1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * DVA-based Adjustable Replacement Cache 27 * 28 * While much of the theory of operation used here is 29 * based on the self-tuning, low overhead replacement cache 30 * presented by Megiddo and Modha at FAST 2003, there are some 31 * significant differences: 32 * 33 * 1. The Megiddo and Modha model assumes any page is evictable. 34 * Pages in its cache cannot be "locked" into memory. This makes 35 * the eviction algorithm simple: evict the last page in the list. 36 * This also make the performance characteristics easy to reason 37 * about. Our cache is not so simple. At any given moment, some 38 * subset of the blocks in the cache are un-evictable because we 39 * have handed out a reference to them. Blocks are only evictable 40 * when there are no external references active. This makes 41 * eviction far more problematic: we choose to evict the evictable 42 * blocks that are the "lowest" in the list. 43 * 44 * There are times when it is not possible to evict the requested 45 * space. In these circumstances we are unable to adjust the cache 46 * size. To prevent the cache growing unbounded at these times we 47 * implement a "cache throttle" that slows the flow of new data 48 * into the cache until we can make space available. 49 * 50 * 2. The Megiddo and Modha model assumes a fixed cache size. 51 * Pages are evicted when the cache is full and there is a cache 52 * miss. Our model has a variable sized cache. It grows with 53 * high use, but also tries to react to memory pressure from the 54 * operating system: decreasing its size when system memory is 55 * tight. 56 * 57 * 3. The Megiddo and Modha model assumes a fixed page size. All 58 * elements of the cache are therefor exactly the same size. So 59 * when adjusting the cache size following a cache miss, its simply 60 * a matter of choosing a single page to evict. In our model, we 61 * have variable sized cache blocks (rangeing from 512 bytes to 62 * 128K bytes). We therefor choose a set of blocks to evict to make 63 * space for a cache miss that approximates as closely as possible 64 * the space used by the new block. 65 * 66 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 67 * by N. Megiddo & D. Modha, FAST 2003 68 */ 69 70 /* 71 * The locking model: 72 * 73 * A new reference to a cache buffer can be obtained in two 74 * ways: 1) via a hash table lookup using the DVA as a key, 75 * or 2) via one of the ARC lists. The arc_read() interface 76 * uses method 1, while the internal arc algorithms for 77 * adjusting the cache use method 2. We therefor provide two 78 * types of locks: 1) the hash table lock array, and 2) the 79 * arc list locks. 80 * 81 * Buffers do not have their own mutexs, rather they rely on the 82 * hash table mutexs for the bulk of their protection (i.e. most 83 * fields in the arc_buf_hdr_t are protected by these mutexs). 84 * 85 * buf_hash_find() returns the appropriate mutex (held) when it 86 * locates the requested buffer in the hash table. It returns 87 * NULL for the mutex if the buffer was not in the table. 88 * 89 * buf_hash_remove() expects the appropriate hash mutex to be 90 * already held before it is invoked. 91 * 92 * Each arc state also has a mutex which is used to protect the 93 * buffer list associated with the state. When attempting to 94 * obtain a hash table lock while holding an arc list lock you 95 * must use: mutex_tryenter() to avoid deadlock. Also note that 96 * the active state mutex must be held before the ghost state mutex. 97 * 98 * Arc buffers may have an associated eviction callback function. 99 * This function will be invoked prior to removing the buffer (e.g. 100 * in arc_do_user_evicts()). Note however that the data associated 101 * with the buffer may be evicted prior to the callback. The callback 102 * must be made with *no locks held* (to prevent deadlock). Additionally, 103 * the users of callbacks must ensure that their private data is 104 * protected from simultaneous callbacks from arc_buf_evict() 105 * and arc_do_user_evicts(). 106 * 107 * Note that the majority of the performance stats are manipulated 108 * with atomic operations. 109 * 110 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 111 * 112 * - L2ARC buflist creation 113 * - L2ARC buflist eviction 114 * - L2ARC write completion, which walks L2ARC buflists 115 * - ARC header destruction, as it removes from L2ARC buflists 116 * - ARC header release, as it removes from L2ARC buflists 117 */ 118 119 #include <sys/spa.h> 120 #include <sys/zio.h> 121 #include <sys/zfs_context.h> 122 #include <sys/arc.h> 123 #include <sys/refcount.h> 124 #include <sys/vdev.h> 125 #include <sys/vdev_impl.h> 126 #ifdef _KERNEL 127 #include <sys/vmsystm.h> 128 #include <vm/anon.h> 129 #include <sys/fs/swapnode.h> 130 #include <sys/dnlc.h> 131 #endif 132 #include <sys/callb.h> 133 #include <sys/kstat.h> 134 #include <zfs_fletcher.h> 135 136 static kmutex_t arc_reclaim_thr_lock; 137 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 138 static uint8_t arc_thread_exit; 139 140 extern int zfs_write_limit_shift; 141 extern uint64_t zfs_write_limit_max; 142 extern kmutex_t zfs_write_limit_lock; 143 144 #define ARC_REDUCE_DNLC_PERCENT 3 145 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 146 147 typedef enum arc_reclaim_strategy { 148 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 149 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 150 } arc_reclaim_strategy_t; 151 152 /* number of seconds before growing cache again */ 153 static int arc_grow_retry = 60; 154 155 /* shift of arc_c for calculating both min and max arc_p */ 156 static int arc_p_min_shift = 4; 157 158 /* log2(fraction of arc to reclaim) */ 159 static int arc_shrink_shift = 5; 160 161 /* 162 * minimum lifespan of a prefetch block in clock ticks 163 * (initialized in arc_init()) 164 */ 165 static int arc_min_prefetch_lifespan; 166 167 static int arc_dead; 168 169 /* 170 * The arc has filled available memory and has now warmed up. 171 */ 172 static boolean_t arc_warm; 173 174 /* 175 * These tunables are for performance analysis. 176 */ 177 uint64_t zfs_arc_max; 178 uint64_t zfs_arc_min; 179 uint64_t zfs_arc_meta_limit = 0; 180 int zfs_arc_grow_retry = 0; 181 int zfs_arc_shrink_shift = 0; 182 int zfs_arc_p_min_shift = 0; 183 184 /* 185 * Note that buffers can be in one of 6 states: 186 * ARC_anon - anonymous (discussed below) 187 * ARC_mru - recently used, currently cached 188 * ARC_mru_ghost - recentely used, no longer in cache 189 * ARC_mfu - frequently used, currently cached 190 * ARC_mfu_ghost - frequently used, no longer in cache 191 * ARC_l2c_only - exists in L2ARC but not other states 192 * When there are no active references to the buffer, they are 193 * are linked onto a list in one of these arc states. These are 194 * the only buffers that can be evicted or deleted. Within each 195 * state there are multiple lists, one for meta-data and one for 196 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 197 * etc.) is tracked separately so that it can be managed more 198 * explicitly: favored over data, limited explicitly. 199 * 200 * Anonymous buffers are buffers that are not associated with 201 * a DVA. These are buffers that hold dirty block copies 202 * before they are written to stable storage. By definition, 203 * they are "ref'd" and are considered part of arc_mru 204 * that cannot be freed. Generally, they will aquire a DVA 205 * as they are written and migrate onto the arc_mru list. 206 * 207 * The ARC_l2c_only state is for buffers that are in the second 208 * level ARC but no longer in any of the ARC_m* lists. The second 209 * level ARC itself may also contain buffers that are in any of 210 * the ARC_m* states - meaning that a buffer can exist in two 211 * places. The reason for the ARC_l2c_only state is to keep the 212 * buffer header in the hash table, so that reads that hit the 213 * second level ARC benefit from these fast lookups. 214 */ 215 216 typedef struct arc_state { 217 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 218 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 219 uint64_t arcs_size; /* total amount of data in this state */ 220 kmutex_t arcs_mtx; 221 } arc_state_t; 222 223 /* The 6 states: */ 224 static arc_state_t ARC_anon; 225 static arc_state_t ARC_mru; 226 static arc_state_t ARC_mru_ghost; 227 static arc_state_t ARC_mfu; 228 static arc_state_t ARC_mfu_ghost; 229 static arc_state_t ARC_l2c_only; 230 231 typedef struct arc_stats { 232 kstat_named_t arcstat_hits; 233 kstat_named_t arcstat_misses; 234 kstat_named_t arcstat_demand_data_hits; 235 kstat_named_t arcstat_demand_data_misses; 236 kstat_named_t arcstat_demand_metadata_hits; 237 kstat_named_t arcstat_demand_metadata_misses; 238 kstat_named_t arcstat_prefetch_data_hits; 239 kstat_named_t arcstat_prefetch_data_misses; 240 kstat_named_t arcstat_prefetch_metadata_hits; 241 kstat_named_t arcstat_prefetch_metadata_misses; 242 kstat_named_t arcstat_mru_hits; 243 kstat_named_t arcstat_mru_ghost_hits; 244 kstat_named_t arcstat_mfu_hits; 245 kstat_named_t arcstat_mfu_ghost_hits; 246 kstat_named_t arcstat_deleted; 247 kstat_named_t arcstat_recycle_miss; 248 kstat_named_t arcstat_mutex_miss; 249 kstat_named_t arcstat_evict_skip; 250 kstat_named_t arcstat_evict_l2_cached; 251 kstat_named_t arcstat_evict_l2_eligible; 252 kstat_named_t arcstat_evict_l2_ineligible; 253 kstat_named_t arcstat_hash_elements; 254 kstat_named_t arcstat_hash_elements_max; 255 kstat_named_t arcstat_hash_collisions; 256 kstat_named_t arcstat_hash_chains; 257 kstat_named_t arcstat_hash_chain_max; 258 kstat_named_t arcstat_p; 259 kstat_named_t arcstat_c; 260 kstat_named_t arcstat_c_min; 261 kstat_named_t arcstat_c_max; 262 kstat_named_t arcstat_size; 263 kstat_named_t arcstat_hdr_size; 264 kstat_named_t arcstat_data_size; 265 kstat_named_t arcstat_other_size; 266 kstat_named_t arcstat_l2_hits; 267 kstat_named_t arcstat_l2_misses; 268 kstat_named_t arcstat_l2_feeds; 269 kstat_named_t arcstat_l2_rw_clash; 270 kstat_named_t arcstat_l2_read_bytes; 271 kstat_named_t arcstat_l2_write_bytes; 272 kstat_named_t arcstat_l2_writes_sent; 273 kstat_named_t arcstat_l2_writes_done; 274 kstat_named_t arcstat_l2_writes_error; 275 kstat_named_t arcstat_l2_writes_hdr_miss; 276 kstat_named_t arcstat_l2_evict_lock_retry; 277 kstat_named_t arcstat_l2_evict_reading; 278 kstat_named_t arcstat_l2_free_on_write; 279 kstat_named_t arcstat_l2_abort_lowmem; 280 kstat_named_t arcstat_l2_cksum_bad; 281 kstat_named_t arcstat_l2_io_error; 282 kstat_named_t arcstat_l2_size; 283 kstat_named_t arcstat_l2_hdr_size; 284 kstat_named_t arcstat_memory_throttle_count; 285 } arc_stats_t; 286 287 static arc_stats_t arc_stats = { 288 { "hits", KSTAT_DATA_UINT64 }, 289 { "misses", KSTAT_DATA_UINT64 }, 290 { "demand_data_hits", KSTAT_DATA_UINT64 }, 291 { "demand_data_misses", KSTAT_DATA_UINT64 }, 292 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 293 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 294 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 295 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 296 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 297 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 298 { "mru_hits", KSTAT_DATA_UINT64 }, 299 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 300 { "mfu_hits", KSTAT_DATA_UINT64 }, 301 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 302 { "deleted", KSTAT_DATA_UINT64 }, 303 { "recycle_miss", KSTAT_DATA_UINT64 }, 304 { "mutex_miss", KSTAT_DATA_UINT64 }, 305 { "evict_skip", KSTAT_DATA_UINT64 }, 306 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 307 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 308 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 309 { "hash_elements", KSTAT_DATA_UINT64 }, 310 { "hash_elements_max", KSTAT_DATA_UINT64 }, 311 { "hash_collisions", KSTAT_DATA_UINT64 }, 312 { "hash_chains", KSTAT_DATA_UINT64 }, 313 { "hash_chain_max", KSTAT_DATA_UINT64 }, 314 { "p", KSTAT_DATA_UINT64 }, 315 { "c", KSTAT_DATA_UINT64 }, 316 { "c_min", KSTAT_DATA_UINT64 }, 317 { "c_max", KSTAT_DATA_UINT64 }, 318 { "size", KSTAT_DATA_UINT64 }, 319 { "hdr_size", KSTAT_DATA_UINT64 }, 320 { "data_size", KSTAT_DATA_UINT64 }, 321 { "other_size", KSTAT_DATA_UINT64 }, 322 { "l2_hits", KSTAT_DATA_UINT64 }, 323 { "l2_misses", KSTAT_DATA_UINT64 }, 324 { "l2_feeds", KSTAT_DATA_UINT64 }, 325 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 326 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 327 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 328 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 329 { "l2_writes_done", KSTAT_DATA_UINT64 }, 330 { "l2_writes_error", KSTAT_DATA_UINT64 }, 331 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 332 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 333 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 334 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 335 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 336 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 337 { "l2_io_error", KSTAT_DATA_UINT64 }, 338 { "l2_size", KSTAT_DATA_UINT64 }, 339 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 340 { "memory_throttle_count", KSTAT_DATA_UINT64 } 341 }; 342 343 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 344 345 #define ARCSTAT_INCR(stat, val) \ 346 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 347 348 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 349 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 350 351 #define ARCSTAT_MAX(stat, val) { \ 352 uint64_t m; \ 353 while ((val) > (m = arc_stats.stat.value.ui64) && \ 354 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 355 continue; \ 356 } 357 358 #define ARCSTAT_MAXSTAT(stat) \ 359 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 360 361 /* 362 * We define a macro to allow ARC hits/misses to be easily broken down by 363 * two separate conditions, giving a total of four different subtypes for 364 * each of hits and misses (so eight statistics total). 365 */ 366 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 367 if (cond1) { \ 368 if (cond2) { \ 369 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 370 } else { \ 371 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 372 } \ 373 } else { \ 374 if (cond2) { \ 375 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 376 } else { \ 377 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 378 } \ 379 } 380 381 kstat_t *arc_ksp; 382 static arc_state_t *arc_anon; 383 static arc_state_t *arc_mru; 384 static arc_state_t *arc_mru_ghost; 385 static arc_state_t *arc_mfu; 386 static arc_state_t *arc_mfu_ghost; 387 static arc_state_t *arc_l2c_only; 388 389 /* 390 * There are several ARC variables that are critical to export as kstats -- 391 * but we don't want to have to grovel around in the kstat whenever we wish to 392 * manipulate them. For these variables, we therefore define them to be in 393 * terms of the statistic variable. This assures that we are not introducing 394 * the possibility of inconsistency by having shadow copies of the variables, 395 * while still allowing the code to be readable. 