1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * DVA-based Adjustable Replacement Cache 30 * 31 * While much of the theory of operation used here is 32 * based on the self-tuning, low overhead replacement cache 33 * presented by Megiddo and Modha at FAST 2003, there are some 34 * significant differences: 35 * 36 * 1. The Megiddo and Modha model assumes any page is evictable. 37 * Pages in its cache cannot be "locked" into memory. This makes 38 * the eviction algorithm simple: evict the last page in the list. 39 * This also make the performance characteristics easy to reason 40 * about. Our cache is not so simple. At any given moment, some 41 * subset of the blocks in the cache are un-evictable because we 42 * have handed out a reference to them. Blocks are only evictable 43 * when there are no external references active. This makes 44 * eviction far more problematic: we choose to evict the evictable 45 * blocks that are the "lowest" in the list. 46 * 47 * There are times when it is not possible to evict the requested 48 * space. In these circumstances we are unable to adjust the cache 49 * size. To prevent the cache growing unbounded at these times we 50 * implement a "cache throttle" that slows the flow of new data 51 * into the cache until we can make space available. 52 * 53 * 2. The Megiddo and Modha model assumes a fixed cache size. 54 * Pages are evicted when the cache is full and there is a cache 55 * miss. Our model has a variable sized cache. It grows with 56 * high use, but also tries to react to memory pressure from the 57 * operating system: decreasing its size when system memory is 58 * tight. 59 * 60 * 3. The Megiddo and Modha model assumes a fixed page size. All 61 * elements of the cache are therefor exactly the same size. So 62 * when adjusting the cache size following a cache miss, its simply 63 * a matter of choosing a single page to evict. In our model, we 64 * have variable sized cache blocks (rangeing from 512 bytes to 65 * 128K bytes). We therefor choose a set of blocks to evict to make 66 * space for a cache miss that approximates as closely as possible 67 * the space used by the new block. 68 * 69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 70 * by N. Megiddo & D. Modha, FAST 2003 71 */ 72 73 /* 74 * The locking model: 75 * 76 * A new reference to a cache buffer can be obtained in two 77 * ways: 1) via a hash table lookup using the DVA as a key, 78 * or 2) via one of the ARC lists. The arc_read() interface 79 * uses method 1, while the internal arc algorithms for 80 * adjusting the cache use method 2. We therefor provide two 81 * types of locks: 1) the hash table lock array, and 2) the 82 * arc list locks. 83 * 84 * Buffers do not have their own mutexs, rather they rely on the 85 * hash table mutexs for the bulk of their protection (i.e. most 86 * fields in the arc_buf_hdr_t are protected by these mutexs). 87 * 88 * buf_hash_find() returns the appropriate mutex (held) when it 89 * locates the requested buffer in the hash table. It returns 90 * NULL for the mutex if the buffer was not in the table. 91 * 92 * buf_hash_remove() expects the appropriate hash mutex to be 93 * already held before it is invoked. 94 * 95 * Each arc state also has a mutex which is used to protect the 96 * buffer list associated with the state. When attempting to 97 * obtain a hash table lock while holding an arc list lock you 98 * must use: mutex_tryenter() to avoid deadlock. Also note that 99 * the active state mutex must be held before the ghost state mutex. 100 * 101 * Arc buffers may have an associated eviction callback function. 102 * This function will be invoked prior to removing the buffer (e.g. 103 * in arc_do_user_evicts()). Note however that the data associated 104 * with the buffer may be evicted prior to the callback. The callback 105 * must be made with *no locks held* (to prevent deadlock). Additionally, 106 * the users of callbacks must ensure that their private data is 107 * protected from simultaneous callbacks from arc_buf_evict() 108 * and arc_do_user_evicts(). 109 * 110 * Note that the majority of the performance stats are manipulated 111 * with atomic operations. 112 * 113 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 114 * 115 * - L2ARC buflist creation 116 * - L2ARC buflist eviction 117 * - L2ARC write completion, which walks L2ARC buflists 118 * - ARC header destruction, as it removes from L2ARC buflists 119 * - ARC header release, as it removes from L2ARC buflists 120 */ 121 122 #include <sys/spa.h> 123 #include <sys/zio.h> 124 #include <sys/zio_checksum.h> 125 #include <sys/zfs_context.h> 126 #include <sys/arc.h> 127 #include <sys/refcount.h> 128 #ifdef _KERNEL 129 #include <sys/vmsystm.h> 130 #include <vm/anon.h> 131 #include <sys/fs/swapnode.h> 132 #include <sys/dnlc.h> 133 #endif 134 #include <sys/callb.h> 135 #include <sys/kstat.h> 136 137 static kmutex_t arc_reclaim_thr_lock; 138 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 139 static uint8_t arc_thread_exit; 140 141 #define ARC_REDUCE_DNLC_PERCENT 3 142 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 143 144 typedef enum arc_reclaim_strategy { 145 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 146 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 147 } arc_reclaim_strategy_t; 148 149 /* number of seconds before growing cache again */ 150 static int arc_grow_retry = 60; 151 152 /* 153 * minimum lifespan of a prefetch block in clock ticks 154 * (initialized in arc_init()) 155 */ 156 static int arc_min_prefetch_lifespan; 157 158 static int arc_dead; 159 160 /* 161 * These tunables are for performance analysis. 162 */ 163 uint64_t zfs_arc_max; 164 uint64_t zfs_arc_min; 165 uint64_t zfs_arc_meta_limit = 0; 166 167 /* 168 * Note that buffers can be in one of 6 states: 169 * ARC_anon - anonymous (discussed below) 170 * ARC_mru - recently used, currently cached 171 * ARC_mru_ghost - recentely used, no longer in cache 172 * ARC_mfu - frequently used, currently cached 173 * ARC_mfu_ghost - frequently used, no longer in cache 174 * ARC_l2c_only - exists in L2ARC but not other states 175 * When there are no active references to the buffer, they are 176 * are linked onto a list in one of these arc states. These are 177 * the only buffers that can be evicted or deleted. Within each 178 * state there are multiple lists, one for meta-data and one for 179 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 180 * etc.) is tracked separately so that it can be managed more 181 * explicitly: favored over data, limited explicitly. 182 * 183 * Anonymous buffers are buffers that are not associated with 184 * a DVA. These are buffers that hold dirty block copies 185 * before they are written to stable storage. By definition, 186 * they are "ref'd" and are considered part of arc_mru 187 * that cannot be freed. Generally, they will aquire a DVA 188 * as they are written and migrate onto the arc_mru list. 189 * 190 * The ARC_l2c_only state is for buffers that are in the second 191 * level ARC but no longer in any of the ARC_m* lists. The second 192 * level ARC itself may also contain buffers that are in any of 193 * the ARC_m* states - meaning that a buffer can exist in two 194 * places. The reason for the ARC_l2c_only state is to keep the 195 * buffer header in the hash table, so that reads that hit the 196 * second level ARC benefit from these fast lookups. 197 */ 198 199 typedef struct arc_state { 200 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 201 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 202 uint64_t arcs_size; /* total amount of data in this state */ 203 kmutex_t arcs_mtx; 204 } arc_state_t; 205 206 /* The 6 states: */ 207 static arc_state_t ARC_anon; 208 static arc_state_t ARC_mru; 209 static arc_state_t ARC_mru_ghost; 210 static arc_state_t ARC_mfu; 211 static arc_state_t ARC_mfu_ghost; 212 static arc_state_t ARC_l2c_only; 213 214 typedef struct arc_stats { 215 kstat_named_t arcstat_hits; 216 kstat_named_t arcstat_misses; 217 kstat_named_t arcstat_demand_data_hits; 218 kstat_named_t arcstat_demand_data_misses; 219 kstat_named_t arcstat_demand_metadata_hits; 220 kstat_named_t arcstat_demand_metadata_misses; 221 kstat_named_t arcstat_prefetch_data_hits; 222 kstat_named_t arcstat_prefetch_data_misses; 223 kstat_named_t arcstat_prefetch_metadata_hits; 224 kstat_named_t arcstat_prefetch_metadata_misses; 225 kstat_named_t arcstat_mru_hits; 226 kstat_named_t arcstat_mru_ghost_hits; 227 kstat_named_t arcstat_mfu_hits; 228 kstat_named_t arcstat_mfu_ghost_hits; 229 kstat_named_t arcstat_deleted; 230 kstat_named_t arcstat_recycle_miss; 231 kstat_named_t arcstat_mutex_miss; 232 kstat_named_t arcstat_evict_skip; 233 kstat_named_t arcstat_hash_elements; 234 kstat_named_t arcstat_hash_elements_max; 235 kstat_named_t arcstat_hash_collisions; 236 kstat_named_t arcstat_hash_chains; 237 kstat_named_t arcstat_hash_chain_max; 238 kstat_named_t arcstat_p; 239 kstat_named_t arcstat_c; 240 kstat_named_t arcstat_c_min; 241 kstat_named_t arcstat_c_max; 242 kstat_named_t arcstat_size; 243 kstat_named_t arcstat_hdr_size; 244 kstat_named_t arcstat_l2_hits; 245 kstat_named_t arcstat_l2_misses; 246 kstat_named_t arcstat_l2_feeds; 247 kstat_named_t arcstat_l2_rw_clash; 248 kstat_named_t arcstat_l2_writes_sent; 249 kstat_named_t arcstat_l2_writes_done; 250 kstat_named_t arcstat_l2_writes_error; 251 kstat_named_t arcstat_l2_writes_hdr_miss; 252 kstat_named_t arcstat_l2_evict_lock_retry; 253 kstat_named_t arcstat_l2_evict_reading; 254 kstat_named_t arcstat_l2_free_on_write; 255 kstat_named_t arcstat_l2_abort_lowmem; 256 kstat_named_t arcstat_l2_cksum_bad; 257 kstat_named_t arcstat_l2_io_error; 258 kstat_named_t arcstat_l2_size; 259 kstat_named_t arcstat_l2_hdr_size; 260 } arc_stats_t; 261 262 static arc_stats_t arc_stats = { 263 { "hits", KSTAT_DATA_UINT64 }, 264 { "misses", KSTAT_DATA_UINT64 }, 265 { "demand_data_hits", KSTAT_DATA_UINT64 }, 266 { "demand_data_misses", KSTAT_DATA_UINT64 }, 267 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 268 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 269 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 270 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 271 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 272 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 273 { "mru_hits", KSTAT_DATA_UINT64 }, 274 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 275 { "mfu_hits", KSTAT_DATA_UINT64 }, 276 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 277 { "deleted", KSTAT_DATA_UINT64 }, 278 { "recycle_miss", KSTAT_DATA_UINT64 }, 279 { "mutex_miss", KSTAT_DATA_UINT64 }, 280 { "evict_skip", KSTAT_DATA_UINT64 }, 281 { "hash_elements", KSTAT_DATA_UINT64 }, 282 { "hash_elements_max", KSTAT_DATA_UINT64 }, 283 { "hash_collisions", KSTAT_DATA_UINT64 }, 284 { "hash_chains", KSTAT_DATA_UINT64 }, 285 { "hash_chain_max", KSTAT_DATA_UINT64 }, 286 { "p", KSTAT_DATA_UINT64 }, 287 { "c", KSTAT_DATA_UINT64 }, 288 { "c_min", KSTAT_DATA_UINT64 }, 289 { "c_max", KSTAT_DATA_UINT64 }, 290 { "size", KSTAT_DATA_UINT64 }, 291 { "hdr_size", KSTAT_DATA_UINT64 }, 292 { "l2_hits", KSTAT_DATA_UINT64 }, 293 { "l2_misses", KSTAT_DATA_UINT64 }, 294 { "l2_feeds", KSTAT_DATA_UINT64 }, 295 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 296 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 297 { "l2_writes_done", KSTAT_DATA_UINT64 }, 298 { "l2_writes_error", KSTAT_DATA_UINT64 }, 299 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 300 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 301 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 302 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 303 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 304 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 305 { "l2_io_error", KSTAT_DATA_UINT64 }, 306 { "l2_size", KSTAT_DATA_UINT64 }, 307 { "l2_hdr_size", KSTAT_DATA_UINT64 } 308 }; 309 310 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 311 312 #define ARCSTAT_INCR(stat, val) \ 313 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 314 315 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 316 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 317 318 #define ARCSTAT_MAX(stat, val) { \ 319 uint64_t m; \ 320 while ((val) > (m = arc_stats.stat.value.ui64) && \ 321 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 322 continue; \ 323 } 324 325 #define ARCSTAT_MAXSTAT(stat) \ 326 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 327 328 /* 329 * We define a macro to allow ARC hits/misses to be easily broken down by 330 * two separate conditions, giving a total of four different subtypes for 331 * each of hits and misses (so eight statistics total). 332 */ 333 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 334 if (cond1) { \ 335 if (cond2) { \ 336 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 337 } else { \ 338 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 339 } \ 340 } else { \ 341 if (cond2) { \ 342 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 343 } else { \ 344 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 345 } \ 346 } 347 348 kstat_t *arc_ksp; 349 static arc_state_t *arc_anon; 350 static arc_state_t *arc_mru; 351 static arc_state_t *arc_mru_ghost; 352 static arc_state_t *arc_mfu; 353 static arc_state_t *arc_mfu_ghost; 354 static arc_state_t *arc_l2c_only; 355 356 /* 357 * There are several ARC variables that are critical to export as kstats -- 358 * but we don't want to have to grovel around in the kstat whenever we wish to 359 * manipulate them. For these variables, we therefore define them to be in 360 * terms of the statistic variable. This assures that we are not introducing 361 * the possibility of inconsistency by having shadow copies of the variables, 362 * while still allowing the code to be readable. 