1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * DVA-based Adjustable Relpacement Cache 30 * 31 * While much of the theory of operation used here is 32 * based on the self-tuning, low overhead replacement cache 33 * presented by Megiddo and Modha at FAST 2003, there are some 34 * significant differences: 35 * 36 * 1. The Megiddo and Modha model assumes any page is evictable. 37 * Pages in its cache cannot be "locked" into memory. This makes 38 * the eviction algorithm simple: evict the last page in the list. 39 * This also make the performance characteristics easy to reason 40 * about. Our cache is not so simple. At any given moment, some 41 * subset of the blocks in the cache are un-evictable because we 42 * have handed out a reference to them. Blocks are only evictable 43 * when there are no external references active. This makes 44 * eviction far more problematic: we choose to evict the evictable 45 * blocks that are the "lowest" in the list. 46 * 47 * There are times when it is not possible to evict the requested 48 * space. In these circumstances we are unable to adjust the cache 49 * size. To prevent the cache growing unbounded at these times we 50 * implement a "cache throttle" that slowes the flow of new data 51 * into the cache until we can make space avaiable. 52 * 53 * 2. The Megiddo and Modha model assumes a fixed cache size. 54 * Pages are evicted when the cache is full and there is a cache 55 * miss. Our model has a variable sized cache. It grows with 56 * high use, but also tries to react to memory preasure from the 57 * operating system: decreasing its size when system memory is 58 * tight. 59 * 60 * 3. The Megiddo and Modha model assumes a fixed page size. All 61 * elements of the cache are therefor exactly the same size. So 62 * when adjusting the cache size following a cache miss, its simply 63 * a matter of choosing a single page to evict. In our model, we 64 * have variable sized cache blocks (rangeing from 512 bytes to 65 * 128K bytes). We therefor choose a set of blocks to evict to make 66 * space for a cache miss that approximates as closely as possible 67 * the space used by the new block. 68 * 69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 70 * by N. Megiddo & D. Modha, FAST 2003 71 */ 72 73 /* 74 * The locking model: 75 * 76 * A new reference to a cache buffer can be obtained in two 77 * ways: 1) via a hash table lookup using the DVA as a key, 78 * or 2) via one of the ARC lists. The arc_read() inerface 79 * uses method 1, while the internal arc algorithms for 80 * adjusting the cache use method 2. We therefor provide two 81 * types of locks: 1) the hash table lock array, and 2) the 82 * arc list locks. 83 * 84 * Buffers do not have their own mutexs, rather they rely on the 85 * hash table mutexs for the bulk of their protection (i.e. most 86 * fields in the arc_buf_hdr_t are protected by these mutexs). 87 * 88 * buf_hash_find() returns the appropriate mutex (held) when it 89 * locates the requested buffer in the hash table. It returns 90 * NULL for the mutex if the buffer was not in the table. 91 * 92 * buf_hash_remove() expects the appropriate hash mutex to be 93 * already held before it is invoked. 94 * 95 * Each arc state also has a mutex which is used to protect the 96 * buffer list associated with the state. When attempting to 97 * obtain a hash table lock while holding an arc list lock you 98 * must use: mutex_tryenter() to avoid deadlock. Also note that 99 * the "top" state mutex must be held before the "bot" state mutex. 100 * 101 * Arc buffers may have an associated eviction callback function. 102 * This function will be invoked prior to removing the buffer (e.g. 103 * in arc_do_user_evicts()). Note however that the data associated 104 * with the buffer may be evicted prior to the callback. The callback 105 * must be made with *no locks held* (to prevent deadlock). Additionally, 106 * the users of callbacks must ensure that their private data is 107 * protected from simultaneous callbacks from arc_buf_evict() 108 * and arc_do_user_evicts(). 109 * 110 * Note that the majority of the performance stats are manipulated 111 * with atomic operations. 112 */ 113 114 #include <sys/spa.h> 115 #include <sys/zio.h> 116 #include <sys/zfs_context.h> 117 #include <sys/arc.h> 118 #include <sys/refcount.h> 119 #ifdef _KERNEL 120 #include <sys/vmsystm.h> 121 #include <vm/anon.h> 122 #include <sys/fs/swapnode.h> 123 #include <sys/dnlc.h> 124 #endif 125 #include <sys/callb.h> 126 127 static kmutex_t arc_reclaim_thr_lock; 128 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 129 static uint8_t arc_thread_exit; 130 131 #define ARC_REDUCE_DNLC_PERCENT 3 132 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 133 134 typedef enum arc_reclaim_strategy { 135 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 136 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 137 } arc_reclaim_strategy_t; 138 139 /* number of seconds before growing cache again */ 140 static int arc_grow_retry = 60; 141 142 static kmutex_t arc_reclaim_lock; 143 static int arc_dead; 144 145 /* 146 * Note that buffers can be on one of 5 states: 147 * ARC_anon - anonymous (discussed below) 148 * ARC_mru - recently used, currently cached 149 * ARC_mru_ghost - recentely used, no longer in cache 150 * ARC_mfu - frequently used, currently cached 151 * ARC_mfu_ghost - frequently used, no longer in cache 152 * When there are no active references to the buffer, they 153 * are linked onto one of the lists in arc. These are the 154 * only buffers that can be evicted or deleted. 155 * 156 * Anonymous buffers are buffers that are not associated with 157 * a DVA. These are buffers that hold dirty block copies 158 * before they are written to stable storage. By definition, 159 * they are "ref'd" and are considered part of arc_mru 160 * that cannot be freed. Generally, they will aquire a DVA 161 * as they are written and migrate onto the arc_mru list. 162 */ 163 164 typedef struct arc_state { 165 list_t list; /* linked list of evictable buffer in state */ 166 uint64_t lsize; /* total size of buffers in the linked list */ 167 uint64_t size; /* total size of all buffers in this state */ 168 uint64_t hits; 169 kmutex_t mtx; 170 } arc_state_t; 171 172 /* The 5 states: */ 173 static arc_state_t ARC_anon; 174 static arc_state_t ARC_mru; 175 static arc_state_t ARC_mru_ghost; 176 static arc_state_t ARC_mfu; 177 static arc_state_t ARC_mfu_ghost; 178 179 static struct arc { 180 arc_state_t *anon; 181 arc_state_t *mru; 182 arc_state_t *mru_ghost; 183 arc_state_t *mfu; 184 arc_state_t *mfu_ghost; 185 uint64_t size; /* Actual total arc size */ 186 uint64_t p; /* Target size (in bytes) of mru */ 187 uint64_t c; /* Target size of cache (in bytes) */ 188 uint64_t c_min; /* Minimum target cache size */ 189 uint64_t c_max; /* Maximum target cache size */ 190 191 /* performance stats */ 192 uint64_t hits; 193 uint64_t misses; 194 uint64_t deleted; 195 uint64_t skipped; 196 uint64_t hash_elements; 197 uint64_t hash_elements_max; 198 uint64_t hash_collisions; 199 uint64_t hash_chains; 200 uint32_t hash_chain_max; 201 202 int no_grow; /* Don't try to grow cache size */ 203 } arc; 204 205 static uint64_t arc_tempreserve; 206 207 typedef struct arc_callback arc_callback_t; 208 209 struct arc_callback { 210 arc_done_func_t *acb_done; 211 void *acb_private; 212 arc_byteswap_func_t *acb_byteswap; 213 arc_buf_t *acb_buf; 214 zio_t *acb_zio_dummy; 215 arc_callback_t *acb_next; 216 }; 217 218 struct arc_buf_hdr { 219 /* immutable */ 220 uint64_t b_size; 221 spa_t *b_spa; 222 223 /* protected by hash lock */ 224 dva_t b_dva; 225 uint64_t b_birth; 226 uint64_t b_cksum0; 227 228 arc_buf_hdr_t *b_hash_next; 229 arc_buf_t *b_buf; 230 uint32_t b_flags; 231 uint32_t b_datacnt; 232 233 kcondvar_t b_cv; 234 arc_callback_t *b_acb; 235 236 /* protected by arc state mutex */ 237 arc_state_t *b_state; 238 list_node_t b_arc_node; 239 240 /* updated atomically */ 241 clock_t b_arc_access; 242 243 /* self protecting */ 244 refcount_t b_refcnt; 245 }; 246 247 static arc_buf_t *arc_eviction_list; 248 static kmutex_t arc_eviction_mtx; 249 static void arc_access_and_exit(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 250 251 #define GHOST_STATE(state) \ 252 ((state) == arc.mru_ghost || (state) == arc.mfu_ghost) 253 254 /* 255 * Private ARC flags. These flags are private ARC only flags that will show up 256 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 257 * be passed in as arc_flags in things like arc_read. However, these flags 258 * should never be passed and should only be set by ARC code. When adding new 259 * public flags, make sure not to smash the private ones. 260 */ 261 262 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 263 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 264 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 265 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 