  */
547 typedef struct l2arc_dev {
548 	vdev_t			*l2ad_vdev;	/* vdev */
549 	spa_t			*l2ad_spa;	/* spa */
550 	uint64_t		l2ad_hand;	/* next write location */
551 	uint64_t		l2ad_write;	/* desired write size, bytes */
552 	uint64_t		l2ad_start;	/* first addr on device */
553 	uint64_t		l2ad_end;	/* last addr on device */
554 	uint64_t		l2ad_evict;	/* last addr eviction reached */
555 	boolean_t		l2ad_first;	/* first sweep through */
556 	list_t			*l2ad_buflist;	/* buffer list */
557 	list_node_t		l2ad_node;	/* device list node */
558 } l2arc_dev_t;
559 
560 static list_t L2ARC_dev_list;			/* device list */
561 static list_t *l2arc_dev_list;			/* device list pointer */
562 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
563 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
564 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
565 static list_t L2ARC_free_on_write;		/* free after write buf list */
566 static list_t *l2arc_free_on_write;		/* free after write list ptr */
567 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
568 static uint64_t l2arc_ndev;			/* number of devices */
569 
570 typedef struct l2arc_read_callback {
571 	arc_buf_t	*l2rcb_buf;		/* read buffer */
572 	spa_t		*l2rcb_spa;		/* spa */
573 	blkptr_t	l2rcb_bp;		/* original blkptr */
574 	zbookmark_t	l2rcb_zb;		/* original bookmark */
575 	int		l2rcb_flags;		/* original flags */
576 } l2arc_read_callback_t;
577 
578 typedef struct l2arc_write_callback {
579 	l2arc_dev_t	*l2wcb_dev;		/* device info */
580 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
581 } l2arc_write_callback_t;
582 
583 struct l2arc_buf_hdr {
584 	/* protected by arc_buf_hdr  mutex */
585 	l2arc_dev_t	*b_dev;			/* L2ARC device */
586 	daddr_t		b_daddr;		/* disk address, offset byte */
587 };
588 
589 typedef struct l2arc_data_free {
590 	/* protected by l2arc_free_on_write_mtx */
591 	void		*l2df_data;
592 	size_t		l2df_size;
593 	void		(*l2df_func)(void *, size_t);
594 	list_node_t	l2df_list_node;
595 } l2arc_data_free_t;
596 
597 static kmutex_t l2arc_feed_thr_lock;
598 static kcondvar_t l2arc_feed_thr_cv;
599 static uint8_t l2arc_thread_exit;
600 
601 static void l2arc_read_done(zio_t *zio);
602 static void l2arc_hdr_stat_add(void);
603 static void l2arc_hdr_stat_remove(void);
604 
605 static uint64_t
606 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth)
607 {
608 	uintptr_t spav = (uintptr_t)spa;
609 	uint8_t *vdva = (uint8_t *)dva;
610 	uint64_t crc = -1ULL;
611 	int i;
612 
613 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
614 
615 	for (i = 0; i < sizeof (dva_t); i++)
616 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
617 
618 	crc ^= (spav>>8) ^ birth;
619 
620 	return (crc);
621 }
622 
623 #define	BUF_EMPTY(buf)						\
624 	((buf)->b_dva.dva_word[0] == 0 &&			\
625 	(buf)->b_dva.dva_word[1] == 0 &&			\
626 	(buf)->b_birth == 0)
627 
628 #define	BUF_EQUAL(spa, dva, birth, buf)				\
629 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
630 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
631 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
632 
633 static arc_buf_hdr_t *
634 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp)
635 {
636 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
637 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
638 	arc_buf_hdr_t *buf;
639 
640 	mutex_enter(hash_lock);
641 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
642 	    buf = buf->b_hash_next) {
643 		if (BUF_EQUAL(spa, dva, birth, buf)) {
644 			*lockp = hash_lock;
645 			return (buf);
646 		}
647 	}
648 	mutex_exit(hash_lock);
649 	*lockp = NULL;
650 	return (NULL);
651 }
652 
653 /*
654  * Insert an entry into the hash table.  If there is already an element
655  * equal to elem in the hash table, then the already existing element
656  * will be returned and the new element will not be inserted.
657  * Otherwise returns NULL.
658  */
659 static arc_buf_hdr_t *
660 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
661 {
662 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
663 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
664 	arc_buf_hdr_t *fbuf;
665 	uint32_t i;
666 
667 	ASSERT(!HDR_IN_HASH_TABLE(buf));
668 	*lockp = hash_lock;
669 	mutex_enter(hash_lock);
670 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
671 	    fbuf = fbuf->b_hash_next, i++) {
672 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
673 			return (fbuf);
674 	}
675 
676 	buf->b_hash_next = buf_hash_table.ht_table[idx];
677 	buf_hash_table.ht_table[idx] = buf;
678 	buf->b_flags |= ARC_IN_HASH_TABLE;
679 
680 	/* collect some hash table performance data */
681 	if (i > 0) {
682 		ARCSTAT_BUMP(arcstat_hash_collisions);
683 		if (i == 1)
684 			ARCSTAT_BUMP(arcstat_hash_chains);
685 
686 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
687 	}
688 
689 	ARCSTAT_BUMP(arcstat_hash_elements);
690 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
691 
692 	return (NULL);
693 }
694 
695 static void
696 buf_hash_remove(arc_buf_hdr_t *buf)
697 {
698 	arc_buf_hdr_t *fbuf, **bufp;
699 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
700 
701 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
702 	ASSERT(HDR_IN_HASH_TABLE(buf));
703 
704 	bufp = &buf_hash_table.ht_table[idx];
705 	while ((fbuf = *bufp) != buf) {
706 		ASSERT(fbuf != NULL);
707 		bufp = &fbuf->b_hash_next;
708 	}
709 	*bufp = buf->b_hash_next;
710 	buf->b_hash_next = NULL;
711 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
712 
713 	/* collect some hash table performance data */
714 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
715 
716 	if (buf_hash_table.ht_table[idx] &&
717 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
718 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
719 }
720 
721 /*
722  * Global data structures and functions for the buf kmem cache.
723  */
724 static kmem_cache_t *hdr_cache;
725 static kmem_cache_t *buf_cache;
726 
727 static void
728 buf_fini(void)
729 {
730 	int i;
731 
732 	kmem_free(buf_hash_table.ht_table,
733 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
734 	for (i = 0; i < BUF_LOCKS; i++)
735 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
736 	kmem_cache_destroy(hdr_cache);
737 	kmem_cache_destroy(buf_cache);
738 }
739 
740 /*
741  * Constructor callback - called when the cache is empty
742  * and a new buf is requested.
743  */
744 /* ARGSUSED */
745 static int
746 hdr_cons(void *vbuf, void *unused, int kmflag)
747 {
748 	arc_buf_hdr_t *buf = vbuf;
749 
750 	bzero(buf, sizeof (arc_buf_hdr_t));
751 	refcount_create(&buf->b_refcnt);
752 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
753 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
754 
755 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
756 	return (0);
757 }
758 
759 /*
760  * Destructor callback - called when a cached buf is
761  * no longer required.
762  */
763 /* ARGSUSED */
764 static void
765 hdr_dest(void *vbuf, void *unused)
766 {
767 	arc_buf_hdr_t *buf = vbuf;
768 
769 	refcount_destroy(&buf->b_refcnt);
770 	cv_destroy(&buf->b_cv);
771 	mutex_destroy(&buf->b_freeze_lock);
772 
773 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
774 }
775 
776 /*
777  * Reclaim callback -- invoked when memory is low.
778  */
779 /* ARGSUSED */
780 static void
781 hdr_recl(void *unused)
782 {
783 	dprintf("hdr_recl called\n");
784 	/*
785 	 * umem calls the reclaim func when we destroy the buf cache,
786 	 * which is after we do arc_fini().
787 	 */
788 	if (!arc_dead)
789 		cv_signal(&arc_reclaim_thr_cv);
790 }
791 
792 static void
793 buf_init(void)
794 {
795 	uint64_t *ct;
796 	uint64_t hsize = 1ULL << 12;
797 	int i, j;
798 
799 	/*
800 	 * The hash table is big enough to fill all of physical memory
801 	 * with an average 64K block size.  The table will take up
802 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
803 	 */
804 	while (hsize * 65536 < physmem * PAGESIZE)
805 		hsize <<= 1;
806 retry:
807 	buf_hash_table.ht_mask = hsize - 1;
808 	buf_hash_table.ht_table =
809 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
810 	if (buf_hash_table.ht_table == NULL) {
811 		ASSERT(hsize > (1ULL << 8));
812 		hsize >>= 1;
813 		goto retry;
814 	}
815 
816 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
817 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
818 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
819 	    0, NULL, NULL, NULL, NULL, NULL, 0);
820 
821 	for (i = 0; i < 256; i++)
822 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
823 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
824 
825 	for (i = 0; i < BUF_LOCKS; i++) {
826 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
827 		    NULL, MUTEX_DEFAULT, NULL);
828 	}
829 }
830 
831 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
832 
833 static void
834 arc_cksum_verify(arc_buf_t *buf)
835 {
836 	zio_cksum_t zc;
837 
838 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
839 		return;
840 
841 	mutex_enter(&buf->b_hdr->b_freeze_lock);
842 	if (buf->b_hdr->b_freeze_cksum == NULL ||
843 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
844 		mutex_exit(&buf->b_hdr->b_freeze_lock);
845 		return;
846 	}
847 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
848 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
849 		panic("buffer modified while frozen!");
850 	mutex_exit(&buf->b_hdr->b_freeze_lock);
851 }
852 
853 static int
854 arc_cksum_equal(arc_buf_t *buf)
855 {
856 	zio_cksum_t zc;
857 	int equal;
858 
859 	mutex_enter(&buf->b_hdr->b_freeze_lock);
860 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
861 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
862 	mutex_exit(&buf->b_hdr->b_freeze_lock);
863 
864 	return (equal);
865 }
866 
867 static void
868 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
869 {
870 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
871 		return;
872 
873 	mutex_enter(&buf->b_hdr->b_freeze_lock);
874 	if (buf->b_hdr->b_freeze_cksum != NULL) {
875 		mutex_exit(&buf->b_hdr->b_freeze_lock);
876 		return;
877 	}
878 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
879 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
880 	    buf->b_hdr->b_freeze_cksum);
881 	mutex_exit(&buf->b_hdr->b_freeze_lock);
882 }
883 
884 void
885 arc_buf_thaw(arc_buf_t *buf)
886 {
887 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
888 		if (buf->b_hdr->b_state != arc_anon)
889 			panic("modifying non-anon buffer!");
890 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
891 			panic("modifying buffer while i/o in progress!");
892 		arc_cksum_verify(buf);
893 	}
894 
895 	mutex_enter(&buf->b_hdr->b_freeze_lock);
896 	if (buf->b_hdr->b_freeze_cksum != NULL) {
897 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
898 		buf->b_hdr->b_freeze_cksum = NULL;
899 	}
900 	mutex_exit(&buf->b_hdr->b_freeze_lock);
901 }
902 
903 void
904 arc_buf_freeze(arc_buf_t *buf)
905 {
906 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
907 		return;
908 
909 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
910 	    buf->b_hdr->b_state == arc_anon);
911 	arc_cksum_compute(buf, B_FALSE);
912 }
913 
914 static void
915 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
916 {
917 	ASSERT(MUTEX_HELD(hash_lock));
918 
919 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
920 	    (ab->b_state != arc_anon)) {
921 		uint64_t delta = ab->b_size * ab->b_datacnt;
922 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
923 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
924 
925 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
926 		mutex_enter(&ab->b_state->arcs_mtx);
927 		ASSERT(list_link_active(&ab->b_arc_node));
928 		list_remove(list, ab);
929 		if (GHOST_STATE(ab->b_state)) {
930 			ASSERT3U(ab->b_datacnt, ==, 0);
931 			ASSERT3P(ab->b_buf, ==, NULL);
932 			delta = ab->b_size;
933 		}
934 		ASSERT(delta > 0);
935 		ASSERT3U(*size, >=, delta);
936 		atomic_add_64(size, -delta);
937 		mutex_exit(&ab->b_state->arcs_mtx);
938 		/* remove the prefetch flag is we get a reference */
939 		if (ab->b_flags & ARC_PREFETCH)
940 			ab->b_flags &= ~ARC_PREFETCH;
941 	}
942 }
943 
944 static int
945 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
946 {
947 	int cnt;
948 	arc_state_t *state = ab->b_state;
949 
950 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
951 	ASSERT(!GHOST_STATE(state));
952 
953 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
954 	    (state != arc_anon)) {
955 		uint64_t *size = &state->arcs_lsize[ab->b_type];
956 
957 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
958 		mutex_enter(&state->arcs_mtx);
959 		ASSERT(!list_link_active(&ab->b_arc_node));
960 		list_insert_head(&state->arcs_list[ab->b_type], ab);
961 		ASSERT(ab->b_datacnt > 0);
962 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
963 		mutex_exit(&state->arcs_mtx);
964 	}
965 	return (cnt);
966 }
967 
968 /*
969  * Move the supplied buffer to the indicated state.  The mutex
970  * for the buffer must be held by the caller.
971  */
972 static void
973 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
974 {
975 	arc_state_t *old_state = ab->b_state;
976 	int64_t refcnt = refcount_count(&ab->b_refcnt);
977 	uint64_t from_delta, to_delta;
978 
979 	ASSERT(MUTEX_HELD(hash_lock));
980 	ASSERT(new_state != old_state);
981 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
982 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
983 
984 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
985 
986 	/*
987 	 * If this buffer is evictable, transfer it from the
988 	 * old state list to the new state list.
989 	 */
990 	if (refcnt == 0) {
991 		if (old_state != arc_anon) {
992 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
993 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
994 
995 			if (use_mutex)
996 				mutex_enter(&old_state->arcs_mtx);
997 
998 			ASSERT(list_link_active(&ab->b_arc_node));
999 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1000 
1001 			/*
1002 			 * If prefetching out of the ghost cache,
1003 			 * we will have a non-null datacnt.
