xref: /titanic_50/usr/src/uts/common/fs/zfs/arc.c (revision c525fe66b825cb3e34dd0431b0ef810f2b209048)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * DVA-based Adjustable Relpacement Cache
30  *
31  * While much of the theory of operation used here is
32  * based on the self-tuning, low overhead replacement cache
33  * presented by Megiddo and Modha at FAST 2003, there are some
34  * significant differences:
35  *
36  * 1. The Megiddo and Modha model assumes any page is evictable.
37  * Pages in its cache cannot be "locked" into memory.  This makes
38  * the eviction algorithm simple: evict the last page in the list.
39  * This also make the performance characteristics easy to reason
40  * about.  Our cache is not so simple.  At any given moment, some
41  * subset of the blocks in the cache are un-evictable because we
42  * have handed out a reference to them.  Blocks are only evictable
43  * when there are no external references active.  This makes
44  * eviction far more problematic:  we choose to evict the evictable
45  * blocks that are the "lowest" in the list.
46  *
47  * There are times when it is not possible to evict the requested
48  * space.  In these circumstances we are unable to adjust the cache
49  * size.  To prevent the cache growing unbounded at these times we
50  * implement a "cache throttle" that slowes the flow of new data
51  * into the cache until we can make space avaiable.
52  *
53  * 2. The Megiddo and Modha model assumes a fixed cache size.
54  * Pages are evicted when the cache is full and there is a cache
55  * miss.  Our model has a variable sized cache.  It grows with
56  * high use, but also tries to react to memory preasure from the
57  * operating system: decreasing its size when system memory is
58  * tight.
59  *
60  * 3. The Megiddo and Modha model assumes a fixed page size. All
61  * elements of the cache are therefor exactly the same size.  So
62  * when adjusting the cache size following a cache miss, its simply
63  * a matter of choosing a single page to evict.  In our model, we
64  * have variable sized cache blocks (rangeing from 512 bytes to
65  * 128K bytes).  We therefor choose a set of blocks to evict to make
66  * space for a cache miss that approximates as closely as possible
67  * the space used by the new block.
68  *
69  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70  * by N. Megiddo & D. Modha, FAST 2003
71  */
72 
73 /*
74  * The locking model:
75  *
76  * A new reference to a cache buffer can be obtained in two
77  * ways: 1) via a hash table lookup using the DVA as a key,
78  * or 2) via one of the ARC lists.  The arc_read() inerface
79  * uses method 1, while the internal arc algorithms for
80  * adjusting the cache use method 2.  We therefor provide two
81  * types of locks: 1) the hash table lock array, and 2) the
82  * arc list locks.
83  *
84  * Buffers do not have their own mutexs, rather they rely on the
85  * hash table mutexs for the bulk of their protection (i.e. most
86  * fields in the arc_buf_hdr_t are protected by these mutexs).
87  *
88  * buf_hash_find() returns the appropriate mutex (held) when it
89  * locates the requested buffer in the hash table.  It returns
90  * NULL for the mutex if the buffer was not in the table.
91  *
92  * buf_hash_remove() expects the appropriate hash mutex to be
93  * already held before it is invoked.
94  *
95  * Each arc state also has a mutex which is used to protect the
96  * buffer list associated with the state.  When attempting to
97  * obtain a hash table lock while holding an arc list lock you
98  * must use: mutex_tryenter() to avoid deadlock.  Also note that
99  * the active state mutex must be held before the ghost state mutex.
100  *
101  * Arc buffers may have an associated eviction callback function.
102  * This function will be invoked prior to removing the buffer (e.g.
103  * in arc_do_user_evicts()).  Note however that the data associated
104  * with the buffer may be evicted prior to the callback.  The callback
105  * must be made with *no locks held* (to prevent deadlock).  Additionally,
106  * the users of callbacks must ensure that their private data is
107  * protected from simultaneous callbacks from arc_buf_evict()
108  * and arc_do_user_evicts().
109  *
110  * Note that the majority of the performance stats are manipulated
111  * with atomic operations.
112  */
113 
114 #include <sys/spa.h>
115 #include <sys/zio.h>
116 #include <sys/zfs_context.h>
117 #include <sys/arc.h>
118 #include <sys/refcount.h>
119 #ifdef _KERNEL
120 #include <sys/vmsystm.h>
121 #include <vm/anon.h>
122 #include <sys/fs/swapnode.h>
123 #include <sys/dnlc.h>
124 #endif
125 #include <sys/callb.h>
126 
127 static kmutex_t		arc_reclaim_thr_lock;
128 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
129 static uint8_t		arc_thread_exit;
130 
131 #define	ARC_REDUCE_DNLC_PERCENT	3
132 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
133 
134 typedef enum arc_reclaim_strategy {
135 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
136 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
137 } arc_reclaim_strategy_t;
138 
139 /* number of seconds before growing cache again */
140 static int		arc_grow_retry = 60;
141 
142 /*
143  * minimum lifespan of a prefetch block in clock ticks
144  * (initialized in arc_init())
145  */
146 static int		arc_min_prefetch_lifespan;
147 
148 static kmutex_t arc_reclaim_lock;
149 static int arc_dead;
150 
151 /*
152  * Note that buffers can be on one of 5 states:
153  *	ARC_anon	- anonymous (discussed below)
154  *	ARC_mru		- recently used, currently cached
155  *	ARC_mru_ghost	- recentely used, no longer in cache
156  *	ARC_mfu		- frequently used, currently cached
157  *	ARC_mfu_ghost	- frequently used, no longer in cache
158  * When there are no active references to the buffer, they
159  * are linked onto one of the lists in arc.  These are the
160  * only buffers that can be evicted or deleted.
161  *
162  * Anonymous buffers are buffers that are not associated with
163  * a DVA.  These are buffers that hold dirty block copies
164  * before they are written to stable storage.  By definition,
165  * they are "ref'd" and are considered part of arc_mru
166  * that cannot be freed.  Generally, they will aquire a DVA
167  * as they are written and migrate onto the arc_mru list.
168  */
169 
170 typedef struct arc_state {
171 	list_t	list;	/* linked list of evictable buffer in state */
172 	uint64_t lsize;	/* total size of buffers in the linked list */
173 	uint64_t size;	/* total size of all buffers in this state */
174 	uint64_t hits;
175 	kmutex_t mtx;
176 } arc_state_t;
177 
178 /* The 5 states: */
179 static arc_state_t ARC_anon;
180 static arc_state_t ARC_mru;
181 static arc_state_t ARC_mru_ghost;
182 static arc_state_t ARC_mfu;
183 static arc_state_t ARC_mfu_ghost;
184 
185 static struct arc {
186 	arc_state_t 	*anon;
187 	arc_state_t	*mru;
188 	arc_state_t	*mru_ghost;
189 	arc_state_t	*mfu;
190 	arc_state_t	*mfu_ghost;
191 	uint64_t	size;		/* Actual total arc size */
192 	uint64_t	p;		/* Target size (in bytes) of mru */
193 	uint64_t	c;		/* Target size of cache (in bytes) */
194 	uint64_t	c_min;		/* Minimum target cache size */
195 	uint64_t	c_max;		/* Maximum target cache size */
196 
197 	/* performance stats */
198 	uint64_t	hits;
199 	uint64_t	misses;
200 	uint64_t	deleted;
201 	uint64_t	recycle_miss;
202 	uint64_t	mutex_miss;
203 	uint64_t	evict_skip;
204 	uint64_t	hash_elements;
205 	uint64_t	hash_elements_max;
206 	uint64_t	hash_collisions;
207 	uint64_t	hash_chains;
208 	uint32_t	hash_chain_max;
209 
210 	int		no_grow;	/* Don't try to grow cache size */
211 } arc;
212 
213 static uint64_t arc_tempreserve;
214 
215 typedef struct arc_callback arc_callback_t;
216 
217 struct arc_callback {
218 	arc_done_func_t		*acb_done;
219 	void			*acb_private;
220 	arc_byteswap_func_t	*acb_byteswap;
221 	arc_buf_t		*acb_buf;
222 	zio_t			*acb_zio_dummy;
223 	arc_callback_t		*acb_next;
224 };
225 
226 struct arc_buf_hdr {
227 	/* immutable */
228 	uint64_t		b_size;
229 	spa_t			*b_spa;
230 
231 	/* protected by hash lock */
232 	dva_t			b_dva;
233 	uint64_t		b_birth;
234 	uint64_t		b_cksum0;
235 
236 	arc_buf_hdr_t		*b_hash_next;
237 	arc_buf_t		*b_buf;
238 	uint32_t		b_flags;
239 	uint32_t		b_datacnt;
240 
241 	kcondvar_t		b_cv;
242 	arc_callback_t		*b_acb;
243 
244 	/* protected by arc state mutex */
245 	arc_state_t		*b_state;
246 	list_node_t		b_arc_node;
247 
248 	/* updated atomically */
249 	clock_t			b_arc_access;
250 
251 	/* self protecting */
252 	refcount_t		b_refcnt;
253 };
254 
255 static arc_buf_t *arc_eviction_list;
256 static kmutex_t arc_eviction_mtx;
257 static void arc_get_data_buf(arc_buf_t *buf);
258 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
259 
260 #define	GHOST_STATE(state)	\
261 	((state) == arc.mru_ghost || (state) == arc.mfu_ghost)
262 
263 /*
264  * Private ARC flags.  These flags are private ARC only flags that will show up
265  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
266  * be passed in as arc_flags in things like arc_read.  However, these flags
267  * should never be passed and should only be set by ARC code.  When adding new
268  * public flags, make sure not to smash the private ones.
269  */
270 
271 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
272 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
273 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
274 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
275 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
276 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
277 
278 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
279 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
280 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
281 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
282 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
283 
284 /*
285  * Hash table routines
286  */
287 
288 #define	HT_LOCK_PAD	64
289 
290 struct ht_lock {
291 	kmutex_t	ht_lock;
292 #ifdef _KERNEL
293 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
294 #endif
295 };
296 
297 #define	BUF_LOCKS 256
298 typedef struct buf_hash_table {
299 	uint64_t ht_mask;
300 	arc_buf_hdr_t **ht_table;
301 	struct ht_lock ht_locks[BUF_LOCKS];
302 } buf_hash_table_t;
303 
304 static buf_hash_table_t buf_hash_table;
305 
306 #define	BUF_HASH_INDEX(spa, dva, birth) \
307 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
308 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
309 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
310 #define	HDR_LOCK(buf) \
311 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
312 
313 uint64_t zfs_crc64_table[256];
314 
315 static uint64_t
316 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth)
317 {
318 	uintptr_t spav = (uintptr_t)spa;
319 	uint8_t *vdva = (uint8_t *)dva;
320 	uint64_t crc = -1ULL;
321 	int i;
322 
323 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
324 
325 	for (i = 0; i < sizeof (dva_t); i++)
326 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
327 
328 	crc ^= (spav>>8) ^ birth;
329 
330 	return (crc);
331 }
332 
333 #define	BUF_EMPTY(buf)						\
334 	((buf)->b_dva.dva_word[0] == 0 &&			\
335 	(buf)->b_dva.dva_word[1] == 0 &&			\
336 	(buf)->b_birth == 0)
337 
338 #define	BUF_EQUAL(spa, dva, birth, buf)				\
339 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
340 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
341 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
342 
343 static arc_buf_hdr_t *
344 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp)
345 {
346 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
347 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
348 	arc_buf_hdr_t *buf;
349 
350 	mutex_enter(hash_lock);
351 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
352 	    buf = buf->b_hash_next) {
353 		if (BUF_EQUAL(spa, dva, birth, buf)) {
354 			*lockp = hash_lock;
355 			return (buf);
356 		}
357 	}
358 	mutex_exit(hash_lock);
359 	*lockp = NULL;
360 	return (NULL);
361 }
362 
363 /*
364  * Insert an entry into the hash table.  If there is already an element
365  * equal to elem in the hash table, then the already existing element
366  * will be returned and the new element will not be inserted.