266 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 267 268 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 269 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 270 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 271 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 272 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 273 274 /* 275 * Hash table routines 276 */ 277 278 #define HT_LOCK_PAD 64 279 280 struct ht_lock { 281 kmutex_t ht_lock; 282 #ifdef _KERNEL 283 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 284 #endif 285 }; 286 287 #define BUF_LOCKS 256 288 typedef struct buf_hash_table { 289 uint64_t ht_mask; 290 arc_buf_hdr_t **ht_table; 291 struct ht_lock ht_locks[BUF_LOCKS]; 292 } buf_hash_table_t; 293 294 static buf_hash_table_t buf_hash_table; 295 296 #define BUF_HASH_INDEX(spa, dva, birth) \ 297 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 298 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 299 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 300 #define HDR_LOCK(buf) \ 301 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 302 303 uint64_t zfs_crc64_table[256]; 304 305 static uint64_t 306 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth) 307 { 308 uintptr_t spav = (uintptr_t)spa; 309 uint8_t *vdva = (uint8_t *)dva; 310 uint64_t crc = -1ULL; 311 int i; 312 313 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 314 315 for (i = 0; i < sizeof (dva_t); i++) 316 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 317 318 crc ^= (spav>>8) ^ birth; 319 320 return (crc); 321 } 322 323 #define BUF_EMPTY(buf) \ 324 ((buf)->b_dva.dva_word[0] == 0 && \ 325 (buf)->b_dva.dva_word[1] == 0 && \ 326 (buf)->b_birth == 0) 327 328 #define BUF_EQUAL(spa, dva, birth, buf) \ 329 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 330 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 331 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 332 333 static arc_buf_hdr_t * 334 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp) 335 { 336 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 337 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 338 arc_buf_hdr_t *buf; 339 340 mutex_enter(hash_lock); 341 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 342 buf = buf->b_hash_next) { 343 if (BUF_EQUAL(spa, dva, birth, buf)) { 344 *lockp = hash_lock; 345 return (buf); 346 } 347 } 348 mutex_exit(hash_lock); 349 *lockp = NULL; 350 return (NULL); 351 } 352 353 /* 354 * Insert an entry into the hash table. If there is already an element 355 * equal to elem in the hash table, then the already existing element 356 * will be returned and the new element will not be inserted. 357 * Otherwise returns NULL. 358 */ 359 static arc_buf_hdr_t *fbufs[4]; /* XXX to find 6341326 */ 360 static kthread_t *fbufs_lastthread; 361 static arc_buf_hdr_t * 362 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 363 { 364 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 365 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 366 arc_buf_hdr_t *fbuf; 367 uint32_t max, i; 368 369 ASSERT(!HDR_IN_HASH_TABLE(buf)); 370 fbufs_lastthread = curthread; 371 *lockp = hash_lock; 372 mutex_enter(hash_lock); 373 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 374 fbuf = fbuf->b_hash_next, i++) { 375 if (i < sizeof (fbufs) / sizeof (fbufs[0])) 376 fbufs[i] = fbuf; 377 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 378 return (fbuf); 379 } 380 381 buf->b_hash_next = buf_hash_table.ht_table[idx]; 382 buf_hash_table.ht_table[idx] = buf; 383 buf->b_flags |= ARC_IN_HASH_TABLE; 384 385 /* collect some hash table performance data */ 386 if (i > 0) { 387 atomic_add_64(&arc.hash_collisions, 1); 388 if (i == 1) 389 atomic_add_64(&arc.hash_chains, 1); 390 } 391 while (i > (max = arc.hash_chain_max) && 392 max != atomic_cas_32(&arc.hash_chain_max, max, i)) { 393 continue; 394 } 395 atomic_add_64(&arc.hash_elements, 1); 396 if (arc.hash_elements > arc.hash_elements_max) 397 atomic_add_64(&arc.hash_elements_max, 1); 398 399 return (NULL); 400 } 401 402 static void 403 buf_hash_remove(arc_buf_hdr_t *buf) 404 { 405 arc_buf_hdr_t *fbuf, **bufp; 406 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 407 408 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 409 ASSERT(HDR_IN_HASH_TABLE(buf)); 410 411 bufp = &buf_hash_table.ht_table[idx]; 412 while ((fbuf = *bufp) != buf) { 413 ASSERT(fbuf != NULL); 414 bufp = &fbuf->b_hash_next; 415 } 416 *bufp = buf->b_hash_next; 417 buf->b_hash_next = NULL; 418 buf->b_flags &= ~ARC_IN_HASH_TABLE; 419 420 /* collect some hash table performance data */ 421 atomic_add_64(&arc.hash_elements, -1); 422 if (buf_hash_table.ht_table[idx] && 423 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 424 atomic_add_64(&arc.hash_chains, -1); 425 } 426 427 /* 428 * Global data structures and functions for the buf kmem cache. 429 */ 430 static kmem_cache_t *hdr_cache; 431 static kmem_cache_t *buf_cache; 432 433 static void 434 buf_fini(void) 435 { 436 int i; 437 438 kmem_free(buf_hash_table.ht_table, 439 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 440 for (i = 0; i < BUF_LOCKS; i++) 441 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 442 kmem_cache_destroy(hdr_cache); 443 kmem_cache_destroy(buf_cache); 444 } 445 446 /* 447 * Constructor callback - called when the cache is empty 448 * and a new buf is requested. 449 */ 450 /* ARGSUSED */ 451 static int 452 hdr_cons(void *vbuf, void *unused, int kmflag) 453 { 454 arc_buf_hdr_t *buf = vbuf; 455 456 bzero(buf, sizeof (arc_buf_hdr_t)); 457 refcount_create(&buf->b_refcnt); 458 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 459 return (0); 460 } 461 462 /* 463 * Destructor callback - called when a cached buf is 464 * no longer required. 465 */ 466 /* ARGSUSED */ 467 static void 468 hdr_dest(void *vbuf, void *unused) 469 { 470 arc_buf_hdr_t *buf = vbuf; 471 472 refcount_destroy(&buf->b_refcnt); 473 cv_destroy(&buf->b_cv); 474 } 475 476 static int arc_reclaim_needed(void); 477 void arc_kmem_reclaim(void); 478 479 /* 480 * Reclaim callback -- invoked when memory is low. 481 */ 482 /* ARGSUSED */ 483 static void 484 hdr_recl(void *unused) 485 { 486 dprintf("hdr_recl called\n"); 487 if (arc_reclaim_needed()) 488 arc_kmem_reclaim(); 489 } 490 491 static void 492 buf_init(void) 493 { 494 uint64_t *ct; 495 uint64_t hsize = 1ULL << 12; 496 int i, j; 497 498 /* 499 * The hash table is big enough to fill all of physical memory 500 * with an average 64K block size. The table will take up 501 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 502 */ 503 while (hsize * 65536 < physmem * PAGESIZE) 504 hsize <<= 1; 505 retry: 506 buf_hash_table.ht_mask = hsize - 1; 507 buf_hash_table.ht_table = 508 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 509 if (buf_hash_table.ht_table == NULL) { 510 ASSERT(hsize > (1ULL << 8)); 511 hsize >>= 1; 512 goto retry; 513 } 514 515 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 516 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 517 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 518 0, NULL, NULL, NULL, NULL, NULL, 0); 519 520 for (i = 0; i < 256; i++) 521 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 522 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 523 524 for (i = 0; i < BUF_LOCKS; i++) { 525 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 526 NULL, MUTEX_DEFAULT, NULL); 527 } 528 } 529 530 #define ARC_MINTIME (hz>>4) /* 62 ms */ 531 532 static void 533 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 534 { 535 ASSERT(MUTEX_HELD(hash_lock)); 536 537 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 538 (ab->b_state != arc.anon)) { 539 int delta = ab->b_size * ab->b_datacnt; 540 541 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 542 mutex_enter(&ab->b_state->mtx); 543 ASSERT(refcount_count(&ab->b_refcnt) > 0); 544 ASSERT(list_link_active(&ab->b_arc_node)); 545 list_remove(&ab->b_state->list, ab); 546 if (GHOST_STATE(ab->b_state)) { 547 ASSERT3U(ab->b_datacnt, ==, 0); 548 ASSERT3P(ab->b_buf, ==, NULL); 549 delta = ab->b_size; 550 } 551 ASSERT(delta > 0); 552 ASSERT3U(ab->b_state->lsize, >=, delta); 553 atomic_add_64(&ab->b_state->lsize, -delta); 554 mutex_exit(&ab->b_state->mtx); 555 } 556 } 557 558 static int 559 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 560 { 561 int cnt; 562 563 ASSERT(ab->b_state == arc.anon || MUTEX_HELD(hash_lock)); 564 ASSERT(!GHOST_STATE(ab->b_state)); 565 566 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 567 (ab->b_state != arc.anon)) { 568 569 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 570 mutex_enter(&ab->b_state->mtx); 571 ASSERT(!list_link_active(&ab->b_arc_node)); 572 list_insert_head(&ab->b_state->list, ab); 573 ASSERT(ab->b_datacnt > 0); 574 atomic_add_64(&ab->b_state->lsize, ab->b_size * ab->b_datacnt); 575 ASSERT3U(ab->b_state->size, >=, ab->b_state->lsize); 576 mutex_exit(&ab->b_state->mtx); 577 } 578 return (cnt); 579 } 580 581 /* 582 * Move the supplied buffer to the indicated state. The mutex 583 * for the buffer must be held by the caller. 