xref: /titanic_50/usr/src/uts/common/fs/zfs/arc.c (revision c84711f464cd92ef542fb5985f1cc9cd919fe008)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * DVA-based Adjustable Replacement Cache
30  *
31  * While much of the theory of operation used here is
32  * based on the self-tuning, low overhead replacement cache
33  * presented by Megiddo and Modha at FAST 2003, there are some
34  * significant differences:
35  *
36  * 1. The Megiddo and Modha model assumes any page is evictable.
37  * Pages in its cache cannot be "locked" into memory.  This makes
38  * the eviction algorithm simple: evict the last page in the list.
39  * This also make the performance characteristics easy to reason
40  * about.  Our cache is not so simple.  At any given moment, some
41  * subset of the blocks in the cache are un-evictable because we
42  * have handed out a reference to them.  Blocks are only evictable
43  * when there are no external references active.  This makes
44  * eviction far more problematic:  we choose to evict the evictable
45  * blocks that are the "lowest" in the list.
46  *
47  * There are times when it is not possible to evict the requested
48  * space.  In these circumstances we are unable to adjust the cache
49  * size.  To prevent the cache growing unbounded at these times we
50  * implement a "cache throttle" that slowes the flow of new data
51  * into the cache until we can make space avaiable.
52  *
53  * 2. The Megiddo and Modha model assumes a fixed cache size.
54  * Pages are evicted when the cache is full and there is a cache
55  * miss.  Our model has a variable sized cache.  It grows with
56  * high use, but also tries to react to memory preasure from the
57  * operating system: decreasing its size when system memory is
58  * tight.
59  *
60  * 3. The Megiddo and Modha model assumes a fixed page size. All
61  * elements of the cache are therefor exactly the same size.  So
62  * when adjusting the cache size following a cache miss, its simply
63  * a matter of choosing a single page to evict.  In our model, we
64  * have variable sized cache blocks (rangeing from 512 bytes to
65  * 128K bytes).  We therefor choose a set of blocks to evict to make
66  * space for a cache miss that approximates as closely as possible
67  * the space used by the new block.
68  *
69  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70  * by N. Megiddo & D. Modha, FAST 2003
71  */
72 
73 /*
74  * The locking model:
75  *
76  * A new reference to a cache buffer can be obtained in two
77  * ways: 1) via a hash table lookup using the DVA as a key,
78  * or 2) via one of the ARC lists.  The arc_read() inerface
79  * uses method 1, while the internal arc algorithms for
80  * adjusting the cache use method 2.  We therefor provide two
81  * types of locks: 1) the hash table lock array, and 2) the
82  * arc list locks.
83  *
84  * Buffers do not have their own mutexs, rather they rely on the
85  * hash table mutexs for the bulk of their protection (i.e. most
86  * fields in the arc_buf_hdr_t are protected by these mutexs).
87  *
88  * buf_hash_find() returns the appropriate mutex (held) when it
89  * locates the requested buffer in the hash table.  It returns
90  * NULL for the mutex if the buffer was not in the table.
91  *
92  * buf_hash_remove() expects the appropriate hash mutex to be
93  * already held before it is invoked.
94  *
95  * Each arc state also has a mutex which is used to protect the
96  * buffer list associated with the state.  When attempting to
97  * obtain a hash table lock while holding an arc list lock you
98  * must use: mutex_tryenter() to avoid deadlock.  Also note that
99  * the active state mutex must be held before the ghost state mutex.
100  *
101  * Arc buffers may have an associated eviction callback function.
102  * This function will be invoked prior to removing the buffer (e.g.
103  * in arc_do_user_evicts()).  Note however that the data associated
104  * with the buffer may be evicted prior to the callback.  The callback
105  * must be made with *no locks held* (to prevent deadlock).  Additionally,
106  * the users of callbacks must ensure that their private data is
107  * protected from simultaneous callbacks from arc_buf_evict()
108  * and arc_do_user_evicts().
109  *
110  * Note that the majority of the performance stats are manipulated
111  * with atomic operations.
112  */
113 
114 #include <sys/spa.h>
115 #include <sys/zio.h>
116 #include <sys/zio_checksum.h>
117 #include <sys/zfs_context.h>
118 #include <sys/arc.h>
119 #include <sys/refcount.h>
120 #ifdef _KERNEL
121 #include <sys/vmsystm.h>
122 #include <vm/anon.h>
123 #include <sys/fs/swapnode.h>
124 #include <sys/dnlc.h>
125 #endif
126 #include <sys/callb.h>
127 #include <sys/kstat.h>
128 
129 static kmutex_t		arc_reclaim_thr_lock;
130 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
131 static uint8_t		arc_thread_exit;
132 
133 #define	ARC_REDUCE_DNLC_PERCENT	3
134 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
135 
136 typedef enum arc_reclaim_strategy {
137 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
138 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
139 } arc_reclaim_strategy_t;
140 
141 /* number of seconds before growing cache again */
142 static int		arc_grow_retry = 60;
143 
144 /*
145  * minimum lifespan of a prefetch block in clock ticks
146  * (initialized in arc_init())
147  */
148 static int		arc_min_prefetch_lifespan;
149 
150 static int arc_dead;
151 
152 /*
153  * These tunables are for performance analysis.
154  */
155 uint64_t zfs_arc_max;
156 uint64_t zfs_arc_min;
157 
158 /*
159  * Note that buffers can be in one of 5 states:
160  *	ARC_anon	- anonymous (discussed below)
161  *	ARC_mru		- recently used, currently cached
162  *	ARC_mru_ghost	- recentely used, no longer in cache
163  *	ARC_mfu		- frequently used, currently cached
164  *	ARC_mfu_ghost	- frequently used, no longer in cache
165  * When there are no active references to the buffer, they are
166  * are linked onto a list in one of these arc states.  These are
167  * the only buffers that can be evicted or deleted.  Within each
168  * state there are multiple lists, one for meta-data and one for
169  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
170  * etc.) is tracked separately so that it can be managed more
171  * explicitly: favored over data, limited explicitely.
172  *
173  * Anonymous buffers are buffers that are not associated with
174  * a DVA.  These are buffers that hold dirty block copies
175  * before they are written to stable storage.  By definition,
176  * they are "ref'd" and are considered part of arc_mru
177  * that cannot be freed.  Generally, they will aquire a DVA
178  * as they are written and migrate onto the arc_mru list.
179  */
180 
181 typedef struct arc_state {
182 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
183 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
184 	uint64_t arcs_size;	/* total amount of data in this state */
185 	kmutex_t arcs_mtx;
186 } arc_state_t;
187 
188 /* The 5 states: */
189 static arc_state_t ARC_anon;
190 static arc_state_t ARC_mru;
191 static arc_state_t ARC_mru_ghost;
192 static arc_state_t ARC_mfu;
193 static arc_state_t ARC_mfu_ghost;
194 
195 typedef struct arc_stats {
196 	kstat_named_t arcstat_hits;
197 	kstat_named_t arcstat_misses;
198 	kstat_named_t arcstat_demand_data_hits;
199 	kstat_named_t arcstat_demand_data_misses;
200 	kstat_named_t arcstat_demand_metadata_hits;
201 	kstat_named_t arcstat_demand_metadata_misses;
202 	kstat_named_t arcstat_prefetch_data_hits;
203 	kstat_named_t arcstat_prefetch_data_misses;
204 	kstat_named_t arcstat_prefetch_metadata_hits;
205 	kstat_named_t arcstat_prefetch_metadata_misses;
206 	kstat_named_t arcstat_mru_hits;
207 	kstat_named_t arcstat_mru_ghost_hits;
208 	kstat_named_t arcstat_mfu_hits;
209 	kstat_named_t arcstat_mfu_ghost_hits;
210 	kstat_named_t arcstat_deleted;
211 	kstat_named_t arcstat_recycle_miss;
212 	kstat_named_t arcstat_mutex_miss;
213 	kstat_named_t arcstat_evict_skip;
214 	kstat_named_t arcstat_hash_elements;
215 	kstat_named_t arcstat_hash_elements_max;
216 	kstat_named_t arcstat_hash_collisions;
217 	kstat_named_t arcstat_hash_chains;
218 	kstat_named_t arcstat_hash_chain_max;
219 	kstat_named_t arcstat_p;
220 	kstat_named_t arcstat_c;
221 	kstat_named_t arcstat_c_min;
222 	kstat_named_t arcstat_c_max;
223 	kstat_named_t arcstat_size;
224 } arc_stats_t;
225 
226 static arc_stats_t arc_stats = {
227 	{ "hits",			KSTAT_DATA_UINT64 },
228 	{ "misses",			KSTAT_DATA_UINT64 },
229 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
230 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
231 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
232 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
233 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
234 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
235 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
236 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
237 	{ "mru_hits",			KSTAT_DATA_UINT64 },
238 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
239 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
240 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
241 	{ "deleted",			KSTAT_DATA_UINT64 },
242 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
243 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
244 	{ "evict_skip",			KSTAT_DATA_UINT64 },
245 	{ "hash_elements",		KSTAT_DATA_UINT64 },
246 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
247 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
248 	{ "hash_chains",		KSTAT_DATA_UINT64 },
249 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
250 	{ "p",				KSTAT_DATA_UINT64 },
251 	{ "c",				KSTAT_DATA_UINT64 },
252 	{ "c_min",			KSTAT_DATA_UINT64 },
253 	{ "c_max",			KSTAT_DATA_UINT64 },
254 	{ "size",			KSTAT_DATA_UINT64 }
255 };
256 
257 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
258 
259 #define	ARCSTAT_INCR(stat, val) \
260 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
261 
262 #define	ARCSTAT_BUMP(stat) 	ARCSTAT_INCR(stat, 1)
263 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
264 
265 #define	ARCSTAT_MAX(stat, val) {					\
266 	uint64_t m;							\
267 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
268 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
269 		continue;						\
270 }
271 
272 #define	ARCSTAT_MAXSTAT(stat) \
273 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
274 
275 /*
276  * We define a macro to allow ARC hits/misses to be easily broken down by
277  * two separate conditions, giving a total of four different subtypes for
278  * each of hits and misses (so eight statistics total).
279  */
280 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
281 	if (cond1) {							\
282 		if (cond2) {						\
283 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
284 		} else {						\
285 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
286 		}							\
287 	} else {							\
288 		if (cond2) {						\
289 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
290 		} else {						\
291 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
292 		}							\
293 	}
294 
295 kstat_t			*arc_ksp;
296 static arc_state_t 	*arc_anon;
297 static arc_state_t	*arc_mru;
298 static arc_state_t	*arc_mru_ghost;
299 static arc_state_t	*arc_mfu;
300 static arc_state_t	*arc_mfu_ghost;
301 
302 /*
303  * There are several ARC variables that are critical to export as kstats --
304  * but we don't want to have to grovel around in the kstat whenever we wish to
305  * manipulate them.  For these variables, we therefore define them to be in
306  * terms of the statistic variable.  This assures that we are not introducing
307  * the possibility of inconsistency by having shadow copies of the variables,
308  * while still allowing the code to be readable.