363 */ 364 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 365 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 366 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 367 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 368 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 369 370 static int arc_no_grow; /* Don't try to grow cache size */ 371 static uint64_t arc_tempreserve; 372 static uint64_t arc_meta_used; 373 static uint64_t arc_meta_limit; 374 static uint64_t arc_meta_max = 0; 375 376 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 377 378 typedef struct arc_callback arc_callback_t; 379 380 struct arc_callback { 381 void *acb_private; 382 arc_done_func_t *acb_done; 383 arc_byteswap_func_t *acb_byteswap; 384 arc_buf_t *acb_buf; 385 zio_t *acb_zio_dummy; 386 arc_callback_t *acb_next; 387 }; 388 389 typedef struct arc_write_callback arc_write_callback_t; 390 391 struct arc_write_callback { 392 void *awcb_private; 393 arc_done_func_t *awcb_ready; 394 arc_done_func_t *awcb_done; 395 arc_buf_t *awcb_buf; 396 }; 397 398 struct arc_buf_hdr { 399 /* protected by hash lock */ 400 dva_t b_dva; 401 uint64_t b_birth; 402 uint64_t b_cksum0; 403 404 kmutex_t b_freeze_lock; 405 zio_cksum_t *b_freeze_cksum; 406 407 arc_buf_hdr_t *b_hash_next; 408 arc_buf_t *b_buf; 409 uint32_t b_flags; 410 uint32_t b_datacnt; 411 412 arc_callback_t *b_acb; 413 kcondvar_t b_cv; 414 415 /* immutable */ 416 arc_buf_contents_t b_type; 417 uint64_t b_size; 418 spa_t *b_spa; 419 420 /* protected by arc state mutex */ 421 arc_state_t *b_state; 422 list_node_t b_arc_node; 423 424 /* updated atomically */ 425 clock_t b_arc_access; 426 427 /* self protecting */ 428 refcount_t b_refcnt; 429 430 l2arc_buf_hdr_t *b_l2hdr; 431 list_node_t b_l2node; 432 }; 433 434 static arc_buf_t *arc_eviction_list; 435 static kmutex_t arc_eviction_mtx; 436 static arc_buf_hdr_t arc_eviction_hdr; 437 static void arc_get_data_buf(arc_buf_t *buf); 438 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 439 static int arc_evict_needed(arc_buf_contents_t type); 440 static void arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes); 441 442 #define GHOST_STATE(state) \ 443 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 444 (state) == arc_l2c_only) 445 446 /* 447 * Private ARC flags. These flags are private ARC only flags that will show up 448 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 449 * be passed in as arc_flags in things like arc_read. However, these flags 450 * should never be passed and should only be set by ARC code. When adding new 451 * public flags, make sure not to smash the private ones. 452 */ 453 454 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 455 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 456 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 457 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 458 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 459 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 460 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 461 #define ARC_DONT_L2CACHE (1 << 16) /* originated by prefetch */ 462 #define ARC_L2_READING (1 << 17) /* L2ARC read in progress */ 463 #define ARC_L2_WRITING (1 << 18) /* L2ARC write in progress */ 464 #define ARC_L2_EVICTED (1 << 19) /* evicted during I/O */ 465 #define ARC_L2_WRITE_HEAD (1 << 20) /* head of write list */ 466 467 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 468 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 469 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 470 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 471 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 472 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 473 #define HDR_DONT_L2CACHE(hdr) ((hdr)->b_flags & ARC_DONT_L2CACHE) 474 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_L2_READING) 475 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 476 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 477 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 478 479 /* 480 * Other sizes 481 */ 482 483 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 484 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 485 486 /* 487 * Hash table routines 488 */ 489 490 #define HT_LOCK_PAD 64 491 492 struct ht_lock { 493 kmutex_t ht_lock; 494 #ifdef _KERNEL 495 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 496 #endif 497 }; 498 499 #define BUF_LOCKS 256 500 typedef struct buf_hash_table { 501 uint64_t ht_mask; 502 arc_buf_hdr_t **ht_table; 503 struct ht_lock ht_locks[BUF_LOCKS]; 504 } buf_hash_table_t; 505 506 static buf_hash_table_t buf_hash_table; 507 508 #define BUF_HASH_INDEX(spa, dva, birth) \ 509 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 510 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 511 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 512 #define HDR_LOCK(buf) \ 513 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 514 515 uint64_t zfs_crc64_table[256]; 516 517 /* 518 * Level 2 ARC 519 */ 520 521 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 522 #define L2ARC_HEADROOM 4 /* num of writes */ 523 #define L2ARC_FEED_DELAY 180 /* starting grace */ 524 #define L2ARC_FEED_SECS 1 /* caching interval */ 525 526 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 527 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 528 529 /* 530 * L2ARC Performance Tunables 531 */ 532 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 533 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 534 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 535 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 536 537 /* 538 * L2ARC Internals 539 */ 540 typedef struct l2arc_dev { 541 vdev_t *l2ad_vdev; /* vdev */ 542 spa_t *l2ad_spa; /* spa */ 543 uint64_t l2ad_hand; /* next write location */ 544 uint64_t l2ad_write; /* desired write size, bytes */ 545 uint64_t l2ad_start; /* first addr on device */ 546 uint64_t l2ad_end; /* last addr on device */ 547 uint64_t l2ad_evict; /* last addr eviction reached */ 548 boolean_t l2ad_first; /* first sweep through */ 549 list_t *l2ad_buflist; /* buffer list */ 550 list_node_t l2ad_node; /* device list node */ 551 } l2arc_dev_t; 552 553 static list_t L2ARC_dev_list; /* device list */ 554 static list_t *l2arc_dev_list; /* device list pointer */ 555 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 556 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 557 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 558 static list_t L2ARC_free_on_write; /* free after write buf list */ 559 static list_t *l2arc_free_on_write; /* free after write list ptr */ 560 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 561 static uint64_t l2arc_ndev; /* number of devices */ 562 563 typedef struct l2arc_read_callback { 564 arc_buf_t *l2rcb_buf; /* read buffer */ 565 spa_t *l2rcb_spa; /* spa */ 566 blkptr_t l2rcb_bp; /* original blkptr */ 567 zbookmark_t l2rcb_zb; /* original bookmark */ 568 int l2rcb_flags; /* original flags */ 569 } l2arc_read_callback_t; 570 571 typedef struct l2arc_write_callback { 572 l2arc_dev_t *l2wcb_dev; /* device info */ 573 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 574 } l2arc_write_callback_t; 575 576 struct l2arc_buf_hdr { 577 /* protected by arc_buf_hdr mutex */ 578 l2arc_dev_t *b_dev; /* L2ARC device */ 579 daddr_t b_daddr; /* disk address, offset byte */ 580 }; 581 582 typedef struct l2arc_data_free { 583 /* protected by l2arc_free_on_write_mtx */ 584 void *l2df_data; 585 size_t l2df_size; 586 void (*l2df_func)(void *, size_t); 587 list_node_t l2df_list_node; 588 } l2arc_data_free_t; 589 590 static kmutex_t l2arc_feed_thr_lock; 591 static kcondvar_t l2arc_feed_thr_cv; 592 static uint8_t l2arc_thread_exit; 593 594 static void l2arc_read_done(zio_t *zio); 595 static void l2arc_hdr_stat_add(void); 596 static void l2arc_hdr_stat_remove(void); 597 598 static uint64_t 599 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth) 600 { 601 uintptr_t spav = (uintptr_t)spa; 602 uint8_t *vdva = (uint8_t *)dva; 603 uint64_t crc = -1ULL; 604 int i; 605 606 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 607 608 for (i = 0; i < sizeof (dva_t); i++) 609 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 610 611 crc ^= (spav>>8) ^ birth; 612 613 return (crc); 614 } 615 616 #define BUF_EMPTY(buf) \ 617 ((buf)->b_dva.dva_word[0] == 0 && \ 618 (buf)->b_dva.dva_word[1] == 0 && \ 619 (buf)->b_birth == 0) 620 621 #define BUF_EQUAL(spa, dva, birth, buf) \ 622 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 623 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 624 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 625 626 static arc_buf_hdr_t * 627 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp) 628 { 629 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 630 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 631 arc_buf_hdr_t *buf; 632 633 mutex_enter(hash_lock); 634 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 635 buf = buf->b_hash_next) { 636 if (BUF_EQUAL(spa, dva, birth, buf)) { 637 *lockp = hash_lock; 638 return (buf); 639 } 640 } 641 mutex_exit(hash_lock); 642 *lockp = NULL; 643 return (NULL); 644 } 645 646 /* 647 * Insert an entry into the hash table. If there is already an element 648 * equal to elem in the hash table, then the already existing element 649 * will be returned and the new element will not be inserted. 650 * Otherwise returns NULL. 651 */ 652 static arc_buf_hdr_t * 653 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 654 { 655 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 656 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 657 arc_buf_hdr_t *fbuf; 658 uint32_t i; 659 660 ASSERT(!HDR_IN_HASH_TABLE(buf)); 661 *lockp = hash_lock; 662 mutex_enter(hash_lock); 663 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 664 fbuf = fbuf->b_hash_next, i++) { 665 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 666 return (fbuf); 667 } 668 669 buf->b_hash_next = buf_hash_table.ht_table[idx]; 670 buf_hash_table.ht_table[idx] = buf; 671 buf->b_flags |= ARC_IN_HASH_TABLE; 672 673 /* collect some hash table performance data */ 674 if (i > 0) { 675 ARCSTAT_BUMP(arcstat_hash_collisions); 676 if (i == 1) 677 ARCSTAT_BUMP(arcstat_hash_chains); 678 679 ARCSTAT_MAX(arcstat_hash_chain_max, i); 680 } 681 682 ARCSTAT_BUMP(arcstat_hash_elements); 683 ARCSTAT_MAXSTAT(arcstat_hash_elements); 684 685 return (NULL); 686 } 687 688 static void 689 buf_hash_remove(arc_buf_hdr_t *buf) 690 { 691 arc_buf_hdr_t *fbuf, **bufp; 692 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 693 694 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 695 ASSERT(HDR_IN_HASH_TABLE(buf)); 696 697 bufp = &buf_hash_table.ht_table[idx]; 698 while ((fbuf = *bufp) != buf) { 699 ASSERT(fbuf != NULL); 700 bufp = &fbuf->b_hash_next; 701 } 702 *bufp = buf->b_hash_next; 703 buf->b_hash_next = NULL; 704 buf->b_flags &= ~ARC_IN_HASH_TABLE; 705 706 /* collect some hash table performance data */ 707 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 708 709 if (buf_hash_table.ht_table[idx] && 710 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 711 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 712 } 713 714 /* 715 * Global data structures and functions for the buf kmem cache. 716 */ 717 static kmem_cache_t *hdr_cache; 718 static kmem_cache_t *buf_cache; 719 720 static void 721 buf_fini(void) 722 { 723 int i; 724 725 kmem_free(buf_hash_table.ht_table, 726 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 727 for (i = 0; i < BUF_LOCKS; i++) 728 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 729 kmem_cache_destroy(hdr_cache); 730 kmem_cache_destroy(buf_cache); 731 } 732 733 /* 734 * Constructor callback - called when the cache is empty 735 * and a new buf is requested. 736 */ 737 /* ARGSUSED */ 738 static int 739 hdr_cons(void *vbuf, void *unused, int kmflag) 740 { 741 arc_buf_hdr_t *buf = vbuf; 742 743 bzero(buf, sizeof (arc_buf_hdr_t)); 744 refcount_create(&buf->b_refcnt); 745 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 746 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 747 748 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 749 return (0); 750 } 751 752 /* 753 * Destructor callback - called when a cached buf is 754 * no longer required. 755 */ 756 /* ARGSUSED */ 757 static void 758 hdr_dest(void *vbuf, void *unused) 759 { 760 arc_buf_hdr_t *buf = vbuf; 761 762 refcount_destroy(&buf->b_refcnt); 763 cv_destroy(&buf->b_cv); 764 mutex_destroy(&buf->b_freeze_lock); 765 766 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 767 } 768 769 /* 770 * Reclaim callback -- invoked when memory is low. 771 */ 772 /* ARGSUSED */ 773 static void 774 hdr_recl(void *unused) 775 { 776 dprintf("hdr_recl called\n"); 777 /* 778 * umem calls the reclaim func when we destroy the buf cache, 779 * which is after we do arc_fini(). 780 */ 781 if (!arc_dead) 782 cv_signal(&arc_reclaim_thr_cv); 783 } 784 785 static void 786 buf_init(void) 787 { 788 uint64_t *ct; 789 uint64_t hsize = 1ULL << 12; 790 int i, j; 791 792 /* 793 * The hash table is big enough to fill all of physical memory 794 * with an average 64K block size. The table will take up 795 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 796 */ 797 while (hsize * 65536 < physmem * PAGESIZE) 798 hsize <<= 1; 799 retry: 800 buf_hash_table.ht_mask = hsize - 1; 801 buf_hash_table.ht_table = 802 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 803 if (buf_hash_table.ht_table == NULL) { 804 ASSERT(hsize > (1ULL << 8)); 805 hsize >>= 1; 806 goto retry; 807 } 808 809 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 810 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 811 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 812 0, NULL, NULL, NULL, NULL, NULL, 0); 813 814 for (i = 0; i < 256; i++) 815 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 816 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 817 818 for (i = 0; i < BUF_LOCKS; i++) { 819 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 820 NULL, MUTEX_DEFAULT, NULL); 821 } 822 } 823 824 #define ARC_MINTIME (hz>>4) /* 62 ms */ 825 826 static void 827 arc_cksum_verify(arc_buf_t *buf) 828 { 829 zio_cksum_t zc; 830 831 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 832 return; 833 834 mutex_enter(&buf->b_hdr->b_freeze_lock); 835 if (buf->b_hdr->b_freeze_cksum == NULL || 836 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 837 mutex_exit(&buf->b_hdr->b_freeze_lock); 838 return; 839 } 840 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 841 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 842 panic("buffer modified while frozen!"); 843 mutex_exit(&buf->b_hdr->b_freeze_lock); 844 } 845 846 static int 847 arc_cksum_equal(arc_buf_t *buf) 848 { 849 zio_cksum_t zc; 850 int equal; 851 852 mutex_enter(&buf->b_hdr->b_freeze_lock); 853 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 854 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 855 mutex_exit(&buf->b_hdr->b_freeze_lock); 856 857 return (equal); 858 } 859 860 static void 861 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 862 { 863 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 864 return; 865 866 mutex_enter(&buf->b_hdr->b_freeze_lock); 867 if (buf->b_hdr->b_freeze_cksum != NULL) { 868 mutex_exit(&buf->b_hdr->b_freeze_lock); 869 return; 870 } 871 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 872 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 873 buf->b_hdr->b_freeze_cksum); 874 mutex_exit(&buf->b_hdr->b_freeze_lock); 875 } 876 877 void 878 arc_buf_thaw(arc_buf_t *buf) 879 { 880 if (zfs_flags & ZFS_DEBUG_MODIFY) { 881 if (buf->b_hdr->b_state != arc_anon) 882 panic("modifying non-anon buffer!"); 883 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 884 panic("modifying buffer while i/o in progress!"); 885 arc_cksum_verify(buf); 886 } 887 888 mutex_enter(&buf->b_hdr->b_freeze_lock); 889 if (buf->b_hdr->b_freeze_cksum != NULL) { 890 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 891 buf->b_hdr->b_freeze_cksum = NULL; 892 } 893 mutex_exit(&buf->b_hdr->b_freeze_lock); 894 } 895 896 void 897 arc_buf_freeze(arc_buf_t *buf) 898 { 899 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 900 return; 901 902 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 903 buf->b_hdr->b_state == arc_anon); 904 arc_cksum_compute(buf, B_FALSE); 905 } 906 907 static void 908 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 909 { 910 ASSERT(MUTEX_HELD(hash_lock)); 911 912 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 913 (ab->b_state != arc_anon)) { 914 uint64_t delta = ab->b_size * ab->b_datacnt; 915 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 916 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 917 918 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 919 mutex_enter(&ab->b_state->arcs_mtx); 920 ASSERT(list_link_active(&ab->b_arc_node)); 921 list_remove(list, ab); 922 if (GHOST_STATE(ab->b_state)) { 923 ASSERT3U(ab->b_datacnt, ==, 0); 924 ASSERT3P(ab->b_buf, ==, NULL); 925 delta = ab->b_size; 926 } 927 ASSERT(delta > 0); 928 ASSERT3U(*size, >=, delta); 929 atomic_add_64(size, -delta); 930 mutex_exit(&ab->b_state->arcs_mtx); 931 /* remove the prefetch flag is we get a reference */ 932 if (ab->b_flags & ARC_PREFETCH) 933 ab->b_flags &= ~ARC_PREFETCH; 934 } 935 } 936 937 static int 938 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 939 { 940 int cnt; 941 arc_state_t *state = ab->b_state; 942 943 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 944 ASSERT(!GHOST_STATE(state)); 945 946 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 947 (state != arc_anon)) { 948 uint64_t *size = &state->arcs_lsize[ab->b_type]; 949 950 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 951 mutex_enter(&state->arcs_mtx); 952 ASSERT(!list_link_active(&ab->b_arc_node)); 953 list_insert_head(&state->arcs_list[ab->b_type], ab); 954 ASSERT(ab->b_datacnt > 0); 955 atomic_add_64(size, ab->b_size * ab->b_datacnt); 956 mutex_exit(&state->arcs_mtx); 957 } 958 return (cnt); 959 } 960 961 /* 962 * Move the supplied buffer to the indicated state. The mutex 963 * for the buffer must be held by the caller. 