584 */ 585 static void 586 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 587 { 588 arc_state_t *old_state = ab->b_state; 589 int refcnt = refcount_count(&ab->b_refcnt); 590 int from_delta, to_delta; 591 592 ASSERT(MUTEX_HELD(hash_lock)); 593 ASSERT(new_state != old_state); 594 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 595 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 596 597 from_delta = to_delta = ab->b_datacnt * ab->b_size; 598 599 /* 600 * If this buffer is evictable, transfer it from the 601 * old state list to the new state list. 602 */ 603 if (refcnt == 0) { 604 if (old_state != arc.anon) { 605 int use_mutex = !MUTEX_HELD(&old_state->mtx); 606 607 if (use_mutex) 608 mutex_enter(&old_state->mtx); 609 610 ASSERT(list_link_active(&ab->b_arc_node)); 611 list_remove(&old_state->list, ab); 612 613 /* ghost elements have a ghost size */ 614 if (GHOST_STATE(old_state)) { 615 ASSERT(ab->b_datacnt == 0); 616 ASSERT(ab->b_buf == NULL); 617 from_delta = ab->b_size; 618 } 619 ASSERT3U(old_state->lsize, >=, from_delta); 620 atomic_add_64(&old_state->lsize, -from_delta); 621 622 if (use_mutex) 623 mutex_exit(&old_state->mtx); 624 } 625 if (new_state != arc.anon) { 626 int use_mutex = !MUTEX_HELD(&new_state->mtx); 627 628 if (use_mutex) 629 mutex_enter(&new_state->mtx); 630 631 list_insert_head(&new_state->list, ab); 632 633 /* ghost elements have a ghost size */ 634 if (GHOST_STATE(new_state)) { 635 ASSERT(ab->b_datacnt == 0); 636 ASSERT(ab->b_buf == NULL); 637 to_delta = ab->b_size; 638 } 639 atomic_add_64(&new_state->lsize, to_delta); 640 ASSERT3U(new_state->size + to_delta, >=, 641 new_state->lsize); 642 643 if (use_mutex) 644 mutex_exit(&new_state->mtx); 645 } 646 } 647 648 ASSERT(!BUF_EMPTY(ab)); 649 if (new_state == arc.anon && old_state != arc.anon) { 650 buf_hash_remove(ab); 651 } 652 653 /* 654 * If this buffer isn't being transferred to the MRU-top 655 * state, it's safe to clear its prefetch flag 656 */ 657 if ((new_state != arc.mru) && (new_state != arc.mru_ghost)) { 658 ab->b_flags &= ~ARC_PREFETCH; 659 } 660 661 /* adjust state sizes */ 662 if (to_delta) 663 atomic_add_64(&new_state->size, to_delta); 664 if (from_delta) { 665 ASSERT3U(old_state->size, >=, from_delta); 666 atomic_add_64(&old_state->size, -from_delta); 667 } 668 ab->b_state = new_state; 669 } 670 671 arc_buf_t * 672 arc_buf_alloc(spa_t *spa, int size, void *tag) 673 { 674 arc_buf_hdr_t *hdr; 675 arc_buf_t *buf; 676 677 ASSERT3U(size, >, 0); 678 hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 679 ASSERT(BUF_EMPTY(hdr)); 680 hdr->b_size = size; 681 hdr->b_spa = spa; 682 hdr->b_state = arc.anon; 683 hdr->b_arc_access = 0; 684 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 685 buf->b_hdr = hdr; 686 buf->b_efunc = NULL; 687 buf->b_private = NULL; 688 buf->b_next = NULL; 689 buf->b_data = zio_buf_alloc(size); 690 hdr->b_buf = buf; 691 hdr->b_datacnt = 1; 692 hdr->b_flags = 0; 693 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 694 (void) refcount_add(&hdr->b_refcnt, tag); 695 696 atomic_add_64(&arc.size, size); 697 atomic_add_64(&arc.anon->size, size); 698 699 return (buf); 700 } 701 702 static void * 703 arc_data_copy(arc_buf_hdr_t *hdr, void *old_data) 704 { 705 void *new_data = zio_buf_alloc(hdr->b_size); 706 707 atomic_add_64(&arc.size, hdr->b_size); 708 bcopy(old_data, new_data, hdr->b_size); 709 atomic_add_64(&hdr->b_state->size, hdr->b_size); 710 if (list_link_active(&hdr->b_arc_node)) { 711 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 712 atomic_add_64(&hdr->b_state->lsize, hdr->b_size); 713 } 714 return (new_data); 715 } 716 717 void 718 arc_buf_add_ref(arc_buf_t *buf, void* tag) 719 { 720 arc_buf_hdr_t *hdr; 721 kmutex_t *hash_lock; 722 723 mutex_enter(&arc_eviction_mtx); 724 hdr = buf->b_hdr; 725 if (buf->b_data == NULL) { 726 /* 727 * This buffer is evicted. 728 */ 729 mutex_exit(&arc_eviction_mtx); 730 return; 731 } else { 732 /* 733 * Prevent this buffer from being evicted 734 * while we add a reference. 735 */ 736 buf->b_hdr = NULL; 737 } 738 mutex_exit(&arc_eviction_mtx); 739 740 ASSERT(hdr->b_state != arc.anon); 741 hash_lock = HDR_LOCK(hdr); 742 mutex_enter(hash_lock); 743 ASSERT(!GHOST_STATE(hdr->b_state)); 744 buf->b_hdr = hdr; 745 add_reference(hdr, hash_lock, tag); 746 arc_access_and_exit(hdr, hash_lock); 747 atomic_add_64(&arc.hits, 1); 748 } 749 750 static void 751 arc_buf_destroy(arc_buf_t *buf, boolean_t all) 752 { 753 arc_buf_t **bufp; 754 755 /* free up data associated with the buf */ 756 if (buf->b_data) { 757 arc_state_t *state = buf->b_hdr->b_state; 758 uint64_t size = buf->b_hdr->b_size; 759 760 zio_buf_free(buf->b_data, size); 761 atomic_add_64(&arc.size, -size); 762 if (list_link_active(&buf->b_hdr->b_arc_node)) { 763 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 764 ASSERT(state != arc.anon); 765 ASSERT3U(state->lsize, >=, size); 766 atomic_add_64(&state->lsize, -size); 767 } 768 ASSERT3U(state->size, >=, size); 769 atomic_add_64(&state->size, -size); 770 buf->b_data = NULL; 771 ASSERT(buf->b_hdr->b_datacnt > 0); 772 buf->b_hdr->b_datacnt -= 1; 773 } 774 775 /* only remove the buf if requested */ 776 if (!all) 777 return; 778 779 /* remove the buf from the hdr list */ 780 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 781 continue; 782 *bufp = buf->b_next; 783 784 ASSERT(buf->b_efunc == NULL); 785 786 /* clean up the buf */ 787 buf->b_hdr = NULL; 788 kmem_cache_free(buf_cache, buf); 789 } 790 791 static void 792 arc_hdr_destroy(arc_buf_hdr_t *hdr) 793 { 794 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 795 ASSERT3P(hdr->b_state, ==, arc.anon); 796 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 797 798 if (!BUF_EMPTY(hdr)) { 799 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 800 bzero(&hdr->b_dva, sizeof (dva_t)); 801 hdr->b_birth = 0; 802 hdr->b_cksum0 = 0; 803 } 804 while (hdr->b_buf) { 805 arc_buf_t *buf = hdr->b_buf; 806 807 if (buf->b_efunc) { 808 mutex_enter(&arc_eviction_mtx); 809 ASSERT(buf->b_hdr != NULL); 810 arc_buf_destroy(hdr->b_buf, FALSE); 811 hdr->b_buf = buf->b_next; 812 buf->b_next = arc_eviction_list; 813 arc_eviction_list = buf; 814 mutex_exit(&arc_eviction_mtx); 815 } else { 816 arc_buf_destroy(hdr->b_buf, TRUE); 817 } 818 } 819 820 ASSERT(!list_link_active(&hdr->b_arc_node)); 821 ASSERT3P(hdr->b_hash_next, ==, NULL); 822 ASSERT3P(hdr->b_acb, ==, NULL); 823 kmem_cache_free(hdr_cache, hdr); 824 } 825 826 void 827 arc_buf_free(arc_buf_t *buf, void *tag) 828 { 829 arc_buf_hdr_t *hdr = buf->b_hdr; 830 int hashed = hdr->b_state != arc.anon; 831 832 ASSERT(buf->b_efunc == NULL); 833 ASSERT(buf->b_data != NULL); 834 835 if (hashed) { 836 kmutex_t *hash_lock = HDR_LOCK(hdr); 837 838 mutex_enter(hash_lock); 839 (void) remove_reference(hdr, hash_lock, tag); 840 if (hdr->b_datacnt > 1) 841 arc_buf_destroy(buf, TRUE); 842 else 843 hdr->b_flags |= ARC_BUF_AVAILABLE; 844 mutex_exit(hash_lock); 845 } else if (HDR_IO_IN_PROGRESS(hdr)) { 846 int destroy_hdr; 847 /* 848 * We are in the middle of an async write. Don't destroy 849 * this buffer unless the write completes before we finish 850 * decrementing the reference count. 851 */ 852 mutex_enter(&arc_eviction_mtx); 853 (void) remove_reference(hdr, NULL, tag); 854 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 855 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 856 mutex_exit(&arc_eviction_mtx); 857 if (destroy_hdr) 858 arc_hdr_destroy(hdr); 859 } else { 860 if (remove_reference(hdr, NULL, tag) > 0) { 861 ASSERT(HDR_IO_ERROR(hdr)); 862 arc_buf_destroy(buf, TRUE); 863 } else { 864 arc_hdr_destroy(hdr); 865 } 866 } 867 } 868 869 int 870 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 871 { 872 arc_buf_hdr_t *hdr = buf->b_hdr; 873 kmutex_t *hash_lock = HDR_LOCK(hdr); 874 int no_callback = (buf->b_efunc == NULL); 875 876 if (hdr->b_state == arc.anon) { 877 arc_buf_free(buf, tag); 878 return (no_callback); 879 } 880 881 mutex_enter(hash_lock); 882 ASSERT(hdr->b_state != arc.anon); 883 ASSERT(buf->b_data != NULL); 884 885 (void) remove_reference(hdr, hash_lock, tag); 886 if (hdr->b_datacnt > 1) { 887 if (no_callback) 888 arc_buf_destroy(buf, TRUE); 889 } else if (no_callback) { 890 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 891 hdr->b_flags |= ARC_BUF_AVAILABLE; 892 } 893 ASSERT(no_callback || hdr->b_datacnt > 1 || 894 refcount_is_zero(&hdr->b_refcnt)); 895 mutex_exit(hash_lock); 896 return (no_callback); 897 } 898 899 int 900 arc_buf_size(arc_buf_t *buf) 901 { 902 return (buf->b_hdr->b_size); 903 } 904 905 /* 906 * Evict buffers from list until we've removed the specified number of 907 * bytes. Move the removed buffers to the appropriate evict state. 