xref: /titanic_50/usr/src/uts/common/fs/zfs/arc.c (revision 76d1b5a97b0704bc67fbdcb9fede23c1587c2ec2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * DVA-based Adjustable Replacement Cache
30  *
31  * While much of the theory of operation used here is
32  * based on the self-tuning, low overhead replacement cache
33  * presented by Megiddo and Modha at FAST 2003, there are some
34  * significant differences:
35  *
36  * 1. The Megiddo and Modha model assumes any page is evictable.
37  * Pages in its cache cannot be "locked" into memory.  This makes
38  * the eviction algorithm simple: evict the last page in the list.
39  * This also make the performance characteristics easy to reason
40  * about.  Our cache is not so simple.  At any given moment, some
41  * subset of the blocks in the cache are un-evictable because we
42  * have handed out a reference to them.  Blocks are only evictable
43  * when there are no external references active.  This makes
44  * eviction far more problematic:  we choose to evict the evictable
45  * blocks that are the "lowest" in the list.
46  *
47  * There are times when it is not possible to evict the requested
48  * space.  In these circumstances we are unable to adjust the cache
49  * size.  To prevent the cache growing unbounded at these times we
50  * implement a "cache throttle" that slows the flow of new data
51  * into the cache until we can make space available.
52  *
53  * 2. The Megiddo and Modha model assumes a fixed cache size.
54  * Pages are evicted when the cache is full and there is a cache
55  * miss.  Our model has a variable sized cache.  It grows with
56  * high use, but also tries to react to memory pressure from the
57  * operating system: decreasing its size when system memory is
58  * tight.
59  *
60  * 3. The Megiddo and Modha model assumes a fixed page size. All
61  * elements of the cache are therefor exactly the same size.  So
62  * when adjusting the cache size following a cache miss, its simply
63  * a matter of choosing a single page to evict.  In our model, we
64  * have variable sized cache blocks (rangeing from 512 bytes to
65  * 128K bytes).  We therefor choose a set of blocks to evict to make
66  * space for a cache miss that approximates as closely as possible
67  * the space used by the new block.
68  *
69  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70  * by N. Megiddo & D. Modha, FAST 2003
71  */
72 
73 /*
74  * The locking model:
75  *
76  * A new reference to a cache buffer can be obtained in two
77  * ways: 1) via a hash table lookup using the DVA as a key,
78  * or 2) via one of the ARC lists.  The arc_read() interface
79  * uses method 1, while the internal arc algorithms for
80  * adjusting the cache use method 2.  We therefor provide two
81  * types of locks: 1) the hash table lock array, and 2) the
82  * arc list locks.
83  *
84  * Buffers do not have their own mutexs, rather they rely on the
85  * hash table mutexs for the bulk of their protection (i.e. most
86  * fields in the arc_buf_hdr_t are protected by these mutexs).
87  *
88  * buf_hash_find() returns the appropriate mutex (held) when it
89  * locates the requested buffer in the hash table.  It returns
90  * NULL for the mutex if the buffer was not in the table.
91  *
92  * buf_hash_remove() expects the appropriate hash mutex to be
93  * already held before it is invoked.
94  *
95  * Each arc state also has a mutex which is used to protect the
96  * buffer list associated with the state.  When attempting to
97  * obtain a hash table lock while holding an arc list lock you
98  * must use: mutex_tryenter() to avoid deadlock.  Also note that
99  * the active state mutex must be held before the ghost state mutex.
100  *
101  * Arc buffers may have an associated eviction callback function.
102  * This function will be invoked prior to removing the buffer (e.g.
103  * in arc_do_user_evicts()).  Note however that the data associated
104  * with the buffer may be evicted prior to the callback.  The callback
105  * must be made with *no locks held* (to prevent deadlock).  Additionally,
106  * the users of callbacks must ensure that their private data is
107  * protected from simultaneous callbacks from arc_buf_evict()
108  * and arc_do_user_evicts().
109  *
110  * Note that the majority of the performance stats are manipulated
111  * with atomic operations.
112  *
113  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
114  *
115  *	- L2ARC buflist creation
116  *	- L2ARC buflist eviction
117  *	- L2ARC write completion, which walks L2ARC buflists
118  *	- ARC header destruction, as it removes from L2ARC buflists
119  *	- ARC header release, as it removes from L2ARC buflists
120  */
121 
122 #include <sys/spa.h>
123 #include <sys/zio.h>
124 #include <sys/zio_checksum.h>
125 #include <sys/zfs_context.h>
126 #include <sys/arc.h>
127 #include <sys/refcount.h>
128 #include <sys/vdev.h>
129 #ifdef _KERNEL
130 #include <sys/vmsystm.h>
131 #include <vm/anon.h>
132 #include <sys/fs/swapnode.h>
133 #include <sys/dnlc.h>
134 #endif
135 #include <sys/callb.h>
136 #include <sys/kstat.h>
137 
138 static kmutex_t		arc_reclaim_thr_lock;
139 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
140 static uint8_t		arc_thread_exit;
141 
142 extern int zfs_write_limit_shift;
143 extern uint64_t zfs_write_limit_max;
144 extern uint64_t zfs_write_limit_inflated;
145 
146 #define	ARC_REDUCE_DNLC_PERCENT	3
147 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
148 
149 typedef enum arc_reclaim_strategy {
150 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
151 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
152 } arc_reclaim_strategy_t;
153 
154 /* number of seconds before growing cache again */
155 static int		arc_grow_retry = 60;
156 
157 /*
158  * minimum lifespan of a prefetch block in clock ticks
159  * (initialized in arc_init())
160  */
161 static int		arc_min_prefetch_lifespan;
162 
163 static int arc_dead;
164 
165 /*
166  * The arc has filled available memory and has now warmed up.
167  */
168 static boolean_t arc_warm;
169 
170 /*
171  * These tunables are for performance analysis.
172  */
173 uint64_t zfs_arc_max;
174 uint64_t zfs_arc_min;
175 uint64_t zfs_arc_meta_limit = 0;
176 int zfs_mdcomp_disable = 0;
177 
178 /*
179  * Note that buffers can be in one of 6 states:
180  *	ARC_anon	- anonymous (discussed below)
181  *	ARC_mru		- recently used, currently cached
182  *	ARC_mru_ghost	- recentely used, no longer in cache
183  *	ARC_mfu		- frequently used, currently cached
184  *	ARC_mfu_ghost	- frequently used, no longer in cache
185  *	ARC_l2c_only	- exists in L2ARC but not other states
186  * When there are no active references to the buffer, they are
187  * are linked onto a list in one of these arc states.  These are
188  * the only buffers that can be evicted or deleted.  Within each
189  * state there are multiple lists, one for meta-data and one for
190  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
191  * etc.) is tracked separately so that it can be managed more
192  * explicitly: favored over data, limited explicitly.
193  *
194  * Anonymous buffers are buffers that are not associated with
195  * a DVA.  These are buffers that hold dirty block copies
196  * before they are written to stable storage.  By definition,
197  * they are "ref'd" and are considered part of arc_mru
198  * that cannot be freed.  Generally, they will aquire a DVA
199  * as they are written and migrate onto the arc_mru list.
200  *
201  * The ARC_l2c_only state is for buffers that are in the second
202  * level ARC but no longer in any of the ARC_m* lists.  The second
203  * level ARC itself may also contain buffers that are in any of
204  * the ARC_m* states - meaning that a buffer can exist in two
205  * places.  The reason for the ARC_l2c_only state is to keep the
206  * buffer header in the hash table, so that reads that hit the
207  * second level ARC benefit from these fast lookups.