396 */ 397 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 398 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 399 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 400 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 401 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 402 403 static int arc_no_grow; /* Don't try to grow cache size */ 404 static uint64_t arc_tempreserve; 405 static uint64_t arc_loaned_bytes; 406 static uint64_t arc_meta_used; 407 static uint64_t arc_meta_limit; 408 static uint64_t arc_meta_max = 0; 409 410 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 411 412 typedef struct arc_callback arc_callback_t; 413 414 struct arc_callback { 415 void *acb_private; 416 arc_done_func_t *acb_done; 417 arc_buf_t *acb_buf; 418 zio_t *acb_zio_dummy; 419 arc_callback_t *acb_next; 420 }; 421 422 typedef struct arc_write_callback arc_write_callback_t; 423 424 struct arc_write_callback { 425 void *awcb_private; 426 arc_done_func_t *awcb_ready; 427 arc_done_func_t *awcb_done; 428 arc_buf_t *awcb_buf; 429 }; 430 431 struct arc_buf_hdr { 432 /* protected by hash lock */ 433 dva_t b_dva; 434 uint64_t b_birth; 435 uint64_t b_cksum0; 436 437 kmutex_t b_freeze_lock; 438 zio_cksum_t *b_freeze_cksum; 439 void *b_thawed; 440 441 arc_buf_hdr_t *b_hash_next; 442 arc_buf_t *b_buf; 443 uint32_t b_flags; 444 uint32_t b_datacnt; 445 446 arc_callback_t *b_acb; 447 kcondvar_t b_cv; 448 449 /* immutable */ 450 arc_buf_contents_t b_type; 451 uint64_t b_size; 452 uint64_t b_spa; 453 454 /* protected by arc state mutex */ 455 arc_state_t *b_state; 456 list_node_t b_arc_node; 457 458 /* updated atomically */ 459 clock_t b_arc_access; 460 461 /* self protecting */ 462 refcount_t b_refcnt; 463 464 l2arc_buf_hdr_t *b_l2hdr; 465 list_node_t b_l2node; 466 }; 467 468 static arc_buf_t *arc_eviction_list; 469 static kmutex_t arc_eviction_mtx; 470 static arc_buf_hdr_t arc_eviction_hdr; 471 static void arc_get_data_buf(arc_buf_t *buf); 472 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 473 static int arc_evict_needed(arc_buf_contents_t type); 474 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 475 476 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 477 478 #define GHOST_STATE(state) \ 479 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 480 (state) == arc_l2c_only) 481 482 /* 483 * Private ARC flags. These flags are private ARC only flags that will show up 484 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 485 * be passed in as arc_flags in things like arc_read. However, these flags 486 * should never be passed and should only be set by ARC code. When adding new 487 * public flags, make sure not to smash the private ones. 488 */ 489 490 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 491 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 492 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 493 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 494 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 495 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 496 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 497 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 498 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 499 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 500 501 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 502 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 503 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 504 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 505 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 506 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 507 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 508 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 509 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 510 (hdr)->b_l2hdr != NULL) 511 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 512 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 513 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 514 515 /* 516 * Other sizes 517 */ 518 519 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 520 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 521 522 /* 523 * Hash table routines 524 */ 525 526 #define HT_LOCK_PAD 64 527 528 struct ht_lock { 529 kmutex_t ht_lock; 530 #ifdef _KERNEL 531 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 532 #endif 533 }; 534 535 #define BUF_LOCKS 256 536 typedef struct buf_hash_table { 537 uint64_t ht_mask; 538 arc_buf_hdr_t **ht_table; 539 struct ht_lock ht_locks[BUF_LOCKS]; 540 } buf_hash_table_t; 541 542 static buf_hash_table_t buf_hash_table; 543 544 #define BUF_HASH_INDEX(spa, dva, birth) \ 545 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 546 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 547 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 548 #define HDR_LOCK(hdr) \ 549 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 550 551 uint64_t zfs_crc64_table[256]; 552 553 /* 554 * Level 2 ARC 555 */ 556 557 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 558 #define L2ARC_HEADROOM 2 /* num of writes */ 559 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 560 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 561 562 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 563 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 564 565 /* 566 * L2ARC Performance Tunables 567 */ 568 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 569 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 570 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 571 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 572 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 573 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 574 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 575 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 576 577 /* 578 * L2ARC Internals 579 */ 580 typedef struct l2arc_dev { 581 vdev_t *l2ad_vdev; /* vdev */ 582 spa_t *l2ad_spa; /* spa */ 583 uint64_t l2ad_hand; /* next write location */ 584 uint64_t l2ad_write; /* desired write size, bytes */ 585 uint64_t l2ad_boost; /* warmup write boost, bytes */ 586 uint64_t l2ad_start; /* first addr on device */ 587 uint64_t l2ad_end; /* last addr on device */ 588 uint64_t l2ad_evict; /* last addr eviction reached */ 589 boolean_t l2ad_first; /* first sweep through */ 590 boolean_t l2ad_writing; /* currently writing */ 591 list_t *l2ad_buflist; /* buffer list */ 592 list_node_t l2ad_node; /* device list node */ 593 } l2arc_dev_t; 594 595 static list_t L2ARC_dev_list; /* device list */ 596 static list_t *l2arc_dev_list; /* device list pointer */ 597 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 598 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 599 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 600 static list_t L2ARC_free_on_write; /* free after write buf list */ 601 static list_t *l2arc_free_on_write; /* free after write list ptr */ 602 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 603 static uint64_t l2arc_ndev; /* number of devices */ 604 605 typedef struct l2arc_read_callback { 606 arc_buf_t *l2rcb_buf; /* read buffer */ 607 spa_t *l2rcb_spa; /* spa */ 608 blkptr_t l2rcb_bp; /* original blkptr */ 609 zbookmark_t l2rcb_zb; /* original bookmark */ 610 int l2rcb_flags; /* original flags */ 611 } l2arc_read_callback_t; 612 613 typedef struct l2arc_write_callback { 614 l2arc_dev_t *l2wcb_dev; /* device info */ 615 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 616 } l2arc_write_callback_t; 617 618 struct l2arc_buf_hdr { 619 /* protected by arc_buf_hdr mutex */ 620 l2arc_dev_t *b_dev; /* L2ARC device */ 621 uint64_t b_daddr; /* disk address, offset byte */ 622 }; 623 624 typedef struct l2arc_data_free { 625 /* protected by l2arc_free_on_write_mtx */ 626 void *l2df_data; 627 size_t l2df_size; 628 void (*l2df_func)(void *, size_t); 629 list_node_t l2df_list_node; 630 } l2arc_data_free_t; 631 632 static kmutex_t l2arc_feed_thr_lock; 633 static kcondvar_t l2arc_feed_thr_cv; 634 static uint8_t l2arc_thread_exit; 635 636 static void l2arc_read_done(zio_t *zio); 637 static void l2arc_hdr_stat_add(void); 638 static void l2arc_hdr_stat_remove(void); 639 640 static uint64_t 641 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 642 { 643 uint8_t *vdva = (uint8_t *)dva; 644 uint64_t crc = -1ULL; 645 int i; 646 647 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 648 649 for (i = 0; i < sizeof (dva_t); i++) 650 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 651 652 crc ^= (spa>>8) ^ birth; 653 654 return (crc); 655 } 656 657 #define BUF_EMPTY(buf) \ 658 ((buf)->b_dva.dva_word[0] == 0 && \ 659 (buf)->b_dva.dva_word[1] == 0 && \ 660 (buf)->b_birth == 0) 661 662 #define BUF_EQUAL(spa, dva, birth, buf) \ 663 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 664 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 665 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 666 667 static void 668 buf_discard_identity(arc_buf_hdr_t *hdr) 669 { 670 hdr->b_dva.dva_word[0] = 0; 671 hdr->b_dva.dva_word[1] = 0; 672 hdr->b_birth = 0; 673 hdr->b_cksum0 = 0; 674 } 675 676 static arc_buf_hdr_t * 677 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 678 { 679 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 680 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 681 arc_buf_hdr_t *buf; 682 683 mutex_enter(hash_lock); 684 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 685 buf = buf->b_hash_next) { 686 if (BUF_EQUAL(spa, dva, birth, buf)) { 687 *lockp = hash_lock; 688 return (buf); 689 } 690 } 691 mutex_exit(hash_lock); 692 *lockp = NULL; 693 return (NULL); 694 } 695 696 /* 697 * Insert an entry into the hash table. If there is already an element 698 * equal to elem in the hash table, then the already existing element 699 * will be returned and the new element will not be inserted. 700 * Otherwise returns NULL. 701 */ 702 static arc_buf_hdr_t * 703 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 704 { 705 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 706 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 707 arc_buf_hdr_t *fbuf; 708 uint32_t i; 709 710 ASSERT(!HDR_IN_HASH_TABLE(buf)); 711 *lockp = hash_lock; 712 mutex_enter(hash_lock); 713 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 714 fbuf = fbuf->b_hash_next, i++) { 715 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 716 return (fbuf); 717 } 718 719 buf->b_hash_next = buf_hash_table.ht_table[idx]; 720 buf_hash_table.ht_table[idx] = buf; 721 buf->b_flags |= ARC_IN_HASH_TABLE; 722 723 /* collect some hash table performance data */ 724 if (i > 0) { 725 ARCSTAT_BUMP(arcstat_hash_collisions); 726 if (i == 1) 727 ARCSTAT_BUMP(arcstat_hash_chains); 728 729 ARCSTAT_MAX(arcstat_hash_chain_max, i); 730 } 731 732 ARCSTAT_BUMP(arcstat_hash_elements); 733 ARCSTAT_MAXSTAT(arcstat_hash_elements); 734 735 return (NULL); 736 } 737 738 static void 739 buf_hash_remove(arc_buf_hdr_t *buf) 740 { 741 arc_buf_hdr_t *fbuf, **bufp; 742 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 743 744 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 745 ASSERT(HDR_IN_HASH_TABLE(buf)); 746 747 bufp = &buf_hash_table.ht_table[idx]; 748 while ((fbuf = *bufp) != buf) { 749 ASSERT(fbuf != NULL); 750 bufp = &fbuf->b_hash_next; 751 } 752 *bufp = buf->b_hash_next; 753 buf->b_hash_next = NULL; 754 buf->b_flags &= ~ARC_IN_HASH_TABLE; 755 756 /* collect some hash table performance data */ 757 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 758 759 if (buf_hash_table.ht_table[idx] && 760 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 761 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 762 } 763 764 /* 765 * Global data structures and functions for the buf kmem cache. 766 */ 767 static kmem_cache_t *hdr_cache; 768 static kmem_cache_t *buf_cache; 769 770 static void 771 buf_fini(void) 772 { 773 int i; 774 775 kmem_free(buf_hash_table.ht_table, 776 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 777 for (i = 0; i < BUF_LOCKS; i++) 778 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 779 kmem_cache_destroy(hdr_cache); 780 kmem_cache_destroy(buf_cache); 781 } 782 783 /* 784 * Constructor callback - called when the cache is empty 785 * and a new buf is requested. 786 */ 787 /* ARGSUSED */ 788 static int 789 hdr_cons(void *vbuf, void *unused, int kmflag) 790 { 791 arc_buf_hdr_t *buf = vbuf; 792 793 bzero(buf, sizeof (arc_buf_hdr_t)); 794 refcount_create(&buf->b_refcnt); 795 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 796 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 797 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 798 799 return (0); 800 } 801 802 /* ARGSUSED */ 803 static int 804 buf_cons(void *vbuf, void *unused, int kmflag) 805 { 806 arc_buf_t *buf = vbuf; 807 808 bzero(buf, sizeof (arc_buf_t)); 809 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 810 rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL); 811 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 812 813 return (0); 814 } 815 816 /* 817 * Destructor callback - called when a cached buf is 818 * no longer required. 819 */ 820 /* ARGSUSED */ 821 static void 822 hdr_dest(void *vbuf, void *unused) 823 { 824 arc_buf_hdr_t *buf = vbuf; 825 826 ASSERT(BUF_EMPTY(buf)); 827 refcount_destroy(&buf->b_refcnt); 828 cv_destroy(&buf->b_cv); 829 mutex_destroy(&buf->b_freeze_lock); 830 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 831 } 832 833 /* ARGSUSED */ 834 static void 835 buf_dest(void *vbuf, void *unused) 836 { 837 arc_buf_t *buf = vbuf; 838 839 mutex_destroy(&buf->b_evict_lock); 840 rw_destroy(&buf->b_data_lock); 841 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 842 } 843 844 /* 845 * Reclaim callback -- invoked when memory is low. 846 */ 847 /* ARGSUSED */ 848 static void 849 hdr_recl(void *unused) 850 { 851 dprintf("hdr_recl called\n"); 852 /* 853 * umem calls the reclaim func when we destroy the buf cache, 854 * which is after we do arc_fini(). 855 */ 856 if (!arc_dead) 857 cv_signal(&arc_reclaim_thr_cv); 858 } 859 860 static void 861 buf_init(void) 862 { 863 uint64_t *ct; 864 uint64_t hsize = 1ULL << 12; 865 int i, j; 866 867 /* 868 * The hash table is big enough to fill all of physical memory 869 * with an average 64K block size. The table will take up 870 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 871 */ 872 while (hsize * 65536 < physmem * PAGESIZE) 873 hsize <<= 1; 874 retry: 875 buf_hash_table.ht_mask = hsize - 1; 876 buf_hash_table.ht_table = 877 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 878 if (buf_hash_table.ht_table == NULL) { 879 ASSERT(hsize > (1ULL << 8)); 880 hsize >>= 1; 881 goto retry; 882 } 883 884 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 885 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 886 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 887 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 888 889 for (i = 0; i < 256; i++) 890 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 891 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 892 893 for (i = 0; i < BUF_LOCKS; i++) { 894 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 895 NULL, MUTEX_DEFAULT, NULL); 896 } 897 } 898 899 #define ARC_MINTIME (hz>>4) /* 62 ms */ 900 901 static void 902 arc_cksum_verify(arc_buf_t *buf) 903 { 904 zio_cksum_t zc; 905 906 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 907 return; 908 909 mutex_enter(&buf->b_hdr->b_freeze_lock); 910 if (buf->b_hdr->b_freeze_cksum == NULL || 911 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 912 mutex_exit(&buf->b_hdr->b_freeze_lock); 913 return; 914 } 915 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 916 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 917 panic("buffer modified while frozen!"); 918 mutex_exit(&buf->b_hdr->b_freeze_lock); 919 } 920 921 static int 922 arc_cksum_equal(arc_buf_t *buf) 923 { 924 zio_cksum_t zc; 925 int equal; 926 927 mutex_enter(&buf->b_hdr->b_freeze_lock); 928 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 929 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 930 mutex_exit(&buf->b_hdr->b_freeze_lock); 931 932 return (equal); 933 } 934 935 static void 936 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 937 { 938 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 939 return; 940 941 mutex_enter(&buf->b_hdr->b_freeze_lock); 942 if (buf->b_hdr->b_freeze_cksum != NULL) { 943 mutex_exit(&buf->b_hdr->b_freeze_lock); 944 return; 945 } 946 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 947 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 948 buf->b_hdr->b_freeze_cksum); 949 mutex_exit(&buf->b_hdr->b_freeze_lock); 950 } 951 952 void 953 arc_buf_thaw(arc_buf_t *buf) 954 { 955 kmutex_t *hash_lock; 956 957 hash_lock = HDR_LOCK(buf->b_hdr); 958 mutex_enter(hash_lock); 959 960 if (zfs_flags & ZFS_DEBUG_MODIFY) { 961 if (buf->b_hdr->b_state != arc_anon) 962 panic("modifying non-anon buffer!"); 963 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 964 panic("modifying buffer while i/o in progress!"); 965 arc_cksum_verify(buf); 966 } 967 968 mutex_enter(&buf->b_hdr->b_freeze_lock); 969 if (buf->b_hdr->b_freeze_cksum != NULL) { 970 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 971 buf->b_hdr->b_freeze_cksum = NULL; 972 } 973 974 if (zfs_flags & ZFS_DEBUG_MODIFY) { 975 if (buf->b_hdr->b_thawed) 976 kmem_free(buf->b_hdr->b_thawed, 1); 977 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 978 } 979 980 mutex_exit(&buf->b_hdr->b_freeze_lock); 981 mutex_exit(hash_lock); 982 } 983 984 void 985 arc_buf_freeze(arc_buf_t *buf) 986 { 987 kmutex_t *hash_lock; 988 989 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 990 return; 991 992 hash_lock = HDR_LOCK(buf->b_hdr); 993 mutex_enter(hash_lock); 994 995 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 996 buf->b_hdr->b_state == arc_anon); 997 arc_cksum_compute(buf, B_FALSE); 998 mutex_exit(hash_lock); 999 } 1000 1001 static void 1002 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1003 { 1004 ASSERT(MUTEX_HELD(hash_lock)); 1005 1006 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1007 (ab->b_state != arc_anon)) { 1008 uint64_t delta = ab->b_size * ab->b_datacnt; 1009 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1010 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1011 1012 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1013 mutex_enter(&ab->b_state->arcs_mtx); 1014 ASSERT(list_link_active(&ab->b_arc_node)); 1015 list_remove(list, ab); 1016 if (GHOST_STATE(ab->b_state)) { 1017 ASSERT3U(ab->b_datacnt, ==, 0); 1018 ASSERT3P(ab->b_buf, ==, NULL); 1019 delta = ab->b_size; 1020 } 1021 ASSERT(delta > 0); 1022 ASSERT3U(*size, >=, delta); 1023 atomic_add_64(size, -delta); 1024 mutex_exit(&ab->b_state->arcs_mtx); 1025 /* remove the prefetch flag if we get a reference */ 1026 if (ab->b_flags & ARC_PREFETCH) 1027 ab->b_flags &= ~ARC_PREFETCH; 1028 } 1029 } 1030 1031 static int 1032 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1033 { 1034 int cnt; 1035 arc_state_t *state = ab->b_state; 1036 1037 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1038 ASSERT(!GHOST_STATE(state)); 1039 1040 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1041 (state != arc_anon)) { 1042 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1043 1044 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1045 mutex_enter(&state->arcs_mtx); 1046 ASSERT(!list_link_active(&ab->b_arc_node)); 1047 list_insert_head(&state->arcs_list[ab->b_type], ab); 1048 ASSERT(ab->b_datacnt > 0); 1049 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1050 mutex_exit(&state->arcs_mtx); 1051 } 1052 return (cnt); 1053 } 1054 1055 /* 1056 * Move the supplied buffer to the indicated state. The mutex 1057 * for the buffer must be held by the caller. 