908 */ 909 static uint64_t 910 arc_evict(arc_state_t *state, int64_t bytes) 911 { 912 arc_state_t *evicted_state; 913 uint64_t bytes_evicted = 0, skipped = 0; 914 arc_buf_hdr_t *ab, *ab_prev; 915 kmutex_t *hash_lock; 916 917 ASSERT(state == arc.mru || state == arc.mfu); 918 919 evicted_state = (state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 920 921 mutex_enter(&state->mtx); 922 mutex_enter(&evicted_state->mtx); 923 924 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 925 ab_prev = list_prev(&state->list, ab); 926 hash_lock = HDR_LOCK(ab); 927 if (mutex_tryenter(hash_lock)) { 928 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 929 ASSERT(ab->b_datacnt > 0); 930 while (ab->b_buf) { 931 arc_buf_t *buf = ab->b_buf; 932 if (buf->b_data) 933 bytes_evicted += ab->b_size; 934 if (buf->b_efunc) { 935 mutex_enter(&arc_eviction_mtx); 936 /* 937 * arc_buf_add_ref() could derail 938 * this eviction. 939 */ 940 if (buf->b_hdr == NULL) { 941 mutex_exit(&arc_eviction_mtx); 942 mutex_exit(hash_lock); 943 goto skip; 944 } 945 arc_buf_destroy(buf, FALSE); 946 ab->b_buf = buf->b_next; 947 buf->b_next = arc_eviction_list; 948 arc_eviction_list = buf; 949 mutex_exit(&arc_eviction_mtx); 950 } else { 951 arc_buf_destroy(buf, TRUE); 952 } 953 } 954 ASSERT(ab->b_datacnt == 0); 955 arc_change_state(evicted_state, ab, hash_lock); 956 ASSERT(HDR_IN_HASH_TABLE(ab)); 957 ab->b_flags = ARC_IN_HASH_TABLE; 958 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 959 mutex_exit(hash_lock); 960 if (bytes >= 0 && bytes_evicted >= bytes) 961 break; 962 } else { 963 skip: 964 skipped += 1; 965 } 966 } 967 mutex_exit(&evicted_state->mtx); 968 mutex_exit(&state->mtx); 969 970 if (bytes_evicted < bytes) 971 dprintf("only evicted %lld bytes from %x", 972 (longlong_t)bytes_evicted, state); 973 974 atomic_add_64(&arc.skipped, skipped); 975 if (bytes < 0) 976 return (skipped); 977 return (bytes_evicted); 978 } 979 980 /* 981 * Remove buffers from list until we've removed the specified number of 982 * bytes. Destroy the buffers that are removed. 983 */ 984 static void 985 arc_evict_ghost(arc_state_t *state, int64_t bytes) 986 { 987 arc_buf_hdr_t *ab, *ab_prev; 988 kmutex_t *hash_lock; 989 uint64_t bytes_deleted = 0; 990 uint_t bufs_skipped = 0; 991 992 ASSERT(GHOST_STATE(state)); 993 top: 994 mutex_enter(&state->mtx); 995 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 996 ab_prev = list_prev(&state->list, ab); 997 hash_lock = HDR_LOCK(ab); 998 if (mutex_tryenter(hash_lock)) { 999 ASSERT(ab->b_buf == NULL); 1000 arc_change_state(arc.anon, ab, hash_lock); 1001 mutex_exit(hash_lock); 1002 atomic_add_64(&arc.deleted, 1); 1003 bytes_deleted += ab->b_size; 1004 arc_hdr_destroy(ab); 1005 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1006 if (bytes >= 0 && bytes_deleted >= bytes) 1007 break; 1008 } else { 1009 if (bytes < 0) { 1010 mutex_exit(&state->mtx); 1011 mutex_enter(hash_lock); 1012 mutex_exit(hash_lock); 1013 goto top; 1014 } 1015 bufs_skipped += 1; 1016 } 1017 } 1018 mutex_exit(&state->mtx); 1019 1020 if (bufs_skipped) { 1021 atomic_add_64(&arc.skipped, bufs_skipped); 1022 ASSERT(bytes >= 0); 1023 } 1024 1025 if (bytes_deleted < bytes) 1026 dprintf("only deleted %lld bytes from %p", 1027 (longlong_t)bytes_deleted, state); 1028 } 1029 1030 static void 1031 arc_adjust(void) 1032 { 1033 int64_t top_sz, mru_over, arc_over; 1034 1035 top_sz = arc.anon->size + arc.mru->size; 1036 1037 if (top_sz > arc.p && arc.mru->lsize > 0) { 1038 int64_t toevict = MIN(arc.mru->lsize, top_sz-arc.p); 1039 (void) arc_evict(arc.mru, toevict); 1040 top_sz = arc.anon->size + arc.mru->size; 1041 } 1042 1043 mru_over = top_sz + arc.mru_ghost->size - arc.c; 1044 1045 if (mru_over > 0) { 1046 if (arc.mru_ghost->lsize > 0) { 1047 int64_t todelete = MIN(arc.mru_ghost->lsize, mru_over); 1048 arc_evict_ghost(arc.mru_ghost, todelete); 1049 } 1050 } 1051 1052 if ((arc_over = arc.size - arc.c) > 0) { 1053 int64_t tbl_over; 1054 1055 if (arc.mfu->lsize > 0) { 1056 int64_t toevict = MIN(arc.mfu->lsize, arc_over); 1057 (void) arc_evict(arc.mfu, toevict); 1058 } 1059 1060 tbl_over = arc.size + arc.mru_ghost->lsize + 1061 arc.mfu_ghost->lsize - arc.c*2; 1062 1063 if (tbl_over > 0 && arc.mfu_ghost->lsize > 0) { 1064 int64_t todelete = MIN(arc.mfu_ghost->lsize, tbl_over); 1065 arc_evict_ghost(arc.mfu_ghost, todelete); 1066 } 1067 } 1068 } 1069 1070 static void 1071 arc_do_user_evicts(void) 1072 { 1073 mutex_enter(&arc_eviction_mtx); 1074 while (arc_eviction_list != NULL) { 1075 arc_buf_t *buf = arc_eviction_list; 1076 arc_eviction_list = buf->b_next; 1077 buf->b_hdr = NULL; 1078 mutex_exit(&arc_eviction_mtx); 1079 1080 if (buf->b_efunc != NULL) 1081 VERIFY(buf->b_efunc(buf) == 0); 1082 1083 buf->b_efunc = NULL; 1084 buf->b_private = NULL; 1085 kmem_cache_free(buf_cache, buf); 1086 mutex_enter(&arc_eviction_mtx); 1087 } 1088 mutex_exit(&arc_eviction_mtx); 1089 } 1090 1091 /* 1092 * Flush all *evictable* data from the cache. 1093 * NOTE: this will not touch "active" (i.e. referenced) data. 1094 */ 1095 void 1096 arc_flush(void) 1097 { 1098 while (arc_evict(arc.mru, -1)); 1099 while (arc_evict(arc.mfu, -1)); 1100 1101 arc_evict_ghost(arc.mru_ghost, -1); 1102 arc_evict_ghost(arc.mfu_ghost, -1); 1103 1104 mutex_enter(&arc_reclaim_thr_lock); 1105 arc_do_user_evicts(); 1106 mutex_exit(&arc_reclaim_thr_lock); 1107 ASSERT(arc_eviction_list == NULL); 1108 } 1109 1110 void 1111 arc_kmem_reclaim(void) 1112 { 1113 /* Remove 12.5% */ 1114 /* 1115 * We need arc_reclaim_lock because we don't want multiple 1116 * threads trying to reclaim concurrently. 1117 */ 1118 1119 /* 1120 * umem calls the reclaim func when we destroy the buf cache, 1121 * which is after we do arc_fini(). So we set a flag to prevent 1122 * accessing the destroyed mutexes and lists. 1123 */ 1124 if (arc_dead) 1125 return; 1126 1127 if (arc.c <= arc.c_min) 1128 return; 1129 1130 mutex_enter(&arc_reclaim_lock); 1131 1132 atomic_add_64(&arc.c, -(arc.c >> 3)); 1133 atomic_add_64(&arc.p, -(arc.p >> 3)); 1134 if (arc.c > arc.size) 1135 arc.c = arc.size; 1136 if (arc.c < arc.c_min) 1137 arc.c = arc.c_min; 1138 if (arc.p > arc.c) 1139 arc.p = (arc.c >> 1); 1140 ASSERT((int64_t)arc.p >= 0); 1141 1142 arc_adjust(); 1143 1144 mutex_exit(&arc_reclaim_lock); 1145 } 1146 1147 static int 1148 arc_reclaim_needed(void) 1149 { 1150 uint64_t extra; 1151 1152 #ifdef _KERNEL 1153 /* 1154 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1155 */ 1156 extra = desfree; 1157 1158 /* 1159 * check that we're out of range of the pageout scanner. It starts to 1160 * schedule paging if freemem is less than lotsfree and needfree. 1161 * lotsfree is the high-water mark for pageout, and needfree is the 1162 * number of needed free pages. We add extra pages here to make sure 1163 * the scanner doesn't start up while we're freeing memory. 1164 */ 1165 if (freemem < lotsfree + needfree + extra) 1166 return (1); 1167 1168 /* 1169 * check to make sure that swapfs has enough space so that anon 1170 * reservations can still succeeed. anon_resvmem() checks that the 1171 * availrmem is greater than swapfs_minfree, and the number of reserved 1172 * swap pages. We also add a bit of extra here just to prevent 1173 * circumstances from getting really dire. 1174 */ 1175 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1176 return (1); 1177 1178 #if defined(__i386) 1179 /* 1180 * If we're on an i386 platform, it's possible that we'll exhaust the 1181 * kernel heap space before we ever run out of available physical 1182 * memory. Most checks of the size of the heap_area compare against 1183 * tune.t_minarmem, which is the minimum available real memory that we 1184 * can have in the system. However, this is generally fixed at 25 pages 1185 * which is so low that it's useless. In this comparison, we seek to 1186 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1187 * heap is allocated. (Or, in the caclulation, if less than 1/4th is 1188 * free) 1189 */ 1190 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1191 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1192 return (1); 1193 #endif 1194 1195 #else 1196 if (spa_get_random(100) == 0) 1197 return (1); 1198 #endif 1199 return (0); 1200 } 1201 1202 static void 1203 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1204 { 1205 size_t i; 1206 kmem_cache_t *prev_cache = NULL; 1207 extern kmem_cache_t *zio_buf_cache[]; 1208 1209 #ifdef _KERNEL 1210 /* 1211 * First purge some DNLC entries, in case the DNLC is using 1212 * up too much memory. 1213 */ 1214 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1215 1216 #if defined(__i386) 1217 /* 1218 * Reclaim unused memory from all kmem caches. 1219 */ 1220 kmem_reap(); 1221 #endif 1222 #endif 1223 1224 /* 1225 * An agressive reclamation will shrink the cache size as well as 1226 * reap free buffers from the arc kmem caches. 