xref: /titanic_50/usr/src/uts/common/fs/zfs/arc.c (revision afffa6e9b45cbe9b33943e26568d8ac69b899252)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  */
27 
28 /*
29  * DVA-based Adjustable Replacement Cache
30  *
31  * While much of the theory of operation used here is
32  * based on the self-tuning, low overhead replacement cache
33  * presented by Megiddo and Modha at FAST 2003, there are some
34  * significant differences:
35  *
36  * 1. The Megiddo and Modha model assumes any page is evictable.
37  * Pages in its cache cannot be "locked" into memory.  This makes
38  * the eviction algorithm simple: evict the last page in the list.
39  * This also make the performance characteristics easy to reason
40  * about.  Our cache is not so simple.  At any given moment, some
41  * subset of the blocks in the cache are un-evictable because we
42  * have handed out a reference to them.  Blocks are only evictable
43  * when there are no external references active.  This makes
44  * eviction far more problematic:  we choose to evict the evictable
45  * blocks that are the "lowest" in the list.
46  *
47  * There are times when it is not possible to evict the requested
48  * space.  In these circumstances we are unable to adjust the cache
49  * size.  To prevent the cache growing unbounded at these times we
50  * implement a "cache throttle" that slows the flow of new data
51  * into the cache until we can make space available.
52  *
53  * 2. The Megiddo and Modha model assumes a fixed cache size.
54  * Pages are evicted when the cache is full and there is a cache
55  * miss.  Our model has a variable sized cache.  It grows with
56  * high use, but also tries to react to memory pressure from the
57  * operating system: decreasing its size when system memory is
58  * tight.
59  *
60  * 3. The Megiddo and Modha model assumes a fixed page size. All
61  * elements of the cache are therefore exactly the same size.  So
62  * when adjusting the cache size following a cache miss, its simply
63  * a matter of choosing a single page to evict.  In our model, we
64  * have variable sized cache blocks (rangeing from 512 bytes to
65  * 128K bytes).  We therefore choose a set of blocks to evict to make
66  * space for a cache miss that approximates as closely as possible
67  * the space used by the new block.
68  *
69  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70  * by N. Megiddo & D. Modha, FAST 2003
71  */
72 
73 /*
74  * The locking model:
75  *
76  * A new reference to a cache buffer can be obtained in two
77  * ways: 1) via a hash table lookup using the DVA as a key,
78  * or 2) via one of the ARC lists.  The arc_read() interface
79  * uses method 1, while the internal arc algorithms for
80  * adjusting the cache use method 2.  We therefore provide two
81  * types of locks: 1) the hash table lock array, and 2) the
82  * arc list locks.
83  *
84  * Buffers do not have their own mutexes, rather they rely on the
85  * hash table mutexes for the bulk of their protection (i.e. most
86  * fields in the arc_buf_hdr_t are protected by these mutexes).
87  *
88  * buf_hash_find() returns the appropriate mutex (held) when it
89  * locates the requested buffer in the hash table.  It returns
90  * NULL for the mutex if the buffer was not in the table.
91  *
92  * buf_hash_remove() expects the appropriate hash mutex to be
93  * already held before it is invoked.
94  *
95  * Each arc state also has a mutex which is used to protect the
96  * buffer list associated with the state.  When attempting to
97  * obtain a hash table lock while holding an arc list lock you
98  * must use: mutex_tryenter() to avoid deadlock.  Also note that
99  * the active state mutex must be held before the ghost state mutex.
100  *
101  * Arc buffers may have an associated eviction callback function.
102  * This function will be invoked prior to removing the buffer (e.g.
103  * in arc_do_user_evicts()).  Note however that the data associated
104  * with the buffer may be evicted prior to the callback.  The callback
105  * must be made with *no locks held* (to prevent deadlock).  Additionally,
106  * the users of callbacks must ensure that their private data is
107  * protected from simultaneous callbacks from arc_buf_evict()
108  * and arc_do_user_evicts().
109  *
110  * Note that the majority of the performance stats are manipulated
111  * with atomic operations.
112  *
113  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
114  *
115  *	- L2ARC buflist creation
116  *	- L2ARC buflist eviction
117  *	- L2ARC write completion, which walks L2ARC buflists
118  *	- ARC header destruction, as it removes from L2ARC buflists
119  *	- ARC header release, as it removes from L2ARC buflists
120  */
121 
122 #include <sys/spa.h>
123 #include <sys/zio.h>
124 #include <sys/zio_compress.h>
125 #include <sys/zfs_context.h>
126 #include <sys/arc.h>
127 #include <sys/refcount.h>
128 #include <sys/vdev.h>
129 #include <sys/vdev_impl.h>
130 #ifdef _KERNEL
131 #include <sys/vmsystm.h>
132 #include <vm/anon.h>
133 #include <sys/fs/swapnode.h>
134 #include <sys/dnlc.h>
135 #endif
136 #include <sys/callb.h>
137 #include <sys/kstat.h>
138 #include <zfs_fletcher.h>
139 
140 #ifndef _KERNEL
141 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
142 boolean_t arc_watch = B_FALSE;
143 int arc_procfd;
144 #endif
145 
146 static kmutex_t		arc_reclaim_thr_lock;
147 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
148 static uint8_t		arc_thread_exit;
149 
150 extern int zfs_write_limit_shift;
151 extern uint64_t zfs_write_limit_max;
152 extern kmutex_t zfs_write_limit_lock;
153 
154 #define	ARC_REDUCE_DNLC_PERCENT	3
155 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
156 
157 typedef enum arc_reclaim_strategy {
158 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
159 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
160 } arc_reclaim_strategy_t;
161 
162 /* number of seconds before growing cache again */
163 static int		arc_grow_retry = 60;
164 
165 /* shift of arc_c for calculating both min and max arc_p */
166 static int		arc_p_min_shift = 4;
167 
168 /* log2(fraction of arc to reclaim) */
169 static int		arc_shrink_shift = 5;
170 
171 /*
172  * minimum lifespan of a prefetch block in clock ticks
173  * (initialized in arc_init())
174  */
175 static int		arc_min_prefetch_lifespan;
176 
177 static int arc_dead;
178 
179 /*
180  * The arc has filled available memory and has now warmed up.
181  */
182 static boolean_t arc_warm;
183 
184 /*
185  * These tunables are for performance analysis.
186  */
187 uint64_t zfs_arc_max;
188 uint64_t zfs_arc_min;
189 uint64_t zfs_arc_meta_limit = 0;
190 int zfs_arc_grow_retry = 0;
191 int zfs_arc_shrink_shift = 0;
192 int zfs_arc_p_min_shift = 0;
193 int zfs_disable_dup_eviction = 0;
194 
195 /*
196  * Note that buffers can be in one of 6 states:
197  *	ARC_anon	- anonymous (discussed below)
198  *	ARC_mru		- recently used, currently cached
199  *	ARC_mru_ghost	- recentely used, no longer in cache
200  *	ARC_mfu		- frequently used, currently cached
201  *	ARC_mfu_ghost	- frequently used, no longer in cache
202  *	ARC_l2c_only	- exists in L2ARC but not other states
203  * When there are no active references to the buffer, they are
204  * are linked onto a list in one of these arc states.  These are
205  * the only buffers that can be evicted or deleted.  Within each
206  * state there are multiple lists, one for meta-data and one for
207  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
208  * etc.) is tracked separately so that it can be managed more
209  * explicitly: favored over data, limited explicitly.
210  *
211  * Anonymous buffers are buffers that are not associated with
212  * a DVA.  These are buffers that hold dirty block copies
213  * before they are written to stable storage.  By definition,
214  * they are "ref'd" and are considered part of arc_mru
215  * that cannot be freed.  Generally, they will aquire a DVA
216  * as they are written and migrate onto the arc_mru list.
217  *
218  * The ARC_l2c_only state is for buffers that are in the second
219  * level ARC but no longer in any of the ARC_m* lists.  The second
220  * level ARC itself may also contain buffers that are in any of
221  * the ARC_m* states - meaning that a buffer can exist in two
222  * places.  The reason for the ARC_l2c_only state is to keep the
223  * buffer header in the hash table, so that reads that hit the
224  * second level ARC benefit from these fast lookups.
225  */
226 
227 typedef struct arc_state {
228 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
229 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
230 	uint64_t arcs_size;	/* total amount of data in this state */
231 	kmutex_t arcs_mtx;
232 } arc_state_t;
233 
234 /* The 6 states: */
235 static arc_state_t ARC_anon;
236 static arc_state_t ARC_mru;
237 static arc_state_t ARC_mru_ghost;
238 static arc_state_t ARC_mfu;
239 static arc_state_t ARC_mfu_ghost;
240 static arc_state_t ARC_l2c_only;
241 
242 typedef struct arc_stats {
243 	kstat_named_t arcstat_hits;
244 	kstat_named_t arcstat_misses;
245 	kstat_named_t arcstat_demand_data_hits;
246 	kstat_named_t arcstat_demand_data_misses;
247 	kstat_named_t arcstat_demand_metadata_hits;
248 	kstat_named_t arcstat_demand_metadata_misses;
249 	kstat_named_t arcstat_prefetch_data_hits;
250 	kstat_named_t arcstat_prefetch_data_misses;
251 	kstat_named_t arcstat_prefetch_metadata_hits;
252 	kstat_named_t arcstat_prefetch_metadata_misses;
253 	kstat_named_t arcstat_mru_hits;
254 	kstat_named_t arcstat_mru_ghost_hits;
255 	kstat_named_t arcstat_mfu_hits;
256 	kstat_named_t arcstat_mfu_ghost_hits;
257 	kstat_named_t arcstat_deleted;
258 	kstat_named_t arcstat_recycle_miss;
259 	/*
260 	 * Number of buffers that could not be evicted because the hash lock
261 	 * was held by another thread.  The lock may not necessarily be held
262 	 * by something using the same buffer, since hash locks are shared
263 	 * by multiple buffers.
264 	 */
265 	kstat_named_t arcstat_mutex_miss;
266 	/*
267 	 * Number of buffers skipped because they have I/O in progress, are
268 	 * indrect prefetch buffers that have not lived long enough, or are
269 	 * not from the spa we're trying to evict from.
270 	 */
271 	kstat_named_t arcstat_evict_skip;
272 	kstat_named_t arcstat_evict_l2_cached;
273 	kstat_named_t arcstat_evict_l2_eligible;
274 	kstat_named_t arcstat_evict_l2_ineligible;
275 	kstat_named_t arcstat_hash_elements;
276 	kstat_named_t arcstat_hash_elements_max;
277 	kstat_named_t arcstat_hash_collisions;
278 	kstat_named_t arcstat_hash_chains;
279 	kstat_named_t arcstat_hash_chain_max;
280 	kstat_named_t arcstat_p;
281 	kstat_named_t arcstat_c;
282 	kstat_named_t arcstat_c_min;
283 	kstat_named_t arcstat_c_max;
284 	kstat_named_t arcstat_size;
285 	kstat_named_t arcstat_hdr_size;
286 	kstat_named_t arcstat_data_size;
287 	kstat_named_t arcstat_other_size;
288 	kstat_named_t arcstat_l2_hits;
289 	kstat_named_t arcstat_l2_misses;
290 	kstat_named_t arcstat_l2_feeds;
291 	kstat_named_t arcstat_l2_rw_clash;
292 	kstat_named_t arcstat_l2_read_bytes;
293 	kstat_named_t arcstat_l2_write_bytes;
294 	kstat_named_t arcstat_l2_writes_sent;
295 	kstat_named_t arcstat_l2_writes_done;
296 	kstat_named_t arcstat_l2_writes_error;
297 	kstat_named_t arcstat_l2_writes_hdr_miss;
298 	kstat_named_t arcstat_l2_evict_lock_retry;
299 	kstat_named_t arcstat_l2_evict_reading;
300 	kstat_named_t arcstat_l2_free_on_write;
301 	kstat_named_t arcstat_l2_abort_lowmem;
302 	kstat_named_t arcstat_l2_cksum_bad;
303 	kstat_named_t arcstat_l2_io_error;
304 	kstat_named_t arcstat_l2_size;
305 	kstat_named_t arcstat_l2_asize;
306 	kstat_named_t arcstat_l2_hdr_size;
307 	kstat_named_t arcstat_l2_compress_successes;
308 	kstat_named_t arcstat_l2_compress_zeros;
309 	kstat_named_t arcstat_l2_compress_failures;
310 	kstat_named_t arcstat_memory_throttle_count;
311 	kstat_named_t arcstat_duplicate_buffers;
312 	kstat_named_t arcstat_duplicate_buffers_size;
313 	kstat_named_t arcstat_duplicate_reads;
314 	kstat_named_t arcstat_meta_used;
315 	kstat_named_t arcstat_meta_limit;
316 	kstat_named_t arcstat_meta_max;
317 } arc_stats_t;
318 
319 static arc_stats_t arc_stats = {
320 	{ "hits",			KSTAT_DATA_UINT64 },
321 	{ "misses",			KSTAT_DATA_UINT64 },
322 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
323 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
324 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
325 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
326 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
327 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
328 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
329 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
330 	{ "mru_hits",			KSTAT_DATA_UINT64 },
331 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
332 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
333 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
334 	{ "deleted",			KSTAT_DATA_UINT64 },
335 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
336 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
337 	{ "evict_skip",			KSTAT_DATA_UINT64 },
338 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
339 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
340 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
341 	{ "hash_elements",		KSTAT_DATA_UINT64 },
342 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
343 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
344 	{ "hash_chains",		KSTAT_DATA_UINT64 },
345 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
346 	{ "p",				KSTAT_DATA_UINT64 },
347 	{ "c",				KSTAT_DATA_UINT64 },
348 	{ "c_min",			KSTAT_DATA_UINT64 },
349 	{ "c_max",			KSTAT_DATA_UINT64 },
350 	{ "size",			KSTAT_DATA_UINT64 },
351 	{ "hdr_size",			KSTAT_DATA_UINT64 },
352 	{ "data_size",			KSTAT_DATA_UINT64 },
353 	{ "other_size",			KSTAT_DATA_UINT64 },
354 	{ "l2_hits",			KSTAT_DATA_UINT64 },
355 	{ "l2_misses",			KSTAT_DATA_UINT64 },
356 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
357 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
358 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
359 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
360 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
361 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
362 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
363 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
364 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
365 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
366 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
367 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
368 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
369 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
370 	{ "l2_size",			KSTAT_DATA_UINT64 },
371 	{ "l2_asize",			KSTAT_DATA_UINT64 },
372 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
373 	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
374 	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
375 	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
376 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
377 	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
378 	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
379 	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
380 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
381 	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
382 	{ "arc_meta_max",		KSTAT_DATA_UINT64 }
383 };
384 
385 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
386 
387 #define	ARCSTAT_INCR(stat, val) \
388 	atomic_add_64(&arc_stats.stat.value.ui64, (val))
389 
390 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
391 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
392 
393 #define	ARCSTAT_MAX(stat, val) {					\
394 	uint64_t m;							\
395 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
396 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
397 		continue;						\
398 }
399 
400 #define	ARCSTAT_MAXSTAT(stat) \
401 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
402 
403 /*
404  * We define a macro to allow ARC hits/misses to be easily broken down by
405  * two separate conditions, giving a total of four different subtypes for
406  * each of hits and misses (so eight statistics total).
407  */
408 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
409 	if (cond1) {							\
410 		if (cond2) {						\
411 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
412 		} else {						\
413 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
414 		}							\
415 	} else {							\
416 		if (cond2) {						\
417 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
418 		} else {						\
419 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
420 		}							\
421 	}
422 
423 kstat_t			*arc_ksp;
424 static arc_state_t	*arc_anon;
425 static arc_state_t	*arc_mru;
426 static arc_state_t	*arc_mru_ghost;
427 static arc_state_t	*arc_mfu;
428 static arc_state_t	*arc_mfu_ghost;
429 static arc_state_t	*arc_l2c_only;
430 
431 /*
432  * There are several ARC variables that are critical to export as kstats --
433  * but we don't want to have to grovel around in the kstat whenever we wish to
434  * manipulate them.  For these variables, we therefore define them to be in
435  * terms of the statistic variable.  This assures that we are not introducing
436  * the possibility of inconsistency by having shadow copies of the variables,
437  * while still allowing the code to be readable.
438  */
439 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
440 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
441 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
442 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
443 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
444 #define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
445 #define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
446 #define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
447 
448 #define	L2ARC_IS_VALID_COMPRESS(_c_) \
449 	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
450 
451 static int		arc_no_grow;	/* Don't try to grow cache size */
452 static uint64_t		arc_tempreserve;
453 static uint64_t		arc_loaned_bytes;
454 
455 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
456 
457 typedef struct arc_callback arc_callback_t;
458 
459 struct arc_callback {
460 	void			*acb_private;
461 	arc_done_func_t		*acb_done;
462 	arc_buf_t		*acb_buf;
463 	zio_t			*acb_zio_dummy;
464 	arc_callback_t		*acb_next;
465 };
466 
467 typedef struct arc_write_callback arc_write_callback_t;
468 
469 struct arc_write_callback {
470 	void		*awcb_private;
471 	arc_done_func_t	*awcb_ready;
472 	arc_done_func_t	*awcb_done;
473 	arc_buf_t	*awcb_buf;
474 };
475 
476 struct arc_buf_hdr {
477 	/* protected by hash lock */
478 	dva_t			b_dva;
479 	uint64_t		b_birth;
480 	uint64_t		b_cksum0;
481 
482 	kmutex_t		b_freeze_lock;
483 	zio_cksum_t		*b_freeze_cksum;
484 	void			*b_thawed;
485 
486 	arc_buf_hdr_t		*b_hash_next;
487 	arc_buf_t		*b_buf;
488 	uint32_t		b_flags;
489 	uint32_t		b_datacnt;
490 
491 	arc_callback_t		*b_acb;
492 	kcondvar_t		b_cv;
493 
494 	/* immutable */
495 	arc_buf_contents_t	b_type;
496 	uint64_t		b_size;
497 	uint64_t		b_spa;
498 
499 	/* protected by arc state mutex */
500 	arc_state_t		*b_state;
501 	list_node_t		b_arc_node;
502 
503 	/* updated atomically */
504 	clock_t			b_arc_access;
505 
506 	/* self protecting */
507 	refcount_t		b_refcnt;
508 
509 	l2arc_buf_hdr_t		*b_l2hdr;
510 	list_node_t		b_l2node;
511 };
512 
513 static arc_buf_t *arc_eviction_list;
514 static kmutex_t arc_eviction_mtx;
515 static arc_buf_hdr_t arc_eviction_hdr;
516 static void arc_get_data_buf(arc_buf_t *buf);
517 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
518 static int arc_evict_needed(arc_buf_contents_t type);
519 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
520 static void arc_buf_watch(arc_buf_t *buf);
521 
522 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
523 
524 #define	GHOST_STATE(state)	\
525 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
526 	(state) == arc_l2c_only)
527 
528 /*
529  * Private ARC flags.  These flags are private ARC only flags that will show up
530  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
531  * be passed in as arc_flags in things like arc_read.  However, these flags
532  * should never be passed and should only be set by ARC code.  When adding new
533  * public flags, make sure not to smash the private ones.
534  */
535 
536 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
537 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
538 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
539 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
540 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
541 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
542 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
543 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
544 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
545 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
546 
547 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
548 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
549 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
550 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
551 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
552 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
553 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
554 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
555 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
556 				    (hdr)->b_l2hdr != NULL)
557 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
558 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
559 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
560 
561 /*
562  * Other sizes
563  */
564 
565 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
566 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
567 
568 /*
569  * Hash table routines
570  */
571 
572 #define	HT_LOCK_PAD	64
573 
574 struct ht_lock {
575 	kmutex_t	ht_lock;
576 #ifdef _KERNEL
577 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
578 #endif
579 };
580 
581 #define	BUF_LOCKS 256
582 typedef struct buf_hash_table {
583 	uint64_t ht_mask;
584 	arc_buf_hdr_t **ht_table;
585 	struct ht_lock ht_locks[BUF_LOCKS];
586 } buf_hash_table_t;
587 
588 static buf_hash_table_t buf_hash_table;
589 
590 #define	BUF_HASH_INDEX(spa, dva, birth) \
591 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
592 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
593 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
594 #define	HDR_LOCK(hdr) \
595 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
596 
597 uint64_t zfs_crc64_table[256];
598 
599 /*
600  * Level 2 ARC
601  */
602 
603 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
604 #define	L2ARC_HEADROOM		2			/* num of writes */
605 /*
606  * If we discover during ARC scan any buffers to be compressed, we boost
607  * our headroom for the next scanning cycle by this percentage multiple.