208  */
209 
210 typedef struct arc_state {
211 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
212 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
213 	uint64_t arcs_size;	/* total amount of data in this state */
214 	kmutex_t arcs_mtx;
215 } arc_state_t;
216 
217 /* The 6 states: */
218 static arc_state_t ARC_anon;
219 static arc_state_t ARC_mru;
220 static arc_state_t ARC_mru_ghost;
221 static arc_state_t ARC_mfu;
222 static arc_state_t ARC_mfu_ghost;
223 static arc_state_t ARC_l2c_only;
224 
225 typedef struct arc_stats {
226 	kstat_named_t arcstat_hits;
227 	kstat_named_t arcstat_misses;
228 	kstat_named_t arcstat_demand_data_hits;
229 	kstat_named_t arcstat_demand_data_misses;
230 	kstat_named_t arcstat_demand_metadata_hits;
231 	kstat_named_t arcstat_demand_metadata_misses;
232 	kstat_named_t arcstat_prefetch_data_hits;
233 	kstat_named_t arcstat_prefetch_data_misses;
234 	kstat_named_t arcstat_prefetch_metadata_hits;
235 	kstat_named_t arcstat_prefetch_metadata_misses;
236 	kstat_named_t arcstat_mru_hits;
237 	kstat_named_t arcstat_mru_ghost_hits;
238 	kstat_named_t arcstat_mfu_hits;
239 	kstat_named_t arcstat_mfu_ghost_hits;
240 	kstat_named_t arcstat_deleted;
241 	kstat_named_t arcstat_recycle_miss;
242 	kstat_named_t arcstat_mutex_miss;
243 	kstat_named_t arcstat_evict_skip;
244 	kstat_named_t arcstat_hash_elements;
245 	kstat_named_t arcstat_hash_elements_max;
246 	kstat_named_t arcstat_hash_collisions;
247 	kstat_named_t arcstat_hash_chains;
248 	kstat_named_t arcstat_hash_chain_max;
249 	kstat_named_t arcstat_p;
250 	kstat_named_t arcstat_c;
251 	kstat_named_t arcstat_c_min;
252 	kstat_named_t arcstat_c_max;
253 	kstat_named_t arcstat_size;
254 	kstat_named_t arcstat_hdr_size;
255 	kstat_named_t arcstat_l2_hits;
256 	kstat_named_t arcstat_l2_misses;
257 	kstat_named_t arcstat_l2_feeds;
258 	kstat_named_t arcstat_l2_rw_clash;
259 	kstat_named_t arcstat_l2_writes_sent;
260 	kstat_named_t arcstat_l2_writes_done;
261 	kstat_named_t arcstat_l2_writes_error;
262 	kstat_named_t arcstat_l2_writes_hdr_miss;
263 	kstat_named_t arcstat_l2_evict_lock_retry;
264 	kstat_named_t arcstat_l2_evict_reading;
265 	kstat_named_t arcstat_l2_free_on_write;
266 	kstat_named_t arcstat_l2_abort_lowmem;
267 	kstat_named_t arcstat_l2_cksum_bad;
268 	kstat_named_t arcstat_l2_io_error;
269 	kstat_named_t arcstat_l2_size;
270 	kstat_named_t arcstat_l2_hdr_size;
271 	kstat_named_t arcstat_memory_throttle_count;
272 } arc_stats_t;
273 
274 static arc_stats_t arc_stats = {
275 	{ "hits",			KSTAT_DATA_UINT64 },
276 	{ "misses",			KSTAT_DATA_UINT64 },
277 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
278 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
279 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
280 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
281 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
282 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
283 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
284 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
285 	{ "mru_hits",			KSTAT_DATA_UINT64 },
286 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
287 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
288 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
289 	{ "deleted",			KSTAT_DATA_UINT64 },
290 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
291 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
292 	{ "evict_skip",			KSTAT_DATA_UINT64 },
293 	{ "hash_elements",		KSTAT_DATA_UINT64 },
294 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
295 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
296 	{ "hash_chains",		KSTAT_DATA_UINT64 },
297 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
298 	{ "p",				KSTAT_DATA_UINT64 },
299 	{ "c",				KSTAT_DATA_UINT64 },
300 	{ "c_min",			KSTAT_DATA_UINT64 },
301 	{ "c_max",			KSTAT_DATA_UINT64 },
302 	{ "size",			KSTAT_DATA_UINT64 },
303 	{ "hdr_size",			KSTAT_DATA_UINT64 },
304 	{ "l2_hits",			KSTAT_DATA_UINT64 },
305 	{ "l2_misses",			KSTAT_DATA_UINT64 },
306 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
307 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
308 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
309 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
310 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
311 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
312 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
313 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
314 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
315 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
316 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
317 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
318 	{ "l2_size",			KSTAT_DATA_UINT64 },
319 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
320 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 }
321 };
322 
323 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
324 
325 #define	ARCSTAT_INCR(stat, val) \
326 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
327 
328 #define	ARCSTAT_BUMP(stat) 	ARCSTAT_INCR(stat, 1)
329 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
330 
331 #define	ARCSTAT_MAX(stat, val) {					\
332 	uint64_t m;							\
333 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
334 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
335 		continue;						\
336 }
337 
338 #define	ARCSTAT_MAXSTAT(stat) \
339 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
340 
341 /*
342  * We define a macro to allow ARC hits/misses to be easily broken down by
343  * two separate conditions, giving a total of four different subtypes for
344  * each of hits and misses (so eight statistics total).
345  */
346 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
347 	if (cond1) {							\
348 		if (cond2) {						\
349 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
350 		} else {						\
351 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
352 		}							\
353 	} else {							\
354 		if (cond2) {						\
355 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
356 		} else {						\
357 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
358 		}							\
359 	}
360 
361 kstat_t			*arc_ksp;
362 static arc_state_t 	*arc_anon;
363 static arc_state_t	*arc_mru;
364 static arc_state_t	*arc_mru_ghost;
365 static arc_state_t	*arc_mfu;
366 static arc_state_t	*arc_mfu_ghost;
367 static arc_state_t	*arc_l2c_only;
368 
369 /*
370  * There are several ARC variables that are critical to export as kstats --
371  * but we don't want to have to grovel around in the kstat whenever we wish to
372  * manipulate them.  For these variables, we therefore define them to be in
373  * terms of the statistic variable.  This assures that we are not introducing
374  * the possibility of inconsistency by having shadow copies of the variables,
375  * while still allowing the code to be readable.
376  */
377 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
378 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
379 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
380 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
381 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
382 
383 static int		arc_no_grow;	/* Don't try to grow cache size */
384 static uint64_t		arc_tempreserve;
385 static uint64_t		arc_meta_used;
386 static uint64_t		arc_meta_limit;
387 static uint64_t		arc_meta_max = 0;
388 
389 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
390 
391 typedef struct arc_callback arc_callback_t;
392 
393 struct arc_callback {
394 	void			*acb_private;
395 	arc_done_func_t		*acb_done;
396 	arc_buf_t		*acb_buf;
397 	zio_t			*acb_zio_dummy;
398 	arc_callback_t		*acb_next;
399 };
400 
401 typedef struct arc_write_callback arc_write_callback_t;
402 
403 struct arc_write_callback {
404 	void		*awcb_private;
405 	arc_done_func_t	*awcb_ready;
406 	arc_done_func_t	*awcb_done;
407 	arc_buf_t	*awcb_buf;
408 };
409 
410 struct arc_buf_hdr {
411 	/* protected by hash lock */
412 	dva_t			b_dva;
413 	uint64_t		b_birth;
414 	uint64_t		b_cksum0;
415 
416 	kmutex_t		b_freeze_lock;
417 	zio_cksum_t		*b_freeze_cksum;
418 
419 	arc_buf_hdr_t		*b_hash_next;
420 	arc_buf_t		*b_buf;
421 	uint32_t		b_flags;
422 	uint32_t		b_datacnt;
423 
424 	arc_callback_t		*b_acb;
425 	kcondvar_t		b_cv;
426 
427 	/* immutable */
428 	arc_buf_contents_t	b_type;
429 	uint64_t		b_size;
430 	spa_t			*b_spa;
431 
432 	/* protected by arc state mutex */
433 	arc_state_t		*b_state;
434 	list_node_t		b_arc_node;
435 
436 	/* updated atomically */
437 	clock_t			b_arc_access;
438 
439 	/* self protecting */
440 	refcount_t		b_refcnt;
441 
442 	l2arc_buf_hdr_t		*b_l2hdr;
443 	list_node_t		b_l2node;
444 	/*
445 	 * scrub code can lockout access to the buf while it changes
446 	 * bp's contained within it.
447 	 */
448 	krwlock_t		b_datalock;
449 };
450 
451 static arc_buf_t *arc_eviction_list;
452 static kmutex_t arc_eviction_mtx;
453 static arc_buf_hdr_t arc_eviction_hdr;
454 static void arc_get_data_buf(arc_buf_t *buf);
455 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
456 static int arc_evict_needed(arc_buf_contents_t type);
457 static void arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes);
458 
459 #define	GHOST_STATE(state)	\
460 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
461 	(state) == arc_l2c_only)
462 
463 /*
464  * Private ARC flags.  These flags are private ARC only flags that will show up
465  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
466  * be passed in as arc_flags in things like arc_read.  However, these flags
467  * should never be passed and should only be set by ARC code.  When adding new
468  * public flags, make sure not to smash the private ones.