1227 */ 1228 if (strat == ARC_RECLAIM_AGGR) 1229 arc_kmem_reclaim(); 1230 1231 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1232 if (zio_buf_cache[i] != prev_cache) { 1233 prev_cache = zio_buf_cache[i]; 1234 kmem_cache_reap_now(zio_buf_cache[i]); 1235 } 1236 } 1237 kmem_cache_reap_now(buf_cache); 1238 kmem_cache_reap_now(hdr_cache); 1239 } 1240 1241 static void 1242 arc_reclaim_thread(void) 1243 { 1244 clock_t growtime = 0; 1245 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1246 callb_cpr_t cpr; 1247 1248 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1249 1250 mutex_enter(&arc_reclaim_thr_lock); 1251 while (arc_thread_exit == 0) { 1252 if (arc_reclaim_needed()) { 1253 1254 if (arc.no_grow) { 1255 if (last_reclaim == ARC_RECLAIM_CONS) { 1256 last_reclaim = ARC_RECLAIM_AGGR; 1257 } else { 1258 last_reclaim = ARC_RECLAIM_CONS; 1259 } 1260 } else { 1261 arc.no_grow = TRUE; 1262 last_reclaim = ARC_RECLAIM_AGGR; 1263 membar_producer(); 1264 } 1265 1266 /* reset the growth delay for every reclaim */ 1267 growtime = lbolt + (arc_grow_retry * hz); 1268 1269 arc_kmem_reap_now(last_reclaim); 1270 1271 } else if ((growtime > 0) && ((growtime - lbolt) <= 0)) { 1272 arc.no_grow = FALSE; 1273 } 1274 1275 if (arc_eviction_list != NULL) 1276 arc_do_user_evicts(); 1277 1278 /* block until needed, or one second, whichever is shorter */ 1279 CALLB_CPR_SAFE_BEGIN(&cpr); 1280 (void) cv_timedwait(&arc_reclaim_thr_cv, 1281 &arc_reclaim_thr_lock, (lbolt + hz)); 1282 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1283 } 1284 1285 arc_thread_exit = 0; 1286 cv_broadcast(&arc_reclaim_thr_cv); 1287 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1288 thread_exit(); 1289 } 1290 1291 /* 1292 * Adapt arc info given the number of bytes we are trying to add and 1293 * the state that we are comming from. This function is only called 1294 * when we are adding new content to the cache. 1295 */ 1296 static void 1297 arc_adapt(int bytes, arc_state_t *state) 1298 { 1299 int mult; 1300 1301 ASSERT(bytes > 0); 1302 /* 1303 * Adapt the target size of the MRU list: 1304 * - if we just hit in the MRU ghost list, then increase 1305 * the target size of the MRU list. 1306 * - if we just hit in the MFU ghost list, then increase 1307 * the target size of the MFU list by decreasing the 1308 * target size of the MRU list. 1309 */ 1310 if (state == arc.mru_ghost) { 1311 mult = ((arc.mru_ghost->size >= arc.mfu_ghost->size) ? 1312 1 : (arc.mfu_ghost->size/arc.mru_ghost->size)); 1313 1314 arc.p = MIN(arc.c, arc.p + bytes * mult); 1315 } else if (state == arc.mfu_ghost) { 1316 mult = ((arc.mfu_ghost->size >= arc.mru_ghost->size) ? 1317 1 : (arc.mru_ghost->size/arc.mfu_ghost->size)); 1318 1319 arc.p = MAX(0, (int64_t)arc.p - bytes * mult); 1320 } 1321 ASSERT((int64_t)arc.p >= 0); 1322 1323 if (arc_reclaim_needed()) { 1324 cv_signal(&arc_reclaim_thr_cv); 1325 return; 1326 } 1327 1328 if (arc.no_grow) 1329 return; 1330 1331 if (arc.c >= arc.c_max) 1332 return; 1333 1334 /* 1335 * If we're within (2 * maxblocksize) bytes of the target 1336 * cache size, increment the target cache size 1337 */ 1338 if (arc.size > arc.c - (2ULL << SPA_MAXBLOCKSHIFT)) { 1339 atomic_add_64(&arc.c, (int64_t)bytes); 1340 if (arc.c > arc.c_max) 1341 arc.c = arc.c_max; 1342 else if (state == arc.anon) 1343 atomic_add_64(&arc.p, (int64_t)bytes); 1344 if (arc.p > arc.c) 1345 arc.p = arc.c; 1346 } 1347 ASSERT((int64_t)arc.p >= 0); 1348 } 1349 1350 /* 1351 * Check if the cache has reached its limits and eviction is required 1352 * prior to insert. 1353 */ 1354 static int 1355 arc_evict_needed() 1356 { 1357 if (arc_reclaim_needed()) 1358 return (1); 1359 1360 return (arc.size > arc.c); 1361 } 1362 1363 /* 1364 * The state, supplied as the first argument, is going to have something 1365 * inserted on its behalf. So, determine which cache must be victimized to 1366 * satisfy an insertion for this state. We have the following cases: 1367 * 1368 * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru) -> 1369 * In this situation if we're out of space, but the resident size of the MFU is 1370 * under the limit, victimize the MFU cache to satisfy this insertion request. 1371 * 1372 * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru) -> 1373 * Here, we've used up all of the available space for the MRU, so we need to 1374 * evict from our own cache instead. Evict from the set of resident MRU 1375 * entries. 1376 * 1377 * 3. Insert for MFU (c - p) > sizeof(arc.mfu) -> 1378 * c minus p represents the MFU space in the cache, since p is the size of the 1379 * cache that is dedicated to the MRU. In this situation there's still space on 1380 * the MFU side, so the MRU side needs to be victimized. 1381 * 1382 * 4. Insert for MFU (c - p) < sizeof(arc.mfu) -> 1383 * MFU's resident set is consuming more space than it has been allotted. In 1384 * this situation, we must victimize our own cache, the MFU, for this insertion. 1385 */ 1386 static void 1387 arc_evict_for_state(arc_state_t *state, uint64_t bytes) 1388 { 1389 uint64_t mru_used; 1390 uint64_t mfu_space; 1391 uint64_t evicted; 1392 1393 ASSERT(state == arc.mru || state == arc.mfu); 1394 1395 if (state == arc.mru) { 1396 mru_used = arc.anon->size + arc.mru->size; 1397 if (arc.p > mru_used) { 1398 /* case 1 */ 1399 evicted = arc_evict(arc.mfu, bytes); 1400 if (evicted < bytes) { 1401 arc_adjust(); 1402 } 1403 } else { 1404 /* case 2 */ 1405 evicted = arc_evict(arc.mru, bytes); 1406 if (evicted < bytes) { 1407 arc_adjust(); 1408 } 1409 } 1410 } else { 1411 /* MFU case */ 1412 mfu_space = arc.c - arc.p; 1413 if (mfu_space > arc.mfu->size) { 1414 /* case 3 */ 1415 evicted = arc_evict(arc.mru, bytes); 1416 if (evicted < bytes) { 1417 arc_adjust(); 1418 } 1419 } else { 1420 /* case 4 */ 1421 evicted = arc_evict(arc.mfu, bytes); 1422 if (evicted < bytes) { 1423 arc_adjust(); 1424 } 1425 } 1426 } 1427 } 1428 1429 /* 1430 * This routine is called whenever a buffer is accessed. 1431 * NOTE: the hash lock is dropped in this function. 1432 */ 1433 static void 1434 arc_access_and_exit(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 1435 { 1436 arc_state_t *evict_state = NULL; 1437 int blksz; 1438 1439 ASSERT(MUTEX_HELD(hash_lock)); 1440 1441 blksz = buf->b_size; 1442 1443 if (buf->b_state == arc.anon) { 1444 /* 1445 * This buffer is not in the cache, and does not 1446 * appear in our "ghost" list. Add the new buffer 1447 * to the MRU state. 1448 */ 1449 1450 arc_adapt(blksz, arc.anon); 1451 if (arc_evict_needed()) 1452 evict_state = arc.mru; 1453 1454 ASSERT(buf->b_arc_access == 0); 1455 buf->b_arc_access = lbolt; 1456 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1457 arc_change_state(arc.mru, buf, hash_lock); 1458 1459 } else if (buf->b_state == arc.mru) { 1460 /* 1461 * If this buffer is in the MRU-top state and has the prefetch 1462 * flag, the first read was actually part of a prefetch. In 1463 * this situation, we simply want to clear the flag and return. 1464 * A subsequent access should bump this into the MFU state. 1465 */ 1466 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1467 buf->b_flags &= ~ARC_PREFETCH; 1468 atomic_add_64(&arc.mru->hits, 1); 1469 mutex_exit(hash_lock); 1470 return; 1471 } 1472 1473 /* 1474 * This buffer has been "accessed" only once so far, 1475 * but it is still in the cache. Move it to the MFU 1476 * state. 1477 */ 1478 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 1479 /* 1480 * More than 125ms have passed since we 1481 * instantiated this buffer. Move it to the 1482 * most frequently used state. 1483 */ 1484 buf->b_arc_access = lbolt; 1485 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1486 arc_change_state(arc.mfu, buf, hash_lock); 1487 } 1488 atomic_add_64(&arc.mru->hits, 1); 1489 } else if (buf->b_state == arc.mru_ghost) { 1490 arc_state_t *new_state; 1491 /* 1492 * This buffer has been "accessed" recently, but 1493 * was evicted from the cache. Move it to the 1494 * MFU state. 1495 */ 1496 1497 if (buf->b_flags & ARC_PREFETCH) { 1498 new_state = arc.mru; 1499 buf->b_flags &= ~ARC_PREFETCH; 1500 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1501 } else { 1502 new_state = arc.mfu; 1503 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1504 } 1505 1506 arc_adapt(blksz, arc.mru_ghost); 1507 if (arc_evict_needed()) 1508 evict_state = new_state; 1509 1510 buf->b_arc_access = lbolt; 1511 arc_change_state(new_state, buf, hash_lock); 1512 1513 atomic_add_64(&arc.mru_ghost->hits, 1); 1514 } else if (buf->b_state == arc.mfu) { 1515 /* 1516 * This buffer has been accessed more than once and is 1517 * still in the cache. Keep it in the MFU state. 1518 * 1519 * NOTE: the add_reference() that occurred when we did 1520 * the arc_read() should have kicked this off the list, 1521 * so even if it was a prefetch, it will be put back at 1522 * the head of the list when we remove_reference(). 1523 */ 1524 atomic_add_64(&arc.mfu->hits, 1); 1525 } else if (buf->b_state == arc.mfu_ghost) { 1526 /* 1527 * This buffer has been accessed more than once but has 1528 * been evicted from the cache. Move it back to the 1529 * MFU state. 