608  */
609 #define	L2ARC_HEADROOM_BOOST	200
610 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
611 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
612 
613 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
614 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
615 
616 /* L2ARC Performance Tunables */
617 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
618 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
619 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
620 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
621 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
622 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
623 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
624 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
625 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
626 
627 /*
628  * L2ARC Internals
629  */
630 typedef struct l2arc_dev {
631 	vdev_t			*l2ad_vdev;	/* vdev */
632 	spa_t			*l2ad_spa;	/* spa */
633 	uint64_t		l2ad_hand;	/* next write location */
634 	uint64_t		l2ad_start;	/* first addr on device */
635 	uint64_t		l2ad_end;	/* last addr on device */
636 	uint64_t		l2ad_evict;	/* last addr eviction reached */
637 	boolean_t		l2ad_first;	/* first sweep through */
638 	boolean_t		l2ad_writing;	/* currently writing */
639 	list_t			*l2ad_buflist;	/* buffer list */
640 	list_node_t		l2ad_node;	/* device list node */
641 } l2arc_dev_t;
642 
643 static list_t L2ARC_dev_list;			/* device list */
644 static list_t *l2arc_dev_list;			/* device list pointer */
645 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
646 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
647 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
648 static list_t L2ARC_free_on_write;		/* free after write buf list */
649 static list_t *l2arc_free_on_write;		/* free after write list ptr */
650 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
651 static uint64_t l2arc_ndev;			/* number of devices */
652 
653 typedef struct l2arc_read_callback {
654 	arc_buf_t		*l2rcb_buf;		/* read buffer */
655 	spa_t			*l2rcb_spa;		/* spa */
656 	blkptr_t		l2rcb_bp;		/* original blkptr */
657 	zbookmark_t		l2rcb_zb;		/* original bookmark */
658 	int			l2rcb_flags;		/* original flags */
659 	enum zio_compress	l2rcb_compress;		/* applied compress */
660 } l2arc_read_callback_t;
661 
662 typedef struct l2arc_write_callback {
663 	l2arc_dev_t	*l2wcb_dev;		/* device info */
664 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
665 } l2arc_write_callback_t;
666 
667 struct l2arc_buf_hdr {
668 	/* protected by arc_buf_hdr  mutex */
669 	l2arc_dev_t		*b_dev;		/* L2ARC device */
670 	uint64_t		b_daddr;	/* disk address, offset byte */
671 	/* compression applied to buffer data */
672 	enum zio_compress	b_compress;
673 	/* real alloc'd buffer size depending on b_compress applied */
674 	int			b_asize;
675 	/* temporary buffer holder for in-flight compressed data */
676 	void			*b_tmp_cdata;
677 };
678 
679 typedef struct l2arc_data_free {
680 	/* protected by l2arc_free_on_write_mtx */
681 	void		*l2df_data;
682 	size_t		l2df_size;
683 	void		(*l2df_func)(void *, size_t);
684 	list_node_t	l2df_list_node;
685 } l2arc_data_free_t;
686 
687 static kmutex_t l2arc_feed_thr_lock;
688 static kcondvar_t l2arc_feed_thr_cv;
689 static uint8_t l2arc_thread_exit;
690 
691 static void l2arc_read_done(zio_t *zio);
692 static void l2arc_hdr_stat_add(void);
693 static void l2arc_hdr_stat_remove(void);
694 
695 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
696 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
697     enum zio_compress c);
698 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
699 
700 static uint64_t
701 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
702 {
703 	uint8_t *vdva = (uint8_t *)dva;
704 	uint64_t crc = -1ULL;
705 	int i;
706 
707 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
708 
709 	for (i = 0; i < sizeof (dva_t); i++)
710 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
711 
712 	crc ^= (spa>>8) ^ birth;
713 
714 	return (crc);
715 }
716 
717 #define	BUF_EMPTY(buf)						\
718 	((buf)->b_dva.dva_word[0] == 0 &&			\
719 	(buf)->b_dva.dva_word[1] == 0 &&			\
720 	(buf)->b_birth == 0)
721 
722 #define	BUF_EQUAL(spa, dva, birth, buf)				\
723 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
724 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
725 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
726 
727 static void
728 buf_discard_identity(arc_buf_hdr_t *hdr)
729 {
730 	hdr->b_dva.dva_word[0] = 0;
731 	hdr->b_dva.dva_word[1] = 0;
732 	hdr->b_birth = 0;
733 	hdr->b_cksum0 = 0;
734 }
735 
736 static arc_buf_hdr_t *
737 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
738 {
739 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
740 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
741 	arc_buf_hdr_t *buf;
742 
743 	mutex_enter(hash_lock);
744 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
745 	    buf = buf->b_hash_next) {
746 		if (BUF_EQUAL(spa, dva, birth, buf)) {
747 			*lockp = hash_lock;
748 			return (buf);
749 		}
750 	}
751 	mutex_exit(hash_lock);
752 	*lockp = NULL;
753 	return (NULL);
754 }
755 
756 /*
757  * Insert an entry into the hash table.  If there is already an element
758  * equal to elem in the hash table, then the already existing element
759  * will be returned and the new element will not be inserted.
760  * Otherwise returns NULL.
761  */
762 static arc_buf_hdr_t *
763 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
764 {
765 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
766 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
767 	arc_buf_hdr_t *fbuf;
768 	uint32_t i;
769 
770 	ASSERT(!HDR_IN_HASH_TABLE(buf));
771 	*lockp = hash_lock;
772 	mutex_enter(hash_lock);
773 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
774 	    fbuf = fbuf->b_hash_next, i++) {
775 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
776 			return (fbuf);
777 	}
778 
779 	buf->b_hash_next = buf_hash_table.ht_table[idx];
780 	buf_hash_table.ht_table[idx] = buf;
781 	buf->b_flags |= ARC_IN_HASH_TABLE;
782 
783 	/* collect some hash table performance data */
784 	if (i > 0) {
785 		ARCSTAT_BUMP(arcstat_hash_collisions);
786 		if (i == 1)
787 			ARCSTAT_BUMP(arcstat_hash_chains);
788 
789 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
790 	}
791 
792 	ARCSTAT_BUMP(arcstat_hash_elements);
793 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
794 
795 	return (NULL);
796 }
797 
798 static void
799 buf_hash_remove(arc_buf_hdr_t *buf)
800 {
801 	arc_buf_hdr_t *fbuf, **bufp;
802 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
803 
804 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
805 	ASSERT(HDR_IN_HASH_TABLE(buf));
806 
807 	bufp = &buf_hash_table.ht_table[idx];
808 	while ((fbuf = *bufp) != buf) {
809 		ASSERT(fbuf != NULL);
810 		bufp = &fbuf->b_hash_next;
811 	}
812 	*bufp = buf->b_hash_next;
813 	buf->b_hash_next = NULL;
814 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
815 
816 	/* collect some hash table performance data */
817 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
818 
819 	if (buf_hash_table.ht_table[idx] &&
820 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
821 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
822 }
823 
824 /*
825  * Global data structures and functions for the buf kmem cache.
826  */
827 static kmem_cache_t *hdr_cache;
828 static kmem_cache_t *buf_cache;
829 
830 static void
831 buf_fini(void)
832 {
833 	int i;
834 
835 	kmem_free(buf_hash_table.ht_table,
836 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
837 	for (i = 0; i < BUF_LOCKS; i++)
838 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
839 	kmem_cache_destroy(hdr_cache);
840 	kmem_cache_destroy(buf_cache);
841 }
842 
843 /*
844  * Constructor callback - called when the cache is empty
845  * and a new buf is requested.
846  */
847 /* ARGSUSED */
848 static int
849 hdr_cons(void *vbuf, void *unused, int kmflag)
850 {
851 	arc_buf_hdr_t *buf = vbuf;
852 
853 	bzero(buf, sizeof (arc_buf_hdr_t));
854 	refcount_create(&buf->b_refcnt);
855 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
856 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
857 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
858 
859 	return (0);
860 }
861 
862 /* ARGSUSED */
863 static int
864 buf_cons(void *vbuf, void *unused, int kmflag)
865 {
866 	arc_buf_t *buf = vbuf;
867 
868 	bzero(buf, sizeof (arc_buf_t));
869 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
870 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
871 
872 	return (0);
873 }
874 
875 /*
876  * Destructor callback - called when a cached buf is
877  * no longer required.
878  */
879 /* ARGSUSED */
880 static void
881 hdr_dest(void *vbuf, void *unused)
882 {
883 	arc_buf_hdr_t *buf = vbuf;
884 
885 	ASSERT(BUF_EMPTY(buf));
886 	refcount_destroy(&buf->b_refcnt);
887 	cv_destroy(&buf->b_cv);
888 	mutex_destroy(&buf->b_freeze_lock);
889 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
890 }
891 
892 /* ARGSUSED */
893 static void
894 buf_dest(void *vbuf, void *unused)
895 {
896 	arc_buf_t *buf = vbuf;
897 
898 	mutex_destroy(&buf->b_evict_lock);
899 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
900 }
901 
902 /*
903  * Reclaim callback -- invoked when memory is low.
904  */
905 /* ARGSUSED */
906 static void
907 hdr_recl(void *unused)
908 {
909 	dprintf("hdr_recl called\n");
910 	/*
911 	 * umem calls the reclaim func when we destroy the buf cache,
912 	 * which is after we do arc_fini().
913 	 */
914 	if (!arc_dead)
915 		cv_signal(&arc_reclaim_thr_cv);
916 }
917 
918 static void
919 buf_init(void)
920 {
921 	uint64_t *ct;
922 	uint64_t hsize = 1ULL << 12;
923 	int i, j;
924 
925 	/*
926 	 * The hash table is big enough to fill all of physical memory
927 	 * with an average 64K block size.  The table will take up
928 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
929 	 */
930 	while (hsize * 65536 < physmem * PAGESIZE)
931 		hsize <<= 1;
932 retry:
933 	buf_hash_table.ht_mask = hsize - 1;
934 	buf_hash_table.ht_table =
935 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
936 	if (buf_hash_table.ht_table == NULL) {
937 		ASSERT(hsize > (1ULL << 8));
938 		hsize >>= 1;
939 		goto retry;
940 	}
941 
942 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
943 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
944 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
945 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
946 
947 	for (i = 0; i < 256; i++)
948 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
949 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
950 
951 	for (i = 0; i < BUF_LOCKS; i++) {
952 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
953 		    NULL, MUTEX_DEFAULT, NULL);
954 	}
955 }
956 
957 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
958 
959 static void
960 arc_cksum_verify(arc_buf_t *buf)
961 {
962 	zio_cksum_t zc;
963 
964 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
965 		return;
966 
967 	mutex_enter(&buf->b_hdr->b_freeze_lock);
968 	if (buf->b_hdr->b_freeze_cksum == NULL ||
969 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
970 		mutex_exit(&buf->b_hdr->b_freeze_lock);
971 		return;
972 	}
973 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
974 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
975 		panic("buffer modified while frozen!");
976 	mutex_exit(&buf->b_hdr->b_freeze_lock);
977 }
978 
979 static int
980 arc_cksum_equal(arc_buf_t *buf)
981 {
982 	zio_cksum_t zc;
983 	int equal;
984 
985 	mutex_enter(&buf->b_hdr->b_freeze_lock);
986 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
987 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
988 	mutex_exit(&buf->b_hdr->b_freeze_lock);
989 
990 	return (equal);
991 }
992 
993 static void
994 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
995 {
996 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
997 		return;
998 
999 	mutex_enter(&buf->b_hdr->b_freeze_lock);
1000 	if (buf->b_hdr->b_freeze_cksum != NULL) {
1001 		mutex_exit(&buf->b_hdr->b_freeze_lock);
1002 		return;
1003 	}
1004 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1005 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1006 	    buf->b_hdr->b_freeze_cksum);
1007 	mutex_exit(&buf->b_hdr->b_freeze_lock);
1008 	arc_buf_watch(buf);
1009 }
1010 
1011 #ifndef _KERNEL
1012 typedef struct procctl {
1013 	long cmd;
1014 	prwatch_t prwatch;
1015 } procctl_t;
1016 #endif
1017 
1018 /* ARGSUSED */
1019 static void
1020 arc_buf_unwatch(arc_buf_t *buf)
1021 {
1022 #ifndef _KERNEL
1023 	if (arc_watch) {
1024 		int result;
1025 		procctl_t ctl;
1026 		ctl.cmd = PCWATCH;
1027 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1028 		ctl.prwatch.pr_size = 0;
1029 		ctl.prwatch.pr_wflags = 0;
1030 		result = write(arc_procfd, &ctl, sizeof (ctl));
1031 		ASSERT3U(result, ==, sizeof (ctl));
1032 	}
1033 #endif
1034 }
1035 
1036 /* ARGSUSED */
1037 static void
1038 arc_buf_watch(arc_buf_t *buf)
1039 {
1040 #ifndef _KERNEL
1041 	if (arc_watch) {
1042 		int result;
1043 		procctl_t ctl;
1044 		ctl.cmd = PCWATCH;
1045 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1046 		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1047 		ctl.prwatch.pr_wflags = WA_WRITE;
1048 		result = write(arc_procfd, &ctl, sizeof (ctl));
1049 		ASSERT3U(result, ==, sizeof (ctl));
1050 	}
1051 #endif
1052 }
1053 
1054 void
1055 arc_buf_thaw(arc_buf_t *buf)
1056 {
1057 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1058 		if (buf->b_hdr->b_state != arc_anon)
1059 			panic("modifying non-anon buffer!");
1060 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1061 			panic("modifying buffer while i/o in progress!");
1062 		arc_cksum_verify(buf);
1063 	}
1064 
1065 	mutex_enter(&buf->b_hdr->b_freeze_lock);
1066 	if (buf->b_hdr->b_freeze_cksum != NULL) {
1067 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1068 		buf->b_hdr->b_freeze_cksum = NULL;
1069 	}
1070 
1071 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1072 		if (buf->b_hdr->b_thawed)
1073 			kmem_free(buf->b_hdr->b_thawed, 1);
1074 		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1075 	}
1076 
1077 	mutex_exit(&buf->b_hdr->b_freeze_lock);
1078 
1079 	arc_buf_unwatch(buf);
1080 }
1081 
1082 void
1083 arc_buf_freeze(arc_buf_t *buf)
1084 {
1085 	kmutex_t *hash_lock;
1086 
1087 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1088 		return;
1089 
1090 	hash_lock = HDR_LOCK(buf->b_hdr);
1091 	mutex_enter(hash_lock);
1092 
1093 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1094 	    buf->b_hdr->b_state == arc_anon);
1095 	arc_cksum_compute(buf, B_FALSE);
1096 	mutex_exit(hash_lock);
1097 
1098 }
1099 
1100 static void
1101 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1102 {
1103 	ASSERT(MUTEX_HELD(hash_lock));
1104 
1105 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1106 	    (ab->b_state != arc_anon)) {
1107 		uint64_t delta = ab->b_size * ab->b_datacnt;
1108 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
1109 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1110 
1111 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1112 		mutex_enter(&ab->b_state->arcs_mtx);
1113 		ASSERT(list_link_active(&ab->b_arc_node));
1114 		list_remove(list, ab);
1115 		if (GHOST_STATE(ab->b_state)) {
1116 			ASSERT0(ab->b_datacnt);
1117 			ASSERT3P(ab->b_buf, ==, NULL);
1118 			delta = ab->b_size;
1119 		}
1120 		ASSERT(delta > 0);
1121 		ASSERT3U(*size, >=, delta);
1122 		atomic_add_64(size, -delta);
1123 		mutex_exit(&ab->b_state->arcs_mtx);
1124 		/* remove the prefetch flag if we get a reference */
1125 		if (ab->b_flags & ARC_PREFETCH)
1126 			ab->b_flags &= ~ARC_PREFETCH;
1127 	}
1128 }
1129 
1130 static int
1131 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1132 {
1133 	int cnt;
1134 	arc_state_t *state = ab->b_state;
1135 
1136 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1137 	ASSERT(!GHOST_STATE(state));
1138 
1139 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1140 	    (state != arc_anon)) {
1141 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1142 
1143 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1144 		mutex_enter(&state->arcs_mtx);
1145 		ASSERT(!list_link_active(&ab->b_arc_node));
1146 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1147 		ASSERT(ab->b_datacnt > 0);
1148 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1149 		mutex_exit(&state->arcs_mtx);
1150 	}
1151 	return (cnt);
1152 }
1153 
1154 /*
1155  * Move the supplied buffer to the indicated state.  The mutex
1156  * for the buffer must be held by the caller.
1157  */
1158 static void
1159 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1160 {
1161 	arc_state_t *old_state = ab->b_state;
1162 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1163 	uint64_t from_delta, to_delta;
1164 
1165 	ASSERT(MUTEX_HELD(hash_lock));
1166 	ASSERT(new_state != old_state);
1167 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1168 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1169 	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1170 
1171 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1172 
1173 	/*
1174 	 * If this buffer is evictable, transfer it from the
1175 	 * old state list to the new state list.
1176 	 */
1177 	if (refcnt == 0) {
1178 		if (old_state != arc_anon) {
1179 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1180 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1181 
1182 			if (use_mutex)
1183 				mutex_enter(&old_state->arcs_mtx);
1184 
1185 			ASSERT(list_link_active(&ab->b_arc_node));
1186 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1187 
1188 			/*
1189 			 * If prefetching out of the ghost cache,
1190 			 * we will have a non-zero datacnt.
1191 			 */
1192 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1193 				/* ghost elements have a ghost size */
1194 				ASSERT(ab->b_buf == NULL);
1195 				from_delta = ab->b_size;
1196 			}
1197 			ASSERT3U(*size, >=, from_delta);
1198 			atomic_add_64(size, -from_delta);
1199 
1200 			if (use_mutex)
1201 				mutex_exit(&old_state->arcs_mtx);
1202 		}
1203 		if (new_state != arc_anon) {
1204 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1205 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1206 
1207 			if (use_mutex)
1208 				mutex_enter(&new_state->arcs_mtx);
1209 
1210 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1211 
1212 			/* ghost elements have a ghost size */
1213 			if (GHOST_STATE(new_state)) {
1214 				ASSERT(ab->b_datacnt == 0);
1215 				ASSERT(ab->b_buf == NULL);
1216 				to_delta = ab->b_size;
1217 			}
1218 			atomic_add_64(size, to_delta);
1219 
1220 			if (use_mutex)
1221 				mutex_exit(&new_state->arcs_mtx);
1222 		}
1223 	}
1224 
1225 	ASSERT(!BUF_EMPTY(ab));
1226 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1227 		buf_hash_remove(ab);
1228 
1229 	/* adjust state sizes */
1230 	if (to_delta)
1231 		atomic_add_64(&new_state->arcs_size, to_delta);
1232 	if (from_delta) {
1233 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1234 		atomic_add_64(&old_state->arcs_size, -from_delta);
1235 	}
1236 	ab->b_state = new_state;
1237 
1238 	/* adjust l2arc hdr stats */
1239 	if (new_state == arc_l2c_only)
1240 		l2arc_hdr_stat_add();
1241 	else if (old_state == arc_l2c_only)
1242 		l2arc_hdr_stat_remove();
1243 }
1244 
1245 void
1246 arc_space_consume(uint64_t space, arc_space_type_t type)
1247 {
1248 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1249 
1250 	switch (type) {
1251 	case ARC_SPACE_DATA:
1252 		ARCSTAT_INCR(arcstat_data_size, space);
1253 		break;
1254 	case ARC_SPACE_OTHER:
1255 		ARCSTAT_INCR(arcstat_other_size, space);
1256 		break;
1257 	case ARC_SPACE_HDRS:
1258 		ARCSTAT_INCR(arcstat_hdr_size, space);
1259 		break;
1260 	case ARC_SPACE_L2HDRS:
1261 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1262 		break;
1263 	}
1264 
1265 	ARCSTAT_INCR(arcstat_meta_used, space);
1266 	atomic_add_64(&arc_size, space);
1267 }
1268 
1269 void
1270 arc_space_return(uint64_t space, arc_space_type_t type)
1271 {
1272 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1273 
1274 	switch (type) {
1275 	case ARC_SPACE_DATA:
1276 		ARCSTAT_INCR(arcstat_data_size, -space);
1277 		break;
1278 	case ARC_SPACE_OTHER:
1279 		ARCSTAT_INCR(arcstat_other_size, -space);
1280 		break;
1281 	case ARC_SPACE_HDRS:
1282 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1283 		break;
1284 	case ARC_SPACE_L2HDRS:
1285 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1286 		break;
1287 	}
1288 
1289 	ASSERT(arc_meta_used >= space);
1290 	if (arc_meta_max < arc_meta_used)
1291 		arc_meta_max = arc_meta_used;
1292 	ARCSTAT_INCR(arcstat_meta_used, -space);
1293 	ASSERT(arc_size >= space);
1294 	atomic_add_64(&arc_size, -space);
1295 }
1296 
1297 void *
1298 arc_data_buf_alloc(uint64_t size)
1299 {
1300 	if (arc_evict_needed(ARC_BUFC_DATA))
1301 		cv_signal(&arc_reclaim_thr_cv);
1302 	atomic_add_64(&arc_size, size);
1303 	return (zio_data_buf_alloc(size));
1304 }
1305 
1306 void
1307 arc_data_buf_free(void *buf, uint64_t size)
1308 {
1309 	zio_data_buf_free(buf, size);
1310 	ASSERT(arc_size >= size);
1311 	atomic_add_64(&arc_size, -size);
1312 }
1313 
1314 arc_buf_t *
1315 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1316 {
1317 	arc_buf_hdr_t *hdr;
1318 	arc_buf_t *buf;
1319 
1320 	ASSERT3U(size, >, 0);
1321 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1322 	ASSERT(BUF_EMPTY(hdr));
1323 	hdr->b_size = size;
1324 	hdr->b_type = type;
1325 	hdr->b_spa = spa_load_guid(spa);
1326 	hdr->b_state = arc_anon;
1327 	hdr->b_arc_access = 0;
1328 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1329 	buf->b_hdr = hdr;
1330 	buf->b_data = NULL;
1331 	buf->b_efunc = NULL;
1332 	buf->b_private = NULL;
1333 	buf->b_next = NULL;
1334 	hdr->b_buf = buf;
1335 	arc_get_data_buf(buf);
1336 	hdr->b_datacnt = 1;
1337 	hdr->b_flags = 0;
1338 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1339 	(void) refcount_add(&hdr->b_refcnt, tag);
1340 
1341 	return (buf);
1342 }
1343 
1344 static char *arc_onloan_tag = "onloan";
1345 
1346 /*
1347  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1348  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1349  * buffers must be returned to the arc before they can be used by the DMU or
1350  * freed.