964 */ 965 static void 966 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 967 { 968 arc_state_t *old_state = ab->b_state; 969 int64_t refcnt = refcount_count(&ab->b_refcnt); 970 uint64_t from_delta, to_delta; 971 972 ASSERT(MUTEX_HELD(hash_lock)); 973 ASSERT(new_state != old_state); 974 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 975 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 976 977 from_delta = to_delta = ab->b_datacnt * ab->b_size; 978 979 /* 980 * If this buffer is evictable, transfer it from the 981 * old state list to the new state list. 982 */ 983 if (refcnt == 0) { 984 if (old_state != arc_anon) { 985 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 986 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 987 988 if (use_mutex) 989 mutex_enter(&old_state->arcs_mtx); 990 991 ASSERT(list_link_active(&ab->b_arc_node)); 992 list_remove(&old_state->arcs_list[ab->b_type], ab); 993 994 /* 995 * If prefetching out of the ghost cache, 996 * we will have a non-null datacnt. 997 */ 998 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 999 /* ghost elements have a ghost size */ 1000 ASSERT(ab->b_buf == NULL); 1001 from_delta = ab->b_size; 1002 } 1003 ASSERT3U(*size, >=, from_delta); 1004 atomic_add_64(size, -from_delta); 1005 1006 if (use_mutex) 1007 mutex_exit(&old_state->arcs_mtx); 1008 } 1009 if (new_state != arc_anon) { 1010 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1011 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1012 1013 if (use_mutex) 1014 mutex_enter(&new_state->arcs_mtx); 1015 1016 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1017 1018 /* ghost elements have a ghost size */ 1019 if (GHOST_STATE(new_state)) { 1020 ASSERT(ab->b_datacnt == 0); 1021 ASSERT(ab->b_buf == NULL); 1022 to_delta = ab->b_size; 1023 } 1024 atomic_add_64(size, to_delta); 1025 1026 if (use_mutex) 1027 mutex_exit(&new_state->arcs_mtx); 1028 } 1029 } 1030 1031 ASSERT(!BUF_EMPTY(ab)); 1032 if (new_state == arc_anon) { 1033 buf_hash_remove(ab); 1034 } 1035 1036 /* adjust state sizes */ 1037 if (to_delta) 1038 atomic_add_64(&new_state->arcs_size, to_delta); 1039 if (from_delta) { 1040 ASSERT3U(old_state->arcs_size, >=, from_delta); 1041 atomic_add_64(&old_state->arcs_size, -from_delta); 1042 } 1043 ab->b_state = new_state; 1044 1045 /* adjust l2arc hdr stats */ 1046 if (new_state == arc_l2c_only) 1047 l2arc_hdr_stat_add(); 1048 else if (old_state == arc_l2c_only) 1049 l2arc_hdr_stat_remove(); 1050 } 1051 1052 void 1053 arc_space_consume(uint64_t space) 1054 { 1055 atomic_add_64(&arc_meta_used, space); 1056 atomic_add_64(&arc_size, space); 1057 } 1058 1059 void 1060 arc_space_return(uint64_t space) 1061 { 1062 ASSERT(arc_meta_used >= space); 1063 if (arc_meta_max < arc_meta_used) 1064 arc_meta_max = arc_meta_used; 1065 atomic_add_64(&arc_meta_used, -space); 1066 ASSERT(arc_size >= space); 1067 atomic_add_64(&arc_size, -space); 1068 } 1069 1070 void * 1071 arc_data_buf_alloc(uint64_t size) 1072 { 1073 if (arc_evict_needed(ARC_BUFC_DATA)) 1074 cv_signal(&arc_reclaim_thr_cv); 1075 atomic_add_64(&arc_size, size); 1076 return (zio_data_buf_alloc(size)); 1077 } 1078 1079 void 1080 arc_data_buf_free(void *buf, uint64_t size) 1081 { 1082 zio_data_buf_free(buf, size); 1083 ASSERT(arc_size >= size); 1084 atomic_add_64(&arc_size, -size); 1085 } 1086 1087 arc_buf_t * 1088 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1089 { 1090 arc_buf_hdr_t *hdr; 1091 arc_buf_t *buf; 1092 1093 ASSERT3U(size, >, 0); 1094 hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 1095 ASSERT(BUF_EMPTY(hdr)); 1096 hdr->b_size = size; 1097 hdr->b_type = type; 1098 hdr->b_spa = spa; 1099 hdr->b_state = arc_anon; 1100 hdr->b_arc_access = 0; 1101 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1102 buf->b_hdr = hdr; 1103 buf->b_data = NULL; 1104 buf->b_efunc = NULL; 1105 buf->b_private = NULL; 1106 buf->b_next = NULL; 1107 hdr->b_buf = buf; 1108 arc_get_data_buf(buf); 1109 hdr->b_datacnt = 1; 1110 hdr->b_flags = 0; 1111 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1112 (void) refcount_add(&hdr->b_refcnt, tag); 1113 1114 return (buf); 1115 } 1116 1117 static arc_buf_t * 1118 arc_buf_clone(arc_buf_t *from) 1119 { 1120 arc_buf_t *buf; 1121 arc_buf_hdr_t *hdr = from->b_hdr; 1122 uint64_t size = hdr->b_size; 1123 1124 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1125 buf->b_hdr = hdr; 1126 buf->b_data = NULL; 1127 buf->b_efunc = NULL; 1128 buf->b_private = NULL; 1129 buf->b_next = hdr->b_buf; 1130 hdr->b_buf = buf; 1131 arc_get_data_buf(buf); 1132 bcopy(from->b_data, buf->b_data, size); 1133 hdr->b_datacnt += 1; 1134 return (buf); 1135 } 1136 1137 void 1138 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1139 { 1140 arc_buf_hdr_t *hdr; 1141 kmutex_t *hash_lock; 1142 1143 /* 1144 * Check to see if this buffer is currently being evicted via 1145 * arc_do_user_evicts(). 1146 */ 1147 mutex_enter(&arc_eviction_mtx); 1148 hdr = buf->b_hdr; 1149 if (hdr == NULL) { 1150 mutex_exit(&arc_eviction_mtx); 1151 return; 1152 } 1153 hash_lock = HDR_LOCK(hdr); 1154 mutex_exit(&arc_eviction_mtx); 1155 1156 mutex_enter(hash_lock); 1157 if (buf->b_data == NULL) { 1158 /* 1159 * This buffer is evicted. 1160 */ 1161 mutex_exit(hash_lock); 1162 return; 1163 } 1164 1165 ASSERT(buf->b_hdr == hdr); 1166 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1167 add_reference(hdr, hash_lock, tag); 1168 arc_access(hdr, hash_lock); 1169 mutex_exit(hash_lock); 1170 ARCSTAT_BUMP(arcstat_hits); 1171 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1172 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1173 data, metadata, hits); 1174 } 1175 1176 /* 1177 * Free the arc data buffer. If it is an l2arc write in progress, 1178 * the buffer is placed on l2arc_free_on_write to be freed later. 1179 */ 1180 static void 1181 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1182 void *data, size_t size) 1183 { 1184 if (HDR_L2_WRITING(hdr)) { 1185 l2arc_data_free_t *df; 1186 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1187 df->l2df_data = data; 1188 df->l2df_size = size; 1189 df->l2df_func = free_func; 1190 mutex_enter(&l2arc_free_on_write_mtx); 1191 list_insert_head(l2arc_free_on_write, df); 1192 mutex_exit(&l2arc_free_on_write_mtx); 1193 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1194 } else { 1195 free_func(data, size); 1196 } 1197 } 1198 1199 static void 1200 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1201 { 1202 arc_buf_t **bufp; 1203 1204 /* free up data associated with the buf */ 1205 if (buf->b_data) { 1206 arc_state_t *state = buf->b_hdr->b_state; 1207 uint64_t size = buf->b_hdr->b_size; 1208 arc_buf_contents_t type = buf->b_hdr->b_type; 1209 1210 arc_cksum_verify(buf); 1211 if (!recycle) { 1212 if (type == ARC_BUFC_METADATA) { 1213 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1214 buf->b_data, size); 1215 arc_space_return(size); 1216 } else { 1217 ASSERT(type == ARC_BUFC_DATA); 1218 arc_buf_data_free(buf->b_hdr, 1219 zio_data_buf_free, buf->b_data, size); 1220 atomic_add_64(&arc_size, -size); 1221 } 1222 } 1223 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1224 uint64_t *cnt = &state->arcs_lsize[type]; 1225 1226 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1227 ASSERT(state != arc_anon); 1228 1229 ASSERT3U(*cnt, >=, size); 1230 atomic_add_64(cnt, -size); 1231 } 1232 ASSERT3U(state->arcs_size, >=, size); 1233 atomic_add_64(&state->arcs_size, -size); 1234 buf->b_data = NULL; 1235 ASSERT(buf->b_hdr->b_datacnt > 0); 1236 buf->b_hdr->b_datacnt -= 1; 1237 } 1238 1239 /* only remove the buf if requested */ 1240 if (!all) 1241 return; 1242 1243 /* remove the buf from the hdr list */ 1244 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1245 continue; 1246 *bufp = buf->b_next; 1247 1248 ASSERT(buf->b_efunc == NULL); 1249 1250 /* clean up the buf */ 1251 buf->b_hdr = NULL; 1252 kmem_cache_free(buf_cache, buf); 1253 } 1254 1255 static void 1256 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1257 { 1258 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1259 ASSERT3P(hdr->b_state, ==, arc_anon); 1260 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1261 1262 if (hdr->b_l2hdr != NULL) { 1263 if (!MUTEX_HELD(&l2arc_buflist_mtx)) { 1264 /* 1265 * To prevent arc_free() and l2arc_evict() from 1266 * attempting to free the same buffer at the same time, 1267 * a FREE_IN_PROGRESS flag is given to arc_free() to 1268 * give it priority. l2arc_evict() can't destroy this 1269 * header while we are waiting on l2arc_buflist_mtx. 1270 */ 1271 mutex_enter(&l2arc_buflist_mtx); 1272 ASSERT(hdr->b_l2hdr != NULL); 1273 1274 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr); 1275 mutex_exit(&l2arc_buflist_mtx); 1276 } else { 1277 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr); 1278 } 1279 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1280 kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t)); 1281 if (hdr->b_state == arc_l2c_only) 1282 l2arc_hdr_stat_remove(); 1283 hdr->b_l2hdr = NULL; 1284 } 1285 1286 if (!BUF_EMPTY(hdr)) { 1287 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1288 bzero(&hdr->b_dva, sizeof (dva_t)); 1289 hdr->b_birth = 0; 1290 hdr->b_cksum0 = 0; 1291 } 1292 while (hdr->b_buf) { 1293 arc_buf_t *buf = hdr->b_buf; 1294 1295 if (buf->b_efunc) { 1296 mutex_enter(&arc_eviction_mtx); 1297 ASSERT(buf->b_hdr != NULL); 1298 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1299 hdr->b_buf = buf->b_next; 1300 buf->b_hdr = &arc_eviction_hdr; 1301 buf->b_next = arc_eviction_list; 1302 arc_eviction_list = buf; 1303 mutex_exit(&arc_eviction_mtx); 1304 } else { 1305 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1306 } 1307 } 1308 if (hdr->b_freeze_cksum != NULL) { 1309 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1310 hdr->b_freeze_cksum = NULL; 1311 } 1312 1313 ASSERT(!list_link_active(&hdr->b_arc_node)); 1314 ASSERT3P(hdr->b_hash_next, ==, NULL); 1315 ASSERT3P(hdr->b_acb, ==, NULL); 1316 kmem_cache_free(hdr_cache, hdr); 1317 } 1318 1319 void 1320 arc_buf_free(arc_buf_t *buf, void *tag) 1321 { 1322 arc_buf_hdr_t *hdr = buf->b_hdr; 1323 int hashed = hdr->b_state != arc_anon; 1324 1325 ASSERT(buf->b_efunc == NULL); 1326 ASSERT(buf->b_data != NULL); 1327 1328 if (hashed) { 1329 kmutex_t *hash_lock = HDR_LOCK(hdr); 1330 1331 mutex_enter(hash_lock); 1332 (void) remove_reference(hdr, hash_lock, tag); 1333 if (hdr->b_datacnt > 1) 1334 arc_buf_destroy(buf, FALSE, TRUE); 1335 else 1336 hdr->b_flags |= ARC_BUF_AVAILABLE; 1337 mutex_exit(hash_lock); 1338 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1339 int destroy_hdr; 1340 /* 1341 * We are in the middle of an async write. Don't destroy 1342 * this buffer unless the write completes before we finish 1343 * decrementing the reference count. 1344 */ 1345 mutex_enter(&arc_eviction_mtx); 1346 (void) remove_reference(hdr, NULL, tag); 1347 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1348 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1349 mutex_exit(&arc_eviction_mtx); 1350 if (destroy_hdr) 1351 arc_hdr_destroy(hdr); 1352 } else { 1353 if (remove_reference(hdr, NULL, tag) > 0) { 1354 ASSERT(HDR_IO_ERROR(hdr)); 1355 arc_buf_destroy(buf, FALSE, TRUE); 1356 } else { 1357 arc_hdr_destroy(hdr); 1358 } 1359 } 1360 } 1361 1362 int 1363 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1364 { 1365 arc_buf_hdr_t *hdr = buf->b_hdr; 1366 kmutex_t *hash_lock = HDR_LOCK(hdr); 1367 int no_callback = (buf->b_efunc == NULL); 1368 1369 if (hdr->b_state == arc_anon) { 1370 arc_buf_free(buf, tag); 1371 return (no_callback); 1372 } 1373 1374 mutex_enter(hash_lock); 1375 ASSERT(hdr->b_state != arc_anon); 1376 ASSERT(buf->b_data != NULL); 1377 1378 (void) remove_reference(hdr, hash_lock, tag); 1379 if (hdr->b_datacnt > 1) { 1380 if (no_callback) 1381 arc_buf_destroy(buf, FALSE, TRUE); 1382 } else if (no_callback) { 1383 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1384 hdr->b_flags |= ARC_BUF_AVAILABLE; 1385 } 1386 ASSERT(no_callback || hdr->b_datacnt > 1 || 1387 refcount_is_zero(&hdr->b_refcnt)); 1388 mutex_exit(hash_lock); 1389 return (no_callback); 1390 } 1391 1392 int 1393 arc_buf_size(arc_buf_t *buf) 1394 { 1395 return (buf->b_hdr->b_size); 1396 } 1397 1398 /* 1399 * Evict buffers from list until we've removed the specified number of 1400 * bytes. Move the removed buffers to the appropriate evict state. 1401 * If the recycle flag is set, then attempt to "recycle" a buffer: 1402 * - look for a buffer to evict that is `bytes' long. 1403 * - return the data block from this buffer rather than freeing it. 1404 * This flag is used by callers that are trying to make space for a 1405 * new buffer in a full arc cache. 1406 * 1407 * This function makes a "best effort". It skips over any buffers 1408 * it can't get a hash_lock on, and so may not catch all candidates. 1409 * It may also return without evicting as much space as requested. 1410 */ 1411 static void * 1412 arc_evict(arc_state_t *state, spa_t *spa, int64_t bytes, boolean_t recycle, 1413 arc_buf_contents_t type) 1414 { 1415 arc_state_t *evicted_state; 1416 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1417 arc_buf_hdr_t *ab, *ab_prev = NULL; 1418 list_t *list = &state->arcs_list[type]; 1419 kmutex_t *hash_lock; 1420 boolean_t have_lock; 1421 void *stolen = NULL; 1422 1423 ASSERT(state == arc_mru || state == arc_mfu); 1424 1425 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1426 1427 mutex_enter(&state->arcs_mtx); 1428 mutex_enter(&evicted_state->arcs_mtx); 1429 1430 for (ab = list_tail(list); ab; ab = ab_prev) { 1431 ab_prev = list_prev(list, ab); 1432 /* prefetch buffers have a minimum lifespan */ 1433 if (HDR_IO_IN_PROGRESS(ab) || 1434 (spa && ab->b_spa != spa) || 1435 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1436 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 1437 skipped++; 1438 continue; 1439 } 1440 /* "lookahead" for better eviction candidate */ 1441 if (recycle && ab->b_size != bytes && 1442 ab_prev && ab_prev->b_size == bytes) 1443 continue; 1444 hash_lock = HDR_LOCK(ab); 1445 have_lock = MUTEX_HELD(hash_lock); 1446 if (have_lock || mutex_tryenter(hash_lock)) { 1447 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1448 ASSERT(ab->b_datacnt > 0); 1449 while (ab->b_buf) { 1450 arc_buf_t *buf = ab->b_buf; 1451 if (buf->b_data) { 1452 bytes_evicted += ab->b_size; 1453 if (recycle && ab->b_type == type && 1454 ab->b_size == bytes && 1455 !HDR_L2_WRITING(ab)) { 1456 stolen = buf->b_data; 1457 recycle = FALSE; 1458 } 1459 } 1460 if (buf->b_efunc) { 1461 mutex_enter(&arc_eviction_mtx); 1462 arc_buf_destroy(buf, 1463 buf->b_data == stolen, FALSE); 1464 ab->b_buf = buf->b_next; 1465 buf->b_hdr = &arc_eviction_hdr; 1466 buf->b_next = arc_eviction_list; 1467 arc_eviction_list = buf; 1468 mutex_exit(&arc_eviction_mtx); 1469 } else { 1470 arc_buf_destroy(buf, 1471 buf->b_data == stolen, TRUE); 1472 } 1473 } 1474 ASSERT(ab->b_datacnt == 0); 1475 arc_change_state(evicted_state, ab, hash_lock); 1476 ASSERT(HDR_IN_HASH_TABLE(ab)); 1477 ab->b_flags |= ARC_IN_HASH_TABLE; 1478 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1479 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1480 if (!have_lock) 1481 mutex_exit(hash_lock); 1482 if (bytes >= 0 && bytes_evicted >= bytes) 1483 break; 1484 } else { 1485 missed += 1; 1486 } 1487 } 1488 1489 mutex_exit(&evicted_state->arcs_mtx); 1490 mutex_exit(&state->arcs_mtx); 1491 1492 if (bytes_evicted < bytes) 1493 dprintf("only evicted %lld bytes from %x", 1494 (longlong_t)bytes_evicted, state); 1495 1496 if (skipped) 1497 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1498 1499 if (missed) 1500 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1501 1502 /* 1503 * We have just evicted some date into the ghost state, make 1504 * sure we also adjust the ghost state size if necessary. 