1530 */ 1531 1532 arc_adapt(blksz, arc.mfu_ghost); 1533 if (arc_evict_needed()) 1534 evict_state = arc.mfu; 1535 1536 buf->b_arc_access = lbolt; 1537 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1538 arc_change_state(arc.mfu, buf, hash_lock); 1539 1540 atomic_add_64(&arc.mfu_ghost->hits, 1); 1541 } else { 1542 ASSERT(!"invalid arc state"); 1543 } 1544 1545 mutex_exit(hash_lock); 1546 if (evict_state) 1547 arc_evict_for_state(evict_state, blksz); 1548 } 1549 1550 /* a generic arc_done_func_t which you can use */ 1551 /* ARGSUSED */ 1552 void 1553 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 1554 { 1555 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 1556 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1557 } 1558 1559 /* a generic arc_done_func_t which you can use */ 1560 void 1561 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 1562 { 1563 arc_buf_t **bufp = arg; 1564 if (zio && zio->io_error) { 1565 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1566 *bufp = NULL; 1567 } else { 1568 *bufp = buf; 1569 } 1570 } 1571 1572 static void 1573 arc_read_done(zio_t *zio) 1574 { 1575 arc_buf_hdr_t *hdr, *found; 1576 arc_buf_t *buf; 1577 arc_buf_t *abuf; /* buffer we're assigning to callback */ 1578 kmutex_t *hash_lock; 1579 arc_callback_t *callback_list, *acb; 1580 int freeable = FALSE; 1581 1582 buf = zio->io_private; 1583 hdr = buf->b_hdr; 1584 1585 /* 1586 * The hdr was inserted into hash-table and removed from lists 1587 * prior to starting I/O. We should find this header, since 1588 * it's in the hash table, and it should be legit since it's 1589 * not possible to evict it during the I/O. The only possible 1590 * reason for it not to be found is if we were freed during the 1591 * read. 1592 */ 1593 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 1594 &hash_lock); 1595 1596 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 1597 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp)))); 1598 1599 /* byteswap if necessary */ 1600 callback_list = hdr->b_acb; 1601 ASSERT(callback_list != NULL); 1602 if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap) 1603 callback_list->acb_byteswap(buf->b_data, hdr->b_size); 1604 1605 /* create copies of the data buffer for the callers */ 1606 abuf = buf; 1607 for (acb = callback_list; acb; acb = acb->acb_next) { 1608 if (acb->acb_done) { 1609 if (abuf == NULL) { 1610 abuf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1611 abuf->b_data = arc_data_copy(hdr, buf->b_data); 1612 abuf->b_hdr = hdr; 1613 abuf->b_efunc = NULL; 1614 abuf->b_private = NULL; 1615 abuf->b_next = hdr->b_buf; 1616 hdr->b_buf = abuf; 1617 hdr->b_datacnt += 1; 1618 } 1619 acb->acb_buf = abuf; 1620 abuf = NULL; 1621 } else { 1622 /* 1623 * The caller did not provide a callback function. 1624 * In this case, we should just remove the reference. 1625 */ 1626 if (HDR_FREED_IN_READ(hdr)) { 1627 ASSERT3P(hdr->b_state, ==, arc.anon); 1628 (void) refcount_remove(&hdr->b_refcnt, 1629 acb->acb_private); 1630 } else { 1631 (void) remove_reference(hdr, hash_lock, 1632 acb->acb_private); 1633 } 1634 } 1635 } 1636 hdr->b_acb = NULL; 1637 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 1638 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 1639 if (abuf == buf) 1640 hdr->b_flags |= ARC_BUF_AVAILABLE; 1641 1642 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 1643 1644 if (zio->io_error != 0) { 1645 hdr->b_flags |= ARC_IO_ERROR; 1646 if (hdr->b_state != arc.anon) 1647 arc_change_state(arc.anon, hdr, hash_lock); 1648 if (HDR_IN_HASH_TABLE(hdr)) 1649 buf_hash_remove(hdr); 1650 freeable = refcount_is_zero(&hdr->b_refcnt); 1651 /* translate checksum errors into IO errors */ 1652 if (zio->io_error == ECKSUM) 1653 zio->io_error = EIO; 1654 } 1655 1656 /* 1657 * Broadcast before we drop the hash_lock. This is less efficient, 1658 * but avoids the possibility that the hdr (and hence the cv) might 1659 * be freed before we get to the cv_broadcast(). 1660 */ 1661 cv_broadcast(&hdr->b_cv); 1662 1663 if (hash_lock) { 1664 /* 1665 * Only call arc_access on anonymous buffers. This is because 1666 * if we've issued an I/O for an evicted buffer, we've already 1667 * called arc_access (to prevent any simultaneous readers from 1668 * getting confused). 1669 */ 1670 if (zio->io_error == 0 && hdr->b_state == arc.anon) 1671 arc_access_and_exit(hdr, hash_lock); 1672 else 1673 mutex_exit(hash_lock); 1674 } else { 1675 /* 1676 * This block was freed while we waited for the read to 1677 * complete. It has been removed from the hash table and 1678 * moved to the anonymous state (so that it won't show up 1679 * in the cache). 1680 */ 1681 ASSERT3P(hdr->b_state, ==, arc.anon); 1682 freeable = refcount_is_zero(&hdr->b_refcnt); 1683 } 1684 1685 /* execute each callback and free its structure */ 1686 while ((acb = callback_list) != NULL) { 1687 if (acb->acb_done) 1688 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 1689 1690 if (acb->acb_zio_dummy != NULL) { 1691 acb->acb_zio_dummy->io_error = zio->io_error; 1692 zio_nowait(acb->acb_zio_dummy); 1693 } 1694 1695 callback_list = acb->acb_next; 1696 kmem_free(acb, sizeof (arc_callback_t)); 1697 } 1698 1699 if (freeable) 1700 arc_hdr_destroy(hdr); 1701 } 1702 1703 /* 1704 * "Read" the block block at the specified DVA (in bp) via the 1705 * cache. If the block is found in the cache, invoke the provided 1706 * callback immediately and return. Note that the `zio' parameter 1707 * in the callback will be NULL in this case, since no IO was 1708 * required. If the block is not in the cache pass the read request 1709 * on to the spa with a substitute callback function, so that the 1710 * requested block will be added to the cache. 1711 * 1712 * If a read request arrives for a block that has a read in-progress, 1713 * either wait for the in-progress read to complete (and return the 1714 * results); or, if this is a read with a "done" func, add a record 1715 * to the read to invoke the "done" func when the read completes, 1716 * and return; or just return. 1717 * 1718 * arc_read_done() will invoke all the requested "done" functions 1719 * for readers of this block. 1720 */ 1721 int 1722 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap, 1723 arc_done_func_t *done, void *private, int priority, int flags, 1724 uint32_t arc_flags, zbookmark_t *zb) 1725 { 1726 arc_buf_hdr_t *hdr; 1727 arc_buf_t *buf; 1728 kmutex_t *hash_lock; 1729 zio_t *rzio; 1730 1731 top: 1732 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 1733 if (hdr && hdr->b_datacnt > 0) { 1734 1735 if (HDR_IO_IN_PROGRESS(hdr)) { 1736 if ((arc_flags & ARC_NOWAIT) && done) { 1737 arc_callback_t *acb = NULL; 1738 1739 acb = kmem_zalloc(sizeof (arc_callback_t), 1740 KM_SLEEP); 1741 acb->acb_done = done; 1742 acb->acb_private = private; 1743 acb->acb_byteswap = swap; 1744 if (pio != NULL) 1745 acb->acb_zio_dummy = zio_null(pio, 1746 spa, NULL, NULL, flags); 1747 1748 ASSERT(acb->acb_done != NULL); 1749 acb->acb_next = hdr->b_acb; 1750 hdr->b_acb = acb; 1751 add_reference(hdr, hash_lock, private); 1752 mutex_exit(hash_lock); 1753 return (0); 1754 } else if (arc_flags & ARC_WAIT) { 1755 cv_wait(&hdr->b_cv, hash_lock); 1756 mutex_exit(hash_lock); 1757 goto top; 1758 } 1759 mutex_exit(hash_lock); 1760 return (0); 1761 } 1762 1763 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 1764 1765 if (done) { 1766 /* 1767 * If this block is already in use, create a new 1768 * copy of the data so that we will be guaranteed 1769 * that arc_release() will always succeed. 