1351  */
1352 arc_buf_t *
1353 arc_loan_buf(spa_t *spa, int size)
1354 {
1355 	arc_buf_t *buf;
1356 
1357 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1358 
1359 	atomic_add_64(&arc_loaned_bytes, size);
1360 	return (buf);
1361 }
1362 
1363 /*
1364  * Return a loaned arc buffer to the arc.
1365  */
1366 void
1367 arc_return_buf(arc_buf_t *buf, void *tag)
1368 {
1369 	arc_buf_hdr_t *hdr = buf->b_hdr;
1370 
1371 	ASSERT(buf->b_data != NULL);
1372 	(void) refcount_add(&hdr->b_refcnt, tag);
1373 	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1374 
1375 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1376 }
1377 
1378 /* Detach an arc_buf from a dbuf (tag) */
1379 void
1380 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1381 {
1382 	arc_buf_hdr_t *hdr;
1383 
1384 	ASSERT(buf->b_data != NULL);
1385 	hdr = buf->b_hdr;
1386 	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1387 	(void) refcount_remove(&hdr->b_refcnt, tag);
1388 	buf->b_efunc = NULL;
1389 	buf->b_private = NULL;
1390 
1391 	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1392 }
1393 
1394 static arc_buf_t *
1395 arc_buf_clone(arc_buf_t *from)
1396 {
1397 	arc_buf_t *buf;
1398 	arc_buf_hdr_t *hdr = from->b_hdr;
1399 	uint64_t size = hdr->b_size;
1400 
1401 	ASSERT(hdr->b_state != arc_anon);
1402 
1403 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1404 	buf->b_hdr = hdr;
1405 	buf->b_data = NULL;
1406 	buf->b_efunc = NULL;
1407 	buf->b_private = NULL;
1408 	buf->b_next = hdr->b_buf;
1409 	hdr->b_buf = buf;
1410 	arc_get_data_buf(buf);
1411 	bcopy(from->b_data, buf->b_data, size);
1412 
1413 	/*
1414 	 * This buffer already exists in the arc so create a duplicate
1415 	 * copy for the caller.  If the buffer is associated with user data
1416 	 * then track the size and number of duplicates.  These stats will be
1417 	 * updated as duplicate buffers are created and destroyed.
1418 	 */
1419 	if (hdr->b_type == ARC_BUFC_DATA) {
1420 		ARCSTAT_BUMP(arcstat_duplicate_buffers);
1421 		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1422 	}
1423 	hdr->b_datacnt += 1;
1424 	return (buf);
1425 }
1426 
1427 void
1428 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1429 {
1430 	arc_buf_hdr_t *hdr;
1431 	kmutex_t *hash_lock;
1432 
1433 	/*
1434 	 * Check to see if this buffer is evicted.  Callers
1435 	 * must verify b_data != NULL to know if the add_ref
1436 	 * was successful.
1437 	 */
1438 	mutex_enter(&buf->b_evict_lock);
1439 	if (buf->b_data == NULL) {
1440 		mutex_exit(&buf->b_evict_lock);
1441 		return;
1442 	}
1443 	hash_lock = HDR_LOCK(buf->b_hdr);
1444 	mutex_enter(hash_lock);
1445 	hdr = buf->b_hdr;
1446 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1447 	mutex_exit(&buf->b_evict_lock);
1448 
1449 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1450 	add_reference(hdr, hash_lock, tag);
1451 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1452 	arc_access(hdr, hash_lock);
1453 	mutex_exit(hash_lock);
1454 	ARCSTAT_BUMP(arcstat_hits);
1455 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1456 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1457 	    data, metadata, hits);
1458 }
1459 
1460 /*
1461  * Free the arc data buffer.  If it is an l2arc write in progress,
1462  * the buffer is placed on l2arc_free_on_write to be freed later.
1463  */
1464 static void
1465 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1466 {
1467 	arc_buf_hdr_t *hdr = buf->b_hdr;
1468 
1469 	if (HDR_L2_WRITING(hdr)) {
1470 		l2arc_data_free_t *df;
1471 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1472 		df->l2df_data = buf->b_data;
1473 		df->l2df_size = hdr->b_size;
1474 		df->l2df_func = free_func;
1475 		mutex_enter(&l2arc_free_on_write_mtx);
1476 		list_insert_head(l2arc_free_on_write, df);
1477 		mutex_exit(&l2arc_free_on_write_mtx);
1478 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1479 	} else {
1480 		free_func(buf->b_data, hdr->b_size);
1481 	}
1482 }
1483 
1484 static void
1485 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1486 {
1487 	arc_buf_t **bufp;
1488 
1489 	/* free up data associated with the buf */
1490 	if (buf->b_data) {
1491 		arc_state_t *state = buf->b_hdr->b_state;
1492 		uint64_t size = buf->b_hdr->b_size;
1493 		arc_buf_contents_t type = buf->b_hdr->b_type;
1494 
1495 		arc_cksum_verify(buf);
1496 		arc_buf_unwatch(buf);
1497 
1498 		if (!recycle) {
1499 			if (type == ARC_BUFC_METADATA) {
1500 				arc_buf_data_free(buf, zio_buf_free);
1501 				arc_space_return(size, ARC_SPACE_DATA);
1502 			} else {
1503 				ASSERT(type == ARC_BUFC_DATA);
1504 				arc_buf_data_free(buf, zio_data_buf_free);
1505 				ARCSTAT_INCR(arcstat_data_size, -size);
1506 				atomic_add_64(&arc_size, -size);
1507 			}
1508 		}
1509 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1510 			uint64_t *cnt = &state->arcs_lsize[type];
1511 
1512 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1513 			ASSERT(state != arc_anon);
1514 
1515 			ASSERT3U(*cnt, >=, size);
1516 			atomic_add_64(cnt, -size);
1517 		}
1518 		ASSERT3U(state->arcs_size, >=, size);
1519 		atomic_add_64(&state->arcs_size, -size);
1520 		buf->b_data = NULL;
1521 
1522 		/*
1523 		 * If we're destroying a duplicate buffer make sure
1524 		 * that the appropriate statistics are updated.
1525 		 */
1526 		if (buf->b_hdr->b_datacnt > 1 &&
1527 		    buf->b_hdr->b_type == ARC_BUFC_DATA) {
1528 			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1529 			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1530 		}
1531 		ASSERT(buf->b_hdr->b_datacnt > 0);
1532 		buf->b_hdr->b_datacnt -= 1;
1533 	}
1534 
1535 	/* only remove the buf if requested */
1536 	if (!all)
1537 		return;
1538 
1539 	/* remove the buf from the hdr list */
1540 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1541 		continue;
1542 	*bufp = buf->b_next;
1543 	buf->b_next = NULL;
1544 
1545 	ASSERT(buf->b_efunc == NULL);
1546 
1547 	/* clean up the buf */
1548 	buf->b_hdr = NULL;
1549 	kmem_cache_free(buf_cache, buf);
1550 }
1551 
1552 static void
1553 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1554 {
1555 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1556 	ASSERT3P(hdr->b_state, ==, arc_anon);
1557 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1558 	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1559 
1560 	if (l2hdr != NULL) {
1561 		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1562 		/*
1563 		 * To prevent arc_free() and l2arc_evict() from
1564 		 * attempting to free the same buffer at the same time,
1565 		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1566 		 * give it priority.  l2arc_evict() can't destroy this
1567 		 * header while we are waiting on l2arc_buflist_mtx.
1568 		 *
1569 		 * The hdr may be removed from l2ad_buflist before we
1570 		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1571 		 */
1572 		if (!buflist_held) {
1573 			mutex_enter(&l2arc_buflist_mtx);
1574 			l2hdr = hdr->b_l2hdr;
1575 		}
1576 
1577 		if (l2hdr != NULL) {
1578 			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1579 			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1580 			ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1581 			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1582 			if (hdr->b_state == arc_l2c_only)
1583 				l2arc_hdr_stat_remove();
1584 			hdr->b_l2hdr = NULL;
1585 		}
1586 
1587 		if (!buflist_held)
1588 			mutex_exit(&l2arc_buflist_mtx);
1589 	}
1590 
1591 	if (!BUF_EMPTY(hdr)) {
1592 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1593 		buf_discard_identity(hdr);
1594 	}
1595 	while (hdr->b_buf) {
1596 		arc_buf_t *buf = hdr->b_buf;
1597 
1598 		if (buf->b_efunc) {
1599 			mutex_enter(&arc_eviction_mtx);
1600 			mutex_enter(&buf->b_evict_lock);
1601 			ASSERT(buf->b_hdr != NULL);
1602 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1603 			hdr->b_buf = buf->b_next;
1604 			buf->b_hdr = &arc_eviction_hdr;
1605 			buf->b_next = arc_eviction_list;
1606 			arc_eviction_list = buf;
1607 			mutex_exit(&buf->b_evict_lock);
1608 			mutex_exit(&arc_eviction_mtx);
1609 		} else {
1610 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1611 		}
1612 	}
1613 	if (hdr->b_freeze_cksum != NULL) {
1614 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1615 		hdr->b_freeze_cksum = NULL;
1616 	}
1617 	if (hdr->b_thawed) {
1618 		kmem_free(hdr->b_thawed, 1);
1619 		hdr->b_thawed = NULL;
1620 	}
1621 
1622 	ASSERT(!list_link_active(&hdr->b_arc_node));
1623 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1624 	ASSERT3P(hdr->b_acb, ==, NULL);
1625 	kmem_cache_free(hdr_cache, hdr);
1626 }
1627 
1628 void
1629 arc_buf_free(arc_buf_t *buf, void *tag)
1630 {
1631 	arc_buf_hdr_t *hdr = buf->b_hdr;
1632 	int hashed = hdr->b_state != arc_anon;
1633 
1634 	ASSERT(buf->b_efunc == NULL);
1635 	ASSERT(buf->b_data != NULL);
1636 
1637 	if (hashed) {
1638 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1639 
1640 		mutex_enter(hash_lock);
1641 		hdr = buf->b_hdr;
1642 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1643 
1644 		(void) remove_reference(hdr, hash_lock, tag);
1645 		if (hdr->b_datacnt > 1) {
1646 			arc_buf_destroy(buf, FALSE, TRUE);
1647 		} else {
1648 			ASSERT(buf == hdr->b_buf);
1649 			ASSERT(buf->b_efunc == NULL);
1650 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1651 		}
1652 		mutex_exit(hash_lock);
1653 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1654 		int destroy_hdr;
1655 		/*
1656 		 * We are in the middle of an async write.  Don't destroy
1657 		 * this buffer unless the write completes before we finish
1658 		 * decrementing the reference count.
1659 		 */
1660 		mutex_enter(&arc_eviction_mtx);
1661 		(void) remove_reference(hdr, NULL, tag);
1662 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1663 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1664 		mutex_exit(&arc_eviction_mtx);
1665 		if (destroy_hdr)
1666 			arc_hdr_destroy(hdr);
1667 	} else {
1668 		if (remove_reference(hdr, NULL, tag) > 0)
1669 			arc_buf_destroy(buf, FALSE, TRUE);
1670 		else
1671 			arc_hdr_destroy(hdr);
1672 	}
1673 }
1674 
1675 boolean_t
1676 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1677 {
1678 	arc_buf_hdr_t *hdr = buf->b_hdr;
1679 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1680 	boolean_t no_callback = (buf->b_efunc == NULL);
1681 
1682 	if (hdr->b_state == arc_anon) {
1683 		ASSERT(hdr->b_datacnt == 1);
1684 		arc_buf_free(buf, tag);
1685 		return (no_callback);
1686 	}
1687 
1688 	mutex_enter(hash_lock);
1689 	hdr = buf->b_hdr;
1690 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1691 	ASSERT(hdr->b_state != arc_anon);
1692 	ASSERT(buf->b_data != NULL);
1693 
1694 	(void) remove_reference(hdr, hash_lock, tag);
1695 	if (hdr->b_datacnt > 1) {
1696 		if (no_callback)
1697 			arc_buf_destroy(buf, FALSE, TRUE);
1698 	} else if (no_callback) {
1699 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1700 		ASSERT(buf->b_efunc == NULL);
1701 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1702 	}
1703 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1704 	    refcount_is_zero(&hdr->b_refcnt));
1705 	mutex_exit(hash_lock);
1706 	return (no_callback);
1707 }
1708 
1709 int
1710 arc_buf_size(arc_buf_t *buf)
1711 {
1712 	return (buf->b_hdr->b_size);
1713 }
1714 
1715 /*
1716  * Called from the DMU to determine if the current buffer should be
1717  * evicted. In order to ensure proper locking, the eviction must be initiated
1718  * from the DMU. Return true if the buffer is associated with user data and
1719  * duplicate buffers still exist.
1720  */
1721 boolean_t
1722 arc_buf_eviction_needed(arc_buf_t *buf)
1723 {
1724 	arc_buf_hdr_t *hdr;
1725 	boolean_t evict_needed = B_FALSE;
1726 
1727 	if (zfs_disable_dup_eviction)
1728 		return (B_FALSE);
1729 
1730 	mutex_enter(&buf->b_evict_lock);
1731 	hdr = buf->b_hdr;
1732 	if (hdr == NULL) {
1733 		/*
1734 		 * We are in arc_do_user_evicts(); let that function
1735 		 * perform the eviction.
1736 		 */
1737 		ASSERT(buf->b_data == NULL);
1738 		mutex_exit(&buf->b_evict_lock);
1739 		return (B_FALSE);
1740 	} else if (buf->b_data == NULL) {
1741 		/*
1742 		 * We have already been added to the arc eviction list;
1743 		 * recommend eviction.
1744 		 */
1745 		ASSERT3P(hdr, ==, &arc_eviction_hdr);
1746 		mutex_exit(&buf->b_evict_lock);
1747 		return (B_TRUE);
1748 	}
1749 
1750 	if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1751 		evict_needed = B_TRUE;
1752 
1753 	mutex_exit(&buf->b_evict_lock);
1754 	return (evict_needed);
1755 }
1756 
1757 /*
1758  * Evict buffers from list until we've removed the specified number of
1759  * bytes.  Move the removed buffers to the appropriate evict state.
1760  * If the recycle flag is set, then attempt to "recycle" a buffer:
1761  * - look for a buffer to evict that is `bytes' long.
1762  * - return the data block from this buffer rather than freeing it.
1763  * This flag is used by callers that are trying to make space for a
1764  * new buffer in a full arc cache.
1765  *
1766  * This function makes a "best effort".  It skips over any buffers
1767  * it can't get a hash_lock on, and so may not catch all candidates.
1768  * It may also return without evicting as much space as requested.
1769  */
1770 static void *
1771 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1772     arc_buf_contents_t type)
1773 {
1774 	arc_state_t *evicted_state;
1775 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1776 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1777 	list_t *list = &state->arcs_list[type];
1778 	kmutex_t *hash_lock;
1779 	boolean_t have_lock;
1780 	void *stolen = NULL;
1781 
1782 	ASSERT(state == arc_mru || state == arc_mfu);
1783 
1784 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1785 
1786 	mutex_enter(&state->arcs_mtx);
1787 	mutex_enter(&evicted_state->arcs_mtx);
1788 
1789 	for (ab = list_tail(list); ab; ab = ab_prev) {
1790 		ab_prev = list_prev(list, ab);
1791 		/* prefetch buffers have a minimum lifespan */
1792 		if (HDR_IO_IN_PROGRESS(ab) ||
1793 		    (spa && ab->b_spa != spa) ||
1794 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1795 		    ddi_get_lbolt() - ab->b_arc_access <
1796 		    arc_min_prefetch_lifespan)) {
1797 			skipped++;
1798 			continue;
1799 		}
1800 		/* "lookahead" for better eviction candidate */
1801 		if (recycle && ab->b_size != bytes &&
1802 		    ab_prev && ab_prev->b_size == bytes)
1803 			continue;
1804 		hash_lock = HDR_LOCK(ab);
1805 		have_lock = MUTEX_HELD(hash_lock);
1806 		if (have_lock || mutex_tryenter(hash_lock)) {
1807 			ASSERT0(refcount_count(&ab->b_refcnt));
1808 			ASSERT(ab->b_datacnt > 0);
1809 			while (ab->b_buf) {
1810 				arc_buf_t *buf = ab->b_buf;
1811 				if (!mutex_tryenter(&buf->b_evict_lock)) {
1812 					missed += 1;
1813 					break;
1814 				}
1815 				if (buf->b_data) {
1816 					bytes_evicted += ab->b_size;
1817 					if (recycle && ab->b_type == type &&
1818 					    ab->b_size == bytes &&
1819 					    !HDR_L2_WRITING(ab)) {
1820 						stolen = buf->b_data;
1821 						recycle = FALSE;
1822 					}
1823 				}
1824 				if (buf->b_efunc) {
1825 					mutex_enter(&arc_eviction_mtx);
1826 					arc_buf_destroy(buf,
1827 					    buf->b_data == stolen, FALSE);
1828 					ab->b_buf = buf->b_next;
1829 					buf->b_hdr = &arc_eviction_hdr;
1830 					buf->b_next = arc_eviction_list;
1831 					arc_eviction_list = buf;
1832 					mutex_exit(&arc_eviction_mtx);
1833 					mutex_exit(&buf->b_evict_lock);
1834 				} else {
1835 					mutex_exit(&buf->b_evict_lock);
1836 					arc_buf_destroy(buf,
1837 					    buf->b_data == stolen, TRUE);
1838 				}
1839 			}
1840 
1841 			if (ab->b_l2hdr) {
1842 				ARCSTAT_INCR(arcstat_evict_l2_cached,
1843 				    ab->b_size);
1844 			} else {
1845 				if (l2arc_write_eligible(ab->b_spa, ab)) {
1846 					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1847 					    ab->b_size);
1848 				} else {
1849 					ARCSTAT_INCR(
1850 					    arcstat_evict_l2_ineligible,
1851 					    ab->b_size);
1852 				}
1853 			}
1854 
1855 			if (ab->b_datacnt == 0) {
1856 				arc_change_state(evicted_state, ab, hash_lock);
1857 				ASSERT(HDR_IN_HASH_TABLE(ab));
1858 				ab->b_flags |= ARC_IN_HASH_TABLE;
1859 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1860 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1861 			}
1862 			if (!have_lock)
1863 				mutex_exit(hash_lock);
1864 			if (bytes >= 0 && bytes_evicted >= bytes)
1865 				break;
1866 		} else {
1867 			missed += 1;
1868 		}
1869 	}
1870 
1871 	mutex_exit(&evicted_state->arcs_mtx);
1872 	mutex_exit(&state->arcs_mtx);
1873 
1874 	if (bytes_evicted < bytes)
1875 		dprintf("only evicted %lld bytes from %x",
1876 		    (longlong_t)bytes_evicted, state);
1877 
1878 	if (skipped)
1879 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1880 
1881 	if (missed)
1882 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1883 
1884 	/*
1885 	 * We have just evicted some data into the ghost state, make
1886 	 * sure we also adjust the ghost state size if necessary.
1887 	 */
1888 	if (arc_no_grow &&
1889 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1890 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1891 		    arc_mru_ghost->arcs_size - arc_c;
1892 
1893 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1894 			int64_t todelete =
1895 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1896 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1897 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1898 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1899 			    arc_mru_ghost->arcs_size +
1900 			    arc_mfu_ghost->arcs_size - arc_c);
1901 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1902 		}
1903 	}
1904 
1905 	return (stolen);
1906 }
1907 
1908 /*
1909  * Remove buffers from list until we've removed the specified number of
1910  * bytes.  Destroy the buffers that are removed.
1911  */
1912 static void
1913 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1914 {
1915 	arc_buf_hdr_t *ab, *ab_prev;
1916 	arc_buf_hdr_t marker = { 0 };
1917 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1918 	kmutex_t *hash_lock;
1919 	uint64_t bytes_deleted = 0;
1920 	uint64_t bufs_skipped = 0;
1921 
1922 	ASSERT(GHOST_STATE(state));
1923 top:
1924 	mutex_enter(&state->arcs_mtx);
1925 	for (ab = list_tail(list); ab; ab = ab_prev) {
1926 		ab_prev = list_prev(list, ab);
1927 		if (spa && ab->b_spa != spa)
1928 			continue;
1929 
1930 		/* ignore markers */
1931 		if (ab->b_spa == 0)
1932 			continue;
1933 
1934 		hash_lock = HDR_LOCK(ab);
1935 		/* caller may be trying to modify this buffer, skip it */
1936 		if (MUTEX_HELD(hash_lock))
1937 			continue;
1938 		if (mutex_tryenter(hash_lock)) {
1939 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1940 			ASSERT(ab->b_buf == NULL);
1941 			ARCSTAT_BUMP(arcstat_deleted);
1942 			bytes_deleted += ab->b_size;
1943 
1944 			if (ab->b_l2hdr != NULL) {
1945 				/*
1946 				 * This buffer is cached on the 2nd Level ARC;
1947 				 * don't destroy the header.
1948 				 */
1949 				arc_change_state(arc_l2c_only, ab, hash_lock);
1950 				mutex_exit(hash_lock);
1951 			} else {
1952 				arc_change_state(arc_anon, ab, hash_lock);
1953 				mutex_exit(hash_lock);
1954 				arc_hdr_destroy(ab);
1955 			}
1956 
1957 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1958 			if (bytes >= 0 && bytes_deleted >= bytes)
1959 				break;
1960 		} else if (bytes < 0) {
1961 			/*
1962 			 * Insert a list marker and then wait for the
1963 			 * hash lock to become available. Once its
1964 			 * available, restart from where we left off.