469  */
470 
471 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
472 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
473 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
474 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
475 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
476 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
477 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
478 #define	ARC_DONT_L2CACHE	(1 << 16)	/* originated by prefetch */
479 #define	ARC_L2_WRITING		(1 << 17)	/* L2ARC write in progress */
480 #define	ARC_L2_EVICTED		(1 << 18)	/* evicted during I/O */
481 #define	ARC_L2_WRITE_HEAD	(1 << 19)	/* head of write list */
482 #define	ARC_STORED		(1 << 20)	/* has been store()d to */
483 
484 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
485 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
486 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
487 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
488 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
489 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
490 #define	HDR_DONT_L2CACHE(hdr)	((hdr)->b_flags & ARC_DONT_L2CACHE)
491 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
492 				    (hdr)->b_l2hdr != NULL)
493 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
494 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
495 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
496 
497 /*
498  * Other sizes
499  */
500 
501 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
502 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
503 
504 /*
505  * Hash table routines
506  */
507 
508 #define	HT_LOCK_PAD	64
509 
510 struct ht_lock {
511 	kmutex_t	ht_lock;
512 #ifdef _KERNEL
513 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
514 #endif
515 };
516 
517 #define	BUF_LOCKS 256
518 typedef struct buf_hash_table {
519 	uint64_t ht_mask;
520 	arc_buf_hdr_t **ht_table;
521 	struct ht_lock ht_locks[BUF_LOCKS];
522 } buf_hash_table_t;
523 
524 static buf_hash_table_t buf_hash_table;
525 
526 #define	BUF_HASH_INDEX(spa, dva, birth) \
527 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
528 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
529 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
530 #define	HDR_LOCK(buf) \
531 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
532 
533 uint64_t zfs_crc64_table[256];
534 
535 /*
536  * Level 2 ARC
537  */
538 
539 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
540 #define	L2ARC_HEADROOM		4		/* num of writes */
541 #define	L2ARC_FEED_SECS		1		/* caching interval */
542 
543 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
544 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
545 
546 /*
547  * L2ARC Performance Tunables
548  */
549 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
550 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
551 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
552 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
553 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
554 
555 /*
556  * L2ARC Internals
557  */
558 typedef struct l2arc_dev {
559 	vdev_t			*l2ad_vdev;	/* vdev */
560 	spa_t			*l2ad_spa;	/* spa */
561 	uint64_t		l2ad_hand;	/* next write location */
562 	uint64_t		l2ad_write;	/* desired write size, bytes */
563 	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
564 	uint64_t		l2ad_start;	/* first addr on device */
565 	uint64_t		l2ad_end;	/* last addr on device */
566 	uint64_t		l2ad_evict;	/* last addr eviction reached */
567 	boolean_t		l2ad_first;	/* first sweep through */
568 	list_t			*l2ad_buflist;	/* buffer list */
569 	list_node_t		l2ad_node;	/* device list node */
570 } l2arc_dev_t;
571 
572 static list_t L2ARC_dev_list;			/* device list */
573 static list_t *l2arc_dev_list;			/* device list pointer */
574 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
575 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
576 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
577 static list_t L2ARC_free_on_write;		/* free after write buf list */
578 static list_t *l2arc_free_on_write;		/* free after write list ptr */
579 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
580 static uint64_t l2arc_ndev;			/* number of devices */
581 
582 typedef struct l2arc_read_callback {
583 	arc_buf_t	*l2rcb_buf;		/* read buffer */
584 	spa_t		*l2rcb_spa;		/* spa */
585 	blkptr_t	l2rcb_bp;		/* original blkptr */
586 	zbookmark_t	l2rcb_zb;		/* original bookmark */
587 	int		l2rcb_flags;		/* original flags */
588 } l2arc_read_callback_t;
589 
590 typedef struct l2arc_write_callback {
591 	l2arc_dev_t	*l2wcb_dev;		/* device info */
592 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
593 } l2arc_write_callback_t;
594 
595 struct l2arc_buf_hdr {
596 	/* protected by arc_buf_hdr  mutex */
597 	l2arc_dev_t	*b_dev;			/* L2ARC device */
598 	daddr_t		b_daddr;		/* disk address, offset byte */
599 };
600 
601 typedef struct l2arc_data_free {
602 	/* protected by l2arc_free_on_write_mtx */
603 	void		*l2df_data;
604 	size_t		l2df_size;
605 	void		(*l2df_func)(void *, size_t);
606 	list_node_t	l2df_list_node;
607 } l2arc_data_free_t;
608 
609 static kmutex_t l2arc_feed_thr_lock;
610 static kcondvar_t l2arc_feed_thr_cv;
611 static uint8_t l2arc_thread_exit;
612 
613 static void l2arc_read_done(zio_t *zio);
614 static void l2arc_hdr_stat_add(void);
615 static void l2arc_hdr_stat_remove(void);
616 
617 static uint64_t
618 buf_hash(spa_t *spa, const dva_t *dva, uint64_t birth)
619 {
620 	uintptr_t spav = (uintptr_t)spa;
621 	uint8_t *vdva = (uint8_t *)dva;
622 	uint64_t crc = -1ULL;
623 	int i;
624 
625 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
626 
627 	for (i = 0; i < sizeof (dva_t); i++)
628 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
629 
630 	crc ^= (spav>>8) ^ birth;
631 
632 	return (crc);
633 }
634 
635 #define	BUF_EMPTY(buf)						\
636 	((buf)->b_dva.dva_word[0] == 0 &&			\
637 	(buf)->b_dva.dva_word[1] == 0 &&			\
638 	(buf)->b_birth == 0)
639 
640 #define	BUF_EQUAL(spa, dva, birth, buf)				\
641 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
642 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
643 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
644 
645 static arc_buf_hdr_t *
646 buf_hash_find(spa_t *spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
647 {
648 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
649 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
650 	arc_buf_hdr_t *buf;
651 
652 	mutex_enter(hash_lock);
653 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
654 	    buf = buf->b_hash_next) {
655 		if (BUF_EQUAL(spa, dva, birth, buf)) {
656 			*lockp = hash_lock;
657 			return (buf);
658 		}
659 	}
660 	mutex_exit(hash_lock);
661 	*lockp = NULL;
662 	return (NULL);
663 }
664 
665 /*
666  * Insert an entry into the hash table.  If there is already an element
667  * equal to elem in the hash table, then the already existing element
668  * will be returned and the new element will not be inserted.
669  * Otherwise returns NULL.
670  */
671 static arc_buf_hdr_t *
672 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
673 {
674 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
675 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
676 	arc_buf_hdr_t *fbuf;
677 	uint32_t i;
678 
679 	ASSERT(!HDR_IN_HASH_TABLE(buf));
680 	*lockp = hash_lock;
681 	mutex_enter(hash_lock);
682 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
683 	    fbuf = fbuf->b_hash_next, i++) {
684 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
685 			return (fbuf);
686 	}
687 
688 	buf->b_hash_next = buf_hash_table.ht_table[idx];
689 	buf_hash_table.ht_table[idx] = buf;
690 	buf->b_flags |= ARC_IN_HASH_TABLE;
691 
692 	/* collect some hash table performance data */
693 	if (i > 0) {
694 		ARCSTAT_BUMP(arcstat_hash_collisions);
695 		if (i == 1)
696 			ARCSTAT_BUMP(arcstat_hash_chains);
697 
698 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
699 	}
700 
701 	ARCSTAT_BUMP(arcstat_hash_elements);
702 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
703 
704 	return (NULL);
705 }
706 
707 static void
708 buf_hash_remove(arc_buf_hdr_t *buf)
709 {
710 	arc_buf_hdr_t *fbuf, **bufp;
711 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
712 
713 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
714 	ASSERT(HDR_IN_HASH_TABLE(buf));
715 
716 	bufp = &buf_hash_table.ht_table[idx];
717 	while ((fbuf = *bufp) != buf) {
718 		ASSERT(fbuf != NULL);
719 		bufp = &fbuf->b_hash_next;
720 	}
721 	*bufp = buf->b_hash_next;
722 	buf->b_hash_next = NULL;
723 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
724 
725 	/* collect some hash table performance data */
726 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
727 
728 	if (buf_hash_table.ht_table[idx] &&
729 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
730 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
731 }
732 
733 /*
734  * Global data structures and functions for the buf kmem cache.
735  */
736 static kmem_cache_t *hdr_cache;
737 static kmem_cache_t *buf_cache;
738 
739 static void
740 buf_fini(void)
741 {
742 	int i;
743 
744 	kmem_free(buf_hash_table.ht_table,
745 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
746 	for (i = 0; i < BUF_LOCKS; i++)
747 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
748 	kmem_cache_destroy(hdr_cache);
749 	kmem_cache_destroy(buf_cache);
750 }
751 
752 /*
753  * Constructor callback - called when the cache is empty
754  * and a new buf is requested.
755  */
756 /* ARGSUSED */
757 static int
758 hdr_cons(void *vbuf, void *unused, int kmflag)
759 {
760 	arc_buf_hdr_t *buf = vbuf;
761 
762 	bzero(buf, sizeof (arc_buf_hdr_t));
763 	refcount_create(&buf->b_refcnt);
764 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
765 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
766 	rw_init(&buf->b_datalock, NULL, RW_DEFAULT, NULL);
767 
768 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
769 	return (0);
770 }
771 
772 /*
773  * Destructor callback - called when a cached buf is
774  * no longer required.