1058 */ 1059 static void 1060 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1061 { 1062 arc_state_t *old_state = ab->b_state; 1063 int64_t refcnt = refcount_count(&ab->b_refcnt); 1064 uint64_t from_delta, to_delta; 1065 1066 ASSERT(MUTEX_HELD(hash_lock)); 1067 ASSERT(new_state != old_state); 1068 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1069 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1070 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1071 1072 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1073 1074 /* 1075 * If this buffer is evictable, transfer it from the 1076 * old state list to the new state list. 1077 */ 1078 if (refcnt == 0) { 1079 if (old_state != arc_anon) { 1080 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1081 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1082 1083 if (use_mutex) 1084 mutex_enter(&old_state->arcs_mtx); 1085 1086 ASSERT(list_link_active(&ab->b_arc_node)); 1087 list_remove(&old_state->arcs_list[ab->b_type], ab); 1088 1089 /* 1090 * If prefetching out of the ghost cache, 1091 * we will have a non-zero datacnt. 1092 */ 1093 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1094 /* ghost elements have a ghost size */ 1095 ASSERT(ab->b_buf == NULL); 1096 from_delta = ab->b_size; 1097 } 1098 ASSERT3U(*size, >=, from_delta); 1099 atomic_add_64(size, -from_delta); 1100 1101 if (use_mutex) 1102 mutex_exit(&old_state->arcs_mtx); 1103 } 1104 if (new_state != arc_anon) { 1105 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1106 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1107 1108 if (use_mutex) 1109 mutex_enter(&new_state->arcs_mtx); 1110 1111 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1112 1113 /* ghost elements have a ghost size */ 1114 if (GHOST_STATE(new_state)) { 1115 ASSERT(ab->b_datacnt == 0); 1116 ASSERT(ab->b_buf == NULL); 1117 to_delta = ab->b_size; 1118 } 1119 atomic_add_64(size, to_delta); 1120 1121 if (use_mutex) 1122 mutex_exit(&new_state->arcs_mtx); 1123 } 1124 } 1125 1126 ASSERT(!BUF_EMPTY(ab)); 1127 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1128 buf_hash_remove(ab); 1129 1130 /* adjust state sizes */ 1131 if (to_delta) 1132 atomic_add_64(&new_state->arcs_size, to_delta); 1133 if (from_delta) { 1134 ASSERT3U(old_state->arcs_size, >=, from_delta); 1135 atomic_add_64(&old_state->arcs_size, -from_delta); 1136 } 1137 ab->b_state = new_state; 1138 1139 /* adjust l2arc hdr stats */ 1140 if (new_state == arc_l2c_only) 1141 l2arc_hdr_stat_add(); 1142 else if (old_state == arc_l2c_only) 1143 l2arc_hdr_stat_remove(); 1144 } 1145 1146 void 1147 arc_space_consume(uint64_t space, arc_space_type_t type) 1148 { 1149 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1150 1151 switch (type) { 1152 case ARC_SPACE_DATA: 1153 ARCSTAT_INCR(arcstat_data_size, space); 1154 break; 1155 case ARC_SPACE_OTHER: 1156 ARCSTAT_INCR(arcstat_other_size, space); 1157 break; 1158 case ARC_SPACE_HDRS: 1159 ARCSTAT_INCR(arcstat_hdr_size, space); 1160 break; 1161 case ARC_SPACE_L2HDRS: 1162 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1163 break; 1164 } 1165 1166 atomic_add_64(&arc_meta_used, space); 1167 atomic_add_64(&arc_size, space); 1168 } 1169 1170 void 1171 arc_space_return(uint64_t space, arc_space_type_t type) 1172 { 1173 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1174 1175 switch (type) { 1176 case ARC_SPACE_DATA: 1177 ARCSTAT_INCR(arcstat_data_size, -space); 1178 break; 1179 case ARC_SPACE_OTHER: 1180 ARCSTAT_INCR(arcstat_other_size, -space); 1181 break; 1182 case ARC_SPACE_HDRS: 1183 ARCSTAT_INCR(arcstat_hdr_size, -space); 1184 break; 1185 case ARC_SPACE_L2HDRS: 1186 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1187 break; 1188 } 1189 1190 ASSERT(arc_meta_used >= space); 1191 if (arc_meta_max < arc_meta_used) 1192 arc_meta_max = arc_meta_used; 1193 atomic_add_64(&arc_meta_used, -space); 1194 ASSERT(arc_size >= space); 1195 atomic_add_64(&arc_size, -space); 1196 } 1197 1198 void * 1199 arc_data_buf_alloc(uint64_t size) 1200 { 1201 if (arc_evict_needed(ARC_BUFC_DATA)) 1202 cv_signal(&arc_reclaim_thr_cv); 1203 atomic_add_64(&arc_size, size); 1204 return (zio_data_buf_alloc(size)); 1205 } 1206 1207 void 1208 arc_data_buf_free(void *buf, uint64_t size) 1209 { 1210 zio_data_buf_free(buf, size); 1211 ASSERT(arc_size >= size); 1212 atomic_add_64(&arc_size, -size); 1213 } 1214 1215 arc_buf_t * 1216 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1217 { 1218 arc_buf_hdr_t *hdr; 1219 arc_buf_t *buf; 1220 1221 ASSERT3U(size, >, 0); 1222 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1223 ASSERT(BUF_EMPTY(hdr)); 1224 hdr->b_size = size; 1225 hdr->b_type = type; 1226 hdr->b_spa = spa_guid(spa); 1227 hdr->b_state = arc_anon; 1228 hdr->b_arc_access = 0; 1229 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1230 buf->b_hdr = hdr; 1231 buf->b_data = NULL; 1232 buf->b_efunc = NULL; 1233 buf->b_private = NULL; 1234 buf->b_next = NULL; 1235 hdr->b_buf = buf; 1236 arc_get_data_buf(buf); 1237 hdr->b_datacnt = 1; 1238 hdr->b_flags = 0; 1239 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1240 (void) refcount_add(&hdr->b_refcnt, tag); 1241 1242 return (buf); 1243 } 1244 1245 static char *arc_onloan_tag = "onloan"; 1246 1247 /* 1248 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1249 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1250 * buffers must be returned to the arc before they can be used by the DMU or 1251 * freed. 1252 */ 1253 arc_buf_t * 1254 arc_loan_buf(spa_t *spa, int size) 1255 { 1256 arc_buf_t *buf; 1257 1258 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1259 1260 atomic_add_64(&arc_loaned_bytes, size); 1261 return (buf); 1262 } 1263 1264 /* 1265 * Return a loaned arc buffer to the arc. 1266 */ 1267 void 1268 arc_return_buf(arc_buf_t *buf, void *tag) 1269 { 1270 arc_buf_hdr_t *hdr = buf->b_hdr; 1271 1272 ASSERT(buf->b_data != NULL); 1273 (void) refcount_add(&hdr->b_refcnt, tag); 1274 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1275 1276 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1277 } 1278 1279 /* Detach an arc_buf from a dbuf (tag) */ 1280 void 1281 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1282 { 1283 arc_buf_hdr_t *hdr; 1284 1285 ASSERT(buf->b_data != NULL); 1286 hdr = buf->b_hdr; 1287 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1288 (void) refcount_remove(&hdr->b_refcnt, tag); 1289 buf->b_efunc = NULL; 1290 buf->b_private = NULL; 1291 1292 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1293 } 1294 1295 static arc_buf_t * 1296 arc_buf_clone(arc_buf_t *from) 1297 { 1298 arc_buf_t *buf; 1299 arc_buf_hdr_t *hdr = from->b_hdr; 1300 uint64_t size = hdr->b_size; 1301 1302 ASSERT(hdr->b_state != arc_anon); 1303 1304 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1305 buf->b_hdr = hdr; 1306 buf->b_data = NULL; 1307 buf->b_efunc = NULL; 1308 buf->b_private = NULL; 1309 buf->b_next = hdr->b_buf; 1310 hdr->b_buf = buf; 1311 arc_get_data_buf(buf); 1312 bcopy(from->b_data, buf->b_data, size); 1313 hdr->b_datacnt += 1; 1314 return (buf); 1315 } 1316 1317 void 1318 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1319 { 1320 arc_buf_hdr_t *hdr; 1321 kmutex_t *hash_lock; 1322 1323 /* 1324 * Check to see if this buffer is evicted. Callers 1325 * must verify b_data != NULL to know if the add_ref 1326 * was successful. 1327 */ 1328 mutex_enter(&buf->b_evict_lock); 1329 if (buf->b_data == NULL) { 1330 mutex_exit(&buf->b_evict_lock); 1331 return; 1332 } 1333 hash_lock = HDR_LOCK(buf->b_hdr); 1334 mutex_enter(hash_lock); 1335 hdr = buf->b_hdr; 1336 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1337 mutex_exit(&buf->b_evict_lock); 1338 1339 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1340 add_reference(hdr, hash_lock, tag); 1341 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1342 arc_access(hdr, hash_lock); 1343 mutex_exit(hash_lock); 1344 ARCSTAT_BUMP(arcstat_hits); 1345 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1346 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1347 data, metadata, hits); 1348 } 1349 1350 /* 1351 * Free the arc data buffer. If it is an l2arc write in progress, 1352 * the buffer is placed on l2arc_free_on_write to be freed later. 1353 */ 1354 static void 1355 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1356 void *data, size_t size) 1357 { 1358 if (HDR_L2_WRITING(hdr)) { 1359 l2arc_data_free_t *df; 1360 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1361 df->l2df_data = data; 1362 df->l2df_size = size; 1363 df->l2df_func = free_func; 1364 mutex_enter(&l2arc_free_on_write_mtx); 1365 list_insert_head(l2arc_free_on_write, df); 1366 mutex_exit(&l2arc_free_on_write_mtx); 1367 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1368 } else { 1369 free_func(data, size); 1370 } 1371 } 1372 1373 static void 1374 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1375 { 1376 arc_buf_t **bufp; 1377 1378 /* free up data associated with the buf */ 1379 if (buf->b_data) { 1380 arc_state_t *state = buf->b_hdr->b_state; 1381 uint64_t size = buf->b_hdr->b_size; 1382 arc_buf_contents_t type = buf->b_hdr->b_type; 1383 1384 arc_cksum_verify(buf); 1385 1386 if (!recycle) { 1387 if (type == ARC_BUFC_METADATA) { 1388 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1389 buf->b_data, size); 1390 arc_space_return(size, ARC_SPACE_DATA); 1391 } else { 1392 ASSERT(type == ARC_BUFC_DATA); 1393 arc_buf_data_free(buf->b_hdr, 1394 zio_data_buf_free, buf->b_data, size); 1395 ARCSTAT_INCR(arcstat_data_size, -size); 1396 atomic_add_64(&arc_size, -size); 1397 } 1398 } 1399 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1400 uint64_t *cnt = &state->arcs_lsize[type]; 1401 1402 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1403 ASSERT(state != arc_anon); 1404 1405 ASSERT3U(*cnt, >=, size); 1406 atomic_add_64(cnt, -size); 1407 } 1408 ASSERT3U(state->arcs_size, >=, size); 1409 atomic_add_64(&state->arcs_size, -size); 1410 buf->b_data = NULL; 1411 ASSERT(buf->b_hdr->b_datacnt > 0); 1412 buf->b_hdr->b_datacnt -= 1; 1413 } 1414 1415 /* only remove the buf if requested */ 1416 if (!all) 1417 return; 1418 1419 /* remove the buf from the hdr list */ 1420 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1421 continue; 1422 *bufp = buf->b_next; 1423 buf->b_next = NULL; 1424 1425 ASSERT(buf->b_efunc == NULL); 1426 1427 /* clean up the buf */ 1428 buf->b_hdr = NULL; 1429 kmem_cache_free(buf_cache, buf); 1430 } 1431 1432 static void 1433 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1434 { 1435 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1436 ASSERT3P(hdr->b_state, ==, arc_anon); 1437 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1438 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1439 1440 if (l2hdr != NULL) { 1441 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1442 /* 1443 * To prevent arc_free() and l2arc_evict() from 1444 * attempting to free the same buffer at the same time, 1445 * a FREE_IN_PROGRESS flag is given to arc_free() to 1446 * give it priority. l2arc_evict() can't destroy this 1447 * header while we are waiting on l2arc_buflist_mtx. 1448 * 1449 * The hdr may be removed from l2ad_buflist before we 1450 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1451 */ 1452 if (!buflist_held) { 1453 mutex_enter(&l2arc_buflist_mtx); 1454 l2hdr = hdr->b_l2hdr; 1455 } 1456 1457 if (l2hdr != NULL) { 1458 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1459 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1460 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1461 if (hdr->b_state == arc_l2c_only) 1462 l2arc_hdr_stat_remove(); 1463 hdr->b_l2hdr = NULL; 1464 } 1465 1466 if (!buflist_held) 1467 mutex_exit(&l2arc_buflist_mtx); 1468 } 1469 1470 if (!BUF_EMPTY(hdr)) { 1471 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1472 buf_discard_identity(hdr); 1473 } 1474 while (hdr->b_buf) { 1475 arc_buf_t *buf = hdr->b_buf; 1476 1477 if (buf->b_efunc) { 1478 mutex_enter(&arc_eviction_mtx); 1479 mutex_enter(&buf->b_evict_lock); 1480 ASSERT(buf->b_hdr != NULL); 1481 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1482 hdr->b_buf = buf->b_next; 1483 buf->b_hdr = &arc_eviction_hdr; 1484 buf->b_next = arc_eviction_list; 1485 arc_eviction_list = buf; 1486 mutex_exit(&buf->b_evict_lock); 1487 mutex_exit(&arc_eviction_mtx); 1488 } else { 1489 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1490 } 1491 } 1492 if (hdr->b_freeze_cksum != NULL) { 1493 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1494 hdr->b_freeze_cksum = NULL; 1495 } 1496 if (hdr->b_thawed) { 1497 kmem_free(hdr->b_thawed, 1); 1498 hdr->b_thawed = NULL; 1499 } 1500 1501 ASSERT(!list_link_active(&hdr->b_arc_node)); 1502 ASSERT3P(hdr->b_hash_next, ==, NULL); 1503 ASSERT3P(hdr->b_acb, ==, NULL); 1504 kmem_cache_free(hdr_cache, hdr); 1505 } 1506 1507 void 1508 arc_buf_free(arc_buf_t *buf, void *tag) 1509 { 1510 arc_buf_hdr_t *hdr = buf->b_hdr; 1511 int hashed = hdr->b_state != arc_anon; 1512 1513 ASSERT(buf->b_efunc == NULL); 1514 ASSERT(buf->b_data != NULL); 1515 1516 if (hashed) { 1517 kmutex_t *hash_lock = HDR_LOCK(hdr); 1518 1519 mutex_enter(hash_lock); 1520 hdr = buf->b_hdr; 1521 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1522 1523 (void) remove_reference(hdr, hash_lock, tag); 1524 if (hdr->b_datacnt > 1) { 1525 arc_buf_destroy(buf, FALSE, TRUE); 1526 } else { 1527 ASSERT(buf == hdr->b_buf); 1528 ASSERT(buf->b_efunc == NULL); 1529 hdr->b_flags |= ARC_BUF_AVAILABLE; 1530 } 1531 mutex_exit(hash_lock); 1532 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1533 int destroy_hdr; 1534 /* 1535 * We are in the middle of an async write. Don't destroy 1536 * this buffer unless the write completes before we finish 1537 * decrementing the reference count. 1538 */ 1539 mutex_enter(&arc_eviction_mtx); 1540 (void) remove_reference(hdr, NULL, tag); 1541 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1542 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1543 mutex_exit(&arc_eviction_mtx); 1544 if (destroy_hdr) 1545 arc_hdr_destroy(hdr); 1546 } else { 1547 if (remove_reference(hdr, NULL, tag) > 0) 1548 arc_buf_destroy(buf, FALSE, TRUE); 1549 else 1550 arc_hdr_destroy(hdr); 1551 } 1552 } 1553 1554 int 1555 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1556 { 1557 arc_buf_hdr_t *hdr = buf->b_hdr; 1558 kmutex_t *hash_lock = HDR_LOCK(hdr); 1559 int no_callback = (buf->b_efunc == NULL); 1560 1561 if (hdr->b_state == arc_anon) { 1562 ASSERT(hdr->b_datacnt == 1); 1563 arc_buf_free(buf, tag); 1564 return (no_callback); 1565 } 1566 1567 mutex_enter(hash_lock); 1568 hdr = buf->b_hdr; 1569 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1570 ASSERT(hdr->b_state != arc_anon); 1571 ASSERT(buf->b_data != NULL); 1572 1573 (void) remove_reference(hdr, hash_lock, tag); 1574 if (hdr->b_datacnt > 1) { 1575 if (no_callback) 1576 arc_buf_destroy(buf, FALSE, TRUE); 1577 } else if (no_callback) { 1578 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1579 ASSERT(buf->b_efunc == NULL); 1580 hdr->b_flags |= ARC_BUF_AVAILABLE; 1581 } 1582 ASSERT(no_callback || hdr->b_datacnt > 1 || 1583 refcount_is_zero(&hdr->b_refcnt)); 1584 mutex_exit(hash_lock); 1585 return (no_callback); 1586 } 1587 1588 int 1589 arc_buf_size(arc_buf_t *buf) 1590 { 1591 return (buf->b_hdr->b_size); 1592 } 1593 1594 /* 1595 * Evict buffers from list until we've removed the specified number of 1596 * bytes. Move the removed buffers to the appropriate evict state. 1597 * If the recycle flag is set, then attempt to "recycle" a buffer: 1598 * - look for a buffer to evict that is `bytes' long. 1599 * - return the data block from this buffer rather than freeing it. 1600 * This flag is used by callers that are trying to make space for a 1601 * new buffer in a full arc cache. 1602 * 1603 * This function makes a "best effort". It skips over any buffers 1604 * it can't get a hash_lock on, and so may not catch all candidates. 1605 * It may also return without evicting as much space as requested. 1606 */ 1607 static void * 1608 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1609 arc_buf_contents_t type) 1610 { 1611 arc_state_t *evicted_state; 1612 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1613 arc_buf_hdr_t *ab, *ab_prev = NULL; 1614 list_t *list = &state->arcs_list[type]; 1615 kmutex_t *hash_lock; 1616 boolean_t have_lock; 1617 void *stolen = NULL; 1618 1619 ASSERT(state == arc_mru || state == arc_mfu); 1620 1621 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1622 1623 mutex_enter(&state->arcs_mtx); 1624 mutex_enter(&evicted_state->arcs_mtx); 1625 1626 for (ab = list_tail(list); ab; ab = ab_prev) { 1627 ab_prev = list_prev(list, ab); 1628 /* prefetch buffers have a minimum lifespan */ 1629 if (HDR_IO_IN_PROGRESS(ab) || 1630 (spa && ab->b_spa != spa) || 1631 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1632 ddi_get_lbolt() - ab->b_arc_access < 1633 arc_min_prefetch_lifespan)) { 1634 skipped++; 1635 continue; 1636 } 1637 /* "lookahead" for better eviction candidate */ 1638 if (recycle && ab->b_size != bytes && 1639 ab_prev && ab_prev->b_size == bytes) 1640 continue; 1641 hash_lock = HDR_LOCK(ab); 1642 have_lock = MUTEX_HELD(hash_lock); 1643 if (have_lock || mutex_tryenter(hash_lock)) { 1644 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1645 ASSERT(ab->b_datacnt > 0); 1646 while (ab->b_buf) { 1647 arc_buf_t *buf = ab->b_buf; 1648 if (!mutex_tryenter(&buf->b_evict_lock)) { 1649 missed += 1; 1650 break; 1651 } 1652 if (buf->b_data) { 1653 bytes_evicted += ab->b_size; 1654 if (recycle && ab->b_type == type && 1655 ab->b_size == bytes && 1656 !HDR_L2_WRITING(ab)) { 1657 stolen = buf->b_data; 1658 recycle = FALSE; 1659 } 1660 } 1661 if (buf->b_efunc) { 1662 mutex_enter(&arc_eviction_mtx); 1663 arc_buf_destroy(buf, 1664 buf->b_data == stolen, FALSE); 1665 ab->b_buf = buf->b_next; 1666 buf->b_hdr = &arc_eviction_hdr; 1667 buf->b_next = arc_eviction_list; 1668 arc_eviction_list = buf; 1669 mutex_exit(&arc_eviction_mtx); 1670 mutex_exit(&buf->b_evict_lock); 1671 } else { 1672 mutex_exit(&buf->b_evict_lock); 1673 arc_buf_destroy(buf, 1674 buf->b_data == stolen, TRUE); 1675 } 1676 } 1677 1678 if (ab->b_l2hdr) { 1679 ARCSTAT_INCR(arcstat_evict_l2_cached, 1680 ab->b_size); 1681 } else { 1682 if (l2arc_write_eligible(ab->b_spa, ab)) { 1683 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1684 ab->b_size); 1685 } else { 1686 ARCSTAT_INCR( 1687 arcstat_evict_l2_ineligible, 1688 ab->b_size); 1689 } 1690 } 1691 1692 if (ab->b_datacnt == 0) { 1693 arc_change_state(evicted_state, ab, hash_lock); 1694 ASSERT(HDR_IN_HASH_TABLE(ab)); 1695 ab->b_flags |= ARC_IN_HASH_TABLE; 1696 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1697 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1698 } 1699 if (!have_lock) 1700 mutex_exit(hash_lock); 1701 if (bytes >= 0 && bytes_evicted >= bytes) 1702 break; 1703 } else { 1704 missed += 1; 1705 } 1706 } 1707 1708 mutex_exit(&evicted_state->arcs_mtx); 1709 mutex_exit(&state->arcs_mtx); 1710 1711 if (bytes_evicted < bytes) 1712 dprintf("only evicted %lld bytes from %x", 1713 (longlong_t)bytes_evicted, state); 1714 1715 if (skipped) 1716 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1717 1718 if (missed) 1719 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1720 1721 /* 1722 * We have just evicted some date into the ghost state, make 1723 * sure we also adjust the ghost state size if necessary. 