367  * Otherwise returns NULL.
368  */
369 static arc_buf_hdr_t *
370 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
371 {
372 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
373 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
374 	arc_buf_hdr_t *fbuf;
375 	uint32_t max, i;
376 
377 	ASSERT(!HDR_IN_HASH_TABLE(buf));
378 	*lockp = hash_lock;
379 	mutex_enter(hash_lock);
380 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
381 	    fbuf = fbuf->b_hash_next, i++) {
382 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
383 			return (fbuf);
384 	}
385 
386 	buf->b_hash_next = buf_hash_table.ht_table[idx];
387 	buf_hash_table.ht_table[idx] = buf;
388 	buf->b_flags |= ARC_IN_HASH_TABLE;
389 
390 	/* collect some hash table performance data */
391 	if (i > 0) {
392 		atomic_add_64(&arc.hash_collisions, 1);
393 		if (i == 1)
394 			atomic_add_64(&arc.hash_chains, 1);
395 	}
396 	while (i > (max = arc.hash_chain_max) &&
397 	    max != atomic_cas_32(&arc.hash_chain_max, max, i)) {
398 		continue;
399 	}
400 	atomic_add_64(&arc.hash_elements, 1);
401 	if (arc.hash_elements > arc.hash_elements_max)
402 		atomic_add_64(&arc.hash_elements_max, 1);
403 
404 	return (NULL);
405 }
406 
407 static void
408 buf_hash_remove(arc_buf_hdr_t *buf)
409 {
410 	arc_buf_hdr_t *fbuf, **bufp;
411 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
412 
413 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
414 	ASSERT(HDR_IN_HASH_TABLE(buf));
415 
416 	bufp = &buf_hash_table.ht_table[idx];
417 	while ((fbuf = *bufp) != buf) {
418 		ASSERT(fbuf != NULL);
419 		bufp = &fbuf->b_hash_next;
420 	}
421 	*bufp = buf->b_hash_next;
422 	buf->b_hash_next = NULL;
423 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
424 
425 	/* collect some hash table performance data */
426 	atomic_add_64(&arc.hash_elements, -1);
427 	if (buf_hash_table.ht_table[idx] &&
428 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
429 		atomic_add_64(&arc.hash_chains, -1);
430 }
431 
432 /*
433  * Global data structures and functions for the buf kmem cache.
434  */
435 static kmem_cache_t *hdr_cache;
436 static kmem_cache_t *buf_cache;
437 
438 static void
439 buf_fini(void)
440 {
441 	int i;
442 
443 	kmem_free(buf_hash_table.ht_table,
444 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
445 	for (i = 0; i < BUF_LOCKS; i++)
446 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
447 	kmem_cache_destroy(hdr_cache);
448 	kmem_cache_destroy(buf_cache);
449 }
450 
451 /*
452  * Constructor callback - called when the cache is empty
453  * and a new buf is requested.
454  */
455 /* ARGSUSED */
456 static int
457 hdr_cons(void *vbuf, void *unused, int kmflag)
458 {
459 	arc_buf_hdr_t *buf = vbuf;
460 
461 	bzero(buf, sizeof (arc_buf_hdr_t));
462 	refcount_create(&buf->b_refcnt);
463 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
464 	return (0);
465 }
466 
467 /*
468  * Destructor callback - called when a cached buf is
469  * no longer required.
470  */
471 /* ARGSUSED */
472 static void
473 hdr_dest(void *vbuf, void *unused)
474 {
475 	arc_buf_hdr_t *buf = vbuf;
476 
477 	refcount_destroy(&buf->b_refcnt);
478 	cv_destroy(&buf->b_cv);
479 }
480 
481 static int arc_reclaim_needed(void);
482 void arc_kmem_reclaim(void);
483 
484 /*
485  * Reclaim callback -- invoked when memory is low.
486  */
487 /* ARGSUSED */
488 static void
489 hdr_recl(void *unused)
490 {
491 	dprintf("hdr_recl called\n");
492 	if (arc_reclaim_needed())
493 		arc_kmem_reclaim();
494 }
495 
496 static void
497 buf_init(void)
498 {
499 	uint64_t *ct;
500 	uint64_t hsize = 1ULL << 12;
501 	int i, j;
502 
503 	/*
504 	 * The hash table is big enough to fill all of physical memory
505 	 * with an average 64K block size.  The table will take up
506 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
507 	 */
508 	while (hsize * 65536 < physmem * PAGESIZE)
509 		hsize <<= 1;
510 retry:
511 	buf_hash_table.ht_mask = hsize - 1;
512 	buf_hash_table.ht_table =
513 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
514 	if (buf_hash_table.ht_table == NULL) {
515 		ASSERT(hsize > (1ULL << 8));
516 		hsize >>= 1;
517 		goto retry;
518 	}
519 
520 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
521 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
522 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
523 	    0, NULL, NULL, NULL, NULL, NULL, 0);
524 
525 	for (i = 0; i < 256; i++)
526 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
527 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
528 
529 	for (i = 0; i < BUF_LOCKS; i++) {
530 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
531 		    NULL, MUTEX_DEFAULT, NULL);
532 	}
533 }
534 
535 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
536 
537 static void
538 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
539 {
540 	ASSERT(MUTEX_HELD(hash_lock));
541 
542 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
543 	    (ab->b_state != arc.anon)) {
544 		int delta = ab->b_size * ab->b_datacnt;
545 
546 		ASSERT(!MUTEX_HELD(&ab->b_state->mtx));
547 		mutex_enter(&ab->b_state->mtx);
548 		ASSERT(list_link_active(&ab->b_arc_node));
549 		list_remove(&ab->b_state->list, ab);
550 		if (GHOST_STATE(ab->b_state)) {
551 			ASSERT3U(ab->b_datacnt, ==, 0);
552 			ASSERT3P(ab->b_buf, ==, NULL);
553 			delta = ab->b_size;
554 		}
555 		ASSERT(delta > 0);
556 		ASSERT3U(ab->b_state->lsize, >=, delta);
557 		atomic_add_64(&ab->b_state->lsize, -delta);
558 		mutex_exit(&ab->b_state->mtx);
559 		/* remove the prefetch flag is we get a reference */
560 		if (ab->b_flags & ARC_PREFETCH)
561 			ab->b_flags &= ~ARC_PREFETCH;
562 	}
563 }
564 
565 static int
566 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
567 {
568 	int cnt;
569 
570 	ASSERT(ab->b_state == arc.anon || MUTEX_HELD(hash_lock));
571 	ASSERT(!GHOST_STATE(ab->b_state));
572 
573 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
574 	    (ab->b_state != arc.anon)) {
575 
576 		ASSERT(!MUTEX_HELD(&ab->b_state->mtx));
577 		mutex_enter(&ab->b_state->mtx);
578 		ASSERT(!list_link_active(&ab->b_arc_node));
579 		list_insert_head(&ab->b_state->list, ab);
580 		ASSERT(ab->b_datacnt > 0);
581 		atomic_add_64(&ab->b_state->lsize, ab->b_size * ab->b_datacnt);
582 		ASSERT3U(ab->b_state->size, >=, ab->b_state->lsize);
583 		mutex_exit(&ab->b_state->mtx);
584 	}
585 	return (cnt);
586 }
587 
588 /*
589  * Move the supplied buffer to the indicated state.  The mutex
590  * for the buffer must be held by the caller.
591  */
592 static void
593 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
594 {
595 	arc_state_t *old_state = ab->b_state;
596 	int refcnt = refcount_count(&ab->b_refcnt);
597 	int from_delta, to_delta;
598 
599 	ASSERT(MUTEX_HELD(hash_lock));
600 	ASSERT(new_state != old_state);
601 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
602 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
603 
604 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
605 
606 	/*
607 	 * If this buffer is evictable, transfer it from the
608 	 * old state list to the new state list.
609 	 */
610 	if (refcnt == 0) {
611 		if (old_state != arc.anon) {
612 			int use_mutex = !MUTEX_HELD(&old_state->mtx);
613 
614 			if (use_mutex)
615 				mutex_enter(&old_state->mtx);
616 
617 			ASSERT(list_link_active(&ab->b_arc_node));
618 			list_remove(&old_state->list, ab);
619 
620 			/*
621 			 * If prefetching out of the ghost cache,
622 			 * we will have a non-null datacnt.
623 			 */
624 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
625 				/* ghost elements have a ghost size */
626 				ASSERT(ab->b_buf == NULL);
627 				from_delta = ab->b_size;
628 			}
629 			ASSERT3U(old_state->lsize, >=, from_delta);
630 			atomic_add_64(&old_state->lsize, -from_delta);
631 
632 			if (use_mutex)
633 				mutex_exit(&old_state->mtx);
634 		}
635 		if (new_state != arc.anon) {
636 			int use_mutex = !MUTEX_HELD(&new_state->mtx);
637 
638 			if (use_mutex)
639 				mutex_enter(&new_state->mtx);
640 
641 			list_insert_head(&new_state->list, ab);
642 
643 			/* ghost elements have a ghost size */
644 			if (GHOST_STATE(new_state)) {
645 				ASSERT(ab->b_datacnt == 0);
646 				ASSERT(ab->b_buf == NULL);
647 				to_delta = ab->b_size;
648 			}
649 			atomic_add_64(&new_state->lsize, to_delta);
650 			ASSERT3U(new_state->size + to_delta, >=,
651 			    new_state->lsize);
652 
653 			if (use_mutex)
654 				mutex_exit(&new_state->mtx);
655 		}
656 	}
657 
658 	ASSERT(!BUF_EMPTY(ab));
659 	if (new_state == arc.anon && old_state != arc.anon) {
660 		buf_hash_remove(ab);
661 	}
662 
663 	/* adjust state sizes */
664 	if (to_delta)
665 		atomic_add_64(&new_state->size, to_delta);
666 	if (from_delta) {
667 		ASSERT3U(old_state->size, >=, from_delta);
668 		atomic_add_64(&old_state->size, -from_delta);
669 	}
670 	ab->b_state = new_state;
671 }
672 
673 arc_buf_t *
674 arc_buf_alloc(spa_t *spa, int size, void *tag)
675 {
676 	arc_buf_hdr_t *hdr;
677 	arc_buf_t *buf;
678 
679 	ASSERT3U(size, >, 0);
680 	hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
681 	ASSERT(BUF_EMPTY(hdr));
682 	hdr->b_size = size;
683 	hdr->b_spa = spa;
684 	hdr->b_state = arc.anon;
685 	hdr->b_arc_access = 0;
686 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
687 	buf->b_hdr = hdr;
688 	buf->b_data = NULL;
689 	buf->b_efunc = NULL;
690 	buf->b_private = NULL;
691 	buf->b_next = NULL;
692 	hdr->b_buf = buf;
693 	arc_get_data_buf(buf);
694 	hdr->b_datacnt = 1;
695 	hdr->b_flags = 0;
696 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
697 	(void) refcount_add(&hdr->b_refcnt, tag);
698 
699 	return (buf);
700 }
701 
702 static arc_buf_t *
703 arc_buf_clone(arc_buf_t *from)
704 {
705 	arc_buf_t *buf;
706 	arc_buf_hdr_t *hdr = from->b_hdr;
707 	uint64_t size = hdr->b_size;
708 
709 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
710 	buf->b_hdr = hdr;
711 	buf->b_data = NULL;
712 	buf->b_efunc = NULL;
713 	buf->b_private = NULL;
714 	buf->b_next = hdr->b_buf;
715 	hdr->b_buf = buf;
716 	arc_get_data_buf(buf);
717 	bcopy(from->b_data, buf->b_data, size);
718 	hdr->b_datacnt += 1;
719 	return (buf);
720 }
721 
722 void
723 arc_buf_add_ref(arc_buf_t *buf, void* tag)
724 {
725 	arc_buf_hdr_t *hdr;
726 	kmutex_t *hash_lock;
727 
728 	mutex_enter(&arc_eviction_mtx);
729 	hdr = buf->b_hdr;
730 	if (buf->b_data == NULL) {
731 		/*
732 		 * This buffer is evicted.