775  */
776 /* ARGSUSED */
777 static void
778 hdr_dest(void *vbuf, void *unused)
779 {
780 	arc_buf_hdr_t *buf = vbuf;
781 
782 	refcount_destroy(&buf->b_refcnt);
783 	cv_destroy(&buf->b_cv);
784 	mutex_destroy(&buf->b_freeze_lock);
785 	rw_destroy(&buf->b_datalock);
786 
787 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
788 }
789 
790 /*
791  * Reclaim callback -- invoked when memory is low.
792  */
793 /* ARGSUSED */
794 static void
795 hdr_recl(void *unused)
796 {
797 	dprintf("hdr_recl called\n");
798 	/*
799 	 * umem calls the reclaim func when we destroy the buf cache,
800 	 * which is after we do arc_fini().
801 	 */
802 	if (!arc_dead)
803 		cv_signal(&arc_reclaim_thr_cv);
804 }
805 
806 static void
807 buf_init(void)
808 {
809 	uint64_t *ct;
810 	uint64_t hsize = 1ULL << 12;
811 	int i, j;
812 
813 	/*
814 	 * The hash table is big enough to fill all of physical memory
815 	 * with an average 64K block size.  The table will take up
816 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
817 	 */
818 	while (hsize * 65536 < physmem * PAGESIZE)
819 		hsize <<= 1;
820 retry:
821 	buf_hash_table.ht_mask = hsize - 1;
822 	buf_hash_table.ht_table =
823 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
824 	if (buf_hash_table.ht_table == NULL) {
825 		ASSERT(hsize > (1ULL << 8));
826 		hsize >>= 1;
827 		goto retry;
828 	}
829 
830 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
831 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
832 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
833 	    0, NULL, NULL, NULL, NULL, NULL, 0);
834 
835 	for (i = 0; i < 256; i++)
836 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
837 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
838 
839 	for (i = 0; i < BUF_LOCKS; i++) {
840 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
841 		    NULL, MUTEX_DEFAULT, NULL);
842 	}
843 }
844 
845 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
846 
847 static void
848 arc_cksum_verify(arc_buf_t *buf)
849 {
850 	zio_cksum_t zc;
851 
852 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
853 		return;
854 
855 	mutex_enter(&buf->b_hdr->b_freeze_lock);
856 	if (buf->b_hdr->b_freeze_cksum == NULL ||
857 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
858 		mutex_exit(&buf->b_hdr->b_freeze_lock);
859 		return;
860 	}
861 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
862 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
863 		panic("buffer modified while frozen!");
864 	mutex_exit(&buf->b_hdr->b_freeze_lock);
865 }
866 
867 static int
868 arc_cksum_equal(arc_buf_t *buf)
869 {
870 	zio_cksum_t zc;
871 	int equal;
872 
873 	mutex_enter(&buf->b_hdr->b_freeze_lock);
874 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
875 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
876 	mutex_exit(&buf->b_hdr->b_freeze_lock);
877 
878 	return (equal);
879 }
880 
881 static void
882 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
883 {
884 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
885 		return;
886 
887 	mutex_enter(&buf->b_hdr->b_freeze_lock);
888 	if (buf->b_hdr->b_freeze_cksum != NULL) {
889 		mutex_exit(&buf->b_hdr->b_freeze_lock);
890 		return;
891 	}
892 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
893 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
894 	    buf->b_hdr->b_freeze_cksum);
895 	mutex_exit(&buf->b_hdr->b_freeze_lock);
896 }
897 
898 void
899 arc_buf_thaw(arc_buf_t *buf)
900 {
901 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
902 		if (buf->b_hdr->b_state != arc_anon)
903 			panic("modifying non-anon buffer!");
904 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
905 			panic("modifying buffer while i/o in progress!");
906 		arc_cksum_verify(buf);
907 	}
908 
909 	mutex_enter(&buf->b_hdr->b_freeze_lock);
910 	if (buf->b_hdr->b_freeze_cksum != NULL) {
911 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
912 		buf->b_hdr->b_freeze_cksum = NULL;
913 	}
914 	mutex_exit(&buf->b_hdr->b_freeze_lock);
915 }
916 
917 void
918 arc_buf_freeze(arc_buf_t *buf)
919 {
920 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
921 		return;
922 
923 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
924 	    buf->b_hdr->b_state == arc_anon);
925 	arc_cksum_compute(buf, B_FALSE);
926 }
927 
928 static void
929 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
930 {
931 	ASSERT(MUTEX_HELD(hash_lock));
932 
933 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
934 	    (ab->b_state != arc_anon)) {
935 		uint64_t delta = ab->b_size * ab->b_datacnt;
936 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
937 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
938 
939 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
940 		mutex_enter(&ab->b_state->arcs_mtx);
941 		ASSERT(list_link_active(&ab->b_arc_node));
942 		list_remove(list, ab);
943 		if (GHOST_STATE(ab->b_state)) {
944 			ASSERT3U(ab->b_datacnt, ==, 0);
945 			ASSERT3P(ab->b_buf, ==, NULL);
946 			delta = ab->b_size;
947 		}
948 		ASSERT(delta > 0);
949 		ASSERT3U(*size, >=, delta);
950 		atomic_add_64(size, -delta);
951 		mutex_exit(&ab->b_state->arcs_mtx);
952 		/* remove the prefetch flag if we get a reference */
953 		if (ab->b_flags & ARC_PREFETCH)
954 			ab->b_flags &= ~ARC_PREFETCH;
955 	}
956 }
957 
958 static int
959 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
960 {
961 	int cnt;
962 	arc_state_t *state = ab->b_state;
963 
964 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
965 	ASSERT(!GHOST_STATE(state));
966 
967 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
968 	    (state != arc_anon)) {
969 		uint64_t *size = &state->arcs_lsize[ab->b_type];
970 
971 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
972 		mutex_enter(&state->arcs_mtx);
973 		ASSERT(!list_link_active(&ab->b_arc_node));
974 		list_insert_head(&state->arcs_list[ab->b_type], ab);
975 		ASSERT(ab->b_datacnt > 0);
976 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
977 		mutex_exit(&state->arcs_mtx);
978 	}
979 	return (cnt);
980 }
981 
982 /*
983  * Move the supplied buffer to the indicated state.  The mutex
984  * for the buffer must be held by the caller.
985  */
986 static void
987 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
988 {
989 	arc_state_t *old_state = ab->b_state;
990 	int64_t refcnt = refcount_count(&ab->b_refcnt);
991 	uint64_t from_delta, to_delta;
992 
993 	ASSERT(MUTEX_HELD(hash_lock));
994 	ASSERT(new_state != old_state);
995 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
996 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
997 
998 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
999 
1000 	/*
1001 	 * If this buffer is evictable, transfer it from the
1002 	 * old state list to the new state list.
1003 	 */
1004 	if (refcnt == 0) {
1005 		if (old_state != arc_anon) {
1006 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1007 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1008 
1009 			if (use_mutex)
1010 				mutex_enter(&old_state->arcs_mtx);
1011 
1012 			ASSERT(list_link_active(&ab->b_arc_node));
1013 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1014 
1015 			/*
1016 			 * If prefetching out of the ghost cache,
1017 			 * we will have a non-null datacnt.