1724 */ 1725 if (arc_no_grow && 1726 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1727 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1728 arc_mru_ghost->arcs_size - arc_c; 1729 1730 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1731 int64_t todelete = 1732 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1733 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1734 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1735 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1736 arc_mru_ghost->arcs_size + 1737 arc_mfu_ghost->arcs_size - arc_c); 1738 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1739 } 1740 } 1741 1742 return (stolen); 1743 } 1744 1745 /* 1746 * Remove buffers from list until we've removed the specified number of 1747 * bytes. Destroy the buffers that are removed. 1748 */ 1749 static void 1750 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1751 { 1752 arc_buf_hdr_t *ab, *ab_prev; 1753 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1754 kmutex_t *hash_lock; 1755 uint64_t bytes_deleted = 0; 1756 uint64_t bufs_skipped = 0; 1757 1758 ASSERT(GHOST_STATE(state)); 1759 top: 1760 mutex_enter(&state->arcs_mtx); 1761 for (ab = list_tail(list); ab; ab = ab_prev) { 1762 ab_prev = list_prev(list, ab); 1763 if (spa && ab->b_spa != spa) 1764 continue; 1765 hash_lock = HDR_LOCK(ab); 1766 /* caller may be trying to modify this buffer, skip it */ 1767 if (MUTEX_HELD(hash_lock)) 1768 continue; 1769 if (mutex_tryenter(hash_lock)) { 1770 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1771 ASSERT(ab->b_buf == NULL); 1772 ARCSTAT_BUMP(arcstat_deleted); 1773 bytes_deleted += ab->b_size; 1774 1775 if (ab->b_l2hdr != NULL) { 1776 /* 1777 * This buffer is cached on the 2nd Level ARC; 1778 * don't destroy the header. 1779 */ 1780 arc_change_state(arc_l2c_only, ab, hash_lock); 1781 mutex_exit(hash_lock); 1782 } else { 1783 arc_change_state(arc_anon, ab, hash_lock); 1784 mutex_exit(hash_lock); 1785 arc_hdr_destroy(ab); 1786 } 1787 1788 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1789 if (bytes >= 0 && bytes_deleted >= bytes) 1790 break; 1791 } else { 1792 if (bytes < 0) { 1793 mutex_exit(&state->arcs_mtx); 1794 mutex_enter(hash_lock); 1795 mutex_exit(hash_lock); 1796 goto top; 1797 } 1798 bufs_skipped += 1; 1799 } 1800 } 1801 mutex_exit(&state->arcs_mtx); 1802 1803 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1804 (bytes < 0 || bytes_deleted < bytes)) { 1805 list = &state->arcs_list[ARC_BUFC_METADATA]; 1806 goto top; 1807 } 1808 1809 if (bufs_skipped) { 1810 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1811 ASSERT(bytes >= 0); 1812 } 1813 1814 if (bytes_deleted < bytes) 1815 dprintf("only deleted %lld bytes from %p", 1816 (longlong_t)bytes_deleted, state); 1817 } 1818 1819 static void 1820 arc_adjust(void) 1821 { 1822 int64_t adjustment, delta; 1823 1824 /* 1825 * Adjust MRU size 1826 */ 1827 1828 adjustment = MIN(arc_size - arc_c, 1829 arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p); 1830 1831 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1832 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 1833 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 1834 adjustment -= delta; 1835 } 1836 1837 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1838 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 1839 (void) arc_evict(arc_mru, NULL, delta, FALSE, 1840 ARC_BUFC_METADATA); 1841 } 1842 1843 /* 1844 * Adjust MFU size 1845 */ 1846 1847 adjustment = arc_size - arc_c; 1848 1849 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1850 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 1851 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 1852 adjustment -= delta; 1853 } 1854 1855 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1856 int64_t delta = MIN(adjustment, 1857 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 1858 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 1859 ARC_BUFC_METADATA); 1860 } 1861 1862 /* 1863 * Adjust ghost lists 1864 */ 1865 1866 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 1867 1868 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 1869 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 1870 arc_evict_ghost(arc_mru_ghost, NULL, delta); 1871 } 1872 1873 adjustment = 1874 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 1875 1876 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 1877 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 1878 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 1879 } 1880 } 1881 1882 static void 1883 arc_do_user_evicts(void) 1884 { 1885 mutex_enter(&arc_eviction_mtx); 1886 while (arc_eviction_list != NULL) { 1887 arc_buf_t *buf = arc_eviction_list; 1888 arc_eviction_list = buf->b_next; 1889 mutex_enter(&buf->b_evict_lock); 1890 buf->b_hdr = NULL; 1891 mutex_exit(&buf->b_evict_lock); 1892 mutex_exit(&arc_eviction_mtx); 1893 1894 if (buf->b_efunc != NULL) 1895 VERIFY(buf->b_efunc(buf) == 0); 1896 1897 buf->b_efunc = NULL; 1898 buf->b_private = NULL; 1899 kmem_cache_free(buf_cache, buf); 1900 mutex_enter(&arc_eviction_mtx); 1901 } 1902 mutex_exit(&arc_eviction_mtx); 1903 } 1904 1905 /* 1906 * Flush all *evictable* data from the cache for the given spa. 1907 * NOTE: this will not touch "active" (i.e. referenced) data. 1908 */ 1909 void 1910 arc_flush(spa_t *spa) 1911 { 1912 uint64_t guid = 0; 1913 1914 if (spa) 1915 guid = spa_guid(spa); 1916 1917 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1918 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 1919 if (spa) 1920 break; 1921 } 1922 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1923 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 1924 if (spa) 1925 break; 1926 } 1927 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1928 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 1929 if (spa) 1930 break; 1931 } 1932 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1933 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 1934 if (spa) 1935 break; 1936 } 1937 1938 arc_evict_ghost(arc_mru_ghost, guid, -1); 1939 arc_evict_ghost(arc_mfu_ghost, guid, -1); 1940 1941 mutex_enter(&arc_reclaim_thr_lock); 1942 arc_do_user_evicts(); 1943 mutex_exit(&arc_reclaim_thr_lock); 1944 ASSERT(spa || arc_eviction_list == NULL); 1945 } 1946 1947 void 1948 arc_shrink(void) 1949 { 1950 if (arc_c > arc_c_min) { 1951 uint64_t to_free; 1952 1953 #ifdef _KERNEL 1954 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1955 #else 1956 to_free = arc_c >> arc_shrink_shift; 1957 #endif 1958 if (arc_c > arc_c_min + to_free) 1959 atomic_add_64(&arc_c, -to_free); 1960 else 1961 arc_c = arc_c_min; 1962 1963 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1964 if (arc_c > arc_size) 1965 arc_c = MAX(arc_size, arc_c_min); 1966 if (arc_p > arc_c) 1967 arc_p = (arc_c >> 1); 1968 ASSERT(arc_c >= arc_c_min); 1969 ASSERT((int64_t)arc_p >= 0); 1970 } 1971 1972 if (arc_size > arc_c) 1973 arc_adjust(); 1974 } 1975 1976 static int 1977 arc_reclaim_needed(void) 1978 { 1979 uint64_t extra; 1980 1981 #ifdef _KERNEL 1982 1983 if (needfree) 1984 return (1); 1985 1986 /* 1987 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1988 */ 1989 extra = desfree; 1990 1991 /* 1992 * check that we're out of range of the pageout scanner. It starts to 1993 * schedule paging if freemem is less than lotsfree and needfree. 1994 * lotsfree is the high-water mark for pageout, and needfree is the 1995 * number of needed free pages. We add extra pages here to make sure 1996 * the scanner doesn't start up while we're freeing memory. 1997 */ 1998 if (freemem < lotsfree + needfree + extra) 1999 return (1); 2000 2001 /* 2002 * check to make sure that swapfs has enough space so that anon 2003 * reservations can still succeed. anon_resvmem() checks that the 2004 * availrmem is greater than swapfs_minfree, and the number of reserved 2005 * swap pages. We also add a bit of extra here just to prevent 2006 * circumstances from getting really dire. 2007 */ 2008 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2009 return (1); 2010 2011 #if defined(__i386) 2012 /* 2013 * If we're on an i386 platform, it's possible that we'll exhaust the 2014 * kernel heap space before we ever run out of available physical 2015 * memory. Most checks of the size of the heap_area compare against 2016 * tune.t_minarmem, which is the minimum available real memory that we 2017 * can have in the system. However, this is generally fixed at 25 pages 2018 * which is so low that it's useless. In this comparison, we seek to 2019 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2020 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2021 * free) 2022 */ 2023 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 2024 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 2025 return (1); 2026 #endif 2027 2028 #else 2029 if (spa_get_random(100) == 0) 2030 return (1); 2031 #endif 2032 return (0); 2033 } 2034 2035 static void 2036 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2037 { 2038 size_t i; 2039 kmem_cache_t *prev_cache = NULL; 2040 kmem_cache_t *prev_data_cache = NULL; 2041 extern kmem_cache_t *zio_buf_cache[]; 2042 extern kmem_cache_t *zio_data_buf_cache[]; 2043 2044 #ifdef _KERNEL 2045 if (arc_meta_used >= arc_meta_limit) { 2046 /* 2047 * We are exceeding our meta-data cache limit. 2048 * Purge some DNLC entries to release holds on meta-data. 2049 */ 2050 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2051 } 2052 #if defined(__i386) 2053 /* 2054 * Reclaim unused memory from all kmem caches. 2055 */ 2056 kmem_reap(); 2057 #endif 2058 #endif 2059 2060 /* 2061 * An aggressive reclamation will shrink the cache size as well as 2062 * reap free buffers from the arc kmem caches. 2063 */ 2064 if (strat == ARC_RECLAIM_AGGR) 2065 arc_shrink(); 2066 2067 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2068 if (zio_buf_cache[i] != prev_cache) { 2069 prev_cache = zio_buf_cache[i]; 2070 kmem_cache_reap_now(zio_buf_cache[i]); 2071 } 2072 if (zio_data_buf_cache[i] != prev_data_cache) { 2073 prev_data_cache = zio_data_buf_cache[i]; 2074 kmem_cache_reap_now(zio_data_buf_cache[i]); 2075 } 2076 } 2077 kmem_cache_reap_now(buf_cache); 2078 kmem_cache_reap_now(hdr_cache); 2079 } 2080 2081 static void 2082 arc_reclaim_thread(void) 2083 { 2084 clock_t growtime = 0; 2085 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2086 callb_cpr_t cpr; 2087 2088 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2089 2090 mutex_enter(&arc_reclaim_thr_lock); 2091 while (arc_thread_exit == 0) { 2092 if (arc_reclaim_needed()) { 2093 2094 if (arc_no_grow) { 2095 if (last_reclaim == ARC_RECLAIM_CONS) { 2096 last_reclaim = ARC_RECLAIM_AGGR; 2097 } else { 2098 last_reclaim = ARC_RECLAIM_CONS; 2099 } 2100 } else { 2101 arc_no_grow = TRUE; 2102 last_reclaim = ARC_RECLAIM_AGGR; 2103 membar_producer(); 2104 } 2105 2106 /* reset the growth delay for every reclaim */ 2107 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2108 2109 arc_kmem_reap_now(last_reclaim); 2110 arc_warm = B_TRUE; 2111 2112 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2113 arc_no_grow = FALSE; 2114 } 2115 2116 if (2 * arc_c < arc_size + 2117 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size) 2118 arc_adjust(); 2119 2120 if (arc_eviction_list != NULL) 2121 arc_do_user_evicts(); 2122 2123 /* block until needed, or one second, whichever is shorter */ 2124 CALLB_CPR_SAFE_BEGIN(&cpr); 2125 (void) cv_timedwait(&arc_reclaim_thr_cv, 2126 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2127 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2128 } 2129 2130 arc_thread_exit = 0; 2131 cv_broadcast(&arc_reclaim_thr_cv); 2132 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2133 thread_exit(); 2134 } 2135 2136 /* 2137 * Adapt arc info given the number of bytes we are trying to add and 2138 * the state that we are comming from. This function is only called 2139 * when we are adding new content to the cache. 2140 */ 2141 static void 2142 arc_adapt(int bytes, arc_state_t *state) 2143 { 2144 int mult; 2145 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2146 2147 if (state == arc_l2c_only) 2148 return; 2149 2150 ASSERT(bytes > 0); 2151 /* 2152 * Adapt the target size of the MRU list: 2153 * - if we just hit in the MRU ghost list, then increase 2154 * the target size of the MRU list. 2155 * - if we just hit in the MFU ghost list, then increase 2156 * the target size of the MFU list by decreasing the 2157 * target size of the MRU list. 2158 */ 2159 if (state == arc_mru_ghost) { 2160 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2161 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2162 2163 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2164 } else if (state == arc_mfu_ghost) { 2165 uint64_t delta; 2166 2167 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2168 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2169 2170 delta = MIN(bytes * mult, arc_p); 2171 arc_p = MAX(arc_p_min, arc_p - delta); 2172 } 2173 ASSERT((int64_t)arc_p >= 0); 2174 2175 if (arc_reclaim_needed()) { 2176 cv_signal(&arc_reclaim_thr_cv); 2177 return; 2178 } 2179 2180 if (arc_no_grow) 2181 return; 2182 2183 if (arc_c >= arc_c_max) 2184 return; 2185 2186 /* 2187 * If we're within (2 * maxblocksize) bytes of the target 2188 * cache size, increment the target cache size 2189 */ 2190 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2191 atomic_add_64(&arc_c, (int64_t)bytes); 2192 if (arc_c > arc_c_max) 2193 arc_c = arc_c_max; 2194 else if (state == arc_anon) 2195 atomic_add_64(&arc_p, (int64_t)bytes); 2196 if (arc_p > arc_c) 2197 arc_p = arc_c; 2198 } 2199 ASSERT((int64_t)arc_p >= 0); 2200 } 2201 2202 /* 2203 * Check if the cache has reached its limits and eviction is required 2204 * prior to insert. 2205 */ 2206 static int 2207 arc_evict_needed(arc_buf_contents_t type) 2208 { 2209 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2210 return (1); 2211 2212 #ifdef _KERNEL 2213 /* 2214 * If zio data pages are being allocated out of a separate heap segment, 2215 * then enforce that the size of available vmem for this area remains 2216 * above about 1/32nd free. 2217 */ 2218 if (type == ARC_BUFC_DATA && zio_arena != NULL && 2219 vmem_size(zio_arena, VMEM_FREE) < 2220 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 2221 return (1); 2222 #endif 2223 2224 if (arc_reclaim_needed()) 2225 return (1); 2226 2227 return (arc_size > arc_c); 2228 } 2229 2230 /* 2231 * The buffer, supplied as the first argument, needs a data block. 2232 * So, if we are at cache max, determine which cache should be victimized. 2233 * We have the following cases: 2234 * 2235 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2236 * In this situation if we're out of space, but the resident size of the MFU is 2237 * under the limit, victimize the MFU cache to satisfy this insertion request. 2238 * 2239 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2240 * Here, we've used up all of the available space for the MRU, so we need to 2241 * evict from our own cache instead. Evict from the set of resident MRU 2242 * entries. 2243 * 2244 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2245 * c minus p represents the MFU space in the cache, since p is the size of the 2246 * cache that is dedicated to the MRU. In this situation there's still space on 2247 * the MFU side, so the MRU side needs to be victimized. 2248 * 2249 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2250 * MFU's resident set is consuming more space than it has been allotted. In 2251 * this situation, we must victimize our own cache, the MFU, for this insertion. 2252 */ 2253 static void 2254 arc_get_data_buf(arc_buf_t *buf) 2255 { 2256 arc_state_t *state = buf->b_hdr->b_state; 2257 uint64_t size = buf->b_hdr->b_size; 2258 arc_buf_contents_t type = buf->b_hdr->b_type; 2259 2260 arc_adapt(size, state); 2261 2262 /* 2263 * We have not yet reached cache maximum size, 2264 * just allocate a new buffer. 2265 */ 2266 if (!arc_evict_needed(type)) { 2267 if (type == ARC_BUFC_METADATA) { 2268 buf->b_data = zio_buf_alloc(size); 2269 arc_space_consume(size, ARC_SPACE_DATA); 2270 } else { 2271 ASSERT(type == ARC_BUFC_DATA); 2272 buf->b_data = zio_data_buf_alloc(size); 2273 ARCSTAT_INCR(arcstat_data_size, size); 2274 atomic_add_64(&arc_size, size); 2275 } 2276 goto out; 2277 } 2278 2279 /* 2280 * If we are prefetching from the mfu ghost list, this buffer 2281 * will end up on the mru list; so steal space from there. 