309  */
310 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
311 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
312 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
313 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
314 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
315 
316 static int		arc_no_grow;	/* Don't try to grow cache size */
317 static uint64_t		arc_tempreserve;
318 static uint64_t		arc_meta_used;
319 static uint64_t		arc_meta_limit;
320 static uint64_t		arc_meta_max = 0;
321 
322 typedef struct arc_callback arc_callback_t;
323 
324 struct arc_callback {
325 	void			*acb_private;
326 	arc_done_func_t		*acb_done;
327 	arc_byteswap_func_t	*acb_byteswap;
328 	arc_buf_t		*acb_buf;
329 	zio_t			*acb_zio_dummy;
330 	arc_callback_t		*acb_next;
331 };
332 
333 typedef struct arc_write_callback arc_write_callback_t;
334 
335 struct arc_write_callback {
336 	void		*awcb_private;
337 	arc_done_func_t	*awcb_ready;
338 	arc_done_func_t	*awcb_done;
339 	arc_buf_t	*awcb_buf;
340 };
341 
342 struct arc_buf_hdr {
343 	/* protected by hash lock */
344 	dva_t			b_dva;
345 	uint64_t		b_birth;
346 	uint64_t		b_cksum0;
347 
348 	kmutex_t		b_freeze_lock;
349 	zio_cksum_t		*b_freeze_cksum;
350 
351 	arc_buf_hdr_t		*b_hash_next;
352 	arc_buf_t		*b_buf;
353 	uint32_t		b_flags;
354 	uint32_t		b_datacnt;
355 
356 	arc_callback_t		*b_acb;
357 	kcondvar_t		b_cv;
358 
359 	/* immutable */
360 	arc_buf_contents_t	b_type;
361 	uint64_t		b_size;
362 	spa_t			*b_spa;
363 
364 	/* protected by arc state mutex */
365 	arc_state_t		*b_state;
366 	list_node_t		b_arc_node;
367 
368 	/* updated atomically */
369 	clock_t			b_arc_access;
370 
371 	/* self protecting */
372 	refcount_t		b_refcnt;
373 };
374 
375 static arc_buf_t *arc_eviction_list;
376 static kmutex_t arc_eviction_mtx;
377 static arc_buf_hdr_t arc_eviction_hdr;
378 static void arc_get_data_buf(arc_buf_t *buf);
379 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
380 static int arc_evict_needed(arc_buf_contents_t type);
381 
382 #define	GHOST_STATE(state)	\
383 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost)
384 
385 /*
386  * Private ARC flags.  These flags are private ARC only flags that will show up
387  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
388  * be passed in as arc_flags in things like arc_read.  However, these flags
389  * should never be passed and should only be set by ARC code.  When adding new
390  * public flags, make sure not to smash the private ones.
391  */
392 
393 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
394 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
395 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
396 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
397 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
398 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
399 
400 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
401 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
402 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
403 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
404 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
405 
406 /*
407  * Hash table routines
408  */
409 
410 #define	HT_LOCK_PAD	64
411 
412 struct ht_lock {
413 	kmutex_t	ht_lock;
414 #ifdef _KERNEL
415 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
416 #endif
417 };
418 
419 #define	BUF_LOCKS 256
420 typedef struct buf_hash_table {
421 	uint64_t ht_mask;
422 	arc_buf_hdr_t **ht_table;
423 	struct ht_lock ht_locks[BUF_LOCKS];
424 } buf_hash_table_t;
425 
426 static buf_hash_table_t buf_hash_table;
427 
428 #define	BUF_HASH_INDEX(spa, dva, birth) \
429 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
430 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
431 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
432 #define	HDR_LOCK(buf) \
433 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
434 
435 uint64_t zfs_crc64_table[256];
436 
437 static uint64_t
438 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth)
439 {
440 	uintptr_t spav = (uintptr_t)spa;
441 	uint8_t *vdva = (uint8_t *)dva;
442 	uint64_t crc = -1ULL;
443 	int i;
444 
445 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
446 
447 	for (i = 0; i < sizeof (dva_t); i++)
448 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
449 
450 	crc ^= (spav>>8) ^ birth;
451 
452 	return (crc);
453 }
454 
455 #define	BUF_EMPTY(buf)						\
456 	((buf)->b_dva.dva_word[0] == 0 &&			\
457 	(buf)->b_dva.dva_word[1] == 0 &&			\
458 	(buf)->b_birth == 0)
459 
460 #define	BUF_EQUAL(spa, dva, birth, buf)				\
461 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
462 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
463 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
464 
465 static arc_buf_hdr_t *
466 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp)
467 {
468 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
469 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
470 	arc_buf_hdr_t *buf;
471 
472 	mutex_enter(hash_lock);
473 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
474 	    buf = buf->b_hash_next) {
475 		if (BUF_EQUAL(spa, dva, birth, buf)) {
476 			*lockp = hash_lock;
477 			return (buf);
478 		}
479 	}
480 	mutex_exit(hash_lock);
481 	*lockp = NULL;
482 	return (NULL);
483 }
484 
485 /*
486  * Insert an entry into the hash table.  If there is already an element
487  * equal to elem in the hash table, then the already existing element
488  * will be returned and the new element will not be inserted.
489  * Otherwise returns NULL.
490  */
491 static arc_buf_hdr_t *
492 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
493 {
494 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
495 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
496 	arc_buf_hdr_t *fbuf;
497 	uint32_t i;
498 
499 	ASSERT(!HDR_IN_HASH_TABLE(buf));
500 	*lockp = hash_lock;
501 	mutex_enter(hash_lock);
502 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
503 	    fbuf = fbuf->b_hash_next, i++) {
504 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
505 			return (fbuf);
506 	}
507 
508 	buf->b_hash_next = buf_hash_table.ht_table[idx];
509 	buf_hash_table.ht_table[idx] = buf;
510 	buf->b_flags |= ARC_IN_HASH_TABLE;
511 
512 	/* collect some hash table performance data */
513 	if (i > 0) {
514 		ARCSTAT_BUMP(arcstat_hash_collisions);
515 		if (i == 1)
516 			ARCSTAT_BUMP(arcstat_hash_chains);
517 
518 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
519 	}
520 
521 	ARCSTAT_BUMP(arcstat_hash_elements);
522 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
523 
524 	return (NULL);
525 }
526 
527 static void
528 buf_hash_remove(arc_buf_hdr_t *buf)
529 {
530 	arc_buf_hdr_t *fbuf, **bufp;
531 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
532 
533 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
534 	ASSERT(HDR_IN_HASH_TABLE(buf));
535 
536 	bufp = &buf_hash_table.ht_table[idx];
537 	while ((fbuf = *bufp) != buf) {
538 		ASSERT(fbuf != NULL);
539 		bufp = &fbuf->b_hash_next;
540 	}
541 	*bufp = buf->b_hash_next;
542 	buf->b_hash_next = NULL;
543 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
544 
545 	/* collect some hash table performance data */
546 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
547 
548 	if (buf_hash_table.ht_table[idx] &&
549 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
550 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
551 }
552 
553 /*
554  * Global data structures and functions for the buf kmem cache.
555  */
556 static kmem_cache_t *hdr_cache;
557 static kmem_cache_t *buf_cache;
558 
559 static void
560 buf_fini(void)
561 {
562 	int i;
563 
564 	kmem_free(buf_hash_table.ht_table,
565 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
566 	for (i = 0; i < BUF_LOCKS; i++)
567 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
568 	kmem_cache_destroy(hdr_cache);
569 	kmem_cache_destroy(buf_cache);
570 }
571 
572 /*
573  * Constructor callback - called when the cache is empty
574  * and a new buf is requested.
575  */
576 /* ARGSUSED */
577 static int
578 hdr_cons(void *vbuf, void *unused, int kmflag)
579 {
580 	arc_buf_hdr_t *buf = vbuf;
581 
582 	bzero(buf, sizeof (arc_buf_hdr_t));
583 	refcount_create(&buf->b_refcnt);
584 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
585 	return (0);
586 }
587 
588 /*
589  * Destructor callback - called when a cached buf is
590  * no longer required.
591  */
592 /* ARGSUSED */
593 static void
594 hdr_dest(void *vbuf, void *unused)
595 {
596 	arc_buf_hdr_t *buf = vbuf;
597 
598 	refcount_destroy(&buf->b_refcnt);
599 	cv_destroy(&buf->b_cv);
600 }
601 
602 /*
603  * Reclaim callback -- invoked when memory is low.
604  */
605 /* ARGSUSED */
606 static void
607 hdr_recl(void *unused)
608 {
609 	dprintf("hdr_recl called\n");
610 	/*
611 	 * umem calls the reclaim func when we destroy the buf cache,
612 	 * which is after we do arc_fini().
613 	 */
614 	if (!arc_dead)
615 		cv_signal(&arc_reclaim_thr_cv);
616 }
617 
618 static void
619 buf_init(void)
620 {
621 	uint64_t *ct;
622 	uint64_t hsize = 1ULL << 12;
623 	int i, j;
624 
625 	/*
626 	 * The hash table is big enough to fill all of physical memory
627 	 * with an average 64K block size.  The table will take up
628 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
629 	 */
630 	while (hsize * 65536 < physmem * PAGESIZE)
631 		hsize <<= 1;
632 retry:
633 	buf_hash_table.ht_mask = hsize - 1;
634 	buf_hash_table.ht_table =
635 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
636 	if (buf_hash_table.ht_table == NULL) {
637 		ASSERT(hsize > (1ULL << 8));
638 		hsize >>= 1;
639 		goto retry;
640 	}
641 
642 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
643 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
644 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
645 	    0, NULL, NULL, NULL, NULL, NULL, 0);
646 
647 	for (i = 0; i < 256; i++)
648 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
649 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
650 
651 	for (i = 0; i < BUF_LOCKS; i++) {
652 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
653 		    NULL, MUTEX_DEFAULT, NULL);
654 	}
655 }
656 
657 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
658 
659 static void
660 arc_cksum_verify(arc_buf_t *buf)
661 {
662 	zio_cksum_t zc;
663 
664 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
665 		return;
666 
667 	mutex_enter(&buf->b_hdr->b_freeze_lock);
668 	if (buf->b_hdr->b_freeze_cksum == NULL ||
669 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
670 		mutex_exit(&buf->b_hdr->b_freeze_lock);
671 		return;
672 	}
673 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
674 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
675 		panic("buffer modified while frozen!");
676 	mutex_exit(&buf->b_hdr->b_freeze_lock);
677 }
678 
679 static void
680 arc_cksum_compute(arc_buf_t *buf)
681 {
682 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
683 		return;
684 
685 	mutex_enter(&buf->b_hdr->b_freeze_lock);
686 	if (buf->b_hdr->b_freeze_cksum != NULL) {
687 		mutex_exit(&buf->b_hdr->b_freeze_lock);
688 		return;
689 	}
690 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
691 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
692 	    buf->b_hdr->b_freeze_cksum);
693 	mutex_exit(&buf->b_hdr->b_freeze_lock);
694 }
695 
696 void
697 arc_buf_thaw(arc_buf_t *buf)
698 {
699 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
700 		return;
701 
702 	if (buf->b_hdr->b_state != arc_anon)
703 		panic("modifying non-anon buffer!");
704 	if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
705 		panic("modifying buffer while i/o in progress!");
706 	arc_cksum_verify(buf);
707 	mutex_enter(&buf->b_hdr->b_freeze_lock);
708 	if (buf->b_hdr->b_freeze_cksum != NULL) {
709 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
710 		buf->b_hdr->b_freeze_cksum = NULL;
711 	}
712 	mutex_exit(&buf->b_hdr->b_freeze_lock);
713 }
714 
715 void
716 arc_buf_freeze(arc_buf_t *buf)
717 {
718 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
719 		return;
720 
721 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
722 	    buf->b_hdr->b_state == arc_anon);
723 	arc_cksum_compute(buf);
724 }
725 
726 static void
727 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
728 {
729 	ASSERT(MUTEX_HELD(hash_lock));
730 
731 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
732 	    (ab->b_state != arc_anon)) {
733 		uint64_t delta = ab->b_size * ab->b_datacnt;
734 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
735 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
736 
737 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
738 		mutex_enter(&ab->b_state->arcs_mtx);
739 		ASSERT(list_link_active(&ab->b_arc_node));
740 		list_remove(list, ab);
741 		if (GHOST_STATE(ab->b_state)) {
742 			ASSERT3U(ab->b_datacnt, ==, 0);
743 			ASSERT3P(ab->b_buf, ==, NULL);
744 			delta = ab->b_size;
745 		}
746 		ASSERT(delta > 0);
747 		ASSERT3U(*size, >=, delta);
748 		atomic_add_64(size, -delta);
749 		mutex_exit(&ab->b_state->arcs_mtx);
750 		/* remove the prefetch flag is we get a reference */
751 		if (ab->b_flags & ARC_PREFETCH)
752 			ab->b_flags &= ~ARC_PREFETCH;
753 	}
754 }
755 
756 static int
757 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
758 {
759 	int cnt;
760 	arc_state_t *state = ab->b_state;
761 
762 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
763 	ASSERT(!GHOST_STATE(state));
764 
765 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
766 	    (state != arc_anon)) {
767 		uint64_t *size = &state->arcs_lsize[ab->b_type];
768 
769 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
770 		mutex_enter(&state->arcs_mtx);
771 		ASSERT(!list_link_active(&ab->b_arc_node));
772 		list_insert_head(&state->arcs_list[ab->b_type], ab);
773 		ASSERT(ab->b_datacnt > 0);
774 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
775 		mutex_exit(&state->arcs_mtx);
776 	}
777 	return (cnt);
778 }
779 
780 /*
781  * Move the supplied buffer to the indicated state.  The mutex
782  * for the buffer must be held by the caller.