1004 			 */
1005 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1006 				/* ghost elements have a ghost size */
1007 				ASSERT(ab->b_buf == NULL);
1008 				from_delta = ab->b_size;
1009 			}
1010 			ASSERT3U(*size, >=, from_delta);
1011 			atomic_add_64(size, -from_delta);
1012 
1013 			if (use_mutex)
1014 				mutex_exit(&old_state->arcs_mtx);
1015 		}
1016 		if (new_state != arc_anon) {
1017 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1018 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1019 
1020 			if (use_mutex)
1021 				mutex_enter(&new_state->arcs_mtx);
1022 
1023 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1024 
1025 			/* ghost elements have a ghost size */
1026 			if (GHOST_STATE(new_state)) {
1027 				ASSERT(ab->b_datacnt == 0);
1028 				ASSERT(ab->b_buf == NULL);
1029 				to_delta = ab->b_size;
1030 			}
1031 			atomic_add_64(size, to_delta);
1032 
1033 			if (use_mutex)
1034 				mutex_exit(&new_state->arcs_mtx);
1035 		}
1036 	}
1037 
1038 	ASSERT(!BUF_EMPTY(ab));
1039 	if (new_state == arc_anon) {
1040 		buf_hash_remove(ab);
1041 	}
1042 
1043 	/* adjust state sizes */
1044 	if (to_delta)
1045 		atomic_add_64(&new_state->arcs_size, to_delta);
1046 	if (from_delta) {
1047 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1048 		atomic_add_64(&old_state->arcs_size, -from_delta);
1049 	}
1050 	ab->b_state = new_state;
1051 
1052 	/* adjust l2arc hdr stats */
1053 	if (new_state == arc_l2c_only)
1054 		l2arc_hdr_stat_add();
1055 	else if (old_state == arc_l2c_only)
1056 		l2arc_hdr_stat_remove();
1057 }
1058 
1059 void
1060 arc_space_consume(uint64_t space)
1061 {
1062 	atomic_add_64(&arc_meta_used, space);
1063 	atomic_add_64(&arc_size, space);
1064 }
1065 
1066 void
1067 arc_space_return(uint64_t space)
1068 {
1069 	ASSERT(arc_meta_used >= space);
1070 	if (arc_meta_max < arc_meta_used)
1071 		arc_meta_max = arc_meta_used;
1072 	atomic_add_64(&arc_meta_used, -space);
1073 	ASSERT(arc_size >= space);
1074 	atomic_add_64(&arc_size, -space);
1075 }
1076 
1077 void *
1078 arc_data_buf_alloc(uint64_t size)
1079 {
1080 	if (arc_evict_needed(ARC_BUFC_DATA))
1081 		cv_signal(&arc_reclaim_thr_cv);
1082 	atomic_add_64(&arc_size, size);
1083 	return (zio_data_buf_alloc(size));
1084 }
1085 
1086 void
1087 arc_data_buf_free(void *buf, uint64_t size)
1088 {
1089 	zio_data_buf_free(buf, size);
1090 	ASSERT(arc_size >= size);
1091 	atomic_add_64(&arc_size, -size);
1092 }
1093 
1094 arc_buf_t *
1095 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1096 {
1097 	arc_buf_hdr_t *hdr;
1098 	arc_buf_t *buf;
1099 
1100 	ASSERT3U(size, >, 0);
1101 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1102 	ASSERT(BUF_EMPTY(hdr));
1103 	hdr->b_size = size;
1104 	hdr->b_type = type;
1105 	hdr->b_spa = spa;
1106 	hdr->b_state = arc_anon;
1107 	hdr->b_arc_access = 0;
1108 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1109 	buf->b_hdr = hdr;
1110 	buf->b_data = NULL;
1111 	buf->b_efunc = NULL;
1112 	buf->b_private = NULL;
1113 	buf->b_next = NULL;
1114 	hdr->b_buf = buf;
1115 	arc_get_data_buf(buf);
1116 	hdr->b_datacnt = 1;
1117 	hdr->b_flags = 0;
1118 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1119 	(void) refcount_add(&hdr->b_refcnt, tag);
1120 
1121 	return (buf);
1122 }
1123 
1124 static arc_buf_t *
1125 arc_buf_clone(arc_buf_t *from)
1126 {
1127 	arc_buf_t *buf;
1128 	arc_buf_hdr_t *hdr = from->b_hdr;
1129 	uint64_t size = hdr->b_size;
1130 
1131 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1132 	buf->b_hdr = hdr;
1133 	buf->b_data = NULL;
1134 	buf->b_efunc = NULL;
1135 	buf->b_private = NULL;
1136 	buf->b_next = hdr->b_buf;
1137 	hdr->b_buf = buf;
1138 	arc_get_data_buf(buf);
1139 	bcopy(from->b_data, buf->b_data, size);
1140 	hdr->b_datacnt += 1;
1141 	return (buf);
1142 }
1143 
1144 void
1145 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1146 {
1147 	arc_buf_hdr_t *hdr;
1148 	kmutex_t *hash_lock;
1149 
1150 	/*
1151 	 * Check to see if this buffer is currently being evicted via
1152 	 * arc_do_user_evicts().
1153 	 */
1154 	mutex_enter(&arc_eviction_mtx);
1155 	hdr = buf->b_hdr;
1156 	if (hdr == NULL) {
1157 		mutex_exit(&arc_eviction_mtx);
1158 		return;
1159 	}
1160 	hash_lock = HDR_LOCK(hdr);
1161 	mutex_exit(&arc_eviction_mtx);
1162 
1163 	mutex_enter(hash_lock);
1164 	if (buf->b_data == NULL) {
1165 		/*
1166 		 * This buffer is evicted.
1167 		 */
1168 		mutex_exit(hash_lock);
1169 		return;
1170 	}
1171 
1172 	ASSERT(buf->b_hdr == hdr);
1173 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1174 	add_reference(hdr, hash_lock, tag);
1175 	arc_access(hdr, hash_lock);
1176 	mutex_exit(hash_lock);
1177 	ARCSTAT_BUMP(arcstat_hits);
1178 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1179 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1180 	    data, metadata, hits);
1181 }
1182 
1183 /*
1184  * Free the arc data buffer.  If it is an l2arc write in progress,
1185  * the buffer is placed on l2arc_free_on_write to be freed later.
1186  */
1187 static void
1188 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1189     void *data, size_t size)
1190 {
1191 	if (HDR_L2_WRITING(hdr)) {
1192 		l2arc_data_free_t *df;
1193 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1194 		df->l2df_data = data;
1195 		df->l2df_size = size;
1196 		df->l2df_func = free_func;
1197 		mutex_enter(&l2arc_free_on_write_mtx);
1198 		list_insert_head(l2arc_free_on_write, df);
1199 		mutex_exit(&l2arc_free_on_write_mtx);
1200 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1201 	} else {
1202 		free_func(data, size);
1203 	}
1204 }
1205 
1206 static void
1207 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1208 {
1209 	arc_buf_t **bufp;
1210 
1211 	/* free up data associated with the buf */
1212 	if (buf->b_data) {
1213 		arc_state_t *state = buf->b_hdr->b_state;
1214 		uint64_t size = buf->b_hdr->b_size;
1215 		arc_buf_contents_t type = buf->b_hdr->b_type;
1216 
1217 		arc_cksum_verify(buf);
1218 		if (!recycle) {
1219 			if (type == ARC_BUFC_METADATA) {
1220 				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1221 				    buf->b_data, size);
1222 				arc_space_return(size);
1223 			} else {
1224 				ASSERT(type == ARC_BUFC_DATA);
1225 				arc_buf_data_free(buf->b_hdr,
1226 				    zio_data_buf_free, buf->b_data, size);
1227 				atomic_add_64(&arc_size, -size);
1228 			}
1229 		}
1230 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1231 			uint64_t *cnt = &state->arcs_lsize[type];
1232 
1233 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1234 			ASSERT(state != arc_anon);
1235 
1236 			ASSERT3U(*cnt, >=, size);
1237 			atomic_add_64(cnt, -size);
1238 		}
1239 		ASSERT3U(state->arcs_size, >=, size);
1240 		atomic_add_64(&state->arcs_size, -size);
1241 		buf->b_data = NULL;
1242 		ASSERT(buf->b_hdr->b_datacnt > 0);
1243 		buf->b_hdr->b_datacnt -= 1;
1244 	}
1245 
1246 	/* only remove the buf if requested */
1247 	if (!all)
1248 		return;
1249 
1250 	/* remove the buf from the hdr list */
1251 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1252 		continue;
1253 	*bufp = buf->b_next;
1254 
1255 	ASSERT(buf->b_efunc == NULL);
1256 
1257 	/* clean up the buf */
1258 	buf->b_hdr = NULL;
1259 	kmem_cache_free(buf_cache, buf);
1260 }
1261 
1262 static void
1263 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1264 {
1265 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1266 	ASSERT3P(hdr->b_state, ==, arc_anon);
1267 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1268 
1269 	if (hdr->b_l2hdr != NULL) {
1270 		if (!MUTEX_HELD(&l2arc_buflist_mtx)) {
1271 			/*
1272 			 * To prevent arc_free() and l2arc_evict() from
1273 			 * attempting to free the same buffer at the same time,
1274 			 * a FREE_IN_PROGRESS flag is given to arc_free() to
1275 			 * give it priority.  l2arc_evict() can't destroy this
1276 			 * header while we are waiting on l2arc_buflist_mtx.
1277 			 */
1278 			mutex_enter(&l2arc_buflist_mtx);
1279 			ASSERT(hdr->b_l2hdr != NULL);
1280 
1281 			list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1282 			mutex_exit(&l2arc_buflist_mtx);
1283 		} else {
1284 			list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1285 		}
1286 		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1287 		kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t));
1288 		if (hdr->b_state == arc_l2c_only)
1289 			l2arc_hdr_stat_remove();
1290 		hdr->b_l2hdr = NULL;
1291 	}
1292 
1293 	if (!BUF_EMPTY(hdr)) {
1294 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1295 		bzero(&hdr->b_dva, sizeof (dva_t));
1296 		hdr->b_birth = 0;
1297 		hdr->b_cksum0 = 0;
1298 	}
1299 	while (hdr->b_buf) {
1300 		arc_buf_t *buf = hdr->b_buf;
1301 
1302 		if (buf->b_efunc) {
1303 			mutex_enter(&arc_eviction_mtx);
1304 			ASSERT(buf->b_hdr != NULL);
1305 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1306 			hdr->b_buf = buf->b_next;
1307 			buf->b_hdr = &arc_eviction_hdr;
1308 			buf->b_next = arc_eviction_list;
1309 			arc_eviction_list = buf;
1310 			mutex_exit(&arc_eviction_mtx);
1311 		} else {
1312 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1313 		}
1314 	}
1315 	if (hdr->b_freeze_cksum != NULL) {
1316 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1317 		hdr->b_freeze_cksum = NULL;
1318 	}
1319 
1320 	ASSERT(!list_link_active(&hdr->b_arc_node));
1321 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1322 	ASSERT3P(hdr->b_acb, ==, NULL);
1323 	kmem_cache_free(hdr_cache, hdr);
1324 }
1325 
1326 void
1327 arc_buf_free(arc_buf_t *buf, void *tag)
1328 {
1329 	arc_buf_hdr_t *hdr = buf->b_hdr;
1330 	int hashed = hdr->b_state != arc_anon;
1331 
1332 	ASSERT(buf->b_efunc == NULL);
1333 	ASSERT(buf->b_data != NULL);
1334 
1335 	if (hashed) {
1336 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1337 
1338 		mutex_enter(hash_lock);
1339 		(void) remove_reference(hdr, hash_lock, tag);
1340 		if (hdr->b_datacnt > 1)
1341 			arc_buf_destroy(buf, FALSE, TRUE);
1342 		else
1343 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1344 		mutex_exit(hash_lock);
1345 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1346 		int destroy_hdr;
1347 		/*
1348 		 * We are in the middle of an async write.  Don't destroy
1349 		 * this buffer unless the write completes before we finish
1350 		 * decrementing the reference count.
1351 		 */
1352 		mutex_enter(&arc_eviction_mtx);
1353 		(void) remove_reference(hdr, NULL, tag);
1354 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1355 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1356 		mutex_exit(&arc_eviction_mtx);
1357 		if (destroy_hdr)
1358 			arc_hdr_destroy(hdr);
1359 	} else {
1360 		if (remove_reference(hdr, NULL, tag) > 0) {
1361 			ASSERT(HDR_IO_ERROR(hdr));
1362 			arc_buf_destroy(buf, FALSE, TRUE);
1363 		} else {
1364 			arc_hdr_destroy(hdr);
1365 		}
1366 	}
1367 }
1368 
1369 int
1370 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1371 {
1372 	arc_buf_hdr_t *hdr = buf->b_hdr;
1373 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1374 	int no_callback = (buf->b_efunc == NULL);
1375 
1376 	if (hdr->b_state == arc_anon) {
1377 		arc_buf_free(buf, tag);
1378 		return (no_callback);
1379 	}
1380 
1381 	mutex_enter(hash_lock);
1382 	ASSERT(hdr->b_state != arc_anon);
1383 	ASSERT(buf->b_data != NULL);
1384 
1385 	(void) remove_reference(hdr, hash_lock, tag);
1386 	if (hdr->b_datacnt > 1) {
1387 		if (no_callback)
1388 			arc_buf_destroy(buf, FALSE, TRUE);
1389 	} else if (no_callback) {
1390 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1391 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1392 	}
1393 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1394 	    refcount_is_zero(&hdr->b_refcnt));
1395 	mutex_exit(hash_lock);
1396 	return (no_callback);
1397 }
1398 
1399 int
1400 arc_buf_size(arc_buf_t *buf)
1401 {
1402 	return (buf->b_hdr->b_size);
1403 }
1404 
1405 /*
1406  * Evict buffers from list until we've removed the specified number of
1407  * bytes.  Move the removed buffers to the appropriate evict state.
1408  * If the recycle flag is set, then attempt to "recycle" a buffer:
1409  * - look for a buffer to evict that is `bytes' long.
1410  * - return the data block from this buffer rather than freeing it.
1411  * This flag is used by callers that are trying to make space for a
1412  * new buffer in a full arc cache.
1413  *
1414  * This function makes a "best effort".  It skips over any buffers
1415  * it can't get a hash_lock on, and so may not catch all candidates.
1416  * It may also return without evicting as much space as requested.
1417  */
1418 static void *
1419 arc_evict(arc_state_t *state, spa_t *spa, int64_t bytes, boolean_t recycle,
1420     arc_buf_contents_t type)
1421 {
1422 	arc_state_t *evicted_state;
1423 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1424 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1425 	list_t *list = &state->arcs_list[type];
1426 	kmutex_t *hash_lock;
1427 	boolean_t have_lock;
1428 	void *stolen = NULL;
1429 
1430 	ASSERT(state == arc_mru || state == arc_mfu);
1431 
1432 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1433 
1434 	mutex_enter(&state->arcs_mtx);
1435 	mutex_enter(&evicted_state->arcs_mtx);
1436 
1437 	for (ab = list_tail(list); ab; ab = ab_prev) {
1438 		ab_prev = list_prev(list, ab);
1439 		/* prefetch buffers have a minimum lifespan */
1440 		if (HDR_IO_IN_PROGRESS(ab) ||
1441 		    (spa && ab->b_spa != spa) ||
1442 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1443 		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1444 			skipped++;
1445 			continue;
1446 		}
1447 		/* "lookahead" for better eviction candidate */
1448 		if (recycle && ab->b_size != bytes &&
1449 		    ab_prev && ab_prev->b_size == bytes)
1450 			continue;
1451 		hash_lock = HDR_LOCK(ab);
1452 		have_lock = MUTEX_HELD(hash_lock);
1453 		if (have_lock || mutex_tryenter(hash_lock)) {
1454 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1455 			ASSERT(ab->b_datacnt > 0);
1456 			while (ab->b_buf) {
1457 				arc_buf_t *buf = ab->b_buf;
1458 				if (buf->b_data) {
1459 					bytes_evicted += ab->b_size;
1460 					if (recycle && ab->b_type == type &&
1461 					    ab->b_size == bytes &&
1462 					    !HDR_L2_WRITING(ab)) {
1463 						stolen = buf->b_data;
1464 						recycle = FALSE;
1465 					}
1466 				}
1467 				if (buf->b_efunc) {
1468 					mutex_enter(&arc_eviction_mtx);
1469 					arc_buf_destroy(buf,
1470 					    buf->b_data == stolen, FALSE);
1471 					ab->b_buf = buf->b_next;
1472 					buf->b_hdr = &arc_eviction_hdr;
1473 					buf->b_next = arc_eviction_list;
1474 					arc_eviction_list = buf;
1475 					mutex_exit(&arc_eviction_mtx);
1476 				} else {
1477 					arc_buf_destroy(buf,
1478 					    buf->b_data == stolen, TRUE);
1479 				}
1480 			}
1481 			ASSERT(ab->b_datacnt == 0);
1482 			arc_change_state(evicted_state, ab, hash_lock);
1483 			ASSERT(HDR_IN_HASH_TABLE(ab));
1484 			ab->b_flags |= ARC_IN_HASH_TABLE;
1485 			ab->b_flags &= ~ARC_BUF_AVAILABLE;
1486 			DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1487 			if (!have_lock)
1488 				mutex_exit(hash_lock);
1489 			if (bytes >= 0 && bytes_evicted >= bytes)
1490 				break;
1491 		} else {
1492 			missed += 1;
1493 		}
1494 	}
1495 
1496 	mutex_exit(&evicted_state->arcs_mtx);
1497 	mutex_exit(&state->arcs_mtx);
1498 
1499 	if (bytes_evicted < bytes)
1500 		dprintf("only evicted %lld bytes from %x",
1501 		    (longlong_t)bytes_evicted, state);
1502 
1503 	if (skipped)
1504 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1505 
1506 	if (missed)
1507 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1508 
1509 	/*
1510 	 * We have just evicted some date into the ghost state, make
1511 	 * sure we also adjust the ghost state size if necessary.