1965 			 */
1966 			list_insert_after(list, ab, &marker);
1967 			mutex_exit(&state->arcs_mtx);
1968 			mutex_enter(hash_lock);
1969 			mutex_exit(hash_lock);
1970 			mutex_enter(&state->arcs_mtx);
1971 			ab_prev = list_prev(list, &marker);
1972 			list_remove(list, &marker);
1973 		} else
1974 			bufs_skipped += 1;
1975 	}
1976 	mutex_exit(&state->arcs_mtx);
1977 
1978 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1979 	    (bytes < 0 || bytes_deleted < bytes)) {
1980 		list = &state->arcs_list[ARC_BUFC_METADATA];
1981 		goto top;
1982 	}
1983 
1984 	if (bufs_skipped) {
1985 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1986 		ASSERT(bytes >= 0);
1987 	}
1988 
1989 	if (bytes_deleted < bytes)
1990 		dprintf("only deleted %lld bytes from %p",
1991 		    (longlong_t)bytes_deleted, state);
1992 }
1993 
1994 static void
1995 arc_adjust(void)
1996 {
1997 	int64_t adjustment, delta;
1998 
1999 	/*
2000 	 * Adjust MRU size
2001 	 */
2002 
2003 	adjustment = MIN((int64_t)(arc_size - arc_c),
2004 	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2005 	    arc_p));
2006 
2007 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2008 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2009 		(void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
2010 		adjustment -= delta;
2011 	}
2012 
2013 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2014 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2015 		(void) arc_evict(arc_mru, NULL, delta, FALSE,
2016 		    ARC_BUFC_METADATA);
2017 	}
2018 
2019 	/*
2020 	 * Adjust MFU size
2021 	 */
2022 
2023 	adjustment = arc_size - arc_c;
2024 
2025 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2026 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2027 		(void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
2028 		adjustment -= delta;
2029 	}
2030 
2031 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2032 		int64_t delta = MIN(adjustment,
2033 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2034 		(void) arc_evict(arc_mfu, NULL, delta, FALSE,
2035 		    ARC_BUFC_METADATA);
2036 	}
2037 
2038 	/*
2039 	 * Adjust ghost lists
2040 	 */
2041 
2042 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2043 
2044 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2045 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2046 		arc_evict_ghost(arc_mru_ghost, NULL, delta);
2047 	}
2048 
2049 	adjustment =
2050 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2051 
2052 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2053 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2054 		arc_evict_ghost(arc_mfu_ghost, NULL, delta);
2055 	}
2056 }
2057 
2058 static void
2059 arc_do_user_evicts(void)
2060 {
2061 	mutex_enter(&arc_eviction_mtx);
2062 	while (arc_eviction_list != NULL) {
2063 		arc_buf_t *buf = arc_eviction_list;
2064 		arc_eviction_list = buf->b_next;
2065 		mutex_enter(&buf->b_evict_lock);
2066 		buf->b_hdr = NULL;
2067 		mutex_exit(&buf->b_evict_lock);
2068 		mutex_exit(&arc_eviction_mtx);
2069 
2070 		if (buf->b_efunc != NULL)
2071 			VERIFY(buf->b_efunc(buf) == 0);
2072 
2073 		buf->b_efunc = NULL;
2074 		buf->b_private = NULL;
2075 		kmem_cache_free(buf_cache, buf);
2076 		mutex_enter(&arc_eviction_mtx);
2077 	}
2078 	mutex_exit(&arc_eviction_mtx);
2079 }
2080 
2081 /*
2082  * Flush all *evictable* data from the cache for the given spa.
2083  * NOTE: this will not touch "active" (i.e. referenced) data.
2084  */
2085 void
2086 arc_flush(spa_t *spa)
2087 {
2088 	uint64_t guid = 0;
2089 
2090 	if (spa)
2091 		guid = spa_load_guid(spa);
2092 
2093 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
2094 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2095 		if (spa)
2096 			break;
2097 	}
2098 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
2099 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2100 		if (spa)
2101 			break;
2102 	}
2103 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
2104 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2105 		if (spa)
2106 			break;
2107 	}
2108 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
2109 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2110 		if (spa)
2111 			break;
2112 	}
2113 
2114 	arc_evict_ghost(arc_mru_ghost, guid, -1);
2115 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2116 
2117 	mutex_enter(&arc_reclaim_thr_lock);
2118 	arc_do_user_evicts();
2119 	mutex_exit(&arc_reclaim_thr_lock);
2120 	ASSERT(spa || arc_eviction_list == NULL);
2121 }
2122 
2123 void
2124 arc_shrink(void)
2125 {
2126 	if (arc_c > arc_c_min) {
2127 		uint64_t to_free;
2128 
2129 #ifdef _KERNEL
2130 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2131 #else
2132 		to_free = arc_c >> arc_shrink_shift;
2133 #endif
2134 		if (arc_c > arc_c_min + to_free)
2135 			atomic_add_64(&arc_c, -to_free);
2136 		else
2137 			arc_c = arc_c_min;
2138 
2139 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2140 		if (arc_c > arc_size)
2141 			arc_c = MAX(arc_size, arc_c_min);
2142 		if (arc_p > arc_c)
2143 			arc_p = (arc_c >> 1);
2144 		ASSERT(arc_c >= arc_c_min);
2145 		ASSERT((int64_t)arc_p >= 0);
2146 	}
2147 
2148 	if (arc_size > arc_c)
2149 		arc_adjust();
2150 }
2151 
2152 /*
2153  * Determine if the system is under memory pressure and is asking
2154  * to reclaim memory. A return value of 1 indicates that the system
2155  * is under memory pressure and that the arc should adjust accordingly.
2156  */
2157 static int
2158 arc_reclaim_needed(void)
2159 {
2160 	uint64_t extra;
2161 
2162 #ifdef _KERNEL
2163 
2164 	if (needfree)
2165 		return (1);
2166 
2167 	/*
2168 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2169 	 */
2170 	extra = desfree;
2171 
2172 	/*
2173 	 * check that we're out of range of the pageout scanner.  It starts to
2174 	 * schedule paging if freemem is less than lotsfree and needfree.
2175 	 * lotsfree is the high-water mark for pageout, and needfree is the
2176 	 * number of needed free pages.  We add extra pages here to make sure
2177 	 * the scanner doesn't start up while we're freeing memory.
2178 	 */
2179 	if (freemem < lotsfree + needfree + extra)
2180 		return (1);
2181 
2182 	/*
2183 	 * check to make sure that swapfs has enough space so that anon
2184 	 * reservations can still succeed. anon_resvmem() checks that the
2185 	 * availrmem is greater than swapfs_minfree, and the number of reserved
2186 	 * swap pages.  We also add a bit of extra here just to prevent
2187 	 * circumstances from getting really dire.
2188 	 */
2189 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2190 		return (1);
2191 
2192 #if defined(__i386)
2193 	/*
2194 	 * If we're on an i386 platform, it's possible that we'll exhaust the
2195 	 * kernel heap space before we ever run out of available physical
2196 	 * memory.  Most checks of the size of the heap_area compare against
2197 	 * tune.t_minarmem, which is the minimum available real memory that we
2198 	 * can have in the system.  However, this is generally fixed at 25 pages
2199 	 * which is so low that it's useless.  In this comparison, we seek to
2200 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2201 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2202 	 * free)
2203 	 */
2204 	if (vmem_size(heap_arena, VMEM_FREE) <
2205 	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2))
2206 		return (1);
2207 #endif
2208 
2209 	/*
2210 	 * If zio data pages are being allocated out of a separate heap segment,
2211 	 * then enforce that the size of available vmem for this arena remains
2212 	 * above about 1/16th free.
2213 	 *
2214 	 * Note: The 1/16th arena free requirement was put in place
2215 	 * to aggressively evict memory from the arc in order to avoid
2216 	 * memory fragmentation issues.
2217 	 */
2218 	if (zio_arena != NULL &&
2219 	    vmem_size(zio_arena, VMEM_FREE) <
2220 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2221 		return (1);
2222 #else
2223 	if (spa_get_random(100) == 0)
2224 		return (1);
2225 #endif
2226 	return (0);
2227 }
2228 
2229 static void
2230 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2231 {
2232 	size_t			i;
2233 	kmem_cache_t		*prev_cache = NULL;
2234 	kmem_cache_t		*prev_data_cache = NULL;
2235 	extern kmem_cache_t	*zio_buf_cache[];
2236 	extern kmem_cache_t	*zio_data_buf_cache[];
2237 
2238 #ifdef _KERNEL
2239 	if (arc_meta_used >= arc_meta_limit) {
2240 		/*
2241 		 * We are exceeding our meta-data cache limit.
2242 		 * Purge some DNLC entries to release holds on meta-data.
2243 		 */
2244 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2245 	}
2246 #if defined(__i386)
2247 	/*
2248 	 * Reclaim unused memory from all kmem caches.
2249 	 */
2250 	kmem_reap();
2251 #endif
2252 #endif
2253 
2254 	/*
2255 	 * An aggressive reclamation will shrink the cache size as well as
2256 	 * reap free buffers from the arc kmem caches.
2257 	 */
2258 	if (strat == ARC_RECLAIM_AGGR)
2259 		arc_shrink();
2260 
2261 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2262 		if (zio_buf_cache[i] != prev_cache) {
2263 			prev_cache = zio_buf_cache[i];
2264 			kmem_cache_reap_now(zio_buf_cache[i]);
2265 		}
2266 		if (zio_data_buf_cache[i] != prev_data_cache) {
2267 			prev_data_cache = zio_data_buf_cache[i];
2268 			kmem_cache_reap_now(zio_data_buf_cache[i]);
2269 		}
2270 	}
2271 	kmem_cache_reap_now(buf_cache);
2272 	kmem_cache_reap_now(hdr_cache);
2273 
2274 	/*
2275 	 * Ask the vmem areana to reclaim unused memory from its
2276 	 * quantum caches.
2277 	 */
2278 	if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2279 		vmem_qcache_reap(zio_arena);
2280 }
2281 
2282 static void
2283 arc_reclaim_thread(void)
2284 {
2285 	clock_t			growtime = 0;
2286 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2287 	callb_cpr_t		cpr;
2288 
2289 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2290 
2291 	mutex_enter(&arc_reclaim_thr_lock);
2292 	while (arc_thread_exit == 0) {
2293 		if (arc_reclaim_needed()) {
2294 
2295 			if (arc_no_grow) {
2296 				if (last_reclaim == ARC_RECLAIM_CONS) {
2297 					last_reclaim = ARC_RECLAIM_AGGR;
2298 				} else {
2299 					last_reclaim = ARC_RECLAIM_CONS;
2300 				}
2301 			} else {
2302 				arc_no_grow = TRUE;
2303 				last_reclaim = ARC_RECLAIM_AGGR;
2304 				membar_producer();
2305 			}
2306 
2307 			/* reset the growth delay for every reclaim */
2308 			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2309 
2310 			arc_kmem_reap_now(last_reclaim);
2311 			arc_warm = B_TRUE;
2312 
2313 		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2314 			arc_no_grow = FALSE;
2315 		}
2316 
2317 		arc_adjust();
2318 
2319 		if (arc_eviction_list != NULL)
2320 			arc_do_user_evicts();
2321 
2322 		/* block until needed, or one second, whichever is shorter */
2323 		CALLB_CPR_SAFE_BEGIN(&cpr);
2324 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2325 		    &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2326 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2327 	}
2328 
2329 	arc_thread_exit = 0;
2330 	cv_broadcast(&arc_reclaim_thr_cv);
2331 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2332 	thread_exit();
2333 }
2334 
2335 /*
2336  * Adapt arc info given the number of bytes we are trying to add and
2337  * the state that we are comming from.  This function is only called
2338  * when we are adding new content to the cache.
2339  */
2340 static void
2341 arc_adapt(int bytes, arc_state_t *state)
2342 {
2343 	int mult;
2344 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2345 
2346 	if (state == arc_l2c_only)
2347 		return;
2348 
2349 	ASSERT(bytes > 0);
2350 	/*
2351 	 * Adapt the target size of the MRU list:
2352 	 *	- if we just hit in the MRU ghost list, then increase
2353 	 *	  the target size of the MRU list.
2354 	 *	- if we just hit in the MFU ghost list, then increase
2355 	 *	  the target size of the MFU list by decreasing the
2356 	 *	  target size of the MRU list.
2357 	 */
2358 	if (state == arc_mru_ghost) {
2359 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2360 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2361 		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2362 
2363 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2364 	} else if (state == arc_mfu_ghost) {
2365 		uint64_t delta;
2366 
2367 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2368 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2369 		mult = MIN(mult, 10);
2370 
2371 		delta = MIN(bytes * mult, arc_p);
2372 		arc_p = MAX(arc_p_min, arc_p - delta);
2373 	}
2374 	ASSERT((int64_t)arc_p >= 0);
2375 
2376 	if (arc_reclaim_needed()) {
2377 		cv_signal(&arc_reclaim_thr_cv);
2378 		return;
2379 	}
2380 
2381 	if (arc_no_grow)
2382 		return;
2383 
2384 	if (arc_c >= arc_c_max)
2385 		return;
2386 
2387 	/*
2388 	 * If we're within (2 * maxblocksize) bytes of the target
2389 	 * cache size, increment the target cache size
2390 	 */
2391 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2392 		atomic_add_64(&arc_c, (int64_t)bytes);
2393 		if (arc_c > arc_c_max)
2394 			arc_c = arc_c_max;
2395 		else if (state == arc_anon)
2396 			atomic_add_64(&arc_p, (int64_t)bytes);
2397 		if (arc_p > arc_c)
2398 			arc_p = arc_c;
2399 	}
2400 	ASSERT((int64_t)arc_p >= 0);
2401 }
2402 
2403 /*
2404  * Check if the cache has reached its limits and eviction is required
2405  * prior to insert.
2406  */
2407 static int
2408 arc_evict_needed(arc_buf_contents_t type)
2409 {
2410 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2411 		return (1);
2412 
2413 	if (arc_reclaim_needed())
2414 		return (1);
2415 
2416 	return (arc_size > arc_c);
2417 }
2418 
2419 /*
2420  * The buffer, supplied as the first argument, needs a data block.
2421  * So, if we are at cache max, determine which cache should be victimized.
2422  * We have the following cases:
2423  *
2424  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2425  * In this situation if we're out of space, but the resident size of the MFU is
2426  * under the limit, victimize the MFU cache to satisfy this insertion request.
2427  *
2428  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2429  * Here, we've used up all of the available space for the MRU, so we need to
2430  * evict from our own cache instead.  Evict from the set of resident MRU
2431  * entries.
2432  *
2433  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2434  * c minus p represents the MFU space in the cache, since p is the size of the
2435  * cache that is dedicated to the MRU.  In this situation there's still space on
2436  * the MFU side, so the MRU side needs to be victimized.
2437  *
2438  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2439  * MFU's resident set is consuming more space than it has been allotted.  In
2440  * this situation, we must victimize our own cache, the MFU, for this insertion.
2441  */
2442 static void
2443 arc_get_data_buf(arc_buf_t *buf)
2444 {
2445 	arc_state_t		*state = buf->b_hdr->b_state;
2446 	uint64_t		size = buf->b_hdr->b_size;
2447 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2448 
2449 	arc_adapt(size, state);
2450 
2451 	/*
2452 	 * We have not yet reached cache maximum size,
2453 	 * just allocate a new buffer.
2454 	 */
2455 	if (!arc_evict_needed(type)) {
2456 		if (type == ARC_BUFC_METADATA) {
2457 			buf->b_data = zio_buf_alloc(size);
2458 			arc_space_consume(size, ARC_SPACE_DATA);
2459 		} else {
2460 			ASSERT(type == ARC_BUFC_DATA);
2461 			buf->b_data = zio_data_buf_alloc(size);
2462 			ARCSTAT_INCR(arcstat_data_size, size);
2463 			atomic_add_64(&arc_size, size);
2464 		}
2465 		goto out;
2466 	}
2467 
2468 	/*
2469 	 * If we are prefetching from the mfu ghost list, this buffer
2470 	 * will end up on the mru list; so steal space from there.
2471 	 */
2472 	if (state == arc_mfu_ghost)
2473 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2474 	else if (state == arc_mru_ghost)
2475 		state = arc_mru;
2476 
2477 	if (state == arc_mru || state == arc_anon) {
2478 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2479 		state = (arc_mfu->arcs_lsize[type] >= size &&
2480 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2481 	} else {
2482 		/* MFU cases */
2483 		uint64_t mfu_space = arc_c - arc_p;
2484 		state =  (arc_mru->arcs_lsize[type] >= size &&
2485 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2486 	}
2487 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2488 		if (type == ARC_BUFC_METADATA) {
2489 			buf->b_data = zio_buf_alloc(size);
2490 			arc_space_consume(size, ARC_SPACE_DATA);
2491 		} else {
2492 			ASSERT(type == ARC_BUFC_DATA);
2493 			buf->b_data = zio_data_buf_alloc(size);
2494 			ARCSTAT_INCR(arcstat_data_size, size);
2495 			atomic_add_64(&arc_size, size);
2496 		}
2497 		ARCSTAT_BUMP(arcstat_recycle_miss);
2498 	}
2499 	ASSERT(buf->b_data != NULL);
2500 out:
2501 	/*
2502 	 * Update the state size.  Note that ghost states have a
2503 	 * "ghost size" and so don't need to be updated.
2504 	 */
2505 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2506 		arc_buf_hdr_t *hdr = buf->b_hdr;
2507 
2508 		atomic_add_64(&hdr->b_state->arcs_size, size);
2509 		if (list_link_active(&hdr->b_arc_node)) {
2510 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2511 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2512 		}
2513 		/*
2514 		 * If we are growing the cache, and we are adding anonymous
2515 		 * data, and we have outgrown arc_p, update arc_p
2516 		 */
2517 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2518 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2519 			arc_p = MIN(arc_c, arc_p + size);
2520 	}
2521 }
2522 
2523 /*
2524  * This routine is called whenever a buffer is accessed.
2525  * NOTE: the hash lock is dropped in this function.
2526  */
2527 static void
2528 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2529 {
2530 	clock_t now;
2531 
2532 	ASSERT(MUTEX_HELD(hash_lock));
2533 
2534 	if (buf->b_state == arc_anon) {
2535 		/*
2536 		 * This buffer is not in the cache, and does not
2537 		 * appear in our "ghost" list.  Add the new buffer
2538 		 * to the MRU state.
2539 		 */
2540 
2541 		ASSERT(buf->b_arc_access == 0);
2542 		buf->b_arc_access = ddi_get_lbolt();
2543 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2544 		arc_change_state(arc_mru, buf, hash_lock);
2545 
2546 	} else if (buf->b_state == arc_mru) {
2547 		now = ddi_get_lbolt();
2548 
2549 		/*
2550 		 * If this buffer is here because of a prefetch, then either:
2551 		 * - clear the flag if this is a "referencing" read
2552 		 *   (any subsequent access will bump this into the MFU state).
2553 		 * or
2554 		 * - move the buffer to the head of the list if this is
2555 		 *   another prefetch (to make it less likely to be evicted).
2556 		 */
2557 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2558 			if (refcount_count(&buf->b_refcnt) == 0) {
2559 				ASSERT(list_link_active(&buf->b_arc_node));
2560 			} else {
2561 				buf->b_flags &= ~ARC_PREFETCH;
2562 				ARCSTAT_BUMP(arcstat_mru_hits);
2563 			}
2564 			buf->b_arc_access = now;
2565 			return;
2566 		}
2567 
2568 		/*
2569 		 * This buffer has been "accessed" only once so far,
2570 		 * but it is still in the cache. Move it to the MFU
2571 		 * state.
2572 		 */
2573 		if (now > buf->b_arc_access + ARC_MINTIME) {
2574 			/*
2575 			 * More than 125ms have passed since we
2576 			 * instantiated this buffer.  Move it to the
2577 			 * most frequently used state.
2578 			 */
2579 			buf->b_arc_access = now;
2580 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2581 			arc_change_state(arc_mfu, buf, hash_lock);
2582 		}
2583 		ARCSTAT_BUMP(arcstat_mru_hits);
2584 	} else if (buf->b_state == arc_mru_ghost) {
2585 		arc_state_t	*new_state;
2586 		/*
2587 		 * This buffer has been "accessed" recently, but
2588 		 * was evicted from the cache.  Move it to the
2589 		 * MFU state.
2590 		 */
2591 
2592 		if (buf->b_flags & ARC_PREFETCH) {
2593 			new_state = arc_mru;
2594 			if (refcount_count(&buf->b_refcnt) > 0)
2595 				buf->b_flags &= ~ARC_PREFETCH;
2596 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2597 		} else {
2598 			new_state = arc_mfu;
2599 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2600 		}
2601 
2602 		buf->b_arc_access = ddi_get_lbolt();
2603 		arc_change_state(new_state, buf, hash_lock);
2604 
2605 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2606 	} else if (buf->b_state == arc_mfu) {
2607 		/*
2608 		 * This buffer has been accessed more than once and is
2609 		 * still in the cache.  Keep it in the MFU state.
2610 		 *
2611 		 * NOTE: an add_reference() that occurred when we did
2612 		 * the arc_read() will have kicked this off the list.
2613 		 * If it was a prefetch, we will explicitly move it to
2614 		 * the head of the list now.