783  */
784 static void
785 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
786 {
787 	arc_state_t *old_state = ab->b_state;
788 	int64_t refcnt = refcount_count(&ab->b_refcnt);
789 	uint64_t from_delta, to_delta;
790 
791 	ASSERT(MUTEX_HELD(hash_lock));
792 	ASSERT(new_state != old_state);
793 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
794 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
795 
796 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
797 
798 	/*
799 	 * If this buffer is evictable, transfer it from the
800 	 * old state list to the new state list.
801 	 */
802 	if (refcnt == 0) {
803 		if (old_state != arc_anon) {
804 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
805 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
806 
807 			if (use_mutex)
808 				mutex_enter(&old_state->arcs_mtx);
809 
810 			ASSERT(list_link_active(&ab->b_arc_node));
811 			list_remove(&old_state->arcs_list[ab->b_type], ab);
812 
813 			/*
814 			 * If prefetching out of the ghost cache,
815 			 * we will have a non-null datacnt.
816 			 */
817 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
818 				/* ghost elements have a ghost size */
819 				ASSERT(ab->b_buf == NULL);
820 				from_delta = ab->b_size;
821 			}
822 			ASSERT3U(*size, >=, from_delta);
823 			atomic_add_64(size, -from_delta);
824 
825 			if (use_mutex)
826 				mutex_exit(&old_state->arcs_mtx);
827 		}
828 		if (new_state != arc_anon) {
829 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
830 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
831 
832 			if (use_mutex)
833 				mutex_enter(&new_state->arcs_mtx);
834 
835 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
836 
837 			/* ghost elements have a ghost size */
838 			if (GHOST_STATE(new_state)) {
839 				ASSERT(ab->b_datacnt == 0);
840 				ASSERT(ab->b_buf == NULL);
841 				to_delta = ab->b_size;
842 			}
843 			atomic_add_64(size, to_delta);
844 			ASSERT3U(new_state->arcs_size + to_delta, >=, *size);
845 
846 			if (use_mutex)
847 				mutex_exit(&new_state->arcs_mtx);
848 		}
849 	}
850 
851 	ASSERT(!BUF_EMPTY(ab));
852 	if (new_state == arc_anon && old_state != arc_anon) {
853 		buf_hash_remove(ab);
854 	}
855 
856 	/* adjust state sizes */
857 	if (to_delta)
858 		atomic_add_64(&new_state->arcs_size, to_delta);
859 	if (from_delta) {
860 		ASSERT3U(old_state->arcs_size, >=, from_delta);
861 		atomic_add_64(&old_state->arcs_size, -from_delta);
862 	}
863 	ab->b_state = new_state;
864 }
865 
866 void
867 arc_space_consume(uint64_t space)
868 {
869 	atomic_add_64(&arc_meta_used, space);
870 	atomic_add_64(&arc_size, space);
871 }
872 
873 void
874 arc_space_return(uint64_t space)
875 {
876 	ASSERT(arc_meta_used >= space);
877 	if (arc_meta_max < arc_meta_used)
878 		arc_meta_max = arc_meta_used;
879 	atomic_add_64(&arc_meta_used, -space);
880 	ASSERT(arc_size >= space);
881 	atomic_add_64(&arc_size, -space);
882 }
883 
884 void *
885 arc_data_buf_alloc(uint64_t size)
886 {
887 	if (arc_evict_needed(ARC_BUFC_DATA))
888 		cv_signal(&arc_reclaim_thr_cv);
889 	atomic_add_64(&arc_size, size);
890 	return (zio_data_buf_alloc(size));
891 }
892 
893 void
894 arc_data_buf_free(void *buf, uint64_t size)
895 {
896 	zio_data_buf_free(buf, size);
897 	ASSERT(arc_size >= size);
898 	atomic_add_64(&arc_size, -size);
899 }
900 
901 arc_buf_t *
902 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
903 {
904 	arc_buf_hdr_t *hdr;
905 	arc_buf_t *buf;
906 
907 	ASSERT3U(size, >, 0);
908 	hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
909 	ASSERT(BUF_EMPTY(hdr));
910 	hdr->b_size = size;
911 	hdr->b_type = type;
912 	hdr->b_spa = spa;
913 	hdr->b_state = arc_anon;
914 	hdr->b_arc_access = 0;
915 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
916 	buf->b_hdr = hdr;
917 	buf->b_data = NULL;
918 	buf->b_efunc = NULL;
919 	buf->b_private = NULL;
920 	buf->b_next = NULL;
921 	hdr->b_buf = buf;
922 	arc_get_data_buf(buf);
923 	hdr->b_datacnt = 1;
924 	hdr->b_flags = 0;
925 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
926 	(void) refcount_add(&hdr->b_refcnt, tag);
927 
928 	return (buf);
929 }
930 
931 static arc_buf_t *
932 arc_buf_clone(arc_buf_t *from)
933 {
934 	arc_buf_t *buf;
935 	arc_buf_hdr_t *hdr = from->b_hdr;
936 	uint64_t size = hdr->b_size;
937 
938 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
939 	buf->b_hdr = hdr;
940 	buf->b_data = NULL;
941 	buf->b_efunc = NULL;
942 	buf->b_private = NULL;
943 	buf->b_next = hdr->b_buf;
944 	hdr->b_buf = buf;
945 	arc_get_data_buf(buf);
946 	bcopy(from->b_data, buf->b_data, size);
947 	hdr->b_datacnt += 1;
948 	return (buf);
949 }
950 
951 void
952 arc_buf_add_ref(arc_buf_t *buf, void* tag)
953 {
954 	arc_buf_hdr_t *hdr;
955 	kmutex_t *hash_lock;
956 
957 	/*
958 	 * Check to see if this buffer is currently being evicted via
959 	 * arc_do_user_evicts().
960 	 */
961 	mutex_enter(&arc_eviction_mtx);
962 	hdr = buf->b_hdr;
963 	if (hdr == NULL) {
964 		mutex_exit(&arc_eviction_mtx);
965 		return;
966 	}
967 	hash_lock = HDR_LOCK(hdr);
968 	mutex_exit(&arc_eviction_mtx);
969 
970 	mutex_enter(hash_lock);
971 	if (buf->b_data == NULL) {
972 		/*
973 		 * This buffer is evicted.
974 		 */
975 		mutex_exit(hash_lock);
976 		return;
977 	}
978 
979 	ASSERT(buf->b_hdr == hdr);
980 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
981 	add_reference(hdr, hash_lock, tag);
982 	arc_access(hdr, hash_lock);
983 	mutex_exit(hash_lock);
984 	ARCSTAT_BUMP(arcstat_hits);
985 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
986 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
987 	    data, metadata, hits);
988 }
989 
990 static void
991 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
992 {
993 	arc_buf_t **bufp;
994 
995 	/* free up data associated with the buf */
996 	if (buf->b_data) {
997 		arc_state_t *state = buf->b_hdr->b_state;
998 		uint64_t size = buf->b_hdr->b_size;
999 		arc_buf_contents_t type = buf->b_hdr->b_type;
1000 
1001 		arc_cksum_verify(buf);
1002 		if (!recycle) {
1003 			if (type == ARC_BUFC_METADATA) {
1004 				zio_buf_free(buf->b_data, size);
1005 				arc_space_return(size);
1006 			} else {
1007 				ASSERT(type == ARC_BUFC_DATA);
1008 				zio_data_buf_free(buf->b_data, size);
1009 				atomic_add_64(&arc_size, -size);
1010 			}
1011 		}
1012 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1013 			uint64_t *cnt = &state->arcs_lsize[type];
1014 
1015 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1016 			ASSERT(state != arc_anon);
1017 
1018 			ASSERT3U(*cnt, >=, size);
1019 			atomic_add_64(cnt, -size);
1020 		}
1021 		ASSERT3U(state->arcs_size, >=, size);
1022 		atomic_add_64(&state->arcs_size, -size);
1023 		buf->b_data = NULL;
1024 		ASSERT(buf->b_hdr->b_datacnt > 0);
1025 		buf->b_hdr->b_datacnt -= 1;
1026 	}
1027 
1028 	/* only remove the buf if requested */
1029 	if (!all)
1030 		return;
1031 
1032 	/* remove the buf from the hdr list */
1033 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1034 		continue;
1035 	*bufp = buf->b_next;
1036 
1037 	ASSERT(buf->b_efunc == NULL);
1038 
1039 	/* clean up the buf */
1040 	buf->b_hdr = NULL;
1041 	kmem_cache_free(buf_cache, buf);
1042 }
1043 
1044 static void
1045 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1046 {
1047 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1048 	ASSERT3P(hdr->b_state, ==, arc_anon);
1049 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1050 
1051 	if (!BUF_EMPTY(hdr)) {
1052 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1053 		bzero(&hdr->b_dva, sizeof (dva_t));
1054 		hdr->b_birth = 0;
1055 		hdr->b_cksum0 = 0;
1056 	}
1057 	while (hdr->b_buf) {
1058 		arc_buf_t *buf = hdr->b_buf;
1059 
1060 		if (buf->b_efunc) {
1061 			mutex_enter(&arc_eviction_mtx);
1062 			ASSERT(buf->b_hdr != NULL);
1063 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1064 			hdr->b_buf = buf->b_next;
1065 			buf->b_hdr = &arc_eviction_hdr;
1066 			buf->b_next = arc_eviction_list;
1067 			arc_eviction_list = buf;
1068 			mutex_exit(&arc_eviction_mtx);
1069 		} else {
1070 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1071 		}
1072 	}
1073 	if (hdr->b_freeze_cksum != NULL) {
1074 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1075 		hdr->b_freeze_cksum = NULL;
1076 	}
1077 
1078 	ASSERT(!list_link_active(&hdr->b_arc_node));
1079 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1080 	ASSERT3P(hdr->b_acb, ==, NULL);
1081 	kmem_cache_free(hdr_cache, hdr);
1082 }
1083 
1084 void
1085 arc_buf_free(arc_buf_t *buf, void *tag)
1086 {
1087 	arc_buf_hdr_t *hdr = buf->b_hdr;
1088 	int hashed = hdr->b_state != arc_anon;
1089 
1090 	ASSERT(buf->b_efunc == NULL);
1091 	ASSERT(buf->b_data != NULL);
1092 
1093 	if (hashed) {
1094 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1095 
1096 		mutex_enter(hash_lock);
1097 		(void) remove_reference(hdr, hash_lock, tag);
1098 		if (hdr->b_datacnt > 1)
1099 			arc_buf_destroy(buf, FALSE, TRUE);
1100 		else
1101 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1102 		mutex_exit(hash_lock);
1103 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1104 		int destroy_hdr;
1105 		/*
1106 		 * We are in the middle of an async write.  Don't destroy
1107 		 * this buffer unless the write completes before we finish
1108 		 * decrementing the reference count.
1109 		 */
1110 		mutex_enter(&arc_eviction_mtx);
1111 		(void) remove_reference(hdr, NULL, tag);
1112 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1113 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1114 		mutex_exit(&arc_eviction_mtx);
1115 		if (destroy_hdr)
1116 			arc_hdr_destroy(hdr);
1117 	} else {
1118 		if (remove_reference(hdr, NULL, tag) > 0) {
1119 			ASSERT(HDR_IO_ERROR(hdr));
1120 			arc_buf_destroy(buf, FALSE, TRUE);
1121 		} else {
1122 			arc_hdr_destroy(hdr);
1123 		}
1124 	}
1125 }
1126 
1127 int
1128 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1129 {
1130 	arc_buf_hdr_t *hdr = buf->b_hdr;
1131 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1132 	int no_callback = (buf->b_efunc == NULL);
1133 
1134 	if (hdr->b_state == arc_anon) {
1135 		arc_buf_free(buf, tag);
1136 		return (no_callback);
1137 	}
1138 
1139 	mutex_enter(hash_lock);
1140 	ASSERT(hdr->b_state != arc_anon);
1141 	ASSERT(buf->b_data != NULL);
1142 
1143 	(void) remove_reference(hdr, hash_lock, tag);
1144 	if (hdr->b_datacnt > 1) {
1145 		if (no_callback)
1146 			arc_buf_destroy(buf, FALSE, TRUE);
1147 	} else if (no_callback) {
1148 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1149 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1150 	}
1151 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1152 	    refcount_is_zero(&hdr->b_refcnt));
1153 	mutex_exit(hash_lock);
1154 	return (no_callback);
1155 }
1156 
1157 int
1158 arc_buf_size(arc_buf_t *buf)
1159 {
1160 	return (buf->b_hdr->b_size);
1161 }
1162 
1163 /*
1164  * Evict buffers from list until we've removed the specified number of
1165  * bytes.  Move the removed buffers to the appropriate evict state.