733 		 */
734 		mutex_exit(&arc_eviction_mtx);
735 		return;
736 	} else {
737 		/*
738 		 * Prevent this buffer from being evicted
739 		 * while we add a reference.
740 		 */
741 		buf->b_hdr = NULL;
742 	}
743 	mutex_exit(&arc_eviction_mtx);
744 
745 	ASSERT(hdr->b_state != arc.anon);
746 	hash_lock = HDR_LOCK(hdr);
747 	mutex_enter(hash_lock);
748 	ASSERT(!GHOST_STATE(hdr->b_state));
749 	buf->b_hdr = hdr;
750 	add_reference(hdr, hash_lock, tag);
751 	arc_access(hdr, hash_lock);
752 	mutex_exit(hash_lock);
753 	atomic_add_64(&arc.hits, 1);
754 }
755 
756 static void
757 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
758 {
759 	arc_buf_t **bufp;
760 
761 	/* free up data associated with the buf */
762 	if (buf->b_data) {
763 		arc_state_t *state = buf->b_hdr->b_state;
764 		uint64_t size = buf->b_hdr->b_size;
765 
766 		if (!recycle) {
767 			zio_buf_free(buf->b_data, size);
768 			atomic_add_64(&arc.size, -size);
769 		}
770 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
771 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
772 			ASSERT(state != arc.anon);
773 			ASSERT3U(state->lsize, >=, size);
774 			atomic_add_64(&state->lsize, -size);
775 		}
776 		ASSERT3U(state->size, >=, size);
777 		atomic_add_64(&state->size, -size);
778 		buf->b_data = NULL;
779 		ASSERT(buf->b_hdr->b_datacnt > 0);
780 		buf->b_hdr->b_datacnt -= 1;
781 	}
782 
783 	/* only remove the buf if requested */
784 	if (!all)
785 		return;
786 
787 	/* remove the buf from the hdr list */
788 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
789 		continue;
790 	*bufp = buf->b_next;
791 
792 	ASSERT(buf->b_efunc == NULL);
793 
794 	/* clean up the buf */
795 	buf->b_hdr = NULL;
796 	kmem_cache_free(buf_cache, buf);
797 }
798 
799 static void
800 arc_hdr_destroy(arc_buf_hdr_t *hdr)
801 {
802 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
803 	ASSERT3P(hdr->b_state, ==, arc.anon);
804 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
805 
806 	if (!BUF_EMPTY(hdr)) {
807 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
808 		bzero(&hdr->b_dva, sizeof (dva_t));
809 		hdr->b_birth = 0;
810 		hdr->b_cksum0 = 0;
811 	}
812 	while (hdr->b_buf) {
813 		arc_buf_t *buf = hdr->b_buf;
814 
815 		if (buf->b_efunc) {
816 			mutex_enter(&arc_eviction_mtx);
817 			ASSERT(buf->b_hdr != NULL);
818 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
819 			hdr->b_buf = buf->b_next;
820 			buf->b_next = arc_eviction_list;
821 			arc_eviction_list = buf;
822 			mutex_exit(&arc_eviction_mtx);
823 		} else {
824 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
825 		}
826 	}
827 
828 	ASSERT(!list_link_active(&hdr->b_arc_node));
829 	ASSERT3P(hdr->b_hash_next, ==, NULL);
830 	ASSERT3P(hdr->b_acb, ==, NULL);
831 	kmem_cache_free(hdr_cache, hdr);
832 }
833 
834 void
835 arc_buf_free(arc_buf_t *buf, void *tag)
836 {
837 	arc_buf_hdr_t *hdr = buf->b_hdr;
838 	int hashed = hdr->b_state != arc.anon;
839 
840 	ASSERT(buf->b_efunc == NULL);
841 	ASSERT(buf->b_data != NULL);
842 
843 	if (hashed) {
844 		kmutex_t *hash_lock = HDR_LOCK(hdr);
845 
846 		mutex_enter(hash_lock);
847 		(void) remove_reference(hdr, hash_lock, tag);
848 		if (hdr->b_datacnt > 1)
849 			arc_buf_destroy(buf, FALSE, TRUE);
850 		else
851 			hdr->b_flags |= ARC_BUF_AVAILABLE;
852 		mutex_exit(hash_lock);
853 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
854 		int destroy_hdr;
855 		/*
856 		 * We are in the middle of an async write.  Don't destroy
857 		 * this buffer unless the write completes before we finish
858 		 * decrementing the reference count.
859 		 */
860 		mutex_enter(&arc_eviction_mtx);
861 		(void) remove_reference(hdr, NULL, tag);
862 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
863 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
864 		mutex_exit(&arc_eviction_mtx);
865 		if (destroy_hdr)
866 			arc_hdr_destroy(hdr);
867 	} else {
868 		if (remove_reference(hdr, NULL, tag) > 0) {
869 			ASSERT(HDR_IO_ERROR(hdr));
870 			arc_buf_destroy(buf, FALSE, TRUE);
871 		} else {
872 			arc_hdr_destroy(hdr);
873 		}
874 	}
875 }
876 
877 int
878 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
879 {
880 	arc_buf_hdr_t *hdr = buf->b_hdr;
881 	kmutex_t *hash_lock = HDR_LOCK(hdr);
882 	int no_callback = (buf->b_efunc == NULL);
883 
884 	if (hdr->b_state == arc.anon) {
885 		arc_buf_free(buf, tag);
886 		return (no_callback);
887 	}
888 
889 	mutex_enter(hash_lock);
890 	ASSERT(hdr->b_state != arc.anon);
891 	ASSERT(buf->b_data != NULL);
892 
893 	(void) remove_reference(hdr, hash_lock, tag);
894 	if (hdr->b_datacnt > 1) {
895 		if (no_callback)
896 			arc_buf_destroy(buf, FALSE, TRUE);
897 	} else if (no_callback) {
898 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
899 		hdr->b_flags |= ARC_BUF_AVAILABLE;
900 	}
901 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
902 	    refcount_is_zero(&hdr->b_refcnt));
903 	mutex_exit(hash_lock);
904 	return (no_callback);
905 }
906 
907 int
908 arc_buf_size(arc_buf_t *buf)
909 {
910 	return (buf->b_hdr->b_size);
911 }
912 
913 /*
914  * Evict buffers from list until we've removed the specified number of
915  * bytes.  Move the removed buffers to the appropriate evict state.
916  * If the recycle flag is set, then attempt to "recycle" a buffer:
917  * - look for a buffer to evict that is `bytes' long.
918  * - return the data block from this buffer rather than freeing it.
919  * This flag is used by callers that are trying to make space for a
920  * new buffer in a full arc cache.
921  */
922 static void *
923 arc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle)
924 {
925 	arc_state_t *evicted_state;
926 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
927 	arc_buf_hdr_t *ab, *ab_prev;
928 	kmutex_t *hash_lock;
929 	boolean_t have_lock;
930 	void *steal = NULL;
931 
932 	ASSERT(state == arc.mru || state == arc.mfu);
933 
934 	evicted_state = (state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost;
935 
936 	mutex_enter(&state->mtx);
937 	mutex_enter(&evicted_state->mtx);
938 
939 	for (ab = list_tail(&state->list); ab; ab = ab_prev) {
940 		ab_prev = list_prev(&state->list, ab);
941 		/* prefetch buffers have a minimum lifespan */
942 		if (HDR_IO_IN_PROGRESS(ab) ||
943 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
944 		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
945 			skipped++;
946 			continue;
947 		}
948 		if (recycle && (ab->b_size != bytes || ab->b_datacnt > 1))
949 			continue;
950 		hash_lock = HDR_LOCK(ab);
951 		have_lock = MUTEX_HELD(hash_lock);
952 		if (have_lock || mutex_tryenter(hash_lock)) {
953 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
954 			ASSERT(ab->b_datacnt > 0);
955 			while (ab->b_buf) {
956 				arc_buf_t *buf = ab->b_buf;
957 				if (buf->b_data) {
958 					bytes_evicted += ab->b_size;
959 					if (recycle)
960 						steal = buf->b_data;
961 				}
962 				if (buf->b_efunc) {
963 					mutex_enter(&arc_eviction_mtx);
964 					/*
965 					 * arc_buf_add_ref() could derail
966 					 * this eviction.
967 					 */
968 					if (buf->b_hdr == NULL) {
969 						mutex_exit(&arc_eviction_mtx);
970 						bytes_evicted -= ab->b_size;
971 						if (recycle)
972 							steal = NULL;
973 						if (!have_lock)
974 							mutex_exit(hash_lock);
975 						goto derailed;
976 					}
977 					arc_buf_destroy(buf, recycle, FALSE);
978 					ab->b_buf = buf->b_next;
979 					buf->b_next = arc_eviction_list;
980 					arc_eviction_list = buf;
981 					mutex_exit(&arc_eviction_mtx);
982 				} else {
983 					arc_buf_destroy(buf, recycle, TRUE);
984 				}
985 			}
986 			ASSERT(ab->b_datacnt == 0);
987 			arc_change_state(evicted_state, ab, hash_lock);
988 			ASSERT(HDR_IN_HASH_TABLE(ab));
989 			ab->b_flags = ARC_IN_HASH_TABLE;
990 			DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
991 			if (!have_lock)
992 				mutex_exit(hash_lock);
993 			if (bytes >= 0 && bytes_evicted >= bytes)
994 				break;
995 		} else {
996 			missed += 1;
997 		}
998 derailed:
999 		/* null statement */;
1000 	}
1001 	mutex_exit(&evicted_state->mtx);
1002 	mutex_exit(&state->mtx);
1003 
1004 	if (bytes_evicted < bytes)
1005 		dprintf("only evicted %lld bytes from %x",
1006 		    (longlong_t)bytes_evicted, state);
1007 
1008 	if (skipped)
1009 		atomic_add_64(&arc.evict_skip, skipped);
1010 	if (missed)
1011 		atomic_add_64(&arc.mutex_miss, missed);
1012 	return (steal);
1013 }
1014 
1015 /*
1016  * Remove buffers from list until we've removed the specified number of
1017  * bytes.  Destroy the buffers that are removed.