1505 */ 1506 if (arc_no_grow && 1507 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1508 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1509 arc_mru_ghost->arcs_size - arc_c; 1510 1511 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1512 int64_t todelete = 1513 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1514 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1515 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1516 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1517 arc_mru_ghost->arcs_size + 1518 arc_mfu_ghost->arcs_size - arc_c); 1519 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1520 } 1521 } 1522 1523 return (stolen); 1524 } 1525 1526 /* 1527 * Remove buffers from list until we've removed the specified number of 1528 * bytes. Destroy the buffers that are removed. 1529 */ 1530 static void 1531 arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes) 1532 { 1533 arc_buf_hdr_t *ab, *ab_prev; 1534 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1535 kmutex_t *hash_lock; 1536 uint64_t bytes_deleted = 0; 1537 uint64_t bufs_skipped = 0; 1538 1539 ASSERT(GHOST_STATE(state)); 1540 top: 1541 mutex_enter(&state->arcs_mtx); 1542 for (ab = list_tail(list); ab; ab = ab_prev) { 1543 ab_prev = list_prev(list, ab); 1544 if (spa && ab->b_spa != spa) 1545 continue; 1546 hash_lock = HDR_LOCK(ab); 1547 if (mutex_tryenter(hash_lock)) { 1548 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1549 ASSERT(ab->b_buf == NULL); 1550 ARCSTAT_BUMP(arcstat_deleted); 1551 bytes_deleted += ab->b_size; 1552 1553 if (ab->b_l2hdr != NULL) { 1554 /* 1555 * This buffer is cached on the 2nd Level ARC; 1556 * don't destroy the header. 1557 */ 1558 arc_change_state(arc_l2c_only, ab, hash_lock); 1559 mutex_exit(hash_lock); 1560 } else { 1561 arc_change_state(arc_anon, ab, hash_lock); 1562 mutex_exit(hash_lock); 1563 arc_hdr_destroy(ab); 1564 } 1565 1566 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1567 if (bytes >= 0 && bytes_deleted >= bytes) 1568 break; 1569 } else { 1570 if (bytes < 0) { 1571 mutex_exit(&state->arcs_mtx); 1572 mutex_enter(hash_lock); 1573 mutex_exit(hash_lock); 1574 goto top; 1575 } 1576 bufs_skipped += 1; 1577 } 1578 } 1579 mutex_exit(&state->arcs_mtx); 1580 1581 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1582 (bytes < 0 || bytes_deleted < bytes)) { 1583 list = &state->arcs_list[ARC_BUFC_METADATA]; 1584 goto top; 1585 } 1586 1587 if (bufs_skipped) { 1588 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1589 ASSERT(bytes >= 0); 1590 } 1591 1592 if (bytes_deleted < bytes) 1593 dprintf("only deleted %lld bytes from %p", 1594 (longlong_t)bytes_deleted, state); 1595 } 1596 1597 static void 1598 arc_adjust(void) 1599 { 1600 int64_t top_sz, mru_over, arc_over, todelete; 1601 1602 top_sz = arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used; 1603 1604 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1605 int64_t toevict = 1606 MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], top_sz - arc_p); 1607 (void) arc_evict(arc_mru, NULL, toevict, FALSE, ARC_BUFC_DATA); 1608 top_sz = arc_anon->arcs_size + arc_mru->arcs_size; 1609 } 1610 1611 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1612 int64_t toevict = 1613 MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], top_sz - arc_p); 1614 (void) arc_evict(arc_mru, NULL, toevict, FALSE, 1615 ARC_BUFC_METADATA); 1616 top_sz = arc_anon->arcs_size + arc_mru->arcs_size; 1617 } 1618 1619 mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c; 1620 1621 if (mru_over > 0) { 1622 if (arc_mru_ghost->arcs_size > 0) { 1623 todelete = MIN(arc_mru_ghost->arcs_size, mru_over); 1624 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1625 } 1626 } 1627 1628 if ((arc_over = arc_size - arc_c) > 0) { 1629 int64_t tbl_over; 1630 1631 if (arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1632 int64_t toevict = 1633 MIN(arc_mfu->arcs_lsize[ARC_BUFC_DATA], arc_over); 1634 (void) arc_evict(arc_mfu, NULL, toevict, FALSE, 1635 ARC_BUFC_DATA); 1636 arc_over = arc_size - arc_c; 1637 } 1638 1639 if (arc_over > 0 && 1640 arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1641 int64_t toevict = 1642 MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA], 1643 arc_over); 1644 (void) arc_evict(arc_mfu, NULL, toevict, FALSE, 1645 ARC_BUFC_METADATA); 1646 } 1647 1648 tbl_over = arc_size + arc_mru_ghost->arcs_size + 1649 arc_mfu_ghost->arcs_size - arc_c * 2; 1650 1651 if (tbl_over > 0 && arc_mfu_ghost->arcs_size > 0) { 1652 todelete = MIN(arc_mfu_ghost->arcs_size, tbl_over); 1653 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1654 } 1655 } 1656 } 1657 1658 static void 1659 arc_do_user_evicts(void) 1660 { 1661 mutex_enter(&arc_eviction_mtx); 1662 while (arc_eviction_list != NULL) { 1663 arc_buf_t *buf = arc_eviction_list; 1664 arc_eviction_list = buf->b_next; 1665 buf->b_hdr = NULL; 1666 mutex_exit(&arc_eviction_mtx); 1667 1668 if (buf->b_efunc != NULL) 1669 VERIFY(buf->b_efunc(buf) == 0); 1670 1671 buf->b_efunc = NULL; 1672 buf->b_private = NULL; 1673 kmem_cache_free(buf_cache, buf); 1674 mutex_enter(&arc_eviction_mtx); 1675 } 1676 mutex_exit(&arc_eviction_mtx); 1677 } 1678 1679 /* 1680 * Flush all *evictable* data from the cache for the given spa. 1681 * NOTE: this will not touch "active" (i.e. referenced) data. 1682 */ 1683 void 1684 arc_flush(spa_t *spa) 1685 { 1686 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1687 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_DATA); 1688 if (spa) 1689 break; 1690 } 1691 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1692 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_METADATA); 1693 if (spa) 1694 break; 1695 } 1696 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1697 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_DATA); 1698 if (spa) 1699 break; 1700 } 1701 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1702 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_METADATA); 1703 if (spa) 1704 break; 1705 } 1706 1707 arc_evict_ghost(arc_mru_ghost, spa, -1); 1708 arc_evict_ghost(arc_mfu_ghost, spa, -1); 1709 1710 mutex_enter(&arc_reclaim_thr_lock); 1711 arc_do_user_evicts(); 1712 mutex_exit(&arc_reclaim_thr_lock); 1713 ASSERT(spa || arc_eviction_list == NULL); 1714 } 1715 1716 int arc_shrink_shift = 5; /* log2(fraction of arc to reclaim) */ 1717 1718 void 1719 arc_shrink(void) 1720 { 1721 if (arc_c > arc_c_min) { 1722 uint64_t to_free; 1723 1724 #ifdef _KERNEL 1725 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1726 #else 1727 to_free = arc_c >> arc_shrink_shift; 1728 #endif 1729 if (arc_c > arc_c_min + to_free) 1730 atomic_add_64(&arc_c, -to_free); 1731 else 1732 arc_c = arc_c_min; 1733 1734 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1735 if (arc_c > arc_size) 1736 arc_c = MAX(arc_size, arc_c_min); 1737 if (arc_p > arc_c) 1738 arc_p = (arc_c >> 1); 1739 ASSERT(arc_c >= arc_c_min); 1740 ASSERT((int64_t)arc_p >= 0); 1741 } 1742 1743 if (arc_size > arc_c) 1744 arc_adjust(); 1745 } 1746 1747 static int 1748 arc_reclaim_needed(void) 1749 { 1750 uint64_t extra; 1751 1752 #ifdef _KERNEL 1753 1754 if (needfree) 1755 return (1); 1756 1757 /* 1758 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1759 */ 1760 extra = desfree; 1761 1762 /* 1763 * check that we're out of range of the pageout scanner. It starts to 1764 * schedule paging if freemem is less than lotsfree and needfree. 1765 * lotsfree is the high-water mark for pageout, and needfree is the 1766 * number of needed free pages. We add extra pages here to make sure 1767 * the scanner doesn't start up while we're freeing memory. 1768 */ 1769 if (freemem < lotsfree + needfree + extra) 1770 return (1); 1771 1772 /* 1773 * check to make sure that swapfs has enough space so that anon 1774 * reservations can still succeed. anon_resvmem() checks that the 1775 * availrmem is greater than swapfs_minfree, and the number of reserved 1776 * swap pages. We also add a bit of extra here just to prevent 1777 * circumstances from getting really dire. 1778 */ 1779 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1780 return (1); 1781 1782 #if defined(__i386) 1783 /* 1784 * If we're on an i386 platform, it's possible that we'll exhaust the 1785 * kernel heap space before we ever run out of available physical 1786 * memory. Most checks of the size of the heap_area compare against 1787 * tune.t_minarmem, which is the minimum available real memory that we 1788 * can have in the system. However, this is generally fixed at 25 pages 1789 * which is so low that it's useless. In this comparison, we seek to 1790 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1791 * heap is allocated. (Or, in the calculation, if less than 1/4th is 1792 * free) 1793 */ 1794 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1795 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1796 return (1); 1797 #endif 1798 1799 #else 1800 if (spa_get_random(100) == 0) 1801 return (1); 1802 #endif 1803 return (0); 1804 } 1805 1806 static void 1807 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1808 { 1809 size_t i; 1810 kmem_cache_t *prev_cache = NULL; 1811 kmem_cache_t *prev_data_cache = NULL; 1812 extern kmem_cache_t *zio_buf_cache[]; 1813 extern kmem_cache_t *zio_data_buf_cache[]; 1814 1815 #ifdef _KERNEL 1816 if (arc_meta_used >= arc_meta_limit) { 1817 /* 1818 * We are exceeding our meta-data cache limit. 1819 * Purge some DNLC entries to release holds on meta-data. 1820 */ 1821 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1822 } 1823 #if defined(__i386) 1824 /* 1825 * Reclaim unused memory from all kmem caches. 1826 */ 1827 kmem_reap(); 1828 #endif 1829 #endif 1830 1831 /* 1832 * An aggressive reclamation will shrink the cache size as well as 1833 * reap free buffers from the arc kmem caches. 1834 */ 1835 if (strat == ARC_RECLAIM_AGGR) 1836 arc_shrink(); 1837 1838 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1839 if (zio_buf_cache[i] != prev_cache) { 1840 prev_cache = zio_buf_cache[i]; 1841 kmem_cache_reap_now(zio_buf_cache[i]); 1842 } 1843 if (zio_data_buf_cache[i] != prev_data_cache) { 1844 prev_data_cache = zio_data_buf_cache[i]; 1845 kmem_cache_reap_now(zio_data_buf_cache[i]); 1846 } 1847 } 1848 kmem_cache_reap_now(buf_cache); 1849 kmem_cache_reap_now(hdr_cache); 1850 } 1851 1852 static void 1853 arc_reclaim_thread(void) 1854 { 1855 clock_t growtime = 0; 1856 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1857 callb_cpr_t cpr; 1858 1859 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1860 1861 mutex_enter(&arc_reclaim_thr_lock); 1862 while (arc_thread_exit == 0) { 1863 if (arc_reclaim_needed()) { 1864 1865 if (arc_no_grow) { 1866 if (last_reclaim == ARC_RECLAIM_CONS) { 1867 last_reclaim = ARC_RECLAIM_AGGR; 1868 } else { 1869 last_reclaim = ARC_RECLAIM_CONS; 1870 } 1871 } else { 1872 arc_no_grow = TRUE; 1873 last_reclaim = ARC_RECLAIM_AGGR; 1874 membar_producer(); 1875 } 1876 1877 /* reset the growth delay for every reclaim */ 1878 growtime = lbolt + (arc_grow_retry * hz); 1879 1880 arc_kmem_reap_now(last_reclaim); 1881 1882 } else if (arc_no_grow && lbolt >= growtime) { 1883 arc_no_grow = FALSE; 1884 } 1885 1886 if (2 * arc_c < arc_size + 1887 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size) 1888 arc_adjust(); 1889 1890 if (arc_eviction_list != NULL) 1891 arc_do_user_evicts(); 1892 1893 /* block until needed, or one second, whichever is shorter */ 1894 CALLB_CPR_SAFE_BEGIN(&cpr); 1895 (void) cv_timedwait(&arc_reclaim_thr_cv, 1896 &arc_reclaim_thr_lock, (lbolt + hz)); 1897 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1898 } 1899 1900 arc_thread_exit = 0; 1901 cv_broadcast(&arc_reclaim_thr_cv); 1902 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1903 thread_exit(); 1904 } 1905 1906 /* 1907 * Adapt arc info given the number of bytes we are trying to add and 1908 * the state that we are comming from. This function is only called 1909 * when we are adding new content to the cache. 1910 */ 1911 static void 1912 arc_adapt(int bytes, arc_state_t *state) 1913 { 1914 int mult; 1915 1916 if (state == arc_l2c_only) 1917 return; 1918 1919 ASSERT(bytes > 0); 1920 /* 1921 * Adapt the target size of the MRU list: 1922 * - if we just hit in the MRU ghost list, then increase 1923 * the target size of the MRU list. 1924 * - if we just hit in the MFU ghost list, then increase 1925 * the target size of the MFU list by decreasing the 1926 * target size of the MRU list. 1927 */ 1928 if (state == arc_mru_ghost) { 1929 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 1930 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 1931 1932 arc_p = MIN(arc_c, arc_p + bytes * mult); 1933 } else if (state == arc_mfu_ghost) { 1934 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 1935 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 1936 1937 arc_p = MAX(0, (int64_t)arc_p - bytes * mult); 1938 } 1939 ASSERT((int64_t)arc_p >= 0); 1940 1941 if (arc_reclaim_needed()) { 1942 cv_signal(&arc_reclaim_thr_cv); 1943 return; 1944 } 1945 1946 if (arc_no_grow) 1947 return; 1948 1949 if (arc_c >= arc_c_max) 1950 return; 1951 1952 /* 1953 * If we're within (2 * maxblocksize) bytes of the target 1954 * cache size, increment the target cache size 1955 */ 1956 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 1957 atomic_add_64(&arc_c, (int64_t)bytes); 1958 if (arc_c > arc_c_max) 1959 arc_c = arc_c_max; 1960 else if (state == arc_anon) 1961 atomic_add_64(&arc_p, (int64_t)bytes); 1962 if (arc_p > arc_c) 1963 arc_p = arc_c; 1964 } 1965 ASSERT((int64_t)arc_p >= 0); 1966 } 1967 1968 /* 1969 * Check if the cache has reached its limits and eviction is required 1970 * prior to insert. 1971 */ 1972 static int 1973 arc_evict_needed(arc_buf_contents_t type) 1974 { 1975 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 1976 return (1); 1977 1978 #ifdef _KERNEL 1979 /* 1980 * If zio data pages are being allocated out of a separate heap segment, 1981 * then enforce that the size of available vmem for this area remains 1982 * above about 1/32nd free. 1983 */ 1984 if (type == ARC_BUFC_DATA && zio_arena != NULL && 1985 vmem_size(zio_arena, VMEM_FREE) < 1986 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 1987 return (1); 1988 #endif 1989 1990 if (arc_reclaim_needed()) 1991 return (1); 1992 1993 return (arc_size > arc_c); 1994 } 1995 1996 /* 1997 * The buffer, supplied as the first argument, needs a data block. 1998 * So, if we are at cache max, determine which cache should be victimized. 1999 * We have the following cases: 2000 * 2001 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2002 * In this situation if we're out of space, but the resident size of the MFU is 2003 * under the limit, victimize the MFU cache to satisfy this insertion request. 2004 * 2005 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2006 * Here, we've used up all of the available space for the MRU, so we need to 2007 * evict from our own cache instead. Evict from the set of resident MRU 2008 * entries. 2009 * 2010 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2011 * c minus p represents the MFU space in the cache, since p is the size of the 2012 * cache that is dedicated to the MRU. In this situation there's still space on 2013 * the MFU side, so the MRU side needs to be victimized. 2014 * 2015 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2016 * MFU's resident set is consuming more space than it has been allotted. In 2017 * this situation, we must victimize our own cache, the MFU, for this insertion. 2018 */ 2019 static void 2020 arc_get_data_buf(arc_buf_t *buf) 2021 { 2022 arc_state_t *state = buf->b_hdr->b_state; 2023 uint64_t size = buf->b_hdr->b_size; 2024 arc_buf_contents_t type = buf->b_hdr->b_type; 2025 2026 arc_adapt(size, state); 2027 2028 /* 2029 * We have not yet reached cache maximum size, 2030 * just allocate a new buffer. 