2615 		 */
2616 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2617 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2618 			ASSERT(list_link_active(&buf->b_arc_node));
2619 		}
2620 		ARCSTAT_BUMP(arcstat_mfu_hits);
2621 		buf->b_arc_access = ddi_get_lbolt();
2622 	} else if (buf->b_state == arc_mfu_ghost) {
2623 		arc_state_t	*new_state = arc_mfu;
2624 		/*
2625 		 * This buffer has been accessed more than once but has
2626 		 * been evicted from the cache.  Move it back to the
2627 		 * MFU state.
2628 		 */
2629 
2630 		if (buf->b_flags & ARC_PREFETCH) {
2631 			/*
2632 			 * This is a prefetch access...
2633 			 * move this block back to the MRU state.
2634 			 */
2635 			ASSERT0(refcount_count(&buf->b_refcnt));
2636 			new_state = arc_mru;
2637 		}
2638 
2639 		buf->b_arc_access = ddi_get_lbolt();
2640 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2641 		arc_change_state(new_state, buf, hash_lock);
2642 
2643 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2644 	} else if (buf->b_state == arc_l2c_only) {
2645 		/*
2646 		 * This buffer is on the 2nd Level ARC.
2647 		 */
2648 
2649 		buf->b_arc_access = ddi_get_lbolt();
2650 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2651 		arc_change_state(arc_mfu, buf, hash_lock);
2652 	} else {
2653 		ASSERT(!"invalid arc state");
2654 	}
2655 }
2656 
2657 /* a generic arc_done_func_t which you can use */
2658 /* ARGSUSED */
2659 void
2660 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2661 {
2662 	if (zio == NULL || zio->io_error == 0)
2663 		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2664 	VERIFY(arc_buf_remove_ref(buf, arg));
2665 }
2666 
2667 /* a generic arc_done_func_t */
2668 void
2669 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2670 {
2671 	arc_buf_t **bufp = arg;
2672 	if (zio && zio->io_error) {
2673 		VERIFY(arc_buf_remove_ref(buf, arg));
2674 		*bufp = NULL;
2675 	} else {
2676 		*bufp = buf;
2677 		ASSERT(buf->b_data);
2678 	}
2679 }
2680 
2681 static void
2682 arc_read_done(zio_t *zio)
2683 {
2684 	arc_buf_hdr_t	*hdr, *found;
2685 	arc_buf_t	*buf;
2686 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2687 	kmutex_t	*hash_lock;
2688 	arc_callback_t	*callback_list, *acb;
2689 	int		freeable = FALSE;
2690 
2691 	buf = zio->io_private;
2692 	hdr = buf->b_hdr;
2693 
2694 	/*
2695 	 * The hdr was inserted into hash-table and removed from lists
2696 	 * prior to starting I/O.  We should find this header, since
2697 	 * it's in the hash table, and it should be legit since it's
2698 	 * not possible to evict it during the I/O.  The only possible
2699 	 * reason for it not to be found is if we were freed during the
2700 	 * read.
2701 	 */
2702 	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2703 	    &hash_lock);
2704 
2705 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2706 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2707 	    (found == hdr && HDR_L2_READING(hdr)));
2708 
2709 	hdr->b_flags &= ~ARC_L2_EVICTED;
2710 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2711 		hdr->b_flags &= ~ARC_L2CACHE;
2712 
2713 	/* byteswap if necessary */
2714 	callback_list = hdr->b_acb;
2715 	ASSERT(callback_list != NULL);
2716 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2717 		dmu_object_byteswap_t bswap =
2718 		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2719 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2720 		    byteswap_uint64_array :
2721 		    dmu_ot_byteswap[bswap].ob_func;
2722 		func(buf->b_data, hdr->b_size);
2723 	}
2724 
2725 	arc_cksum_compute(buf, B_FALSE);
2726 	arc_buf_watch(buf);
2727 
2728 	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2729 		/*
2730 		 * Only call arc_access on anonymous buffers.  This is because
2731 		 * if we've issued an I/O for an evicted buffer, we've already
2732 		 * called arc_access (to prevent any simultaneous readers from
2733 		 * getting confused).
2734 		 */
2735 		arc_access(hdr, hash_lock);
2736 	}
2737 
2738 	/* create copies of the data buffer for the callers */
2739 	abuf = buf;
2740 	for (acb = callback_list; acb; acb = acb->acb_next) {
2741 		if (acb->acb_done) {
2742 			if (abuf == NULL) {
2743 				ARCSTAT_BUMP(arcstat_duplicate_reads);
2744 				abuf = arc_buf_clone(buf);
2745 			}
2746 			acb->acb_buf = abuf;
2747 			abuf = NULL;
2748 		}
2749 	}
2750 	hdr->b_acb = NULL;
2751 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2752 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2753 	if (abuf == buf) {
2754 		ASSERT(buf->b_efunc == NULL);
2755 		ASSERT(hdr->b_datacnt == 1);
2756 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2757 	}
2758 
2759 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2760 
2761 	if (zio->io_error != 0) {
2762 		hdr->b_flags |= ARC_IO_ERROR;
2763 		if (hdr->b_state != arc_anon)
2764 			arc_change_state(arc_anon, hdr, hash_lock);
2765 		if (HDR_IN_HASH_TABLE(hdr))
2766 			buf_hash_remove(hdr);
2767 		freeable = refcount_is_zero(&hdr->b_refcnt);
2768 	}
2769 
2770 	/*
2771 	 * Broadcast before we drop the hash_lock to avoid the possibility
2772 	 * that the hdr (and hence the cv) might be freed before we get to
2773 	 * the cv_broadcast().
2774 	 */
2775 	cv_broadcast(&hdr->b_cv);
2776 
2777 	if (hash_lock) {
2778 		mutex_exit(hash_lock);
2779 	} else {
2780 		/*
2781 		 * This block was freed while we waited for the read to
2782 		 * complete.  It has been removed from the hash table and
2783 		 * moved to the anonymous state (so that it won't show up
2784 		 * in the cache).
2785 		 */
2786 		ASSERT3P(hdr->b_state, ==, arc_anon);
2787 		freeable = refcount_is_zero(&hdr->b_refcnt);
2788 	}
2789 
2790 	/* execute each callback and free its structure */
2791 	while ((acb = callback_list) != NULL) {
2792 		if (acb->acb_done)
2793 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2794 
2795 		if (acb->acb_zio_dummy != NULL) {
2796 			acb->acb_zio_dummy->io_error = zio->io_error;
2797 			zio_nowait(acb->acb_zio_dummy);
2798 		}
2799 
2800 		callback_list = acb->acb_next;
2801 		kmem_free(acb, sizeof (arc_callback_t));
2802 	}
2803 
2804 	if (freeable)
2805 		arc_hdr_destroy(hdr);
2806 }
2807 
2808 /*
2809  * "Read" the block at the specified DVA (in bp) via the
2810  * cache.  If the block is found in the cache, invoke the provided
2811  * callback immediately and return.  Note that the `zio' parameter
2812  * in the callback will be NULL in this case, since no IO was
2813  * required.  If the block is not in the cache pass the read request
2814  * on to the spa with a substitute callback function, so that the
2815  * requested block will be added to the cache.
2816  *
2817  * If a read request arrives for a block that has a read in-progress,
2818  * either wait for the in-progress read to complete (and return the
2819  * results); or, if this is a read with a "done" func, add a record
2820  * to the read to invoke the "done" func when the read completes,
2821  * and return; or just return.
2822  *
2823  * arc_read_done() will invoke all the requested "done" functions
2824  * for readers of this block.
2825  */
2826 int
2827 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2828     void *private, int priority, int zio_flags, uint32_t *arc_flags,
2829     const zbookmark_t *zb)
2830 {
2831 	arc_buf_hdr_t *hdr;
2832 	arc_buf_t *buf = NULL;
2833 	kmutex_t *hash_lock;
2834 	zio_t *rzio;
2835 	uint64_t guid = spa_load_guid(spa);
2836 
2837 top:
2838 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2839 	    &hash_lock);
2840 	if (hdr && hdr->b_datacnt > 0) {
2841 
2842 		*arc_flags |= ARC_CACHED;
2843 
2844 		if (HDR_IO_IN_PROGRESS(hdr)) {
2845 
2846 			if (*arc_flags & ARC_WAIT) {
2847 				cv_wait(&hdr->b_cv, hash_lock);
2848 				mutex_exit(hash_lock);
2849 				goto top;
2850 			}
2851 			ASSERT(*arc_flags & ARC_NOWAIT);
2852 
2853 			if (done) {
2854 				arc_callback_t	*acb = NULL;
2855 
2856 				acb = kmem_zalloc(sizeof (arc_callback_t),
2857 				    KM_SLEEP);
2858 				acb->acb_done = done;
2859 				acb->acb_private = private;
2860 				if (pio != NULL)
2861 					acb->acb_zio_dummy = zio_null(pio,
2862 					    spa, NULL, NULL, NULL, zio_flags);
2863 
2864 				ASSERT(acb->acb_done != NULL);
2865 				acb->acb_next = hdr->b_acb;
2866 				hdr->b_acb = acb;
2867 				add_reference(hdr, hash_lock, private);
2868 				mutex_exit(hash_lock);
2869 				return (0);
2870 			}
2871 			mutex_exit(hash_lock);
2872 			return (0);
2873 		}
2874 
2875 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2876 
2877 		if (done) {
2878 			add_reference(hdr, hash_lock, private);
2879 			/*
2880 			 * If this block is already in use, create a new
2881 			 * copy of the data so that we will be guaranteed
2882 			 * that arc_release() will always succeed.
2883 			 */
2884 			buf = hdr->b_buf;
2885 			ASSERT(buf);
2886 			ASSERT(buf->b_data);
2887 			if (HDR_BUF_AVAILABLE(hdr)) {
2888 				ASSERT(buf->b_efunc == NULL);
2889 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2890 			} else {
2891 				buf = arc_buf_clone(buf);
2892 			}
2893 
2894 		} else if (*arc_flags & ARC_PREFETCH &&
2895 		    refcount_count(&hdr->b_refcnt) == 0) {
2896 			hdr->b_flags |= ARC_PREFETCH;
2897 		}
2898 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2899 		arc_access(hdr, hash_lock);
2900 		if (*arc_flags & ARC_L2CACHE)
2901 			hdr->b_flags |= ARC_L2CACHE;
2902 		if (*arc_flags & ARC_L2COMPRESS)
2903 			hdr->b_flags |= ARC_L2COMPRESS;
2904 		mutex_exit(hash_lock);
2905 		ARCSTAT_BUMP(arcstat_hits);
2906 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2907 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2908 		    data, metadata, hits);
2909 
2910 		if (done)
2911 			done(NULL, buf, private);
2912 	} else {
2913 		uint64_t size = BP_GET_LSIZE(bp);
2914 		arc_callback_t	*acb;
2915 		vdev_t *vd = NULL;
2916 		uint64_t addr = 0;
2917 		boolean_t devw = B_FALSE;
2918 
2919 		if (hdr == NULL) {
2920 			/* this block is not in the cache */
2921 			arc_buf_hdr_t	*exists;
2922 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2923 			buf = arc_buf_alloc(spa, size, private, type);
2924 			hdr = buf->b_hdr;
2925 			hdr->b_dva = *BP_IDENTITY(bp);
2926 			hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2927 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2928 			exists = buf_hash_insert(hdr, &hash_lock);
2929 			if (exists) {
2930 				/* somebody beat us to the hash insert */
2931 				mutex_exit(hash_lock);
2932 				buf_discard_identity(hdr);
2933 				(void) arc_buf_remove_ref(buf, private);
2934 				goto top; /* restart the IO request */
2935 			}
2936 			/* if this is a prefetch, we don't have a reference */
2937 			if (*arc_flags & ARC_PREFETCH) {
2938 				(void) remove_reference(hdr, hash_lock,
2939 				    private);
2940 				hdr->b_flags |= ARC_PREFETCH;
2941 			}
2942 			if (*arc_flags & ARC_L2CACHE)
2943 				hdr->b_flags |= ARC_L2CACHE;
2944 			if (*arc_flags & ARC_L2COMPRESS)
2945 				hdr->b_flags |= ARC_L2COMPRESS;
2946 			if (BP_GET_LEVEL(bp) > 0)
2947 				hdr->b_flags |= ARC_INDIRECT;
2948 		} else {
2949 			/* this block is in the ghost cache */
2950 			ASSERT(GHOST_STATE(hdr->b_state));
2951 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2952 			ASSERT0(refcount_count(&hdr->b_refcnt));
2953 			ASSERT(hdr->b_buf == NULL);
2954 
2955 			/* if this is a prefetch, we don't have a reference */
2956 			if (*arc_flags & ARC_PREFETCH)
2957 				hdr->b_flags |= ARC_PREFETCH;
2958 			else
2959 				add_reference(hdr, hash_lock, private);
2960 			if (*arc_flags & ARC_L2CACHE)
2961 				hdr->b_flags |= ARC_L2CACHE;
2962 			if (*arc_flags & ARC_L2COMPRESS)
2963 				hdr->b_flags |= ARC_L2COMPRESS;
2964 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2965 			buf->b_hdr = hdr;
2966 			buf->b_data = NULL;
2967 			buf->b_efunc = NULL;
2968 			buf->b_private = NULL;
2969 			buf->b_next = NULL;
2970 			hdr->b_buf = buf;
2971 			ASSERT(hdr->b_datacnt == 0);
2972 			hdr->b_datacnt = 1;
2973 			arc_get_data_buf(buf);
2974 			arc_access(hdr, hash_lock);
2975 		}
2976 
2977 		ASSERT(!GHOST_STATE(hdr->b_state));
2978 
2979 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2980 		acb->acb_done = done;
2981 		acb->acb_private = private;
2982 
2983 		ASSERT(hdr->b_acb == NULL);
2984 		hdr->b_acb = acb;
2985 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2986 
2987 		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2988 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2989 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2990 			addr = hdr->b_l2hdr->b_daddr;
2991 			/*
2992 			 * Lock out device removal.
2993 			 */
2994 			if (vdev_is_dead(vd) ||
2995 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2996 				vd = NULL;
2997 		}
2998 
2999 		mutex_exit(hash_lock);
3000 
3001 		/*
3002 		 * At this point, we have a level 1 cache miss.  Try again in
3003 		 * L2ARC if possible.
3004 		 */
3005 		ASSERT3U(hdr->b_size, ==, size);
3006 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3007 		    uint64_t, size, zbookmark_t *, zb);
3008 		ARCSTAT_BUMP(arcstat_misses);
3009 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3010 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3011 		    data, metadata, misses);
3012 
3013 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3014 			/*
3015 			 * Read from the L2ARC if the following are true:
3016 			 * 1. The L2ARC vdev was previously cached.
3017 			 * 2. This buffer still has L2ARC metadata.
3018 			 * 3. This buffer isn't currently writing to the L2ARC.
3019 			 * 4. The L2ARC entry wasn't evicted, which may
3020 			 *    also have invalidated the vdev.
3021 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
3022 			 */
3023 			if (hdr->b_l2hdr != NULL &&
3024 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3025 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3026 				l2arc_read_callback_t *cb;
3027 
3028 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3029 				ARCSTAT_BUMP(arcstat_l2_hits);
3030 
3031 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3032 				    KM_SLEEP);
3033 				cb->l2rcb_buf = buf;
3034 				cb->l2rcb_spa = spa;
3035 				cb->l2rcb_bp = *bp;
3036 				cb->l2rcb_zb = *zb;
3037 				cb->l2rcb_flags = zio_flags;
3038 				cb->l2rcb_compress = hdr->b_l2hdr->b_compress;
3039 
3040 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3041 				    addr + size < vd->vdev_psize -
3042 				    VDEV_LABEL_END_SIZE);
3043 
3044 				/*
3045 				 * l2arc read.  The SCL_L2ARC lock will be
3046 				 * released by l2arc_read_done().
3047 				 * Issue a null zio if the underlying buffer
3048 				 * was squashed to zero size by compression.
3049 				 */
3050 				if (hdr->b_l2hdr->b_compress ==
3051 				    ZIO_COMPRESS_EMPTY) {
3052 					rzio = zio_null(pio, spa, vd,
3053 					    l2arc_read_done, cb,
3054 					    zio_flags | ZIO_FLAG_DONT_CACHE |
3055 					    ZIO_FLAG_CANFAIL |
3056 					    ZIO_FLAG_DONT_PROPAGATE |
3057 					    ZIO_FLAG_DONT_RETRY);
3058 				} else {
3059 					rzio = zio_read_phys(pio, vd, addr,
3060 					    hdr->b_l2hdr->b_asize,
3061 					    buf->b_data, ZIO_CHECKSUM_OFF,
3062 					    l2arc_read_done, cb, priority,
3063 					    zio_flags | ZIO_FLAG_DONT_CACHE |
3064 					    ZIO_FLAG_CANFAIL |
3065 					    ZIO_FLAG_DONT_PROPAGATE |
3066 					    ZIO_FLAG_DONT_RETRY, B_FALSE);
3067 				}
3068 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3069 				    zio_t *, rzio);
3070 				ARCSTAT_INCR(arcstat_l2_read_bytes,
3071 				    hdr->b_l2hdr->b_asize);
3072 
3073 				if (*arc_flags & ARC_NOWAIT) {
3074 					zio_nowait(rzio);
3075 					return (0);
3076 				}
3077 
3078 				ASSERT(*arc_flags & ARC_WAIT);
3079 				if (zio_wait(rzio) == 0)
3080 					return (0);
3081 
3082 				/* l2arc read error; goto zio_read() */
3083 			} else {
3084 				DTRACE_PROBE1(l2arc__miss,
3085 				    arc_buf_hdr_t *, hdr);
3086 				ARCSTAT_BUMP(arcstat_l2_misses);
3087 				if (HDR_L2_WRITING(hdr))
3088 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3089 				spa_config_exit(spa, SCL_L2ARC, vd);
3090 			}
3091 		} else {
3092 			if (vd != NULL)
3093 				spa_config_exit(spa, SCL_L2ARC, vd);
3094 			if (l2arc_ndev != 0) {
3095 				DTRACE_PROBE1(l2arc__miss,
3096 				    arc_buf_hdr_t *, hdr);
3097 				ARCSTAT_BUMP(arcstat_l2_misses);
3098 			}
3099 		}
3100 
3101 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3102 		    arc_read_done, buf, priority, zio_flags, zb);
3103 
3104 		if (*arc_flags & ARC_WAIT)
3105 			return (zio_wait(rzio));
3106 
3107 		ASSERT(*arc_flags & ARC_NOWAIT);
3108 		zio_nowait(rzio);
3109 	}
3110 	return (0);
3111 }
3112 
3113 void
3114 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3115 {
3116 	ASSERT(buf->b_hdr != NULL);
3117 	ASSERT(buf->b_hdr->b_state != arc_anon);
3118 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3119 	ASSERT(buf->b_efunc == NULL);
3120 	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3121 
3122 	buf->b_efunc = func;
3123 	buf->b_private = private;
3124 }
3125 
3126 /*
3127  * Notify the arc that a block was freed, and thus will never be used again.
3128  */
3129 void
3130 arc_freed(spa_t *spa, const blkptr_t *bp)
3131 {
3132 	arc_buf_hdr_t *hdr;
3133 	kmutex_t *hash_lock;
3134 	uint64_t guid = spa_load_guid(spa);
3135 
3136 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3137 	    &hash_lock);
3138 	if (hdr == NULL)
3139 		return;
3140 	if (HDR_BUF_AVAILABLE(hdr)) {
3141 		arc_buf_t *buf = hdr->b_buf;
3142 		add_reference(hdr, hash_lock, FTAG);
3143 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3144 		mutex_exit(hash_lock);
3145 
3146 		arc_release(buf, FTAG);
3147 		(void) arc_buf_remove_ref(buf, FTAG);
3148 	} else {
3149 		mutex_exit(hash_lock);
3150 	}
3151 
3152 }
3153 
3154 /*
3155  * This is used by the DMU to let the ARC know that a buffer is
3156  * being evicted, so the ARC should clean up.  If this arc buf
3157  * is not yet in the evicted state, it will be put there.
3158  */
3159 int
3160 arc_buf_evict(arc_buf_t *buf)
3161 {
3162 	arc_buf_hdr_t *hdr;
3163 	kmutex_t *hash_lock;
3164 	arc_buf_t **bufp;
3165 
3166 	mutex_enter(&buf->b_evict_lock);
3167 	hdr = buf->b_hdr;
3168 	if (hdr == NULL) {
3169 		/*
3170 		 * We are in arc_do_user_evicts().
3171 		 */
3172 		ASSERT(buf->b_data == NULL);
3173 		mutex_exit(&buf->b_evict_lock);
3174 		return (0);
3175 	} else if (buf->b_data == NULL) {
3176 		arc_buf_t copy = *buf; /* structure assignment */
3177 		/*
3178 		 * We are on the eviction list; process this buffer now
3179 		 * but let arc_do_user_evicts() do the reaping.