2282 */ 2283 if (state == arc_mfu_ghost) 2284 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2285 else if (state == arc_mru_ghost) 2286 state = arc_mru; 2287 2288 if (state == arc_mru || state == arc_anon) { 2289 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2290 state = (arc_mfu->arcs_lsize[type] >= size && 2291 arc_p > mru_used) ? arc_mfu : arc_mru; 2292 } else { 2293 /* MFU cases */ 2294 uint64_t mfu_space = arc_c - arc_p; 2295 state = (arc_mru->arcs_lsize[type] >= size && 2296 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2297 } 2298 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2299 if (type == ARC_BUFC_METADATA) { 2300 buf->b_data = zio_buf_alloc(size); 2301 arc_space_consume(size, ARC_SPACE_DATA); 2302 } else { 2303 ASSERT(type == ARC_BUFC_DATA); 2304 buf->b_data = zio_data_buf_alloc(size); 2305 ARCSTAT_INCR(arcstat_data_size, size); 2306 atomic_add_64(&arc_size, size); 2307 } 2308 ARCSTAT_BUMP(arcstat_recycle_miss); 2309 } 2310 ASSERT(buf->b_data != NULL); 2311 out: 2312 /* 2313 * Update the state size. Note that ghost states have a 2314 * "ghost size" and so don't need to be updated. 2315 */ 2316 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2317 arc_buf_hdr_t *hdr = buf->b_hdr; 2318 2319 atomic_add_64(&hdr->b_state->arcs_size, size); 2320 if (list_link_active(&hdr->b_arc_node)) { 2321 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2322 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2323 } 2324 /* 2325 * If we are growing the cache, and we are adding anonymous 2326 * data, and we have outgrown arc_p, update arc_p 2327 */ 2328 if (arc_size < arc_c && hdr->b_state == arc_anon && 2329 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2330 arc_p = MIN(arc_c, arc_p + size); 2331 } 2332 } 2333 2334 /* 2335 * This routine is called whenever a buffer is accessed. 2336 * NOTE: the hash lock is dropped in this function. 2337 */ 2338 static void 2339 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2340 { 2341 clock_t now; 2342 2343 ASSERT(MUTEX_HELD(hash_lock)); 2344 2345 if (buf->b_state == arc_anon) { 2346 /* 2347 * This buffer is not in the cache, and does not 2348 * appear in our "ghost" list. Add the new buffer 2349 * to the MRU state. 2350 */ 2351 2352 ASSERT(buf->b_arc_access == 0); 2353 buf->b_arc_access = ddi_get_lbolt(); 2354 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2355 arc_change_state(arc_mru, buf, hash_lock); 2356 2357 } else if (buf->b_state == arc_mru) { 2358 now = ddi_get_lbolt(); 2359 2360 /* 2361 * If this buffer is here because of a prefetch, then either: 2362 * - clear the flag if this is a "referencing" read 2363 * (any subsequent access will bump this into the MFU state). 2364 * or 2365 * - move the buffer to the head of the list if this is 2366 * another prefetch (to make it less likely to be evicted). 2367 */ 2368 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2369 if (refcount_count(&buf->b_refcnt) == 0) { 2370 ASSERT(list_link_active(&buf->b_arc_node)); 2371 } else { 2372 buf->b_flags &= ~ARC_PREFETCH; 2373 ARCSTAT_BUMP(arcstat_mru_hits); 2374 } 2375 buf->b_arc_access = now; 2376 return; 2377 } 2378 2379 /* 2380 * This buffer has been "accessed" only once so far, 2381 * but it is still in the cache. Move it to the MFU 2382 * state. 2383 */ 2384 if (now > buf->b_arc_access + ARC_MINTIME) { 2385 /* 2386 * More than 125ms have passed since we 2387 * instantiated this buffer. Move it to the 2388 * most frequently used state. 2389 */ 2390 buf->b_arc_access = now; 2391 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2392 arc_change_state(arc_mfu, buf, hash_lock); 2393 } 2394 ARCSTAT_BUMP(arcstat_mru_hits); 2395 } else if (buf->b_state == arc_mru_ghost) { 2396 arc_state_t *new_state; 2397 /* 2398 * This buffer has been "accessed" recently, but 2399 * was evicted from the cache. Move it to the 2400 * MFU state. 2401 */ 2402 2403 if (buf->b_flags & ARC_PREFETCH) { 2404 new_state = arc_mru; 2405 if (refcount_count(&buf->b_refcnt) > 0) 2406 buf->b_flags &= ~ARC_PREFETCH; 2407 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2408 } else { 2409 new_state = arc_mfu; 2410 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2411 } 2412 2413 buf->b_arc_access = ddi_get_lbolt(); 2414 arc_change_state(new_state, buf, hash_lock); 2415 2416 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2417 } else if (buf->b_state == arc_mfu) { 2418 /* 2419 * This buffer has been accessed more than once and is 2420 * still in the cache. Keep it in the MFU state. 2421 * 2422 * NOTE: an add_reference() that occurred when we did 2423 * the arc_read() will have kicked this off the list. 2424 * If it was a prefetch, we will explicitly move it to 2425 * the head of the list now. 2426 */ 2427 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2428 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2429 ASSERT(list_link_active(&buf->b_arc_node)); 2430 } 2431 ARCSTAT_BUMP(arcstat_mfu_hits); 2432 buf->b_arc_access = ddi_get_lbolt(); 2433 } else if (buf->b_state == arc_mfu_ghost) { 2434 arc_state_t *new_state = arc_mfu; 2435 /* 2436 * This buffer has been accessed more than once but has 2437 * been evicted from the cache. Move it back to the 2438 * MFU state. 2439 */ 2440 2441 if (buf->b_flags & ARC_PREFETCH) { 2442 /* 2443 * This is a prefetch access... 2444 * move this block back to the MRU state. 2445 */ 2446 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2447 new_state = arc_mru; 2448 } 2449 2450 buf->b_arc_access = ddi_get_lbolt(); 2451 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2452 arc_change_state(new_state, buf, hash_lock); 2453 2454 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2455 } else if (buf->b_state == arc_l2c_only) { 2456 /* 2457 * This buffer is on the 2nd Level ARC. 2458 */ 2459 2460 buf->b_arc_access = ddi_get_lbolt(); 2461 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2462 arc_change_state(arc_mfu, buf, hash_lock); 2463 } else { 2464 ASSERT(!"invalid arc state"); 2465 } 2466 } 2467 2468 /* a generic arc_done_func_t which you can use */ 2469 /* ARGSUSED */ 2470 void 2471 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2472 { 2473 if (zio == NULL || zio->io_error == 0) 2474 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2475 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2476 } 2477 2478 /* a generic arc_done_func_t */ 2479 void 2480 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2481 { 2482 arc_buf_t **bufp = arg; 2483 if (zio && zio->io_error) { 2484 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2485 *bufp = NULL; 2486 } else { 2487 *bufp = buf; 2488 ASSERT(buf->b_data); 2489 } 2490 } 2491 2492 static void 2493 arc_read_done(zio_t *zio) 2494 { 2495 arc_buf_hdr_t *hdr, *found; 2496 arc_buf_t *buf; 2497 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2498 kmutex_t *hash_lock; 2499 arc_callback_t *callback_list, *acb; 2500 int freeable = FALSE; 2501 2502 buf = zio->io_private; 2503 hdr = buf->b_hdr; 2504 2505 /* 2506 * The hdr was inserted into hash-table and removed from lists 2507 * prior to starting I/O. We should find this header, since 2508 * it's in the hash table, and it should be legit since it's 2509 * not possible to evict it during the I/O. The only possible 2510 * reason for it not to be found is if we were freed during the 2511 * read. 2512 */ 2513 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, 2514 &hash_lock); 2515 2516 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2517 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2518 (found == hdr && HDR_L2_READING(hdr))); 2519 2520 hdr->b_flags &= ~ARC_L2_EVICTED; 2521 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2522 hdr->b_flags &= ~ARC_L2CACHE; 2523 2524 /* byteswap if necessary */ 2525 callback_list = hdr->b_acb; 2526 ASSERT(callback_list != NULL); 2527 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2528 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2529 byteswap_uint64_array : 2530 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap; 2531 func(buf->b_data, hdr->b_size); 2532 } 2533 2534 arc_cksum_compute(buf, B_FALSE); 2535 2536 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2537 /* 2538 * Only call arc_access on anonymous buffers. This is because 2539 * if we've issued an I/O for an evicted buffer, we've already 2540 * called arc_access (to prevent any simultaneous readers from 2541 * getting confused). 2542 */ 2543 arc_access(hdr, hash_lock); 2544 } 2545 2546 /* create copies of the data buffer for the callers */ 2547 abuf = buf; 2548 for (acb = callback_list; acb; acb = acb->acb_next) { 2549 if (acb->acb_done) { 2550 if (abuf == NULL) 2551 abuf = arc_buf_clone(buf); 2552 acb->acb_buf = abuf; 2553 abuf = NULL; 2554 } 2555 } 2556 hdr->b_acb = NULL; 2557 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2558 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2559 if (abuf == buf) { 2560 ASSERT(buf->b_efunc == NULL); 2561 ASSERT(hdr->b_datacnt == 1); 2562 hdr->b_flags |= ARC_BUF_AVAILABLE; 2563 } 2564 2565 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2566 2567 if (zio->io_error != 0) { 2568 hdr->b_flags |= ARC_IO_ERROR; 2569 if (hdr->b_state != arc_anon) 2570 arc_change_state(arc_anon, hdr, hash_lock); 2571 if (HDR_IN_HASH_TABLE(hdr)) 2572 buf_hash_remove(hdr); 2573 freeable = refcount_is_zero(&hdr->b_refcnt); 2574 } 2575 2576 /* 2577 * Broadcast before we drop the hash_lock to avoid the possibility 2578 * that the hdr (and hence the cv) might be freed before we get to 2579 * the cv_broadcast(). 2580 */ 2581 cv_broadcast(&hdr->b_cv); 2582 2583 if (hash_lock) { 2584 mutex_exit(hash_lock); 2585 } else { 2586 /* 2587 * This block was freed while we waited for the read to 2588 * complete. It has been removed from the hash table and 2589 * moved to the anonymous state (so that it won't show up 2590 * in the cache). 2591 */ 2592 ASSERT3P(hdr->b_state, ==, arc_anon); 2593 freeable = refcount_is_zero(&hdr->b_refcnt); 2594 } 2595 2596 /* execute each callback and free its structure */ 2597 while ((acb = callback_list) != NULL) { 2598 if (acb->acb_done) 2599 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2600 2601 if (acb->acb_zio_dummy != NULL) { 2602 acb->acb_zio_dummy->io_error = zio->io_error; 2603 zio_nowait(acb->acb_zio_dummy); 2604 } 2605 2606 callback_list = acb->acb_next; 2607 kmem_free(acb, sizeof (arc_callback_t)); 2608 } 2609 2610 if (freeable) 2611 arc_hdr_destroy(hdr); 2612 } 2613 2614 /* 2615 * "Read" the block block at the specified DVA (in bp) via the 2616 * cache. If the block is found in the cache, invoke the provided 2617 * callback immediately and return. Note that the `zio' parameter 2618 * in the callback will be NULL in this case, since no IO was 2619 * required. If the block is not in the cache pass the read request 2620 * on to the spa with a substitute callback function, so that the 2621 * requested block will be added to the cache. 2622 * 2623 * If a read request arrives for a block that has a read in-progress, 2624 * either wait for the in-progress read to complete (and return the 2625 * results); or, if this is a read with a "done" func, add a record 2626 * to the read to invoke the "done" func when the read completes, 2627 * and return; or just return. 2628 * 2629 * arc_read_done() will invoke all the requested "done" functions 2630 * for readers of this block. 2631 * 2632 * Normal callers should use arc_read and pass the arc buffer and offset 2633 * for the bp. But if you know you don't need locking, you can use 2634 * arc_read_bp. 2635 */ 2636 int 2637 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf, 2638 arc_done_func_t *done, void *private, int priority, int zio_flags, 2639 uint32_t *arc_flags, const zbookmark_t *zb) 2640 { 2641 int err; 2642 2643 if (pbuf == NULL) { 2644 /* 2645 * XXX This happens from traverse callback funcs, for 2646 * the objset_phys_t block. 2647 */ 2648 return (arc_read_nolock(pio, spa, bp, done, private, priority, 2649 zio_flags, arc_flags, zb)); 2650 } 2651 2652 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); 2653 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); 2654 rw_enter(&pbuf->b_data_lock, RW_READER); 2655 2656 err = arc_read_nolock(pio, spa, bp, done, private, priority, 2657 zio_flags, arc_flags, zb); 2658 rw_exit(&pbuf->b_data_lock); 2659 2660 return (err); 2661 } 2662 2663 int 2664 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp, 2665 arc_done_func_t *done, void *private, int priority, int zio_flags, 2666 uint32_t *arc_flags, const zbookmark_t *zb) 2667 { 2668 arc_buf_hdr_t *hdr; 2669 arc_buf_t *buf; 2670 kmutex_t *hash_lock; 2671 zio_t *rzio; 2672 uint64_t guid = spa_guid(spa); 2673 2674 top: 2675 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), 2676 &hash_lock); 2677 if (hdr && hdr->b_datacnt > 0) { 2678 2679 *arc_flags |= ARC_CACHED; 2680 2681 if (HDR_IO_IN_PROGRESS(hdr)) { 2682 2683 if (*arc_flags & ARC_WAIT) { 2684 cv_wait(&hdr->b_cv, hash_lock); 2685 mutex_exit(hash_lock); 2686 goto top; 2687 } 2688 ASSERT(*arc_flags & ARC_NOWAIT); 2689 2690 if (done) { 2691 arc_callback_t *acb = NULL; 2692 2693 acb = kmem_zalloc(sizeof (arc_callback_t), 2694 KM_SLEEP); 2695 acb->acb_done = done; 2696 acb->acb_private = private; 2697 if (pio != NULL) 2698 acb->acb_zio_dummy = zio_null(pio, 2699 spa, NULL, NULL, NULL, zio_flags); 2700 2701 ASSERT(acb->acb_done != NULL); 2702 acb->acb_next = hdr->b_acb; 2703 hdr->b_acb = acb; 2704 add_reference(hdr, hash_lock, private); 2705 mutex_exit(hash_lock); 2706 return (0); 2707 } 2708 mutex_exit(hash_lock); 2709 return (0); 2710 } 2711 2712 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2713 2714 if (done) { 2715 add_reference(hdr, hash_lock, private); 2716 /* 2717 * If this block is already in use, create a new 2718 * copy of the data so that we will be guaranteed 2719 * that arc_release() will always succeed. 2720 */ 2721 buf = hdr->b_buf; 2722 ASSERT(buf); 2723 ASSERT(buf->b_data); 2724 if (HDR_BUF_AVAILABLE(hdr)) { 2725 ASSERT(buf->b_efunc == NULL); 2726 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2727 } else { 2728 buf = arc_buf_clone(buf); 2729 } 2730 2731 } else if (*arc_flags & ARC_PREFETCH && 2732 refcount_count(&hdr->b_refcnt) == 0) { 2733 hdr->b_flags |= ARC_PREFETCH; 2734 } 2735 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2736 arc_access(hdr, hash_lock); 2737 if (*arc_flags & ARC_L2CACHE) 2738 hdr->b_flags |= ARC_L2CACHE; 2739 mutex_exit(hash_lock); 2740 ARCSTAT_BUMP(arcstat_hits); 2741 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2742 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2743 data, metadata, hits); 2744 2745 if (done) 2746 done(NULL, buf, private); 2747 } else { 2748 uint64_t size = BP_GET_LSIZE(bp); 2749 arc_callback_t *acb; 2750 vdev_t *vd = NULL; 2751 uint64_t addr; 2752 boolean_t devw = B_FALSE; 2753 2754 if (hdr == NULL) { 2755 /* this block is not in the cache */ 2756 arc_buf_hdr_t *exists; 2757 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2758 buf = arc_buf_alloc(spa, size, private, type); 2759 hdr = buf->b_hdr; 2760 hdr->b_dva = *BP_IDENTITY(bp); 2761 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 2762 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2763 exists = buf_hash_insert(hdr, &hash_lock); 2764 if (exists) { 2765 /* somebody beat us to the hash insert */ 2766 mutex_exit(hash_lock); 2767 buf_discard_identity(hdr); 2768 (void) arc_buf_remove_ref(buf, private); 2769 goto top; /* restart the IO request */ 2770 } 2771 /* if this is a prefetch, we don't have a reference */ 2772 if (*arc_flags & ARC_PREFETCH) { 2773 (void) remove_reference(hdr, hash_lock, 2774 private); 2775 hdr->b_flags |= ARC_PREFETCH; 2776 } 2777 if (*arc_flags & ARC_L2CACHE) 2778 hdr->b_flags |= ARC_L2CACHE; 2779 if (BP_GET_LEVEL(bp) > 0) 2780 hdr->b_flags |= ARC_INDIRECT; 2781 } else { 2782 /* this block is in the ghost cache */ 2783 ASSERT(GHOST_STATE(hdr->b_state)); 2784 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2785 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2786 ASSERT(hdr->b_buf == NULL); 2787 2788 /* if this is a prefetch, we don't have a reference */ 2789 if (*arc_flags & ARC_PREFETCH) 2790 hdr->b_flags |= ARC_PREFETCH; 2791 else 2792 add_reference(hdr, hash_lock, private); 2793 if (*arc_flags & ARC_L2CACHE) 2794 hdr->b_flags |= ARC_L2CACHE; 2795 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2796 buf->b_hdr = hdr; 2797 buf->b_data = NULL; 2798 buf->b_efunc = NULL; 2799 buf->b_private = NULL; 2800 buf->b_next = NULL; 2801 hdr->b_buf = buf; 2802 ASSERT(hdr->b_datacnt == 0); 2803 hdr->b_datacnt = 1; 2804 arc_get_data_buf(buf); 2805 arc_access(hdr, hash_lock); 2806 } 2807 2808 ASSERT(!GHOST_STATE(hdr->b_state)); 2809 2810 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2811 acb->acb_done = done; 2812 acb->acb_private = private; 2813 2814 ASSERT(hdr->b_acb == NULL); 2815 hdr->b_acb = acb; 2816 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2817 2818 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2819 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2820 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 2821 addr = hdr->b_l2hdr->b_daddr; 2822 /* 2823 * Lock out device removal. 2824 */ 2825 if (vdev_is_dead(vd) || 2826 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2827 vd = NULL; 2828 } 2829 2830 mutex_exit(hash_lock); 2831 2832 ASSERT3U(hdr->b_size, ==, size); 2833 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 2834 uint64_t, size, zbookmark_t *, zb); 2835 ARCSTAT_BUMP(arcstat_misses); 2836 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2837 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2838 data, metadata, misses); 2839 2840 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 2841 /* 2842 * Read from the L2ARC if the following are true: 2843 * 1. The L2ARC vdev was previously cached. 2844 * 2. This buffer still has L2ARC metadata. 