2031 */ 2032 if (!arc_evict_needed(type)) { 2033 if (type == ARC_BUFC_METADATA) { 2034 buf->b_data = zio_buf_alloc(size); 2035 arc_space_consume(size); 2036 } else { 2037 ASSERT(type == ARC_BUFC_DATA); 2038 buf->b_data = zio_data_buf_alloc(size); 2039 atomic_add_64(&arc_size, size); 2040 } 2041 goto out; 2042 } 2043 2044 /* 2045 * If we are prefetching from the mfu ghost list, this buffer 2046 * will end up on the mru list; so steal space from there. 2047 */ 2048 if (state == arc_mfu_ghost) 2049 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2050 else if (state == arc_mru_ghost) 2051 state = arc_mru; 2052 2053 if (state == arc_mru || state == arc_anon) { 2054 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2055 state = (arc_mfu->arcs_lsize[type] > 0 && 2056 arc_p > mru_used) ? arc_mfu : arc_mru; 2057 } else { 2058 /* MFU cases */ 2059 uint64_t mfu_space = arc_c - arc_p; 2060 state = (arc_mru->arcs_lsize[type] > 0 && 2061 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2062 } 2063 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2064 if (type == ARC_BUFC_METADATA) { 2065 buf->b_data = zio_buf_alloc(size); 2066 arc_space_consume(size); 2067 } else { 2068 ASSERT(type == ARC_BUFC_DATA); 2069 buf->b_data = zio_data_buf_alloc(size); 2070 atomic_add_64(&arc_size, size); 2071 } 2072 ARCSTAT_BUMP(arcstat_recycle_miss); 2073 } 2074 ASSERT(buf->b_data != NULL); 2075 out: 2076 /* 2077 * Update the state size. Note that ghost states have a 2078 * "ghost size" and so don't need to be updated. 2079 */ 2080 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2081 arc_buf_hdr_t *hdr = buf->b_hdr; 2082 2083 atomic_add_64(&hdr->b_state->arcs_size, size); 2084 if (list_link_active(&hdr->b_arc_node)) { 2085 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2086 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2087 } 2088 /* 2089 * If we are growing the cache, and we are adding anonymous 2090 * data, and we have outgrown arc_p, update arc_p 2091 */ 2092 if (arc_size < arc_c && hdr->b_state == arc_anon && 2093 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2094 arc_p = MIN(arc_c, arc_p + size); 2095 } 2096 } 2097 2098 /* 2099 * This routine is called whenever a buffer is accessed. 2100 * NOTE: the hash lock is dropped in this function. 2101 */ 2102 static void 2103 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2104 { 2105 ASSERT(MUTEX_HELD(hash_lock)); 2106 2107 if (buf->b_state == arc_anon) { 2108 /* 2109 * This buffer is not in the cache, and does not 2110 * appear in our "ghost" list. Add the new buffer 2111 * to the MRU state. 2112 */ 2113 2114 ASSERT(buf->b_arc_access == 0); 2115 buf->b_arc_access = lbolt; 2116 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2117 arc_change_state(arc_mru, buf, hash_lock); 2118 2119 } else if (buf->b_state == arc_mru) { 2120 /* 2121 * If this buffer is here because of a prefetch, then either: 2122 * - clear the flag if this is a "referencing" read 2123 * (any subsequent access will bump this into the MFU state). 2124 * or 2125 * - move the buffer to the head of the list if this is 2126 * another prefetch (to make it less likely to be evicted). 2127 */ 2128 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2129 if (refcount_count(&buf->b_refcnt) == 0) { 2130 ASSERT(list_link_active(&buf->b_arc_node)); 2131 } else { 2132 buf->b_flags &= ~ARC_PREFETCH; 2133 ARCSTAT_BUMP(arcstat_mru_hits); 2134 } 2135 buf->b_arc_access = lbolt; 2136 return; 2137 } 2138 2139 /* 2140 * This buffer has been "accessed" only once so far, 2141 * but it is still in the cache. Move it to the MFU 2142 * state. 2143 */ 2144 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 2145 /* 2146 * More than 125ms have passed since we 2147 * instantiated this buffer. Move it to the 2148 * most frequently used state. 2149 */ 2150 buf->b_arc_access = lbolt; 2151 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2152 arc_change_state(arc_mfu, buf, hash_lock); 2153 } 2154 ARCSTAT_BUMP(arcstat_mru_hits); 2155 } else if (buf->b_state == arc_mru_ghost) { 2156 arc_state_t *new_state; 2157 /* 2158 * This buffer has been "accessed" recently, but 2159 * was evicted from the cache. Move it to the 2160 * MFU state. 2161 */ 2162 2163 if (buf->b_flags & ARC_PREFETCH) { 2164 new_state = arc_mru; 2165 if (refcount_count(&buf->b_refcnt) > 0) 2166 buf->b_flags &= ~ARC_PREFETCH; 2167 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2168 } else { 2169 new_state = arc_mfu; 2170 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2171 } 2172 2173 buf->b_arc_access = lbolt; 2174 arc_change_state(new_state, buf, hash_lock); 2175 2176 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2177 } else if (buf->b_state == arc_mfu) { 2178 /* 2179 * This buffer has been accessed more than once and is 2180 * still in the cache. Keep it in the MFU state. 2181 * 2182 * NOTE: an add_reference() that occurred when we did 2183 * the arc_read() will have kicked this off the list. 2184 * If it was a prefetch, we will explicitly move it to 2185 * the head of the list now. 2186 */ 2187 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2188 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2189 ASSERT(list_link_active(&buf->b_arc_node)); 2190 } 2191 ARCSTAT_BUMP(arcstat_mfu_hits); 2192 buf->b_arc_access = lbolt; 2193 } else if (buf->b_state == arc_mfu_ghost) { 2194 arc_state_t *new_state = arc_mfu; 2195 /* 2196 * This buffer has been accessed more than once but has 2197 * been evicted from the cache. Move it back to the 2198 * MFU state. 2199 */ 2200 2201 if (buf->b_flags & ARC_PREFETCH) { 2202 /* 2203 * This is a prefetch access... 2204 * move this block back to the MRU state. 2205 */ 2206 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2207 new_state = arc_mru; 2208 } 2209 2210 buf->b_arc_access = lbolt; 2211 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2212 arc_change_state(new_state, buf, hash_lock); 2213 2214 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2215 } else if (buf->b_state == arc_l2c_only) { 2216 /* 2217 * This buffer is on the 2nd Level ARC. 2218 */ 2219 2220 buf->b_arc_access = lbolt; 2221 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2222 arc_change_state(arc_mfu, buf, hash_lock); 2223 } else { 2224 ASSERT(!"invalid arc state"); 2225 } 2226 } 2227 2228 /* a generic arc_done_func_t which you can use */ 2229 /* ARGSUSED */ 2230 void 2231 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2232 { 2233 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2234 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2235 } 2236 2237 /* a generic arc_done_func_t */ 2238 void 2239 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2240 { 2241 arc_buf_t **bufp = arg; 2242 if (zio && zio->io_error) { 2243 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2244 *bufp = NULL; 2245 } else { 2246 *bufp = buf; 2247 } 2248 } 2249 2250 static void 2251 arc_read_done(zio_t *zio) 2252 { 2253 arc_buf_hdr_t *hdr, *found; 2254 arc_buf_t *buf; 2255 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2256 kmutex_t *hash_lock; 2257 arc_callback_t *callback_list, *acb; 2258 int freeable = FALSE; 2259 2260 buf = zio->io_private; 2261 hdr = buf->b_hdr; 2262 2263 /* 2264 * The hdr was inserted into hash-table and removed from lists 2265 * prior to starting I/O. We should find this header, since 2266 * it's in the hash table, and it should be legit since it's 2267 * not possible to evict it during the I/O. The only possible 2268 * reason for it not to be found is if we were freed during the 2269 * read. 2270 */ 2271 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 2272 &hash_lock); 2273 2274 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2275 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2276 (found == hdr && HDR_L2_READING(hdr))); 2277 2278 hdr->b_flags &= ~(ARC_L2_READING|ARC_L2_EVICTED); 2279 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2280 hdr->b_flags |= ARC_DONT_L2CACHE; 2281 2282 /* byteswap if necessary */ 2283 callback_list = hdr->b_acb; 2284 ASSERT(callback_list != NULL); 2285 if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap) 2286 callback_list->acb_byteswap(buf->b_data, hdr->b_size); 2287 2288 arc_cksum_compute(buf, B_FALSE); 2289 2290 /* create copies of the data buffer for the callers */ 2291 abuf = buf; 2292 for (acb = callback_list; acb; acb = acb->acb_next) { 2293 if (acb->acb_done) { 2294 if (abuf == NULL) 2295 abuf = arc_buf_clone(buf); 2296 acb->acb_buf = abuf; 2297 abuf = NULL; 2298 } 2299 } 2300 hdr->b_acb = NULL; 2301 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2302 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2303 if (abuf == buf) 2304 hdr->b_flags |= ARC_BUF_AVAILABLE; 2305 2306 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2307 2308 if (zio->io_error != 0) { 2309 hdr->b_flags |= ARC_IO_ERROR; 2310 if (hdr->b_state != arc_anon) 2311 arc_change_state(arc_anon, hdr, hash_lock); 2312 if (HDR_IN_HASH_TABLE(hdr)) 2313 buf_hash_remove(hdr); 2314 freeable = refcount_is_zero(&hdr->b_refcnt); 2315 /* convert checksum errors into IO errors */ 2316 if (zio->io_error == ECKSUM) 2317 zio->io_error = EIO; 2318 } 2319 2320 /* 2321 * Broadcast before we drop the hash_lock to avoid the possibility 2322 * that the hdr (and hence the cv) might be freed before we get to 2323 * the cv_broadcast(). 2324 */ 2325 cv_broadcast(&hdr->b_cv); 2326 2327 if (hash_lock) { 2328 /* 2329 * Only call arc_access on anonymous buffers. This is because 2330 * if we've issued an I/O for an evicted buffer, we've already 2331 * called arc_access (to prevent any simultaneous readers from 2332 * getting confused). 2333 */ 2334 if (zio->io_error == 0 && hdr->b_state == arc_anon) 2335 arc_access(hdr, hash_lock); 2336 mutex_exit(hash_lock); 2337 } else { 2338 /* 2339 * This block was freed while we waited for the read to 2340 * complete. It has been removed from the hash table and 2341 * moved to the anonymous state (so that it won't show up 2342 * in the cache). 2343 */ 2344 ASSERT3P(hdr->b_state, ==, arc_anon); 2345 freeable = refcount_is_zero(&hdr->b_refcnt); 2346 } 2347 2348 /* execute each callback and free its structure */ 2349 while ((acb = callback_list) != NULL) { 2350 if (acb->acb_done) 2351 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2352 2353 if (acb->acb_zio_dummy != NULL) { 2354 acb->acb_zio_dummy->io_error = zio->io_error; 2355 zio_nowait(acb->acb_zio_dummy); 2356 } 2357 2358 callback_list = acb->acb_next; 2359 kmem_free(acb, sizeof (arc_callback_t)); 2360 } 2361 2362 if (freeable) 2363 arc_hdr_destroy(hdr); 2364 } 2365 2366 /* 2367 * "Read" the block block at the specified DVA (in bp) via the 2368 * cache. If the block is found in the cache, invoke the provided 2369 * callback immediately and return. Note that the `zio' parameter 2370 * in the callback will be NULL in this case, since no IO was 2371 * required. If the block is not in the cache pass the read request 2372 * on to the spa with a substitute callback function, so that the 2373 * requested block will be added to the cache. 2374 * 2375 * If a read request arrives for a block that has a read in-progress, 2376 * either wait for the in-progress read to complete (and return the 2377 * results); or, if this is a read with a "done" func, add a record 2378 * to the read to invoke the "done" func when the read completes, 2379 * and return; or just return. 2380 * 2381 * arc_read_done() will invoke all the requested "done" functions 2382 * for readers of this block. 2383 */ 2384 int 2385 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap, 2386 arc_done_func_t *done, void *private, int priority, int flags, 2387 uint32_t *arc_flags, zbookmark_t *zb) 2388 { 2389 arc_buf_hdr_t *hdr; 2390 arc_buf_t *buf; 2391 kmutex_t *hash_lock; 2392 zio_t *rzio; 2393 2394 top: 2395 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2396 if (hdr && hdr->b_datacnt > 0) { 2397 2398 *arc_flags |= ARC_CACHED; 2399 2400 if (HDR_IO_IN_PROGRESS(hdr)) { 2401 2402 if (*arc_flags & ARC_WAIT) { 2403 cv_wait(&hdr->b_cv, hash_lock); 2404 mutex_exit(hash_lock); 2405 goto top; 2406 } 2407 ASSERT(*arc_flags & ARC_NOWAIT); 2408 2409 if (done) { 2410 arc_callback_t *acb = NULL; 2411 2412 acb = kmem_zalloc(sizeof (arc_callback_t), 2413 KM_SLEEP); 2414 acb->acb_done = done; 2415 acb->acb_private = private; 2416 acb->acb_byteswap = swap; 2417 if (pio != NULL) 2418 acb->acb_zio_dummy = zio_null(pio, 2419 spa, NULL, NULL, flags); 2420 2421 ASSERT(acb->acb_done != NULL); 2422 acb->acb_next = hdr->b_acb; 2423 hdr->b_acb = acb; 2424 add_reference(hdr, hash_lock, private); 2425 mutex_exit(hash_lock); 2426 return (0); 2427 } 2428 mutex_exit(hash_lock); 2429 return (0); 2430 } 2431 2432 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2433 2434 if (done) { 2435 add_reference(hdr, hash_lock, private); 2436 /* 2437 * If this block is already in use, create a new 2438 * copy of the data so that we will be guaranteed 2439 * that arc_release() will always succeed. 2440 */ 2441 buf = hdr->b_buf; 2442 ASSERT(buf); 2443 ASSERT(buf->b_data); 2444 if (HDR_BUF_AVAILABLE(hdr)) { 2445 ASSERT(buf->b_efunc == NULL); 2446 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2447 } else { 2448 buf = arc_buf_clone(buf); 2449 } 2450 } else if (*arc_flags & ARC_PREFETCH && 2451 refcount_count(&hdr->b_refcnt) == 0) { 2452 hdr->b_flags |= ARC_PREFETCH; 2453 } 2454 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2455 arc_access(hdr, hash_lock); 2456 mutex_exit(hash_lock); 2457 ARCSTAT_BUMP(arcstat_hits); 2458 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2459 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2460 data, metadata, hits); 2461 2462 if (done) 2463 done(NULL, buf, private); 2464 } else { 2465 uint64_t size = BP_GET_LSIZE(bp); 2466 arc_callback_t *acb; 2467 2468 if (hdr == NULL) { 2469 /* this block is not in the cache */ 2470 arc_buf_hdr_t *exists; 2471 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2472 buf = arc_buf_alloc(spa, size, private, type); 2473 hdr = buf->b_hdr; 2474 hdr->b_dva = *BP_IDENTITY(bp); 2475 hdr->b_birth = bp->blk_birth; 2476 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2477 exists = buf_hash_insert(hdr, &hash_lock); 2478 if (exists) { 2479 /* somebody beat us to the hash insert */ 2480 mutex_exit(hash_lock); 2481 bzero(&hdr->b_dva, sizeof (dva_t)); 2482 hdr->b_birth = 0; 2483 hdr->b_cksum0 = 0; 2484 (void) arc_buf_remove_ref(buf, private); 2485 goto top; /* restart the IO request */ 2486 } 2487 /* if this is a prefetch, we don't have a reference */ 2488 if (*arc_flags & ARC_PREFETCH) { 2489 (void) remove_reference(hdr, hash_lock, 2490 private); 2491 hdr->b_flags |= ARC_PREFETCH; 2492 } 2493 if (BP_GET_LEVEL(bp) > 0) 2494 hdr->b_flags |= ARC_INDIRECT; 2495 } else { 2496 /* this block is in the ghost cache */ 2497 ASSERT(GHOST_STATE(hdr->b_state)); 2498 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2499 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2500 ASSERT(hdr->b_buf == NULL); 2501 2502 /* if this is a prefetch, we don't have a reference */ 2503 if (*arc_flags & ARC_PREFETCH) 2504 hdr->b_flags |= ARC_PREFETCH; 2505 else 2506 add_reference(hdr, hash_lock, private); 2507 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 2508 buf->b_hdr = hdr; 2509 buf->b_data = NULL; 2510 buf->b_efunc = NULL; 2511 buf->b_private = NULL; 2512 buf->b_next = NULL; 2513 hdr->b_buf = buf; 2514 arc_get_data_buf(buf); 2515 ASSERT(hdr->b_datacnt == 0); 2516 hdr->b_datacnt = 1; 2517 2518 } 2519 2520 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2521 acb->acb_done = done; 2522 acb->acb_private = private; 2523 acb->acb_byteswap = swap; 2524 2525 ASSERT(hdr->b_acb == NULL); 2526 hdr->b_acb = acb; 2527 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2528 2529 /* 2530 * If the buffer has been evicted, migrate it to a present state 2531 * before issuing the I/O. Once we drop the hash-table lock, 2532 * the header will be marked as I/O in progress and have an 2533 * attached buffer. At this point, anybody who finds this 2534 * buffer ought to notice that it's legit but has a pending I/O. 2535 */ 2536 2537 if (GHOST_STATE(hdr->b_state)) 2538 arc_access(hdr, hash_lock); 2539 2540 ASSERT3U(hdr->b_size, ==, size); 2541 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 2542 zbookmark_t *, zb); 2543 ARCSTAT_BUMP(arcstat_misses); 2544 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2545 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2546 data, metadata, misses); 2547 2548 if (l2arc_ndev != 0) { 2549 /* 2550 * Read from the L2ARC if the following are true: 2551 * 1. This buffer has L2ARC metadata. 