3180 		 */
3181 		buf->b_efunc = NULL;
3182 		mutex_exit(&buf->b_evict_lock);
3183 		VERIFY(copy.b_efunc(&copy) == 0);
3184 		return (1);
3185 	}
3186 	hash_lock = HDR_LOCK(hdr);
3187 	mutex_enter(hash_lock);
3188 	hdr = buf->b_hdr;
3189 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3190 
3191 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3192 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3193 
3194 	/*
3195 	 * Pull this buffer off of the hdr
3196 	 */
3197 	bufp = &hdr->b_buf;
3198 	while (*bufp != buf)
3199 		bufp = &(*bufp)->b_next;
3200 	*bufp = buf->b_next;
3201 
3202 	ASSERT(buf->b_data != NULL);
3203 	arc_buf_destroy(buf, FALSE, FALSE);
3204 
3205 	if (hdr->b_datacnt == 0) {
3206 		arc_state_t *old_state = hdr->b_state;
3207 		arc_state_t *evicted_state;
3208 
3209 		ASSERT(hdr->b_buf == NULL);
3210 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
3211 
3212 		evicted_state =
3213 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3214 
3215 		mutex_enter(&old_state->arcs_mtx);
3216 		mutex_enter(&evicted_state->arcs_mtx);
3217 
3218 		arc_change_state(evicted_state, hdr, hash_lock);
3219 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3220 		hdr->b_flags |= ARC_IN_HASH_TABLE;
3221 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3222 
3223 		mutex_exit(&evicted_state->arcs_mtx);
3224 		mutex_exit(&old_state->arcs_mtx);
3225 	}
3226 	mutex_exit(hash_lock);
3227 	mutex_exit(&buf->b_evict_lock);
3228 
3229 	VERIFY(buf->b_efunc(buf) == 0);
3230 	buf->b_efunc = NULL;
3231 	buf->b_private = NULL;
3232 	buf->b_hdr = NULL;
3233 	buf->b_next = NULL;
3234 	kmem_cache_free(buf_cache, buf);
3235 	return (1);
3236 }
3237 
3238 /*
3239  * Release this buffer from the cache, making it an anonymous buffer.  This
3240  * must be done after a read and prior to modifying the buffer contents.
3241  * If the buffer has more than one reference, we must make
3242  * a new hdr for the buffer.
3243  */
3244 void
3245 arc_release(arc_buf_t *buf, void *tag)
3246 {
3247 	arc_buf_hdr_t *hdr;
3248 	kmutex_t *hash_lock = NULL;
3249 	l2arc_buf_hdr_t *l2hdr;
3250 	uint64_t buf_size;
3251 
3252 	/*
3253 	 * It would be nice to assert that if it's DMU metadata (level >
3254 	 * 0 || it's the dnode file), then it must be syncing context.
3255 	 * But we don't know that information at this level.
3256 	 */
3257 
3258 	mutex_enter(&buf->b_evict_lock);
3259 	hdr = buf->b_hdr;
3260 
3261 	/* this buffer is not on any list */
3262 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3263 
3264 	if (hdr->b_state == arc_anon) {
3265 		/* this buffer is already released */
3266 		ASSERT(buf->b_efunc == NULL);
3267 	} else {
3268 		hash_lock = HDR_LOCK(hdr);
3269 		mutex_enter(hash_lock);
3270 		hdr = buf->b_hdr;
3271 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3272 	}
3273 
3274 	l2hdr = hdr->b_l2hdr;
3275 	if (l2hdr) {
3276 		mutex_enter(&l2arc_buflist_mtx);
3277 		hdr->b_l2hdr = NULL;
3278 	}
3279 	buf_size = hdr->b_size;
3280 
3281 	/*
3282 	 * Do we have more than one buf?
3283 	 */
3284 	if (hdr->b_datacnt > 1) {
3285 		arc_buf_hdr_t *nhdr;
3286 		arc_buf_t **bufp;
3287 		uint64_t blksz = hdr->b_size;
3288 		uint64_t spa = hdr->b_spa;
3289 		arc_buf_contents_t type = hdr->b_type;
3290 		uint32_t flags = hdr->b_flags;
3291 
3292 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3293 		/*
3294 		 * Pull the data off of this hdr and attach it to
3295 		 * a new anonymous hdr.
3296 		 */
3297 		(void) remove_reference(hdr, hash_lock, tag);
3298 		bufp = &hdr->b_buf;
3299 		while (*bufp != buf)
3300 			bufp = &(*bufp)->b_next;
3301 		*bufp = buf->b_next;
3302 		buf->b_next = NULL;
3303 
3304 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3305 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3306 		if (refcount_is_zero(&hdr->b_refcnt)) {
3307 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3308 			ASSERT3U(*size, >=, hdr->b_size);
3309 			atomic_add_64(size, -hdr->b_size);
3310 		}
3311 
3312 		/*
3313 		 * We're releasing a duplicate user data buffer, update
3314 		 * our statistics accordingly.
3315 		 */
3316 		if (hdr->b_type == ARC_BUFC_DATA) {
3317 			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3318 			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3319 			    -hdr->b_size);
3320 		}
3321 		hdr->b_datacnt -= 1;
3322 		arc_cksum_verify(buf);
3323 		arc_buf_unwatch(buf);
3324 
3325 		mutex_exit(hash_lock);
3326 
3327 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3328 		nhdr->b_size = blksz;
3329 		nhdr->b_spa = spa;
3330 		nhdr->b_type = type;
3331 		nhdr->b_buf = buf;
3332 		nhdr->b_state = arc_anon;
3333 		nhdr->b_arc_access = 0;
3334 		nhdr->b_flags = flags & ARC_L2_WRITING;
3335 		nhdr->b_l2hdr = NULL;
3336 		nhdr->b_datacnt = 1;
3337 		nhdr->b_freeze_cksum = NULL;
3338 		(void) refcount_add(&nhdr->b_refcnt, tag);
3339 		buf->b_hdr = nhdr;
3340 		mutex_exit(&buf->b_evict_lock);
3341 		atomic_add_64(&arc_anon->arcs_size, blksz);
3342 	} else {
3343 		mutex_exit(&buf->b_evict_lock);
3344 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3345 		ASSERT(!list_link_active(&hdr->b_arc_node));
3346 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3347 		if (hdr->b_state != arc_anon)
3348 			arc_change_state(arc_anon, hdr, hash_lock);
3349 		hdr->b_arc_access = 0;
3350 		if (hash_lock)
3351 			mutex_exit(hash_lock);
3352 
3353 		buf_discard_identity(hdr);
3354 		arc_buf_thaw(buf);
3355 	}
3356 	buf->b_efunc = NULL;
3357 	buf->b_private = NULL;
3358 
3359 	if (l2hdr) {
3360 		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3361 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3362 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3363 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3364 		mutex_exit(&l2arc_buflist_mtx);
3365 	}
3366 }
3367 
3368 int
3369 arc_released(arc_buf_t *buf)
3370 {
3371 	int released;
3372 
3373 	mutex_enter(&buf->b_evict_lock);
3374 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3375 	mutex_exit(&buf->b_evict_lock);
3376 	return (released);
3377 }
3378 
3379 int
3380 arc_has_callback(arc_buf_t *buf)
3381 {
3382 	int callback;
3383 
3384 	mutex_enter(&buf->b_evict_lock);
3385 	callback = (buf->b_efunc != NULL);
3386 	mutex_exit(&buf->b_evict_lock);
3387 	return (callback);
3388 }
3389 
3390 #ifdef ZFS_DEBUG
3391 int
3392 arc_referenced(arc_buf_t *buf)
3393 {
3394 	int referenced;
3395 
3396 	mutex_enter(&buf->b_evict_lock);
3397 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3398 	mutex_exit(&buf->b_evict_lock);
3399 	return (referenced);
3400 }
3401 #endif
3402 
3403 static void
3404 arc_write_ready(zio_t *zio)
3405 {
3406 	arc_write_callback_t *callback = zio->io_private;
3407 	arc_buf_t *buf = callback->awcb_buf;
3408 	arc_buf_hdr_t *hdr = buf->b_hdr;
3409 
3410 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3411 	callback->awcb_ready(zio, buf, callback->awcb_private);
3412 
3413 	/*
3414 	 * If the IO is already in progress, then this is a re-write
3415 	 * attempt, so we need to thaw and re-compute the cksum.
3416 	 * It is the responsibility of the callback to handle the
3417 	 * accounting for any re-write attempt.
3418 	 */
3419 	if (HDR_IO_IN_PROGRESS(hdr)) {
3420 		mutex_enter(&hdr->b_freeze_lock);
3421 		if (hdr->b_freeze_cksum != NULL) {
3422 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3423 			hdr->b_freeze_cksum = NULL;
3424 		}
3425 		mutex_exit(&hdr->b_freeze_lock);
3426 	}
3427 	arc_cksum_compute(buf, B_FALSE);
3428 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3429 }
3430 
3431 static void
3432 arc_write_done(zio_t *zio)
3433 {
3434 	arc_write_callback_t *callback = zio->io_private;
3435 	arc_buf_t *buf = callback->awcb_buf;
3436 	arc_buf_hdr_t *hdr = buf->b_hdr;
3437 
3438 	ASSERT(hdr->b_acb == NULL);
3439 
3440 	if (zio->io_error == 0) {
3441 		hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3442 		hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3443 		hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3444 	} else {
3445 		ASSERT(BUF_EMPTY(hdr));
3446 	}
3447 
3448 	/*
3449 	 * If the block to be written was all-zero, we may have
3450 	 * compressed it away.  In this case no write was performed
3451 	 * so there will be no dva/birth/checksum.  The buffer must
3452 	 * therefore remain anonymous (and uncached).
3453 	 */
3454 	if (!BUF_EMPTY(hdr)) {
3455 		arc_buf_hdr_t *exists;
3456 		kmutex_t *hash_lock;
3457 
3458 		ASSERT(zio->io_error == 0);
3459 
3460 		arc_cksum_verify(buf);
3461 
3462 		exists = buf_hash_insert(hdr, &hash_lock);
3463 		if (exists) {
3464 			/*
3465 			 * This can only happen if we overwrite for
3466 			 * sync-to-convergence, because we remove
3467 			 * buffers from the hash table when we arc_free().
3468 			 */
3469 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3470 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3471 					panic("bad overwrite, hdr=%p exists=%p",
3472 					    (void *)hdr, (void *)exists);
3473 				ASSERT(refcount_is_zero(&exists->b_refcnt));
3474 				arc_change_state(arc_anon, exists, hash_lock);
3475 				mutex_exit(hash_lock);
3476 				arc_hdr_destroy(exists);
3477 				exists = buf_hash_insert(hdr, &hash_lock);
3478 				ASSERT3P(exists, ==, NULL);
3479 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3480 				/* nopwrite */
3481 				ASSERT(zio->io_prop.zp_nopwrite);
3482 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3483 					panic("bad nopwrite, hdr=%p exists=%p",
3484 					    (void *)hdr, (void *)exists);
3485 			} else {
3486 				/* Dedup */
3487 				ASSERT(hdr->b_datacnt == 1);
3488 				ASSERT(hdr->b_state == arc_anon);
3489 				ASSERT(BP_GET_DEDUP(zio->io_bp));
3490 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3491 			}
3492 		}
3493 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3494 		/* if it's not anon, we are doing a scrub */
3495 		if (!exists && hdr->b_state == arc_anon)
3496 			arc_access(hdr, hash_lock);
3497 		mutex_exit(hash_lock);
3498 	} else {
3499 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3500 	}
3501 
3502 	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3503 	callback->awcb_done(zio, buf, callback->awcb_private);
3504 
3505 	kmem_free(callback, sizeof (arc_write_callback_t));
3506 }
3507 
3508 zio_t *
3509 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3510     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
3511     const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *done,
3512     void *private, int priority, int zio_flags, const zbookmark_t *zb)
3513 {
3514 	arc_buf_hdr_t *hdr = buf->b_hdr;
3515 	arc_write_callback_t *callback;
3516 	zio_t *zio;
3517 
3518 	ASSERT(ready != NULL);
3519 	ASSERT(done != NULL);
3520 	ASSERT(!HDR_IO_ERROR(hdr));
3521 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3522 	ASSERT(hdr->b_acb == NULL);
3523 	if (l2arc)
3524 		hdr->b_flags |= ARC_L2CACHE;
3525 	if (l2arc_compress)
3526 		hdr->b_flags |= ARC_L2COMPRESS;
3527 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3528 	callback->awcb_ready = ready;
3529 	callback->awcb_done = done;
3530 	callback->awcb_private = private;
3531 	callback->awcb_buf = buf;
3532 
3533 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3534 	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3535 
3536 	return (zio);
3537 }
3538 
3539 static int
3540 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3541 {
3542 #ifdef _KERNEL
3543 	uint64_t available_memory = ptob(freemem);
3544 	static uint64_t page_load = 0;
3545 	static uint64_t last_txg = 0;
3546 
3547 #if defined(__i386)
3548 	available_memory =
3549 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3550 #endif
3551 	if (available_memory >= zfs_write_limit_max)
3552 		return (0);
3553 
3554 	if (txg > last_txg) {
3555 		last_txg = txg;
3556 		page_load = 0;
3557 	}
3558 	/*
3559 	 * If we are in pageout, we know that memory is already tight,
3560 	 * the arc is already going to be evicting, so we just want to
3561 	 * continue to let page writes occur as quickly as possible.
3562 	 */
3563 	if (curproc == proc_pageout) {
3564 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3565 			return (SET_ERROR(ERESTART));
3566 		/* Note: reserve is inflated, so we deflate */
3567 		page_load += reserve / 8;
3568 		return (0);
3569 	} else if (page_load > 0 && arc_reclaim_needed()) {
3570 		/* memory is low, delay before restarting */
3571 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3572 		return (SET_ERROR(EAGAIN));
3573 	}
3574 	page_load = 0;
3575 
3576 	if (arc_size > arc_c_min) {
3577 		uint64_t evictable_memory =
3578 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3579 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3580 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3581 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3582 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3583 	}
3584 
3585 	if (inflight_data > available_memory / 4) {
3586 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3587 		return (SET_ERROR(ERESTART));
3588 	}
3589 #endif
3590 	return (0);
3591 }
3592 
3593 void
3594 arc_tempreserve_clear(uint64_t reserve)
3595 {
3596 	atomic_add_64(&arc_tempreserve, -reserve);
3597 	ASSERT((int64_t)arc_tempreserve >= 0);
3598 }
3599 
3600 int
3601 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3602 {
3603 	int error;
3604 	uint64_t anon_size;
3605 
3606 #ifdef ZFS_DEBUG
3607 	/*
3608 	 * Once in a while, fail for no reason.  Everything should cope.
3609 	 */
3610 	if (spa_get_random(10000) == 0) {
3611 		dprintf("forcing random failure\n");
3612 		return (SET_ERROR(ERESTART));
3613 	}
3614 #endif
3615 	if (reserve > arc_c/4 && !arc_no_grow)
3616 		arc_c = MIN(arc_c_max, reserve * 4);
3617 	if (reserve > arc_c)
3618 		return (SET_ERROR(ENOMEM));
3619 
3620 	/*
3621 	 * Don't count loaned bufs as in flight dirty data to prevent long
3622 	 * network delays from blocking transactions that are ready to be
3623 	 * assigned to a txg.
3624 	 */
3625 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3626 
3627 	/*
3628 	 * Writes will, almost always, require additional memory allocations
3629 	 * in order to compress/encrypt/etc the data.  We therefore need to
3630 	 * make sure that there is sufficient available memory for this.
3631 	 */
3632 	if (error = arc_memory_throttle(reserve, anon_size, txg))
3633 		return (error);
3634 
3635 	/*
3636 	 * Throttle writes when the amount of dirty data in the cache
3637 	 * gets too large.  We try to keep the cache less than half full
3638 	 * of dirty blocks so that our sync times don't grow too large.
3639 	 * Note: if two requests come in concurrently, we might let them
3640 	 * both succeed, when one of them should fail.  Not a huge deal.
3641 	 */
3642 
3643 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3644 	    anon_size > arc_c / 4) {
3645 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3646 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3647 		    arc_tempreserve>>10,
3648 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3649 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3650 		    reserve>>10, arc_c>>10);
3651 		return (SET_ERROR(ERESTART));
3652 	}
3653 	atomic_add_64(&arc_tempreserve, reserve);
3654 	return (0);
3655 }
3656 
3657 void
3658 arc_init(void)
3659 {
3660 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3661 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3662 
3663 	/* Convert seconds to clock ticks */
3664 	arc_min_prefetch_lifespan = 1 * hz;
3665 
3666 	/* Start out with 1/8 of all memory */
3667 	arc_c = physmem * PAGESIZE / 8;
3668 
3669 #ifdef _KERNEL
3670 	/*
3671 	 * On architectures where the physical memory can be larger
3672 	 * than the addressable space (intel in 32-bit mode), we may
3673 	 * need to limit the cache to 1/8 of VM size.
3674 	 */
3675 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3676 #endif
3677 
3678 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3679 	arc_c_min = MAX(arc_c / 4, 64<<20);
3680 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3681 	if (arc_c * 8 >= 1<<30)
3682 		arc_c_max = (arc_c * 8) - (1<<30);
3683 	else
3684 		arc_c_max = arc_c_min;
3685 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3686 
3687 	/*
3688 	 * Allow the tunables to override our calculations if they are
3689 	 * reasonable (ie. over 64MB)
3690 	 */
3691 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3692 		arc_c_max = zfs_arc_max;
3693 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3694 		arc_c_min = zfs_arc_min;
3695 
3696 	arc_c = arc_c_max;
3697 	arc_p = (arc_c >> 1);
3698 
3699 	/* limit meta-data to 1/4 of the arc capacity */
3700 	arc_meta_limit = arc_c_max / 4;
3701 
3702 	/* Allow the tunable to override if it is reasonable */
3703 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3704 		arc_meta_limit = zfs_arc_meta_limit;
3705 
3706 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3707 		arc_c_min = arc_meta_limit / 2;
3708 
3709 	if (zfs_arc_grow_retry > 0)
3710 		arc_grow_retry = zfs_arc_grow_retry;
3711 
3712 	if (zfs_arc_shrink_shift > 0)
3713 		arc_shrink_shift = zfs_arc_shrink_shift;
3714 
3715 	if (zfs_arc_p_min_shift > 0)
3716 		arc_p_min_shift = zfs_arc_p_min_shift;
3717 
3718 	/* if kmem_flags are set, lets try to use less memory */
3719 	if (kmem_debugging())
3720 		arc_c = arc_c / 2;
3721 	if (arc_c < arc_c_min)
3722 		arc_c = arc_c_min;
3723 
3724 	arc_anon = &ARC_anon;
3725 	arc_mru = &ARC_mru;
3726 	arc_mru_ghost = &ARC_mru_ghost;
3727 	arc_mfu = &ARC_mfu;
3728 	arc_mfu_ghost = &ARC_mfu_ghost;
3729 	arc_l2c_only = &ARC_l2c_only;
3730 	arc_size = 0;
3731 
3732 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3733 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3734 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3735 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3736 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3737 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3738 
3739 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3740 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3741 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3742 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3743 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3744 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3745 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3746 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3747 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3748 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3749 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3750 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3751 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3752 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3753 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3754 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3755 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3756 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3757 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3758 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3759 
3760 	buf_init();
3761 
3762 	arc_thread_exit = 0;
3763 	arc_eviction_list = NULL;
3764 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3765 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3766 
3767 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3768 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3769 
3770 	if (arc_ksp != NULL) {
3771 		arc_ksp->ks_data = &arc_stats;
3772 		kstat_install(arc_ksp);
3773 	}
3774 
3775 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3776 	    TS_RUN, minclsyspri);
3777 
3778 	arc_dead = FALSE;
3779 	arc_warm = B_FALSE;
3780 
3781 	if (zfs_write_limit_max == 0)
3782 		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3783 	else
3784 		zfs_write_limit_shift = 0;
3785 	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3786 }
3787 
3788 void
3789 arc_fini(void)
3790 {
3791 	mutex_enter(&arc_reclaim_thr_lock);
3792 	arc_thread_exit = 1;
3793 	while (arc_thread_exit != 0)
3794 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3795 	mutex_exit(&arc_reclaim_thr_lock);
3796 
3797 	arc_flush(NULL);
3798 
3799 	arc_dead = TRUE;
3800 
3801 	if (arc_ksp != NULL) {
3802 		kstat_delete(arc_ksp);
3803 		arc_ksp = NULL;
3804 	}
3805 
3806 	mutex_destroy(&arc_eviction_mtx);
3807 	mutex_destroy(&arc_reclaim_thr_lock);
3808 	cv_destroy(&arc_reclaim_thr_cv);
3809 
3810 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3811 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3812 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3813 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3814 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3815 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3816 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3817 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3818 
3819 	mutex_destroy(&arc_anon->arcs_mtx);
3820 	mutex_destroy(&arc_mru->arcs_mtx);
3821 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3822 	mutex_destroy(&arc_mfu->arcs_mtx);
3823 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3824 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3825 
3826 	mutex_destroy(&zfs_write_limit_lock);
3827 
3828 	buf_fini();
3829 
3830 	ASSERT(arc_loaned_bytes == 0);
3831 }
3832 
3833 /*
3834  * Level 2 ARC
3835  *
3836  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3837  * It uses dedicated storage devices to hold cached data, which are populated
3838  * using large infrequent writes.  The main role of this cache is to boost
3839  * the performance of random read workloads.  The intended L2ARC devices
3840  * include short-stroked disks, solid state disks, and other media with
3841  * substantially faster read latency than disk.
3842  *
3843  *                 +-----------------------+
3844  *                 |         ARC           |
3845  *                 +-----------------------+
3846  *                    |         ^     ^
3847  *                    |         |     |
3848  *      l2arc_feed_thread()    arc_read()
3849  *                    |         |     |
3850  *                    |  l2arc read   |
3851  *                    V         |     |
3852  *               +---------------+    |
3853  *               |     L2ARC     |    |
3854  *               +---------------+    |
3855  *                   |    ^           |
3856  *          l2arc_write() |           |
3857  *                   |    |           |
3858  *                   V    |           |
3859  *                 +-------+      +-------+
3860  *                 | vdev  |      | vdev  |
3861  *                 | cache |      | cache |
3862  *                 +-------+      +-------+
3863  *                 +=========+     .-----.