2845 * 3. This buffer isn't currently writing to the L2ARC. 2846 * 4. The L2ARC entry wasn't evicted, which may 2847 * also have invalidated the vdev. 2848 * 5. This isn't prefetch and l2arc_noprefetch is set. 2849 */ 2850 if (hdr->b_l2hdr != NULL && 2851 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 2852 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 2853 l2arc_read_callback_t *cb; 2854 2855 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2856 ARCSTAT_BUMP(arcstat_l2_hits); 2857 2858 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2859 KM_SLEEP); 2860 cb->l2rcb_buf = buf; 2861 cb->l2rcb_spa = spa; 2862 cb->l2rcb_bp = *bp; 2863 cb->l2rcb_zb = *zb; 2864 cb->l2rcb_flags = zio_flags; 2865 2866 /* 2867 * l2arc read. The SCL_L2ARC lock will be 2868 * released by l2arc_read_done(). 2869 */ 2870 rzio = zio_read_phys(pio, vd, addr, size, 2871 buf->b_data, ZIO_CHECKSUM_OFF, 2872 l2arc_read_done, cb, priority, zio_flags | 2873 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 2874 ZIO_FLAG_DONT_PROPAGATE | 2875 ZIO_FLAG_DONT_RETRY, B_FALSE); 2876 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2877 zio_t *, rzio); 2878 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 2879 2880 if (*arc_flags & ARC_NOWAIT) { 2881 zio_nowait(rzio); 2882 return (0); 2883 } 2884 2885 ASSERT(*arc_flags & ARC_WAIT); 2886 if (zio_wait(rzio) == 0) 2887 return (0); 2888 2889 /* l2arc read error; goto zio_read() */ 2890 } else { 2891 DTRACE_PROBE1(l2arc__miss, 2892 arc_buf_hdr_t *, hdr); 2893 ARCSTAT_BUMP(arcstat_l2_misses); 2894 if (HDR_L2_WRITING(hdr)) 2895 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2896 spa_config_exit(spa, SCL_L2ARC, vd); 2897 } 2898 } else { 2899 if (vd != NULL) 2900 spa_config_exit(spa, SCL_L2ARC, vd); 2901 if (l2arc_ndev != 0) { 2902 DTRACE_PROBE1(l2arc__miss, 2903 arc_buf_hdr_t *, hdr); 2904 ARCSTAT_BUMP(arcstat_l2_misses); 2905 } 2906 } 2907 2908 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2909 arc_read_done, buf, priority, zio_flags, zb); 2910 2911 if (*arc_flags & ARC_WAIT) 2912 return (zio_wait(rzio)); 2913 2914 ASSERT(*arc_flags & ARC_NOWAIT); 2915 zio_nowait(rzio); 2916 } 2917 return (0); 2918 } 2919 2920 void 2921 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2922 { 2923 ASSERT(buf->b_hdr != NULL); 2924 ASSERT(buf->b_hdr->b_state != arc_anon); 2925 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2926 ASSERT(buf->b_efunc == NULL); 2927 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 2928 2929 buf->b_efunc = func; 2930 buf->b_private = private; 2931 } 2932 2933 /* 2934 * This is used by the DMU to let the ARC know that a buffer is 2935 * being evicted, so the ARC should clean up. If this arc buf 2936 * is not yet in the evicted state, it will be put there. 2937 */ 2938 int 2939 arc_buf_evict(arc_buf_t *buf) 2940 { 2941 arc_buf_hdr_t *hdr; 2942 kmutex_t *hash_lock; 2943 arc_buf_t **bufp; 2944 2945 mutex_enter(&buf->b_evict_lock); 2946 hdr = buf->b_hdr; 2947 if (hdr == NULL) { 2948 /* 2949 * We are in arc_do_user_evicts(). 2950 */ 2951 ASSERT(buf->b_data == NULL); 2952 mutex_exit(&buf->b_evict_lock); 2953 return (0); 2954 } else if (buf->b_data == NULL) { 2955 arc_buf_t copy = *buf; /* structure assignment */ 2956 /* 2957 * We are on the eviction list; process this buffer now 2958 * but let arc_do_user_evicts() do the reaping. 2959 */ 2960 buf->b_efunc = NULL; 2961 mutex_exit(&buf->b_evict_lock); 2962 VERIFY(copy.b_efunc(©) == 0); 2963 return (1); 2964 } 2965 hash_lock = HDR_LOCK(hdr); 2966 mutex_enter(hash_lock); 2967 hdr = buf->b_hdr; 2968 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 2969 2970 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2971 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2972 2973 /* 2974 * Pull this buffer off of the hdr 2975 */ 2976 bufp = &hdr->b_buf; 2977 while (*bufp != buf) 2978 bufp = &(*bufp)->b_next; 2979 *bufp = buf->b_next; 2980 2981 ASSERT(buf->b_data != NULL); 2982 arc_buf_destroy(buf, FALSE, FALSE); 2983 2984 if (hdr->b_datacnt == 0) { 2985 arc_state_t *old_state = hdr->b_state; 2986 arc_state_t *evicted_state; 2987 2988 ASSERT(hdr->b_buf == NULL); 2989 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2990 2991 evicted_state = 2992 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2993 2994 mutex_enter(&old_state->arcs_mtx); 2995 mutex_enter(&evicted_state->arcs_mtx); 2996 2997 arc_change_state(evicted_state, hdr, hash_lock); 2998 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2999 hdr->b_flags |= ARC_IN_HASH_TABLE; 3000 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3001 3002 mutex_exit(&evicted_state->arcs_mtx); 3003 mutex_exit(&old_state->arcs_mtx); 3004 } 3005 mutex_exit(hash_lock); 3006 mutex_exit(&buf->b_evict_lock); 3007 3008 VERIFY(buf->b_efunc(buf) == 0); 3009 buf->b_efunc = NULL; 3010 buf->b_private = NULL; 3011 buf->b_hdr = NULL; 3012 buf->b_next = NULL; 3013 kmem_cache_free(buf_cache, buf); 3014 return (1); 3015 } 3016 3017 /* 3018 * Release this buffer from the cache. This must be done 3019 * after a read and prior to modifying the buffer contents. 3020 * If the buffer has more than one reference, we must make 3021 * a new hdr for the buffer. 3022 */ 3023 void 3024 arc_release(arc_buf_t *buf, void *tag) 3025 { 3026 arc_buf_hdr_t *hdr; 3027 kmutex_t *hash_lock = NULL; 3028 l2arc_buf_hdr_t *l2hdr; 3029 uint64_t buf_size; 3030 3031 /* 3032 * It would be nice to assert that if it's DMU metadata (level > 3033 * 0 || it's the dnode file), then it must be syncing context. 3034 * But we don't know that information at this level. 3035 */ 3036 3037 mutex_enter(&buf->b_evict_lock); 3038 hdr = buf->b_hdr; 3039 3040 /* this buffer is not on any list */ 3041 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3042 3043 if (hdr->b_state == arc_anon) { 3044 /* this buffer is already released */ 3045 ASSERT(buf->b_efunc == NULL); 3046 } else { 3047 hash_lock = HDR_LOCK(hdr); 3048 mutex_enter(hash_lock); 3049 hdr = buf->b_hdr; 3050 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3051 } 3052 3053 l2hdr = hdr->b_l2hdr; 3054 if (l2hdr) { 3055 mutex_enter(&l2arc_buflist_mtx); 3056 hdr->b_l2hdr = NULL; 3057 buf_size = hdr->b_size; 3058 } 3059 3060 /* 3061 * Do we have more than one buf? 3062 */ 3063 if (hdr->b_datacnt > 1) { 3064 arc_buf_hdr_t *nhdr; 3065 arc_buf_t **bufp; 3066 uint64_t blksz = hdr->b_size; 3067 uint64_t spa = hdr->b_spa; 3068 arc_buf_contents_t type = hdr->b_type; 3069 uint32_t flags = hdr->b_flags; 3070 3071 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3072 /* 3073 * Pull the data off of this hdr and attach it to 3074 * a new anonymous hdr. 3075 */ 3076 (void) remove_reference(hdr, hash_lock, tag); 3077 bufp = &hdr->b_buf; 3078 while (*bufp != buf) 3079 bufp = &(*bufp)->b_next; 3080 *bufp = buf->b_next; 3081 buf->b_next = NULL; 3082 3083 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3084 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3085 if (refcount_is_zero(&hdr->b_refcnt)) { 3086 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3087 ASSERT3U(*size, >=, hdr->b_size); 3088 atomic_add_64(size, -hdr->b_size); 3089 } 3090 hdr->b_datacnt -= 1; 3091 arc_cksum_verify(buf); 3092 3093 mutex_exit(hash_lock); 3094 3095 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3096 nhdr->b_size = blksz; 3097 nhdr->b_spa = spa; 3098 nhdr->b_type = type; 3099 nhdr->b_buf = buf; 3100 nhdr->b_state = arc_anon; 3101 nhdr->b_arc_access = 0; 3102 nhdr->b_flags = flags & ARC_L2_WRITING; 3103 nhdr->b_l2hdr = NULL; 3104 nhdr->b_datacnt = 1; 3105 nhdr->b_freeze_cksum = NULL; 3106 (void) refcount_add(&nhdr->b_refcnt, tag); 3107 buf->b_hdr = nhdr; 3108 mutex_exit(&buf->b_evict_lock); 3109 atomic_add_64(&arc_anon->arcs_size, blksz); 3110 } else { 3111 mutex_exit(&buf->b_evict_lock); 3112 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3113 ASSERT(!list_link_active(&hdr->b_arc_node)); 3114 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3115 if (hdr->b_state != arc_anon) 3116 arc_change_state(arc_anon, hdr, hash_lock); 3117 hdr->b_arc_access = 0; 3118 if (hash_lock) 3119 mutex_exit(hash_lock); 3120 3121 buf_discard_identity(hdr); 3122 arc_buf_thaw(buf); 3123 } 3124 buf->b_efunc = NULL; 3125 buf->b_private = NULL; 3126 3127 if (l2hdr) { 3128 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3129 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3130 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3131 mutex_exit(&l2arc_buflist_mtx); 3132 } 3133 } 3134 3135 /* 3136 * Release this buffer. If it does not match the provided BP, fill it 3137 * with that block's contents. 3138 */ 3139 /* ARGSUSED */ 3140 int 3141 arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa, 3142 zbookmark_t *zb) 3143 { 3144 arc_release(buf, tag); 3145 return (0); 3146 } 3147 3148 int 3149 arc_released(arc_buf_t *buf) 3150 { 3151 int released; 3152 3153 mutex_enter(&buf->b_evict_lock); 3154 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3155 mutex_exit(&buf->b_evict_lock); 3156 return (released); 3157 } 3158 3159 int 3160 arc_has_callback(arc_buf_t *buf) 3161 { 3162 int callback; 3163 3164 mutex_enter(&buf->b_evict_lock); 3165 callback = (buf->b_efunc != NULL); 3166 mutex_exit(&buf->b_evict_lock); 3167 return (callback); 3168 } 3169 3170 #ifdef ZFS_DEBUG 3171 int 3172 arc_referenced(arc_buf_t *buf) 3173 { 3174 int referenced; 3175 3176 mutex_enter(&buf->b_evict_lock); 3177 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3178 mutex_exit(&buf->b_evict_lock); 3179 return (referenced); 3180 } 3181 #endif 3182 3183 static void 3184 arc_write_ready(zio_t *zio) 3185 { 3186 arc_write_callback_t *callback = zio->io_private; 3187 arc_buf_t *buf = callback->awcb_buf; 3188 arc_buf_hdr_t *hdr = buf->b_hdr; 3189 3190 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3191 callback->awcb_ready(zio, buf, callback->awcb_private); 3192 3193 /* 3194 * If the IO is already in progress, then this is a re-write 3195 * attempt, so we need to thaw and re-compute the cksum. 3196 * It is the responsibility of the callback to handle the 3197 * accounting for any re-write attempt. 3198 */ 3199 if (HDR_IO_IN_PROGRESS(hdr)) { 3200 mutex_enter(&hdr->b_freeze_lock); 3201 if (hdr->b_freeze_cksum != NULL) { 3202 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3203 hdr->b_freeze_cksum = NULL; 3204 } 3205 mutex_exit(&hdr->b_freeze_lock); 3206 } 3207 arc_cksum_compute(buf, B_FALSE); 3208 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3209 } 3210 3211 static void 3212 arc_write_done(zio_t *zio) 3213 { 3214 arc_write_callback_t *callback = zio->io_private; 3215 arc_buf_t *buf = callback->awcb_buf; 3216 arc_buf_hdr_t *hdr = buf->b_hdr; 3217 3218 ASSERT(hdr->b_acb == NULL); 3219 3220 if (zio->io_error == 0) { 3221 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3222 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3223 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3224 } else { 3225 ASSERT(BUF_EMPTY(hdr)); 3226 } 3227 3228 /* 3229 * If the block to be written was all-zero, we may have 3230 * compressed it away. In this case no write was performed 3231 * so there will be no dva/birth/checksum. The buffer must 3232 * therefore remain anonymous (and uncached). 3233 */ 3234 if (!BUF_EMPTY(hdr)) { 3235 arc_buf_hdr_t *exists; 3236 kmutex_t *hash_lock; 3237 3238 ASSERT(zio->io_error == 0); 3239 3240 arc_cksum_verify(buf); 3241 3242 exists = buf_hash_insert(hdr, &hash_lock); 3243 if (exists) { 3244 /* 3245 * This can only happen if we overwrite for 3246 * sync-to-convergence, because we remove 3247 * buffers from the hash table when we arc_free(). 3248 */ 3249 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3250 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3251 panic("bad overwrite, hdr=%p exists=%p", 3252 (void *)hdr, (void *)exists); 3253 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3254 arc_change_state(arc_anon, exists, hash_lock); 3255 mutex_exit(hash_lock); 3256 arc_hdr_destroy(exists); 3257 exists = buf_hash_insert(hdr, &hash_lock); 3258 ASSERT3P(exists, ==, NULL); 3259 } else { 3260 /* Dedup */ 3261 ASSERT(hdr->b_datacnt == 1); 3262 ASSERT(hdr->b_state == arc_anon); 3263 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3264 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3265 } 3266 } 3267 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3268 /* if it's not anon, we are doing a scrub */ 3269 if (!exists && hdr->b_state == arc_anon) 3270 arc_access(hdr, hash_lock); 3271 mutex_exit(hash_lock); 3272 } else { 3273 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3274 } 3275 3276 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3277 callback->awcb_done(zio, buf, callback->awcb_private); 3278 3279 kmem_free(callback, sizeof (arc_write_callback_t)); 3280 } 3281 3282 zio_t * 3283 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3284 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp, 3285 arc_done_func_t *ready, arc_done_func_t *done, void *private, 3286 int priority, int zio_flags, const zbookmark_t *zb) 3287 { 3288 arc_buf_hdr_t *hdr = buf->b_hdr; 3289 arc_write_callback_t *callback; 3290 zio_t *zio; 3291 3292 ASSERT(ready != NULL); 3293 ASSERT(done != NULL); 3294 ASSERT(!HDR_IO_ERROR(hdr)); 3295 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3296 ASSERT(hdr->b_acb == NULL); 3297 if (l2arc) 3298 hdr->b_flags |= ARC_L2CACHE; 3299 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3300 callback->awcb_ready = ready; 3301 callback->awcb_done = done; 3302 callback->awcb_private = private; 3303 callback->awcb_buf = buf; 3304 3305 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3306 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3307 3308 return (zio); 3309 } 3310 3311 static int 3312 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg) 3313 { 3314 #ifdef _KERNEL 3315 uint64_t available_memory = ptob(freemem); 3316 static uint64_t page_load = 0; 3317 static uint64_t last_txg = 0; 3318 3319 #if defined(__i386) 3320 available_memory = 3321 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3322 #endif 3323 if (available_memory >= zfs_write_limit_max) 3324 return (0); 3325 3326 if (txg > last_txg) { 3327 last_txg = txg; 3328 page_load = 0; 3329 } 3330 /* 3331 * If we are in pageout, we know that memory is already tight, 3332 * the arc is already going to be evicting, so we just want to 3333 * continue to let page writes occur as quickly as possible. 3334 */ 3335 if (curproc == proc_pageout) { 3336 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3337 return (ERESTART); 3338 /* Note: reserve is inflated, so we deflate */ 3339 page_load += reserve / 8; 3340 return (0); 3341 } else if (page_load > 0 && arc_reclaim_needed()) { 3342 /* memory is low, delay before restarting */ 3343 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3344 return (EAGAIN); 3345 } 3346 page_load = 0; 3347 3348 if (arc_size > arc_c_min) { 3349 uint64_t evictable_memory = 3350 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3351 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3352 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3353 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3354 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3355 } 3356 3357 if (inflight_data > available_memory / 4) { 3358 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3359 return (ERESTART); 3360 } 3361 #endif 3362 return (0); 3363 } 3364 3365 void 3366 arc_tempreserve_clear(uint64_t reserve) 3367 { 3368 atomic_add_64(&arc_tempreserve, -reserve); 3369 ASSERT((int64_t)arc_tempreserve >= 0); 3370 } 3371 3372 int 3373 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3374 { 3375 int error; 3376 uint64_t anon_size; 3377 3378 #ifdef ZFS_DEBUG 3379 /* 3380 * Once in a while, fail for no reason. Everything should cope. 3381 */ 3382 if (spa_get_random(10000) == 0) { 3383 dprintf("forcing random failure\n"); 3384 return (ERESTART); 3385 } 3386 #endif 3387 if (reserve > arc_c/4 && !arc_no_grow) 3388 arc_c = MIN(arc_c_max, reserve * 4); 3389 if (reserve > arc_c) 3390 return (ENOMEM); 3391 3392 /* 3393 * Don't count loaned bufs as in flight dirty data to prevent long 3394 * network delays from blocking transactions that are ready to be 3395 * assigned to a txg. 3396 */ 3397 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3398 3399 /* 3400 * Writes will, almost always, require additional memory allocations 3401 * in order to compress/encrypt/etc the data. We therefor need to 3402 * make sure that there is sufficient available memory for this. 3403 */ 3404 if (error = arc_memory_throttle(reserve, anon_size, txg)) 3405 return (error); 3406 3407 /* 3408 * Throttle writes when the amount of dirty data in the cache 3409 * gets too large. We try to keep the cache less than half full 3410 * of dirty blocks so that our sync times don't grow too large. 