2552 * 2. This buffer isn't currently writing to the L2ARC. 2553 */ 2554 if (hdr->b_l2hdr != NULL && !HDR_L2_WRITING(hdr)) { 2555 vdev_t *vd = hdr->b_l2hdr->b_dev->l2ad_vdev; 2556 daddr_t addr = hdr->b_l2hdr->b_daddr; 2557 l2arc_read_callback_t *cb; 2558 2559 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2560 ARCSTAT_BUMP(arcstat_l2_hits); 2561 2562 hdr->b_flags |= ARC_L2_READING; 2563 mutex_exit(hash_lock); 2564 2565 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2566 KM_SLEEP); 2567 cb->l2rcb_buf = buf; 2568 cb->l2rcb_spa = spa; 2569 cb->l2rcb_bp = *bp; 2570 cb->l2rcb_zb = *zb; 2571 cb->l2rcb_flags = flags; 2572 2573 /* 2574 * l2arc read. 2575 */ 2576 rzio = zio_read_phys(pio, vd, addr, size, 2577 buf->b_data, ZIO_CHECKSUM_OFF, 2578 l2arc_read_done, cb, priority, 2579 flags | ZIO_FLAG_DONT_CACHE, B_FALSE); 2580 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2581 zio_t *, rzio); 2582 2583 if (*arc_flags & ARC_WAIT) 2584 return (zio_wait(rzio)); 2585 2586 ASSERT(*arc_flags & ARC_NOWAIT); 2587 zio_nowait(rzio); 2588 return (0); 2589 } else { 2590 DTRACE_PROBE1(l2arc__miss, 2591 arc_buf_hdr_t *, hdr); 2592 ARCSTAT_BUMP(arcstat_l2_misses); 2593 if (HDR_L2_WRITING(hdr)) 2594 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2595 } 2596 } 2597 mutex_exit(hash_lock); 2598 2599 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2600 arc_read_done, buf, priority, flags, zb); 2601 2602 if (*arc_flags & ARC_WAIT) 2603 return (zio_wait(rzio)); 2604 2605 ASSERT(*arc_flags & ARC_NOWAIT); 2606 zio_nowait(rzio); 2607 } 2608 return (0); 2609 } 2610 2611 /* 2612 * arc_read() variant to support pool traversal. If the block is already 2613 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 2614 * The idea is that we don't want pool traversal filling up memory, but 2615 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 2616 */ 2617 int 2618 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 2619 { 2620 arc_buf_hdr_t *hdr; 2621 kmutex_t *hash_mtx; 2622 int rc = 0; 2623 2624 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 2625 2626 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 2627 arc_buf_t *buf = hdr->b_buf; 2628 2629 ASSERT(buf); 2630 while (buf->b_data == NULL) { 2631 buf = buf->b_next; 2632 ASSERT(buf); 2633 } 2634 bcopy(buf->b_data, data, hdr->b_size); 2635 } else { 2636 rc = ENOENT; 2637 } 2638 2639 if (hash_mtx) 2640 mutex_exit(hash_mtx); 2641 2642 return (rc); 2643 } 2644 2645 void 2646 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2647 { 2648 ASSERT(buf->b_hdr != NULL); 2649 ASSERT(buf->b_hdr->b_state != arc_anon); 2650 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2651 buf->b_efunc = func; 2652 buf->b_private = private; 2653 } 2654 2655 /* 2656 * This is used by the DMU to let the ARC know that a buffer is 2657 * being evicted, so the ARC should clean up. If this arc buf 2658 * is not yet in the evicted state, it will be put there. 2659 */ 2660 int 2661 arc_buf_evict(arc_buf_t *buf) 2662 { 2663 arc_buf_hdr_t *hdr; 2664 kmutex_t *hash_lock; 2665 arc_buf_t **bufp; 2666 2667 mutex_enter(&arc_eviction_mtx); 2668 hdr = buf->b_hdr; 2669 if (hdr == NULL) { 2670 /* 2671 * We are in arc_do_user_evicts(). 2672 */ 2673 ASSERT(buf->b_data == NULL); 2674 mutex_exit(&arc_eviction_mtx); 2675 return (0); 2676 } 2677 hash_lock = HDR_LOCK(hdr); 2678 mutex_exit(&arc_eviction_mtx); 2679 2680 mutex_enter(hash_lock); 2681 2682 if (buf->b_data == NULL) { 2683 /* 2684 * We are on the eviction list. 2685 */ 2686 mutex_exit(hash_lock); 2687 mutex_enter(&arc_eviction_mtx); 2688 if (buf->b_hdr == NULL) { 2689 /* 2690 * We are already in arc_do_user_evicts(). 2691 */ 2692 mutex_exit(&arc_eviction_mtx); 2693 return (0); 2694 } else { 2695 arc_buf_t copy = *buf; /* structure assignment */ 2696 /* 2697 * Process this buffer now 2698 * but let arc_do_user_evicts() do the reaping. 2699 */ 2700 buf->b_efunc = NULL; 2701 mutex_exit(&arc_eviction_mtx); 2702 VERIFY(copy.b_efunc(©) == 0); 2703 return (1); 2704 } 2705 } 2706 2707 ASSERT(buf->b_hdr == hdr); 2708 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2709 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2710 2711 /* 2712 * Pull this buffer off of the hdr 2713 */ 2714 bufp = &hdr->b_buf; 2715 while (*bufp != buf) 2716 bufp = &(*bufp)->b_next; 2717 *bufp = buf->b_next; 2718 2719 ASSERT(buf->b_data != NULL); 2720 arc_buf_destroy(buf, FALSE, FALSE); 2721 2722 if (hdr->b_datacnt == 0) { 2723 arc_state_t *old_state = hdr->b_state; 2724 arc_state_t *evicted_state; 2725 2726 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2727 2728 evicted_state = 2729 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2730 2731 mutex_enter(&old_state->arcs_mtx); 2732 mutex_enter(&evicted_state->arcs_mtx); 2733 2734 arc_change_state(evicted_state, hdr, hash_lock); 2735 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2736 hdr->b_flags |= ARC_IN_HASH_TABLE; 2737 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2738 2739 mutex_exit(&evicted_state->arcs_mtx); 2740 mutex_exit(&old_state->arcs_mtx); 2741 } 2742 mutex_exit(hash_lock); 2743 2744 VERIFY(buf->b_efunc(buf) == 0); 2745 buf->b_efunc = NULL; 2746 buf->b_private = NULL; 2747 buf->b_hdr = NULL; 2748 kmem_cache_free(buf_cache, buf); 2749 return (1); 2750 } 2751 2752 /* 2753 * Release this buffer from the cache. This must be done 2754 * after a read and prior to modifying the buffer contents. 2755 * If the buffer has more than one reference, we must make 2756 * make a new hdr for the buffer. 2757 */ 2758 void 2759 arc_release(arc_buf_t *buf, void *tag) 2760 { 2761 arc_buf_hdr_t *hdr = buf->b_hdr; 2762 kmutex_t *hash_lock = HDR_LOCK(hdr); 2763 l2arc_buf_hdr_t *l2hdr = NULL; 2764 uint64_t buf_size; 2765 2766 /* this buffer is not on any list */ 2767 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2768 2769 if (hdr->b_state == arc_anon) { 2770 /* this buffer is already released */ 2771 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2772 ASSERT(BUF_EMPTY(hdr)); 2773 ASSERT(buf->b_efunc == NULL); 2774 arc_buf_thaw(buf); 2775 return; 2776 } 2777 2778 mutex_enter(hash_lock); 2779 2780 /* 2781 * Do we have more than one buf? 2782 */ 2783 if (hdr->b_buf != buf || buf->b_next != NULL) { 2784 arc_buf_hdr_t *nhdr; 2785 arc_buf_t **bufp; 2786 uint64_t blksz = hdr->b_size; 2787 spa_t *spa = hdr->b_spa; 2788 arc_buf_contents_t type = hdr->b_type; 2789 uint32_t flags = hdr->b_flags; 2790 2791 ASSERT(hdr->b_datacnt > 1); 2792 /* 2793 * Pull the data off of this buf and attach it to 2794 * a new anonymous buf. 2795 */ 2796 (void) remove_reference(hdr, hash_lock, tag); 2797 bufp = &hdr->b_buf; 2798 while (*bufp != buf) 2799 bufp = &(*bufp)->b_next; 2800 *bufp = (*bufp)->b_next; 2801 buf->b_next = NULL; 2802 2803 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 2804 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 2805 if (refcount_is_zero(&hdr->b_refcnt)) { 2806 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 2807 ASSERT3U(*size, >=, hdr->b_size); 2808 atomic_add_64(size, -hdr->b_size); 2809 } 2810 hdr->b_datacnt -= 1; 2811 if (hdr->b_l2hdr != NULL) { 2812 mutex_enter(&l2arc_buflist_mtx); 2813 l2hdr = hdr->b_l2hdr; 2814 hdr->b_l2hdr = NULL; 2815 buf_size = hdr->b_size; 2816 } 2817 arc_cksum_verify(buf); 2818 2819 mutex_exit(hash_lock); 2820 2821 nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 2822 nhdr->b_size = blksz; 2823 nhdr->b_spa = spa; 2824 nhdr->b_type = type; 2825 nhdr->b_buf = buf; 2826 nhdr->b_state = arc_anon; 2827 nhdr->b_arc_access = 0; 2828 nhdr->b_flags = flags & ARC_L2_WRITING; 2829 nhdr->b_l2hdr = NULL; 2830 nhdr->b_datacnt = 1; 2831 nhdr->b_freeze_cksum = NULL; 2832 (void) refcount_add(&nhdr->b_refcnt, tag); 2833 buf->b_hdr = nhdr; 2834 atomic_add_64(&arc_anon->arcs_size, blksz); 2835 } else { 2836 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 2837 ASSERT(!list_link_active(&hdr->b_arc_node)); 2838 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2839 arc_change_state(arc_anon, hdr, hash_lock); 2840 hdr->b_arc_access = 0; 2841 if (hdr->b_l2hdr != NULL) { 2842 mutex_enter(&l2arc_buflist_mtx); 2843 l2hdr = hdr->b_l2hdr; 2844 hdr->b_l2hdr = NULL; 2845 buf_size = hdr->b_size; 2846 } 2847 mutex_exit(hash_lock); 2848 2849 bzero(&hdr->b_dva, sizeof (dva_t)); 2850 hdr->b_birth = 0; 2851 hdr->b_cksum0 = 0; 2852 arc_buf_thaw(buf); 2853 } 2854 buf->b_efunc = NULL; 2855 buf->b_private = NULL; 2856 2857 if (l2hdr) { 2858 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 2859 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 2860 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 2861 } 2862 if (MUTEX_HELD(&l2arc_buflist_mtx)) 2863 mutex_exit(&l2arc_buflist_mtx); 2864 } 2865 2866 int 2867 arc_released(arc_buf_t *buf) 2868 { 2869 return (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 2870 } 2871 2872 int 2873 arc_has_callback(arc_buf_t *buf) 2874 { 2875 return (buf->b_efunc != NULL); 2876 } 2877 2878 #ifdef ZFS_DEBUG 2879 int 2880 arc_referenced(arc_buf_t *buf) 2881 { 2882 return (refcount_count(&buf->b_hdr->b_refcnt)); 2883 } 2884 #endif 2885 2886 static void 2887 arc_write_ready(zio_t *zio) 2888 { 2889 arc_write_callback_t *callback = zio->io_private; 2890 arc_buf_t *buf = callback->awcb_buf; 2891 arc_buf_hdr_t *hdr = buf->b_hdr; 2892 2893 if (zio->io_error == 0 && callback->awcb_ready) { 2894 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 2895 callback->awcb_ready(zio, buf, callback->awcb_private); 2896 } 2897 /* 2898 * If the IO is already in progress, then this is a re-write 2899 * attempt, so we need to thaw and re-compute the cksum. It is 2900 * the responsibility of the callback to handle the freeing 2901 * and accounting for any re-write attempt. If we don't have a 2902 * callback registered then simply free the block here. 2903 */ 2904 if (HDR_IO_IN_PROGRESS(hdr)) { 2905 if (!BP_IS_HOLE(&zio->io_bp_orig) && 2906 callback->awcb_ready == NULL) { 2907 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg, 2908 &zio->io_bp_orig, NULL, NULL)); 2909 } 2910 mutex_enter(&hdr->b_freeze_lock); 2911 if (hdr->b_freeze_cksum != NULL) { 2912 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 2913 hdr->b_freeze_cksum = NULL; 2914 } 2915 mutex_exit(&hdr->b_freeze_lock); 2916 } 2917 arc_cksum_compute(buf, B_FALSE); 2918 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2919 } 2920 2921 static void 2922 arc_write_done(zio_t *zio) 2923 { 2924 arc_write_callback_t *callback = zio->io_private; 2925 arc_buf_t *buf = callback->awcb_buf; 2926 arc_buf_hdr_t *hdr = buf->b_hdr; 2927 2928 hdr->b_acb = NULL; 2929 2930 /* this buffer is on no lists and is not in the hash table */ 2931 ASSERT3P(hdr->b_state, ==, arc_anon); 2932 2933 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 2934 hdr->b_birth = zio->io_bp->blk_birth; 2935 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 2936 /* 2937 * If the block to be written was all-zero, we may have 2938 * compressed it away. In this case no write was performed 2939 * so there will be no dva/birth-date/checksum. The buffer 2940 * must therefor remain anonymous (and uncached). 2941 */ 2942 if (!BUF_EMPTY(hdr)) { 2943 arc_buf_hdr_t *exists; 2944 kmutex_t *hash_lock; 2945 2946 arc_cksum_verify(buf); 2947 2948 exists = buf_hash_insert(hdr, &hash_lock); 2949 if (exists) { 2950 /* 2951 * This can only happen if we overwrite for 2952 * sync-to-convergence, because we remove 2953 * buffers from the hash table when we arc_free(). 2954 */ 2955 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 2956 BP_IDENTITY(zio->io_bp))); 2957 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 2958 zio->io_bp->blk_birth); 2959 2960 ASSERT(refcount_is_zero(&exists->b_refcnt)); 2961 arc_change_state(arc_anon, exists, hash_lock); 2962 mutex_exit(hash_lock); 2963 arc_hdr_destroy(exists); 2964 exists = buf_hash_insert(hdr, &hash_lock); 2965 ASSERT3P(exists, ==, NULL); 2966 } 2967 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2968 arc_access(hdr, hash_lock); 2969 mutex_exit(hash_lock); 2970 } else if (callback->awcb_done == NULL) { 2971 int destroy_hdr; 2972 /* 2973 * This is an anonymous buffer with no user callback, 2974 * destroy it if there are no active references. 2975 */ 2976 mutex_enter(&arc_eviction_mtx); 2977 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 2978 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2979 mutex_exit(&arc_eviction_mtx); 2980 if (destroy_hdr) 2981 arc_hdr_destroy(hdr); 2982 } else { 2983 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2984 } 2985 2986 if (callback->awcb_done) { 2987 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 2988 callback->awcb_done(zio, buf, callback->awcb_private); 2989 } 2990 2991 kmem_free(callback, sizeof (arc_write_callback_t)); 2992 } 2993 2994 zio_t * 2995 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 2996 uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 2997 arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority, 2998 int flags, zbookmark_t *zb) 2999 { 3000 arc_buf_hdr_t *hdr = buf->b_hdr; 3001 arc_write_callback_t *callback; 3002 zio_t *zio; 3003 3004 /* this is a private buffer - no locking required */ 3005 ASSERT3P(hdr->b_state, ==, arc_anon); 3006 ASSERT(BUF_EMPTY(hdr)); 3007 ASSERT(!HDR_IO_ERROR(hdr)); 3008 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3009 ASSERT(hdr->b_acb == 0); 3010 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3011 callback->awcb_ready = ready; 3012 callback->awcb_done = done; 3013 callback->awcb_private = private; 3014 callback->awcb_buf = buf; 3015 zio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp, 3016 buf->b_data, hdr->b_size, arc_write_ready, arc_write_done, callback, 3017 priority, flags, zb); 3018 3019 return (zio); 3020 } 3021 3022 int 3023 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 3024 zio_done_func_t *done, void *private, uint32_t arc_flags) 3025 { 3026 arc_buf_hdr_t *ab; 3027 kmutex_t *hash_lock; 3028 zio_t *zio; 3029 3030 /* 3031 * If this buffer is in the cache, release it, so it 3032 * can be re-used. 3033 */ 3034 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 3035 if (ab != NULL) { 3036 /* 3037 * The checksum of blocks to free is not always 3038 * preserved (eg. on the deadlist). However, if it is 3039 * nonzero, it should match what we have in the cache. 3040 */ 3041 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 3042 ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 3043 if (ab->b_state != arc_anon) 3044 arc_change_state(arc_anon, ab, hash_lock); 3045 if (HDR_IO_IN_PROGRESS(ab)) { 3046 /* 3047 * This should only happen when we prefetch. 3048 */ 3049 ASSERT(ab->b_flags & ARC_PREFETCH); 3050 ASSERT3U(ab->b_datacnt, ==, 1); 3051 ab->b_flags |= ARC_FREED_IN_READ; 3052 if (HDR_IN_HASH_TABLE(ab)) 3053 buf_hash_remove(ab); 3054 ab->b_arc_access = 0; 3055 bzero(&ab->b_dva, sizeof (dva_t)); 3056 ab->b_birth = 0; 3057 ab->b_cksum0 = 0; 3058 ab->b_buf->b_efunc = NULL; 3059 ab->b_buf->b_private = NULL; 3060 mutex_exit(hash_lock); 3061 } else if (refcount_is_zero(&ab->b_refcnt)) { 3062 ab->b_flags |= ARC_FREE_IN_PROGRESS; 3063 mutex_exit(hash_lock); 3064 arc_hdr_destroy(ab); 3065 ARCSTAT_BUMP(arcstat_deleted); 3066 } else { 3067 /* 3068 * We still have an active reference on this 3069 * buffer. This can happen, e.g., from 3070 * dbuf_unoverride(). 