1166  * If the recycle flag is set, then attempt to "recycle" a buffer:
1167  * - look for a buffer to evict that is `bytes' long.
1168  * - return the data block from this buffer rather than freeing it.
1169  * This flag is used by callers that are trying to make space for a
1170  * new buffer in a full arc cache.
1171  */
1172 static void *
1173 arc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle,
1174     arc_buf_contents_t type)
1175 {
1176 	arc_state_t *evicted_state;
1177 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1178 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1179 	list_t *list = &state->arcs_list[type];
1180 	kmutex_t *hash_lock;
1181 	boolean_t have_lock;
1182 	void *stolen = NULL;
1183 
1184 	ASSERT(state == arc_mru || state == arc_mfu);
1185 
1186 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1187 
1188 	mutex_enter(&state->arcs_mtx);
1189 	mutex_enter(&evicted_state->arcs_mtx);
1190 
1191 	for (ab = list_tail(list); ab; ab = ab_prev) {
1192 		ab_prev = list_prev(list, ab);
1193 		/* prefetch buffers have a minimum lifespan */
1194 		if (HDR_IO_IN_PROGRESS(ab) ||
1195 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1196 		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1197 			skipped++;
1198 			continue;
1199 		}
1200 		/* "lookahead" for better eviction candidate */
1201 		if (recycle && ab->b_size != bytes &&
1202 		    ab_prev && ab_prev->b_size == bytes)
1203 			continue;
1204 		hash_lock = HDR_LOCK(ab);
1205 		have_lock = MUTEX_HELD(hash_lock);
1206 		if (have_lock || mutex_tryenter(hash_lock)) {
1207 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1208 			ASSERT(ab->b_datacnt > 0);
1209 			while (ab->b_buf) {
1210 				arc_buf_t *buf = ab->b_buf;
1211 				if (buf->b_data) {
1212 					bytes_evicted += ab->b_size;
1213 					if (recycle && ab->b_type == type &&
1214 					    ab->b_size == bytes) {
1215 						stolen = buf->b_data;
1216 						recycle = FALSE;
1217 					}
1218 				}
1219 				if (buf->b_efunc) {
1220 					mutex_enter(&arc_eviction_mtx);
1221 					arc_buf_destroy(buf,
1222 					    buf->b_data == stolen, FALSE);
1223 					ab->b_buf = buf->b_next;
1224 					buf->b_hdr = &arc_eviction_hdr;
1225 					buf->b_next = arc_eviction_list;
1226 					arc_eviction_list = buf;
1227 					mutex_exit(&arc_eviction_mtx);
1228 				} else {
1229 					arc_buf_destroy(buf,
1230 					    buf->b_data == stolen, TRUE);
1231 				}
1232 			}
1233 			ASSERT(ab->b_datacnt == 0);
1234 			arc_change_state(evicted_state, ab, hash_lock);
1235 			ASSERT(HDR_IN_HASH_TABLE(ab));
1236 			ab->b_flags = ARC_IN_HASH_TABLE;
1237 			DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1238 			if (!have_lock)
1239 				mutex_exit(hash_lock);
1240 			if (bytes >= 0 && bytes_evicted >= bytes)
1241 				break;
1242 		} else {
1243 			missed += 1;
1244 		}
1245 	}
1246 
1247 	mutex_exit(&evicted_state->arcs_mtx);
1248 	mutex_exit(&state->arcs_mtx);
1249 
1250 	if (bytes_evicted < bytes)
1251 		dprintf("only evicted %lld bytes from %x",
1252 		    (longlong_t)bytes_evicted, state);
1253 
1254 	if (skipped)
1255 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1256 
1257 	if (missed)
1258 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1259 
1260 	return (stolen);
1261 }
1262 
1263 /*
1264  * Remove buffers from list until we've removed the specified number of
1265  * bytes.  Destroy the buffers that are removed.
1266  */
1267 static void
1268 arc_evict_ghost(arc_state_t *state, int64_t bytes)
1269 {
1270 	arc_buf_hdr_t *ab, *ab_prev;
1271 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1272 	kmutex_t *hash_lock;
1273 	uint64_t bytes_deleted = 0;
1274 	uint64_t bufs_skipped = 0;
1275 
1276 	ASSERT(GHOST_STATE(state));
1277 top:
1278 	mutex_enter(&state->arcs_mtx);
1279 	for (ab = list_tail(list); ab; ab = ab_prev) {
1280 		ab_prev = list_prev(list, ab);
1281 		hash_lock = HDR_LOCK(ab);
1282 		if (mutex_tryenter(hash_lock)) {
1283 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1284 			ASSERT(ab->b_buf == NULL);
1285 			arc_change_state(arc_anon, ab, hash_lock);
1286 			mutex_exit(hash_lock);
1287 			ARCSTAT_BUMP(arcstat_deleted);
1288 			bytes_deleted += ab->b_size;
1289 			arc_hdr_destroy(ab);
1290 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1291 			if (bytes >= 0 && bytes_deleted >= bytes)
1292 				break;
1293 		} else {
1294 			if (bytes < 0) {
1295 				mutex_exit(&state->arcs_mtx);
1296 				mutex_enter(hash_lock);
1297 				mutex_exit(hash_lock);
1298 				goto top;
1299 			}
1300 			bufs_skipped += 1;
1301 		}
1302 	}
1303 	mutex_exit(&state->arcs_mtx);
1304 
1305 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1306 	    (bytes < 0 || bytes_deleted < bytes)) {
1307 		list = &state->arcs_list[ARC_BUFC_METADATA];
1308 		goto top;
1309 	}
1310 
1311 	if (bufs_skipped) {
1312 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1313 		ASSERT(bytes >= 0);
1314 	}
1315 
1316 	if (bytes_deleted < bytes)
1317 		dprintf("only deleted %lld bytes from %p",
1318 		    (longlong_t)bytes_deleted, state);
1319 }
1320 
1321 static void
1322 arc_adjust(void)
1323 {
1324 	int64_t top_sz, mru_over, arc_over, todelete;
1325 
1326 	top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1327 
1328 	if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1329 		int64_t toevict =
1330 		    MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], top_sz - arc_p);
1331 		(void) arc_evict(arc_mru, toevict, FALSE, ARC_BUFC_DATA);
1332 		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1333 	}
1334 
1335 	if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1336 		int64_t toevict =
1337 		    MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], top_sz - arc_p);
1338 		(void) arc_evict(arc_mru, toevict, FALSE, ARC_BUFC_METADATA);
1339 		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1340 	}
1341 
1342 	mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c;
1343 
1344 	if (mru_over > 0) {
1345 		if (arc_mru_ghost->arcs_size > 0) {
1346 			todelete = MIN(arc_mru_ghost->arcs_size, mru_over);
1347 			arc_evict_ghost(arc_mru_ghost, todelete);
1348 		}
1349 	}
1350 
1351 	if ((arc_over = arc_size - arc_c) > 0) {
1352 		int64_t tbl_over;
1353 
1354 		if (arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1355 			int64_t toevict =
1356 			    MIN(arc_mfu->arcs_lsize[ARC_BUFC_DATA], arc_over);
1357 			(void) arc_evict(arc_mfu, toevict, FALSE,
1358 			    ARC_BUFC_DATA);
1359 			arc_over = arc_size - arc_c;
1360 		}
1361 
1362 		if (arc_over > 0 &&
1363 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1364 			int64_t toevict =
1365 			    MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA],
1366 			    arc_over);
1367 			(void) arc_evict(arc_mfu, toevict, FALSE,
1368 			    ARC_BUFC_METADATA);
1369 		}
1370 
1371 		tbl_over = arc_size + arc_mru_ghost->arcs_size +
1372 		    arc_mfu_ghost->arcs_size - arc_c * 2;
1373 
1374 		if (tbl_over > 0 && arc_mfu_ghost->arcs_size > 0) {
1375 			todelete = MIN(arc_mfu_ghost->arcs_size, tbl_over);
1376 			arc_evict_ghost(arc_mfu_ghost, todelete);
1377 		}
1378 	}
1379 }
1380 
1381 static void
1382 arc_do_user_evicts(void)
1383 {
1384 	mutex_enter(&arc_eviction_mtx);
1385 	while (arc_eviction_list != NULL) {
1386 		arc_buf_t *buf = arc_eviction_list;
1387 		arc_eviction_list = buf->b_next;
1388 		buf->b_hdr = NULL;
1389 		mutex_exit(&arc_eviction_mtx);
1390 
1391 		if (buf->b_efunc != NULL)
1392 			VERIFY(buf->b_efunc(buf) == 0);
1393 
1394 		buf->b_efunc = NULL;
1395 		buf->b_private = NULL;
1396 		kmem_cache_free(buf_cache, buf);
1397 		mutex_enter(&arc_eviction_mtx);
1398 	}
1399 	mutex_exit(&arc_eviction_mtx);
1400 }
1401 
1402 /*
1403  * Flush all *evictable* data from the cache.
1404  * NOTE: this will not touch "active" (i.e. referenced) data.
1405  */
1406 void
1407 arc_flush(void)
1408 {
1409 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA]))
1410 		(void) arc_evict(arc_mru, -1, FALSE, ARC_BUFC_DATA);
1411 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA]))
1412 		(void) arc_evict(arc_mru, -1, FALSE, ARC_BUFC_METADATA);
1413 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA]))
1414 		(void) arc_evict(arc_mfu, -1, FALSE, ARC_BUFC_DATA);
1415 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA]))
1416 		(void) arc_evict(arc_mfu, -1, FALSE, ARC_BUFC_METADATA);
1417 
1418 	arc_evict_ghost(arc_mru_ghost, -1);
1419 	arc_evict_ghost(arc_mfu_ghost, -1);
1420 
1421 	mutex_enter(&arc_reclaim_thr_lock);
1422 	arc_do_user_evicts();
1423 	mutex_exit(&arc_reclaim_thr_lock);
1424 	ASSERT(arc_eviction_list == NULL);
1425 }
1426 
1427 int arc_shrink_shift = 5;		/* log2(fraction of arc to reclaim) */
1428 
1429 void
1430 arc_shrink(void)
1431 {
1432 	if (arc_c > arc_c_min) {
1433 		uint64_t to_free;
1434 
1435 #ifdef _KERNEL
1436 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1437 #else
1438 		to_free = arc_c >> arc_shrink_shift;
1439 #endif
1440 		if (arc_c > arc_c_min + to_free)
1441 			atomic_add_64(&arc_c, -to_free);
1442 		else
1443 			arc_c = arc_c_min;
1444 
1445 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1446 		if (arc_c > arc_size)
1447 			arc_c = MAX(arc_size, arc_c_min);
1448 		if (arc_p > arc_c)
1449 			arc_p = (arc_c >> 1);
1450 		ASSERT(arc_c >= arc_c_min);
1451 		ASSERT((int64_t)arc_p >= 0);
1452 	}
1453 
1454 	if (arc_size > arc_c)
1455 		arc_adjust();
1456 }
1457 
1458 static int
1459 arc_reclaim_needed(void)
1460 {
1461 	uint64_t extra;
1462 
1463 #ifdef _KERNEL
1464 
1465 	if (needfree)
1466 		return (1);
1467 
1468 	/*
1469 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1470 	 */
1471 	extra = desfree;
1472 
1473 	/*
1474 	 * check that we're out of range of the pageout scanner.  It starts to
1475 	 * schedule paging if freemem is less than lotsfree and needfree.
1476 	 * lotsfree is the high-water mark for pageout, and needfree is the
1477 	 * number of needed free pages.  We add extra pages here to make sure
1478 	 * the scanner doesn't start up while we're freeing memory.