1512 	 */
1513 	if (arc_no_grow &&
1514 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1515 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1516 		    arc_mru_ghost->arcs_size - arc_c;
1517 
1518 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1519 			int64_t todelete =
1520 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1521 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1522 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1523 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1524 			    arc_mru_ghost->arcs_size +
1525 			    arc_mfu_ghost->arcs_size - arc_c);
1526 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1527 		}
1528 	}
1529 
1530 	return (stolen);
1531 }
1532 
1533 /*
1534  * Remove buffers from list until we've removed the specified number of
1535  * bytes.  Destroy the buffers that are removed.
1536  */
1537 static void
1538 arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes)
1539 {
1540 	arc_buf_hdr_t *ab, *ab_prev;
1541 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1542 	kmutex_t *hash_lock;
1543 	uint64_t bytes_deleted = 0;
1544 	uint64_t bufs_skipped = 0;
1545 
1546 	ASSERT(GHOST_STATE(state));
1547 top:
1548 	mutex_enter(&state->arcs_mtx);
1549 	for (ab = list_tail(list); ab; ab = ab_prev) {
1550 		ab_prev = list_prev(list, ab);
1551 		if (spa && ab->b_spa != spa)
1552 			continue;
1553 		hash_lock = HDR_LOCK(ab);
1554 		if (mutex_tryenter(hash_lock)) {
1555 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1556 			ASSERT(ab->b_buf == NULL);
1557 			ARCSTAT_BUMP(arcstat_deleted);
1558 			bytes_deleted += ab->b_size;
1559 
1560 			if (ab->b_l2hdr != NULL) {
1561 				/*
1562 				 * This buffer is cached on the 2nd Level ARC;
1563 				 * don't destroy the header.
1564 				 */
1565 				arc_change_state(arc_l2c_only, ab, hash_lock);
1566 				mutex_exit(hash_lock);
1567 			} else {
1568 				arc_change_state(arc_anon, ab, hash_lock);
1569 				mutex_exit(hash_lock);
1570 				arc_hdr_destroy(ab);
1571 			}
1572 
1573 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1574 			if (bytes >= 0 && bytes_deleted >= bytes)
1575 				break;
1576 		} else {
1577 			if (bytes < 0) {
1578 				mutex_exit(&state->arcs_mtx);
1579 				mutex_enter(hash_lock);
1580 				mutex_exit(hash_lock);
1581 				goto top;
1582 			}
1583 			bufs_skipped += 1;
1584 		}
1585 	}
1586 	mutex_exit(&state->arcs_mtx);
1587 
1588 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1589 	    (bytes < 0 || bytes_deleted < bytes)) {
1590 		list = &state->arcs_list[ARC_BUFC_METADATA];
1591 		goto top;
1592 	}
1593 
1594 	if (bufs_skipped) {
1595 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1596 		ASSERT(bytes >= 0);
1597 	}
1598 
1599 	if (bytes_deleted < bytes)
1600 		dprintf("only deleted %lld bytes from %p",
1601 		    (longlong_t)bytes_deleted, state);
1602 }
1603 
1604 static void
1605 arc_adjust(void)
1606 {
1607 	int64_t top_sz, mru_over, arc_over, todelete;
1608 
1609 	top_sz = arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used;
1610 
1611 	if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1612 		int64_t toevict =
1613 		    MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], top_sz - arc_p);
1614 		(void) arc_evict(arc_mru, NULL, toevict, FALSE, ARC_BUFC_DATA);
1615 		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1616 	}
1617 
1618 	if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1619 		int64_t toevict =
1620 		    MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], top_sz - arc_p);
1621 		(void) arc_evict(arc_mru, NULL, toevict, FALSE,
1622 		    ARC_BUFC_METADATA);
1623 		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1624 	}
1625 
1626 	mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c;
1627 
1628 	if (mru_over > 0) {
1629 		if (arc_mru_ghost->arcs_size > 0) {
1630 			todelete = MIN(arc_mru_ghost->arcs_size, mru_over);
1631 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1632 		}
1633 	}
1634 
1635 	if ((arc_over = arc_size - arc_c) > 0) {
1636 		int64_t tbl_over;
1637 
1638 		if (arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1639 			int64_t toevict =
1640 			    MIN(arc_mfu->arcs_lsize[ARC_BUFC_DATA], arc_over);
1641 			(void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1642 			    ARC_BUFC_DATA);
1643 			arc_over = arc_size - arc_c;
1644 		}
1645 
1646 		if (arc_over > 0 &&
1647 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1648 			int64_t toevict =
1649 			    MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA],
1650 			    arc_over);
1651 			(void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1652 			    ARC_BUFC_METADATA);
1653 		}
1654 
1655 		tbl_over = arc_size + arc_mru_ghost->arcs_size +
1656 		    arc_mfu_ghost->arcs_size - arc_c * 2;
1657 
1658 		if (tbl_over > 0 && arc_mfu_ghost->arcs_size > 0) {
1659 			todelete = MIN(arc_mfu_ghost->arcs_size, tbl_over);
1660 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1661 		}
1662 	}
1663 }
1664 
1665 static void
1666 arc_do_user_evicts(void)
1667 {
1668 	mutex_enter(&arc_eviction_mtx);
1669 	while (arc_eviction_list != NULL) {
1670 		arc_buf_t *buf = arc_eviction_list;
1671 		arc_eviction_list = buf->b_next;
1672 		buf->b_hdr = NULL;
1673 		mutex_exit(&arc_eviction_mtx);
1674 
1675 		if (buf->b_efunc != NULL)
1676 			VERIFY(buf->b_efunc(buf) == 0);
1677 
1678 		buf->b_efunc = NULL;
1679 		buf->b_private = NULL;
1680 		kmem_cache_free(buf_cache, buf);
1681 		mutex_enter(&arc_eviction_mtx);
1682 	}
1683 	mutex_exit(&arc_eviction_mtx);
1684 }
1685 
1686 /*
1687  * Flush all *evictable* data from the cache for the given spa.
1688  * NOTE: this will not touch "active" (i.e. referenced) data.
1689  */
1690 void
1691 arc_flush(spa_t *spa)
1692 {
1693 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1694 		(void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_DATA);
1695 		if (spa)
1696 			break;
1697 	}
1698 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1699 		(void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_METADATA);
1700 		if (spa)
1701 			break;
1702 	}
1703 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1704 		(void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_DATA);
1705 		if (spa)
1706 			break;
1707 	}
1708 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1709 		(void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_METADATA);
1710 		if (spa)
1711 			break;
1712 	}
1713 
1714 	arc_evict_ghost(arc_mru_ghost, spa, -1);
1715 	arc_evict_ghost(arc_mfu_ghost, spa, -1);
1716 
1717 	mutex_enter(&arc_reclaim_thr_lock);
1718 	arc_do_user_evicts();
1719 	mutex_exit(&arc_reclaim_thr_lock);
1720 	ASSERT(spa || arc_eviction_list == NULL);
1721 }
1722 
1723 int arc_shrink_shift = 5;		/* log2(fraction of arc to reclaim) */
1724 
1725 void
1726 arc_shrink(void)
1727 {
1728 	if (arc_c > arc_c_min) {
1729 		uint64_t to_free;
1730 
1731 #ifdef _KERNEL
1732 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1733 #else
1734 		to_free = arc_c >> arc_shrink_shift;
1735 #endif
1736 		if (arc_c > arc_c_min + to_free)
1737 			atomic_add_64(&arc_c, -to_free);
1738 		else
1739 			arc_c = arc_c_min;
1740 
1741 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1742 		if (arc_c > arc_size)
1743 			arc_c = MAX(arc_size, arc_c_min);
1744 		if (arc_p > arc_c)
1745 			arc_p = (arc_c >> 1);
1746 		ASSERT(arc_c >= arc_c_min);
1747 		ASSERT((int64_t)arc_p >= 0);
1748 	}
1749 
1750 	if (arc_size > arc_c)
1751 		arc_adjust();
1752 }
1753 
1754 static int
1755 arc_reclaim_needed(void)
1756 {
1757 	uint64_t extra;
1758 
1759 #ifdef _KERNEL
1760 
1761 	if (needfree)
1762 		return (1);
1763 
1764 	/*
1765 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1766 	 */
1767 	extra = desfree;
1768 
1769 	/*
1770 	 * check that we're out of range of the pageout scanner.  It starts to
1771 	 * schedule paging if freemem is less than lotsfree and needfree.
1772 	 * lotsfree is the high-water mark for pageout, and needfree is the
1773 	 * number of needed free pages.  We add extra pages here to make sure
1774 	 * the scanner doesn't start up while we're freeing memory.
1775 	 */
1776 	if (freemem < lotsfree + needfree + extra)
1777 		return (1);
1778 
1779 	/*
1780 	 * check to make sure that swapfs has enough space so that anon
1781 	 * reservations can still succeed. anon_resvmem() checks that the
1782 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1783 	 * swap pages.  We also add a bit of extra here just to prevent
1784 	 * circumstances from getting really dire.
1785 	 */
1786 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1787 		return (1);
1788 
1789 #if defined(__i386)
1790 	/*
1791 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1792 	 * kernel heap space before we ever run out of available physical
1793 	 * memory.  Most checks of the size of the heap_area compare against
1794 	 * tune.t_minarmem, which is the minimum available real memory that we
1795 	 * can have in the system.  However, this is generally fixed at 25 pages
1796 	 * which is so low that it's useless.  In this comparison, we seek to
1797 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1798 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
1799 	 * free)
1800 	 */
1801 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1802 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1803 		return (1);
1804 #endif
1805 
1806 #else
1807 	if (spa_get_random(100) == 0)
1808 		return (1);
1809 #endif
1810 	return (0);
1811 }
1812 
1813 static void
1814 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1815 {
1816 	size_t			i;
1817 	kmem_cache_t		*prev_cache = NULL;
1818 	kmem_cache_t		*prev_data_cache = NULL;
1819 	extern kmem_cache_t	*zio_buf_cache[];
1820 	extern kmem_cache_t	*zio_data_buf_cache[];
1821 
1822 #ifdef _KERNEL
1823 	if (arc_meta_used >= arc_meta_limit) {
1824 		/*
1825 		 * We are exceeding our meta-data cache limit.
1826 		 * Purge some DNLC entries to release holds on meta-data.
1827 		 */
1828 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1829 	}
1830 #if defined(__i386)
1831 	/*
1832 	 * Reclaim unused memory from all kmem caches.
1833 	 */
1834 	kmem_reap();
1835 #endif
1836 #endif
1837 
1838 	/*
1839 	 * An aggressive reclamation will shrink the cache size as well as
1840 	 * reap free buffers from the arc kmem caches.
1841 	 */
1842 	if (strat == ARC_RECLAIM_AGGR)
1843 		arc_shrink();
1844 
1845 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1846 		if (zio_buf_cache[i] != prev_cache) {
1847 			prev_cache = zio_buf_cache[i];
1848 			kmem_cache_reap_now(zio_buf_cache[i]);
1849 		}
1850 		if (zio_data_buf_cache[i] != prev_data_cache) {
1851 			prev_data_cache = zio_data_buf_cache[i];
1852 			kmem_cache_reap_now(zio_data_buf_cache[i]);
1853 		}
1854 	}
1855 	kmem_cache_reap_now(buf_cache);
1856 	kmem_cache_reap_now(hdr_cache);
1857 }
1858 
1859 static void
1860 arc_reclaim_thread(void)
1861 {
1862 	clock_t			growtime = 0;
1863 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1864 	callb_cpr_t		cpr;
1865 
1866 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1867 
1868 	mutex_enter(&arc_reclaim_thr_lock);
1869 	while (arc_thread_exit == 0) {
1870 		if (arc_reclaim_needed()) {
1871 
1872 			if (arc_no_grow) {
1873 				if (last_reclaim == ARC_RECLAIM_CONS) {
1874 					last_reclaim = ARC_RECLAIM_AGGR;
1875 				} else {
1876 					last_reclaim = ARC_RECLAIM_CONS;
1877 				}
1878 			} else {
1879 				arc_no_grow = TRUE;
1880 				last_reclaim = ARC_RECLAIM_AGGR;
1881 				membar_producer();
1882 			}
1883 
1884 			/* reset the growth delay for every reclaim */
1885 			growtime = lbolt + (arc_grow_retry * hz);
1886 
1887 			arc_kmem_reap_now(last_reclaim);
1888 
1889 		} else if (arc_no_grow && lbolt >= growtime) {
1890 			arc_no_grow = FALSE;
1891 		}
1892 
1893 		if (2 * arc_c < arc_size +
1894 		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
1895 			arc_adjust();
1896 
1897 		if (arc_eviction_list != NULL)
1898 			arc_do_user_evicts();
1899 
1900 		/* block until needed, or one second, whichever is shorter */
1901 		CALLB_CPR_SAFE_BEGIN(&cpr);
1902 		(void) cv_timedwait(&arc_reclaim_thr_cv,
1903 		    &arc_reclaim_thr_lock, (lbolt + hz));
1904 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1905 	}
1906 
1907 	arc_thread_exit = 0;
1908 	cv_broadcast(&arc_reclaim_thr_cv);
1909 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
1910 	thread_exit();
1911 }
1912 
1913 /*
1914  * Adapt arc info given the number of bytes we are trying to add and
1915  * the state that we are comming from.  This function is only called
1916  * when we are adding new content to the cache.
1917  */
1918 static void
1919 arc_adapt(int bytes, arc_state_t *state)
1920 {
1921 	int mult;
1922 
1923 	if (state == arc_l2c_only)
1924 		return;
1925 
1926 	ASSERT(bytes > 0);
1927 	/*
1928 	 * Adapt the target size of the MRU list:
1929 	 *	- if we just hit in the MRU ghost list, then increase
1930 	 *	  the target size of the MRU list.
1931 	 *	- if we just hit in the MFU ghost list, then increase
1932 	 *	  the target size of the MFU list by decreasing the
1933 	 *	  target size of the MRU list.
1934 	 */
1935 	if (state == arc_mru_ghost) {
1936 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
1937 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
1938 
1939 		arc_p = MIN(arc_c, arc_p + bytes * mult);
1940 	} else if (state == arc_mfu_ghost) {
1941 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
1942 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
1943 
1944 		arc_p = MAX(0, (int64_t)arc_p - bytes * mult);
1945 	}
1946 	ASSERT((int64_t)arc_p >= 0);
1947 
1948 	if (arc_reclaim_needed()) {
1949 		cv_signal(&arc_reclaim_thr_cv);
1950 		return;
1951 	}
1952 
1953 	if (arc_no_grow)
1954 		return;
1955 
1956 	if (arc_c >= arc_c_max)
1957 		return;
1958 
1959 	/*
1960 	 * If we're within (2 * maxblocksize) bytes of the target
1961 	 * cache size, increment the target cache size
1962 	 */
1963 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
1964 		atomic_add_64(&arc_c, (int64_t)bytes);
1965 		if (arc_c > arc_c_max)
1966 			arc_c = arc_c_max;
1967 		else if (state == arc_anon)
1968 			atomic_add_64(&arc_p, (int64_t)bytes);
1969 		if (arc_p > arc_c)
1970 			arc_p = arc_c;
1971 	}
1972 	ASSERT((int64_t)arc_p >= 0);
1973 }
1974 
1975 /*
1976  * Check if the cache has reached its limits and eviction is required
1977  * prior to insert.
1978  */
1979 static int
1980 arc_evict_needed(arc_buf_contents_t type)
1981 {
1982 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
1983 		return (1);
1984 
1985 #ifdef _KERNEL
1986 	/*
1987 	 * If zio data pages are being allocated out of a separate heap segment,
1988 	 * then enforce that the size of available vmem for this area remains
1989 	 * above about 1/32nd free.