1018 			 */
1019 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1020 				/* ghost elements have a ghost size */
1021 				ASSERT(ab->b_buf == NULL);
1022 				from_delta = ab->b_size;
1023 			}
1024 			ASSERT3U(*size, >=, from_delta);
1025 			atomic_add_64(size, -from_delta);
1026 
1027 			if (use_mutex)
1028 				mutex_exit(&old_state->arcs_mtx);
1029 		}
1030 		if (new_state != arc_anon) {
1031 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1032 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1033 
1034 			if (use_mutex)
1035 				mutex_enter(&new_state->arcs_mtx);
1036 
1037 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1038 
1039 			/* ghost elements have a ghost size */
1040 			if (GHOST_STATE(new_state)) {
1041 				ASSERT(ab->b_datacnt == 0);
1042 				ASSERT(ab->b_buf == NULL);
1043 				to_delta = ab->b_size;
1044 			}
1045 			atomic_add_64(size, to_delta);
1046 
1047 			if (use_mutex)
1048 				mutex_exit(&new_state->arcs_mtx);
1049 		}
1050 	}
1051 
1052 	ASSERT(!BUF_EMPTY(ab));
1053 	if (new_state == arc_anon) {
1054 		buf_hash_remove(ab);
1055 	}
1056 
1057 	/* adjust state sizes */
1058 	if (to_delta)
1059 		atomic_add_64(&new_state->arcs_size, to_delta);
1060 	if (from_delta) {
1061 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1062 		atomic_add_64(&old_state->arcs_size, -from_delta);
1063 	}
1064 	ab->b_state = new_state;
1065 
1066 	/* adjust l2arc hdr stats */
1067 	if (new_state == arc_l2c_only)
1068 		l2arc_hdr_stat_add();
1069 	else if (old_state == arc_l2c_only)
1070 		l2arc_hdr_stat_remove();
1071 }
1072 
1073 void
1074 arc_space_consume(uint64_t space)
1075 {
1076 	atomic_add_64(&arc_meta_used, space);
1077 	atomic_add_64(&arc_size, space);
1078 }
1079 
1080 void
1081 arc_space_return(uint64_t space)
1082 {
1083 	ASSERT(arc_meta_used >= space);
1084 	if (arc_meta_max < arc_meta_used)
1085 		arc_meta_max = arc_meta_used;
1086 	atomic_add_64(&arc_meta_used, -space);
1087 	ASSERT(arc_size >= space);
1088 	atomic_add_64(&arc_size, -space);
1089 }
1090 
1091 void *
1092 arc_data_buf_alloc(uint64_t size)
1093 {
1094 	if (arc_evict_needed(ARC_BUFC_DATA))
1095 		cv_signal(&arc_reclaim_thr_cv);
1096 	atomic_add_64(&arc_size, size);
1097 	return (zio_data_buf_alloc(size));
1098 }
1099 
1100 void
1101 arc_data_buf_free(void *buf, uint64_t size)
1102 {
1103 	zio_data_buf_free(buf, size);
1104 	ASSERT(arc_size >= size);
1105 	atomic_add_64(&arc_size, -size);
1106 }
1107 
1108 arc_buf_t *
1109 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1110 {
1111 	arc_buf_hdr_t *hdr;
1112 	arc_buf_t *buf;
1113 
1114 	ASSERT3U(size, >, 0);
1115 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1116 	ASSERT(BUF_EMPTY(hdr));
1117 	hdr->b_size = size;
1118 	hdr->b_type = type;
1119 	hdr->b_spa = spa;
1120 	hdr->b_state = arc_anon;
1121 	hdr->b_arc_access = 0;
1122 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1123 	buf->b_hdr = hdr;
1124 	buf->b_data = NULL;
1125 	buf->b_efunc = NULL;
1126 	buf->b_private = NULL;
1127 	buf->b_next = NULL;
1128 	hdr->b_buf = buf;
1129 	arc_get_data_buf(buf);
1130 	hdr->b_datacnt = 1;
1131 	hdr->b_flags = 0;
1132 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1133 	(void) refcount_add(&hdr->b_refcnt, tag);
1134 
1135 	return (buf);
1136 }
1137 
1138 static arc_buf_t *
1139 arc_buf_clone(arc_buf_t *from)
1140 {
1141 	arc_buf_t *buf;
1142 	arc_buf_hdr_t *hdr = from->b_hdr;
1143 	uint64_t size = hdr->b_size;
1144 
1145 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1146 	buf->b_hdr = hdr;
1147 	buf->b_data = NULL;
1148 	buf->b_efunc = NULL;
1149 	buf->b_private = NULL;
1150 	buf->b_next = hdr->b_buf;
1151 	hdr->b_buf = buf;
1152 	arc_get_data_buf(buf);
1153 	bcopy(from->b_data, buf->b_data, size);
1154 	hdr->b_datacnt += 1;
1155 	return (buf);
1156 }
1157 
1158 void
1159 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1160 {
1161 	arc_buf_hdr_t *hdr;
1162 	kmutex_t *hash_lock;
1163 
1164 	/*
1165 	 * Check to see if this buffer is currently being evicted via
1166 	 * arc_do_user_evicts().
1167 	 */
1168 	mutex_enter(&arc_eviction_mtx);
1169 	hdr = buf->b_hdr;
1170 	if (hdr == NULL) {
1171 		mutex_exit(&arc_eviction_mtx);
1172 		return;
1173 	}
1174 	hash_lock = HDR_LOCK(hdr);
1175 	mutex_exit(&arc_eviction_mtx);
1176 
1177 	mutex_enter(hash_lock);
1178 	if (buf->b_data == NULL) {
1179 		/*
1180 		 * This buffer is evicted.
1181 		 */
1182 		mutex_exit(hash_lock);
1183 		return;
1184 	}
1185 
1186 	ASSERT(buf->b_hdr == hdr);
1187 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1188 	add_reference(hdr, hash_lock, tag);
1189 	arc_access(hdr, hash_lock);
1190 	mutex_exit(hash_lock);
1191 	ARCSTAT_BUMP(arcstat_hits);
1192 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1193 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1194 	    data, metadata, hits);
1195 }
1196 
1197 /*
1198  * Free the arc data buffer.  If it is an l2arc write in progress,
1199  * the buffer is placed on l2arc_free_on_write to be freed later.
1200  */
1201 static void
1202 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1203     void *data, size_t size)
1204 {
1205 	if (HDR_L2_WRITING(hdr)) {
1206 		l2arc_data_free_t *df;
1207 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1208 		df->l2df_data = data;
1209 		df->l2df_size = size;
1210 		df->l2df_func = free_func;
1211 		mutex_enter(&l2arc_free_on_write_mtx);
1212 		list_insert_head(l2arc_free_on_write, df);
1213 		mutex_exit(&l2arc_free_on_write_mtx);
1214 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1215 	} else {
1216 		free_func(data, size);
1217 	}
1218 }
1219 
1220 static void
1221 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1222 {
1223 	arc_buf_t **bufp;
1224 
1225 	/* free up data associated with the buf */
1226 	if (buf->b_data) {
1227 		arc_state_t *state = buf->b_hdr->b_state;
1228 		uint64_t size = buf->b_hdr->b_size;
1229 		arc_buf_contents_t type = buf->b_hdr->b_type;
1230 
1231 		arc_cksum_verify(buf);
1232 		if (!recycle) {
1233 			if (type == ARC_BUFC_METADATA) {
1234 				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1235 				    buf->b_data, size);
1236 				arc_space_return(size);
1237 			} else {
1238 				ASSERT(type == ARC_BUFC_DATA);
1239 				arc_buf_data_free(buf->b_hdr,
1240 				    zio_data_buf_free, buf->b_data, size);
1241 				atomic_add_64(&arc_size, -size);
1242 			}
1243 		}
1244 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1245 			uint64_t *cnt = &state->arcs_lsize[type];
1246 
1247 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1248 			ASSERT(state != arc_anon);
1249 
1250 			ASSERT3U(*cnt, >=, size);
1251 			atomic_add_64(cnt, -size);
1252 		}
1253 		ASSERT3U(state->arcs_size, >=, size);
1254 		atomic_add_64(&state->arcs_size, -size);
1255 		buf->b_data = NULL;
1256 		ASSERT(buf->b_hdr->b_datacnt > 0);
1257 		buf->b_hdr->b_datacnt -= 1;
1258 	}
1259 
1260 	/* only remove the buf if requested */
1261 	if (!all)
1262 		return;
1263 
1264 	/* remove the buf from the hdr list */
1265 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1266 		continue;
1267 	*bufp = buf->b_next;
1268 
1269 	ASSERT(buf->b_efunc == NULL);
1270 
1271 	/* clean up the buf */
1272 	buf->b_hdr = NULL;
1273 	kmem_cache_free(buf_cache, buf);
1274 }
1275 
1276 static void
1277 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1278 {
1279 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1280 	ASSERT3P(hdr->b_state, ==, arc_anon);
1281 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1282 	ASSERT(!(hdr->b_flags & ARC_STORED));
1283 
1284 	if (hdr->b_l2hdr != NULL) {
1285 		if (!MUTEX_HELD(&l2arc_buflist_mtx)) {
1286 			/*
1287 			 * To prevent arc_free() and l2arc_evict() from
1288 			 * attempting to free the same buffer at the same time,
1289 			 * a FREE_IN_PROGRESS flag is given to arc_free() to
1290 			 * give it priority.  l2arc_evict() can't destroy this
1291 			 * header while we are waiting on l2arc_buflist_mtx.