1018  */
1019 static void
1020 arc_evict_ghost(arc_state_t *state, int64_t bytes)
1021 {
1022 	arc_buf_hdr_t *ab, *ab_prev;
1023 	kmutex_t *hash_lock;
1024 	uint64_t bytes_deleted = 0;
1025 	uint_t bufs_skipped = 0;
1026 
1027 	ASSERT(GHOST_STATE(state));
1028 top:
1029 	mutex_enter(&state->mtx);
1030 	for (ab = list_tail(&state->list); ab; ab = ab_prev) {
1031 		ab_prev = list_prev(&state->list, ab);
1032 		hash_lock = HDR_LOCK(ab);
1033 		if (mutex_tryenter(hash_lock)) {
1034 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1035 			ASSERT(ab->b_buf == NULL);
1036 			arc_change_state(arc.anon, ab, hash_lock);
1037 			mutex_exit(hash_lock);
1038 			atomic_add_64(&arc.deleted, 1);
1039 			bytes_deleted += ab->b_size;
1040 			arc_hdr_destroy(ab);
1041 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1042 			if (bytes >= 0 && bytes_deleted >= bytes)
1043 				break;
1044 		} else {
1045 			if (bytes < 0) {
1046 				mutex_exit(&state->mtx);
1047 				mutex_enter(hash_lock);
1048 				mutex_exit(hash_lock);
1049 				goto top;
1050 			}
1051 			bufs_skipped += 1;
1052 		}
1053 	}
1054 	mutex_exit(&state->mtx);
1055 
1056 	if (bufs_skipped) {
1057 		atomic_add_64(&arc.mutex_miss, bufs_skipped);
1058 		ASSERT(bytes >= 0);
1059 	}
1060 
1061 	if (bytes_deleted < bytes)
1062 		dprintf("only deleted %lld bytes from %p",
1063 		    (longlong_t)bytes_deleted, state);
1064 }
1065 
1066 static void
1067 arc_adjust(void)
1068 {
1069 	int64_t top_sz, mru_over, arc_over;
1070 
1071 	top_sz = arc.anon->size + arc.mru->size;
1072 
1073 	if (top_sz > arc.p && arc.mru->lsize > 0) {
1074 		int64_t toevict = MIN(arc.mru->lsize, top_sz-arc.p);
1075 		(void) arc_evict(arc.mru, toevict, FALSE);
1076 		top_sz = arc.anon->size + arc.mru->size;
1077 	}
1078 
1079 	mru_over = top_sz + arc.mru_ghost->size - arc.c;
1080 
1081 	if (mru_over > 0) {
1082 		if (arc.mru_ghost->lsize > 0) {
1083 			int64_t todelete = MIN(arc.mru_ghost->lsize, mru_over);
1084 			arc_evict_ghost(arc.mru_ghost, todelete);
1085 		}
1086 	}
1087 
1088 	if ((arc_over = arc.size - arc.c) > 0) {
1089 		int64_t tbl_over;
1090 
1091 		if (arc.mfu->lsize > 0) {
1092 			int64_t toevict = MIN(arc.mfu->lsize, arc_over);
1093 			(void) arc_evict(arc.mfu, toevict, FALSE);
1094 		}
1095 
1096 		tbl_over = arc.size + arc.mru_ghost->lsize +
1097 		    arc.mfu_ghost->lsize - arc.c*2;
1098 
1099 		if (tbl_over > 0 && arc.mfu_ghost->lsize > 0) {
1100 			int64_t todelete = MIN(arc.mfu_ghost->lsize, tbl_over);
1101 			arc_evict_ghost(arc.mfu_ghost, todelete);
1102 		}
1103 	}
1104 }
1105 
1106 static void
1107 arc_do_user_evicts(void)
1108 {
1109 	mutex_enter(&arc_eviction_mtx);
1110 	while (arc_eviction_list != NULL) {
1111 		arc_buf_t *buf = arc_eviction_list;
1112 		arc_eviction_list = buf->b_next;
1113 		buf->b_hdr = NULL;
1114 		mutex_exit(&arc_eviction_mtx);
1115 
1116 		if (buf->b_efunc != NULL)
1117 			VERIFY(buf->b_efunc(buf) == 0);
1118 
1119 		buf->b_efunc = NULL;
1120 		buf->b_private = NULL;
1121 		kmem_cache_free(buf_cache, buf);
1122 		mutex_enter(&arc_eviction_mtx);
1123 	}
1124 	mutex_exit(&arc_eviction_mtx);
1125 }
1126 
1127 /*
1128  * Flush all *evictable* data from the cache.
1129  * NOTE: this will not touch "active" (i.e. referenced) data.
1130  */
1131 void
1132 arc_flush(void)
1133 {
1134 	while (list_head(&arc.mru->list))
1135 		(void) arc_evict(arc.mru, -1, FALSE);
1136 	while (list_head(&arc.mfu->list))
1137 		(void) arc_evict(arc.mfu, -1, FALSE);
1138 
1139 	arc_evict_ghost(arc.mru_ghost, -1);
1140 	arc_evict_ghost(arc.mfu_ghost, -1);
1141 
1142 	mutex_enter(&arc_reclaim_thr_lock);
1143 	arc_do_user_evicts();
1144 	mutex_exit(&arc_reclaim_thr_lock);
1145 	ASSERT(arc_eviction_list == NULL);
1146 }
1147 
1148 int arc_kmem_reclaim_shift = 5;		/* log2(fraction of arc to reclaim) */
1149 
1150 void
1151 arc_kmem_reclaim(void)
1152 {
1153 	uint64_t to_free;
1154 
1155 	/*
1156 	 * We need arc_reclaim_lock because we don't want multiple
1157 	 * threads trying to reclaim concurrently.
1158 	 */
1159 
1160 	/*
1161 	 * umem calls the reclaim func when we destroy the buf cache,
1162 	 * which is after we do arc_fini().  So we set a flag to prevent
1163 	 * accessing the destroyed mutexes and lists.
1164 	 */
1165 	if (arc_dead)
1166 		return;
1167 
1168 	if (arc.c <= arc.c_min)
1169 		return;
1170 
1171 	mutex_enter(&arc_reclaim_lock);
1172 
1173 #ifdef _KERNEL
1174 	to_free = MAX(arc.c >> arc_kmem_reclaim_shift, ptob(needfree));
1175 #else
1176 	to_free = arc.c >> arc_kmem_reclaim_shift;
1177 #endif
1178 	if (arc.c > to_free)
1179 		atomic_add_64(&arc.c, -to_free);
1180 	else
1181 		arc.c = arc.c_min;
1182 
1183 	atomic_add_64(&arc.p, -(arc.p >> arc_kmem_reclaim_shift));
1184 	if (arc.c > arc.size)
1185 		arc.c = arc.size;
1186 	if (arc.c < arc.c_min)
1187 		arc.c = arc.c_min;
1188 	if (arc.p > arc.c)
1189 		arc.p = (arc.c >> 1);
1190 	ASSERT((int64_t)arc.p >= 0);
1191 
1192 	arc_adjust();
1193 
1194 	mutex_exit(&arc_reclaim_lock);
1195 }
1196 
1197 static int
1198 arc_reclaim_needed(void)
1199 {
1200 	uint64_t extra;
1201 
1202 #ifdef _KERNEL
1203 
1204 	if (needfree)
1205 		return (1);
1206 
1207 	/*
1208 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1209 	 */
1210 	extra = desfree;
1211 
1212 	/*
1213 	 * check that we're out of range of the pageout scanner.  It starts to
1214 	 * schedule paging if freemem is less than lotsfree and needfree.
1215 	 * lotsfree is the high-water mark for pageout, and needfree is the
1216 	 * number of needed free pages.  We add extra pages here to make sure
1217 	 * the scanner doesn't start up while we're freeing memory.
1218 	 */
1219 	if (freemem < lotsfree + needfree + extra)
1220 		return (1);
1221 
1222 	/*
1223 	 * check to make sure that swapfs has enough space so that anon
1224 	 * reservations can still succeeed. anon_resvmem() checks that the
1225 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1226 	 * swap pages.  We also add a bit of extra here just to prevent
1227 	 * circumstances from getting really dire.
1228 	 */
1229 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1230 		return (1);
1231 
1232 #if defined(__i386)
1233 	/*
1234 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1235 	 * kernel heap space before we ever run out of available physical
1236 	 * memory.  Most checks of the size of the heap_area compare against
1237 	 * tune.t_minarmem, which is the minimum available real memory that we
1238 	 * can have in the system.  However, this is generally fixed at 25 pages
1239 	 * which is so low that it's useless.  In this comparison, we seek to
1240 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1241 	 * heap is allocated.  (Or, in the caclulation, if less than 1/4th is
1242 	 * free)
1243 	 */
1244 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1245 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1246 		return (1);
1247 #endif
1248 
1249 #else
1250 	if (spa_get_random(100) == 0)
1251 		return (1);
1252 #endif
1253 	return (0);
1254 }
1255 
1256 static void
1257 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1258 {
1259 	size_t			i;
1260 	kmem_cache_t		*prev_cache = NULL;
1261 	extern kmem_cache_t	*zio_buf_cache[];
1262 
1263 #ifdef _KERNEL
1264 	/*
1265 	 * First purge some DNLC entries, in case the DNLC is using
1266 	 * up too much memory.
1267 	 */
1268 	dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1269 
1270 #if defined(__i386)
1271 	/*
1272 	 * Reclaim unused memory from all kmem caches.
1273 	 */
1274 	kmem_reap();
1275 #endif
1276 #endif
1277 
1278 	/*
1279 	 * An agressive reclamation will shrink the cache size as well as
1280 	 * reap free buffers from the arc kmem caches.
1281 	 */
1282 	if (strat == ARC_RECLAIM_AGGR)
1283 		arc_kmem_reclaim();
1284 
1285 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1286 		if (zio_buf_cache[i] != prev_cache) {
1287 			prev_cache = zio_buf_cache[i];
1288 			kmem_cache_reap_now(zio_buf_cache[i]);
1289 		}
1290 	}
1291 	kmem_cache_reap_now(buf_cache);
1292 	kmem_cache_reap_now(hdr_cache);
1293 }
1294 
1295 static void
1296 arc_reclaim_thread(void)
1297 {
1298 	clock_t			growtime = 0;
1299 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1300 	callb_cpr_t		cpr;
1301 
1302 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1303 
1304 	mutex_enter(&arc_reclaim_thr_lock);
1305 	while (arc_thread_exit == 0) {
1306 		if (arc_reclaim_needed()) {
1307 
1308 			if (arc.no_grow) {
1309 				if (last_reclaim == ARC_RECLAIM_CONS) {
1310 					last_reclaim = ARC_RECLAIM_AGGR;
1311 				} else {
1312 					last_reclaim = ARC_RECLAIM_CONS;
1313 				}
1314 			} else {
1315 				arc.no_grow = TRUE;
1316 				last_reclaim = ARC_RECLAIM_AGGR;
1317 				membar_producer();
1318 			}
1319 
1320 			/* reset the growth delay for every reclaim */
1321 			growtime = lbolt + (arc_grow_retry * hz);
1322 
1323 			arc_kmem_reap_now(last_reclaim);
1324 
1325 		} else if ((growtime > 0) && ((growtime - lbolt) <= 0)) {
1326 			arc.no_grow = FALSE;
1327 		}
1328 
1329 		if (arc_eviction_list != NULL)
1330 			arc_do_user_evicts();
1331 
1332 		/* block until needed, or one second, whichever is shorter */
1333 		CALLB_CPR_SAFE_BEGIN(&cpr);
1334 		(void) cv_timedwait(&arc_reclaim_thr_cv,
1335 		    &arc_reclaim_thr_lock, (lbolt + hz));
1336 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1337 	}
1338 
1339 	arc_thread_exit = 0;
1340 	cv_broadcast(&arc_reclaim_thr_cv);
1341 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
1342 	thread_exit();
1343 }
1344 
1345 /*
1346  * Adapt arc info given the number of bytes we are trying to add and
1347  * the state that we are comming from.  This function is only called
1348  * when we are adding new content to the cache.