1990 	 */
1991 	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
1992 	    vmem_size(zio_arena, VMEM_FREE) <
1993 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
1994 		return (1);
1995 #endif
1996 
1997 	if (arc_reclaim_needed())
1998 		return (1);
1999 
2000 	return (arc_size > arc_c);
2001 }
2002 
2003 /*
2004  * The buffer, supplied as the first argument, needs a data block.
2005  * So, if we are at cache max, determine which cache should be victimized.
2006  * We have the following cases:
2007  *
2008  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2009  * In this situation if we're out of space, but the resident size of the MFU is
2010  * under the limit, victimize the MFU cache to satisfy this insertion request.
2011  *
2012  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2013  * Here, we've used up all of the available space for the MRU, so we need to
2014  * evict from our own cache instead.  Evict from the set of resident MRU
2015  * entries.
2016  *
2017  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2018  * c minus p represents the MFU space in the cache, since p is the size of the
2019  * cache that is dedicated to the MRU.  In this situation there's still space on
2020  * the MFU side, so the MRU side needs to be victimized.
2021  *
2022  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2023  * MFU's resident set is consuming more space than it has been allotted.  In
2024  * this situation, we must victimize our own cache, the MFU, for this insertion.
2025  */
2026 static void
2027 arc_get_data_buf(arc_buf_t *buf)
2028 {
2029 	arc_state_t		*state = buf->b_hdr->b_state;
2030 	uint64_t		size = buf->b_hdr->b_size;
2031 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2032 
2033 	arc_adapt(size, state);
2034 
2035 	/*
2036 	 * We have not yet reached cache maximum size,
2037 	 * just allocate a new buffer.
2038 	 */
2039 	if (!arc_evict_needed(type)) {
2040 		if (type == ARC_BUFC_METADATA) {
2041 			buf->b_data = zio_buf_alloc(size);
2042 			arc_space_consume(size);
2043 		} else {
2044 			ASSERT(type == ARC_BUFC_DATA);
2045 			buf->b_data = zio_data_buf_alloc(size);
2046 			atomic_add_64(&arc_size, size);
2047 		}
2048 		goto out;
2049 	}
2050 
2051 	/*
2052 	 * If we are prefetching from the mfu ghost list, this buffer
2053 	 * will end up on the mru list; so steal space from there.
2054 	 */
2055 	if (state == arc_mfu_ghost)
2056 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2057 	else if (state == arc_mru_ghost)
2058 		state = arc_mru;
2059 
2060 	if (state == arc_mru || state == arc_anon) {
2061 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2062 		state = (arc_mfu->arcs_lsize[type] > 0 &&
2063 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2064 	} else {
2065 		/* MFU cases */
2066 		uint64_t mfu_space = arc_c - arc_p;
2067 		state =  (arc_mru->arcs_lsize[type] > 0 &&
2068 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2069 	}
2070 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2071 		if (type == ARC_BUFC_METADATA) {
2072 			buf->b_data = zio_buf_alloc(size);
2073 			arc_space_consume(size);
2074 		} else {
2075 			ASSERT(type == ARC_BUFC_DATA);
2076 			buf->b_data = zio_data_buf_alloc(size);
2077 			atomic_add_64(&arc_size, size);
2078 		}
2079 		ARCSTAT_BUMP(arcstat_recycle_miss);
2080 	}
2081 	ASSERT(buf->b_data != NULL);
2082 out:
2083 	/*
2084 	 * Update the state size.  Note that ghost states have a
2085 	 * "ghost size" and so don't need to be updated.
2086 	 */
2087 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2088 		arc_buf_hdr_t *hdr = buf->b_hdr;
2089 
2090 		atomic_add_64(&hdr->b_state->arcs_size, size);
2091 		if (list_link_active(&hdr->b_arc_node)) {
2092 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2093 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2094 		}
2095 		/*
2096 		 * If we are growing the cache, and we are adding anonymous
2097 		 * data, and we have outgrown arc_p, update arc_p
2098 		 */
2099 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2100 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2101 			arc_p = MIN(arc_c, arc_p + size);
2102 	}
2103 }
2104 
2105 /*
2106  * This routine is called whenever a buffer is accessed.
2107  * NOTE: the hash lock is dropped in this function.
2108  */
2109 static void
2110 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2111 {
2112 	ASSERT(MUTEX_HELD(hash_lock));
2113 
2114 	if (buf->b_state == arc_anon) {
2115 		/*
2116 		 * This buffer is not in the cache, and does not
2117 		 * appear in our "ghost" list.  Add the new buffer
2118 		 * to the MRU state.
2119 		 */
2120 
2121 		ASSERT(buf->b_arc_access == 0);
2122 		buf->b_arc_access = lbolt;
2123 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2124 		arc_change_state(arc_mru, buf, hash_lock);
2125 
2126 	} else if (buf->b_state == arc_mru) {
2127 		/*
2128 		 * If this buffer is here because of a prefetch, then either:
2129 		 * - clear the flag if this is a "referencing" read
2130 		 *   (any subsequent access will bump this into the MFU state).
2131 		 * or
2132 		 * - move the buffer to the head of the list if this is
2133 		 *   another prefetch (to make it less likely to be evicted).
2134 		 */
2135 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2136 			if (refcount_count(&buf->b_refcnt) == 0) {
2137 				ASSERT(list_link_active(&buf->b_arc_node));
2138 			} else {
2139 				buf->b_flags &= ~ARC_PREFETCH;
2140 				ARCSTAT_BUMP(arcstat_mru_hits);
2141 			}
2142 			buf->b_arc_access = lbolt;
2143 			return;
2144 		}
2145 
2146 		/*
2147 		 * This buffer has been "accessed" only once so far,
2148 		 * but it is still in the cache. Move it to the MFU
2149 		 * state.
2150 		 */
2151 		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
2152 			/*
2153 			 * More than 125ms have passed since we
2154 			 * instantiated this buffer.  Move it to the
2155 			 * most frequently used state.
2156 			 */
2157 			buf->b_arc_access = lbolt;
2158 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2159 			arc_change_state(arc_mfu, buf, hash_lock);
2160 		}
2161 		ARCSTAT_BUMP(arcstat_mru_hits);
2162 	} else if (buf->b_state == arc_mru_ghost) {
2163 		arc_state_t	*new_state;
2164 		/*
2165 		 * This buffer has been "accessed" recently, but
2166 		 * was evicted from the cache.  Move it to the
2167 		 * MFU state.
2168 		 */
2169 
2170 		if (buf->b_flags & ARC_PREFETCH) {
2171 			new_state = arc_mru;
2172 			if (refcount_count(&buf->b_refcnt) > 0)
2173 				buf->b_flags &= ~ARC_PREFETCH;
2174 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2175 		} else {
2176 			new_state = arc_mfu;
2177 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2178 		}
2179 
2180 		buf->b_arc_access = lbolt;
2181 		arc_change_state(new_state, buf, hash_lock);
2182 
2183 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2184 	} else if (buf->b_state == arc_mfu) {
2185 		/*
2186 		 * This buffer has been accessed more than once and is
2187 		 * still in the cache.  Keep it in the MFU state.
2188 		 *
2189 		 * NOTE: an add_reference() that occurred when we did
2190 		 * the arc_read() will have kicked this off the list.
2191 		 * If it was a prefetch, we will explicitly move it to
2192 		 * the head of the list now.
2193 		 */
2194 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2195 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2196 			ASSERT(list_link_active(&buf->b_arc_node));
2197 		}
2198 		ARCSTAT_BUMP(arcstat_mfu_hits);
2199 		buf->b_arc_access = lbolt;
2200 	} else if (buf->b_state == arc_mfu_ghost) {
2201 		arc_state_t	*new_state = arc_mfu;
2202 		/*
2203 		 * This buffer has been accessed more than once but has
2204 		 * been evicted from the cache.  Move it back to the
2205 		 * MFU state.
2206 		 */
2207 
2208 		if (buf->b_flags & ARC_PREFETCH) {
2209 			/*
2210 			 * This is a prefetch access...
2211 			 * move this block back to the MRU state.
2212 			 */
2213 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2214 			new_state = arc_mru;
2215 		}
2216 
2217 		buf->b_arc_access = lbolt;
2218 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2219 		arc_change_state(new_state, buf, hash_lock);
2220 
2221 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2222 	} else if (buf->b_state == arc_l2c_only) {
2223 		/*
2224 		 * This buffer is on the 2nd Level ARC.
2225 		 */
2226 
2227 		buf->b_arc_access = lbolt;
2228 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2229 		arc_change_state(arc_mfu, buf, hash_lock);
2230 	} else {
2231 		ASSERT(!"invalid arc state");
2232 	}
2233 }
2234 
2235 /* a generic arc_done_func_t which you can use */
2236 /* ARGSUSED */
2237 void
2238 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2239 {
2240 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2241 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2242 }
2243 
2244 /* a generic arc_done_func_t */
2245 void
2246 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2247 {
2248 	arc_buf_t **bufp = arg;
2249 	if (zio && zio->io_error) {
2250 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2251 		*bufp = NULL;
2252 	} else {
2253 		*bufp = buf;
2254 	}
2255 }
2256 
2257 static void
2258 arc_read_done(zio_t *zio)
2259 {
2260 	arc_buf_hdr_t	*hdr, *found;
2261 	arc_buf_t	*buf;
2262 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2263 	kmutex_t	*hash_lock;
2264 	arc_callback_t	*callback_list, *acb;
2265 	int		freeable = FALSE;
2266 
2267 	buf = zio->io_private;
2268 	hdr = buf->b_hdr;
2269 
2270 	/*
2271 	 * The hdr was inserted into hash-table and removed from lists
2272 	 * prior to starting I/O.  We should find this header, since
2273 	 * it's in the hash table, and it should be legit since it's
2274 	 * not possible to evict it during the I/O.  The only possible
2275 	 * reason for it not to be found is if we were freed during the
2276 	 * read.
2277 	 */
2278 	found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
2279 	    &hash_lock);
2280 
2281 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2282 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2283 	    (found == hdr && HDR_L2_READING(hdr)));
2284 
2285 	hdr->b_flags &= ~(ARC_L2_READING|ARC_L2_EVICTED);
2286 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2287 		hdr->b_flags |= ARC_DONT_L2CACHE;
2288 
2289 	/* byteswap if necessary */
2290 	callback_list = hdr->b_acb;
2291 	ASSERT(callback_list != NULL);
2292 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap)
2293 		callback_list->acb_byteswap(buf->b_data, hdr->b_size);
2294 
2295 	arc_cksum_compute(buf, B_FALSE);
2296 
2297 	/* create copies of the data buffer for the callers */
2298 	abuf = buf;
2299 	for (acb = callback_list; acb; acb = acb->acb_next) {
2300 		if (acb->acb_done) {
2301 			if (abuf == NULL)
2302 				abuf = arc_buf_clone(buf);
2303 			acb->acb_buf = abuf;
2304 			abuf = NULL;
2305 		}
2306 	}
2307 	hdr->b_acb = NULL;
2308 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2309 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2310 	if (abuf == buf)
2311 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2312 
2313 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2314 
2315 	if (zio->io_error != 0) {
2316 		hdr->b_flags |= ARC_IO_ERROR;
2317 		if (hdr->b_state != arc_anon)
2318 			arc_change_state(arc_anon, hdr, hash_lock);
2319 		if (HDR_IN_HASH_TABLE(hdr))
2320 			buf_hash_remove(hdr);
2321 		freeable = refcount_is_zero(&hdr->b_refcnt);
2322 		/* convert checksum errors into IO errors */
2323 		if (zio->io_error == ECKSUM)
2324 			zio->io_error = EIO;
2325 	}
2326 
2327 	/*
2328 	 * Broadcast before we drop the hash_lock to avoid the possibility
2329 	 * that the hdr (and hence the cv) might be freed before we get to
2330 	 * the cv_broadcast().
2331 	 */
2332 	cv_broadcast(&hdr->b_cv);
2333 
2334 	if (hash_lock) {
2335 		/*
2336 		 * Only call arc_access on anonymous buffers.  This is because
2337 		 * if we've issued an I/O for an evicted buffer, we've already
2338 		 * called arc_access (to prevent any simultaneous readers from
2339 		 * getting confused).
2340 		 */
2341 		if (zio->io_error == 0 && hdr->b_state == arc_anon)
2342 			arc_access(hdr, hash_lock);
2343 		mutex_exit(hash_lock);
2344 	} else {
2345 		/*
2346 		 * This block was freed while we waited for the read to
2347 		 * complete.  It has been removed from the hash table and
2348 		 * moved to the anonymous state (so that it won't show up
2349 		 * in the cache).
2350 		 */
2351 		ASSERT3P(hdr->b_state, ==, arc_anon);
2352 		freeable = refcount_is_zero(&hdr->b_refcnt);
2353 	}
2354 
2355 	/* execute each callback and free its structure */
2356 	while ((acb = callback_list) != NULL) {
2357 		if (acb->acb_done)
2358 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2359 
2360 		if (acb->acb_zio_dummy != NULL) {
2361 			acb->acb_zio_dummy->io_error = zio->io_error;
2362 			zio_nowait(acb->acb_zio_dummy);
2363 		}
2364 
2365 		callback_list = acb->acb_next;
2366 		kmem_free(acb, sizeof (arc_callback_t));
2367 	}
2368 
2369 	if (freeable)
2370 		arc_hdr_destroy(hdr);
2371 }
2372 
2373 /*
2374  * "Read" the block block at the specified DVA (in bp) via the
2375  * cache.  If the block is found in the cache, invoke the provided
2376  * callback immediately and return.  Note that the `zio' parameter
2377  * in the callback will be NULL in this case, since no IO was
2378  * required.  If the block is not in the cache pass the read request
2379  * on to the spa with a substitute callback function, so that the
2380  * requested block will be added to the cache.
2381  *
2382  * If a read request arrives for a block that has a read in-progress,
2383  * either wait for the in-progress read to complete (and return the
2384  * results); or, if this is a read with a "done" func, add a record
2385  * to the read to invoke the "done" func when the read completes,
2386  * and return; or just return.
2387  *
2388  * arc_read_done() will invoke all the requested "done" functions
2389  * for readers of this block.
2390  */
2391 int
2392 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap,
2393     arc_done_func_t *done, void *private, int priority, int flags,
2394     uint32_t *arc_flags, zbookmark_t *zb)
2395 {
2396 	arc_buf_hdr_t *hdr;
2397 	arc_buf_t *buf;
2398 	kmutex_t *hash_lock;
2399 	zio_t *rzio;
2400 
2401 top:
2402 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2403 	if (hdr && hdr->b_datacnt > 0) {
2404 
2405 		*arc_flags |= ARC_CACHED;
2406 
2407 		if (HDR_IO_IN_PROGRESS(hdr)) {
2408 
2409 			if (*arc_flags & ARC_WAIT) {
2410 				cv_wait(&hdr->b_cv, hash_lock);
2411 				mutex_exit(hash_lock);
2412 				goto top;
2413 			}
2414 			ASSERT(*arc_flags & ARC_NOWAIT);
2415 
2416 			if (done) {
2417 				arc_callback_t	*acb = NULL;
2418 
2419 				acb = kmem_zalloc(sizeof (arc_callback_t),
2420 				    KM_SLEEP);
2421 				acb->acb_done = done;
2422 				acb->acb_private = private;
2423 				acb->acb_byteswap = swap;
2424 				if (pio != NULL)
2425 					acb->acb_zio_dummy = zio_null(pio,
2426 					    spa, NULL, NULL, flags);
2427 
2428 				ASSERT(acb->acb_done != NULL);
2429 				acb->acb_next = hdr->b_acb;
2430 				hdr->b_acb = acb;
2431 				add_reference(hdr, hash_lock, private);
2432 				mutex_exit(hash_lock);
2433 				return (0);
2434 			}
2435 			mutex_exit(hash_lock);
2436 			return (0);
2437 		}
2438 
2439 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2440 
2441 		if (done) {
2442 			add_reference(hdr, hash_lock, private);
2443 			/*
2444 			 * If this block is already in use, create a new
2445 			 * copy of the data so that we will be guaranteed
2446 			 * that arc_release() will always succeed.