3071 */ 3072 ASSERT(!HDR_IN_HASH_TABLE(ab)); 3073 ab->b_arc_access = 0; 3074 bzero(&ab->b_dva, sizeof (dva_t)); 3075 ab->b_birth = 0; 3076 ab->b_cksum0 = 0; 3077 ab->b_buf->b_efunc = NULL; 3078 ab->b_buf->b_private = NULL; 3079 mutex_exit(hash_lock); 3080 } 3081 } 3082 3083 zio = zio_free(pio, spa, txg, bp, done, private); 3084 3085 if (arc_flags & ARC_WAIT) 3086 return (zio_wait(zio)); 3087 3088 ASSERT(arc_flags & ARC_NOWAIT); 3089 zio_nowait(zio); 3090 3091 return (0); 3092 } 3093 3094 void 3095 arc_tempreserve_clear(uint64_t tempreserve) 3096 { 3097 atomic_add_64(&arc_tempreserve, -tempreserve); 3098 ASSERT((int64_t)arc_tempreserve >= 0); 3099 } 3100 3101 int 3102 arc_tempreserve_space(uint64_t tempreserve) 3103 { 3104 #ifdef ZFS_DEBUG 3105 /* 3106 * Once in a while, fail for no reason. Everything should cope. 3107 */ 3108 if (spa_get_random(10000) == 0) { 3109 dprintf("forcing random failure\n"); 3110 return (ERESTART); 3111 } 3112 #endif 3113 if (tempreserve > arc_c/4 && !arc_no_grow) 3114 arc_c = MIN(arc_c_max, tempreserve * 4); 3115 if (tempreserve > arc_c) 3116 return (ENOMEM); 3117 3118 /* 3119 * Throttle writes when the amount of dirty data in the cache 3120 * gets too large. We try to keep the cache less than half full 3121 * of dirty blocks so that our sync times don't grow too large. 3122 * Note: if two requests come in concurrently, we might let them 3123 * both succeed, when one of them should fail. Not a huge deal. 3124 * 3125 * XXX The limit should be adjusted dynamically to keep the time 3126 * to sync a dataset fixed (around 1-5 seconds?). 3127 */ 3128 3129 if (tempreserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 && 3130 arc_tempreserve + arc_anon->arcs_size > arc_c / 4) { 3131 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3132 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3133 arc_tempreserve>>10, 3134 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3135 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3136 tempreserve>>10, arc_c>>10); 3137 return (ERESTART); 3138 } 3139 atomic_add_64(&arc_tempreserve, tempreserve); 3140 return (0); 3141 } 3142 3143 void 3144 arc_init(void) 3145 { 3146 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3147 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3148 3149 /* Convert seconds to clock ticks */ 3150 arc_min_prefetch_lifespan = 1 * hz; 3151 3152 /* Start out with 1/8 of all memory */ 3153 arc_c = physmem * PAGESIZE / 8; 3154 3155 #ifdef _KERNEL 3156 /* 3157 * On architectures where the physical memory can be larger 3158 * than the addressable space (intel in 32-bit mode), we may 3159 * need to limit the cache to 1/8 of VM size. 3160 */ 3161 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3162 #endif 3163 3164 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3165 arc_c_min = MAX(arc_c / 4, 64<<20); 3166 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3167 if (arc_c * 8 >= 1<<30) 3168 arc_c_max = (arc_c * 8) - (1<<30); 3169 else 3170 arc_c_max = arc_c_min; 3171 arc_c_max = MAX(arc_c * 6, arc_c_max); 3172 3173 /* 3174 * Allow the tunables to override our calculations if they are 3175 * reasonable (ie. over 64MB) 3176 */ 3177 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3178 arc_c_max = zfs_arc_max; 3179 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3180 arc_c_min = zfs_arc_min; 3181 3182 arc_c = arc_c_max; 3183 arc_p = (arc_c >> 1); 3184 3185 /* limit meta-data to 1/4 of the arc capacity */ 3186 arc_meta_limit = arc_c_max / 4; 3187 3188 /* Allow the tunable to override if it is reasonable */ 3189 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3190 arc_meta_limit = zfs_arc_meta_limit; 3191 3192 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3193 arc_c_min = arc_meta_limit / 2; 3194 3195 /* if kmem_flags are set, lets try to use less memory */ 3196 if (kmem_debugging()) 3197 arc_c = arc_c / 2; 3198 if (arc_c < arc_c_min) 3199 arc_c = arc_c_min; 3200 3201 arc_anon = &ARC_anon; 3202 arc_mru = &ARC_mru; 3203 arc_mru_ghost = &ARC_mru_ghost; 3204 arc_mfu = &ARC_mfu; 3205 arc_mfu_ghost = &ARC_mfu_ghost; 3206 arc_l2c_only = &ARC_l2c_only; 3207 arc_size = 0; 3208 3209 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3210 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3211 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3212 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3213 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3214 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3215 3216 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3217 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3218 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3219 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3220 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3221 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3222 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3223 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3224 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3225 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3226 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3227 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3228 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3229 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3230 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3231 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3232 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3233 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3234 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3235 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3236 3237 buf_init(); 3238 3239 arc_thread_exit = 0; 3240 arc_eviction_list = NULL; 3241 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3242 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3243 3244 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3245 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3246 3247 if (arc_ksp != NULL) { 3248 arc_ksp->ks_data = &arc_stats; 3249 kstat_install(arc_ksp); 3250 } 3251 3252 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3253 TS_RUN, minclsyspri); 3254 3255 arc_dead = FALSE; 3256 } 3257 3258 void 3259 arc_fini(void) 3260 { 3261 mutex_enter(&arc_reclaim_thr_lock); 3262 arc_thread_exit = 1; 3263 while (arc_thread_exit != 0) 3264 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3265 mutex_exit(&arc_reclaim_thr_lock); 3266 3267 arc_flush(NULL); 3268 3269 arc_dead = TRUE; 3270 3271 if (arc_ksp != NULL) { 3272 kstat_delete(arc_ksp); 3273 arc_ksp = NULL; 3274 } 3275 3276 mutex_destroy(&arc_eviction_mtx); 3277 mutex_destroy(&arc_reclaim_thr_lock); 3278 cv_destroy(&arc_reclaim_thr_cv); 3279 3280 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3281 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3282 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3283 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3284 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3285 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3286 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3287 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3288 3289 mutex_destroy(&arc_anon->arcs_mtx); 3290 mutex_destroy(&arc_mru->arcs_mtx); 3291 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3292 mutex_destroy(&arc_mfu->arcs_mtx); 3293 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3294 3295 buf_fini(); 3296 } 3297 3298 /* 3299 * Level 2 ARC 3300 * 3301 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3302 * It uses dedicated storage devices to hold cached data, which are populated 3303 * using large infrequent writes. The main role of this cache is to boost 3304 * the performance of random read workloads. The intended L2ARC devices 3305 * include short-stroked disks, solid state disks, and other media with 3306 * substantially faster read latency than disk. 3307 * 3308 * +-----------------------+ 3309 * | ARC | 3310 * +-----------------------+ 3311 * | ^ ^ 3312 * | | | 3313 * l2arc_feed_thread() arc_read() 3314 * | | | 3315 * | l2arc read | 3316 * V | | 3317 * +---------------+ | 3318 * | L2ARC | | 3319 * +---------------+ | 3320 * | ^ | 3321 * l2arc_write() | | 3322 * | | | 3323 * V | | 3324 * +-------+ +-------+ 3325 * | vdev | | vdev | 3326 * | cache | | cache | 3327 * +-------+ +-------+ 3328 * +=========+ .-----. 3329 * : L2ARC : |-_____-| 3330 * : devices : | Disks | 3331 * +=========+ `-_____-' 3332 * 3333 * Read requests are satisfied from the following sources, in order: 3334 * 3335 * 1) ARC 3336 * 2) vdev cache of L2ARC devices 3337 * 3) L2ARC devices 3338 * 4) vdev cache of disks 3339 * 5) disks 3340 * 3341 * Some L2ARC device types exhibit extremely slow write performance. 3342 * To accommodate for this there are some significant differences between 3343 * the L2ARC and traditional cache design: 3344 * 3345 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3346 * the ARC behave as usual, freeing buffers and placing headers on ghost 3347 * lists. The ARC does not send buffers to the L2ARC during eviction as 3348 * this would add inflated write latencies for all ARC memory pressure. 3349 * 3350 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3351 * It does this by periodically scanning buffers from the eviction-end of 3352 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3353 * not already there. It scans until a headroom of buffers is satisfied, 3354 * which itself is a buffer for ARC eviction. The thread that does this is 3355 * l2arc_feed_thread(), illustrated below; example sizes are included to 3356 * provide a better sense of ratio than this diagram: 3357 * 3358 * head --> tail 3359 * +---------------------+----------+ 3360 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3361 * +---------------------+----------+ | o L2ARC eligible 3362 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3363 * +---------------------+----------+ | 3364 * 15.9 Gbytes ^ 32 Mbytes | 3365 * headroom | 3366 * l2arc_feed_thread() 3367 * | 3368 * l2arc write hand <--[oooo]--' 3369 * | 8 Mbyte 3370 * | write max 3371 * V 3372 * +==============================+ 3373 * L2ARC dev |####|#|###|###| |####| ... | 3374 * +==============================+ 3375 * 32 Gbytes 3376 * 3377 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3378 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3379 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3380 * safe to say that this is an uncommon case, since buffers at the end of 3381 * the ARC lists have moved there due to inactivity. 3382 * 3383 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3384 * then the L2ARC simply misses copying some buffers. This serves as a 3385 * pressure valve to prevent heavy read workloads from both stalling the ARC 3386 * with waits and clogging the L2ARC with writes. This also helps prevent 3387 * the potential for the L2ARC to churn if it attempts to cache content too 3388 * quickly, such as during backups of the entire pool. 3389 * 3390 * 5. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3391 * the vdev queue can aggregate them into larger and fewer writes. Each 3392 * device is written to in a rotor fashion, sweeping writes through 3393 * available space then repeating. 3394 * 3395 * 6. The L2ARC does not store dirty content. It never needs to flush 3396 * write buffers back to disk based storage. 3397 * 3398 * 7. If an ARC buffer is written (and dirtied) which also exists in the 3399 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3400 * 3401 * The performance of the L2ARC can be tweaked by a number of tunables, which 3402 * may be necessary for different workloads: 3403 * 3404 * l2arc_write_max max write bytes per interval 3405 * l2arc_noprefetch skip caching prefetched buffers 3406 * l2arc_headroom number of max device writes to precache 3407 * l2arc_feed_secs seconds between L2ARC writing 3408 * 3409 * Tunables may be removed or added as future performance improvements are 3410 * integrated, and also may become zpool properties. 3411 */ 3412 3413 static void 3414 l2arc_hdr_stat_add(void) 3415 { 3416 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3417 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3418 } 3419 3420 static void 3421 l2arc_hdr_stat_remove(void) 3422 { 3423 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3424 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3425 } 3426 3427 /* 3428 * Cycle through L2ARC devices. This is how L2ARC load balances. 3429 * This is called with l2arc_dev_mtx held, which also locks out spa removal. 3430 */ 3431 static l2arc_dev_t * 3432 l2arc_dev_get_next(void) 3433 { 3434 l2arc_dev_t *next; 3435 3436 if (l2arc_dev_last == NULL) { 3437 next = list_head(l2arc_dev_list); 3438 } else { 3439 next = list_next(l2arc_dev_list, l2arc_dev_last); 3440 if (next == NULL) 3441 next = list_head(l2arc_dev_list); 3442 } 3443 3444 l2arc_dev_last = next; 3445 3446 return (next); 3447 } 3448 3449 /* 3450 * A write to a cache device has completed. Update all headers to allow 3451 * reads from these buffers to begin. 3452 */ 3453 static void 3454 l2arc_write_done(zio_t *zio) 3455 { 3456 l2arc_write_callback_t *cb; 3457 l2arc_dev_t *dev; 3458 list_t *buflist; 3459 l2arc_data_free_t *df, *df_prev; 3460 arc_buf_hdr_t *head, *ab, *ab_prev; 3461 kmutex_t *hash_lock; 3462 3463 cb = zio->io_private; 3464 ASSERT(cb != NULL); 3465 dev = cb->l2wcb_dev; 3466 ASSERT(dev != NULL); 3467 head = cb->l2wcb_head; 3468 ASSERT(head != NULL); 3469 buflist = dev->l2ad_buflist; 3470 ASSERT(buflist != NULL); 3471 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3472 l2arc_write_callback_t *, cb); 3473 3474 if (zio->io_error != 0) 3475 ARCSTAT_BUMP(arcstat_l2_writes_error); 3476 3477 mutex_enter(&l2arc_buflist_mtx); 3478 3479 /* 3480 * All writes completed, or an error was hit. 3481 */ 3482 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3483 ab_prev = list_prev(buflist, ab); 3484 3485 hash_lock = HDR_LOCK(ab); 3486 if (!mutex_tryenter(hash_lock)) { 3487 /* 3488 * This buffer misses out. It may be in a stage 3489 * of eviction. Its ARC_L2_WRITING flag will be 3490 * left set, denying reads to this buffer. 3491 */ 3492 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3493 continue; 3494 } 3495 3496 if (zio->io_error != 0) { 3497 /* 3498 * Error - invalidate L2ARC entry. 3499 */ 3500 ab->b_l2hdr = NULL; 3501 } 3502 3503 /* 3504 * Allow ARC to begin reads to this L2ARC entry. 3505 */ 3506 ab->b_flags &= ~ARC_L2_WRITING; 3507 3508 mutex_exit(hash_lock); 3509 } 3510 3511 atomic_inc_64(&l2arc_writes_done); 3512 list_remove(buflist, head); 3513 kmem_cache_free(hdr_cache, head); 3514 mutex_exit(&l2arc_buflist_mtx); 3515 3516 /* 3517 * Free buffers that were tagged for destruction. 3518 */ 3519 mutex_enter(&l2arc_free_on_write_mtx); 3520 buflist = l2arc_free_on_write; 3521 for (df = list_tail(buflist); df; df = df_prev) { 3522 df_prev = list_prev(buflist, df); 3523 ASSERT(df->l2df_data != NULL); 3524 ASSERT(df->l2df_func != NULL); 3525 df->l2df_func(df->l2df_data, df->l2df_size); 3526 list_remove(buflist, df); 3527 kmem_free(df, sizeof (l2arc_data_free_t)); 3528 } 3529 mutex_exit(&l2arc_free_on_write_mtx); 3530 3531 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3532 } 3533 3534 /* 3535 * A read to a cache device completed. Validate buffer contents before 3536 * handing over to the regular ARC routines. 3537 */ 3538 static void 3539 l2arc_read_done(zio_t *zio) 3540 { 3541 l2arc_read_callback_t *cb; 3542 arc_buf_hdr_t *hdr; 3543 arc_buf_t *buf; 3544 zio_t *rzio; 3545 kmutex_t *hash_lock; 3546 int equal, err = 0; 3547 3548 cb = zio->io_private; 3549 ASSERT(cb != NULL); 3550 buf = cb->l2rcb_buf; 3551 ASSERT(buf != NULL); 3552 hdr = buf->b_hdr; 3553 ASSERT(hdr != NULL); 3554 3555 hash_lock = HDR_LOCK(hdr); 3556 mutex_enter(hash_lock); 3557 3558 /* 3559 * Check this survived the L2ARC journey. 3560 */ 3561 equal = arc_cksum_equal(buf); 3562 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 3563 mutex_exit(hash_lock); 3564 zio->io_private = buf; 3565 arc_read_done(zio); 3566 } else { 3567 mutex_exit(hash_lock); 3568 /* 3569 * Buffer didn't survive caching. Increment stats and 3570 * reissue to the original storage device. 