3411 * Note: if two requests come in concurrently, we might let them 3412 * both succeed, when one of them should fail. Not a huge deal. 3413 */ 3414 3415 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3416 anon_size > arc_c / 4) { 3417 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3418 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3419 arc_tempreserve>>10, 3420 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3421 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3422 reserve>>10, arc_c>>10); 3423 return (ERESTART); 3424 } 3425 atomic_add_64(&arc_tempreserve, reserve); 3426 return (0); 3427 } 3428 3429 void 3430 arc_init(void) 3431 { 3432 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3433 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3434 3435 /* Convert seconds to clock ticks */ 3436 arc_min_prefetch_lifespan = 1 * hz; 3437 3438 /* Start out with 1/8 of all memory */ 3439 arc_c = physmem * PAGESIZE / 8; 3440 3441 #ifdef _KERNEL 3442 /* 3443 * On architectures where the physical memory can be larger 3444 * than the addressable space (intel in 32-bit mode), we may 3445 * need to limit the cache to 1/8 of VM size. 3446 */ 3447 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3448 #endif 3449 3450 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3451 arc_c_min = MAX(arc_c / 4, 64<<20); 3452 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3453 if (arc_c * 8 >= 1<<30) 3454 arc_c_max = (arc_c * 8) - (1<<30); 3455 else 3456 arc_c_max = arc_c_min; 3457 arc_c_max = MAX(arc_c * 6, arc_c_max); 3458 3459 /* 3460 * Allow the tunables to override our calculations if they are 3461 * reasonable (ie. over 64MB) 3462 */ 3463 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3464 arc_c_max = zfs_arc_max; 3465 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3466 arc_c_min = zfs_arc_min; 3467 3468 arc_c = arc_c_max; 3469 arc_p = (arc_c >> 1); 3470 3471 /* limit meta-data to 1/4 of the arc capacity */ 3472 arc_meta_limit = arc_c_max / 4; 3473 3474 /* Allow the tunable to override if it is reasonable */ 3475 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3476 arc_meta_limit = zfs_arc_meta_limit; 3477 3478 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3479 arc_c_min = arc_meta_limit / 2; 3480 3481 if (zfs_arc_grow_retry > 0) 3482 arc_grow_retry = zfs_arc_grow_retry; 3483 3484 if (zfs_arc_shrink_shift > 0) 3485 arc_shrink_shift = zfs_arc_shrink_shift; 3486 3487 if (zfs_arc_p_min_shift > 0) 3488 arc_p_min_shift = zfs_arc_p_min_shift; 3489 3490 /* if kmem_flags are set, lets try to use less memory */ 3491 if (kmem_debugging()) 3492 arc_c = arc_c / 2; 3493 if (arc_c < arc_c_min) 3494 arc_c = arc_c_min; 3495 3496 arc_anon = &ARC_anon; 3497 arc_mru = &ARC_mru; 3498 arc_mru_ghost = &ARC_mru_ghost; 3499 arc_mfu = &ARC_mfu; 3500 arc_mfu_ghost = &ARC_mfu_ghost; 3501 arc_l2c_only = &ARC_l2c_only; 3502 arc_size = 0; 3503 3504 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3505 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3506 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3507 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3508 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3509 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3510 3511 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3512 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3513 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3514 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3515 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3516 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3517 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3518 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3519 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3520 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3521 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3522 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3523 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3524 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3525 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3526 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3527 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3528 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3529 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3530 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3531 3532 buf_init(); 3533 3534 arc_thread_exit = 0; 3535 arc_eviction_list = NULL; 3536 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3537 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3538 3539 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3540 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3541 3542 if (arc_ksp != NULL) { 3543 arc_ksp->ks_data = &arc_stats; 3544 kstat_install(arc_ksp); 3545 } 3546 3547 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3548 TS_RUN, minclsyspri); 3549 3550 arc_dead = FALSE; 3551 arc_warm = B_FALSE; 3552 3553 if (zfs_write_limit_max == 0) 3554 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3555 else 3556 zfs_write_limit_shift = 0; 3557 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3558 } 3559 3560 void 3561 arc_fini(void) 3562 { 3563 mutex_enter(&arc_reclaim_thr_lock); 3564 arc_thread_exit = 1; 3565 while (arc_thread_exit != 0) 3566 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3567 mutex_exit(&arc_reclaim_thr_lock); 3568 3569 arc_flush(NULL); 3570 3571 arc_dead = TRUE; 3572 3573 if (arc_ksp != NULL) { 3574 kstat_delete(arc_ksp); 3575 arc_ksp = NULL; 3576 } 3577 3578 mutex_destroy(&arc_eviction_mtx); 3579 mutex_destroy(&arc_reclaim_thr_lock); 3580 cv_destroy(&arc_reclaim_thr_cv); 3581 3582 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3583 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3584 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3585 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3586 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3587 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3588 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3589 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3590 3591 mutex_destroy(&arc_anon->arcs_mtx); 3592 mutex_destroy(&arc_mru->arcs_mtx); 3593 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3594 mutex_destroy(&arc_mfu->arcs_mtx); 3595 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3596 mutex_destroy(&arc_l2c_only->arcs_mtx); 3597 3598 mutex_destroy(&zfs_write_limit_lock); 3599 3600 buf_fini(); 3601 3602 ASSERT(arc_loaned_bytes == 0); 3603 } 3604 3605 /* 3606 * Level 2 ARC 3607 * 3608 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3609 * It uses dedicated storage devices to hold cached data, which are populated 3610 * using large infrequent writes. The main role of this cache is to boost 3611 * the performance of random read workloads. The intended L2ARC devices 3612 * include short-stroked disks, solid state disks, and other media with 3613 * substantially faster read latency than disk. 3614 * 3615 * +-----------------------+ 3616 * | ARC | 3617 * +-----------------------+ 3618 * | ^ ^ 3619 * | | | 3620 * l2arc_feed_thread() arc_read() 3621 * | | | 3622 * | l2arc read | 3623 * V | | 3624 * +---------------+ | 3625 * | L2ARC | | 3626 * +---------------+ | 3627 * | ^ | 3628 * l2arc_write() | | 3629 * | | | 3630 * V | | 3631 * +-------+ +-------+ 3632 * | vdev | | vdev | 3633 * | cache | | cache | 3634 * +-------+ +-------+ 3635 * +=========+ .-----. 3636 * : L2ARC : |-_____-| 3637 * : devices : | Disks | 3638 * +=========+ `-_____-' 3639 * 3640 * Read requests are satisfied from the following sources, in order: 3641 * 3642 * 1) ARC 3643 * 2) vdev cache of L2ARC devices 3644 * 3) L2ARC devices 3645 * 4) vdev cache of disks 3646 * 5) disks 3647 * 3648 * Some L2ARC device types exhibit extremely slow write performance. 3649 * To accommodate for this there are some significant differences between 3650 * the L2ARC and traditional cache design: 3651 * 3652 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3653 * the ARC behave as usual, freeing buffers and placing headers on ghost 3654 * lists. The ARC does not send buffers to the L2ARC during eviction as 3655 * this would add inflated write latencies for all ARC memory pressure. 3656 * 3657 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3658 * It does this by periodically scanning buffers from the eviction-end of 3659 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3660 * not already there. It scans until a headroom of buffers is satisfied, 3661 * which itself is a buffer for ARC eviction. The thread that does this is 3662 * l2arc_feed_thread(), illustrated below; example sizes are included to 3663 * provide a better sense of ratio than this diagram: 3664 * 3665 * head --> tail 3666 * +---------------------+----------+ 3667 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3668 * +---------------------+----------+ | o L2ARC eligible 3669 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3670 * +---------------------+----------+ | 3671 * 15.9 Gbytes ^ 32 Mbytes | 3672 * headroom | 3673 * l2arc_feed_thread() 3674 * | 3675 * l2arc write hand <--[oooo]--' 3676 * | 8 Mbyte 3677 * | write max 3678 * V 3679 * +==============================+ 3680 * L2ARC dev |####|#|###|###| |####| ... | 3681 * +==============================+ 3682 * 32 Gbytes 3683 * 3684 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3685 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3686 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3687 * safe to say that this is an uncommon case, since buffers at the end of 3688 * the ARC lists have moved there due to inactivity. 3689 * 3690 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3691 * then the L2ARC simply misses copying some buffers. This serves as a 3692 * pressure valve to prevent heavy read workloads from both stalling the ARC 3693 * with waits and clogging the L2ARC with writes. This also helps prevent 3694 * the potential for the L2ARC to churn if it attempts to cache content too 3695 * quickly, such as during backups of the entire pool. 3696 * 3697 * 5. After system boot and before the ARC has filled main memory, there are 3698 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3699 * lists can remain mostly static. Instead of searching from tail of these 3700 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3701 * for eligible buffers, greatly increasing its chance of finding them. 3702 * 3703 * The L2ARC device write speed is also boosted during this time so that 3704 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3705 * there are no L2ARC reads, and no fear of degrading read performance 3706 * through increased writes. 3707 * 3708 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3709 * the vdev queue can aggregate them into larger and fewer writes. Each 3710 * device is written to in a rotor fashion, sweeping writes through 3711 * available space then repeating. 3712 * 3713 * 7. The L2ARC does not store dirty content. It never needs to flush 3714 * write buffers back to disk based storage. 3715 * 3716 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3717 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3718 * 3719 * The performance of the L2ARC can be tweaked by a number of tunables, which 3720 * may be necessary for different workloads: 3721 * 3722 * l2arc_write_max max write bytes per interval 3723 * l2arc_write_boost extra write bytes during device warmup 3724 * l2arc_noprefetch skip caching prefetched buffers 3725 * l2arc_headroom number of max device writes to precache 3726 * l2arc_feed_secs seconds between L2ARC writing 3727 * 3728 * Tunables may be removed or added as future performance improvements are 3729 * integrated, and also may become zpool properties. 3730 * 3731 * There are three key functions that control how the L2ARC warms up: 3732 * 3733 * l2arc_write_eligible() check if a buffer is eligible to cache 3734 * l2arc_write_size() calculate how much to write 3735 * l2arc_write_interval() calculate sleep delay between writes 3736 * 3737 * These three functions determine what to write, how much, and how quickly 3738 * to send writes. 3739 */ 3740 3741 static boolean_t 3742 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 3743 { 3744 /* 3745 * A buffer is *not* eligible for the L2ARC if it: 3746 * 1. belongs to a different spa. 3747 * 2. is already cached on the L2ARC. 3748 * 3. has an I/O in progress (it may be an incomplete read). 3749 * 4. is flagged not eligible (zfs property). 3750 */ 3751 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 3752 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 3753 return (B_FALSE); 3754 3755 return (B_TRUE); 3756 } 3757 3758 static uint64_t 3759 l2arc_write_size(l2arc_dev_t *dev) 3760 { 3761 uint64_t size; 3762 3763 size = dev->l2ad_write; 3764 3765 if (arc_warm == B_FALSE) 3766 size += dev->l2ad_boost; 3767 3768 return (size); 3769 3770 } 3771 3772 static clock_t 3773 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 3774 { 3775 clock_t interval, next, now; 3776 3777 /* 3778 * If the ARC lists are busy, increase our write rate; if the 3779 * lists are stale, idle back. This is achieved by checking 3780 * how much we previously wrote - if it was more than half of 3781 * what we wanted, schedule the next write much sooner. 3782 */ 3783 if (l2arc_feed_again && wrote > (wanted / 2)) 3784 interval = (hz * l2arc_feed_min_ms) / 1000; 3785 else 3786 interval = hz * l2arc_feed_secs; 3787 3788 now = ddi_get_lbolt(); 3789 next = MAX(now, MIN(now + interval, began + interval)); 3790 3791 return (next); 3792 } 3793 3794 static void 3795 l2arc_hdr_stat_add(void) 3796 { 3797 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3798 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3799 } 3800 3801 static void 3802 l2arc_hdr_stat_remove(void) 3803 { 3804 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3805 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3806 } 3807 3808 /* 3809 * Cycle through L2ARC devices. This is how L2ARC load balances. 3810 * If a device is returned, this also returns holding the spa config lock. 3811 */ 3812 static l2arc_dev_t * 3813 l2arc_dev_get_next(void) 3814 { 3815 l2arc_dev_t *first, *next = NULL; 3816 3817 /* 3818 * Lock out the removal of spas (spa_namespace_lock), then removal 3819 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3820 * both locks will be dropped and a spa config lock held instead. 3821 */ 3822 mutex_enter(&spa_namespace_lock); 3823 mutex_enter(&l2arc_dev_mtx); 3824 3825 /* if there are no vdevs, there is nothing to do */ 3826 if (l2arc_ndev == 0) 3827 goto out; 3828 3829 first = NULL; 3830 next = l2arc_dev_last; 3831 do { 3832 /* loop around the list looking for a non-faulted vdev */ 3833 if (next == NULL) { 3834 next = list_head(l2arc_dev_list); 3835 } else { 3836 next = list_next(l2arc_dev_list, next); 3837 if (next == NULL) 3838 next = list_head(l2arc_dev_list); 3839 } 3840 3841 /* if we have come back to the start, bail out */ 3842 if (first == NULL) 3843 first = next; 3844 else if (next == first) 3845 break; 3846 3847 } while (vdev_is_dead(next->l2ad_vdev)); 3848 3849 /* if we were unable to find any usable vdevs, return NULL */ 3850 if (vdev_is_dead(next->l2ad_vdev)) 3851 next = NULL; 3852 3853 l2arc_dev_last = next; 3854 3855 out: 3856 mutex_exit(&l2arc_dev_mtx); 3857 3858 /* 3859 * Grab the config lock to prevent the 'next' device from being 3860 * removed while we are writing to it. 3861 */ 3862 if (next != NULL) 3863 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 3864 mutex_exit(&spa_namespace_lock); 3865 3866 return (next); 3867 } 3868 3869 /* 3870 * Free buffers that were tagged for destruction. 3871 */ 3872 static void 3873 l2arc_do_free_on_write() 3874 { 3875 list_t *buflist; 3876 l2arc_data_free_t *df, *df_prev; 3877 3878 mutex_enter(&l2arc_free_on_write_mtx); 3879 buflist = l2arc_free_on_write; 3880 3881 for (df = list_tail(buflist); df; df = df_prev) { 3882 df_prev = list_prev(buflist, df); 3883 ASSERT(df->l2df_data != NULL); 3884 ASSERT(df->l2df_func != NULL); 3885 df->l2df_func(df->l2df_data, df->l2df_size); 3886 list_remove(buflist, df); 3887 kmem_free(df, sizeof (l2arc_data_free_t)); 3888 } 3889 3890 mutex_exit(&l2arc_free_on_write_mtx); 3891 } 3892 3893 /* 3894 * A write to a cache device has completed. Update all headers to allow 3895 * reads from these buffers to begin. 3896 */ 3897 static void 3898 l2arc_write_done(zio_t *zio) 3899 { 3900 l2arc_write_callback_t *cb; 3901 l2arc_dev_t *dev; 3902 list_t *buflist; 3903 arc_buf_hdr_t *head, *ab, *ab_prev; 3904 l2arc_buf_hdr_t *abl2; 3905 kmutex_t *hash_lock; 3906 3907 cb = zio->io_private; 3908 ASSERT(cb != NULL); 3909 dev = cb->l2wcb_dev; 3910 ASSERT(dev != NULL); 3911 head = cb->l2wcb_head; 3912 ASSERT(head != NULL); 3913 buflist = dev->l2ad_buflist; 3914 ASSERT(buflist != NULL); 3915 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3916 l2arc_write_callback_t *, cb); 3917 3918 if (zio->io_error != 0) 3919 ARCSTAT_BUMP(arcstat_l2_writes_error); 3920 3921 mutex_enter(&l2arc_buflist_mtx); 3922 3923 /* 3924 * All writes completed, or an error was hit. 3925 */ 3926 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3927 ab_prev = list_prev(buflist, ab); 3928 3929 hash_lock = HDR_LOCK(ab); 3930 if (!mutex_tryenter(hash_lock)) { 3931 /* 3932 * This buffer misses out. It may be in a stage 3933 * of eviction. Its ARC_L2_WRITING flag will be 3934 * left set, denying reads to this buffer. 3935 */ 3936 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3937 continue; 3938 } 3939 3940 if (zio->io_error != 0) { 3941 /* 3942 * Error - drop L2ARC entry. 3943 */ 3944 list_remove(buflist, ab); 3945 abl2 = ab->b_l2hdr; 3946 ab->b_l2hdr = NULL; 3947 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3948 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3949 } 3950 3951 /* 3952 * Allow ARC to begin reads to this L2ARC entry. 3953 */ 3954 ab->b_flags &= ~ARC_L2_WRITING; 3955 3956 mutex_exit(hash_lock); 3957 } 3958 3959 atomic_inc_64(&l2arc_writes_done); 3960 list_remove(buflist, head); 3961 kmem_cache_free(hdr_cache, head); 3962 mutex_exit(&l2arc_buflist_mtx); 3963 3964 l2arc_do_free_on_write(); 3965 3966 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3967 } 3968 3969 /* 3970 * A read to a cache device completed. Validate buffer contents before 3971 * handing over to the regular ARC routines. 3972 */ 3973 static void 3974 l2arc_read_done(zio_t *zio) 3975 { 3976 l2arc_read_callback_t *cb; 3977 arc_buf_hdr_t *hdr; 3978 arc_buf_t *buf; 3979 kmutex_t *hash_lock; 3980 int equal; 3981 3982 ASSERT(zio->io_vd != NULL); 3983 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 3984 3985 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 3986 3987 cb = zio->io_private; 3988 ASSERT(cb != NULL); 3989 buf = cb->l2rcb_buf; 3990 ASSERT(buf != NULL); 3991 3992 hash_lock = HDR_LOCK(buf->b_hdr); 3993 mutex_enter(hash_lock); 3994 hdr = buf->b_hdr; 3995 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3996 3997 /* 3998 * Check this survived the L2ARC journey. 