2447 			 */
2448 			buf = hdr->b_buf;
2449 			ASSERT(buf);
2450 			ASSERT(buf->b_data);
2451 			if (HDR_BUF_AVAILABLE(hdr)) {
2452 				ASSERT(buf->b_efunc == NULL);
2453 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2454 			} else {
2455 				buf = arc_buf_clone(buf);
2456 			}
2457 		} else if (*arc_flags & ARC_PREFETCH &&
2458 		    refcount_count(&hdr->b_refcnt) == 0) {
2459 			hdr->b_flags |= ARC_PREFETCH;
2460 		}
2461 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2462 		arc_access(hdr, hash_lock);
2463 		mutex_exit(hash_lock);
2464 		ARCSTAT_BUMP(arcstat_hits);
2465 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2466 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2467 		    data, metadata, hits);
2468 
2469 		if (done)
2470 			done(NULL, buf, private);
2471 	} else {
2472 		uint64_t size = BP_GET_LSIZE(bp);
2473 		arc_callback_t	*acb;
2474 
2475 		if (hdr == NULL) {
2476 			/* this block is not in the cache */
2477 			arc_buf_hdr_t	*exists;
2478 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2479 			buf = arc_buf_alloc(spa, size, private, type);
2480 			hdr = buf->b_hdr;
2481 			hdr->b_dva = *BP_IDENTITY(bp);
2482 			hdr->b_birth = bp->blk_birth;
2483 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2484 			exists = buf_hash_insert(hdr, &hash_lock);
2485 			if (exists) {
2486 				/* somebody beat us to the hash insert */
2487 				mutex_exit(hash_lock);
2488 				bzero(&hdr->b_dva, sizeof (dva_t));
2489 				hdr->b_birth = 0;
2490 				hdr->b_cksum0 = 0;
2491 				(void) arc_buf_remove_ref(buf, private);
2492 				goto top; /* restart the IO request */
2493 			}
2494 			/* if this is a prefetch, we don't have a reference */
2495 			if (*arc_flags & ARC_PREFETCH) {
2496 				(void) remove_reference(hdr, hash_lock,
2497 				    private);
2498 				hdr->b_flags |= ARC_PREFETCH;
2499 			}
2500 			if (BP_GET_LEVEL(bp) > 0)
2501 				hdr->b_flags |= ARC_INDIRECT;
2502 		} else {
2503 			/* this block is in the ghost cache */
2504 			ASSERT(GHOST_STATE(hdr->b_state));
2505 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2506 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2507 			ASSERT(hdr->b_buf == NULL);
2508 
2509 			/* if this is a prefetch, we don't have a reference */
2510 			if (*arc_flags & ARC_PREFETCH)
2511 				hdr->b_flags |= ARC_PREFETCH;
2512 			else
2513 				add_reference(hdr, hash_lock, private);
2514 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2515 			buf->b_hdr = hdr;
2516 			buf->b_data = NULL;
2517 			buf->b_efunc = NULL;
2518 			buf->b_private = NULL;
2519 			buf->b_next = NULL;
2520 			hdr->b_buf = buf;
2521 			arc_get_data_buf(buf);
2522 			ASSERT(hdr->b_datacnt == 0);
2523 			hdr->b_datacnt = 1;
2524 
2525 		}
2526 
2527 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2528 		acb->acb_done = done;
2529 		acb->acb_private = private;
2530 		acb->acb_byteswap = swap;
2531 
2532 		ASSERT(hdr->b_acb == NULL);
2533 		hdr->b_acb = acb;
2534 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2535 
2536 		/*
2537 		 * If the buffer has been evicted, migrate it to a present state
2538 		 * before issuing the I/O.  Once we drop the hash-table lock,
2539 		 * the header will be marked as I/O in progress and have an
2540 		 * attached buffer.  At this point, anybody who finds this
2541 		 * buffer ought to notice that it's legit but has a pending I/O.
2542 		 */
2543 
2544 		if (GHOST_STATE(hdr->b_state))
2545 			arc_access(hdr, hash_lock);
2546 
2547 		ASSERT3U(hdr->b_size, ==, size);
2548 		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
2549 		    zbookmark_t *, zb);
2550 		ARCSTAT_BUMP(arcstat_misses);
2551 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2552 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2553 		    data, metadata, misses);
2554 
2555 		if (l2arc_ndev != 0) {
2556 			/*
2557 			 * Read from the L2ARC if the following are true:
2558 			 * 1. This buffer has L2ARC metadata.
2559 			 * 2. This buffer isn't currently writing to the L2ARC.
2560 			 */
2561 			if (hdr->b_l2hdr != NULL && !HDR_L2_WRITING(hdr)) {
2562 				vdev_t *vd = hdr->b_l2hdr->b_dev->l2ad_vdev;
2563 				daddr_t addr = hdr->b_l2hdr->b_daddr;
2564 				l2arc_read_callback_t *cb;
2565 
2566 				if (vdev_is_dead(vd))
2567 					goto skip_l2arc;
2568 
2569 				hdr->b_flags |= ARC_L2_READING;
2570 				mutex_exit(hash_lock);
2571 
2572 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2573 				ARCSTAT_BUMP(arcstat_l2_hits);
2574 
2575 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2576 				    KM_SLEEP);
2577 				cb->l2rcb_buf = buf;
2578 				cb->l2rcb_spa = spa;
2579 				cb->l2rcb_bp = *bp;
2580 				cb->l2rcb_zb = *zb;
2581 				cb->l2rcb_flags = flags;
2582 
2583 				/*
2584 				 * l2arc read.
2585 				 */
2586 				rzio = zio_read_phys(pio, vd, addr, size,
2587 				    buf->b_data, ZIO_CHECKSUM_OFF,
2588 				    l2arc_read_done, cb, priority,
2589 				    flags | ZIO_FLAG_DONT_CACHE, B_FALSE);
2590 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2591 				    zio_t *, rzio);
2592 
2593 				if (*arc_flags & ARC_WAIT)
2594 					return (zio_wait(rzio));
2595 
2596 				ASSERT(*arc_flags & ARC_NOWAIT);
2597 				zio_nowait(rzio);
2598 				return (0);
2599 			} else {
2600 				DTRACE_PROBE1(l2arc__miss,
2601 				    arc_buf_hdr_t *, hdr);
2602 				ARCSTAT_BUMP(arcstat_l2_misses);
2603 				if (HDR_L2_WRITING(hdr))
2604 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2605 			}
2606 		}
2607 
2608 skip_l2arc:
2609 		mutex_exit(hash_lock);
2610 
2611 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2612 		    arc_read_done, buf, priority, flags, zb);
2613 
2614 		if (*arc_flags & ARC_WAIT)
2615 			return (zio_wait(rzio));
2616 
2617 		ASSERT(*arc_flags & ARC_NOWAIT);
2618 		zio_nowait(rzio);
2619 	}
2620 	return (0);
2621 }
2622 
2623 /*
2624  * arc_read() variant to support pool traversal.  If the block is already
2625  * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
2626  * The idea is that we don't want pool traversal filling up memory, but
2627  * if the ARC already has the data anyway, we shouldn't pay for the I/O.
2628  */
2629 int
2630 arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
2631 {
2632 	arc_buf_hdr_t *hdr;
2633 	kmutex_t *hash_mtx;
2634 	int rc = 0;
2635 
2636 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
2637 
2638 	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
2639 		arc_buf_t *buf = hdr->b_buf;
2640 
2641 		ASSERT(buf);
2642 		while (buf->b_data == NULL) {
2643 			buf = buf->b_next;
2644 			ASSERT(buf);
2645 		}
2646 		bcopy(buf->b_data, data, hdr->b_size);
2647 	} else {
2648 		rc = ENOENT;
2649 	}
2650 
2651 	if (hash_mtx)
2652 		mutex_exit(hash_mtx);
2653 
2654 	return (rc);
2655 }
2656 
2657 void
2658 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2659 {
2660 	ASSERT(buf->b_hdr != NULL);
2661 	ASSERT(buf->b_hdr->b_state != arc_anon);
2662 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2663 	buf->b_efunc = func;
2664 	buf->b_private = private;
2665 }
2666 
2667 /*
2668  * This is used by the DMU to let the ARC know that a buffer is
2669  * being evicted, so the ARC should clean up.  If this arc buf
2670  * is not yet in the evicted state, it will be put there.
2671  */
2672 int
2673 arc_buf_evict(arc_buf_t *buf)
2674 {
2675 	arc_buf_hdr_t *hdr;
2676 	kmutex_t *hash_lock;
2677 	arc_buf_t **bufp;
2678 
2679 	mutex_enter(&arc_eviction_mtx);
2680 	hdr = buf->b_hdr;
2681 	if (hdr == NULL) {
2682 		/*
2683 		 * We are in arc_do_user_evicts().
2684 		 */
2685 		ASSERT(buf->b_data == NULL);
2686 		mutex_exit(&arc_eviction_mtx);
2687 		return (0);
2688 	}
2689 	hash_lock = HDR_LOCK(hdr);
2690 	mutex_exit(&arc_eviction_mtx);
2691 
2692 	mutex_enter(hash_lock);
2693 
2694 	if (buf->b_data == NULL) {
2695 		/*
2696 		 * We are on the eviction list.
2697 		 */
2698 		mutex_exit(hash_lock);
2699 		mutex_enter(&arc_eviction_mtx);
2700 		if (buf->b_hdr == NULL) {
2701 			/*
2702 			 * We are already in arc_do_user_evicts().
2703 			 */
2704 			mutex_exit(&arc_eviction_mtx);
2705 			return (0);
2706 		} else {
2707 			arc_buf_t copy = *buf; /* structure assignment */
2708 			/*
2709 			 * Process this buffer now
2710 			 * but let arc_do_user_evicts() do the reaping.
2711 			 */
2712 			buf->b_efunc = NULL;
2713 			mutex_exit(&arc_eviction_mtx);
2714 			VERIFY(copy.b_efunc(&copy) == 0);
2715 			return (1);
2716 		}
2717 	}
2718 
2719 	ASSERT(buf->b_hdr == hdr);
2720 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2721 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2722 
2723 	/*
2724 	 * Pull this buffer off of the hdr
2725 	 */
2726 	bufp = &hdr->b_buf;
2727 	while (*bufp != buf)
2728 		bufp = &(*bufp)->b_next;
2729 	*bufp = buf->b_next;
2730 
2731 	ASSERT(buf->b_data != NULL);
2732 	arc_buf_destroy(buf, FALSE, FALSE);
2733 
2734 	if (hdr->b_datacnt == 0) {
2735 		arc_state_t *old_state = hdr->b_state;
2736 		arc_state_t *evicted_state;
2737 
2738 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2739 
2740 		evicted_state =
2741 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2742 
2743 		mutex_enter(&old_state->arcs_mtx);
2744 		mutex_enter(&evicted_state->arcs_mtx);
2745 
2746 		arc_change_state(evicted_state, hdr, hash_lock);
2747 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2748 		hdr->b_flags |= ARC_IN_HASH_TABLE;
2749 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2750 
2751 		mutex_exit(&evicted_state->arcs_mtx);
2752 		mutex_exit(&old_state->arcs_mtx);
2753 	}
2754 	mutex_exit(hash_lock);
2755 
2756 	VERIFY(buf->b_efunc(buf) == 0);
2757 	buf->b_efunc = NULL;
2758 	buf->b_private = NULL;
2759 	buf->b_hdr = NULL;
2760 	kmem_cache_free(buf_cache, buf);
2761 	return (1);
2762 }
2763 
2764 /*
2765  * Release this buffer from the cache.  This must be done
2766  * after a read and prior to modifying the buffer contents.
2767  * If the buffer has more than one reference, we must make
2768  * make a new hdr for the buffer.
2769  */
2770 void
2771 arc_release(arc_buf_t *buf, void *tag)
2772 {
2773 	arc_buf_hdr_t *hdr = buf->b_hdr;
2774 	kmutex_t *hash_lock = HDR_LOCK(hdr);
2775 	l2arc_buf_hdr_t *l2hdr = NULL;
2776 	uint64_t buf_size;
2777 
2778 	/* this buffer is not on any list */
2779 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2780 
2781 	if (hdr->b_state == arc_anon) {
2782 		/* this buffer is already released */
2783 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2784 		ASSERT(BUF_EMPTY(hdr));
2785 		ASSERT(buf->b_efunc == NULL);
2786 		arc_buf_thaw(buf);
2787 		return;
2788 	}
2789 
2790 	mutex_enter(hash_lock);
2791 
2792 	/*
2793 	 * Do we have more than one buf?
2794 	 */
2795 	if (hdr->b_buf != buf || buf->b_next != NULL) {
2796 		arc_buf_hdr_t *nhdr;
2797 		arc_buf_t **bufp;
2798 		uint64_t blksz = hdr->b_size;
2799 		spa_t *spa = hdr->b_spa;
2800 		arc_buf_contents_t type = hdr->b_type;
2801 		uint32_t flags = hdr->b_flags;
2802 
2803 		ASSERT(hdr->b_datacnt > 1);
2804 		/*
2805 		 * Pull the data off of this buf and attach it to
2806 		 * a new anonymous buf.
2807 		 */
2808 		(void) remove_reference(hdr, hash_lock, tag);
2809 		bufp = &hdr->b_buf;
2810 		while (*bufp != buf)
2811 			bufp = &(*bufp)->b_next;
2812 		*bufp = (*bufp)->b_next;
2813 		buf->b_next = NULL;
2814 
2815 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
2816 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
2817 		if (refcount_is_zero(&hdr->b_refcnt)) {
2818 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
2819 			ASSERT3U(*size, >=, hdr->b_size);
2820 			atomic_add_64(size, -hdr->b_size);
2821 		}
2822 		hdr->b_datacnt -= 1;
2823 		if (hdr->b_l2hdr != NULL) {
2824 			mutex_enter(&l2arc_buflist_mtx);
2825 			l2hdr = hdr->b_l2hdr;
2826 			hdr->b_l2hdr = NULL;
2827 			buf_size = hdr->b_size;
2828 		}
2829 		arc_cksum_verify(buf);
2830 
2831 		mutex_exit(hash_lock);
2832 
2833 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
2834 		nhdr->b_size = blksz;
2835 		nhdr->b_spa = spa;
2836 		nhdr->b_type = type;
2837 		nhdr->b_buf = buf;
2838 		nhdr->b_state = arc_anon;
2839 		nhdr->b_arc_access = 0;
2840 		nhdr->b_flags = flags & ARC_L2_WRITING;
2841 		nhdr->b_l2hdr = NULL;
2842 		nhdr->b_datacnt = 1;
2843 		nhdr->b_freeze_cksum = NULL;
2844 		(void) refcount_add(&nhdr->b_refcnt, tag);
2845 		buf->b_hdr = nhdr;
2846 		atomic_add_64(&arc_anon->arcs_size, blksz);
2847 	} else {
2848 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2849 		ASSERT(!list_link_active(&hdr->b_arc_node));
2850 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2851 		arc_change_state(arc_anon, hdr, hash_lock);
2852 		hdr->b_arc_access = 0;
2853 		if (hdr->b_l2hdr != NULL) {
2854 			mutex_enter(&l2arc_buflist_mtx);
2855 			l2hdr = hdr->b_l2hdr;
2856 			hdr->b_l2hdr = NULL;
2857 			buf_size = hdr->b_size;
2858 		}
2859 		mutex_exit(hash_lock);
2860 
2861 		bzero(&hdr->b_dva, sizeof (dva_t));
2862 		hdr->b_birth = 0;
2863 		hdr->b_cksum0 = 0;
2864 		arc_buf_thaw(buf);
2865 	}
2866 	buf->b_efunc = NULL;
2867 	buf->b_private = NULL;
2868 
2869 	if (l2hdr) {
2870 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
2871 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
2872 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
2873 	}
2874 	if (MUTEX_HELD(&l2arc_buflist_mtx))
2875 		mutex_exit(&l2arc_buflist_mtx);
2876 }
2877 
2878 int
2879 arc_released(arc_buf_t *buf)
2880 {
2881 	return (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
2882 }
2883 
2884 int
2885 arc_has_callback(arc_buf_t *buf)
2886 {
2887 	return (buf->b_efunc != NULL);
2888 }
2889 
2890 #ifdef ZFS_DEBUG
2891 int
2892 arc_referenced(arc_buf_t *buf)
2893 {
2894 	return (refcount_count(&buf->b_hdr->b_refcnt));
2895 }
2896 #endif
2897 
2898 static void
2899 arc_write_ready(zio_t *zio)
2900 {
2901 	arc_write_callback_t *callback = zio->io_private;
2902 	arc_buf_t *buf = callback->awcb_buf;
2903 	arc_buf_hdr_t *hdr = buf->b_hdr;
2904 
2905 	if (zio->io_error == 0 && callback->awcb_ready) {
2906 		ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
2907 		callback->awcb_ready(zio, buf, callback->awcb_private);
2908 	}
2909 	/*
2910 	 * If the IO is already in progress, then this is a re-write
2911 	 * attempt, so we need to thaw and re-compute the cksum. It is
2912 	 * the responsibility of the callback to handle the freeing
2913 	 * and accounting for any re-write attempt. If we don't have a
2914 	 * callback registered then simply free the block here.