1292 			 */
1293 			mutex_enter(&l2arc_buflist_mtx);
1294 			ASSERT(hdr->b_l2hdr != NULL);
1295 
1296 			list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1297 			mutex_exit(&l2arc_buflist_mtx);
1298 		} else {
1299 			list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1300 		}
1301 		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1302 		kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t));
1303 		if (hdr->b_state == arc_l2c_only)
1304 			l2arc_hdr_stat_remove();
1305 		hdr->b_l2hdr = NULL;
1306 	}
1307 
1308 	if (!BUF_EMPTY(hdr)) {
1309 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1310 		bzero(&hdr->b_dva, sizeof (dva_t));
1311 		hdr->b_birth = 0;
1312 		hdr->b_cksum0 = 0;
1313 	}
1314 	while (hdr->b_buf) {
1315 		arc_buf_t *buf = hdr->b_buf;
1316 
1317 		if (buf->b_efunc) {
1318 			mutex_enter(&arc_eviction_mtx);
1319 			ASSERT(buf->b_hdr != NULL);
1320 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1321 			hdr->b_buf = buf->b_next;
1322 			buf->b_hdr = &arc_eviction_hdr;
1323 			buf->b_next = arc_eviction_list;
1324 			arc_eviction_list = buf;
1325 			mutex_exit(&arc_eviction_mtx);
1326 		} else {
1327 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1328 		}
1329 	}
1330 	if (hdr->b_freeze_cksum != NULL) {
1331 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1332 		hdr->b_freeze_cksum = NULL;
1333 	}
1334 
1335 	ASSERT(!list_link_active(&hdr->b_arc_node));
1336 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1337 	ASSERT3P(hdr->b_acb, ==, NULL);
1338 	kmem_cache_free(hdr_cache, hdr);
1339 }
1340 
1341 void
1342 arc_buf_free(arc_buf_t *buf, void *tag)
1343 {
1344 	arc_buf_hdr_t *hdr = buf->b_hdr;
1345 	int hashed = hdr->b_state != arc_anon;
1346 
1347 	ASSERT(buf->b_efunc == NULL);
1348 	ASSERT(buf->b_data != NULL);
1349 
1350 	if (hashed) {
1351 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1352 
1353 		mutex_enter(hash_lock);
1354 		(void) remove_reference(hdr, hash_lock, tag);
1355 		if (hdr->b_datacnt > 1)
1356 			arc_buf_destroy(buf, FALSE, TRUE);
1357 		else
1358 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1359 		mutex_exit(hash_lock);
1360 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1361 		int destroy_hdr;
1362 		/*
1363 		 * We are in the middle of an async write.  Don't destroy
1364 		 * this buffer unless the write completes before we finish
1365 		 * decrementing the reference count.
1366 		 */
1367 		mutex_enter(&arc_eviction_mtx);
1368 		(void) remove_reference(hdr, NULL, tag);
1369 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1370 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1371 		mutex_exit(&arc_eviction_mtx);
1372 		if (destroy_hdr)
1373 			arc_hdr_destroy(hdr);
1374 	} else {
1375 		if (remove_reference(hdr, NULL, tag) > 0) {
1376 			ASSERT(HDR_IO_ERROR(hdr));
1377 			arc_buf_destroy(buf, FALSE, TRUE);
1378 		} else {
1379 			arc_hdr_destroy(hdr);
1380 		}
1381 	}
1382 }
1383 
1384 int
1385 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1386 {
1387 	arc_buf_hdr_t *hdr = buf->b_hdr;
1388 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1389 	int no_callback = (buf->b_efunc == NULL);
1390 
1391 	if (hdr->b_state == arc_anon) {
1392 		arc_buf_free(buf, tag);
1393 		return (no_callback);
1394 	}
1395 
1396 	mutex_enter(hash_lock);
1397 	ASSERT(hdr->b_state != arc_anon);
1398 	ASSERT(buf->b_data != NULL);
1399 
1400 	(void) remove_reference(hdr, hash_lock, tag);
1401 	if (hdr->b_datacnt > 1) {
1402 		if (no_callback)
1403 			arc_buf_destroy(buf, FALSE, TRUE);
1404 	} else if (no_callback) {
1405 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1406 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1407 	}
1408 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1409 	    refcount_is_zero(&hdr->b_refcnt));
1410 	mutex_exit(hash_lock);
1411 	return (no_callback);
1412 }
1413 
1414 int
1415 arc_buf_size(arc_buf_t *buf)
1416 {
1417 	return (buf->b_hdr->b_size);
1418 }
1419 
1420 /*
1421  * Evict buffers from list until we've removed the specified number of
1422  * bytes.  Move the removed buffers to the appropriate evict state.
1423  * If the recycle flag is set, then attempt to "recycle" a buffer:
1424  * - look for a buffer to evict that is `bytes' long.
1425  * - return the data block from this buffer rather than freeing it.
1426  * This flag is used by callers that are trying to make space for a
1427  * new buffer in a full arc cache.
1428  *
1429  * This function makes a "best effort".  It skips over any buffers
1430  * it can't get a hash_lock on, and so may not catch all candidates.
1431  * It may also return without evicting as much space as requested.
1432  */
1433 static void *
1434 arc_evict(arc_state_t *state, spa_t *spa, int64_t bytes, boolean_t recycle,
1435     arc_buf_contents_t type)
1436 {
1437 	arc_state_t *evicted_state;
1438 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1439 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1440 	list_t *list = &state->arcs_list[type];
1441 	kmutex_t *hash_lock;
1442 	boolean_t have_lock;
1443 	void *stolen = NULL;
1444 
1445 	ASSERT(state == arc_mru || state == arc_mfu);
1446 
1447 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1448 
1449 	mutex_enter(&state->arcs_mtx);
1450 	mutex_enter(&evicted_state->arcs_mtx);
1451 
1452 	for (ab = list_tail(list); ab; ab = ab_prev) {
1453 		ab_prev = list_prev(list, ab);
1454 		/* prefetch buffers have a minimum lifespan */
1455 		if (HDR_IO_IN_PROGRESS(ab) ||
1456 		    (spa && ab->b_spa != spa) ||
1457 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1458 		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1459 			skipped++;
1460 			continue;
1461 		}
1462 		/* "lookahead" for better eviction candidate */
1463 		if (recycle && ab->b_size != bytes &&
1464 		    ab_prev && ab_prev->b_size == bytes)
1465 			continue;
1466 		hash_lock = HDR_LOCK(ab);
1467 		have_lock = MUTEX_HELD(hash_lock);
1468 		if (have_lock || mutex_tryenter(hash_lock)) {
1469 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1470 			ASSERT(ab->b_datacnt > 0);
1471 			while (ab->b_buf) {
1472 				arc_buf_t *buf = ab->b_buf;
1473 				if (buf->b_data) {
1474 					bytes_evicted += ab->b_size;
1475 					if (recycle && ab->b_type == type &&
1476 					    ab->b_size == bytes &&
1477 					    !HDR_L2_WRITING(ab)) {
1478 						stolen = buf->b_data;
1479 						recycle = FALSE;
1480 					}
1481 				}
1482 				if (buf->b_efunc) {
1483 					mutex_enter(&arc_eviction_mtx);
1484 					arc_buf_destroy(buf,
1485 					    buf->b_data == stolen, FALSE);
1486 					ab->b_buf = buf->b_next;
1487 					buf->b_hdr = &arc_eviction_hdr;
1488 					buf->b_next = arc_eviction_list;
1489 					arc_eviction_list = buf;
1490 					mutex_exit(&arc_eviction_mtx);
1491 				} else {
1492 					arc_buf_destroy(buf,
1493 					    buf->b_data == stolen, TRUE);
1494 				}
1495 			}
1496 			ASSERT(ab->b_datacnt == 0);
1497 			arc_change_state(evicted_state, ab, hash_lock);
1498 			ASSERT(HDR_IN_HASH_TABLE(ab));
1499 			ab->b_flags |= ARC_IN_HASH_TABLE;
1500 			ab->b_flags &= ~ARC_BUF_AVAILABLE;
1501 			DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1502 			if (!have_lock)
1503 				mutex_exit(hash_lock);
1504 			if (bytes >= 0 && bytes_evicted >= bytes)
1505 				break;
1506 		} else {
1507 			missed += 1;
1508 		}
1509 	}
1510 
1511 	mutex_exit(&evicted_state->arcs_mtx);
1512 	mutex_exit(&state->arcs_mtx);
1513 
1514 	if (bytes_evicted < bytes)
1515 		dprintf("only evicted %lld bytes from %x",
1516 		    (longlong_t)bytes_evicted, state);
1517 
1518 	if (skipped)
1519 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1520 
1521 	if (missed)
1522 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1523 
1524 	/*
1525 	 * We have just evicted some date into the ghost state, make
1526 	 * sure we also adjust the ghost state size if necessary.
1527 	 */
1528 	if (arc_no_grow &&
1529 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1530 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1531 		    arc_mru_ghost->arcs_size - arc_c;
1532 
1533 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1534 			int64_t todelete =
1535 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1536 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1537 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1538 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1539 			    arc_mru_ghost->arcs_size +
1540 			    arc_mfu_ghost->arcs_size - arc_c);
1541 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1542 		}
1543 	}
1544 
1545 	return (stolen);
1546 }
1547 
1548 /*
1549  * Remove buffers from list until we've removed the specified number of
1550  * bytes.  Destroy the buffers that are removed.