1479 	 */
1480 	if (freemem < lotsfree + needfree + extra)
1481 		return (1);
1482 
1483 	/*
1484 	 * check to make sure that swapfs has enough space so that anon
1485 	 * reservations can still succeeed. anon_resvmem() checks that the
1486 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1487 	 * swap pages.  We also add a bit of extra here just to prevent
1488 	 * circumstances from getting really dire.
1489 	 */
1490 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1491 		return (1);
1492 
1493 #if defined(__i386)
1494 	/*
1495 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1496 	 * kernel heap space before we ever run out of available physical
1497 	 * memory.  Most checks of the size of the heap_area compare against
1498 	 * tune.t_minarmem, which is the minimum available real memory that we
1499 	 * can have in the system.  However, this is generally fixed at 25 pages
1500 	 * which is so low that it's useless.  In this comparison, we seek to
1501 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1502 	 * heap is allocated.  (Or, in the caclulation, if less than 1/4th is
1503 	 * free)
1504 	 */
1505 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1506 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1507 		return (1);
1508 #endif
1509 
1510 #else
1511 	if (spa_get_random(100) == 0)
1512 		return (1);
1513 #endif
1514 	return (0);
1515 }
1516 
1517 static void
1518 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1519 {
1520 	size_t			i;
1521 	kmem_cache_t		*prev_cache = NULL;
1522 	kmem_cache_t		*prev_data_cache = NULL;
1523 	extern kmem_cache_t	*zio_buf_cache[];
1524 	extern kmem_cache_t	*zio_data_buf_cache[];
1525 
1526 #ifdef _KERNEL
1527 	if (arc_meta_used >= arc_meta_limit) {
1528 		/*
1529 		 * We are exceeding our meta-data cache limit.
1530 		 * Purge some DNLC entries to release holds on meta-data.
1531 		 */
1532 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1533 	}
1534 #if defined(__i386)
1535 	/*
1536 	 * Reclaim unused memory from all kmem caches.
1537 	 */
1538 	kmem_reap();
1539 #endif
1540 #endif
1541 
1542 	/*
1543 	 * An agressive reclamation will shrink the cache size as well as
1544 	 * reap free buffers from the arc kmem caches.
1545 	 */
1546 	if (strat == ARC_RECLAIM_AGGR)
1547 		arc_shrink();
1548 
1549 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1550 		if (zio_buf_cache[i] != prev_cache) {
1551 			prev_cache = zio_buf_cache[i];
1552 			kmem_cache_reap_now(zio_buf_cache[i]);
1553 		}
1554 		if (zio_data_buf_cache[i] != prev_data_cache) {
1555 			prev_data_cache = zio_data_buf_cache[i];
1556 			kmem_cache_reap_now(zio_data_buf_cache[i]);
1557 		}
1558 	}
1559 	kmem_cache_reap_now(buf_cache);
1560 	kmem_cache_reap_now(hdr_cache);
1561 }
1562 
1563 static void
1564 arc_reclaim_thread(void)
1565 {
1566 	clock_t			growtime = 0;
1567 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1568 	callb_cpr_t		cpr;
1569 
1570 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1571 
1572 	mutex_enter(&arc_reclaim_thr_lock);
1573 	while (arc_thread_exit == 0) {
1574 		if (arc_reclaim_needed()) {
1575 
1576 			if (arc_no_grow) {
1577 				if (last_reclaim == ARC_RECLAIM_CONS) {
1578 					last_reclaim = ARC_RECLAIM_AGGR;
1579 				} else {
1580 					last_reclaim = ARC_RECLAIM_CONS;
1581 				}
1582 			} else {
1583 				arc_no_grow = TRUE;
1584 				last_reclaim = ARC_RECLAIM_AGGR;
1585 				membar_producer();
1586 			}
1587 
1588 			/* reset the growth delay for every reclaim */
1589 			growtime = lbolt + (arc_grow_retry * hz);
1590 
1591 			arc_kmem_reap_now(last_reclaim);
1592 
1593 		} else if (arc_no_grow && lbolt >= growtime) {
1594 			arc_no_grow = FALSE;
1595 		}
1596 
1597 		if (2 * arc_c < arc_size +
1598 		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
1599 			arc_adjust();
1600 
1601 		if (arc_eviction_list != NULL)
1602 			arc_do_user_evicts();
1603 
1604 		/* block until needed, or one second, whichever is shorter */
1605 		CALLB_CPR_SAFE_BEGIN(&cpr);
1606 		(void) cv_timedwait(&arc_reclaim_thr_cv,
1607 		    &arc_reclaim_thr_lock, (lbolt + hz));
1608 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1609 	}
1610 
1611 	arc_thread_exit = 0;
1612 	cv_broadcast(&arc_reclaim_thr_cv);
1613 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
1614 	thread_exit();
1615 }
1616 
1617 /*
1618  * Adapt arc info given the number of bytes we are trying to add and
1619  * the state that we are comming from.  This function is only called
1620  * when we are adding new content to the cache.
1621  */
1622 static void
1623 arc_adapt(int bytes, arc_state_t *state)
1624 {
1625 	int mult;
1626 
1627 	ASSERT(bytes > 0);
1628 	/*
1629 	 * Adapt the target size of the MRU list:
1630 	 *	- if we just hit in the MRU ghost list, then increase
1631 	 *	  the target size of the MRU list.
1632 	 *	- if we just hit in the MFU ghost list, then increase
1633 	 *	  the target size of the MFU list by decreasing the
1634 	 *	  target size of the MRU list.
1635 	 */
1636 	if (state == arc_mru_ghost) {
1637 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
1638 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
1639 
1640 		arc_p = MIN(arc_c, arc_p + bytes * mult);
1641 	} else if (state == arc_mfu_ghost) {
1642 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
1643 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
1644 
1645 		arc_p = MAX(0, (int64_t)arc_p - bytes * mult);
1646 	}
1647 	ASSERT((int64_t)arc_p >= 0);
1648 
1649 	if (arc_reclaim_needed()) {
1650 		cv_signal(&arc_reclaim_thr_cv);
1651 		return;
1652 	}
1653 
1654 	if (arc_no_grow)
1655 		return;
1656 
1657 	if (arc_c >= arc_c_max)
1658 		return;
1659 
1660 	/*
1661 	 * If we're within (2 * maxblocksize) bytes of the target
1662 	 * cache size, increment the target cache size
1663 	 */
1664 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
1665 		atomic_add_64(&arc_c, (int64_t)bytes);
1666 		if (arc_c > arc_c_max)
1667 			arc_c = arc_c_max;
1668 		else if (state == arc_anon)
1669 			atomic_add_64(&arc_p, (int64_t)bytes);
1670 		if (arc_p > arc_c)
1671 			arc_p = arc_c;
1672 	}
1673 	ASSERT((int64_t)arc_p >= 0);
1674 }
1675 
1676 /*
1677  * Check if the cache has reached its limits and eviction is required
1678  * prior to insert.
1679  */
1680 static int
1681 arc_evict_needed(arc_buf_contents_t type)
1682 {
1683 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
1684 		return (1);
1685 
1686 #ifdef _KERNEL
1687 	/*
1688 	 * If zio data pages are being allocated out of a separate heap segment,
1689 	 * then enforce that the size of available vmem for this area remains
1690 	 * above about 1/32nd free.
1691 	 */
1692 	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
1693 	    vmem_size(zio_arena, VMEM_FREE) <
1694 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
1695 		return (1);
1696 #endif
1697 
1698 	if (arc_reclaim_needed())
1699 		return (1);
1700 
1701 	return (arc_size > arc_c);
1702 }
1703 
1704 /*
1705  * The buffer, supplied as the first argument, needs a data block.
1706  * So, if we are at cache max, determine which cache should be victimized.
1707  * We have the following cases:
1708  *
1709  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
1710  * In this situation if we're out of space, but the resident size of the MFU is
1711  * under the limit, victimize the MFU cache to satisfy this insertion request.
1712  *
1713  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
1714  * Here, we've used up all of the available space for the MRU, so we need to
1715  * evict from our own cache instead.  Evict from the set of resident MRU
1716  * entries.
1717  *
1718  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
1719  * c minus p represents the MFU space in the cache, since p is the size of the
1720  * cache that is dedicated to the MRU.  In this situation there's still space on
1721  * the MFU side, so the MRU side needs to be victimized.
1722  *
1723  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
1724  * MFU's resident set is consuming more space than it has been allotted.  In
1725  * this situation, we must victimize our own cache, the MFU, for this insertion.
1726  */
1727 static void
1728 arc_get_data_buf(arc_buf_t *buf)
1729 {
1730 	arc_state_t		*state = buf->b_hdr->b_state;
1731 	uint64_t		size = buf->b_hdr->b_size;
1732 	arc_buf_contents_t	type = buf->b_hdr->b_type;
1733 
1734 	arc_adapt(size, state);
1735 
1736 	/*
1737 	 * We have not yet reached cache maximum size,
1738 	 * just allocate a new buffer.
1739 	 */
1740 	if (!arc_evict_needed(type)) {
1741 		if (type == ARC_BUFC_METADATA) {
1742 			buf->b_data = zio_buf_alloc(size);
1743 			arc_space_consume(size);
1744 		} else {
1745 			ASSERT(type == ARC_BUFC_DATA);
1746 			buf->b_data = zio_data_buf_alloc(size);
1747 			atomic_add_64(&arc_size, size);
1748 		}
1749 		goto out;
1750 	}
1751 
1752 	/*
1753 	 * If we are prefetching from the mfu ghost list, this buffer
1754 	 * will end up on the mru list; so steal space from there.
1755 	 */
1756 	if (state == arc_mfu_ghost)
1757 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
1758 	else if (state == arc_mru_ghost)
1759 		state = arc_mru;
1760 
1761 	if (state == arc_mru || state == arc_anon) {
1762 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
1763 		state = (arc_mfu->arcs_lsize[type] > 0 &&
1764 		    arc_p > mru_used) ? arc_mfu : arc_mru;
1765 	} else {
1766 		/* MFU cases */
1767 		uint64_t mfu_space = arc_c - arc_p;
1768 		state =  (arc_mru->arcs_lsize[type] > 0 &&
1769 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
1770 	}
1771 	if ((buf->b_data = arc_evict(state, size, TRUE, type)) == NULL) {
1772 		if (type == ARC_BUFC_METADATA) {
1773 			buf->b_data = zio_buf_alloc(size);
1774 			arc_space_consume(size);
1775 		} else {
1776 			ASSERT(type == ARC_BUFC_DATA);
1777 			buf->b_data = zio_data_buf_alloc(size);
1778 			atomic_add_64(&arc_size, size);
1779 		}
1780 		ARCSTAT_BUMP(arcstat_recycle_miss);
1781 	}
1782 	ASSERT(buf->b_data != NULL);
1783 out:
1784 	/*
1785 	 * Update the state size.  Note that ghost states have a
1786 	 * "ghost size" and so don't need to be updated.
1787 	 */
1788 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
1789 		arc_buf_hdr_t *hdr = buf->b_hdr;
1790 
1791 		atomic_add_64(&hdr->b_state->arcs_size, size);
1792 		if (list_link_active(&hdr->b_arc_node)) {
1793 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
1794 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
1795 		}
1796 		/*
1797 		 * If we are growing the cache, and we are adding anonymous
1798 		 * data, and we have outgrown arc_p, update arc_p
1799 		 */
1800 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
1801 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
1802 			arc_p = MIN(arc_c, arc_p + size);
1803 	}
1804 }
1805 
1806 /*
1807  * This routine is called whenever a buffer is accessed.
1808  * NOTE: the hash lock is dropped in this function.
1809  */
1810 static void
1811 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
1812 {
1813 	ASSERT(MUTEX_HELD(hash_lock));
1814 
1815 	if (buf->b_state == arc_anon) {
1816 		/*
1817 		 * This buffer is not in the cache, and does not
1818 		 * appear in our "ghost" list.  Add the new buffer
1819 		 * to the MRU state.
1820 		 */
1821 
1822 		ASSERT(buf->b_arc_access == 0);
1823 		buf->b_arc_access = lbolt;
1824 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1825 		arc_change_state(arc_mru, buf, hash_lock);
1826 
1827 	} else if (buf->b_state == arc_mru) {
1828 		/*
1829 		 * If this buffer is here because of a prefetch, then either:
1830 		 * - clear the flag if this is a "referencing" read
1831 		 *   (any subsequent access will bump this into the MFU state).