1349  */
1350 static void
1351 arc_adapt(int bytes, arc_state_t *state)
1352 {
1353 	int mult;
1354 
1355 	ASSERT(bytes > 0);
1356 	/*
1357 	 * Adapt the target size of the MRU list:
1358 	 *	- if we just hit in the MRU ghost list, then increase
1359 	 *	  the target size of the MRU list.
1360 	 *	- if we just hit in the MFU ghost list, then increase
1361 	 *	  the target size of the MFU list by decreasing the
1362 	 *	  target size of the MRU list.
1363 	 */
1364 	if (state == arc.mru_ghost) {
1365 		mult = ((arc.mru_ghost->size >= arc.mfu_ghost->size) ?
1366 		    1 : (arc.mfu_ghost->size/arc.mru_ghost->size));
1367 
1368 		arc.p = MIN(arc.c, arc.p + bytes * mult);
1369 	} else if (state == arc.mfu_ghost) {
1370 		mult = ((arc.mfu_ghost->size >= arc.mru_ghost->size) ?
1371 		    1 : (arc.mru_ghost->size/arc.mfu_ghost->size));
1372 
1373 		arc.p = MAX(0, (int64_t)arc.p - bytes * mult);
1374 	}
1375 	ASSERT((int64_t)arc.p >= 0);
1376 
1377 	if (arc_reclaim_needed()) {
1378 		cv_signal(&arc_reclaim_thr_cv);
1379 		return;
1380 	}
1381 
1382 	if (arc.no_grow)
1383 		return;
1384 
1385 	if (arc.c >= arc.c_max)
1386 		return;
1387 
1388 	/*
1389 	 * If we're within (2 * maxblocksize) bytes of the target
1390 	 * cache size, increment the target cache size
1391 	 */
1392 	if (arc.size > arc.c - (2ULL << SPA_MAXBLOCKSHIFT)) {
1393 		atomic_add_64(&arc.c, (int64_t)bytes);
1394 		if (arc.c > arc.c_max)
1395 			arc.c = arc.c_max;
1396 		else if (state == arc.anon)
1397 			atomic_add_64(&arc.p, (int64_t)bytes);
1398 		if (arc.p > arc.c)
1399 			arc.p = arc.c;
1400 	}
1401 	ASSERT((int64_t)arc.p >= 0);
1402 }
1403 
1404 /*
1405  * Check if the cache has reached its limits and eviction is required
1406  * prior to insert.
1407  */
1408 static int
1409 arc_evict_needed()
1410 {
1411 	if (arc_reclaim_needed())
1412 		return (1);
1413 
1414 	return (arc.size > arc.c);
1415 }
1416 
1417 /*
1418  * The buffer, supplied as the first argument, needs a data block.
1419  * So, if we are at cache max, determine which cache should be victimized.
1420  * We have the following cases:
1421  *
1422  * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru) ->
1423  * In this situation if we're out of space, but the resident size of the MFU is
1424  * under the limit, victimize the MFU cache to satisfy this insertion request.
1425  *
1426  * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru) ->
1427  * Here, we've used up all of the available space for the MRU, so we need to
1428  * evict from our own cache instead.  Evict from the set of resident MRU
1429  * entries.
1430  *
1431  * 3. Insert for MFU (c - p) > sizeof(arc.mfu) ->
1432  * c minus p represents the MFU space in the cache, since p is the size of the
1433  * cache that is dedicated to the MRU.  In this situation there's still space on
1434  * the MFU side, so the MRU side needs to be victimized.
1435  *
1436  * 4. Insert for MFU (c - p) < sizeof(arc.mfu) ->
1437  * MFU's resident set is consuming more space than it has been allotted.  In
1438  * this situation, we must victimize our own cache, the MFU, for this insertion.
1439  */
1440 static void
1441 arc_get_data_buf(arc_buf_t *buf)
1442 {
1443 	arc_state_t	*state = buf->b_hdr->b_state;
1444 	uint64_t	size = buf->b_hdr->b_size;
1445 
1446 	arc_adapt(size, state);
1447 
1448 	/*
1449 	 * We have not yet reached cache maximum size,
1450 	 * just allocate a new buffer.
1451 	 */
1452 	if (!arc_evict_needed()) {
1453 		buf->b_data = zio_buf_alloc(size);
1454 		atomic_add_64(&arc.size, size);
1455 		goto out;
1456 	}
1457 
1458 	/*
1459 	 * If we are prefetching from the mfu ghost list, this buffer
1460 	 * will end up on the mru list; so steal space from there.
1461 	 */
1462 	if (state == arc.mfu_ghost)
1463 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc.mru : arc.mfu;
1464 	else if (state == arc.mru_ghost)
1465 		state = arc.mru;
1466 
1467 	if (state == arc.mru || state == arc.anon) {
1468 		uint64_t mru_used = arc.anon->size + arc.mru->size;
1469 		state = (arc.p > mru_used) ? arc.mfu : arc.mru;
1470 	} else {
1471 		/* MFU cases */
1472 		uint64_t mfu_space = arc.c - arc.p;
1473 		state =  (mfu_space > arc.mfu->size) ? arc.mru : arc.mfu;
1474 	}
1475 	if ((buf->b_data = arc_evict(state, size, TRUE)) == NULL) {
1476 		(void) arc_evict(state, size, FALSE);
1477 		buf->b_data = zio_buf_alloc(size);
1478 		atomic_add_64(&arc.size, size);
1479 		atomic_add_64(&arc.recycle_miss, 1);
1480 		if (arc.size > arc.c)
1481 			arc_adjust();
1482 	}
1483 	ASSERT(buf->b_data != NULL);
1484 out:
1485 	/*
1486 	 * Update the state size.  Note that ghost states have a
1487 	 * "ghost size" and so don't need to be updated.
1488 	 */
1489 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
1490 		arc_buf_hdr_t *hdr = buf->b_hdr;
1491 
1492 		atomic_add_64(&hdr->b_state->size, size);
1493 		if (list_link_active(&hdr->b_arc_node)) {
1494 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
1495 			atomic_add_64(&hdr->b_state->lsize, size);
1496 		}
1497 	}
1498 }
1499 
1500 /*
1501  * This routine is called whenever a buffer is accessed.
1502  * NOTE: the hash lock is dropped in this function.
1503  */
1504 static void
1505 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
1506 {
1507 	ASSERT(MUTEX_HELD(hash_lock));
1508 
1509 	if (buf->b_state == arc.anon) {
1510 		/*
1511 		 * This buffer is not in the cache, and does not
1512 		 * appear in our "ghost" list.  Add the new buffer
1513 		 * to the MRU state.
1514 		 */
1515 
1516 		ASSERT(buf->b_arc_access == 0);
1517 		buf->b_arc_access = lbolt;
1518 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1519 		arc_change_state(arc.mru, buf, hash_lock);
1520 
1521 	} else if (buf->b_state == arc.mru) {
1522 		/*
1523 		 * If this buffer is here because of a prefetch, then either:
1524 		 * - clear the flag if this is a "referencing" read
1525 		 *   (any subsequent access will bump this into the MFU state).
1526 		 * or
1527 		 * - move the buffer to the head of the list if this is
1528 		 *   another prefetch (to make it less likely to be evicted).
1529 		 */
1530 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1531 			if (refcount_count(&buf->b_refcnt) == 0) {
1532 				ASSERT(list_link_active(&buf->b_arc_node));
1533 				mutex_enter(&arc.mru->mtx);
1534 				list_remove(&arc.mru->list, buf);
1535 				list_insert_head(&arc.mru->list, buf);
1536 				mutex_exit(&arc.mru->mtx);
1537 			} else {
1538 				buf->b_flags &= ~ARC_PREFETCH;
1539 				atomic_add_64(&arc.mru->hits, 1);
1540 			}
1541 			buf->b_arc_access = lbolt;
1542 			return;
1543 		}
1544 
1545 		/*
1546 		 * This buffer has been "accessed" only once so far,
1547 		 * but it is still in the cache. Move it to the MFU
1548 		 * state.
1549 		 */
1550 		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
1551 			/*
1552 			 * More than 125ms have passed since we
1553 			 * instantiated this buffer.  Move it to the
1554 			 * most frequently used state.
1555 			 */
1556 			buf->b_arc_access = lbolt;
1557 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1558 			arc_change_state(arc.mfu, buf, hash_lock);
1559 		}
1560 		atomic_add_64(&arc.mru->hits, 1);
1561 	} else if (buf->b_state == arc.mru_ghost) {
1562 		arc_state_t	*new_state;
1563 		/*
1564 		 * This buffer has been "accessed" recently, but
1565 		 * was evicted from the cache.  Move it to the
1566 		 * MFU state.
1567 		 */
1568 
1569 		if (buf->b_flags & ARC_PREFETCH) {
1570 			new_state = arc.mru;
1571 			if (refcount_count(&buf->b_refcnt) > 0)
1572 				buf->b_flags &= ~ARC_PREFETCH;
1573 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1574 		} else {
1575 			new_state = arc.mfu;
1576 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1577 		}
1578 
1579 		buf->b_arc_access = lbolt;
1580 		arc_change_state(new_state, buf, hash_lock);
1581 
1582 		atomic_add_64(&arc.mru_ghost->hits, 1);
1583 	} else if (buf->b_state == arc.mfu) {
1584 		/*
1585 		 * This buffer has been accessed more than once and is
1586 		 * still in the cache.  Keep it in the MFU state.
1587 		 *
1588 		 * NOTE: an add_reference() that occurred when we did
1589 		 * the arc_read() will have kicked this off the list.
1590 		 * If it was a prefetch, we will explicitly move it to
1591 		 * the head of the list now.
1592 		 */
1593 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1594 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
1595 			ASSERT(list_link_active(&buf->b_arc_node));
1596 			mutex_enter(&arc.mfu->mtx);
1597 			list_remove(&arc.mfu->list, buf);
1598 			list_insert_head(&arc.mfu->list, buf);
1599 			mutex_exit(&arc.mfu->mtx);
1600 		}
1601 		atomic_add_64(&arc.mfu->hits, 1);
1602 		buf->b_arc_access = lbolt;
1603 	} else if (buf->b_state == arc.mfu_ghost) {
1604 		arc_state_t	*new_state = arc.mfu;
1605 		/*
1606 		 * This buffer has been accessed more than once but has
1607 		 * been evicted from the cache.  Move it back to the
1608 		 * MFU state.