1551  */
1552 static void
1553 arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes)
1554 {
1555 	arc_buf_hdr_t *ab, *ab_prev;
1556 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1557 	kmutex_t *hash_lock;
1558 	uint64_t bytes_deleted = 0;
1559 	uint64_t bufs_skipped = 0;
1560 
1561 	ASSERT(GHOST_STATE(state));
1562 top:
1563 	mutex_enter(&state->arcs_mtx);
1564 	for (ab = list_tail(list); ab; ab = ab_prev) {
1565 		ab_prev = list_prev(list, ab);
1566 		if (spa && ab->b_spa != spa)
1567 			continue;
1568 		hash_lock = HDR_LOCK(ab);
1569 		if (mutex_tryenter(hash_lock)) {
1570 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1571 			ASSERT(ab->b_buf == NULL);
1572 			ARCSTAT_BUMP(arcstat_deleted);
1573 			bytes_deleted += ab->b_size;
1574 
1575 			if (ab->b_l2hdr != NULL) {
1576 				/*
1577 				 * This buffer is cached on the 2nd Level ARC;
1578 				 * don't destroy the header.
1579 				 */
1580 				arc_change_state(arc_l2c_only, ab, hash_lock);
1581 				mutex_exit(hash_lock);
1582 			} else {
1583 				arc_change_state(arc_anon, ab, hash_lock);
1584 				mutex_exit(hash_lock);
1585 				arc_hdr_destroy(ab);
1586 			}
1587 
1588 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1589 			if (bytes >= 0 && bytes_deleted >= bytes)
1590 				break;
1591 		} else {
1592 			if (bytes < 0) {
1593 				mutex_exit(&state->arcs_mtx);
1594 				mutex_enter(hash_lock);
1595 				mutex_exit(hash_lock);
1596 				goto top;
1597 			}
1598 			bufs_skipped += 1;
1599 		}
1600 	}
1601 	mutex_exit(&state->arcs_mtx);
1602 
1603 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1604 	    (bytes < 0 || bytes_deleted < bytes)) {
1605 		list = &state->arcs_list[ARC_BUFC_METADATA];
1606 		goto top;
1607 	}
1608 
1609 	if (bufs_skipped) {
1610 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1611 		ASSERT(bytes >= 0);
1612 	}
1613 
1614 	if (bytes_deleted < bytes)
1615 		dprintf("only deleted %lld bytes from %p",
1616 		    (longlong_t)bytes_deleted, state);
1617 }
1618 
1619 static void
1620 arc_adjust(void)
1621 {
1622 	int64_t top_sz, mru_over, arc_over, todelete;
1623 
1624 	top_sz = arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used;
1625 
1626 	if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1627 		int64_t toevict =
1628 		    MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], top_sz - arc_p);
1629 		(void) arc_evict(arc_mru, NULL, toevict, FALSE, ARC_BUFC_DATA);
1630 		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1631 	}
1632 
1633 	if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1634 		int64_t toevict =
1635 		    MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], top_sz - arc_p);
1636 		(void) arc_evict(arc_mru, NULL, toevict, FALSE,
1637 		    ARC_BUFC_METADATA);
1638 		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1639 	}
1640 
1641 	mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c;
1642 
1643 	if (mru_over > 0) {
1644 		if (arc_mru_ghost->arcs_size > 0) {
1645 			todelete = MIN(arc_mru_ghost->arcs_size, mru_over);
1646 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1647 		}
1648 	}
1649 
1650 	if ((arc_over = arc_size - arc_c) > 0) {
1651 		int64_t tbl_over;
1652 
1653 		if (arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1654 			int64_t toevict =
1655 			    MIN(arc_mfu->arcs_lsize[ARC_BUFC_DATA], arc_over);
1656 			(void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1657 			    ARC_BUFC_DATA);
1658 			arc_over = arc_size - arc_c;
1659 		}
1660 
1661 		if (arc_over > 0 &&
1662 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1663 			int64_t toevict =
1664 			    MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA],
1665 			    arc_over);
1666 			(void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1667 			    ARC_BUFC_METADATA);
1668 		}
1669 
1670 		tbl_over = arc_size + arc_mru_ghost->arcs_size +
1671 		    arc_mfu_ghost->arcs_size - arc_c * 2;
1672 
1673 		if (tbl_over > 0 && arc_mfu_ghost->arcs_size > 0) {
1674 			todelete = MIN(arc_mfu_ghost->arcs_size, tbl_over);
1675 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1676 		}
1677 	}
1678 }
1679 
1680 static void
1681 arc_do_user_evicts(void)
1682 {
1683 	mutex_enter(&arc_eviction_mtx);
1684 	while (arc_eviction_list != NULL) {
1685 		arc_buf_t *buf = arc_eviction_list;
1686 		arc_eviction_list = buf->b_next;
1687 		buf->b_hdr = NULL;
1688 		mutex_exit(&arc_eviction_mtx);
1689 
1690 		if (buf->b_efunc != NULL)
1691 			VERIFY(buf->b_efunc(buf) == 0);
1692 
1693 		buf->b_efunc = NULL;
1694 		buf->b_private = NULL;
1695 		kmem_cache_free(buf_cache, buf);
1696 		mutex_enter(&arc_eviction_mtx);
1697 	}
1698 	mutex_exit(&arc_eviction_mtx);
1699 }
1700 
1701 /*
1702  * Flush all *evictable* data from the cache for the given spa.
1703  * NOTE: this will not touch "active" (i.e. referenced) data.
1704  */
1705 void
1706 arc_flush(spa_t *spa)
1707 {
1708 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1709 		(void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_DATA);
1710 		if (spa)
1711 			break;
1712 	}
1713 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1714 		(void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_METADATA);
1715 		if (spa)
1716 			break;
1717 	}
1718 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1719 		(void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_DATA);
1720 		if (spa)
1721 			break;
1722 	}
1723 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1724 		(void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_METADATA);
1725 		if (spa)
1726 			break;
1727 	}
1728 
1729 	arc_evict_ghost(arc_mru_ghost, spa, -1);
1730 	arc_evict_ghost(arc_mfu_ghost, spa, -1);
1731 
1732 	mutex_enter(&arc_reclaim_thr_lock);
1733 	arc_do_user_evicts();
1734 	mutex_exit(&arc_reclaim_thr_lock);
1735 	ASSERT(spa || arc_eviction_list == NULL);
1736 }
1737 
1738 int arc_shrink_shift = 5;		/* log2(fraction of arc to reclaim) */
1739 
1740 void
1741 arc_shrink(void)
1742 {
1743 	if (arc_c > arc_c_min) {
1744 		uint64_t to_free;
1745 
1746 #ifdef _KERNEL
1747 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1748 #else
1749 		to_free = arc_c >> arc_shrink_shift;
1750 #endif
1751 		if (arc_c > arc_c_min + to_free)
1752 			atomic_add_64(&arc_c, -to_free);
1753 		else
1754 			arc_c = arc_c_min;
1755 
1756 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1757 		if (arc_c > arc_size)
1758 			arc_c = MAX(arc_size, arc_c_min);
1759 		if (arc_p > arc_c)
1760 			arc_p = (arc_c >> 1);
1761 		ASSERT(arc_c >= arc_c_min);
1762 		ASSERT((int64_t)arc_p >= 0);
1763 	}
1764 
1765 	if (arc_size > arc_c)
1766 		arc_adjust();
1767 }
1768 
1769 static int
1770 arc_reclaim_needed(void)
1771 {
1772 	uint64_t extra;
1773 
1774 #ifdef _KERNEL
1775 
1776 	if (needfree)
1777 		return (1);
1778 
1779 	/*
1780 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1781 	 */
1782 	extra = desfree;
1783 
1784 	/*
1785 	 * check that we're out of range of the pageout scanner.  It starts to
1786 	 * schedule paging if freemem is less than lotsfree and needfree.
1787 	 * lotsfree is the high-water mark for pageout, and needfree is the
1788 	 * number of needed free pages.  We add extra pages here to make sure
1789 	 * the scanner doesn't start up while we're freeing memory.
1790 	 */
1791 	if (freemem < lotsfree + needfree + extra)
1792 		return (1);
1793 
1794 	/*
1795 	 * check to make sure that swapfs has enough space so that anon
1796 	 * reservations can still succeed. anon_resvmem() checks that the
1797 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1798 	 * swap pages.  We also add a bit of extra here just to prevent
1799 	 * circumstances from getting really dire.
1800 	 */
1801 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1802 		return (1);
1803 
1804 #if defined(__i386)
1805 	/*
1806 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1807 	 * kernel heap space before we ever run out of available physical
1808 	 * memory.  Most checks of the size of the heap_area compare against
1809 	 * tune.t_minarmem, which is the minimum available real memory that we
1810 	 * can have in the system.  However, this is generally fixed at 25 pages
1811 	 * which is so low that it's useless.  In this comparison, we seek to
1812 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1813 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
1814 	 * free)
1815 	 */
1816 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1817 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1818 		return (1);
1819 #endif
1820 
1821 #else
1822 	if (spa_get_random(100) == 0)
1823 		return (1);
1824 #endif
1825 	return (0);
1826 }
1827 
1828 static void
1829 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1830 {
1831 	size_t			i;
1832 	kmem_cache_t		*prev_cache = NULL;
1833 	kmem_cache_t		*prev_data_cache = NULL;
1834 	extern kmem_cache_t	*zio_buf_cache[];
1835 	extern kmem_cache_t	*zio_data_buf_cache[];
1836 
1837 #ifdef _KERNEL
1838 	if (arc_meta_used >= arc_meta_limit) {
1839 		/*
1840 		 * We are exceeding our meta-data cache limit.