1832 		 * or
1833 		 * - move the buffer to the head of the list if this is
1834 		 *   another prefetch (to make it less likely to be evicted).
1835 		 */
1836 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1837 			if (refcount_count(&buf->b_refcnt) == 0) {
1838 				ASSERT(list_link_active(&buf->b_arc_node));
1839 			} else {
1840 				buf->b_flags &= ~ARC_PREFETCH;
1841 				ARCSTAT_BUMP(arcstat_mru_hits);
1842 			}
1843 			buf->b_arc_access = lbolt;
1844 			return;
1845 		}
1846 
1847 		/*
1848 		 * This buffer has been "accessed" only once so far,
1849 		 * but it is still in the cache. Move it to the MFU
1850 		 * state.
1851 		 */
1852 		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
1853 			/*
1854 			 * More than 125ms have passed since we
1855 			 * instantiated this buffer.  Move it to the
1856 			 * most frequently used state.
1857 			 */
1858 			buf->b_arc_access = lbolt;
1859 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1860 			arc_change_state(arc_mfu, buf, hash_lock);
1861 		}
1862 		ARCSTAT_BUMP(arcstat_mru_hits);
1863 	} else if (buf->b_state == arc_mru_ghost) {
1864 		arc_state_t	*new_state;
1865 		/*
1866 		 * This buffer has been "accessed" recently, but
1867 		 * was evicted from the cache.  Move it to the
1868 		 * MFU state.
1869 		 */
1870 
1871 		if (buf->b_flags & ARC_PREFETCH) {
1872 			new_state = arc_mru;
1873 			if (refcount_count(&buf->b_refcnt) > 0)
1874 				buf->b_flags &= ~ARC_PREFETCH;
1875 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1876 		} else {
1877 			new_state = arc_mfu;
1878 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1879 		}
1880 
1881 		buf->b_arc_access = lbolt;
1882 		arc_change_state(new_state, buf, hash_lock);
1883 
1884 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
1885 	} else if (buf->b_state == arc_mfu) {
1886 		/*
1887 		 * This buffer has been accessed more than once and is
1888 		 * still in the cache.  Keep it in the MFU state.
1889 		 *
1890 		 * NOTE: an add_reference() that occurred when we did
1891 		 * the arc_read() will have kicked this off the list.
1892 		 * If it was a prefetch, we will explicitly move it to
1893 		 * the head of the list now.
1894 		 */
1895 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1896 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
1897 			ASSERT(list_link_active(&buf->b_arc_node));
1898 		}
1899 		ARCSTAT_BUMP(arcstat_mfu_hits);
1900 		buf->b_arc_access = lbolt;
1901 	} else if (buf->b_state == arc_mfu_ghost) {
1902 		arc_state_t	*new_state = arc_mfu;
1903 		/*
1904 		 * This buffer has been accessed more than once but has
1905 		 * been evicted from the cache.  Move it back to the
1906 		 * MFU state.
1907 		 */
1908 
1909 		if (buf->b_flags & ARC_PREFETCH) {
1910 			/*
1911 			 * This is a prefetch access...
1912 			 * move this block back to the MRU state.
1913 			 */
1914 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
1915 			new_state = arc_mru;
1916 		}
1917 
1918 		buf->b_arc_access = lbolt;
1919 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1920 		arc_change_state(new_state, buf, hash_lock);
1921 
1922 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
1923 	} else {
1924 		ASSERT(!"invalid arc state");
1925 	}
1926 }
1927 
1928 /* a generic arc_done_func_t which you can use */
1929 /* ARGSUSED */
1930 void
1931 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
1932 {
1933 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
1934 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1935 }
1936 
1937 /* a generic arc_done_func_t */
1938 void
1939 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
1940 {
1941 	arc_buf_t **bufp = arg;
1942 	if (zio && zio->io_error) {
1943 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1944 		*bufp = NULL;
1945 	} else {
1946 		*bufp = buf;
1947 	}
1948 }
1949 
1950 static void
1951 arc_read_done(zio_t *zio)
1952 {
1953 	arc_buf_hdr_t	*hdr, *found;
1954 	arc_buf_t	*buf;
1955 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
1956 	kmutex_t	*hash_lock;
1957 	arc_callback_t	*callback_list, *acb;
1958 	int		freeable = FALSE;
1959 
1960 	buf = zio->io_private;
1961 	hdr = buf->b_hdr;
1962 
1963 	/*
1964 	 * The hdr was inserted into hash-table and removed from lists
1965 	 * prior to starting I/O.  We should find this header, since
1966 	 * it's in the hash table, and it should be legit since it's
1967 	 * not possible to evict it during the I/O.  The only possible
1968 	 * reason for it not to be found is if we were freed during the
1969 	 * read.
1970 	 */
1971 	found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
1972 	    &hash_lock);
1973 
1974 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
1975 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))));
1976 
1977 	/* byteswap if necessary */
1978 	callback_list = hdr->b_acb;
1979 	ASSERT(callback_list != NULL);
1980 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap)
1981 		callback_list->acb_byteswap(buf->b_data, hdr->b_size);
1982 
1983 	arc_cksum_compute(buf);
1984 
1985 	/* create copies of the data buffer for the callers */
1986 	abuf = buf;
1987 	for (acb = callback_list; acb; acb = acb->acb_next) {
1988 		if (acb->acb_done) {
1989 			if (abuf == NULL)
1990 				abuf = arc_buf_clone(buf);
1991 			acb->acb_buf = abuf;
1992 			abuf = NULL;
1993 		}
1994 	}
1995 	hdr->b_acb = NULL;
1996 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
1997 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
1998 	if (abuf == buf)
1999 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2000 
2001 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2002 
2003 	if (zio->io_error != 0) {
2004 		hdr->b_flags |= ARC_IO_ERROR;
2005 		if (hdr->b_state != arc_anon)
2006 			arc_change_state(arc_anon, hdr, hash_lock);
2007 		if (HDR_IN_HASH_TABLE(hdr))
2008 			buf_hash_remove(hdr);
2009 		freeable = refcount_is_zero(&hdr->b_refcnt);
2010 		/* convert checksum errors into IO errors */
2011 		if (zio->io_error == ECKSUM)
2012 			zio->io_error = EIO;
2013 	}
2014 
2015 	/*
2016 	 * Broadcast before we drop the hash_lock to avoid the possibility
2017 	 * that the hdr (and hence the cv) might be freed before we get to
2018 	 * the cv_broadcast().
2019 	 */
2020 	cv_broadcast(&hdr->b_cv);
2021 
2022 	if (hash_lock) {
2023 		/*
2024 		 * Only call arc_access on anonymous buffers.  This is because
2025 		 * if we've issued an I/O for an evicted buffer, we've already
2026 		 * called arc_access (to prevent any simultaneous readers from
2027 		 * getting confused).
2028 		 */
2029 		if (zio->io_error == 0 && hdr->b_state == arc_anon)
2030 			arc_access(hdr, hash_lock);
2031 		mutex_exit(hash_lock);
2032 	} else {
2033 		/*
2034 		 * This block was freed while we waited for the read to
2035 		 * complete.  It has been removed from the hash table and
2036 		 * moved to the anonymous state (so that it won't show up
2037 		 * in the cache).
2038 		 */
2039 		ASSERT3P(hdr->b_state, ==, arc_anon);
2040 		freeable = refcount_is_zero(&hdr->b_refcnt);
2041 	}
2042 
2043 	/* execute each callback and free its structure */
2044 	while ((acb = callback_list) != NULL) {
2045 		if (acb->acb_done)
2046 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2047 
2048 		if (acb->acb_zio_dummy != NULL) {
2049 			acb->acb_zio_dummy->io_error = zio->io_error;
2050 			zio_nowait(acb->acb_zio_dummy);
2051 		}
2052 
2053 		callback_list = acb->acb_next;
2054 		kmem_free(acb, sizeof (arc_callback_t));
2055 	}
2056 
2057 	if (freeable)
2058 		arc_hdr_destroy(hdr);
2059 }
2060 
2061 /*
2062  * "Read" the block block at the specified DVA (in bp) via the
2063  * cache.  If the block is found in the cache, invoke the provided
2064  * callback immediately and return.  Note that the `zio' parameter
2065  * in the callback will be NULL in this case, since no IO was
2066  * required.  If the block is not in the cache pass the read request
2067  * on to the spa with a substitute callback function, so that the
2068  * requested block will be added to the cache.
2069  *
2070  * If a read request arrives for a block that has a read in-progress,
2071  * either wait for the in-progress read to complete (and return the
2072  * results); or, if this is a read with a "done" func, add a record
2073  * to the read to invoke the "done" func when the read completes,
2074  * and return; or just return.
2075  *
2076  * arc_read_done() will invoke all the requested "done" functions
2077  * for readers of this block.
2078  */
2079 int
2080 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap,
2081     arc_done_func_t *done, void *private, int priority, int flags,
2082     uint32_t *arc_flags, zbookmark_t *zb)
2083 {
2084 	arc_buf_hdr_t *hdr;
2085 	arc_buf_t *buf;
2086 	kmutex_t *hash_lock;
2087 	zio_t	*rzio;
2088 
2089 top:
2090 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2091 	if (hdr && hdr->b_datacnt > 0) {
2092 
2093 		*arc_flags |= ARC_CACHED;
2094 
2095 		if (HDR_IO_IN_PROGRESS(hdr)) {
2096 
2097 			if (*arc_flags & ARC_WAIT) {
2098 				cv_wait(&hdr->b_cv, hash_lock);
2099 				mutex_exit(hash_lock);
2100 				goto top;
2101 			}
2102 			ASSERT(*arc_flags & ARC_NOWAIT);
2103 
2104 			if (done) {
2105 				arc_callback_t	*acb = NULL;
2106 
2107 				acb = kmem_zalloc(sizeof (arc_callback_t),
2108 				    KM_SLEEP);
2109 				acb->acb_done = done;
2110 				acb->acb_private = private;
2111 				acb->acb_byteswap = swap;
2112 				if (pio != NULL)
2113 					acb->acb_zio_dummy = zio_null(pio,
2114 					    spa, NULL, NULL, flags);
2115 
2116 				ASSERT(acb->acb_done != NULL);
2117 				acb->acb_next = hdr->b_acb;
2118 				hdr->b_acb = acb;
2119 				add_reference(hdr, hash_lock, private);
2120 				mutex_exit(hash_lock);
2121 				return (0);
2122 			}
2123 			mutex_exit(hash_lock);
2124 			return (0);
2125 		}
2126 
2127 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2128 
2129 		if (done) {
2130 			add_reference(hdr, hash_lock, private);
2131 			/*
2132 			 * If this block is already in use, create a new
2133 			 * copy of the data so that we will be guaranteed
2134 			 * that arc_release() will always succeed.