1609 		 */
1610 
1611 		if (buf->b_flags & ARC_PREFETCH) {
1612 			/*
1613 			 * This is a prefetch access...
1614 			 * move this block back to the MRU state.
1615 			 */
1616 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
1617 			new_state = arc.mru;
1618 		}
1619 
1620 		buf->b_arc_access = lbolt;
1621 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1622 		arc_change_state(new_state, buf, hash_lock);
1623 
1624 		atomic_add_64(&arc.mfu_ghost->hits, 1);
1625 	} else {
1626 		ASSERT(!"invalid arc state");
1627 	}
1628 }
1629 
1630 /* a generic arc_done_func_t which you can use */
1631 /* ARGSUSED */
1632 void
1633 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
1634 {
1635 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
1636 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1637 }
1638 
1639 /* a generic arc_done_func_t which you can use */
1640 void
1641 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
1642 {
1643 	arc_buf_t **bufp = arg;
1644 	if (zio && zio->io_error) {
1645 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1646 		*bufp = NULL;
1647 	} else {
1648 		*bufp = buf;
1649 	}
1650 }
1651 
1652 static void
1653 arc_read_done(zio_t *zio)
1654 {
1655 	arc_buf_hdr_t	*hdr, *found;
1656 	arc_buf_t	*buf;
1657 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
1658 	kmutex_t	*hash_lock;
1659 	arc_callback_t	*callback_list, *acb;
1660 	int		freeable = FALSE;
1661 
1662 	buf = zio->io_private;
1663 	hdr = buf->b_hdr;
1664 
1665 	/*
1666 	 * The hdr was inserted into hash-table and removed from lists
1667 	 * prior to starting I/O.  We should find this header, since
1668 	 * it's in the hash table, and it should be legit since it's
1669 	 * not possible to evict it during the I/O.  The only possible
1670 	 * reason for it not to be found is if we were freed during the
1671 	 * read.
1672 	 */
1673 	found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
1674 		    &hash_lock);
1675 
1676 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
1677 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))));
1678 
1679 	/* byteswap if necessary */
1680 	callback_list = hdr->b_acb;
1681 	ASSERT(callback_list != NULL);
1682 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap)
1683 		callback_list->acb_byteswap(buf->b_data, hdr->b_size);
1684 
1685 	/* create copies of the data buffer for the callers */
1686 	abuf = buf;
1687 	for (acb = callback_list; acb; acb = acb->acb_next) {
1688 		if (acb->acb_done) {
1689 			if (abuf == NULL)
1690 				abuf = arc_buf_clone(buf);
1691 			acb->acb_buf = abuf;
1692 			abuf = NULL;
1693 		}
1694 	}
1695 	hdr->b_acb = NULL;
1696 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
1697 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
1698 	if (abuf == buf)
1699 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1700 
1701 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
1702 
1703 	if (zio->io_error != 0) {
1704 		hdr->b_flags |= ARC_IO_ERROR;
1705 		if (hdr->b_state != arc.anon)
1706 			arc_change_state(arc.anon, hdr, hash_lock);
1707 		if (HDR_IN_HASH_TABLE(hdr))
1708 			buf_hash_remove(hdr);
1709 		freeable = refcount_is_zero(&hdr->b_refcnt);
1710 		/* convert checksum errors into IO errors */
1711 		if (zio->io_error == ECKSUM)
1712 			zio->io_error = EIO;
1713 	}
1714 
1715 	/*
1716 	 * Broadcast before we drop the hash_lock to avoid the possibility
1717 	 * that the hdr (and hence the cv) might be freed before we get to
1718 	 * the cv_broadcast().
1719 	 */
1720 	cv_broadcast(&hdr->b_cv);
1721 
1722 	if (hash_lock) {
1723 		/*
1724 		 * Only call arc_access on anonymous buffers.  This is because
1725 		 * if we've issued an I/O for an evicted buffer, we've already
1726 		 * called arc_access (to prevent any simultaneous readers from
1727 		 * getting confused).
1728 		 */
1729 		if (zio->io_error == 0 && hdr->b_state == arc.anon)
1730 			arc_access(hdr, hash_lock);
1731 		mutex_exit(hash_lock);
1732 	} else {
1733 		/*
1734 		 * This block was freed while we waited for the read to
1735 		 * complete.  It has been removed from the hash table and
1736 		 * moved to the anonymous state (so that it won't show up
1737 		 * in the cache).
1738 		 */
1739 		ASSERT3P(hdr->b_state, ==, arc.anon);
1740 		freeable = refcount_is_zero(&hdr->b_refcnt);
1741 	}
1742 
1743 	/* execute each callback and free its structure */
1744 	while ((acb = callback_list) != NULL) {
1745 		if (acb->acb_done)
1746 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
1747 
1748 		if (acb->acb_zio_dummy != NULL) {
1749 			acb->acb_zio_dummy->io_error = zio->io_error;
1750 			zio_nowait(acb->acb_zio_dummy);
1751 		}
1752 
1753 		callback_list = acb->acb_next;
1754 		kmem_free(acb, sizeof (arc_callback_t));
1755 	}
1756 
1757 	if (freeable)
1758 		arc_hdr_destroy(hdr);
1759 }
1760 
1761 /*
1762  * "Read" the block block at the specified DVA (in bp) via the
1763  * cache.  If the block is found in the cache, invoke the provided
1764  * callback immediately and return.  Note that the `zio' parameter
1765  * in the callback will be NULL in this case, since no IO was
1766  * required.  If the block is not in the cache pass the read request
1767  * on to the spa with a substitute callback function, so that the
1768  * requested block will be added to the cache.
1769  *
1770  * If a read request arrives for a block that has a read in-progress,
1771  * either wait for the in-progress read to complete (and return the
1772  * results); or, if this is a read with a "done" func, add a record
1773  * to the read to invoke the "done" func when the read completes,
1774  * and return; or just return.
1775  *
1776  * arc_read_done() will invoke all the requested "done" functions
1777  * for readers of this block.
1778  */
1779 int
1780 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap,
1781     arc_done_func_t *done, void *private, int priority, int flags,
1782     uint32_t *arc_flags, zbookmark_t *zb)
1783 {
1784 	arc_buf_hdr_t *hdr;
1785 	arc_buf_t *buf;
1786 	kmutex_t *hash_lock;
1787 	zio_t	*rzio;
1788 
1789 top:
1790 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
1791 	if (hdr && hdr->b_datacnt > 0) {
1792 
1793 		*arc_flags |= ARC_CACHED;
1794 
1795 		if (HDR_IO_IN_PROGRESS(hdr)) {
1796 
1797 			if (*arc_flags & ARC_WAIT) {
1798 				cv_wait(&hdr->b_cv, hash_lock);
1799 				mutex_exit(hash_lock);
1800 				goto top;
1801 			}
1802 			ASSERT(*arc_flags & ARC_NOWAIT);
1803 
1804 			if (done) {
1805 				arc_callback_t	*acb = NULL;
1806 
1807 				acb = kmem_zalloc(sizeof (arc_callback_t),
1808 				    KM_SLEEP);
1809 				acb->acb_done = done;
1810 				acb->acb_private = private;
1811 				acb->acb_byteswap = swap;
1812 				if (pio != NULL)
1813 					acb->acb_zio_dummy = zio_null(pio,
1814 					    spa, NULL, NULL, flags);
1815 
1816 				ASSERT(acb->acb_done != NULL);
1817 				acb->acb_next = hdr->b_acb;
1818 				hdr->b_acb = acb;
1819 				add_reference(hdr, hash_lock, private);
1820 				mutex_exit(hash_lock);
1821 				return (0);
1822 			}
1823 			mutex_exit(hash_lock);
1824 			return (0);
1825 		}
1826 
1827 		ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu);
1828 
1829 		if (done) {
1830 			add_reference(hdr, hash_lock, private);
1831 			/*
1832 			 * If this block is already in use, create a new
1833 			 * copy of the data so that we will be guaranteed
1834 			 * that arc_release() will always succeed.
1835 			 */
1836 			buf = hdr->b_buf;
1837 			ASSERT(buf);
1838 			ASSERT(buf->b_data);
1839 			if (HDR_BUF_AVAILABLE(hdr)) {
1840 				ASSERT(buf->b_efunc == NULL);
1841 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
1842 			} else {
1843 				buf = arc_buf_clone(buf);
1844 			}
1845 		} else if (*arc_flags & ARC_PREFETCH &&
1846 		    refcount_count(&hdr->b_refcnt) == 0) {
1847 			hdr->b_flags |= ARC_PREFETCH;
1848 		}
1849 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1850 		arc_access(hdr, hash_lock);
1851 		mutex_exit(hash_lock);
1852 		atomic_add_64(&arc.hits, 1);
1853 		if (done)
1854 			done(NULL, buf, private);
1855 	} else {
1856 		uint64_t size = BP_GET_LSIZE(bp);
1857 		arc_callback_t	*acb;
1858 
1859 		if (hdr == NULL) {
1860 			/* this block is not in the cache */
1861 			arc_buf_hdr_t	*exists;
1862 
1863 			buf = arc_buf_alloc(spa, size, private);
1864 			hdr = buf->b_hdr;
1865 			hdr->b_dva = *BP_IDENTITY(bp);
1866 			hdr->b_birth = bp->blk_birth;
1867 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
1868 			exists = buf_hash_insert(hdr, &hash_lock);
1869 			if (exists) {
1870 				/* somebody beat us to the hash insert */
1871 				mutex_exit(hash_lock);
1872 				bzero(&hdr->b_dva, sizeof (dva_t));
1873 				hdr->b_birth = 0;
1874 				hdr->b_cksum0 = 0;
1875 				(void) arc_buf_remove_ref(buf, private);
1876 				goto top; /* restart the IO request */
1877 			}
1878 			/* if this is a prefetch, we don't have a reference */
1879 			if (*arc_flags & ARC_PREFETCH) {
1880 				(void) remove_reference(hdr, hash_lock,
1881 				    private);
1882 				hdr->b_flags |= ARC_PREFETCH;
1883 			}
1884 			if (BP_GET_LEVEL(bp) > 0)
1885 				hdr->b_flags |= ARC_INDIRECT;
1886 		} else {
1887 			/* this block is in the ghost cache */
1888 			ASSERT(GHOST_STATE(hdr->b_state));
1889 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1890 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
1891 			ASSERT(hdr->b_buf == NULL);
1892 
1893 			/* if this is a prefetch, we don't have a reference */
1894 			if (*arc_flags & ARC_PREFETCH)
1895 				hdr->b_flags |= ARC_PREFETCH;
1896 			else
1897 				add_reference(hdr, hash_lock, private);
1898 			buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
1899 			buf->b_hdr = hdr;
1900 			buf->b_data = NULL;
1901 			buf->b_efunc = NULL;
1902 			buf->b_private = NULL;
1903 			buf->b_next = NULL;
1904 			hdr->b_buf = buf;
1905 			arc_get_data_buf(buf);
1906 			ASSERT(hdr->b_datacnt == 0);
1907 			hdr->b_datacnt = 1;
1908 
1909 		}
1910 
1911 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
1912 		acb->acb_done = done;
1913 		acb->acb_private = private;
1914 		acb->acb_byteswap = swap;
1915 
1916 		ASSERT(hdr->b_acb == NULL);
1917 		hdr->b_acb = acb;
1918 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
1919 
1920 		/*
1921 		 * If the buffer has been evicted, migrate it to a present state
1922 		 * before issuing the I/O.  Once we drop the hash-table lock,
1923 		 * the header will be marked as I/O in progress and have an
1924 		 * attached buffer.  At this point, anybody who finds this
1925 		 * buffer ought to notice that it's legit but has a pending I/O.