2915 	 */
2916 	if (HDR_IO_IN_PROGRESS(hdr)) {
2917 		if (!BP_IS_HOLE(&zio->io_bp_orig) &&
2918 		    callback->awcb_ready == NULL) {
2919 			zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg,
2920 			    &zio->io_bp_orig, NULL, NULL));
2921 		}
2922 		mutex_enter(&hdr->b_freeze_lock);
2923 		if (hdr->b_freeze_cksum != NULL) {
2924 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2925 			hdr->b_freeze_cksum = NULL;
2926 		}
2927 		mutex_exit(&hdr->b_freeze_lock);
2928 	}
2929 	arc_cksum_compute(buf, B_FALSE);
2930 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
2931 }
2932 
2933 static void
2934 arc_write_done(zio_t *zio)
2935 {
2936 	arc_write_callback_t *callback = zio->io_private;
2937 	arc_buf_t *buf = callback->awcb_buf;
2938 	arc_buf_hdr_t *hdr = buf->b_hdr;
2939 
2940 	hdr->b_acb = NULL;
2941 
2942 	/* this buffer is on no lists and is not in the hash table */
2943 	ASSERT3P(hdr->b_state, ==, arc_anon);
2944 
2945 	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
2946 	hdr->b_birth = zio->io_bp->blk_birth;
2947 	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
2948 	/*
2949 	 * If the block to be written was all-zero, we may have
2950 	 * compressed it away.  In this case no write was performed
2951 	 * so there will be no dva/birth-date/checksum.  The buffer
2952 	 * must therefor remain anonymous (and uncached).
2953 	 */
2954 	if (!BUF_EMPTY(hdr)) {
2955 		arc_buf_hdr_t *exists;
2956 		kmutex_t *hash_lock;
2957 
2958 		arc_cksum_verify(buf);
2959 
2960 		exists = buf_hash_insert(hdr, &hash_lock);
2961 		if (exists) {
2962 			/*
2963 			 * This can only happen if we overwrite for
2964 			 * sync-to-convergence, because we remove
2965 			 * buffers from the hash table when we arc_free().
2966 			 */
2967 			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
2968 			    BP_IDENTITY(zio->io_bp)));
2969 			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
2970 			    zio->io_bp->blk_birth);
2971 
2972 			ASSERT(refcount_is_zero(&exists->b_refcnt));
2973 			arc_change_state(arc_anon, exists, hash_lock);
2974 			mutex_exit(hash_lock);
2975 			arc_hdr_destroy(exists);
2976 			exists = buf_hash_insert(hdr, &hash_lock);
2977 			ASSERT3P(exists, ==, NULL);
2978 		}
2979 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2980 		arc_access(hdr, hash_lock);
2981 		mutex_exit(hash_lock);
2982 	} else if (callback->awcb_done == NULL) {
2983 		int destroy_hdr;
2984 		/*
2985 		 * This is an anonymous buffer with no user callback,
2986 		 * destroy it if there are no active references.
2987 		 */
2988 		mutex_enter(&arc_eviction_mtx);
2989 		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
2990 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2991 		mutex_exit(&arc_eviction_mtx);
2992 		if (destroy_hdr)
2993 			arc_hdr_destroy(hdr);
2994 	} else {
2995 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2996 	}
2997 
2998 	if (callback->awcb_done) {
2999 		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3000 		callback->awcb_done(zio, buf, callback->awcb_private);
3001 	}
3002 
3003 	kmem_free(callback, sizeof (arc_write_callback_t));
3004 }
3005 
3006 zio_t *
3007 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies,
3008     uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
3009     arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
3010     int flags, zbookmark_t *zb)
3011 {
3012 	arc_buf_hdr_t *hdr = buf->b_hdr;
3013 	arc_write_callback_t *callback;
3014 	zio_t	*zio;
3015 
3016 	/* this is a private buffer - no locking required */
3017 	ASSERT3P(hdr->b_state, ==, arc_anon);
3018 	ASSERT(BUF_EMPTY(hdr));
3019 	ASSERT(!HDR_IO_ERROR(hdr));
3020 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3021 	ASSERT(hdr->b_acb == 0);
3022 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3023 	callback->awcb_ready = ready;
3024 	callback->awcb_done = done;
3025 	callback->awcb_private = private;
3026 	callback->awcb_buf = buf;
3027 	zio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp,
3028 	    buf->b_data, hdr->b_size, arc_write_ready, arc_write_done, callback,
3029 	    priority, flags, zb);
3030 
3031 	return (zio);
3032 }
3033 
3034 int
3035 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
3036     zio_done_func_t *done, void *private, uint32_t arc_flags)
3037 {
3038 	arc_buf_hdr_t *ab;
3039 	kmutex_t *hash_lock;
3040 	zio_t	*zio;
3041 
3042 	/*
3043 	 * If this buffer is in the cache, release it, so it
3044 	 * can be re-used.
3045 	 */
3046 	ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
3047 	if (ab != NULL) {
3048 		/*
3049 		 * The checksum of blocks to free is not always
3050 		 * preserved (eg. on the deadlist).  However, if it is
3051 		 * nonzero, it should match what we have in the cache.
3052 		 */
3053 		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
3054 		    ab->b_cksum0 == bp->blk_cksum.zc_word[0]);
3055 		if (ab->b_state != arc_anon)
3056 			arc_change_state(arc_anon, ab, hash_lock);
3057 		if (HDR_IO_IN_PROGRESS(ab)) {
3058 			/*
3059 			 * This should only happen when we prefetch.
3060 			 */
3061 			ASSERT(ab->b_flags & ARC_PREFETCH);
3062 			ASSERT3U(ab->b_datacnt, ==, 1);
3063 			ab->b_flags |= ARC_FREED_IN_READ;
3064 			if (HDR_IN_HASH_TABLE(ab))
3065 				buf_hash_remove(ab);
3066 			ab->b_arc_access = 0;
3067 			bzero(&ab->b_dva, sizeof (dva_t));
3068 			ab->b_birth = 0;
3069 			ab->b_cksum0 = 0;
3070 			ab->b_buf->b_efunc = NULL;
3071 			ab->b_buf->b_private = NULL;
3072 			mutex_exit(hash_lock);
3073 		} else if (refcount_is_zero(&ab->b_refcnt)) {
3074 			ab->b_flags |= ARC_FREE_IN_PROGRESS;
3075 			mutex_exit(hash_lock);
3076 			arc_hdr_destroy(ab);
3077 			ARCSTAT_BUMP(arcstat_deleted);
3078 		} else {
3079 			/*
3080 			 * We still have an active reference on this
3081 			 * buffer.  This can happen, e.g., from
3082 			 * dbuf_unoverride().
3083 			 */
3084 			ASSERT(!HDR_IN_HASH_TABLE(ab));
3085 			ab->b_arc_access = 0;
3086 			bzero(&ab->b_dva, sizeof (dva_t));
3087 			ab->b_birth = 0;
3088 			ab->b_cksum0 = 0;
3089 			ab->b_buf->b_efunc = NULL;
3090 			ab->b_buf->b_private = NULL;
3091 			mutex_exit(hash_lock);
3092 		}
3093 	}
3094 
3095 	zio = zio_free(pio, spa, txg, bp, done, private);
3096 
3097 	if (arc_flags & ARC_WAIT)
3098 		return (zio_wait(zio));
3099 
3100 	ASSERT(arc_flags & ARC_NOWAIT);
3101 	zio_nowait(zio);
3102 
3103 	return (0);
3104 }
3105 
3106 static int
3107 arc_memory_throttle(uint64_t reserve, uint64_t txg)
3108 {
3109 #ifdef _KERNEL
3110 	uint64_t inflight_data = arc_anon->arcs_size;
3111 	uint64_t available_memory = ptob(freemem);
3112 	static uint64_t page_load = 0;
3113 	static uint64_t last_txg = 0;
3114 
3115 #if defined(__i386)
3116 	available_memory =
3117 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3118 #endif
3119 	if (available_memory >= zfs_write_limit_max)
3120 		return (0);
3121 
3122 	if (txg > last_txg) {
3123 		last_txg = txg;
3124 		page_load = 0;
3125 	}
3126 	/*
3127 	 * If we are in pageout, we know that memory is already tight,
3128 	 * the arc is already going to be evicting, so we just want to
3129 	 * continue to let page writes occur as quickly as possible.
3130 	 */
3131 	if (curproc == proc_pageout) {
3132 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3133 			return (ERESTART);
3134 		/* Note: reserve is inflated, so we deflate */
3135 		page_load += reserve / 8;
3136 		return (0);
3137 	} else if (page_load > 0 && arc_reclaim_needed()) {
3138 		/* memory is low, delay before restarting */
3139 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3140 		return (EAGAIN);
3141 	}
3142 	page_load = 0;
3143 
3144 	if (arc_size > arc_c_min) {
3145 		uint64_t evictable_memory =
3146 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3147 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3148 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3149 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3150 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3151 	}
3152 
3153 	if (inflight_data > available_memory / 4) {
3154 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3155 		return (ERESTART);
3156 	}
3157 #endif
3158 	return (0);
3159 }
3160 
3161 void
3162 arc_tempreserve_clear(uint64_t reserve)
3163 {
3164 	atomic_add_64(&arc_tempreserve, -reserve);
3165 	ASSERT((int64_t)arc_tempreserve >= 0);
3166 }
3167 
3168 int
3169 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3170 {
3171 	int error;
3172 
3173 #ifdef ZFS_DEBUG
3174 	/*
3175 	 * Once in a while, fail for no reason.  Everything should cope.
3176 	 */
3177 	if (spa_get_random(10000) == 0) {
3178 		dprintf("forcing random failure\n");
3179 		return (ERESTART);
3180 	}
3181 #endif
3182 	if (reserve > arc_c/4 && !arc_no_grow)
3183 		arc_c = MIN(arc_c_max, reserve * 4);
3184 	if (reserve > arc_c)
3185 		return (ENOMEM);
3186 
3187 	/*
3188 	 * Writes will, almost always, require additional memory allocations
3189 	 * in order to compress/encrypt/etc the data.  We therefor need to
3190 	 * make sure that there is sufficient available memory for this.
3191 	 */
3192 	if (error = arc_memory_throttle(reserve, txg))
3193 		return (error);
3194 
3195 	/*
3196 	 * Throttle writes when the amount of dirty data in the cache
3197 	 * gets too large.  We try to keep the cache less than half full
3198 	 * of dirty blocks so that our sync times don't grow too large.
3199 	 * Note: if two requests come in concurrently, we might let them
3200 	 * both succeed, when one of them should fail.  Not a huge deal.
3201 	 */
3202 	if (reserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 &&
3203 	    arc_anon->arcs_size > arc_c / 4) {
3204 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3205 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3206 		    arc_tempreserve>>10,
3207 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3208 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3209 		    reserve>>10, arc_c>>10);
3210 		return (ERESTART);
3211 	}
3212 	atomic_add_64(&arc_tempreserve, reserve);
3213 	return (0);
3214 }
3215 
3216 void
3217 arc_init(void)
3218 {
3219 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3220 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3221 
3222 	/* Convert seconds to clock ticks */
3223 	arc_min_prefetch_lifespan = 1 * hz;
3224 
3225 	/* Start out with 1/8 of all memory */
3226 	arc_c = physmem * PAGESIZE / 8;
3227 
3228 #ifdef _KERNEL
3229 	/*
3230 	 * On architectures where the physical memory can be larger
3231 	 * than the addressable space (intel in 32-bit mode), we may
3232 	 * need to limit the cache to 1/8 of VM size.
3233 	 */
3234 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3235 #endif
3236 
3237 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3238 	arc_c_min = MAX(arc_c / 4, 64<<20);
3239 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3240 	if (arc_c * 8 >= 1<<30)
3241 		arc_c_max = (arc_c * 8) - (1<<30);
3242 	else
3243 		arc_c_max = arc_c_min;
3244 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3245 
3246 	/*
3247 	 * Allow the tunables to override our calculations if they are
3248 	 * reasonable (ie. over 64MB)
3249 	 */
3250 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3251 		arc_c_max = zfs_arc_max;
3252 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3253 		arc_c_min = zfs_arc_min;
3254 
3255 	arc_c = arc_c_max;
3256 	arc_p = (arc_c >> 1);
3257 
3258 	/* limit meta-data to 1/4 of the arc capacity */
3259 	arc_meta_limit = arc_c_max / 4;
3260 
3261 	/* Allow the tunable to override if it is reasonable */
3262 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3263 		arc_meta_limit = zfs_arc_meta_limit;
3264 
3265 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3266 		arc_c_min = arc_meta_limit / 2;
3267 
3268 	/* if kmem_flags are set, lets try to use less memory */
3269 	if (kmem_debugging())
3270 		arc_c = arc_c / 2;
3271 	if (arc_c < arc_c_min)
3272 		arc_c = arc_c_min;
3273 
3274 	arc_anon = &ARC_anon;
3275 	arc_mru = &ARC_mru;
3276 	arc_mru_ghost = &ARC_mru_ghost;
3277 	arc_mfu = &ARC_mfu;
3278 	arc_mfu_ghost = &ARC_mfu_ghost;
3279 	arc_l2c_only = &ARC_l2c_only;
3280 	arc_size = 0;
3281 
3282 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3283 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3284 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3285 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3286 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3287 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3288 
3289 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3290 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3291 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3292 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3293 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3294 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3295 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3296 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3297 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3298 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3299 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3300 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3301 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3302 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3303 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3304 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3305 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3306 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3307 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3308 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3309 
3310 	buf_init();
3311 
3312 	arc_thread_exit = 0;
3313 	arc_eviction_list = NULL;
3314 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3315 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3316 
3317 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3318 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3319 
3320 	if (arc_ksp != NULL) {
3321 		arc_ksp->ks_data = &arc_stats;
3322 		kstat_install(arc_ksp);
3323 	}
3324 
3325 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3326 	    TS_RUN, minclsyspri);
3327 
3328 	arc_dead = FALSE;
3329 
3330 	if (zfs_write_limit_max == 0)
3331 		zfs_write_limit_max = physmem * PAGESIZE >>
3332 		    zfs_write_limit_shift;
3333 	else
3334 		zfs_write_limit_shift = 0;
3335 }
3336 
3337 void
3338 arc_fini(void)
3339 {
3340 	mutex_enter(&arc_reclaim_thr_lock);
3341 	arc_thread_exit = 1;
3342 	while (arc_thread_exit != 0)
3343 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3344 	mutex_exit(&arc_reclaim_thr_lock);
3345 
3346 	arc_flush(NULL);
3347 
3348 	arc_dead = TRUE;
3349 
3350 	if (arc_ksp != NULL) {
3351 		kstat_delete(arc_ksp);
3352 		arc_ksp = NULL;
3353 	}
3354 
3355 	mutex_destroy(&arc_eviction_mtx);
3356 	mutex_destroy(&arc_reclaim_thr_lock);
3357 	cv_destroy(&arc_reclaim_thr_cv);
3358 
3359 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3360 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3361 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3362 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3363 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3364 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3365 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3366 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3367 
3368 	mutex_destroy(&arc_anon->arcs_mtx);
3369 	mutex_destroy(&arc_mru->arcs_mtx);
3370 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3371 	mutex_destroy(&arc_mfu->arcs_mtx);
3372 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3373 
3374 	buf_fini();
3375 }
3376 
3377 /*
3378  * Level 2 ARC
3379  *
3380  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3381  * It uses dedicated storage devices to hold cached data, which are populated
3382  * using large infrequent writes.  The main role of this cache is to boost
3383  * the performance of random read workloads.  The intended L2ARC devices
3384  * include short-stroked disks, solid state disks, and other media with
3385  * substantially faster read latency than disk.