3571 */ 3572 if (zio->io_error != 0) 3573 ARCSTAT_BUMP(arcstat_l2_io_error); 3574 if (!equal) 3575 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 3576 3577 zio->io_flags &= ~ZIO_FLAG_DONT_CACHE; 3578 rzio = zio_read(NULL, cb->l2rcb_spa, &cb->l2rcb_bp, 3579 buf->b_data, zio->io_size, arc_read_done, buf, 3580 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb); 3581 3582 /* 3583 * Since this is a seperate thread, we can wait on this 3584 * I/O whether there is an io_waiter or not. 3585 */ 3586 err = zio_wait(rzio); 3587 3588 /* 3589 * Let the resent I/O call arc_read_done() instead. 3590 * io_error is set to the reissued I/O error status. 3591 */ 3592 zio->io_done = NULL; 3593 zio->io_waiter = NULL; 3594 zio->io_error = err; 3595 } 3596 3597 kmem_free(cb, sizeof (l2arc_read_callback_t)); 3598 } 3599 3600 /* 3601 * This is the list priority from which the L2ARC will search for pages to 3602 * cache. This is used within loops (0..3) to cycle through lists in the 3603 * desired order. This order can have a significant effect on cache 3604 * performance. 3605 * 3606 * Currently the metadata lists are hit first, MFU then MRU, followed by 3607 * the data lists. This function returns a locked list, and also returns 3608 * the lock pointer. 3609 */ 3610 static list_t * 3611 l2arc_list_locked(int list_num, kmutex_t **lock) 3612 { 3613 list_t *list; 3614 3615 ASSERT(list_num >= 0 && list_num <= 3); 3616 3617 switch (list_num) { 3618 case 0: 3619 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 3620 *lock = &arc_mfu->arcs_mtx; 3621 break; 3622 case 1: 3623 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 3624 *lock = &arc_mru->arcs_mtx; 3625 break; 3626 case 2: 3627 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 3628 *lock = &arc_mfu->arcs_mtx; 3629 break; 3630 case 3: 3631 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 3632 *lock = &arc_mru->arcs_mtx; 3633 break; 3634 } 3635 3636 ASSERT(!(MUTEX_HELD(*lock))); 3637 mutex_enter(*lock); 3638 return (list); 3639 } 3640 3641 /* 3642 * Evict buffers from the device write hand to the distance specified in 3643 * bytes. This distance may span populated buffers, it may span nothing. 3644 * This is clearing a region on the L2ARC device ready for writing. 3645 * If the 'all' boolean is set, every buffer is evicted. 3646 */ 3647 static void 3648 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 3649 { 3650 list_t *buflist; 3651 l2arc_buf_hdr_t *abl2; 3652 arc_buf_hdr_t *ab, *ab_prev; 3653 kmutex_t *hash_lock; 3654 uint64_t taddr; 3655 3656 ASSERT(MUTEX_HELD(&l2arc_dev_mtx)); 3657 3658 buflist = dev->l2ad_buflist; 3659 3660 if (buflist == NULL) 3661 return; 3662 3663 if (!all && dev->l2ad_first) { 3664 /* 3665 * This is the first sweep through the device. There is 3666 * nothing to evict. 3667 */ 3668 return; 3669 } 3670 3671 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * dev->l2ad_write))) { 3672 /* 3673 * When nearing the end of the device, evict to the end 3674 * before the device write hand jumps to the start. 3675 */ 3676 taddr = dev->l2ad_end; 3677 } else { 3678 taddr = dev->l2ad_hand + distance; 3679 } 3680 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 3681 uint64_t, taddr, boolean_t, all); 3682 3683 top: 3684 mutex_enter(&l2arc_buflist_mtx); 3685 for (ab = list_tail(buflist); ab; ab = ab_prev) { 3686 ab_prev = list_prev(buflist, ab); 3687 3688 hash_lock = HDR_LOCK(ab); 3689 if (!mutex_tryenter(hash_lock)) { 3690 /* 3691 * Missed the hash lock. Retry. 3692 */ 3693 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 3694 mutex_exit(&l2arc_buflist_mtx); 3695 mutex_enter(hash_lock); 3696 mutex_exit(hash_lock); 3697 goto top; 3698 } 3699 3700 if (HDR_L2_WRITE_HEAD(ab)) { 3701 /* 3702 * We hit a write head node. Leave it for 3703 * l2arc_write_done(). 3704 */ 3705 list_remove(buflist, ab); 3706 mutex_exit(hash_lock); 3707 continue; 3708 } 3709 3710 if (!all && ab->b_l2hdr != NULL && 3711 (ab->b_l2hdr->b_daddr > taddr || 3712 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 3713 /* 3714 * We've evicted to the target address, 3715 * or the end of the device. 3716 */ 3717 mutex_exit(hash_lock); 3718 break; 3719 } 3720 3721 if (HDR_FREE_IN_PROGRESS(ab)) { 3722 /* 3723 * Already on the path to destruction. 3724 */ 3725 mutex_exit(hash_lock); 3726 continue; 3727 } 3728 3729 if (ab->b_state == arc_l2c_only) { 3730 ASSERT(!HDR_L2_READING(ab)); 3731 /* 3732 * This doesn't exist in the ARC. Destroy. 3733 * arc_hdr_destroy() will call list_remove() 3734 * and decrement arcstat_l2_size. 3735 */ 3736 arc_change_state(arc_anon, ab, hash_lock); 3737 arc_hdr_destroy(ab); 3738 } else { 3739 /* 3740 * Tell ARC this no longer exists in L2ARC. 3741 */ 3742 if (ab->b_l2hdr != NULL) { 3743 abl2 = ab->b_l2hdr; 3744 ab->b_l2hdr = NULL; 3745 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3746 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3747 } 3748 list_remove(buflist, ab); 3749 3750 /* 3751 * This may have been leftover after a 3752 * failed write. 3753 */ 3754 ab->b_flags &= ~ARC_L2_WRITING; 3755 3756 /* 3757 * Invalidate issued or about to be issued 3758 * reads, since we may be about to write 3759 * over this location. 3760 */ 3761 if (HDR_L2_READING(ab)) { 3762 ARCSTAT_BUMP(arcstat_l2_evict_reading); 3763 ab->b_flags |= ARC_L2_EVICTED; 3764 } 3765 } 3766 mutex_exit(hash_lock); 3767 } 3768 mutex_exit(&l2arc_buflist_mtx); 3769 3770 spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict)); 3771 dev->l2ad_evict = taddr; 3772 } 3773 3774 /* 3775 * Find and write ARC buffers to the L2ARC device. 3776 * 3777 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 3778 * for reading until they have completed writing. 3779 */ 3780 static void 3781 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev) 3782 { 3783 arc_buf_hdr_t *ab, *ab_prev, *head; 3784 l2arc_buf_hdr_t *hdrl2; 3785 list_t *list; 3786 uint64_t passed_sz, write_sz, buf_sz; 3787 uint64_t target_sz = dev->l2ad_write; 3788 uint64_t headroom = dev->l2ad_write * l2arc_headroom; 3789 void *buf_data; 3790 kmutex_t *hash_lock, *list_lock; 3791 boolean_t have_lock, full; 3792 l2arc_write_callback_t *cb; 3793 zio_t *pio, *wzio; 3794 3795 ASSERT(MUTEX_HELD(&l2arc_dev_mtx)); 3796 ASSERT(dev->l2ad_vdev != NULL); 3797 3798 pio = NULL; 3799 write_sz = 0; 3800 full = B_FALSE; 3801 head = kmem_cache_alloc(hdr_cache, KM_SLEEP); 3802 head->b_flags |= ARC_L2_WRITE_HEAD; 3803 3804 /* 3805 * Copy buffers for L2ARC writing. 3806 */ 3807 mutex_enter(&l2arc_buflist_mtx); 3808 for (int try = 0; try <= 3; try++) { 3809 list = l2arc_list_locked(try, &list_lock); 3810 passed_sz = 0; 3811 3812 for (ab = list_tail(list); ab; ab = ab_prev) { 3813 ab_prev = list_prev(list, ab); 3814 3815 hash_lock = HDR_LOCK(ab); 3816 have_lock = MUTEX_HELD(hash_lock); 3817 if (!have_lock && !mutex_tryenter(hash_lock)) { 3818 /* 3819 * Skip this buffer rather than waiting. 3820 */ 3821 continue; 3822 } 3823 3824 passed_sz += ab->b_size; 3825 if (passed_sz > headroom) { 3826 /* 3827 * Searched too far. 3828 */ 3829 mutex_exit(hash_lock); 3830 break; 3831 } 3832 3833 if (ab->b_spa != spa) { 3834 mutex_exit(hash_lock); 3835 continue; 3836 } 3837 3838 if (ab->b_l2hdr != NULL) { 3839 /* 3840 * Already in L2ARC. 3841 */ 3842 mutex_exit(hash_lock); 3843 continue; 3844 } 3845 3846 if (HDR_IO_IN_PROGRESS(ab) || HDR_DONT_L2CACHE(ab)) { 3847 mutex_exit(hash_lock); 3848 continue; 3849 } 3850 3851 if ((write_sz + ab->b_size) > target_sz) { 3852 full = B_TRUE; 3853 mutex_exit(hash_lock); 3854 break; 3855 } 3856 3857 if (ab->b_buf == NULL) { 3858 DTRACE_PROBE1(l2arc__buf__null, void *, ab); 3859 mutex_exit(hash_lock); 3860 continue; 3861 } 3862 3863 if (pio == NULL) { 3864 /* 3865 * Insert a dummy header on the buflist so 3866 * l2arc_write_done() can find where the 3867 * write buffers begin without searching. 3868 */ 3869 list_insert_head(dev->l2ad_buflist, head); 3870 3871 cb = kmem_alloc( 3872 sizeof (l2arc_write_callback_t), KM_SLEEP); 3873 cb->l2wcb_dev = dev; 3874 cb->l2wcb_head = head; 3875 pio = zio_root(spa, l2arc_write_done, cb, 3876 ZIO_FLAG_CANFAIL); 3877 } 3878 3879 /* 3880 * Create and add a new L2ARC header. 3881 */ 3882 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 3883 hdrl2->b_dev = dev; 3884 hdrl2->b_daddr = dev->l2ad_hand; 3885 3886 ab->b_flags |= ARC_L2_WRITING; 3887 ab->b_l2hdr = hdrl2; 3888 list_insert_head(dev->l2ad_buflist, ab); 3889 buf_data = ab->b_buf->b_data; 3890 buf_sz = ab->b_size; 3891 3892 /* 3893 * Compute and store the buffer cksum before 3894 * writing. On debug the cksum is verified first. 3895 */ 3896 arc_cksum_verify(ab->b_buf); 3897 arc_cksum_compute(ab->b_buf, B_TRUE); 3898 3899 mutex_exit(hash_lock); 3900 3901 wzio = zio_write_phys(pio, dev->l2ad_vdev, 3902 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 3903 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 3904 ZIO_FLAG_CANFAIL, B_FALSE); 3905 3906 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 3907 zio_t *, wzio); 3908 (void) zio_nowait(wzio); 3909 3910 write_sz += buf_sz; 3911 dev->l2ad_hand += buf_sz; 3912 } 3913 3914 mutex_exit(list_lock); 3915 3916 if (full == B_TRUE) 3917 break; 3918 } 3919 mutex_exit(&l2arc_buflist_mtx); 3920 3921 if (pio == NULL) { 3922 ASSERT3U(write_sz, ==, 0); 3923 kmem_cache_free(hdr_cache, head); 3924 return; 3925 } 3926 3927 ASSERT3U(write_sz, <=, target_sz); 3928 ARCSTAT_BUMP(arcstat_l2_writes_sent); 3929 ARCSTAT_INCR(arcstat_l2_size, write_sz); 3930 spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz); 3931 3932 /* 3933 * Bump device hand to the device start if it is approaching the end. 3934 * l2arc_evict() will already have evicted ahead for this case. 3935 */ 3936 if (dev->l2ad_hand >= (dev->l2ad_end - dev->l2ad_write)) { 3937 spa_l2cache_space_update(dev->l2ad_vdev, 0, 3938 dev->l2ad_end - dev->l2ad_hand); 3939 dev->l2ad_hand = dev->l2ad_start; 3940 dev->l2ad_evict = dev->l2ad_start; 3941 dev->l2ad_first = B_FALSE; 3942 } 3943 3944 (void) zio_wait(pio); 3945 } 3946 3947 /* 3948 * This thread feeds the L2ARC at regular intervals. This is the beating 3949 * heart of the L2ARC. 3950 */ 3951 static void 3952 l2arc_feed_thread(void) 3953 { 3954 callb_cpr_t cpr; 3955 l2arc_dev_t *dev; 3956 spa_t *spa; 3957 int interval; 3958 boolean_t startup = B_TRUE; 3959 3960 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 3961 3962 mutex_enter(&l2arc_feed_thr_lock); 3963 3964 while (l2arc_thread_exit == 0) { 3965 /* 3966 * Initially pause for L2ARC_FEED_DELAY seconds as a grace 3967 * interval during boot, followed by l2arc_feed_secs seconds 3968 * thereafter. 3969 */ 3970 CALLB_CPR_SAFE_BEGIN(&cpr); 3971 if (startup) { 3972 interval = L2ARC_FEED_DELAY; 3973 startup = B_FALSE; 3974 } else { 3975 interval = l2arc_feed_secs; 3976 } 3977 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 3978 lbolt + (hz * interval)); 3979 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 3980 3981 /* 3982 * Do nothing until L2ARC devices exist. 3983 */ 3984 mutex_enter(&l2arc_dev_mtx); 3985 if (l2arc_ndev == 0) { 3986 mutex_exit(&l2arc_dev_mtx); 3987 continue; 3988 } 3989 3990 /* 3991 * Avoid contributing to memory pressure. 3992 */ 3993 if (arc_reclaim_needed()) { 3994 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 3995 mutex_exit(&l2arc_dev_mtx); 3996 continue; 3997 } 3998 3999 /* 4000 * This selects the next l2arc device to write to, and in 4001 * doing so the next spa to feed from: dev->l2ad_spa. 4002 */ 4003 if ((dev = l2arc_dev_get_next()) == NULL) { 4004 mutex_exit(&l2arc_dev_mtx); 4005 continue; 4006 } 4007 spa = dev->l2ad_spa; 4008 ASSERT(spa != NULL); 4009 ARCSTAT_BUMP(arcstat_l2_feeds); 4010 4011 /* 4012 * Evict L2ARC buffers that will be overwritten. 4013 */ 4014 l2arc_evict(dev, dev->l2ad_write, B_FALSE); 4015 4016 /* 4017 * Write ARC buffers. 4018 */ 4019 l2arc_write_buffers(spa, dev); 4020 mutex_exit(&l2arc_dev_mtx); 4021 } 4022 4023 l2arc_thread_exit = 0; 4024 cv_broadcast(&l2arc_feed_thr_cv); 4025 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4026 thread_exit(); 4027 } 4028 4029 /* 4030 * Add a vdev for use by the L2ARC. By this point the spa has already 4031 * validated the vdev and opened it. 4032 */ 4033 void 4034 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end) 4035 { 4036 l2arc_dev_t *adddev; 4037 4038 /* 4039 * Create a new l2arc device entry. 4040 */ 4041 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4042 adddev->l2ad_spa = spa; 4043 adddev->l2ad_vdev = vd; 4044 adddev->l2ad_write = l2arc_write_max; 4045 adddev->l2ad_start = start; 4046 adddev->l2ad_end = end; 4047 adddev->l2ad_hand = adddev->l2ad_start; 4048 adddev->l2ad_evict = adddev->l2ad_start; 4049 adddev->l2ad_first = B_TRUE; 4050 ASSERT3U(adddev->l2ad_write, >, 0); 4051 4052 /* 4053 * This is a list of all ARC buffers that are still valid on the 4054 * device. 4055 */ 4056 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4057 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4058 offsetof(arc_buf_hdr_t, b_l2node)); 4059 4060 spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0); 4061 4062 /* 4063 * Add device to global list 4064 */ 4065 mutex_enter(&l2arc_dev_mtx); 4066 list_insert_head(l2arc_dev_list, adddev); 4067 atomic_inc_64(&l2arc_ndev); 4068 mutex_exit(&l2arc_dev_mtx); 4069 } 4070 4071 /* 4072 * Remove a vdev from the L2ARC. 4073 */ 4074 void 4075 l2arc_remove_vdev(vdev_t *vd) 4076 { 4077 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4078 4079 /* 4080 * We can only grab the spa config lock when cache device writes 4081 * complete. 4082 */ 4083 ASSERT3U(l2arc_writes_sent, ==, l2arc_writes_done); 4084 4085 /* 4086 * Find the device by vdev 4087 */ 4088 mutex_enter(&l2arc_dev_mtx); 4089 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4090 nextdev = list_next(l2arc_dev_list, dev); 4091 if (vd == dev->l2ad_vdev) { 4092 remdev = dev; 4093 break; 4094 } 4095 } 4096 ASSERT(remdev != NULL); 4097 4098 /* 4099 * Remove device from global list 4100 */ 4101 list_remove(l2arc_dev_list, remdev); 4102 l2arc_dev_last = NULL; /* may have been invalidated */ 4103 4104 /* 4105 * Clear all buflists and ARC references. L2ARC device flush. 4106 */ 4107 l2arc_evict(remdev, 0, B_TRUE); 4108 list_destroy(remdev->l2ad_buflist); 4109 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4110 kmem_free(remdev, sizeof (l2arc_dev_t)); 4111 4112 atomic_dec_64(&l2arc_ndev); 4113 mutex_exit(&l2arc_dev_mtx); 4114 } 4115 4116 void 4117 l2arc_init() 4118 { 4119 l2arc_thread_exit = 0; 4120 l2arc_ndev = 0; 4121 l2arc_writes_sent = 0; 4122 l2arc_writes_done = 0; 4123 4124 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4125 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4126 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4127 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4128 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4129 4130 l2arc_dev_list = &L2ARC_dev_list; 4131 l2arc_free_on_write = &L2ARC_free_on_write; 4132 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4133 offsetof(l2arc_dev_t, l2ad_node)); 4134 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4135 offsetof(l2arc_data_free_t, l2df_list_node)); 4136 4137 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4138 TS_RUN, minclsyspri); 4139 } 4140 4141 void 4142 l2arc_fini() 4143 { 4144 mutex_enter(&l2arc_feed_thr_lock); 4145 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4146 l2arc_thread_exit = 1; 4147 while (l2arc_thread_exit != 0) 4148 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4149 mutex_exit(&l2arc_feed_thr_lock); 4150 4151 mutex_destroy(&l2arc_feed_thr_lock); 4152 cv_destroy(&l2arc_feed_thr_cv); 4153 mutex_destroy(&l2arc_dev_mtx); 4154 mutex_destroy(&l2arc_buflist_mtx); 4155 mutex_destroy(&l2arc_free_on_write_mtx); 4156 4157 list_destroy(l2arc_dev_list); 4158 list_destroy(l2arc_free_on_write); 4159 } 4160