1926 		 */
1927 
1928 		if (GHOST_STATE(hdr->b_state))
1929 			arc_access(hdr, hash_lock);
1930 		mutex_exit(hash_lock);
1931 
1932 		ASSERT3U(hdr->b_size, ==, size);
1933 		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
1934 		    zbookmark_t *, zb);
1935 		atomic_add_64(&arc.misses, 1);
1936 
1937 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
1938 		    arc_read_done, buf, priority, flags, zb);
1939 
1940 		if (*arc_flags & ARC_WAIT)
1941 			return (zio_wait(rzio));
1942 
1943 		ASSERT(*arc_flags & ARC_NOWAIT);
1944 		zio_nowait(rzio);
1945 	}
1946 	return (0);
1947 }
1948 
1949 /*
1950  * arc_read() variant to support pool traversal.  If the block is already
1951  * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
1952  * The idea is that we don't want pool traversal filling up memory, but
1953  * if the ARC already has the data anyway, we shouldn't pay for the I/O.
1954  */
1955 int
1956 arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
1957 {
1958 	arc_buf_hdr_t *hdr;
1959 	kmutex_t *hash_mtx;
1960 	int rc = 0;
1961 
1962 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
1963 
1964 	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
1965 		arc_buf_t *buf = hdr->b_buf;
1966 
1967 		ASSERT(buf);
1968 		while (buf->b_data == NULL) {
1969 			buf = buf->b_next;
1970 			ASSERT(buf);
1971 		}
1972 		bcopy(buf->b_data, data, hdr->b_size);
1973 	} else {
1974 		rc = ENOENT;
1975 	}
1976 
1977 	if (hash_mtx)
1978 		mutex_exit(hash_mtx);
1979 
1980 	return (rc);
1981 }
1982 
1983 void
1984 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
1985 {
1986 	ASSERT(buf->b_hdr != NULL);
1987 	ASSERT(buf->b_hdr->b_state != arc.anon);
1988 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
1989 	buf->b_efunc = func;
1990 	buf->b_private = private;
1991 }
1992 
1993 /*
1994  * This is used by the DMU to let the ARC know that a buffer is
1995  * being evicted, so the ARC should clean up.  If this arc buf
1996  * is not yet in the evicted state, it will be put there.
1997  */
1998 int
1999 arc_buf_evict(arc_buf_t *buf)
2000 {
2001 	arc_buf_hdr_t *hdr;
2002 	kmutex_t *hash_lock;
2003 	arc_buf_t **bufp;
2004 
2005 	mutex_enter(&arc_eviction_mtx);
2006 	hdr = buf->b_hdr;
2007 	if (hdr == NULL) {
2008 		/*
2009 		 * We are in arc_do_user_evicts().
2010 		 * NOTE: We can't be in arc_buf_add_ref() because
2011 		 * that would violate the interface rules.
2012 		 */
2013 		ASSERT(buf->b_data == NULL);
2014 		mutex_exit(&arc_eviction_mtx);
2015 		return (0);
2016 	} else if (buf->b_data == NULL) {
2017 		arc_buf_t copy = *buf; /* structure assignment */
2018 		/*
2019 		 * We are on the eviction list.  Process this buffer
2020 		 * now but let arc_do_user_evicts() do the reaping.
2021 		 */
2022 		buf->b_efunc = NULL;
2023 		buf->b_hdr = NULL;
2024 		mutex_exit(&arc_eviction_mtx);
2025 		VERIFY(copy.b_efunc(&copy) == 0);
2026 		return (1);
2027 	} else {
2028 		/*
2029 		 * Prevent a race with arc_evict()
2030 		 */
2031 		ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2032 		buf->b_hdr = NULL;
2033 	}
2034 	mutex_exit(&arc_eviction_mtx);
2035 
2036 	hash_lock = HDR_LOCK(hdr);
2037 	mutex_enter(hash_lock);
2038 
2039 	ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu);
2040 
2041 	/*
2042 	 * Pull this buffer off of the hdr
2043 	 */
2044 	bufp = &hdr->b_buf;
2045 	while (*bufp != buf)
2046 		bufp = &(*bufp)->b_next;
2047 	*bufp = buf->b_next;
2048 
2049 	ASSERT(buf->b_data != NULL);
2050 	buf->b_hdr = hdr;
2051 	arc_buf_destroy(buf, FALSE, FALSE);
2052 
2053 	if (hdr->b_datacnt == 0) {
2054 		arc_state_t *old_state = hdr->b_state;
2055 		arc_state_t *evicted_state;
2056 
2057 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2058 
2059 		evicted_state =
2060 		    (old_state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost;
2061 
2062 		mutex_enter(&old_state->mtx);
2063 		mutex_enter(&evicted_state->mtx);
2064 
2065 		arc_change_state(evicted_state, hdr, hash_lock);
2066 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2067 		hdr->b_flags = ARC_IN_HASH_TABLE;
2068 
2069 		mutex_exit(&evicted_state->mtx);
2070 		mutex_exit(&old_state->mtx);
2071 	}
2072 	mutex_exit(hash_lock);
2073 
2074 	VERIFY(buf->b_efunc(buf) == 0);
2075 	buf->b_efunc = NULL;
2076 	buf->b_private = NULL;
2077 	buf->b_hdr = NULL;
2078 	kmem_cache_free(buf_cache, buf);
2079 	return (1);
2080 }
2081 
2082 /*
2083  * Release this buffer from the cache.  This must be done
2084  * after a read and prior to modifying the buffer contents.
2085  * If the buffer has more than one reference, we must make
2086  * make a new hdr for the buffer.
2087  */
2088 void
2089 arc_release(arc_buf_t *buf, void *tag)
2090 {
2091 	arc_buf_hdr_t *hdr = buf->b_hdr;
2092 	kmutex_t *hash_lock = HDR_LOCK(hdr);
2093 
2094 	/* this buffer is not on any list */
2095 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2096 
2097 	if (hdr->b_state == arc.anon) {
2098 		/* this buffer is already released */
2099 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2100 		ASSERT(BUF_EMPTY(hdr));
2101 		ASSERT(buf->b_efunc == NULL);
2102 		return;
2103 	}
2104 
2105 	mutex_enter(hash_lock);
2106 
2107 	/*
2108 	 * Do we have more than one buf?
2109 	 */
2110 	if (hdr->b_buf != buf || buf->b_next != NULL) {
2111 		arc_buf_hdr_t *nhdr;
2112 		arc_buf_t **bufp;
2113 		uint64_t blksz = hdr->b_size;
2114 		spa_t *spa = hdr->b_spa;
2115 
2116 		ASSERT(hdr->b_datacnt > 1);
2117 		/*
2118 		 * Pull the data off of this buf and attach it to
2119 		 * a new anonymous buf.
2120 		 */
2121 		(void) remove_reference(hdr, hash_lock, tag);
2122 		bufp = &hdr->b_buf;
2123 		while (*bufp != buf)
2124 			bufp = &(*bufp)->b_next;
2125 		*bufp = (*bufp)->b_next;
2126 
2127 		ASSERT3U(hdr->b_state->size, >=, hdr->b_size);
2128 		atomic_add_64(&hdr->b_state->size, -hdr->b_size);
2129 		if (refcount_is_zero(&hdr->b_refcnt)) {
2130 			ASSERT3U(hdr->b_state->lsize, >=, hdr->b_size);
2131 			atomic_add_64(&hdr->b_state->lsize, -hdr->b_size);
2132 		}
2133 		hdr->b_datacnt -= 1;
2134 
2135 		mutex_exit(hash_lock);
2136 
2137 		nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
2138 		nhdr->b_size = blksz;
2139 		nhdr->b_spa = spa;
2140 		nhdr->b_buf = buf;
2141 		nhdr->b_state = arc.anon;
2142 		nhdr->b_arc_access = 0;
2143 		nhdr->b_flags = 0;
2144 		nhdr->b_datacnt = 1;
2145 		buf->b_hdr = nhdr;
2146 		buf->b_next = NULL;
2147 		(void) refcount_add(&nhdr->b_refcnt, tag);
2148 		atomic_add_64(&arc.anon->size, blksz);
2149 
2150 		hdr = nhdr;
2151 	} else {
2152 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2153 		ASSERT(!list_link_active(&hdr->b_arc_node));
2154 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2155 		arc_change_state(arc.anon, hdr, hash_lock);
2156 		hdr->b_arc_access = 0;
2157 		mutex_exit(hash_lock);
2158 		bzero(&hdr->b_dva, sizeof (dva_t));
2159 		hdr->b_birth = 0;
2160 		hdr->b_cksum0 = 0;
2161 	}
2162 	buf->b_efunc = NULL;
2163 	buf->b_private = NULL;
2164 }
2165 
2166 int
2167 arc_released(arc_buf_t *buf)
2168 {
2169 	return (buf->b_data != NULL && buf->b_hdr->b_state == arc.anon);
2170 }
2171 
2172 int
2173 arc_has_callback(arc_buf_t *buf)
2174 {
2175 	return (buf->b_efunc != NULL);
2176 }
2177 
2178 #ifdef ZFS_DEBUG
2179 int
2180 arc_referenced(arc_buf_t *buf)
2181 {
2182 	return (refcount_count(&buf->b_hdr->b_refcnt));
2183 }
2184 #endif
2185 
2186 static void
2187 arc_write_done(zio_t *zio)
2188 {
2189 	arc_buf_t *buf;
2190 	arc_buf_hdr_t *hdr;
2191 	arc_callback_t *acb;
2192 
2193 	buf = zio->io_private;
2194 	hdr = buf->b_hdr;
2195 	acb = hdr->b_acb;
2196 	hdr->b_acb = NULL;
2197 	ASSERT(acb != NULL);
2198 
2199 	/* this buffer is on no lists and is not in the hash table */
2200 	ASSERT3P(hdr->b_state, ==, arc.anon);
2201 
2202 	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
2203 	hdr->b_birth = zio->io_bp->blk_birth;
2204 	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
2205 	/*
2206 	 * If the block to be written was all-zero, we may have
2207 	 * compressed it away.  In this case no write was performed
2208 	 * so there will be no dva/birth-date/checksum.  The buffer
2209 	 * must therefor remain anonymous (and uncached).
2210 	 */
2211 	if (!BUF_EMPTY(hdr)) {
2212 		arc_buf_hdr_t *exists;
2213 		kmutex_t *hash_lock;
2214 
2215 		exists = buf_hash_insert(hdr, &hash_lock);
2216 		if (exists) {
2217 			/*
2218 			 * This can only happen if we overwrite for
2219 			 * sync-to-convergence, because we remove
2220 			 * buffers from the hash table when we arc_free().