3386  *
3387  *                 +-----------------------+
3388  *                 |         ARC           |
3389  *                 +-----------------------+
3390  *                    |         ^     ^
3391  *                    |         |     |
3392  *      l2arc_feed_thread()    arc_read()
3393  *                    |         |     |
3394  *                    |  l2arc read   |
3395  *                    V         |     |
3396  *               +---------------+    |
3397  *               |     L2ARC     |    |
3398  *               +---------------+    |
3399  *                   |    ^           |
3400  *          l2arc_write() |           |
3401  *                   |    |           |
3402  *                   V    |           |
3403  *                 +-------+      +-------+
3404  *                 | vdev  |      | vdev  |
3405  *                 | cache |      | cache |
3406  *                 +-------+      +-------+
3407  *                 +=========+     .-----.
3408  *                 :  L2ARC  :    |-_____-|
3409  *                 : devices :    | Disks |
3410  *                 +=========+    `-_____-'
3411  *
3412  * Read requests are satisfied from the following sources, in order:
3413  *
3414  *	1) ARC
3415  *	2) vdev cache of L2ARC devices
3416  *	3) L2ARC devices
3417  *	4) vdev cache of disks
3418  *	5) disks
3419  *
3420  * Some L2ARC device types exhibit extremely slow write performance.
3421  * To accommodate for this there are some significant differences between
3422  * the L2ARC and traditional cache design:
3423  *
3424  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3425  * the ARC behave as usual, freeing buffers and placing headers on ghost
3426  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3427  * this would add inflated write latencies for all ARC memory pressure.
3428  *
3429  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3430  * It does this by periodically scanning buffers from the eviction-end of
3431  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3432  * not already there.  It scans until a headroom of buffers is satisfied,
3433  * which itself is a buffer for ARC eviction.  The thread that does this is
3434  * l2arc_feed_thread(), illustrated below; example sizes are included to
3435  * provide a better sense of ratio than this diagram:
3436  *
3437  *	       head -->                        tail
3438  *	        +---------------------+----------+
3439  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3440  *	        +---------------------+----------+   |   o L2ARC eligible
3441  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3442  *	        +---------------------+----------+   |
3443  *	             15.9 Gbytes      ^ 32 Mbytes    |
3444  *	                           headroom          |
3445  *	                                      l2arc_feed_thread()
3446  *	                                             |
3447  *	                 l2arc write hand <--[oooo]--'
3448  *	                         |           8 Mbyte
3449  *	                         |          write max
3450  *	                         V
3451  *		  +==============================+
3452  *	L2ARC dev |####|#|###|###|    |####| ... |
3453  *	          +==============================+
3454  *	                     32 Gbytes
3455  *
3456  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3457  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3458  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3459  * safe to say that this is an uncommon case, since buffers at the end of
3460  * the ARC lists have moved there due to inactivity.
3461  *
3462  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3463  * then the L2ARC simply misses copying some buffers.  This serves as a
3464  * pressure valve to prevent heavy read workloads from both stalling the ARC
3465  * with waits and clogging the L2ARC with writes.  This also helps prevent
3466  * the potential for the L2ARC to churn if it attempts to cache content too
3467  * quickly, such as during backups of the entire pool.
3468  *
3469  * 5. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3470  * the vdev queue can aggregate them into larger and fewer writes.  Each
3471  * device is written to in a rotor fashion, sweeping writes through
3472  * available space then repeating.
3473  *
3474  * 6. The L2ARC does not store dirty content.  It never needs to flush
3475  * write buffers back to disk based storage.
3476  *
3477  * 7. If an ARC buffer is written (and dirtied) which also exists in the
3478  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3479  *
3480  * The performance of the L2ARC can be tweaked by a number of tunables, which
3481  * may be necessary for different workloads:
3482  *
3483  *	l2arc_write_max		max write bytes per interval
3484  *	l2arc_noprefetch	skip caching prefetched buffers
3485  *	l2arc_headroom		number of max device writes to precache
3486  *	l2arc_feed_secs		seconds between L2ARC writing
3487  *
3488  * Tunables may be removed or added as future performance improvements are
3489  * integrated, and also may become zpool properties.
3490  */
3491 
3492 static void
3493 l2arc_hdr_stat_add(void)
3494 {
3495 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3496 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3497 }
3498 
3499 static void
3500 l2arc_hdr_stat_remove(void)
3501 {
3502 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3503 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3504 }
3505 
3506 /*
3507  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3508  * This is called with l2arc_dev_mtx held, which also locks out spa removal.
3509  */
3510 static l2arc_dev_t *
3511 l2arc_dev_get_next(void)
3512 {
3513 	l2arc_dev_t *next, *first;
3514 
3515 	/* if there are no vdevs, there is nothing to do */
3516 	if (l2arc_ndev == 0)
3517 		return (NULL);
3518 
3519 	first = NULL;
3520 	next = l2arc_dev_last;
3521 	do {
3522 		/* loop around the list looking for a non-faulted vdev */
3523 		if (next == NULL) {
3524 			next = list_head(l2arc_dev_list);
3525 		} else {
3526 			next = list_next(l2arc_dev_list, next);
3527 			if (next == NULL)
3528 				next = list_head(l2arc_dev_list);
3529 		}
3530 
3531 		/* if we have come back to the start, bail out */
3532 		if (first == NULL)
3533 			first = next;
3534 		else if (next == first)
3535 			break;
3536 
3537 	} while (vdev_is_dead(next->l2ad_vdev));
3538 
3539 	/* if we were unable to find any usable vdevs, return NULL */
3540 	if (vdev_is_dead(next->l2ad_vdev))
3541 		return (NULL);
3542 
3543 	l2arc_dev_last = next;
3544 
3545 	return (next);
3546 }
3547 
3548 /*
3549  * A write to a cache device has completed.  Update all headers to allow
3550  * reads from these buffers to begin.
3551  */
3552 static void
3553 l2arc_write_done(zio_t *zio)
3554 {
3555 	l2arc_write_callback_t *cb;
3556 	l2arc_dev_t *dev;
3557 	list_t *buflist;
3558 	l2arc_data_free_t *df, *df_prev;
3559 	arc_buf_hdr_t *head, *ab, *ab_prev;
3560 	kmutex_t *hash_lock;
3561 
3562 	cb = zio->io_private;
3563 	ASSERT(cb != NULL);
3564 	dev = cb->l2wcb_dev;
3565 	ASSERT(dev != NULL);
3566 	head = cb->l2wcb_head;
3567 	ASSERT(head != NULL);
3568 	buflist = dev->l2ad_buflist;
3569 	ASSERT(buflist != NULL);
3570 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3571 	    l2arc_write_callback_t *, cb);
3572 
3573 	if (zio->io_error != 0)
3574 		ARCSTAT_BUMP(arcstat_l2_writes_error);
3575 
3576 	mutex_enter(&l2arc_buflist_mtx);
3577 
3578 	/*
3579 	 * All writes completed, or an error was hit.
3580 	 */
3581 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3582 		ab_prev = list_prev(buflist, ab);
3583 
3584 		hash_lock = HDR_LOCK(ab);
3585 		if (!mutex_tryenter(hash_lock)) {
3586 			/*
3587 			 * This buffer misses out.  It may be in a stage
3588 			 * of eviction.  Its ARC_L2_WRITING flag will be
3589 			 * left set, denying reads to this buffer.
3590 			 */
3591 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3592 			continue;
3593 		}
3594 
3595 		if (zio->io_error != 0) {
3596 			/*
3597 			 * Error - invalidate L2ARC entry.
3598 			 */
3599 			ab->b_l2hdr = NULL;
3600 		}
3601 
3602 		/*
3603 		 * Allow ARC to begin reads to this L2ARC entry.
3604 		 */
3605 		ab->b_flags &= ~ARC_L2_WRITING;
3606 
3607 		mutex_exit(hash_lock);
3608 	}
3609 
3610 	atomic_inc_64(&l2arc_writes_done);
3611 	list_remove(buflist, head);
3612 	kmem_cache_free(hdr_cache, head);
3613 	mutex_exit(&l2arc_buflist_mtx);
3614 
3615 	/*
3616 	 * Free buffers that were tagged for destruction.
3617 	 */
3618 	mutex_enter(&l2arc_free_on_write_mtx);
3619 	buflist = l2arc_free_on_write;
3620 	for (df = list_tail(buflist); df; df = df_prev) {
3621 		df_prev = list_prev(buflist, df);
3622 		ASSERT(df->l2df_data != NULL);
3623 		ASSERT(df->l2df_func != NULL);
3624 		df->l2df_func(df->l2df_data, df->l2df_size);
3625 		list_remove(buflist, df);
3626 		kmem_free(df, sizeof (l2arc_data_free_t));
3627 	}
3628 	mutex_exit(&l2arc_free_on_write_mtx);
3629 
3630 	kmem_free(cb, sizeof (l2arc_write_callback_t));
3631 }
3632 
3633 /*
3634  * A read to a cache device completed.  Validate buffer contents before
3635  * handing over to the regular ARC routines.
3636  */
3637 static void
3638 l2arc_read_done(zio_t *zio)
3639 {
3640 	l2arc_read_callback_t *cb;
3641 	arc_buf_hdr_t *hdr;
3642 	arc_buf_t *buf;
3643 	zio_t *rzio;
3644 	kmutex_t *hash_lock;
3645 	int equal, err = 0;
3646 
3647 	cb = zio->io_private;
3648 	ASSERT(cb != NULL);
3649 	buf = cb->l2rcb_buf;
3650 	ASSERT(buf != NULL);
3651 	hdr = buf->b_hdr;
3652 	ASSERT(hdr != NULL);
3653 
3654 	hash_lock = HDR_LOCK(hdr);
3655 	mutex_enter(hash_lock);
3656 
3657 	/*
3658 	 * Check this survived the L2ARC journey.
3659 	 */
3660 	equal = arc_cksum_equal(buf);
3661 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
3662 		mutex_exit(hash_lock);
3663 		zio->io_private = buf;
3664 		arc_read_done(zio);
3665 	} else {
3666 		mutex_exit(hash_lock);
3667 		/*
3668 		 * Buffer didn't survive caching.  Increment stats and
3669 		 * reissue to the original storage device.
3670 		 */
3671 		if (zio->io_error != 0)
3672 			ARCSTAT_BUMP(arcstat_l2_io_error);
3673 		if (!equal)
3674 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
3675 
3676 		zio->io_flags &= ~ZIO_FLAG_DONT_CACHE;
3677 		rzio = zio_read(NULL, cb->l2rcb_spa, &cb->l2rcb_bp,
3678 		    buf->b_data, zio->io_size, arc_read_done, buf,
3679 		    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb);
3680 
3681 		/*
3682 		 * Since this is a seperate thread, we can wait on this
3683 		 * I/O whether there is an io_waiter or not.
3684 		 */
3685 		err = zio_wait(rzio);
3686 
3687 		/*
3688 		 * Let the resent I/O call arc_read_done() instead.
3689 		 * io_error is set to the reissued I/O error status.
3690 		 */
3691 		zio->io_done = NULL;
3692 		zio->io_waiter = NULL;
3693 		zio->io_error = err;
3694 	}
3695 
3696 	kmem_free(cb, sizeof (l2arc_read_callback_t));
3697 }
3698 
3699 /*
3700  * This is the list priority from which the L2ARC will search for pages to
3701  * cache.  This is used within loops (0..3) to cycle through lists in the
3702  * desired order.  This order can have a significant effect on cache
3703  * performance.
3704  *
3705  * Currently the metadata lists are hit first, MFU then MRU, followed by
3706  * the data lists.  This function returns a locked list, and also returns
3707  * the lock pointer.
3708  */
3709 static list_t *
3710 l2arc_list_locked(int list_num, kmutex_t **lock)
3711 {
3712 	list_t *list;
3713 
3714 	ASSERT(list_num >= 0 && list_num <= 3);
3715 
3716 	switch (list_num) {
3717 	case 0:
3718 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
3719 		*lock = &arc_mfu->arcs_mtx;
3720 		break;
3721 	case 1:
3722 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
3723 		*lock = &arc_mru->arcs_mtx;
3724 		break;
3725 	case 2:
3726 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
3727 		*lock = &arc_mfu->arcs_mtx;
3728 		break;
3729 	case 3:
3730 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
3731 		*lock = &arc_mru->arcs_mtx;
3732 		break;
3733 	}
3734 
3735 	ASSERT(!(MUTEX_HELD(*lock)));
3736 	mutex_enter(*lock);
3737 	return (list);
3738 }
3739 
3740 /*
3741  * Evict buffers from the device write hand to the distance specified in
3742  * bytes.  This distance may span populated buffers, it may span nothing.
3743  * This is clearing a region on the L2ARC device ready for writing.
3744  * If the 'all' boolean is set, every buffer is evicted.
3745  */
3746 static void
3747 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
3748 {
3749 	list_t *buflist;
3750 	l2arc_buf_hdr_t *abl2;
3751 	arc_buf_hdr_t *ab, *ab_prev;
3752 	kmutex_t *hash_lock;
3753 	uint64_t taddr;
3754 
3755 	ASSERT(MUTEX_HELD(&l2arc_dev_mtx));
3756 
3757 	buflist = dev->l2ad_buflist;
3758 
3759 	if (buflist == NULL)
3760 		return;
3761 
3762 	if (!all && dev->l2ad_first) {
3763 		/*
3764 		 * This is the first sweep through the device.  There is
3765 		 * nothing to evict.
3766 		 */
3767 		return;
3768 	}
3769 
3770 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * dev->l2ad_write))) {
3771 		/*
3772 		 * When nearing the end of the device, evict to the end
3773 		 * before the device write hand jumps to the start.
3774 		 */
3775 		taddr = dev->l2ad_end;
3776 	} else {
3777 		taddr = dev->l2ad_hand + distance;
3778 	}
3779 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
3780 	    uint64_t, taddr, boolean_t, all);
3781 
3782 top:
3783 	mutex_enter(&l2arc_buflist_mtx);
3784 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
3785 		ab_prev = list_prev(buflist, ab);
3786 
3787 		hash_lock = HDR_LOCK(ab);
3788 		if (!mutex_tryenter(hash_lock)) {
3789 			/*
3790 			 * Missed the hash lock.  Retry.
3791 			 */
3792 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
3793 			mutex_exit(&l2arc_buflist_mtx);
3794 			mutex_enter(hash_lock);
3795 			mutex_exit(hash_lock);
3796 			goto top;
3797 		}
3798 
3799 		if (HDR_L2_WRITE_HEAD(ab)) {
3800 			/*
3801 			 * We hit a write head node.  Leave it for
3802 			 * l2arc_write_done().