1770 */ 1771 buf = hdr->b_buf; 1772 ASSERT(buf); 1773 ASSERT(buf->b_data); 1774 if (!HDR_BUF_AVAILABLE(hdr)) { 1775 void *data = arc_data_copy(hdr, buf->b_data); 1776 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1777 buf->b_hdr = hdr; 1778 buf->b_data = data; 1779 buf->b_efunc = NULL; 1780 buf->b_private = NULL; 1781 buf->b_next = hdr->b_buf; 1782 hdr->b_buf = buf; 1783 hdr->b_datacnt += 1; 1784 } else { 1785 ASSERT(buf->b_efunc == NULL); 1786 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 1787 } 1788 add_reference(hdr, hash_lock, private); 1789 } 1790 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1791 arc_access_and_exit(hdr, hash_lock); 1792 atomic_add_64(&arc.hits, 1); 1793 if (done) 1794 done(NULL, buf, private); 1795 } else { 1796 uint64_t size = BP_GET_LSIZE(bp); 1797 arc_callback_t *acb; 1798 1799 if (hdr == NULL) { 1800 /* this block is not in the cache */ 1801 arc_buf_hdr_t *exists; 1802 1803 buf = arc_buf_alloc(spa, size, private); 1804 hdr = buf->b_hdr; 1805 hdr->b_dva = *BP_IDENTITY(bp); 1806 hdr->b_birth = bp->blk_birth; 1807 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 1808 exists = buf_hash_insert(hdr, &hash_lock); 1809 if (exists) { 1810 /* somebody beat us to the hash insert */ 1811 mutex_exit(hash_lock); 1812 bzero(&hdr->b_dva, sizeof (dva_t)); 1813 hdr->b_birth = 0; 1814 hdr->b_cksum0 = 0; 1815 (void) arc_buf_remove_ref(buf, private); 1816 goto top; /* restart the IO request */ 1817 } 1818 1819 } else { 1820 /* this block is in the ghost cache */ 1821 ASSERT(GHOST_STATE(hdr->b_state)); 1822 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1823 add_reference(hdr, hash_lock, private); 1824 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 1825 1826 ASSERT(hdr->b_buf == NULL); 1827 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1828 buf->b_hdr = hdr; 1829 buf->b_efunc = NULL; 1830 buf->b_private = NULL; 1831 buf->b_next = NULL; 1832 hdr->b_buf = buf; 1833 buf->b_data = zio_buf_alloc(hdr->b_size); 1834 atomic_add_64(&arc.size, hdr->b_size); 1835 ASSERT(hdr->b_datacnt == 0); 1836 hdr->b_datacnt = 1; 1837 } 1838 1839 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 1840 acb->acb_done = done; 1841 acb->acb_private = private; 1842 acb->acb_byteswap = swap; 1843 1844 ASSERT(hdr->b_acb == NULL); 1845 hdr->b_acb = acb; 1846 1847 /* 1848 * If this DVA is part of a prefetch, mark the buf 1849 * header with the prefetch flag 1850 */ 1851 if (arc_flags & ARC_PREFETCH) 1852 hdr->b_flags |= ARC_PREFETCH; 1853 hdr->b_flags |= ARC_IO_IN_PROGRESS; 1854 1855 /* 1856 * If the buffer has been evicted, migrate it to a present state 1857 * before issuing the I/O. Once we drop the hash-table lock, 1858 * the header will be marked as I/O in progress and have an 1859 * attached buffer. At this point, anybody who finds this 1860 * buffer ought to notice that it's legit but has a pending I/O. 1861 */ 1862 1863 if (GHOST_STATE(hdr->b_state)) 1864 arc_access_and_exit(hdr, hash_lock); 1865 else 1866 mutex_exit(hash_lock); 1867 1868 ASSERT3U(hdr->b_size, ==, size); 1869 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 1870 zbookmark_t *, zb); 1871 atomic_add_64(&arc.misses, 1); 1872 1873 rzio = zio_read(pio, spa, bp, buf->b_data, size, 1874 arc_read_done, buf, priority, flags, zb); 1875 1876 if (arc_flags & ARC_WAIT) 1877 return (zio_wait(rzio)); 1878 1879 ASSERT(arc_flags & ARC_NOWAIT); 1880 zio_nowait(rzio); 1881 } 1882 return (0); 1883 } 1884 1885 /* 1886 * arc_read() variant to support pool traversal. If the block is already 1887 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 1888 * The idea is that we don't want pool traversal filling up memory, but 1889 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 1890 */ 1891 int 1892 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 1893 { 1894 arc_buf_hdr_t *hdr; 1895 kmutex_t *hash_mtx; 1896 int rc = 0; 1897 1898 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 1899 1900 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 1901 arc_buf_t *buf = hdr->b_buf; 1902 1903 ASSERT(buf); 1904 while (buf->b_data == NULL) { 1905 buf = buf->b_next; 1906 ASSERT(buf); 1907 } 1908 bcopy(buf->b_data, data, hdr->b_size); 1909 } else { 1910 rc = ENOENT; 1911 } 1912 1913 if (hash_mtx) 1914 mutex_exit(hash_mtx); 1915 1916 return (rc); 1917 } 1918 1919 void 1920 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 1921 { 1922 ASSERT(buf->b_hdr != NULL); 1923 ASSERT(buf->b_hdr->b_state != arc.anon); 1924 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 1925 buf->b_efunc = func; 1926 buf->b_private = private; 1927 } 1928 1929 /* 1930 * This is used by the DMU to let the ARC know that a buffer is 1931 * being evicted, so the ARC should clean up. If this arc buf 1932 * is not yet in the evicted state, it will be put there. 1933 */ 1934 int 1935 arc_buf_evict(arc_buf_t *buf) 1936 { 1937 arc_buf_hdr_t *hdr; 1938 kmutex_t *hash_lock; 1939 arc_buf_t **bufp; 1940 1941 mutex_enter(&arc_eviction_mtx); 1942 hdr = buf->b_hdr; 1943 if (hdr == NULL) { 1944 /* 1945 * We are in arc_do_user_evicts(). 1946 * NOTE: We can't be in arc_buf_add_ref() because 1947 * that would violate the interface rules. 1948 */ 1949 ASSERT(buf->b_data == NULL); 1950 mutex_exit(&arc_eviction_mtx); 1951 return (0); 1952 } else if (buf->b_data == NULL) { 1953 arc_buf_t copy = *buf; /* structure assignment */ 1954 /* 1955 * We are on the eviction list. Process this buffer 1956 * now but let arc_do_user_evicts() do the reaping. 1957 */ 1958 buf->b_efunc = NULL; 1959 buf->b_hdr = NULL; 1960 mutex_exit(&arc_eviction_mtx); 1961 VERIFY(copy.b_efunc(©) == 0); 1962 return (1); 1963 } else { 1964 /* 1965 * Prevent a race with arc_evict() 1966 */ 1967 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 1968 buf->b_hdr = NULL; 1969 } 1970 mutex_exit(&arc_eviction_mtx); 1971 1972 hash_lock = HDR_LOCK(hdr); 1973 mutex_enter(hash_lock); 1974 1975 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 1976 1977 /* 1978 * Pull this buffer off of the hdr 1979 */ 1980 bufp = &hdr->b_buf; 1981 while (*bufp != buf) 1982 bufp = &(*bufp)->b_next; 1983 *bufp = buf->b_next; 1984 1985 ASSERT(buf->b_data != NULL); 1986 buf->b_hdr = hdr; 1987 arc_buf_destroy(buf, FALSE); 1988 1989 if (hdr->b_datacnt == 0) { 1990 arc_state_t *old_state = hdr->b_state; 1991 arc_state_t *evicted_state; 1992 1993 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1994 1995 evicted_state = 1996 (old_state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 1997 1998 mutex_enter(&old_state->mtx); 1999 mutex_enter(&evicted_state->mtx); 2000 2001 arc_change_state(evicted_state, hdr, hash_lock); 2002 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2003 hdr->b_flags = ARC_IN_HASH_TABLE; 2004 2005 mutex_exit(&evicted_state->mtx); 2006 mutex_exit(&old_state->mtx); 2007 } 2008 mutex_exit(hash_lock); 2009 2010 VERIFY(buf->b_efunc(buf) == 0); 2011 buf->b_efunc = NULL; 2012 buf->b_private = NULL; 2013 buf->b_hdr = NULL; 2014 kmem_cache_free(buf_cache, buf); 2015 return (1); 2016 } 2017 2018 /* 2019 * Release this buffer from the cache. This must be done 2020 * after a read and prior to modifying the buffer contents. 2021 * If the buffer has more than one reference, we must make 2022 * make a new hdr for the buffer. 2023 */ 2024 void 2025 arc_release(arc_buf_t *buf, void *tag) 2026 { 2027 arc_buf_hdr_t *hdr = buf->b_hdr; 2028 kmutex_t *hash_lock = HDR_LOCK(hdr); 2029 2030 /* this buffer is not on any list */ 2031 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2032 2033 if (hdr->b_state == arc.anon) { 2034 /* this buffer is already released */ 2035 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2036 ASSERT(BUF_EMPTY(hdr)); 2037 ASSERT(buf->b_efunc == NULL); 2038 return; 2039 } 2040 2041 mutex_enter(hash_lock); 2042 2043 /* 2044 * Do we have more than one buf? 2045 */ 2046 if (hdr->b_buf != buf || buf->b_next != NULL) { 2047 arc_buf_hdr_t *nhdr; 2048 arc_buf_t **bufp; 2049 uint64_t blksz = hdr->b_size; 2050 spa_t *spa = hdr->b_spa; 2051 2052 ASSERT(hdr->b_datacnt > 1); 2053 /* 2054 * Pull the data off of this buf and attach it to 2055 * a new anonymous buf. 2056 */ 2057 (void) remove_reference(hdr, hash_lock, tag); 2058 bufp = &hdr->b_buf; 2059 while (*bufp != buf) 2060 bufp = &(*bufp)->b_next; 2061 *bufp = (*bufp)->b_next; 2062 2063 ASSERT3U(hdr->b_state->size, >=, hdr->b_size); 2064 atomic_add_64(&hdr->b_state->size, -hdr->b_size); 2065 if (refcount_is_zero(&hdr->b_refcnt)) { 2066 ASSERT3U(hdr->b_state->lsize, >=, hdr->b_size); 2067 atomic_add_64(&hdr->b_state->lsize, -hdr->b_size); 2068 } 2069 hdr->b_datacnt -= 1; 2070 2071 mutex_exit(hash_lock); 2072 2073 nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 2074 nhdr->b_size = blksz; 2075 nhdr->b_spa = spa; 2076 nhdr->b_buf = buf; 2077 nhdr->b_state = arc.anon; 2078 nhdr->b_arc_access = 0; 2079 nhdr->b_flags = 0; 2080 nhdr->b_datacnt = 1; 2081 buf->b_hdr = nhdr; 2082 buf->b_next = NULL; 2083 (void) refcount_add(&nhdr->b_refcnt, tag); 2084 atomic_add_64(&arc.anon->size, blksz); 2085 2086 hdr = nhdr; 2087 } else { 2088 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 2089 ASSERT(!list_link_active(&hdr->b_arc_node)); 2090 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2091 arc_change_state(arc.anon, hdr, hash_lock); 2092 hdr->b_arc_access = 0; 2093 mutex_exit(hash_lock); 2094 bzero(&hdr->b_dva, sizeof (dva_t)); 2095 hdr->b_birth = 0; 2096 hdr->b_cksum0 = 0; 2097 } 2098 buf->b_efunc = NULL; 2099 buf->b_private = NULL; 2100 } 2101 2102 int 2103 arc_released(arc_buf_t *buf) 2104 { 2105 return (buf->b_data != NULL && buf->b_hdr->b_state == arc.anon); 2106 } 2107 2108 int 2109 arc_has_callback(arc_buf_t *buf) 2110 { 2111 return (buf->b_efunc != NULL); 2112 } 2113 2114 #ifdef ZFS_DEBUG 2115 int 2116 arc_referenced(arc_buf_t *buf) 2117 { 2118 return (refcount_count(&buf->b_hdr->b_refcnt)); 2119 } 2120 #endif 2121 2122 static void 2123 arc_write_done(zio_t *zio) 2124 { 2125 arc_buf_t *buf; 2126 arc_buf_hdr_t *hdr; 2127 arc_callback_t *acb; 2128 2129 buf = zio->io_private; 2130 hdr = buf->b_hdr; 2131 acb = hdr->b_acb; 2132 hdr->b_acb = NULL; 2133 ASSERT(acb != NULL); 2134 2135 /* this buffer is on no lists and is not in the hash table */ 2136 ASSERT3P(hdr->b_state, ==, arc.anon); 2137 2138 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 2139 hdr->b_birth = zio->io_bp->blk_birth; 2140 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 2141 /* 2142 * If the block to be written was all-zero, we may have 2143 * compressed it away. In this case no write was performed 2144 * so there will be no dva/birth-date/checksum. The buffer 2145 * must therefor remain anonymous (and uncached). 