3999 */ 4000 equal = arc_cksum_equal(buf); 4001 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4002 mutex_exit(hash_lock); 4003 zio->io_private = buf; 4004 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4005 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4006 arc_read_done(zio); 4007 } else { 4008 mutex_exit(hash_lock); 4009 /* 4010 * Buffer didn't survive caching. Increment stats and 4011 * reissue to the original storage device. 4012 */ 4013 if (zio->io_error != 0) { 4014 ARCSTAT_BUMP(arcstat_l2_io_error); 4015 } else { 4016 zio->io_error = EIO; 4017 } 4018 if (!equal) 4019 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4020 4021 /* 4022 * If there's no waiter, issue an async i/o to the primary 4023 * storage now. If there *is* a waiter, the caller must 4024 * issue the i/o in a context where it's OK to block. 4025 */ 4026 if (zio->io_waiter == NULL) { 4027 zio_t *pio = zio_unique_parent(zio); 4028 4029 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4030 4031 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4032 buf->b_data, zio->io_size, arc_read_done, buf, 4033 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4034 } 4035 } 4036 4037 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4038 } 4039 4040 /* 4041 * This is the list priority from which the L2ARC will search for pages to 4042 * cache. This is used within loops (0..3) to cycle through lists in the 4043 * desired order. This order can have a significant effect on cache 4044 * performance. 4045 * 4046 * Currently the metadata lists are hit first, MFU then MRU, followed by 4047 * the data lists. This function returns a locked list, and also returns 4048 * the lock pointer. 4049 */ 4050 static list_t * 4051 l2arc_list_locked(int list_num, kmutex_t **lock) 4052 { 4053 list_t *list; 4054 4055 ASSERT(list_num >= 0 && list_num <= 3); 4056 4057 switch (list_num) { 4058 case 0: 4059 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4060 *lock = &arc_mfu->arcs_mtx; 4061 break; 4062 case 1: 4063 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4064 *lock = &arc_mru->arcs_mtx; 4065 break; 4066 case 2: 4067 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4068 *lock = &arc_mfu->arcs_mtx; 4069 break; 4070 case 3: 4071 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4072 *lock = &arc_mru->arcs_mtx; 4073 break; 4074 } 4075 4076 ASSERT(!(MUTEX_HELD(*lock))); 4077 mutex_enter(*lock); 4078 return (list); 4079 } 4080 4081 /* 4082 * Evict buffers from the device write hand to the distance specified in 4083 * bytes. This distance may span populated buffers, it may span nothing. 4084 * This is clearing a region on the L2ARC device ready for writing. 4085 * If the 'all' boolean is set, every buffer is evicted. 4086 */ 4087 static void 4088 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4089 { 4090 list_t *buflist; 4091 l2arc_buf_hdr_t *abl2; 4092 arc_buf_hdr_t *ab, *ab_prev; 4093 kmutex_t *hash_lock; 4094 uint64_t taddr; 4095 4096 buflist = dev->l2ad_buflist; 4097 4098 if (buflist == NULL) 4099 return; 4100 4101 if (!all && dev->l2ad_first) { 4102 /* 4103 * This is the first sweep through the device. There is 4104 * nothing to evict. 4105 */ 4106 return; 4107 } 4108 4109 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4110 /* 4111 * When nearing the end of the device, evict to the end 4112 * before the device write hand jumps to the start. 4113 */ 4114 taddr = dev->l2ad_end; 4115 } else { 4116 taddr = dev->l2ad_hand + distance; 4117 } 4118 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4119 uint64_t, taddr, boolean_t, all); 4120 4121 top: 4122 mutex_enter(&l2arc_buflist_mtx); 4123 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4124 ab_prev = list_prev(buflist, ab); 4125 4126 hash_lock = HDR_LOCK(ab); 4127 if (!mutex_tryenter(hash_lock)) { 4128 /* 4129 * Missed the hash lock. Retry. 4130 */ 4131 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4132 mutex_exit(&l2arc_buflist_mtx); 4133 mutex_enter(hash_lock); 4134 mutex_exit(hash_lock); 4135 goto top; 4136 } 4137 4138 if (HDR_L2_WRITE_HEAD(ab)) { 4139 /* 4140 * We hit a write head node. Leave it for 4141 * l2arc_write_done(). 4142 */ 4143 list_remove(buflist, ab); 4144 mutex_exit(hash_lock); 4145 continue; 4146 } 4147 4148 if (!all && ab->b_l2hdr != NULL && 4149 (ab->b_l2hdr->b_daddr > taddr || 4150 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4151 /* 4152 * We've evicted to the target address, 4153 * or the end of the device. 4154 */ 4155 mutex_exit(hash_lock); 4156 break; 4157 } 4158 4159 if (HDR_FREE_IN_PROGRESS(ab)) { 4160 /* 4161 * Already on the path to destruction. 4162 */ 4163 mutex_exit(hash_lock); 4164 continue; 4165 } 4166 4167 if (ab->b_state == arc_l2c_only) { 4168 ASSERT(!HDR_L2_READING(ab)); 4169 /* 4170 * This doesn't exist in the ARC. Destroy. 4171 * arc_hdr_destroy() will call list_remove() 4172 * and decrement arcstat_l2_size. 4173 */ 4174 arc_change_state(arc_anon, ab, hash_lock); 4175 arc_hdr_destroy(ab); 4176 } else { 4177 /* 4178 * Invalidate issued or about to be issued 4179 * reads, since we may be about to write 4180 * over this location. 4181 */ 4182 if (HDR_L2_READING(ab)) { 4183 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4184 ab->b_flags |= ARC_L2_EVICTED; 4185 } 4186 4187 /* 4188 * Tell ARC this no longer exists in L2ARC. 4189 */ 4190 if (ab->b_l2hdr != NULL) { 4191 abl2 = ab->b_l2hdr; 4192 ab->b_l2hdr = NULL; 4193 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4194 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4195 } 4196 list_remove(buflist, ab); 4197 4198 /* 4199 * This may have been leftover after a 4200 * failed write. 4201 */ 4202 ab->b_flags &= ~ARC_L2_WRITING; 4203 } 4204 mutex_exit(hash_lock); 4205 } 4206 mutex_exit(&l2arc_buflist_mtx); 4207 4208 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0); 4209 dev->l2ad_evict = taddr; 4210 } 4211 4212 /* 4213 * Find and write ARC buffers to the L2ARC device. 4214 * 4215 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4216 * for reading until they have completed writing. 4217 */ 4218 static uint64_t 4219 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4220 { 4221 arc_buf_hdr_t *ab, *ab_prev, *head; 4222 l2arc_buf_hdr_t *hdrl2; 4223 list_t *list; 4224 uint64_t passed_sz, write_sz, buf_sz, headroom; 4225 void *buf_data; 4226 kmutex_t *hash_lock, *list_lock; 4227 boolean_t have_lock, full; 4228 l2arc_write_callback_t *cb; 4229 zio_t *pio, *wzio; 4230 uint64_t guid = spa_guid(spa); 4231 4232 ASSERT(dev->l2ad_vdev != NULL); 4233 4234 pio = NULL; 4235 write_sz = 0; 4236 full = B_FALSE; 4237 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4238 head->b_flags |= ARC_L2_WRITE_HEAD; 4239 4240 /* 4241 * Copy buffers for L2ARC writing. 4242 */ 4243 mutex_enter(&l2arc_buflist_mtx); 4244 for (int try = 0; try <= 3; try++) { 4245 list = l2arc_list_locked(try, &list_lock); 4246 passed_sz = 0; 4247 4248 /* 4249 * L2ARC fast warmup. 4250 * 4251 * Until the ARC is warm and starts to evict, read from the 4252 * head of the ARC lists rather than the tail. 4253 */ 4254 headroom = target_sz * l2arc_headroom; 4255 if (arc_warm == B_FALSE) 4256 ab = list_head(list); 4257 else 4258 ab = list_tail(list); 4259 4260 for (; ab; ab = ab_prev) { 4261 if (arc_warm == B_FALSE) 4262 ab_prev = list_next(list, ab); 4263 else 4264 ab_prev = list_prev(list, ab); 4265 4266 hash_lock = HDR_LOCK(ab); 4267 have_lock = MUTEX_HELD(hash_lock); 4268 if (!have_lock && !mutex_tryenter(hash_lock)) { 4269 /* 4270 * Skip this buffer rather than waiting. 4271 */ 4272 continue; 4273 } 4274 4275 passed_sz += ab->b_size; 4276 if (passed_sz > headroom) { 4277 /* 4278 * Searched too far. 4279 */ 4280 mutex_exit(hash_lock); 4281 break; 4282 } 4283 4284 if (!l2arc_write_eligible(guid, ab)) { 4285 mutex_exit(hash_lock); 4286 continue; 4287 } 4288 4289 if ((write_sz + ab->b_size) > target_sz) { 4290 full = B_TRUE; 4291 mutex_exit(hash_lock); 4292 break; 4293 } 4294 4295 if (pio == NULL) { 4296 /* 4297 * Insert a dummy header on the buflist so 4298 * l2arc_write_done() can find where the 4299 * write buffers begin without searching. 4300 */ 4301 list_insert_head(dev->l2ad_buflist, head); 4302 4303 cb = kmem_alloc( 4304 sizeof (l2arc_write_callback_t), KM_SLEEP); 4305 cb->l2wcb_dev = dev; 4306 cb->l2wcb_head = head; 4307 pio = zio_root(spa, l2arc_write_done, cb, 4308 ZIO_FLAG_CANFAIL); 4309 } 4310 4311 /* 4312 * Create and add a new L2ARC header. 4313 */ 4314 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4315 hdrl2->b_dev = dev; 4316 hdrl2->b_daddr = dev->l2ad_hand; 4317 4318 ab->b_flags |= ARC_L2_WRITING; 4319 ab->b_l2hdr = hdrl2; 4320 list_insert_head(dev->l2ad_buflist, ab); 4321 buf_data = ab->b_buf->b_data; 4322 buf_sz = ab->b_size; 4323 4324 /* 4325 * Compute and store the buffer cksum before 4326 * writing. On debug the cksum is verified first. 4327 */ 4328 arc_cksum_verify(ab->b_buf); 4329 arc_cksum_compute(ab->b_buf, B_TRUE); 4330 4331 mutex_exit(hash_lock); 4332 4333 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4334 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4335 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4336 ZIO_FLAG_CANFAIL, B_FALSE); 4337 4338 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4339 zio_t *, wzio); 4340 (void) zio_nowait(wzio); 4341 4342 /* 4343 * Keep the clock hand suitably device-aligned. 4344 */ 4345 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4346 4347 write_sz += buf_sz; 4348 dev->l2ad_hand += buf_sz; 4349 } 4350 4351 mutex_exit(list_lock); 4352 4353 if (full == B_TRUE) 4354 break; 4355 } 4356 mutex_exit(&l2arc_buflist_mtx); 4357 4358 if (pio == NULL) { 4359 ASSERT3U(write_sz, ==, 0); 4360 kmem_cache_free(hdr_cache, head); 4361 return (0); 4362 } 4363 4364 ASSERT3U(write_sz, <=, target_sz); 4365 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4366 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz); 4367 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4368 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0); 4369 4370 /* 4371 * Bump device hand to the device start if it is approaching the end. 4372 * l2arc_evict() will already have evicted ahead for this case. 4373 */ 4374 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4375 vdev_space_update(dev->l2ad_vdev, 4376 dev->l2ad_end - dev->l2ad_hand, 0, 0); 4377 dev->l2ad_hand = dev->l2ad_start; 4378 dev->l2ad_evict = dev->l2ad_start; 4379 dev->l2ad_first = B_FALSE; 4380 } 4381 4382 dev->l2ad_writing = B_TRUE; 4383 (void) zio_wait(pio); 4384 dev->l2ad_writing = B_FALSE; 4385 4386 return (write_sz); 4387 } 4388 4389 /* 4390 * This thread feeds the L2ARC at regular intervals. This is the beating 4391 * heart of the L2ARC. 4392 */ 4393 static void 4394 l2arc_feed_thread(void) 4395 { 4396 callb_cpr_t cpr; 4397 l2arc_dev_t *dev; 4398 spa_t *spa; 4399 uint64_t size, wrote; 4400 clock_t begin, next = ddi_get_lbolt(); 4401 4402 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4403 4404 mutex_enter(&l2arc_feed_thr_lock); 4405 4406 while (l2arc_thread_exit == 0) { 4407 CALLB_CPR_SAFE_BEGIN(&cpr); 4408 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4409 next); 4410 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4411 next = ddi_get_lbolt() + hz; 4412 4413 /* 4414 * Quick check for L2ARC devices. 4415 */ 4416 mutex_enter(&l2arc_dev_mtx); 4417 if (l2arc_ndev == 0) { 4418 mutex_exit(&l2arc_dev_mtx); 4419 continue; 4420 } 4421 mutex_exit(&l2arc_dev_mtx); 4422 begin = ddi_get_lbolt(); 4423 4424 /* 4425 * This selects the next l2arc device to write to, and in 4426 * doing so the next spa to feed from: dev->l2ad_spa. This 4427 * will return NULL if there are now no l2arc devices or if 4428 * they are all faulted. 4429 * 4430 * If a device is returned, its spa's config lock is also 4431 * held to prevent device removal. l2arc_dev_get_next() 4432 * will grab and release l2arc_dev_mtx. 4433 */ 4434 if ((dev = l2arc_dev_get_next()) == NULL) 4435 continue; 4436 4437 spa = dev->l2ad_spa; 4438 ASSERT(spa != NULL); 4439 4440 /* 4441 * Avoid contributing to memory pressure. 4442 */ 4443 if (arc_reclaim_needed()) { 4444 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4445 spa_config_exit(spa, SCL_L2ARC, dev); 4446 continue; 4447 } 4448 4449 ARCSTAT_BUMP(arcstat_l2_feeds); 4450 4451 size = l2arc_write_size(dev); 4452 4453 /* 4454 * Evict L2ARC buffers that will be overwritten. 4455 */ 4456 l2arc_evict(dev, size, B_FALSE); 4457 4458 /* 4459 * Write ARC buffers. 4460 */ 4461 wrote = l2arc_write_buffers(spa, dev, size); 4462 4463 /* 4464 * Calculate interval between writes. 4465 */ 4466 next = l2arc_write_interval(begin, size, wrote); 4467 spa_config_exit(spa, SCL_L2ARC, dev); 4468 } 4469 4470 l2arc_thread_exit = 0; 4471 cv_broadcast(&l2arc_feed_thr_cv); 4472 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4473 thread_exit(); 4474 } 4475 4476 boolean_t 4477 l2arc_vdev_present(vdev_t *vd) 4478 { 4479 l2arc_dev_t *dev; 4480 4481 mutex_enter(&l2arc_dev_mtx); 4482 for (dev = list_head(l2arc_dev_list); dev != NULL; 4483 dev = list_next(l2arc_dev_list, dev)) { 4484 if (dev->l2ad_vdev == vd) 4485 break; 4486 } 4487 mutex_exit(&l2arc_dev_mtx); 4488 4489 return (dev != NULL); 4490 } 4491 4492 /* 4493 * Add a vdev for use by the L2ARC. By this point the spa has already 4494 * validated the vdev and opened it. 4495 */ 4496 void 4497 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 4498 { 4499 l2arc_dev_t *adddev; 4500 4501 ASSERT(!l2arc_vdev_present(vd)); 4502 4503 /* 4504 * Create a new l2arc device entry. 4505 */ 4506 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4507 adddev->l2ad_spa = spa; 4508 adddev->l2ad_vdev = vd; 4509 adddev->l2ad_write = l2arc_write_max; 4510 adddev->l2ad_boost = l2arc_write_boost; 4511 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 4512 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 4513 adddev->l2ad_hand = adddev->l2ad_start; 4514 adddev->l2ad_evict = adddev->l2ad_start; 4515 adddev->l2ad_first = B_TRUE; 4516 adddev->l2ad_writing = B_FALSE; 4517 ASSERT3U(adddev->l2ad_write, >, 0); 4518 4519 /* 4520 * This is a list of all ARC buffers that are still valid on the 4521 * device. 4522 */ 4523 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4524 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4525 offsetof(arc_buf_hdr_t, b_l2node)); 4526 4527 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 4528 4529 /* 4530 * Add device to global list 4531 */ 4532 mutex_enter(&l2arc_dev_mtx); 4533 list_insert_head(l2arc_dev_list, adddev); 4534 atomic_inc_64(&l2arc_ndev); 4535 mutex_exit(&l2arc_dev_mtx); 4536 } 4537 4538 /* 4539 * Remove a vdev from the L2ARC. 4540 */ 4541 void 4542 l2arc_remove_vdev(vdev_t *vd) 4543 { 4544 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4545 4546 /* 4547 * Find the device by vdev 4548 */ 4549 mutex_enter(&l2arc_dev_mtx); 4550 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4551 nextdev = list_next(l2arc_dev_list, dev); 4552 if (vd == dev->l2ad_vdev) { 4553 remdev = dev; 4554 break; 4555 } 4556 } 4557 ASSERT(remdev != NULL); 4558 4559 /* 4560 * Remove device from global list 4561 */ 4562 list_remove(l2arc_dev_list, remdev); 4563 l2arc_dev_last = NULL; /* may have been invalidated */ 4564 atomic_dec_64(&l2arc_ndev); 4565 mutex_exit(&l2arc_dev_mtx); 4566 4567 /* 4568 * Clear all buflists and ARC references. L2ARC device flush. 4569 */ 4570 l2arc_evict(remdev, 0, B_TRUE); 4571 list_destroy(remdev->l2ad_buflist); 4572 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4573 kmem_free(remdev, sizeof (l2arc_dev_t)); 4574 } 4575 4576 void 4577 l2arc_init(void) 4578 { 4579 l2arc_thread_exit = 0; 4580 l2arc_ndev = 0; 4581 l2arc_writes_sent = 0; 4582 l2arc_writes_done = 0; 4583 4584 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4585 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4586 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4587 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4588 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4589 4590 l2arc_dev_list = &L2ARC_dev_list; 4591 l2arc_free_on_write = &L2ARC_free_on_write; 4592 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4593 offsetof(l2arc_dev_t, l2ad_node)); 4594 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4595 offsetof(l2arc_data_free_t, l2df_list_node)); 4596 } 4597 4598 void 4599 l2arc_fini(void) 4600 { 4601 /* 4602 * This is called from dmu_fini(), which is called from spa_fini(); 4603 * Because of this, we can assume that all l2arc devices have 4604 * already been removed when the pools themselves were removed. 4605 */ 4606 4607 l2arc_do_free_on_write(); 4608 4609 mutex_destroy(&l2arc_feed_thr_lock); 4610 cv_destroy(&l2arc_feed_thr_cv); 4611 mutex_destroy(&l2arc_dev_mtx); 4612 mutex_destroy(&l2arc_buflist_mtx); 4613 mutex_destroy(&l2arc_free_on_write_mtx); 4614 4615 list_destroy(l2arc_dev_list); 4616 list_destroy(l2arc_free_on_write); 4617 } 4618 4619 void 4620 l2arc_start(void) 4621 { 4622 if (!(spa_mode_global & FWRITE)) 4623 return; 4624 4625 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4626 TS_RUN, minclsyspri); 4627 } 4628 4629 void 4630 l2arc_stop(void) 4631 { 4632 if (!(spa_mode_global & FWRITE)) 4633 return; 4634 4635 mutex_enter(&l2arc_feed_thr_lock); 4636 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4637 l2arc_thread_exit = 1; 4638 while (l2arc_thread_exit != 0) 4639 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4640 mutex_exit(&l2arc_feed_thr_lock); 4641 } 4642