3864  *                 :  L2ARC  :    |-_____-|
3865  *                 : devices :    | Disks |
3866  *                 +=========+    `-_____-'
3867  *
3868  * Read requests are satisfied from the following sources, in order:
3869  *
3870  *	1) ARC
3871  *	2) vdev cache of L2ARC devices
3872  *	3) L2ARC devices
3873  *	4) vdev cache of disks
3874  *	5) disks
3875  *
3876  * Some L2ARC device types exhibit extremely slow write performance.
3877  * To accommodate for this there are some significant differences between
3878  * the L2ARC and traditional cache design:
3879  *
3880  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3881  * the ARC behave as usual, freeing buffers and placing headers on ghost
3882  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3883  * this would add inflated write latencies for all ARC memory pressure.
3884  *
3885  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3886  * It does this by periodically scanning buffers from the eviction-end of
3887  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3888  * not already there. It scans until a headroom of buffers is satisfied,
3889  * which itself is a buffer for ARC eviction. If a compressible buffer is
3890  * found during scanning and selected for writing to an L2ARC device, we
3891  * temporarily boost scanning headroom during the next scan cycle to make
3892  * sure we adapt to compression effects (which might significantly reduce
3893  * the data volume we write to L2ARC). The thread that does this is
3894  * l2arc_feed_thread(), illustrated below; example sizes are included to
3895  * provide a better sense of ratio than this diagram:
3896  *
3897  *	       head -->                        tail
3898  *	        +---------------------+----------+
3899  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3900  *	        +---------------------+----------+   |   o L2ARC eligible
3901  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3902  *	        +---------------------+----------+   |
3903  *	             15.9 Gbytes      ^ 32 Mbytes    |
3904  *	                           headroom          |
3905  *	                                      l2arc_feed_thread()
3906  *	                                             |
3907  *	                 l2arc write hand <--[oooo]--'
3908  *	                         |           8 Mbyte
3909  *	                         |          write max
3910  *	                         V
3911  *		  +==============================+
3912  *	L2ARC dev |####|#|###|###|    |####| ... |
3913  *	          +==============================+
3914  *	                     32 Gbytes
3915  *
3916  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3917  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3918  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3919  * safe to say that this is an uncommon case, since buffers at the end of
3920  * the ARC lists have moved there due to inactivity.
3921  *
3922  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3923  * then the L2ARC simply misses copying some buffers.  This serves as a
3924  * pressure valve to prevent heavy read workloads from both stalling the ARC
3925  * with waits and clogging the L2ARC with writes.  This also helps prevent
3926  * the potential for the L2ARC to churn if it attempts to cache content too
3927  * quickly, such as during backups of the entire pool.
3928  *
3929  * 5. After system boot and before the ARC has filled main memory, there are
3930  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3931  * lists can remain mostly static.  Instead of searching from tail of these
3932  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3933  * for eligible buffers, greatly increasing its chance of finding them.
3934  *
3935  * The L2ARC device write speed is also boosted during this time so that
3936  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3937  * there are no L2ARC reads, and no fear of degrading read performance
3938  * through increased writes.
3939  *
3940  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3941  * the vdev queue can aggregate them into larger and fewer writes.  Each
3942  * device is written to in a rotor fashion, sweeping writes through
3943  * available space then repeating.
3944  *
3945  * 7. The L2ARC does not store dirty content.  It never needs to flush
3946  * write buffers back to disk based storage.
3947  *
3948  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3949  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3950  *
3951  * The performance of the L2ARC can be tweaked by a number of tunables, which
3952  * may be necessary for different workloads:
3953  *
3954  *	l2arc_write_max		max write bytes per interval
3955  *	l2arc_write_boost	extra write bytes during device warmup
3956  *	l2arc_noprefetch	skip caching prefetched buffers
3957  *	l2arc_headroom		number of max device writes to precache
3958  *	l2arc_headroom_boost	when we find compressed buffers during ARC
3959  *				scanning, we multiply headroom by this
3960  *				percentage factor for the next scan cycle,
3961  *				since more compressed buffers are likely to
3962  *				be present
3963  *	l2arc_feed_secs		seconds between L2ARC writing
3964  *
3965  * Tunables may be removed or added as future performance improvements are
3966  * integrated, and also may become zpool properties.
3967  *
3968  * There are three key functions that control how the L2ARC warms up:
3969  *
3970  *	l2arc_write_eligible()	check if a buffer is eligible to cache
3971  *	l2arc_write_size()	calculate how much to write
3972  *	l2arc_write_interval()	calculate sleep delay between writes
3973  *
3974  * These three functions determine what to write, how much, and how quickly
3975  * to send writes.
3976  */
3977 
3978 static boolean_t
3979 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3980 {
3981 	/*
3982 	 * A buffer is *not* eligible for the L2ARC if it:
3983 	 * 1. belongs to a different spa.
3984 	 * 2. is already cached on the L2ARC.
3985 	 * 3. has an I/O in progress (it may be an incomplete read).
3986 	 * 4. is flagged not eligible (zfs property).
3987 	 */
3988 	if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
3989 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3990 		return (B_FALSE);
3991 
3992 	return (B_TRUE);
3993 }
3994 
3995 static uint64_t
3996 l2arc_write_size(void)
3997 {
3998 	uint64_t size;
3999 
4000 	/*
4001 	 * Make sure our globals have meaningful values in case the user
4002 	 * altered them.
4003 	 */
4004 	size = l2arc_write_max;
4005 	if (size == 0) {
4006 		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4007 		    "be greater than zero, resetting it to the default (%d)",
4008 		    L2ARC_WRITE_SIZE);
4009 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
4010 	}
4011 
4012 	if (arc_warm == B_FALSE)
4013 		size += l2arc_write_boost;
4014 
4015 	return (size);
4016 
4017 }
4018 
4019 static clock_t
4020 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4021 {
4022 	clock_t interval, next, now;
4023 
4024 	/*
4025 	 * If the ARC lists are busy, increase our write rate; if the
4026 	 * lists are stale, idle back.  This is achieved by checking
4027 	 * how much we previously wrote - if it was more than half of
4028 	 * what we wanted, schedule the next write much sooner.
4029 	 */
4030 	if (l2arc_feed_again && wrote > (wanted / 2))
4031 		interval = (hz * l2arc_feed_min_ms) / 1000;
4032 	else
4033 		interval = hz * l2arc_feed_secs;
4034 
4035 	now = ddi_get_lbolt();
4036 	next = MAX(now, MIN(now + interval, began + interval));
4037 
4038 	return (next);
4039 }
4040 
4041 static void
4042 l2arc_hdr_stat_add(void)
4043 {
4044 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4045 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4046 }
4047 
4048 static void
4049 l2arc_hdr_stat_remove(void)
4050 {
4051 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4052 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4053 }
4054 
4055 /*
4056  * Cycle through L2ARC devices.  This is how L2ARC load balances.
4057  * If a device is returned, this also returns holding the spa config lock.
4058  */
4059 static l2arc_dev_t *
4060 l2arc_dev_get_next(void)
4061 {
4062 	l2arc_dev_t *first, *next = NULL;
4063 
4064 	/*
4065 	 * Lock out the removal of spas (spa_namespace_lock), then removal
4066 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4067 	 * both locks will be dropped and a spa config lock held instead.
4068 	 */
4069 	mutex_enter(&spa_namespace_lock);
4070 	mutex_enter(&l2arc_dev_mtx);
4071 
4072 	/* if there are no vdevs, there is nothing to do */
4073 	if (l2arc_ndev == 0)
4074 		goto out;
4075 
4076 	first = NULL;
4077 	next = l2arc_dev_last;
4078 	do {
4079 		/* loop around the list looking for a non-faulted vdev */
4080 		if (next == NULL) {
4081 			next = list_head(l2arc_dev_list);
4082 		} else {
4083 			next = list_next(l2arc_dev_list, next);
4084 			if (next == NULL)
4085 				next = list_head(l2arc_dev_list);
4086 		}
4087 
4088 		/* if we have come back to the start, bail out */
4089 		if (first == NULL)
4090 			first = next;
4091 		else if (next == first)
4092 			break;
4093 
4094 	} while (vdev_is_dead(next->l2ad_vdev));
4095 
4096 	/* if we were unable to find any usable vdevs, return NULL */
4097 	if (vdev_is_dead(next->l2ad_vdev))
4098 		next = NULL;
4099 
4100 	l2arc_dev_last = next;
4101 
4102 out:
4103 	mutex_exit(&l2arc_dev_mtx);
4104 
4105 	/*
4106 	 * Grab the config lock to prevent the 'next' device from being
4107 	 * removed while we are writing to it.
4108 	 */
4109 	if (next != NULL)
4110 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4111 	mutex_exit(&spa_namespace_lock);
4112 
4113 	return (next);
4114 }
4115 
4116 /*
4117  * Free buffers that were tagged for destruction.
4118  */
4119 static void
4120 l2arc_do_free_on_write()
4121 {
4122 	list_t *buflist;
4123 	l2arc_data_free_t *df, *df_prev;
4124 
4125 	mutex_enter(&l2arc_free_on_write_mtx);
4126 	buflist = l2arc_free_on_write;
4127 
4128 	for (df = list_tail(buflist); df; df = df_prev) {
4129 		df_prev = list_prev(buflist, df);
4130 		ASSERT(df->l2df_data != NULL);
4131 		ASSERT(df->l2df_func != NULL);
4132 		df->l2df_func(df->l2df_data, df->l2df_size);
4133 		list_remove(buflist, df);
4134 		kmem_free(df, sizeof (l2arc_data_free_t));
4135 	}
4136 
4137 	mutex_exit(&l2arc_free_on_write_mtx);
4138 }
4139 
4140 /*
4141  * A write to a cache device has completed.  Update all headers to allow
4142  * reads from these buffers to begin.
4143  */
4144 static void
4145 l2arc_write_done(zio_t *zio)
4146 {
4147 	l2arc_write_callback_t *cb;
4148 	l2arc_dev_t *dev;
4149 	list_t *buflist;
4150 	arc_buf_hdr_t *head, *ab, *ab_prev;
4151 	l2arc_buf_hdr_t *abl2;
4152 	kmutex_t *hash_lock;
4153 
4154 	cb = zio->io_private;
4155 	ASSERT(cb != NULL);
4156 	dev = cb->l2wcb_dev;
4157 	ASSERT(dev != NULL);
4158 	head = cb->l2wcb_head;
4159 	ASSERT(head != NULL);
4160 	buflist = dev->l2ad_buflist;
4161 	ASSERT(buflist != NULL);
4162 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4163 	    l2arc_write_callback_t *, cb);
4164 
4165 	if (zio->io_error != 0)
4166 		ARCSTAT_BUMP(arcstat_l2_writes_error);
4167 
4168 	mutex_enter(&l2arc_buflist_mtx);
4169 
4170 	/*
4171 	 * All writes completed, or an error was hit.
4172 	 */
4173 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4174 		ab_prev = list_prev(buflist, ab);
4175 
4176 		hash_lock = HDR_LOCK(ab);
4177 		if (!mutex_tryenter(hash_lock)) {
4178 			/*
4179 			 * This buffer misses out.  It may be in a stage
4180 			 * of eviction.  Its ARC_L2_WRITING flag will be
4181 			 * left set, denying reads to this buffer.
4182 			 */
4183 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4184 			continue;
4185 		}
4186 
4187 		abl2 = ab->b_l2hdr;
4188 
4189 		/*
4190 		 * Release the temporary compressed buffer as soon as possible.
4191 		 */
4192 		if (abl2->b_compress != ZIO_COMPRESS_OFF)
4193 			l2arc_release_cdata_buf(ab);
4194 
4195 		if (zio->io_error != 0) {
4196 			/*
4197 			 * Error - drop L2ARC entry.
4198 			 */
4199 			list_remove(buflist, ab);
4200 			ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4201 			ab->b_l2hdr = NULL;
4202 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4203 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4204 		}
4205 
4206 		/*
4207 		 * Allow ARC to begin reads to this L2ARC entry.
4208 		 */
4209 		ab->b_flags &= ~ARC_L2_WRITING;
4210 
4211 		mutex_exit(hash_lock);
4212 	}
4213 
4214 	atomic_inc_64(&l2arc_writes_done);
4215 	list_remove(buflist, head);
4216 	kmem_cache_free(hdr_cache, head);
4217 	mutex_exit(&l2arc_buflist_mtx);
4218 
4219 	l2arc_do_free_on_write();
4220 
4221 	kmem_free(cb, sizeof (l2arc_write_callback_t));
4222 }
4223 
4224 /*
4225  * A read to a cache device completed.  Validate buffer contents before
4226  * handing over to the regular ARC routines.
4227  */
4228 static void
4229 l2arc_read_done(zio_t *zio)
4230 {
4231 	l2arc_read_callback_t *cb;
4232 	arc_buf_hdr_t *hdr;
4233 	arc_buf_t *buf;
4234 	kmutex_t *hash_lock;
4235 	int equal;
4236 
4237 	ASSERT(zio->io_vd != NULL);
4238 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4239 
4240 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4241 
4242 	cb = zio->io_private;
4243 	ASSERT(cb != NULL);
4244 	buf = cb->l2rcb_buf;
4245 	ASSERT(buf != NULL);
4246 
4247 	hash_lock = HDR_LOCK(buf->b_hdr);
4248 	mutex_enter(hash_lock);
4249 	hdr = buf->b_hdr;
4250 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4251 
4252 	/*
4253 	 * If the buffer was compressed, decompress it first.
4254 	 */
4255 	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4256 		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4257 	ASSERT(zio->io_data != NULL);
4258 
4259 	/*
4260 	 * Check this survived the L2ARC journey.
4261 	 */
4262 	equal = arc_cksum_equal(buf);
4263 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4264 		mutex_exit(hash_lock);
4265 		zio->io_private = buf;
4266 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4267 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4268 		arc_read_done(zio);
4269 	} else {
4270 		mutex_exit(hash_lock);
4271 		/*
4272 		 * Buffer didn't survive caching.  Increment stats and
4273 		 * reissue to the original storage device.
4274 		 */
4275 		if (zio->io_error != 0) {
4276 			ARCSTAT_BUMP(arcstat_l2_io_error);
4277 		} else {
4278 			zio->io_error = SET_ERROR(EIO);
4279 		}
4280 		if (!equal)
4281 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4282 
4283 		/*
4284 		 * If there's no waiter, issue an async i/o to the primary
4285 		 * storage now.  If there *is* a waiter, the caller must
4286 		 * issue the i/o in a context where it's OK to block.
4287 		 */
4288 		if (zio->io_waiter == NULL) {
4289 			zio_t *pio = zio_unique_parent(zio);
4290 
4291 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4292 
4293 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4294 			    buf->b_data, zio->io_size, arc_read_done, buf,
4295 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4296 		}
4297 	}
4298 
4299 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4300 }
4301 
4302 /*
4303  * This is the list priority from which the L2ARC will search for pages to
4304  * cache.  This is used within loops (0..3) to cycle through lists in the
4305  * desired order.  This order can have a significant effect on cache
4306  * performance.
4307  *
4308  * Currently the metadata lists are hit first, MFU then MRU, followed by
4309  * the data lists.  This function returns a locked list, and also returns
4310  * the lock pointer.
4311  */
4312 static list_t *
4313 l2arc_list_locked(int list_num, kmutex_t **lock)
4314 {
4315 	list_t *list = NULL;
4316 
4317 	ASSERT(list_num >= 0 && list_num <= 3);
4318 
4319 	switch (list_num) {
4320 	case 0:
4321 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4322 		*lock = &arc_mfu->arcs_mtx;
4323 		break;
4324 	case 1:
4325 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4326 		*lock = &arc_mru->arcs_mtx;
4327 		break;
4328 	case 2:
4329 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4330 		*lock = &arc_mfu->arcs_mtx;
4331 		break;
4332 	case 3:
4333 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4334 		*lock = &arc_mru->arcs_mtx;
4335 		break;
4336 	}
4337 
4338 	ASSERT(!(MUTEX_HELD(*lock)));
4339 	mutex_enter(*lock);
4340 	return (list);
4341 }
4342 
4343 /*
4344  * Evict buffers from the device write hand to the distance specified in
4345  * bytes.  This distance may span populated buffers, it may span nothing.
4346  * This is clearing a region on the L2ARC device ready for writing.
4347  * If the 'all' boolean is set, every buffer is evicted.
4348  */
4349 static void
4350 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4351 {
4352 	list_t *buflist;
4353 	l2arc_buf_hdr_t *abl2;
4354 	arc_buf_hdr_t *ab, *ab_prev;
4355 	kmutex_t *hash_lock;
4356 	uint64_t taddr;
4357 
4358 	buflist = dev->l2ad_buflist;
4359 
4360 	if (buflist == NULL)
4361 		return;
4362 
4363 	if (!all && dev->l2ad_first) {
4364 		/*
4365 		 * This is the first sweep through the device.  There is
4366 		 * nothing to evict.
4367 		 */
4368 		return;
4369 	}
4370 
4371 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4372 		/*
4373 		 * When nearing the end of the device, evict to the end
4374 		 * before the device write hand jumps to the start.
4375 		 */
4376 		taddr = dev->l2ad_end;
4377 	} else {
4378 		taddr = dev->l2ad_hand + distance;
4379 	}
4380 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4381 	    uint64_t, taddr, boolean_t, all);
4382 
4383 top:
4384 	mutex_enter(&l2arc_buflist_mtx);
4385 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4386 		ab_prev = list_prev(buflist, ab);
4387 
4388 		hash_lock = HDR_LOCK(ab);
4389 		if (!mutex_tryenter(hash_lock)) {
4390 			/*
4391 			 * Missed the hash lock.  Retry.
4392 			 */
4393 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4394 			mutex_exit(&l2arc_buflist_mtx);
4395 			mutex_enter(hash_lock);
4396 			mutex_exit(hash_lock);
4397 			goto top;
4398 		}
4399 
4400 		if (HDR_L2_WRITE_HEAD(ab)) {
4401 			/*
4402 			 * We hit a write head node.  Leave it for
4403 			 * l2arc_write_done().
4404 			 */
4405 			list_remove(buflist, ab);
4406 			mutex_exit(hash_lock);
4407 			continue;
4408 		}
4409 
4410 		if (!all && ab->b_l2hdr != NULL &&
4411 		    (ab->b_l2hdr->b_daddr > taddr ||
4412 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4413 			/*
4414 			 * We've evicted to the target address,
4415 			 * or the end of the device.
4416 			 */
4417 			mutex_exit(hash_lock);
4418 			break;
4419 		}
4420 
4421 		if (HDR_FREE_IN_PROGRESS(ab)) {
4422 			/*
4423 			 * Already on the path to destruction.
4424 			 */
4425 			mutex_exit(hash_lock);
4426 			continue;
4427 		}
4428 
4429 		if (ab->b_state == arc_l2c_only) {
4430 			ASSERT(!HDR_L2_READING(ab));
4431 			/*
4432 			 * This doesn't exist in the ARC.  Destroy.
4433 			 * arc_hdr_destroy() will call list_remove()
4434 			 * and decrement arcstat_l2_size.
4435 			 */
4436 			arc_change_state(arc_anon, ab, hash_lock);
4437 			arc_hdr_destroy(ab);
4438 		} else {
4439 			/*
4440 			 * Invalidate issued or about to be issued
4441 			 * reads, since we may be about to write
4442 			 * over this location.
4443 			 */
4444 			if (HDR_L2_READING(ab)) {
4445 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4446 				ab->b_flags |= ARC_L2_EVICTED;
4447 			}
4448 
4449 			/*
4450 			 * Tell ARC this no longer exists in L2ARC.
4451 			 */
4452 			if (ab->b_l2hdr != NULL) {
4453 				abl2 = ab->b_l2hdr;
4454 				ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4455 				ab->b_l2hdr = NULL;
4456 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4457 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4458 			}
4459 			list_remove(buflist, ab);
4460 
4461 			/*
4462 			 * This may have been leftover after a
4463 			 * failed write.
4464 			 */
4465 			ab->b_flags &= ~ARC_L2_WRITING;
4466 		}
4467 		mutex_exit(hash_lock);
4468 	}
4469 	mutex_exit(&l2arc_buflist_mtx);
4470 
4471 	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4472 	dev->l2ad_evict = taddr;
4473 }
4474 
4475 /*
4476  * Find and write ARC buffers to the L2ARC device.
4477  *
4478  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4479  * for reading until they have completed writing.
4480  * The headroom_boost is an in-out parameter used to maintain headroom boost
4481  * state between calls to this function.
4482  *
4483  * Returns the number of bytes actually written (which may be smaller than
4484  * the delta by which the device hand has changed due to alignment).
4485  */
4486 static uint64_t
4487 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4488     boolean_t *headroom_boost)
4489 {
4490 	arc_buf_hdr_t *ab, *ab_prev, *head;
4491 	list_t *list;
4492 	uint64_t write_asize, write_psize, write_sz, headroom,
4493 	    buf_compress_minsz;
4494 	void *buf_data;
4495 	kmutex_t *list_lock;
4496 	boolean_t full;
4497 	l2arc_write_callback_t *cb;
4498 	zio_t *pio, *wzio;
4499 	uint64_t guid = spa_load_guid(spa);
4500 	const boolean_t do_headroom_boost = *headroom_boost;
4501 
4502 	ASSERT(dev->l2ad_vdev != NULL);
4503 
4504 	/* Lower the flag now, we might want to raise it again later. */
4505 	*headroom_boost = B_FALSE;
4506 
4507 	pio = NULL;
4508 	write_sz = write_asize = write_psize = 0;
4509 	full = B_FALSE;
4510 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4511 	head->b_flags |= ARC_L2_WRITE_HEAD;
4512 
4513 	/*
4514 	 * We will want to try to compress buffers that are at least 2x the
4515 	 * device sector size.