3803 			 */
3804 			list_remove(buflist, ab);
3805 			mutex_exit(hash_lock);
3806 			continue;
3807 		}
3808 
3809 		if (!all && ab->b_l2hdr != NULL &&
3810 		    (ab->b_l2hdr->b_daddr > taddr ||
3811 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
3812 			/*
3813 			 * We've evicted to the target address,
3814 			 * or the end of the device.
3815 			 */
3816 			mutex_exit(hash_lock);
3817 			break;
3818 		}
3819 
3820 		if (HDR_FREE_IN_PROGRESS(ab)) {
3821 			/*
3822 			 * Already on the path to destruction.
3823 			 */
3824 			mutex_exit(hash_lock);
3825 			continue;
3826 		}
3827 
3828 		if (ab->b_state == arc_l2c_only) {
3829 			ASSERT(!HDR_L2_READING(ab));
3830 			/*
3831 			 * This doesn't exist in the ARC.  Destroy.
3832 			 * arc_hdr_destroy() will call list_remove()
3833 			 * and decrement arcstat_l2_size.
3834 			 */
3835 			arc_change_state(arc_anon, ab, hash_lock);
3836 			arc_hdr_destroy(ab);
3837 		} else {
3838 			/*
3839 			 * Tell ARC this no longer exists in L2ARC.
3840 			 */
3841 			if (ab->b_l2hdr != NULL) {
3842 				abl2 = ab->b_l2hdr;
3843 				ab->b_l2hdr = NULL;
3844 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3845 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3846 			}
3847 			list_remove(buflist, ab);
3848 
3849 			/*
3850 			 * This may have been leftover after a
3851 			 * failed write.
3852 			 */
3853 			ab->b_flags &= ~ARC_L2_WRITING;
3854 
3855 			/*
3856 			 * Invalidate issued or about to be issued
3857 			 * reads, since we may be about to write
3858 			 * over this location.
3859 			 */
3860 			if (HDR_L2_READING(ab)) {
3861 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
3862 				ab->b_flags |= ARC_L2_EVICTED;
3863 			}
3864 		}
3865 		mutex_exit(hash_lock);
3866 	}
3867 	mutex_exit(&l2arc_buflist_mtx);
3868 
3869 	spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict));
3870 	dev->l2ad_evict = taddr;
3871 }
3872 
3873 /*
3874  * Find and write ARC buffers to the L2ARC device.
3875  *
3876  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
3877  * for reading until they have completed writing.
3878  */
3879 static void
3880 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev)
3881 {
3882 	arc_buf_hdr_t *ab, *ab_prev, *head;
3883 	l2arc_buf_hdr_t *hdrl2;
3884 	list_t *list;
3885 	uint64_t passed_sz, write_sz, buf_sz;
3886 	uint64_t target_sz = dev->l2ad_write;
3887 	uint64_t headroom = dev->l2ad_write * l2arc_headroom;
3888 	void *buf_data;
3889 	kmutex_t *hash_lock, *list_lock;
3890 	boolean_t have_lock, full;
3891 	l2arc_write_callback_t *cb;
3892 	zio_t *pio, *wzio;
3893 
3894 	ASSERT(MUTEX_HELD(&l2arc_dev_mtx));
3895 	ASSERT(dev->l2ad_vdev != NULL);
3896 
3897 	pio = NULL;
3898 	write_sz = 0;
3899 	full = B_FALSE;
3900 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3901 	head->b_flags |= ARC_L2_WRITE_HEAD;
3902 
3903 	/*
3904 	 * Copy buffers for L2ARC writing.
3905 	 */
3906 	mutex_enter(&l2arc_buflist_mtx);
3907 	for (int try = 0; try <= 3; try++) {
3908 		list = l2arc_list_locked(try, &list_lock);
3909 		passed_sz = 0;
3910 
3911 		for (ab = list_tail(list); ab; ab = ab_prev) {
3912 			ab_prev = list_prev(list, ab);
3913 
3914 			hash_lock = HDR_LOCK(ab);
3915 			have_lock = MUTEX_HELD(hash_lock);
3916 			if (!have_lock && !mutex_tryenter(hash_lock)) {
3917 				/*
3918 				 * Skip this buffer rather than waiting.
3919 				 */
3920 				continue;
3921 			}
3922 
3923 			passed_sz += ab->b_size;
3924 			if (passed_sz > headroom) {
3925 				/*
3926 				 * Searched too far.
3927 				 */
3928 				mutex_exit(hash_lock);
3929 				break;
3930 			}
3931 
3932 			if (ab->b_spa != spa) {
3933 				mutex_exit(hash_lock);
3934 				continue;
3935 			}
3936 
3937 			if (ab->b_l2hdr != NULL) {
3938 				/*
3939 				 * Already in L2ARC.
3940 				 */
3941 				mutex_exit(hash_lock);
3942 				continue;
3943 			}
3944 
3945 			if (HDR_IO_IN_PROGRESS(ab) || HDR_DONT_L2CACHE(ab)) {
3946 				mutex_exit(hash_lock);
3947 				continue;
3948 			}
3949 
3950 			if ((write_sz + ab->b_size) > target_sz) {
3951 				full = B_TRUE;
3952 				mutex_exit(hash_lock);
3953 				break;
3954 			}
3955 
3956 			if (ab->b_buf == NULL) {
3957 				DTRACE_PROBE1(l2arc__buf__null, void *, ab);
3958 				mutex_exit(hash_lock);
3959 				continue;
3960 			}
3961 
3962 			if (pio == NULL) {
3963 				/*
3964 				 * Insert a dummy header on the buflist so
3965 				 * l2arc_write_done() can find where the
3966 				 * write buffers begin without searching.
3967 				 */
3968 				list_insert_head(dev->l2ad_buflist, head);
3969 
3970 				cb = kmem_alloc(
3971 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
3972 				cb->l2wcb_dev = dev;
3973 				cb->l2wcb_head = head;
3974 				pio = zio_root(spa, l2arc_write_done, cb,
3975 				    ZIO_FLAG_CANFAIL);
3976 			}
3977 
3978 			/*
3979 			 * Create and add a new L2ARC header.
3980 			 */
3981 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
3982 			hdrl2->b_dev = dev;
3983 			hdrl2->b_daddr = dev->l2ad_hand;
3984 
3985 			ab->b_flags |= ARC_L2_WRITING;
3986 			ab->b_l2hdr = hdrl2;
3987 			list_insert_head(dev->l2ad_buflist, ab);
3988 			buf_data = ab->b_buf->b_data;
3989 			buf_sz = ab->b_size;
3990 
3991 			/*
3992 			 * Compute and store the buffer cksum before
3993 			 * writing.  On debug the cksum is verified first.
3994 			 */
3995 			arc_cksum_verify(ab->b_buf);
3996 			arc_cksum_compute(ab->b_buf, B_TRUE);
3997 
3998 			mutex_exit(hash_lock);
3999 
4000 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4001 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4002 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4003 			    ZIO_FLAG_CANFAIL, B_FALSE);
4004 
4005 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4006 			    zio_t *, wzio);
4007 			(void) zio_nowait(wzio);
4008 
4009 			write_sz += buf_sz;
4010 			dev->l2ad_hand += buf_sz;
4011 		}
4012 
4013 		mutex_exit(list_lock);
4014 
4015 		if (full == B_TRUE)
4016 			break;
4017 	}
4018 	mutex_exit(&l2arc_buflist_mtx);
4019 
4020 	if (pio == NULL) {
4021 		ASSERT3U(write_sz, ==, 0);
4022 		kmem_cache_free(hdr_cache, head);
4023 		return;
4024 	}
4025 
4026 	ASSERT3U(write_sz, <=, target_sz);
4027 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4028 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4029 	spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz);
4030 
4031 	/*
4032 	 * Bump device hand to the device start if it is approaching the end.
4033 	 * l2arc_evict() will already have evicted ahead for this case.
4034 	 */
4035 	if (dev->l2ad_hand >= (dev->l2ad_end - dev->l2ad_write)) {
4036 		spa_l2cache_space_update(dev->l2ad_vdev, 0,
4037 		    dev->l2ad_end - dev->l2ad_hand);
4038 		dev->l2ad_hand = dev->l2ad_start;
4039 		dev->l2ad_evict = dev->l2ad_start;
4040 		dev->l2ad_first = B_FALSE;
4041 	}
4042 
4043 	(void) zio_wait(pio);
4044 }
4045 
4046 /*
4047  * This thread feeds the L2ARC at regular intervals.  This is the beating
4048  * heart of the L2ARC.
4049  */
4050 static void
4051 l2arc_feed_thread(void)
4052 {
4053 	callb_cpr_t cpr;
4054 	l2arc_dev_t *dev;
4055 	spa_t *spa;
4056 	int interval;
4057 	boolean_t startup = B_TRUE;
4058 
4059 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4060 
4061 	mutex_enter(&l2arc_feed_thr_lock);
4062 
4063 	while (l2arc_thread_exit == 0) {
4064 		/*
4065 		 * Initially pause for L2ARC_FEED_DELAY seconds as a grace
4066 		 * interval during boot, followed by l2arc_feed_secs seconds
4067 		 * thereafter.
4068 		 */
4069 		CALLB_CPR_SAFE_BEGIN(&cpr);
4070 		if (startup) {
4071 			interval = L2ARC_FEED_DELAY;
4072 			startup = B_FALSE;
4073 		} else {
4074 			interval = l2arc_feed_secs;
4075 		}
4076 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4077 		    lbolt + (hz * interval));
4078 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4079 
4080 		mutex_enter(&l2arc_dev_mtx);
4081 
4082 		/*
4083 		 * This selects the next l2arc device to write to, and in
4084 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4085 		 * will return NULL if there are no l2arc devices or if they
4086 		 * are all faulted.
4087 		 */
4088 		if ((dev = l2arc_dev_get_next()) == NULL) {
4089 			mutex_exit(&l2arc_dev_mtx);
4090 			continue;
4091 		}
4092 
4093 		/*
4094 		 * Avoid contributing to memory pressure.
4095 		 */
4096 		if (arc_reclaim_needed()) {
4097 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4098 			mutex_exit(&l2arc_dev_mtx);
4099 			continue;
4100 		}
4101 
4102 		spa = dev->l2ad_spa;
4103 		ASSERT(spa != NULL);
4104 		ARCSTAT_BUMP(arcstat_l2_feeds);
4105 
4106 		/*
4107 		 * Evict L2ARC buffers that will be overwritten.
4108 		 */
4109 		l2arc_evict(dev, dev->l2ad_write, B_FALSE);
4110 
4111 		/*
4112 		 * Write ARC buffers.
4113 		 */
4114 		l2arc_write_buffers(spa, dev);
4115 		mutex_exit(&l2arc_dev_mtx);
4116 	}
4117 
4118 	l2arc_thread_exit = 0;
4119 	cv_broadcast(&l2arc_feed_thr_cv);
4120 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4121 	thread_exit();
4122 }
4123 
4124 boolean_t
4125 l2arc_vdev_present(vdev_t *vd)
4126 {
4127 	l2arc_dev_t *dev;
4128 
4129 	mutex_enter(&l2arc_dev_mtx);
4130 	for (dev = list_head(l2arc_dev_list); dev != NULL;
4131 	    dev = list_next(l2arc_dev_list, dev)) {
4132 		if (dev->l2ad_vdev == vd)
4133 			break;
4134 	}
4135 	mutex_exit(&l2arc_dev_mtx);
4136 
4137 	return (dev != NULL);
4138 }
4139 
4140 /*
4141  * Add a vdev for use by the L2ARC.  By this point the spa has already
4142  * validated the vdev and opened it.
4143  */
4144 void
4145 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end)
4146 {
4147 	l2arc_dev_t *adddev;
4148 
4149 	ASSERT(!l2arc_vdev_present(vd));
4150 
4151 	/*
4152 	 * Create a new l2arc device entry.
4153 	 */
4154 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4155 	adddev->l2ad_spa = spa;
4156 	adddev->l2ad_vdev = vd;
4157 	adddev->l2ad_write = l2arc_write_max;
4158 	adddev->l2ad_start = start;
4159 	adddev->l2ad_end = end;
4160 	adddev->l2ad_hand = adddev->l2ad_start;
4161 	adddev->l2ad_evict = adddev->l2ad_start;
4162 	adddev->l2ad_first = B_TRUE;
4163 	ASSERT3U(adddev->l2ad_write, >, 0);
4164 
4165 	/*
4166 	 * This is a list of all ARC buffers that are still valid on the
4167 	 * device.
4168 	 */
4169 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4170 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4171 	    offsetof(arc_buf_hdr_t, b_l2node));
4172 
4173 	spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0);
4174 
4175 	/*
4176 	 * Add device to global list
4177 	 */
4178 	mutex_enter(&l2arc_dev_mtx);
4179 	list_insert_head(l2arc_dev_list, adddev);
4180 	atomic_inc_64(&l2arc_ndev);
4181 	mutex_exit(&l2arc_dev_mtx);
4182 }
4183 
4184 /*
4185  * Remove a vdev from the L2ARC.
4186  */
4187 void
4188 l2arc_remove_vdev(vdev_t *vd)
4189 {
4190 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4191 
4192 	/*
4193 	 * We can only grab the spa config lock when cache device writes
4194 	 * complete.
4195 	 */
4196 	ASSERT3U(l2arc_writes_sent, ==, l2arc_writes_done);
4197 
4198 	/*
4199 	 * Find the device by vdev
4200 	 */
4201 	mutex_enter(&l2arc_dev_mtx);
4202 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4203 		nextdev = list_next(l2arc_dev_list, dev);
4204 		if (vd == dev->l2ad_vdev) {
4205 			remdev = dev;
4206 			break;
4207 		}
4208 	}
4209 	ASSERT(remdev != NULL);
4210 
4211 	/*
4212 	 * Remove device from global list
4213 	 */
4214 	list_remove(l2arc_dev_list, remdev);
4215 	l2arc_dev_last = NULL;		/* may have been invalidated */
4216 
4217 	/*
4218 	 * Clear all buflists and ARC references.  L2ARC device flush.
4219 	 */
4220 	l2arc_evict(remdev, 0, B_TRUE);
4221 	list_destroy(remdev->l2ad_buflist);
4222 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4223 	kmem_free(remdev, sizeof (l2arc_dev_t));
4224 
4225 	atomic_dec_64(&l2arc_ndev);
4226 	mutex_exit(&l2arc_dev_mtx);
4227 }
4228 
4229 void
4230 l2arc_init()
4231 {
4232 	l2arc_thread_exit = 0;
4233 	l2arc_ndev = 0;
4234 	l2arc_writes_sent = 0;
4235 	l2arc_writes_done = 0;
4236 
4237 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4238 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4239 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4240 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4241 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4242 
4243 	l2arc_dev_list = &L2ARC_dev_list;
4244 	l2arc_free_on_write = &L2ARC_free_on_write;
4245 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4246 	    offsetof(l2arc_dev_t, l2ad_node));
4247 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4248 	    offsetof(l2arc_data_free_t, l2df_list_node));
4249 
4250 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4251 	    TS_RUN, minclsyspri);
4252 }
4253 
4254 void
4255 l2arc_fini()
4256 {
4257 	mutex_enter(&l2arc_feed_thr_lock);
4258 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4259 	l2arc_thread_exit = 1;
4260 	while (l2arc_thread_exit != 0)
4261 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4262 	mutex_exit(&l2arc_feed_thr_lock);
4263 
4264 	mutex_destroy(&l2arc_feed_thr_lock);
4265 	cv_destroy(&l2arc_feed_thr_cv);
4266 	mutex_destroy(&l2arc_dev_mtx);
4267 	mutex_destroy(&l2arc_buflist_mtx);
4268 	mutex_destroy(&l2arc_free_on_write_mtx);
4269 
4270 	list_destroy(l2arc_dev_list);
4271 	list_destroy(l2arc_free_on_write);
4272 }
4273