2146 */ 2147 if (!BUF_EMPTY(hdr)) { 2148 arc_buf_hdr_t *exists; 2149 kmutex_t *hash_lock; 2150 2151 exists = buf_hash_insert(hdr, &hash_lock); 2152 if (exists) { 2153 /* 2154 * This can only happen if we overwrite for 2155 * sync-to-convergence, because we remove 2156 * buffers from the hash table when we arc_free(). 2157 */ 2158 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 2159 BP_IDENTITY(zio->io_bp))); 2160 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 2161 zio->io_bp->blk_birth); 2162 2163 ASSERT(refcount_is_zero(&exists->b_refcnt)); 2164 arc_change_state(arc.anon, exists, hash_lock); 2165 mutex_exit(hash_lock); 2166 arc_hdr_destroy(exists); 2167 exists = buf_hash_insert(hdr, &hash_lock); 2168 ASSERT3P(exists, ==, NULL); 2169 } 2170 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2171 arc_access_and_exit(hdr, hash_lock); 2172 } else if (acb->acb_done == NULL) { 2173 int destroy_hdr; 2174 /* 2175 * This is an anonymous buffer with no user callback, 2176 * destroy it if there are no active references. 2177 */ 2178 mutex_enter(&arc_eviction_mtx); 2179 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 2180 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2181 mutex_exit(&arc_eviction_mtx); 2182 if (destroy_hdr) 2183 arc_hdr_destroy(hdr); 2184 } else { 2185 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2186 } 2187 2188 if (acb->acb_done) { 2189 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 2190 acb->acb_done(zio, buf, acb->acb_private); 2191 } 2192 2193 kmem_free(acb, sizeof (arc_callback_t)); 2194 } 2195 2196 int 2197 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 2198 uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 2199 arc_done_func_t *done, void *private, int priority, int flags, 2200 uint32_t arc_flags, zbookmark_t *zb) 2201 { 2202 arc_buf_hdr_t *hdr = buf->b_hdr; 2203 arc_callback_t *acb; 2204 zio_t *rzio; 2205 2206 /* this is a private buffer - no locking required */ 2207 ASSERT3P(hdr->b_state, ==, arc.anon); 2208 ASSERT(BUF_EMPTY(hdr)); 2209 ASSERT(!HDR_IO_ERROR(hdr)); 2210 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2211 acb->acb_done = done; 2212 acb->acb_private = private; 2213 acb->acb_byteswap = (arc_byteswap_func_t *)-1; 2214 hdr->b_acb = acb; 2215 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2216 rzio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp, 2217 buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags, zb); 2218 2219 if (arc_flags & ARC_WAIT) 2220 return (zio_wait(rzio)); 2221 2222 ASSERT(arc_flags & ARC_NOWAIT); 2223 zio_nowait(rzio); 2224 2225 return (0); 2226 } 2227 2228 int 2229 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 2230 zio_done_func_t *done, void *private, uint32_t arc_flags) 2231 { 2232 arc_buf_hdr_t *ab; 2233 kmutex_t *hash_lock; 2234 zio_t *zio; 2235 2236 /* 2237 * If this buffer is in the cache, release it, so it 2238 * can be re-used. 2239 */ 2240 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2241 if (ab != NULL) { 2242 /* 2243 * The checksum of blocks to free is not always 2244 * preserved (eg. on the deadlist). However, if it is 2245 * nonzero, it should match what we have in the cache. 2246 */ 2247 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 2248 ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 2249 if (ab->b_state != arc.anon) 2250 arc_change_state(arc.anon, ab, hash_lock); 2251 if (refcount_is_zero(&ab->b_refcnt)) { 2252 mutex_exit(hash_lock); 2253 arc_hdr_destroy(ab); 2254 atomic_add_64(&arc.deleted, 1); 2255 } else { 2256 /* 2257 * We could have an outstanding read on this 2258 * block, so multiple active references are 2259 * possible. But we should only have a single 2260 * data buffer associated at this point. 2261 */ 2262 ASSERT3U(ab->b_datacnt, ==, 1); 2263 if (HDR_IO_IN_PROGRESS(ab)) 2264 ab->b_flags |= ARC_FREED_IN_READ; 2265 if (HDR_IN_HASH_TABLE(ab)) 2266 buf_hash_remove(ab); 2267 ab->b_arc_access = 0; 2268 bzero(&ab->b_dva, sizeof (dva_t)); 2269 ab->b_birth = 0; 2270 ab->b_cksum0 = 0; 2271 ab->b_buf->b_efunc = NULL; 2272 ab->b_buf->b_private = NULL; 2273 mutex_exit(hash_lock); 2274 } 2275 } 2276 2277 zio = zio_free(pio, spa, txg, bp, done, private); 2278 2279 if (arc_flags & ARC_WAIT) 2280 return (zio_wait(zio)); 2281 2282 ASSERT(arc_flags & ARC_NOWAIT); 2283 zio_nowait(zio); 2284 2285 return (0); 2286 } 2287 2288 void 2289 arc_tempreserve_clear(uint64_t tempreserve) 2290 { 2291 atomic_add_64(&arc_tempreserve, -tempreserve); 2292 ASSERT((int64_t)arc_tempreserve >= 0); 2293 } 2294 2295 int 2296 arc_tempreserve_space(uint64_t tempreserve) 2297 { 2298 #ifdef ZFS_DEBUG 2299 /* 2300 * Once in a while, fail for no reason. Everything should cope. 2301 */ 2302 if (spa_get_random(10000) == 0) { 2303 dprintf("forcing random failure\n"); 2304 return (ERESTART); 2305 } 2306 #endif 2307 if (tempreserve > arc.c/4 && !arc.no_grow) 2308 arc.c = MIN(arc.c_max, tempreserve * 4); 2309 if (tempreserve > arc.c) 2310 return (ENOMEM); 2311 2312 /* 2313 * Throttle writes when the amount of dirty data in the cache 2314 * gets too large. We try to keep the cache less than half full 2315 * of dirty blocks so that our sync times don't grow too large. 2316 * Note: if two requests come in concurrently, we might let them 2317 * both succeed, when one of them should fail. Not a huge deal. 2318 * 2319 * XXX The limit should be adjusted dynamically to keep the time 2320 * to sync a dataset fixed (around 1-5 seconds?). 2321 */ 2322 2323 if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 && 2324 arc_tempreserve + arc.anon->size > arc.c / 4) { 2325 dprintf("failing, arc_tempreserve=%lluK anon=%lluK " 2326 "tempreserve=%lluK arc.c=%lluK\n", 2327 arc_tempreserve>>10, arc.anon->lsize>>10, 2328 tempreserve>>10, arc.c>>10); 2329 return (ERESTART); 2330 } 2331 atomic_add_64(&arc_tempreserve, tempreserve); 2332 return (0); 2333 } 2334 2335 void 2336 arc_init(void) 2337 { 2338 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 2339 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 2340 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 2341 2342 /* Start out with 1/8 of all memory */ 2343 arc.c = physmem * PAGESIZE / 8; 2344 2345 #ifdef _KERNEL 2346 /* 2347 * On architectures where the physical memory can be larger 2348 * than the addressable space (intel in 32-bit mode), we may 2349 * need to limit the cache to 1/8 of VM size. 2350 */ 2351 arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 2352 #endif 2353 2354 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 2355 arc.c_min = MAX(arc.c / 4, 64<<20); 2356 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 2357 if (arc.c * 8 >= 1<<30) 2358 arc.c_max = (arc.c * 8) - (1<<30); 2359 else 2360 arc.c_max = arc.c_min; 2361 arc.c_max = MAX(arc.c * 6, arc.c_max); 2362 arc.c = arc.c_max; 2363 arc.p = (arc.c >> 1); 2364 2365 /* if kmem_flags are set, lets try to use less memory */ 2366 if (kmem_debugging()) 2367 arc.c = arc.c / 2; 2368 if (arc.c < arc.c_min) 2369 arc.c = arc.c_min; 2370 2371 arc.anon = &ARC_anon; 2372 arc.mru = &ARC_mru; 2373 arc.mru_ghost = &ARC_mru_ghost; 2374 arc.mfu = &ARC_mfu; 2375 arc.mfu_ghost = &ARC_mfu_ghost; 2376 arc.size = 0; 2377 2378 list_create(&arc.mru->list, sizeof (arc_buf_hdr_t), 2379 offsetof(arc_buf_hdr_t, b_arc_node)); 2380 list_create(&arc.mru_ghost->list, sizeof (arc_buf_hdr_t), 2381 offsetof(arc_buf_hdr_t, b_arc_node)); 2382 list_create(&arc.mfu->list, sizeof (arc_buf_hdr_t), 2383 offsetof(arc_buf_hdr_t, b_arc_node)); 2384 list_create(&arc.mfu_ghost->list, sizeof (arc_buf_hdr_t), 2385 offsetof(arc_buf_hdr_t, b_arc_node)); 2386 2387 buf_init(); 2388 2389 arc_thread_exit = 0; 2390 arc_eviction_list = NULL; 2391 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 2392 2393 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 2394 TS_RUN, minclsyspri); 2395 } 2396 2397 void 2398 arc_fini(void) 2399 { 2400 mutex_enter(&arc_reclaim_thr_lock); 2401 arc_thread_exit = 1; 2402 while (arc_thread_exit != 0) 2403 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 2404 mutex_exit(&arc_reclaim_thr_lock); 2405 2406 arc_flush(); 2407 2408 arc_dead = TRUE; 2409 2410 mutex_destroy(&arc_eviction_mtx); 2411 mutex_destroy(&arc_reclaim_lock); 2412 mutex_destroy(&arc_reclaim_thr_lock); 2413 cv_destroy(&arc_reclaim_thr_cv); 2414 2415 list_destroy(&arc.mru->list); 2416 list_destroy(&arc.mru_ghost->list); 2417 list_destroy(&arc.mfu->list); 2418 list_destroy(&arc.mfu_ghost->list); 2419 2420 buf_fini(); 2421 } 2422