2221 			 */
2222 			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
2223 			    BP_IDENTITY(zio->io_bp)));
2224 			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
2225 			    zio->io_bp->blk_birth);
2226 
2227 			ASSERT(refcount_is_zero(&exists->b_refcnt));
2228 			arc_change_state(arc.anon, exists, hash_lock);
2229 			mutex_exit(hash_lock);
2230 			arc_hdr_destroy(exists);
2231 			exists = buf_hash_insert(hdr, &hash_lock);
2232 			ASSERT3P(exists, ==, NULL);
2233 		}
2234 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2235 		arc_access(hdr, hash_lock);
2236 		mutex_exit(hash_lock);
2237 	} else if (acb->acb_done == NULL) {
2238 		int destroy_hdr;
2239 		/*
2240 		 * This is an anonymous buffer with no user callback,
2241 		 * destroy it if there are no active references.
2242 		 */
2243 		mutex_enter(&arc_eviction_mtx);
2244 		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
2245 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2246 		mutex_exit(&arc_eviction_mtx);
2247 		if (destroy_hdr)
2248 			arc_hdr_destroy(hdr);
2249 	} else {
2250 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2251 	}
2252 
2253 	if (acb->acb_done) {
2254 		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
2255 		acb->acb_done(zio, buf, acb->acb_private);
2256 	}
2257 
2258 	kmem_free(acb, sizeof (arc_callback_t));
2259 }
2260 
2261 int
2262 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies,
2263     uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
2264     arc_done_func_t *done, void *private, int priority, int flags,
2265     uint32_t arc_flags, zbookmark_t *zb)
2266 {
2267 	arc_buf_hdr_t *hdr = buf->b_hdr;
2268 	arc_callback_t	*acb;
2269 	zio_t	*rzio;
2270 
2271 	/* this is a private buffer - no locking required */
2272 	ASSERT3P(hdr->b_state, ==, arc.anon);
2273 	ASSERT(BUF_EMPTY(hdr));
2274 	ASSERT(!HDR_IO_ERROR(hdr));
2275 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
2276 	ASSERT(hdr->b_acb == 0);
2277 	acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2278 	acb->acb_done = done;
2279 	acb->acb_private = private;
2280 	acb->acb_byteswap = (arc_byteswap_func_t *)-1;
2281 	hdr->b_acb = acb;
2282 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
2283 	rzio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp,
2284 	    buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags, zb);
2285 
2286 	if (arc_flags & ARC_WAIT)
2287 		return (zio_wait(rzio));
2288 
2289 	ASSERT(arc_flags & ARC_NOWAIT);
2290 	zio_nowait(rzio);
2291 
2292 	return (0);
2293 }
2294 
2295 int
2296 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
2297     zio_done_func_t *done, void *private, uint32_t arc_flags)
2298 {
2299 	arc_buf_hdr_t *ab;
2300 	kmutex_t *hash_lock;
2301 	zio_t	*zio;
2302 
2303 	/*
2304 	 * If this buffer is in the cache, release it, so it
2305 	 * can be re-used.
2306 	 */
2307 	ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2308 	if (ab != NULL) {
2309 		/*
2310 		 * The checksum of blocks to free is not always
2311 		 * preserved (eg. on the deadlist).  However, if it is
2312 		 * nonzero, it should match what we have in the cache.
2313 		 */
2314 		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
2315 		    ab->b_cksum0 == bp->blk_cksum.zc_word[0]);
2316 		if (ab->b_state != arc.anon)
2317 			arc_change_state(arc.anon, ab, hash_lock);
2318 		if (HDR_IO_IN_PROGRESS(ab)) {
2319 			/*
2320 			 * This should only happen when we prefetch.
2321 			 */
2322 			ASSERT(ab->b_flags & ARC_PREFETCH);
2323 			ASSERT3U(ab->b_datacnt, ==, 1);
2324 			ab->b_flags |= ARC_FREED_IN_READ;
2325 			if (HDR_IN_HASH_TABLE(ab))
2326 				buf_hash_remove(ab);
2327 			ab->b_arc_access = 0;
2328 			bzero(&ab->b_dva, sizeof (dva_t));
2329 			ab->b_birth = 0;
2330 			ab->b_cksum0 = 0;
2331 			ab->b_buf->b_efunc = NULL;
2332 			ab->b_buf->b_private = NULL;
2333 			mutex_exit(hash_lock);
2334 		} else if (refcount_is_zero(&ab->b_refcnt)) {
2335 			mutex_exit(hash_lock);
2336 			arc_hdr_destroy(ab);
2337 			atomic_add_64(&arc.deleted, 1);
2338 		} else {
2339 			/*
2340 			 * We still have an active reference on this
2341 			 * buffer.  This can happen, e.g., from
2342 			 * dbuf_unoverride().
2343 			 */
2344 			ASSERT(!HDR_IN_HASH_TABLE(ab));
2345 			ab->b_arc_access = 0;
2346 			bzero(&ab->b_dva, sizeof (dva_t));
2347 			ab->b_birth = 0;
2348 			ab->b_cksum0 = 0;
2349 			ab->b_buf->b_efunc = NULL;
2350 			ab->b_buf->b_private = NULL;
2351 			mutex_exit(hash_lock);
2352 		}
2353 	}
2354 
2355 	zio = zio_free(pio, spa, txg, bp, done, private);
2356 
2357 	if (arc_flags & ARC_WAIT)
2358 		return (zio_wait(zio));
2359 
2360 	ASSERT(arc_flags & ARC_NOWAIT);
2361 	zio_nowait(zio);
2362 
2363 	return (0);
2364 }
2365 
2366 void
2367 arc_tempreserve_clear(uint64_t tempreserve)
2368 {
2369 	atomic_add_64(&arc_tempreserve, -tempreserve);
2370 	ASSERT((int64_t)arc_tempreserve >= 0);
2371 }
2372 
2373 int
2374 arc_tempreserve_space(uint64_t tempreserve)
2375 {
2376 #ifdef ZFS_DEBUG
2377 	/*
2378 	 * Once in a while, fail for no reason.  Everything should cope.
2379 	 */
2380 	if (spa_get_random(10000) == 0) {
2381 		dprintf("forcing random failure\n");
2382 		return (ERESTART);
2383 	}
2384 #endif
2385 	if (tempreserve > arc.c/4 && !arc.no_grow)
2386 		arc.c = MIN(arc.c_max, tempreserve * 4);
2387 	if (tempreserve > arc.c)
2388 		return (ENOMEM);
2389 
2390 	/*
2391 	 * Throttle writes when the amount of dirty data in the cache
2392 	 * gets too large.  We try to keep the cache less than half full
2393 	 * of dirty blocks so that our sync times don't grow too large.
2394 	 * Note: if two requests come in concurrently, we might let them
2395 	 * both succeed, when one of them should fail.  Not a huge deal.
2396 	 *
2397 	 * XXX The limit should be adjusted dynamically to keep the time
2398 	 * to sync a dataset fixed (around 1-5 seconds?).
2399 	 */
2400 
2401 	if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 &&
2402 	    arc_tempreserve + arc.anon->size > arc.c / 4) {
2403 		dprintf("failing, arc_tempreserve=%lluK anon=%lluK "
2404 		    "tempreserve=%lluK arc.c=%lluK\n",
2405 		    arc_tempreserve>>10, arc.anon->lsize>>10,
2406 		    tempreserve>>10, arc.c>>10);
2407 		return (ERESTART);
2408 	}
2409 	atomic_add_64(&arc_tempreserve, tempreserve);
2410 	return (0);
2411 }
2412 
2413 void
2414 arc_init(void)
2415 {
2416 	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
2417 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
2418 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
2419 
2420 	/* Convert seconds to clock ticks */
2421 	arc_min_prefetch_lifespan = 1 * hz;
2422 
2423 	/* Start out with 1/8 of all memory */
2424 	arc.c = physmem * PAGESIZE / 8;
2425 
2426 #ifdef _KERNEL
2427 	/*
2428 	 * On architectures where the physical memory can be larger
2429 	 * than the addressable space (intel in 32-bit mode), we may
2430 	 * need to limit the cache to 1/8 of VM size.
2431 	 */
2432 	arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
2433 #endif
2434 
2435 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
2436 	arc.c_min = MAX(arc.c / 4, 64<<20);
2437 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
2438 	if (arc.c * 8 >= 1<<30)
2439 		arc.c_max = (arc.c * 8) - (1<<30);
2440 	else
2441 		arc.c_max = arc.c_min;
2442 	arc.c_max = MAX(arc.c * 6, arc.c_max);
2443 	arc.c = arc.c_max;
2444 	arc.p = (arc.c >> 1);
2445 
2446 	/* if kmem_flags are set, lets try to use less memory */
2447 	if (kmem_debugging())
2448 		arc.c = arc.c / 2;
2449 	if (arc.c < arc.c_min)
2450 		arc.c = arc.c_min;
2451 
2452 	arc.anon = &ARC_anon;
2453 	arc.mru = &ARC_mru;
2454 	arc.mru_ghost = &ARC_mru_ghost;
2455 	arc.mfu = &ARC_mfu;
2456 	arc.mfu_ghost = &ARC_mfu_ghost;
2457 	arc.size = 0;
2458 
2459 	arc.hits = 0;
2460 	arc.recycle_miss = 0;
2461 	arc.evict_skip = 0;
2462 	arc.mutex_miss = 0;
2463 
2464 	list_create(&arc.mru->list, sizeof (arc_buf_hdr_t),
2465 	    offsetof(arc_buf_hdr_t, b_arc_node));
2466 	list_create(&arc.mru_ghost->list, sizeof (arc_buf_hdr_t),
2467 	    offsetof(arc_buf_hdr_t, b_arc_node));
2468 	list_create(&arc.mfu->list, sizeof (arc_buf_hdr_t),
2469 	    offsetof(arc_buf_hdr_t, b_arc_node));
2470 	list_create(&arc.mfu_ghost->list, sizeof (arc_buf_hdr_t),
2471 	    offsetof(arc_buf_hdr_t, b_arc_node));
2472 
2473 	buf_init();
2474 
2475 	arc_thread_exit = 0;
2476 	arc_eviction_list = NULL;
2477 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
2478 
2479 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
2480 	    TS_RUN, minclsyspri);
2481 }
2482 
2483 void
2484 arc_fini(void)
2485 {
2486 	mutex_enter(&arc_reclaim_thr_lock);
2487 	arc_thread_exit = 1;
2488 	while (arc_thread_exit != 0)
2489 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
2490 	mutex_exit(&arc_reclaim_thr_lock);
2491 
2492 	arc_flush();
2493 
2494 	arc_dead = TRUE;
2495 
2496 	mutex_destroy(&arc_eviction_mtx);
2497 	mutex_destroy(&arc_reclaim_lock);
2498 	mutex_destroy(&arc_reclaim_thr_lock);
2499 	cv_destroy(&arc_reclaim_thr_cv);
2500 
2501 	list_destroy(&arc.mru->list);
2502 	list_destroy(&arc.mru_ghost->list);
2503 	list_destroy(&arc.mfu->list);
2504 	list_destroy(&arc.mfu_ghost->list);
2505 
2506 	buf_fini();
2507 }
2508