4516 	 */
4517 	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4518 
4519 	/*
4520 	 * Copy buffers for L2ARC writing.
4521 	 */
4522 	mutex_enter(&l2arc_buflist_mtx);
4523 	for (int try = 0; try <= 3; try++) {
4524 		uint64_t passed_sz = 0;
4525 
4526 		list = l2arc_list_locked(try, &list_lock);
4527 
4528 		/*
4529 		 * L2ARC fast warmup.
4530 		 *
4531 		 * Until the ARC is warm and starts to evict, read from the
4532 		 * head of the ARC lists rather than the tail.
4533 		 */
4534 		if (arc_warm == B_FALSE)
4535 			ab = list_head(list);
4536 		else
4537 			ab = list_tail(list);
4538 
4539 		headroom = target_sz * l2arc_headroom;
4540 		if (do_headroom_boost)
4541 			headroom = (headroom * l2arc_headroom_boost) / 100;
4542 
4543 		for (; ab; ab = ab_prev) {
4544 			l2arc_buf_hdr_t *l2hdr;
4545 			kmutex_t *hash_lock;
4546 			uint64_t buf_sz;
4547 
4548 			if (arc_warm == B_FALSE)
4549 				ab_prev = list_next(list, ab);
4550 			else
4551 				ab_prev = list_prev(list, ab);
4552 
4553 			hash_lock = HDR_LOCK(ab);
4554 			if (!mutex_tryenter(hash_lock)) {
4555 				/*
4556 				 * Skip this buffer rather than waiting.
4557 				 */
4558 				continue;
4559 			}
4560 
4561 			passed_sz += ab->b_size;
4562 			if (passed_sz > headroom) {
4563 				/*
4564 				 * Searched too far.
4565 				 */
4566 				mutex_exit(hash_lock);
4567 				break;
4568 			}
4569 
4570 			if (!l2arc_write_eligible(guid, ab)) {
4571 				mutex_exit(hash_lock);
4572 				continue;
4573 			}
4574 
4575 			if ((write_sz + ab->b_size) > target_sz) {
4576 				full = B_TRUE;
4577 				mutex_exit(hash_lock);
4578 				break;
4579 			}
4580 
4581 			if (pio == NULL) {
4582 				/*
4583 				 * Insert a dummy header on the buflist so
4584 				 * l2arc_write_done() can find where the
4585 				 * write buffers begin without searching.
4586 				 */
4587 				list_insert_head(dev->l2ad_buflist, head);
4588 
4589 				cb = kmem_alloc(
4590 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4591 				cb->l2wcb_dev = dev;
4592 				cb->l2wcb_head = head;
4593 				pio = zio_root(spa, l2arc_write_done, cb,
4594 				    ZIO_FLAG_CANFAIL);
4595 			}
4596 
4597 			/*
4598 			 * Create and add a new L2ARC header.
4599 			 */
4600 			l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4601 			l2hdr->b_dev = dev;
4602 			ab->b_flags |= ARC_L2_WRITING;
4603 
4604 			/*
4605 			 * Temporarily stash the data buffer in b_tmp_cdata.
4606 			 * The subsequent write step will pick it up from
4607 			 * there. This is because can't access ab->b_buf
4608 			 * without holding the hash_lock, which we in turn
4609 			 * can't access without holding the ARC list locks
4610 			 * (which we want to avoid during compression/writing).
4611 			 */
4612 			l2hdr->b_compress = ZIO_COMPRESS_OFF;
4613 			l2hdr->b_asize = ab->b_size;
4614 			l2hdr->b_tmp_cdata = ab->b_buf->b_data;
4615 
4616 			buf_sz = ab->b_size;
4617 			ab->b_l2hdr = l2hdr;
4618 
4619 			list_insert_head(dev->l2ad_buflist, ab);
4620 
4621 			/*
4622 			 * Compute and store the buffer cksum before
4623 			 * writing.  On debug the cksum is verified first.
4624 			 */
4625 			arc_cksum_verify(ab->b_buf);
4626 			arc_cksum_compute(ab->b_buf, B_TRUE);
4627 
4628 			mutex_exit(hash_lock);
4629 
4630 			write_sz += buf_sz;
4631 		}
4632 
4633 		mutex_exit(list_lock);
4634 
4635 		if (full == B_TRUE)
4636 			break;
4637 	}
4638 
4639 	/* No buffers selected for writing? */
4640 	if (pio == NULL) {
4641 		ASSERT0(write_sz);
4642 		mutex_exit(&l2arc_buflist_mtx);
4643 		kmem_cache_free(hdr_cache, head);
4644 		return (0);
4645 	}
4646 
4647 	/*
4648 	 * Now start writing the buffers. We're starting at the write head
4649 	 * and work backwards, retracing the course of the buffer selector
4650 	 * loop above.
4651 	 */
4652 	for (ab = list_prev(dev->l2ad_buflist, head); ab;
4653 	    ab = list_prev(dev->l2ad_buflist, ab)) {
4654 		l2arc_buf_hdr_t *l2hdr;
4655 		uint64_t buf_sz;
4656 
4657 		/*
4658 		 * We shouldn't need to lock the buffer here, since we flagged
4659 		 * it as ARC_L2_WRITING in the previous step, but we must take
4660 		 * care to only access its L2 cache parameters. In particular,
4661 		 * ab->b_buf may be invalid by now due to ARC eviction.
4662 		 */
4663 		l2hdr = ab->b_l2hdr;
4664 		l2hdr->b_daddr = dev->l2ad_hand;
4665 
4666 		if ((ab->b_flags & ARC_L2COMPRESS) &&
4667 		    l2hdr->b_asize >= buf_compress_minsz) {
4668 			if (l2arc_compress_buf(l2hdr)) {
4669 				/*
4670 				 * If compression succeeded, enable headroom
4671 				 * boost on the next scan cycle.
4672 				 */
4673 				*headroom_boost = B_TRUE;
4674 			}
4675 		}
4676 
4677 		/*
4678 		 * Pick up the buffer data we had previously stashed away
4679 		 * (and now potentially also compressed).
4680 		 */
4681 		buf_data = l2hdr->b_tmp_cdata;
4682 		buf_sz = l2hdr->b_asize;
4683 
4684 		/* Compression may have squashed the buffer to zero length. */
4685 		if (buf_sz != 0) {
4686 			uint64_t buf_p_sz;
4687 
4688 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4689 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4690 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4691 			    ZIO_FLAG_CANFAIL, B_FALSE);
4692 
4693 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4694 			    zio_t *, wzio);
4695 			(void) zio_nowait(wzio);
4696 
4697 			write_asize += buf_sz;
4698 			/*
4699 			 * Keep the clock hand suitably device-aligned.
4700 			 */
4701 			buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4702 			write_psize += buf_p_sz;
4703 			dev->l2ad_hand += buf_p_sz;
4704 		}
4705 	}
4706 
4707 	mutex_exit(&l2arc_buflist_mtx);
4708 
4709 	ASSERT3U(write_asize, <=, target_sz);
4710 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4711 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
4712 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4713 	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
4714 	vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
4715 
4716 	/*
4717 	 * Bump device hand to the device start if it is approaching the end.
4718 	 * l2arc_evict() will already have evicted ahead for this case.
4719 	 */
4720 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4721 		vdev_space_update(dev->l2ad_vdev,
4722 		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
4723 		dev->l2ad_hand = dev->l2ad_start;
4724 		dev->l2ad_evict = dev->l2ad_start;
4725 		dev->l2ad_first = B_FALSE;
4726 	}
4727 
4728 	dev->l2ad_writing = B_TRUE;
4729 	(void) zio_wait(pio);
4730 	dev->l2ad_writing = B_FALSE;
4731 
4732 	return (write_asize);
4733 }
4734 
4735 /*
4736  * Compresses an L2ARC buffer.
4737  * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
4738  * size in l2hdr->b_asize. This routine tries to compress the data and
4739  * depending on the compression result there are three possible outcomes:
4740  * *) The buffer was incompressible. The original l2hdr contents were left
4741  *    untouched and are ready for writing to an L2 device.
4742  * *) The buffer was all-zeros, so there is no need to write it to an L2
4743  *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
4744  *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
4745  * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
4746  *    data buffer which holds the compressed data to be written, and b_asize
4747  *    tells us how much data there is. b_compress is set to the appropriate
4748  *    compression algorithm. Once writing is done, invoke
4749  *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
4750  *
4751  * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
4752  * buffer was incompressible).
4753  */
4754 static boolean_t
4755 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
4756 {
4757 	void *cdata;
4758 	size_t csize, len;
4759 
4760 	ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
4761 	ASSERT(l2hdr->b_tmp_cdata != NULL);
4762 
4763 	len = l2hdr->b_asize;
4764 	cdata = zio_data_buf_alloc(len);
4765 	csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
4766 	    cdata, l2hdr->b_asize);
4767 
4768 	if (csize == 0) {
4769 		/* zero block, indicate that there's nothing to write */
4770 		zio_data_buf_free(cdata, len);
4771 		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
4772 		l2hdr->b_asize = 0;
4773 		l2hdr->b_tmp_cdata = NULL;
4774 		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
4775 		return (B_TRUE);
4776 	} else if (csize > 0 && csize < len) {
4777 		/*
4778 		 * Compression succeeded, we'll keep the cdata around for
4779 		 * writing and release it afterwards.
4780 		 */
4781 		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
4782 		l2hdr->b_asize = csize;
4783 		l2hdr->b_tmp_cdata = cdata;
4784 		ARCSTAT_BUMP(arcstat_l2_compress_successes);
4785 		return (B_TRUE);
4786 	} else {
4787 		/*
4788 		 * Compression failed, release the compressed buffer.
4789 		 * l2hdr will be left unmodified.
4790 		 */
4791 		zio_data_buf_free(cdata, len);
4792 		ARCSTAT_BUMP(arcstat_l2_compress_failures);
4793 		return (B_FALSE);
4794 	}
4795 }
4796 
4797 /*
4798  * Decompresses a zio read back from an l2arc device. On success, the
4799  * underlying zio's io_data buffer is overwritten by the uncompressed
4800  * version. On decompression error (corrupt compressed stream), the
4801  * zio->io_error value is set to signal an I/O error.
4802  *
4803  * Please note that the compressed data stream is not checksummed, so
4804  * if the underlying device is experiencing data corruption, we may feed
4805  * corrupt data to the decompressor, so the decompressor needs to be
4806  * able to handle this situation (LZ4 does).
4807  */
4808 static void
4809 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
4810 {
4811 	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
4812 
4813 	if (zio->io_error != 0) {
4814 		/*
4815 		 * An io error has occured, just restore the original io
4816 		 * size in preparation for a main pool read.
4817 		 */
4818 		zio->io_orig_size = zio->io_size = hdr->b_size;
4819 		return;
4820 	}
4821 
4822 	if (c == ZIO_COMPRESS_EMPTY) {
4823 		/*
4824 		 * An empty buffer results in a null zio, which means we
4825 		 * need to fill its io_data after we're done restoring the
4826 		 * buffer's contents.
4827 		 */
4828 		ASSERT(hdr->b_buf != NULL);
4829 		bzero(hdr->b_buf->b_data, hdr->b_size);
4830 		zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
4831 	} else {
4832 		ASSERT(zio->io_data != NULL);
4833 		/*
4834 		 * We copy the compressed data from the start of the arc buffer
4835 		 * (the zio_read will have pulled in only what we need, the
4836 		 * rest is garbage which we will overwrite at decompression)
4837 		 * and then decompress back to the ARC data buffer. This way we
4838 		 * can minimize copying by simply decompressing back over the
4839 		 * original compressed data (rather than decompressing to an
4840 		 * aux buffer and then copying back the uncompressed buffer,
4841 		 * which is likely to be much larger).
4842 		 */
4843 		uint64_t csize;
4844 		void *cdata;
4845 
4846 		csize = zio->io_size;
4847 		cdata = zio_data_buf_alloc(csize);
4848 		bcopy(zio->io_data, cdata, csize);
4849 		if (zio_decompress_data(c, cdata, zio->io_data, csize,
4850 		    hdr->b_size) != 0)
4851 			zio->io_error = EIO;
4852 		zio_data_buf_free(cdata, csize);
4853 	}
4854 
4855 	/* Restore the expected uncompressed IO size. */
4856 	zio->io_orig_size = zio->io_size = hdr->b_size;
4857 }
4858 
4859 /*
4860  * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
4861  * This buffer serves as a temporary holder of compressed data while
4862  * the buffer entry is being written to an l2arc device. Once that is
4863  * done, we can dispose of it.
4864  */
4865 static void
4866 l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
4867 {
4868 	l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
4869 
4870 	if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
4871 		/*
4872 		 * If the data was compressed, then we've allocated a
4873 		 * temporary buffer for it, so now we need to release it.
4874 		 */
4875 		ASSERT(l2hdr->b_tmp_cdata != NULL);
4876 		zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
4877 	}
4878 	l2hdr->b_tmp_cdata = NULL;
4879 }
4880 
4881 /*
4882  * This thread feeds the L2ARC at regular intervals.  This is the beating
4883  * heart of the L2ARC.
4884  */
4885 static void
4886 l2arc_feed_thread(void)
4887 {
4888 	callb_cpr_t cpr;
4889 	l2arc_dev_t *dev;
4890 	spa_t *spa;
4891 	uint64_t size, wrote;
4892 	clock_t begin, next = ddi_get_lbolt();
4893 	boolean_t headroom_boost = B_FALSE;
4894 
4895 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4896 
4897 	mutex_enter(&l2arc_feed_thr_lock);
4898 
4899 	while (l2arc_thread_exit == 0) {
4900 		CALLB_CPR_SAFE_BEGIN(&cpr);
4901 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4902 		    next);
4903 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4904 		next = ddi_get_lbolt() + hz;
4905 
4906 		/*
4907 		 * Quick check for L2ARC devices.
4908 		 */
4909 		mutex_enter(&l2arc_dev_mtx);
4910 		if (l2arc_ndev == 0) {
4911 			mutex_exit(&l2arc_dev_mtx);
4912 			continue;
4913 		}
4914 		mutex_exit(&l2arc_dev_mtx);
4915 		begin = ddi_get_lbolt();
4916 
4917 		/*
4918 		 * This selects the next l2arc device to write to, and in
4919 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4920 		 * will return NULL if there are now no l2arc devices or if
4921 		 * they are all faulted.
4922 		 *
4923 		 * If a device is returned, its spa's config lock is also
4924 		 * held to prevent device removal.  l2arc_dev_get_next()
4925 		 * will grab and release l2arc_dev_mtx.
4926 		 */
4927 		if ((dev = l2arc_dev_get_next()) == NULL)
4928 			continue;
4929 
4930 		spa = dev->l2ad_spa;
4931 		ASSERT(spa != NULL);
4932 
4933 		/*
4934 		 * If the pool is read-only then force the feed thread to
4935 		 * sleep a little longer.
4936 		 */
4937 		if (!spa_writeable(spa)) {
4938 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4939 			spa_config_exit(spa, SCL_L2ARC, dev);
4940 			continue;
4941 		}
4942 
4943 		/*
4944 		 * Avoid contributing to memory pressure.
4945 		 */
4946 		if (arc_reclaim_needed()) {
4947 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4948 			spa_config_exit(spa, SCL_L2ARC, dev);
4949 			continue;
4950 		}
4951 
4952 		ARCSTAT_BUMP(arcstat_l2_feeds);
4953 
4954 		size = l2arc_write_size();
4955 
4956 		/*
4957 		 * Evict L2ARC buffers that will be overwritten.
4958 		 */
4959 		l2arc_evict(dev, size, B_FALSE);
4960 
4961 		/*
4962 		 * Write ARC buffers.
4963 		 */
4964 		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
4965 
4966 		/*
4967 		 * Calculate interval between writes.
4968 		 */
4969 		next = l2arc_write_interval(begin, size, wrote);
4970 		spa_config_exit(spa, SCL_L2ARC, dev);
4971 	}
4972 
4973 	l2arc_thread_exit = 0;
4974 	cv_broadcast(&l2arc_feed_thr_cv);
4975 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4976 	thread_exit();
4977 }
4978 
4979 boolean_t
4980 l2arc_vdev_present(vdev_t *vd)
4981 {
4982 	l2arc_dev_t *dev;
4983 
4984 	mutex_enter(&l2arc_dev_mtx);
4985 	for (dev = list_head(l2arc_dev_list); dev != NULL;
4986 	    dev = list_next(l2arc_dev_list, dev)) {
4987 		if (dev->l2ad_vdev == vd)
4988 			break;
4989 	}
4990 	mutex_exit(&l2arc_dev_mtx);
4991 
4992 	return (dev != NULL);
4993 }
4994 
4995 /*
4996  * Add a vdev for use by the L2ARC.  By this point the spa has already
4997  * validated the vdev and opened it.
4998  */
4999 void
5000 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
5001 {
5002 	l2arc_dev_t *adddev;
5003 
5004 	ASSERT(!l2arc_vdev_present(vd));
5005 
5006 	/*
5007 	 * Create a new l2arc device entry.
5008 	 */
5009 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5010 	adddev->l2ad_spa = spa;
5011 	adddev->l2ad_vdev = vd;
5012 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5013 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5014 	adddev->l2ad_hand = adddev->l2ad_start;
5015 	adddev->l2ad_evict = adddev->l2ad_start;
5016 	adddev->l2ad_first = B_TRUE;
5017 	adddev->l2ad_writing = B_FALSE;
5018 
5019 	/*
5020 	 * This is a list of all ARC buffers that are still valid on the
5021 	 * device.
5022 	 */
5023 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5024 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5025 	    offsetof(arc_buf_hdr_t, b_l2node));
5026 
5027 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5028 
5029 	/*
5030 	 * Add device to global list
5031 	 */
5032 	mutex_enter(&l2arc_dev_mtx);
5033 	list_insert_head(l2arc_dev_list, adddev);
5034 	atomic_inc_64(&l2arc_ndev);
5035 	mutex_exit(&l2arc_dev_mtx);
5036 }
5037 
5038 /*
5039  * Remove a vdev from the L2ARC.
5040  */
5041 void
5042 l2arc_remove_vdev(vdev_t *vd)
5043 {
5044 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5045 
5046 	/*
5047 	 * Find the device by vdev
5048 	 */
5049 	mutex_enter(&l2arc_dev_mtx);
5050 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5051 		nextdev = list_next(l2arc_dev_list, dev);
5052 		if (vd == dev->l2ad_vdev) {
5053 			remdev = dev;
5054 			break;
5055 		}
5056 	}
5057 	ASSERT(remdev != NULL);
5058 
5059 	/*
5060 	 * Remove device from global list
5061 	 */
5062 	list_remove(l2arc_dev_list, remdev);
5063 	l2arc_dev_last = NULL;		/* may have been invalidated */
5064 	atomic_dec_64(&l2arc_ndev);
5065 	mutex_exit(&l2arc_dev_mtx);
5066 
5067 	/*
5068 	 * Clear all buflists and ARC references.  L2ARC device flush.
5069 	 */
5070 	l2arc_evict(remdev, 0, B_TRUE);
5071 	list_destroy(remdev->l2ad_buflist);
5072 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5073 	kmem_free(remdev, sizeof (l2arc_dev_t));
5074 }
5075 
5076 void
5077 l2arc_init(void)
5078 {
5079 	l2arc_thread_exit = 0;
5080 	l2arc_ndev = 0;
5081 	l2arc_writes_sent = 0;
5082 	l2arc_writes_done = 0;
5083 
5084 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5085 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5086 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5087 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5088 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5089 
5090 	l2arc_dev_list = &L2ARC_dev_list;
5091 	l2arc_free_on_write = &L2ARC_free_on_write;
5092 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5093 	    offsetof(l2arc_dev_t, l2ad_node));
5094 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5095 	    offsetof(l2arc_data_free_t, l2df_list_node));
5096 }
5097 
5098 void
5099 l2arc_fini(void)
5100 {
5101 	/*
5102 	 * This is called from dmu_fini(), which is called from spa_fini();
5103 	 * Because of this, we can assume that all l2arc devices have
5104 	 * already been removed when the pools themselves were removed.
5105 	 */
5106 
5107 	l2arc_do_free_on_write();
5108 
5109 	mutex_destroy(&l2arc_feed_thr_lock);
5110 	cv_destroy(&l2arc_feed_thr_cv);
5111 	mutex_destroy(&l2arc_dev_mtx);
5112 	mutex_destroy(&l2arc_buflist_mtx);
5113 	mutex_destroy(&l2arc_free_on_write_mtx);
5114 
5115 	list_destroy(l2arc_dev_list);
5116 	list_destroy(l2arc_free_on_write);
5117 }
5118 
5119 void
5120 l2arc_start(void)
5121 {
5122 	if (!(spa_mode_global & FWRITE))
5123 		return;
5124 
5125 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5126 	    TS_RUN, minclsyspri);
5127 }
5128 
5129 void
5130 l2arc_stop(void)
5131 {
5132 	if (!(spa_mode_global & FWRITE))
5133 		return;
5134 
5135 	mutex_enter(&l2arc_feed_thr_lock);
5136 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
5137 	l2arc_thread_exit = 1;
5138 	while (l2arc_thread_exit != 0)
5139 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5140 	mutex_exit(&l2arc_feed_thr_lock);
5141 }
5142