2135 			 */
2136 			buf = hdr->b_buf;
2137 			ASSERT(buf);
2138 			ASSERT(buf->b_data);
2139 			if (HDR_BUF_AVAILABLE(hdr)) {
2140 				ASSERT(buf->b_efunc == NULL);
2141 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2142 			} else {
2143 				buf = arc_buf_clone(buf);
2144 			}
2145 		} else if (*arc_flags & ARC_PREFETCH &&
2146 		    refcount_count(&hdr->b_refcnt) == 0) {
2147 			hdr->b_flags |= ARC_PREFETCH;
2148 		}
2149 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2150 		arc_access(hdr, hash_lock);
2151 		mutex_exit(hash_lock);
2152 		ARCSTAT_BUMP(arcstat_hits);
2153 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2154 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2155 		    data, metadata, hits);
2156 
2157 		if (done)
2158 			done(NULL, buf, private);
2159 	} else {
2160 		uint64_t size = BP_GET_LSIZE(bp);
2161 		arc_callback_t	*acb;
2162 
2163 		if (hdr == NULL) {
2164 			/* this block is not in the cache */
2165 			arc_buf_hdr_t	*exists;
2166 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2167 			buf = arc_buf_alloc(spa, size, private, type);
2168 			hdr = buf->b_hdr;
2169 			hdr->b_dva = *BP_IDENTITY(bp);
2170 			hdr->b_birth = bp->blk_birth;
2171 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2172 			exists = buf_hash_insert(hdr, &hash_lock);
2173 			if (exists) {
2174 				/* somebody beat us to the hash insert */
2175 				mutex_exit(hash_lock);
2176 				bzero(&hdr->b_dva, sizeof (dva_t));
2177 				hdr->b_birth = 0;
2178 				hdr->b_cksum0 = 0;
2179 				(void) arc_buf_remove_ref(buf, private);
2180 				goto top; /* restart the IO request */
2181 			}
2182 			/* if this is a prefetch, we don't have a reference */
2183 			if (*arc_flags & ARC_PREFETCH) {
2184 				(void) remove_reference(hdr, hash_lock,
2185 				    private);
2186 				hdr->b_flags |= ARC_PREFETCH;
2187 			}
2188 			if (BP_GET_LEVEL(bp) > 0)
2189 				hdr->b_flags |= ARC_INDIRECT;
2190 		} else {
2191 			/* this block is in the ghost cache */
2192 			ASSERT(GHOST_STATE(hdr->b_state));
2193 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2194 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2195 			ASSERT(hdr->b_buf == NULL);
2196 
2197 			/* if this is a prefetch, we don't have a reference */
2198 			if (*arc_flags & ARC_PREFETCH)
2199 				hdr->b_flags |= ARC_PREFETCH;
2200 			else
2201 				add_reference(hdr, hash_lock, private);
2202 			buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
2203 			buf->b_hdr = hdr;
2204 			buf->b_data = NULL;
2205 			buf->b_efunc = NULL;
2206 			buf->b_private = NULL;
2207 			buf->b_next = NULL;
2208 			hdr->b_buf = buf;
2209 			arc_get_data_buf(buf);
2210 			ASSERT(hdr->b_datacnt == 0);
2211 			hdr->b_datacnt = 1;
2212 
2213 		}
2214 
2215 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2216 		acb->acb_done = done;
2217 		acb->acb_private = private;
2218 		acb->acb_byteswap = swap;
2219 
2220 		ASSERT(hdr->b_acb == NULL);
2221 		hdr->b_acb = acb;
2222 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2223 
2224 		/*
2225 		 * If the buffer has been evicted, migrate it to a present state
2226 		 * before issuing the I/O.  Once we drop the hash-table lock,
2227 		 * the header will be marked as I/O in progress and have an
2228 		 * attached buffer.  At this point, anybody who finds this
2229 		 * buffer ought to notice that it's legit but has a pending I/O.
2230 		 */
2231 
2232 		if (GHOST_STATE(hdr->b_state))
2233 			arc_access(hdr, hash_lock);
2234 		mutex_exit(hash_lock);
2235 
2236 		ASSERT3U(hdr->b_size, ==, size);
2237 		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
2238 		    zbookmark_t *, zb);
2239 		ARCSTAT_BUMP(arcstat_misses);
2240 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2241 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2242 		    data, metadata, misses);
2243 
2244 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2245 		    arc_read_done, buf, priority, flags, zb);
2246 
2247 		if (*arc_flags & ARC_WAIT)
2248 			return (zio_wait(rzio));
2249 
2250 		ASSERT(*arc_flags & ARC_NOWAIT);
2251 		zio_nowait(rzio);
2252 	}
2253 	return (0);
2254 }
2255 
2256 /*
2257  * arc_read() variant to support pool traversal.  If the block is already
2258  * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
2259  * The idea is that we don't want pool traversal filling up memory, but
2260  * if the ARC already has the data anyway, we shouldn't pay for the I/O.
2261  */
2262 int
2263 arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
2264 {
2265 	arc_buf_hdr_t *hdr;
2266 	kmutex_t *hash_mtx;
2267 	int rc = 0;
2268 
2269 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
2270 
2271 	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
2272 		arc_buf_t *buf = hdr->b_buf;
2273 
2274 		ASSERT(buf);
2275 		while (buf->b_data == NULL) {
2276 			buf = buf->b_next;
2277 			ASSERT(buf);
2278 		}
2279 		bcopy(buf->b_data, data, hdr->b_size);
2280 	} else {
2281 		rc = ENOENT;
2282 	}
2283 
2284 	if (hash_mtx)
2285 		mutex_exit(hash_mtx);
2286 
2287 	return (rc);
2288 }
2289 
2290 void
2291 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2292 {
2293 	ASSERT(buf->b_hdr != NULL);
2294 	ASSERT(buf->b_hdr->b_state != arc_anon);
2295 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2296 	buf->b_efunc = func;
2297 	buf->b_private = private;
2298 }
2299 
2300 /*
2301  * This is used by the DMU to let the ARC know that a buffer is
2302  * being evicted, so the ARC should clean up.  If this arc buf
2303  * is not yet in the evicted state, it will be put there.
2304  */
2305 int
2306 arc_buf_evict(arc_buf_t *buf)
2307 {
2308 	arc_buf_hdr_t *hdr;
2309 	kmutex_t *hash_lock;
2310 	arc_buf_t **bufp;
2311 
2312 	mutex_enter(&arc_eviction_mtx);
2313 	hdr = buf->b_hdr;
2314 	if (hdr == NULL) {
2315 		/*
2316 		 * We are in arc_do_user_evicts().
2317 		 */
2318 		ASSERT(buf->b_data == NULL);
2319 		mutex_exit(&arc_eviction_mtx);
2320 		return (0);
2321 	}
2322 	hash_lock = HDR_LOCK(hdr);
2323 	mutex_exit(&arc_eviction_mtx);
2324 
2325 	mutex_enter(hash_lock);
2326 
2327 	if (buf->b_data == NULL) {
2328 		/*
2329 		 * We are on the eviction list.
2330 		 */
2331 		mutex_exit(hash_lock);
2332 		mutex_enter(&arc_eviction_mtx);
2333 		if (buf->b_hdr == NULL) {
2334 			/*
2335 			 * We are already in arc_do_user_evicts().
2336 			 */
2337 			mutex_exit(&arc_eviction_mtx);
2338 			return (0);
2339 		} else {
2340 			arc_buf_t copy = *buf; /* structure assignment */
2341 			/*
2342 			 * Process this buffer now
2343 			 * but let arc_do_user_evicts() do the reaping.
2344 			 */
2345 			buf->b_efunc = NULL;
2346 			mutex_exit(&arc_eviction_mtx);
2347 			VERIFY(copy.b_efunc(&copy) == 0);
2348 			return (1);
2349 		}
2350 	}
2351 
2352 	ASSERT(buf->b_hdr == hdr);
2353 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2354 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2355 
2356 	/*
2357 	 * Pull this buffer off of the hdr
2358 	 */
2359 	bufp = &hdr->b_buf;
2360 	while (*bufp != buf)
2361 		bufp = &(*bufp)->b_next;
2362 	*bufp = buf->b_next;
2363 
2364 	ASSERT(buf->b_data != NULL);
2365 	arc_buf_destroy(buf, FALSE, FALSE);
2366 
2367 	if (hdr->b_datacnt == 0) {
2368 		arc_state_t *old_state = hdr->b_state;
2369 		arc_state_t *evicted_state;
2370 
2371 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2372 
2373 		evicted_state =
2374 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2375 
2376 		mutex_enter(&old_state->arcs_mtx);
2377 		mutex_enter(&evicted_state->arcs_mtx);
2378 
2379 		arc_change_state(evicted_state, hdr, hash_lock);
2380 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2381 		hdr->b_flags = ARC_IN_HASH_TABLE;
2382 
2383 		mutex_exit(&evicted_state->arcs_mtx);
2384 		mutex_exit(&old_state->arcs_mtx);
2385 	}
2386 	mutex_exit(hash_lock);
2387 
2388 	VERIFY(buf->b_efunc(buf) == 0);
2389 	buf->b_efunc = NULL;
2390 	buf->b_private = NULL;
2391 	buf->b_hdr = NULL;
2392 	kmem_cache_free(buf_cache, buf);
2393 	return (1);
2394 }
2395 
2396 /*
2397  * Release this buffer from the cache.  This must be done
2398  * after a read and prior to modifying the buffer contents.
2399  * If the buffer has more than one reference, we must make
2400  * make a new hdr for the buffer.
2401  */
2402 void
2403 arc_release(arc_buf_t *buf, void *tag)
2404 {
2405 	arc_buf_hdr_t *hdr = buf->b_hdr;
2406 	kmutex_t *hash_lock = HDR_LOCK(hdr);
2407 
2408 	/* this buffer is not on any list */
2409 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2410 
2411 	if (hdr->b_state == arc_anon) {
2412 		/* this buffer is already released */
2413 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2414 		ASSERT(BUF_EMPTY(hdr));
2415 		ASSERT(buf->b_efunc == NULL);
2416 		arc_buf_thaw(buf);
2417 		return;
2418 	}
2419 
2420 	mutex_enter(hash_lock);
2421 
2422 	/*
2423 	 * Do we have more than one buf?
2424 	 */
2425 	if (hdr->b_buf != buf || buf->b_next != NULL) {
2426 		arc_buf_hdr_t *nhdr;
2427 		arc_buf_t **bufp;
2428 		uint64_t blksz = hdr->b_size;
2429 		spa_t *spa = hdr->b_spa;
2430 		arc_buf_contents_t type = hdr->b_type;
2431 
2432 		ASSERT(hdr->b_datacnt > 1);
2433 		/*
2434 		 * Pull the data off of this buf and attach it to
2435 		 * a new anonymous buf.
2436 		 */
2437 		(void) remove_reference(hdr, hash_lock, tag);
2438 		bufp = &hdr->b_buf;
2439 		while (*bufp != buf)
2440 			bufp = &(*bufp)->b_next;
2441 		*bufp = (*bufp)->b_next;
2442 		buf->b_next = NULL;
2443 
2444 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
2445 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
2446 		if (refcount_is_zero(&hdr->b_refcnt)) {
2447 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
2448 			ASSERT3U(*size, >=, hdr->b_size);
2449 			atomic_add_64(size, -hdr->b_size);
2450 		}
2451 		hdr->b_datacnt -= 1;
2452 		arc_cksum_verify(buf);
2453 
2454 		mutex_exit(hash_lock);
2455 
2456 		nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
2457 		nhdr->b_size = blksz;
2458 		nhdr->b_spa = spa;
2459 		nhdr->b_type = type;
2460 		nhdr->b_buf = buf;
2461 		nhdr->b_state = arc_anon;
2462 		nhdr->b_arc_access = 0;
2463 		nhdr->b_flags = 0;
2464 		nhdr->b_datacnt = 1;
2465 		nhdr->b_freeze_cksum = NULL;
2466 		(void) refcount_add(&nhdr->b_refcnt, tag);
2467 		buf->b_hdr = nhdr;
2468 		atomic_add_64(&arc_anon->arcs_size, blksz);
2469 
2470 		hdr = nhdr;
2471 	} else {
2472 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2473 		ASSERT(!list_link_active(&hdr->b_arc_node));
2474 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2475 		arc_change_state(arc_anon, hdr, hash_lock);
2476 		hdr->b_arc_access = 0;
2477 		mutex_exit(hash_lock);
2478 		bzero(&hdr->b_dva, sizeof (dva_t));
2479 		hdr->b_birth = 0;
2480 		hdr->b_cksum0 = 0;
2481 		arc_buf_thaw(buf);
2482 	}
2483 	buf->b_efunc = NULL;
2484 	buf->b_private = NULL;
2485 }
2486 
2487 int
2488 arc_released(arc_buf_t *buf)
2489 {
2490 	return (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
2491 }
2492 
2493 int
2494 arc_has_callback(arc_buf_t *buf)
2495 {
2496 	return (buf->b_efunc != NULL);
2497 }
2498 
2499 #ifdef ZFS_DEBUG
2500 int
2501 arc_referenced(arc_buf_t *buf)
2502 {
2503 	return (refcount_count(&buf->b_hdr->b_refcnt));
2504 }
2505 #endif
2506 
2507 static void
2508 arc_write_ready(zio_t *zio)
2509 {
2510 	arc_write_callback_t *callback = zio->io_private;
2511 	arc_buf_t *buf = callback->awcb_buf;
2512 
2513 	if (callback->awcb_ready) {
2514 		ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
2515 		callback->awcb_ready(zio, buf, callback->awcb_private);
2516 	}
2517 	arc_cksum_compute(buf);
2518 }
2519 
2520 static void
2521 arc_write_done(zio_t *zio)
2522 {
2523 	arc_write_callback_t *callback = zio->io_private;
2524 	arc_buf_t *buf = callback->awcb_buf;
2525 	arc_buf_hdr_t *hdr = buf->b_hdr;
2526 
2527 	hdr->b_acb = NULL;
2528 
2529 	/* this buffer is on no lists and is not in the hash table */
2530 	ASSERT3P(hdr->b_state, ==, arc_anon);
2531 
2532 	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
2533 	hdr->b_birth = zio->io_bp->blk_birth;
2534 	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
2535 	/*
2536 	 * If the block to be written was all-zero, we may have
2537 	 * compressed it away.  In this case no write was performed
2538 	 * so there will be no dva/birth-date/checksum.  The buffer
2539 	 * must therefor remain anonymous (and uncached).
2540 	 */
2541 	if (!BUF_EMPTY(hdr)) {
2542 		arc_buf_hdr_t *exists;
2543 		kmutex_t *hash_lock;
2544 
2545 		arc_cksum_verify(buf);
2546 
2547 		exists = buf_hash_insert(hdr, &hash_lock);
2548 		if (exists) {
2549 			/*
2550 			 * This can only happen if we overwrite for
2551 			 * sync-to-convergence, because we remove
2552 			 * buffers from the hash table when we arc_free().
2553 			 */
2554 			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
2555 			    BP_IDENTITY(zio->io_bp)));
2556 			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
2557 			    zio->io_bp->blk_birth);
2558 
2559 			ASSERT(refcount_is_zero(&exists->b_refcnt));
2560 			arc_change_state(arc_anon, exists, hash_lock);
2561 			mutex_exit(hash_lock);
2562 			arc_hdr_destroy(exists);
2563 			exists = buf_hash_insert(hdr, &hash_lock);
2564 			ASSERT3P(exists, ==, NULL);
2565 		}
2566 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2567 		arc_access(hdr, hash_lock);
2568 		mutex_exit(hash_lock);
2569 	} else if (callback->awcb_done == NULL) {
2570 		int destroy_hdr;
2571 		/*
2572 		 * This is an anonymous buffer with no user callback,
2573 		 * destroy it if there are no active references.
2574 		 */
2575 		mutex_enter(&arc_eviction_mtx);
2576 		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
2577 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2578 		mutex_exit(&arc_eviction_mtx);
2579 		if (destroy_hdr)
2580 			arc_hdr_destroy(hdr);
2581 	} else {
2582 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2583 	}
2584 
2585 	if (callback->awcb_done) {
2586 		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
2587 		callback->awcb_done(zio, buf, callback->awcb_private);
2588 	}
2589 
2590 	kmem_free(callback, sizeof (arc_write_callback_t));
2591 }
2592 
2593 zio_t *
2594 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies,
2595     uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
2596     arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
2597     int flags, zbookmark_t *zb)
2598 {
2599 	arc_buf_hdr_t *hdr = buf->b_hdr;
2600 	arc_write_callback_t *callback;
2601 	zio_t	*zio;
2602 
2603 	/* this is a private buffer - no locking required */
2604 	ASSERT3P(hdr->b_state, ==, arc_anon);
2605 	ASSERT(BUF_EMPTY(hdr));
2606 	ASSERT(!HDR_IO_ERROR(hdr));
2607 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
2608 	ASSERT(hdr->b_acb == 0);
2609 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
2610 	callback->awcb_ready = ready;
2611 	callback->awcb_done = done;
2612 	callback->awcb_private = private;
2613 	callback->awcb_buf = buf;
2614 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
2615 	zio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp,
2616 	    buf->b_data, hdr->b_size, arc_write_ready, arc_write_done, callback,
2617 	    priority, flags, zb);
2618 
2619 	return (zio);
2620 }
2621 
2622 int
2623 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
2624     zio_done_func_t *done, void *private, uint32_t arc_flags)
2625 {
2626 	arc_buf_hdr_t *ab;
2627 	kmutex_t *hash_lock;
2628 	zio_t	*zio;
2629 
2630 	/*
2631 	 * If this buffer is in the cache, release it, so it
2632 	 * can be re-used.
2633 	 */
2634 	ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2635 	if (ab != NULL) {
2636 		/*
2637 		 * The checksum of blocks to free is not always
2638 		 * preserved (eg. on the deadlist).  However, if it is
2639 		 * nonzero, it should match what we have in the cache.
2640 		 */
2641 		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
2642 		    ab->b_cksum0 == bp->blk_cksum.zc_word[0]);
2643 		if (ab->b_state != arc_anon)
2644 			arc_change_state(arc_anon, ab, hash_lock);
2645 		if (HDR_IO_IN_PROGRESS(ab)) {
2646 			/*
2647 			 * This should only happen when we prefetch.
2648 			 */
2649 			ASSERT(ab->b_flags & ARC_PREFETCH);
2650 			ASSERT3U(ab->b_datacnt, ==, 1);
2651 			ab->b_flags |= ARC_FREED_IN_READ;
2652 			if (HDR_IN_HASH_TABLE(ab))
2653 				buf_hash_remove(ab);
2654 			ab->b_arc_access = 0;
2655 			bzero(&ab->b_dva, sizeof (dva_t));
2656 			ab->b_birth = 0;
2657 			ab->b_cksum0 = 0;
2658 			ab->b_buf->b_efunc = NULL;
2659 			ab->b_buf->b_private = NULL;
2660 			mutex_exit(hash_lock);
2661 		} else if (refcount_is_zero(&ab->b_refcnt)) {
2662 			mutex_exit(hash_lock);
2663 			arc_hdr_destroy(ab);
2664 			ARCSTAT_BUMP(arcstat_deleted);
2665 		} else {
2666 			/*
2667 			 * We still have an active reference on this
2668 			 * buffer.  This can happen, e.g., from
2669 			 * dbuf_unoverride().
2670 			 */
2671 			ASSERT(!HDR_IN_HASH_TABLE(ab));
2672 			ab->b_arc_access = 0;
2673 			bzero(&ab->b_dva, sizeof (dva_t));
2674 			ab->b_birth = 0;
2675 			ab->b_cksum0 = 0;
2676 			ab->b_buf->b_efunc = NULL;
2677 			ab->b_buf->b_private = NULL;
2678 			mutex_exit(hash_lock);
2679 		}
2680 	}
2681 
2682 	zio = zio_free(pio, spa, txg, bp, done, private);
2683 
2684 	if (arc_flags & ARC_WAIT)
2685 		return (zio_wait(zio));
2686 
2687 	ASSERT(arc_flags & ARC_NOWAIT);
2688 	zio_nowait(zio);
2689 
2690 	return (0);
2691 }
2692 
2693 void
2694 arc_tempreserve_clear(uint64_t tempreserve)
2695 {
2696 	atomic_add_64(&arc_tempreserve, -tempreserve);
2697 	ASSERT((int64_t)arc_tempreserve >= 0);
2698 }
2699 
2700 int
2701 arc_tempreserve_space(uint64_t tempreserve)
2702 {
2703 #ifdef ZFS_DEBUG
2704 	/*
2705 	 * Once in a while, fail for no reason.  Everything should cope.
2706 	 */
2707 	if (spa_get_random(10000) == 0) {
2708 		dprintf("forcing random failure\n");
2709 		return (ERESTART);
2710 	}
2711 #endif
2712 	if (tempreserve > arc_c/4 && !arc_no_grow)
2713 		arc_c = MIN(arc_c_max, tempreserve * 4);
2714 	if (tempreserve > arc_c)
2715 		return (ENOMEM);
2716 
2717 	/*
2718 	 * Throttle writes when the amount of dirty data in the cache
2719 	 * gets too large.  We try to keep the cache less than half full
2720 	 * of dirty blocks so that our sync times don't grow too large.
2721 	 * Note: if two requests come in concurrently, we might let them
2722 	 * both succeed, when one of them should fail.  Not a huge deal.
2723 	 *
2724 	 * XXX The limit should be adjusted dynamically to keep the time
2725 	 * to sync a dataset fixed (around 1-5 seconds?).
2726 	 */
2727 
2728 	if (tempreserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 &&
2729 	    arc_tempreserve + arc_anon->arcs_size > arc_c / 4) {
2730 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
2731 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
2732 		    arc_tempreserve>>10,
2733 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
2734 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
2735 		    tempreserve>>10, arc_c>>10);
2736 		return (ERESTART);
2737 	}
2738 	atomic_add_64(&arc_tempreserve, tempreserve);
2739 	return (0);
2740 }
2741 
2742 void
2743 arc_init(void)
2744 {
2745 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
2746 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
2747 
2748 	/* Convert seconds to clock ticks */
2749 	arc_min_prefetch_lifespan = 1 * hz;
2750 
2751 	/* Start out with 1/8 of all memory */
2752 	arc_c = physmem * PAGESIZE / 8;
2753 
2754 #ifdef _KERNEL
2755 	/*
2756 	 * On architectures where the physical memory can be larger
2757 	 * than the addressable space (intel in 32-bit mode), we may
2758 	 * need to limit the cache to 1/8 of VM size.
2759 	 */
2760 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
2761 #endif
2762 
2763 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
2764 	arc_c_min = MAX(arc_c / 4, 64<<20);
2765 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
2766 	if (arc_c * 8 >= 1<<30)
2767 		arc_c_max = (arc_c * 8) - (1<<30);
2768 	else
2769 		arc_c_max = arc_c_min;
2770 	arc_c_max = MAX(arc_c * 6, arc_c_max);
2771 
2772 	/*
2773 	 * Allow the tunables to override our calculations if they are
2774 	 * reasonable (ie. over 64MB)
2775 	 */
2776 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
2777 		arc_c_max = zfs_arc_max;
2778 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
2779 		arc_c_min = zfs_arc_min;
2780 
2781 	arc_c = arc_c_max;
2782 	arc_p = (arc_c >> 1);
2783 
2784 	/* limit meta-data to 1/4 of the arc capacity */
2785 	arc_meta_limit = arc_c_max / 4;
2786 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
2787 		arc_c_min = arc_meta_limit / 2;
2788 
2789 	/* if kmem_flags are set, lets try to use less memory */
2790 	if (kmem_debugging())
2791 		arc_c = arc_c / 2;
2792 	if (arc_c < arc_c_min)
2793 		arc_c = arc_c_min;
2794 
2795 	arc_anon = &ARC_anon;
2796 	arc_mru = &ARC_mru;
2797 	arc_mru_ghost = &ARC_mru_ghost;
2798 	arc_mfu = &ARC_mfu;
2799 	arc_mfu_ghost = &ARC_mfu_ghost;
2800 	arc_size = 0;
2801 
2802 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2803 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2804 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2805 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2806 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2807 
2808 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
2809 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
2810 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
2811 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
2812 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
2813 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
2814 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
2815 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
2816 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
2817 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
2818 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
2819 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
2820 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
2821 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
2822 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
2823 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
2824 
2825 	buf_init();
2826 
2827 	arc_thread_exit = 0;
2828 	arc_eviction_list = NULL;
2829 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
2830 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
2831 
2832 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
2833 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
2834 
2835 	if (arc_ksp != NULL) {
2836 		arc_ksp->ks_data = &arc_stats;
2837 		kstat_install(arc_ksp);
2838 	}
2839 
2840 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
2841 	    TS_RUN, minclsyspri);
2842 
2843 	arc_dead = FALSE;
2844 }
2845 
2846 void
2847 arc_fini(void)
2848 {
2849 	mutex_enter(&arc_reclaim_thr_lock);
2850 	arc_thread_exit = 1;
2851 	while (arc_thread_exit != 0)
2852 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
2853 	mutex_exit(&arc_reclaim_thr_lock);
2854 
2855 	arc_flush();
2856 
2857 	arc_dead = TRUE;
2858 
2859 	if (arc_ksp != NULL) {
2860 		kstat_delete(arc_ksp);
2861 		arc_ksp = NULL;
2862 	}
2863 
2864 	mutex_destroy(&arc_eviction_mtx);
2865 	mutex_destroy(&arc_reclaim_thr_lock);
2866 	cv_destroy(&arc_reclaim_thr_cv);
2867 
2868 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
2869 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
2870 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
2871 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
2872 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
2873 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
2874 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
2875 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
2876 
2877 	mutex_destroy(&arc_anon->arcs_mtx);
2878 	mutex_destroy(&arc_mru->arcs_mtx);
2879 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
2880 	mutex_destroy(&arc_mfu->arcs_mtx);
2881 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
2882 
2883 	buf_fini();
2884 }
2885