1841 		 * Purge some DNLC entries to release holds on meta-data.
1842 		 */
1843 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1844 	}
1845 #if defined(__i386)
1846 	/*
1847 	 * Reclaim unused memory from all kmem caches.
1848 	 */
1849 	kmem_reap();
1850 #endif
1851 #endif
1852 
1853 	/*
1854 	 * An aggressive reclamation will shrink the cache size as well as
1855 	 * reap free buffers from the arc kmem caches.
1856 	 */
1857 	if (strat == ARC_RECLAIM_AGGR)
1858 		arc_shrink();
1859 
1860 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1861 		if (zio_buf_cache[i] != prev_cache) {
1862 			prev_cache = zio_buf_cache[i];
1863 			kmem_cache_reap_now(zio_buf_cache[i]);
1864 		}
1865 		if (zio_data_buf_cache[i] != prev_data_cache) {
1866 			prev_data_cache = zio_data_buf_cache[i];
1867 			kmem_cache_reap_now(zio_data_buf_cache[i]);
1868 		}
1869 	}
1870 	kmem_cache_reap_now(buf_cache);
1871 	kmem_cache_reap_now(hdr_cache);
1872 }
1873 
1874 static void
1875 arc_reclaim_thread(void)
1876 {
1877 	clock_t			growtime = 0;
1878 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1879 	callb_cpr_t		cpr;
1880 
1881 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1882 
1883 	mutex_enter(&arc_reclaim_thr_lock);
1884 	while (arc_thread_exit == 0) {
1885 		if (arc_reclaim_needed()) {
1886 
1887 			if (arc_no_grow) {
1888 				if (last_reclaim == ARC_RECLAIM_CONS) {
1889 					last_reclaim = ARC_RECLAIM_AGGR;
1890 				} else {
1891 					last_reclaim = ARC_RECLAIM_CONS;
1892 				}
1893 			} else {
1894 				arc_no_grow = TRUE;
1895 				last_reclaim = ARC_RECLAIM_AGGR;
1896 				membar_producer();
1897 			}
1898 
1899 			/* reset the growth delay for every reclaim */
1900 			growtime = lbolt + (arc_grow_retry * hz);
1901 
1902 			arc_kmem_reap_now(last_reclaim);
1903 			arc_warm = B_TRUE;
1904 
1905 		} else if (arc_no_grow && lbolt >= growtime) {
1906 			arc_no_grow = FALSE;
1907 		}
1908 
1909 		if (2 * arc_c < arc_size +
1910 		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
1911 			arc_adjust();
1912 
1913 		if (arc_eviction_list != NULL)
1914 			arc_do_user_evicts();
1915 
1916 		/* block until needed, or one second, whichever is shorter */
1917 		CALLB_CPR_SAFE_BEGIN(&cpr);
1918 		(void) cv_timedwait(&arc_reclaim_thr_cv,
1919 		    &arc_reclaim_thr_lock, (lbolt + hz));
1920 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1921 	}
1922 
1923 	arc_thread_exit = 0;
1924 	cv_broadcast(&arc_reclaim_thr_cv);
1925 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
1926 	thread_exit();
1927 }
1928 
1929 /*
1930  * Adapt arc info given the number of bytes we are trying to add and
1931  * the state that we are comming from.  This function is only called
1932  * when we are adding new content to the cache.
1933  */
1934 static void
1935 arc_adapt(int bytes, arc_state_t *state)
1936 {
1937 	int mult;
1938 
1939 	if (state == arc_l2c_only)
1940 		return;
1941 
1942 	ASSERT(bytes > 0);
1943 	/*
1944 	 * Adapt the target size of the MRU list:
1945 	 *	- if we just hit in the MRU ghost list, then increase
1946 	 *	  the target size of the MRU list.
1947 	 *	- if we just hit in the MFU ghost list, then increase
1948 	 *	  the target size of the MFU list by decreasing the
1949 	 *	  target size of the MRU list.
1950 	 */
1951 	if (state == arc_mru_ghost) {
1952 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
1953 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
1954 
1955 		arc_p = MIN(arc_c, arc_p + bytes * mult);
1956 	} else if (state == arc_mfu_ghost) {
1957 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
1958 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
1959 
1960 		arc_p = MAX(0, (int64_t)arc_p - bytes * mult);
1961 	}
1962 	ASSERT((int64_t)arc_p >= 0);
1963 
1964 	if (arc_reclaim_needed()) {
1965 		cv_signal(&arc_reclaim_thr_cv);
1966 		return;
1967 	}
1968 
1969 	if (arc_no_grow)
1970 		return;
1971 
1972 	if (arc_c >= arc_c_max)
1973 		return;
1974 
1975 	/*
1976 	 * If we're within (2 * maxblocksize) bytes of the target
1977 	 * cache size, increment the target cache size
1978 	 */
1979 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
1980 		atomic_add_64(&arc_c, (int64_t)bytes);
1981 		if (arc_c > arc_c_max)
1982 			arc_c = arc_c_max;
1983 		else if (state == arc_anon)
1984 			atomic_add_64(&arc_p, (int64_t)bytes);
1985 		if (arc_p > arc_c)
1986 			arc_p = arc_c;
1987 	}
1988 	ASSERT((int64_t)arc_p >= 0);
1989 }
1990 
1991 /*
1992  * Check if the cache has reached its limits and eviction is required
1993  * prior to insert.
1994  */
1995 static int
1996 arc_evict_needed(arc_buf_contents_t type)
1997 {
1998 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
1999 		return (1);
2000 
2001 #ifdef _KERNEL
2002 	/*
2003 	 * If zio data pages are being allocated out of a separate heap segment,
2004 	 * then enforce that the size of available vmem for this area remains
2005 	 * above about 1/32nd free.
2006 	 */
2007 	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2008 	    vmem_size(zio_arena, VMEM_FREE) <
2009 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2010 		return (1);
2011 #endif
2012 
2013 	if (arc_reclaim_needed())
2014 		return (1);
2015 
2016 	return (arc_size > arc_c);
2017 }
2018 
2019 /*
2020  * The buffer, supplied as the first argument, needs a data block.
2021  * So, if we are at cache max, determine which cache should be victimized.
2022  * We have the following cases:
2023  *
2024  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2025  * In this situation if we're out of space, but the resident size of the MFU is
2026  * under the limit, victimize the MFU cache to satisfy this insertion request.
2027  *
2028  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2029  * Here, we've used up all of the available space for the MRU, so we need to
2030  * evict from our own cache instead.  Evict from the set of resident MRU
2031  * entries.
2032  *
2033  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2034  * c minus p represents the MFU space in the cache, since p is the size of the
2035  * cache that is dedicated to the MRU.  In this situation there's still space on
2036  * the MFU side, so the MRU side needs to be victimized.
2037  *
2038  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2039  * MFU's resident set is consuming more space than it has been allotted.  In
2040  * this situation, we must victimize our own cache, the MFU, for this insertion.
2041  */
2042 static void
2043 arc_get_data_buf(arc_buf_t *buf)
2044 {
2045 	arc_state_t		*state = buf->b_hdr->b_state;
2046 	uint64_t		size = buf->b_hdr->b_size;
2047 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2048 
2049 	arc_adapt(size, state);
2050 
2051 	/*
2052 	 * We have not yet reached cache maximum size,
2053 	 * just allocate a new buffer.
2054 	 */
2055 	if (!arc_evict_needed(type)) {
2056 		if (type == ARC_BUFC_METADATA) {
2057 			buf->b_data = zio_buf_alloc(size);
2058 			arc_space_consume(size);
2059 		} else {
2060 			ASSERT(type == ARC_BUFC_DATA);
2061 			buf->b_data = zio_data_buf_alloc(size);
2062 			atomic_add_64(&arc_size, size);
2063 		}
2064 		goto out;
2065 	}
2066 
2067 	/*
2068 	 * If we are prefetching from the mfu ghost list, this buffer
2069 	 * will end up on the mru list; so steal space from there.
2070 	 */
2071 	if (state == arc_mfu_ghost)
2072 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2073 	else if (state == arc_mru_ghost)
2074 		state = arc_mru;
2075 
2076 	if (state == arc_mru || state == arc_anon) {
2077 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2078 		state = (arc_mfu->arcs_lsize[type] > 0 &&
2079 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2080 	} else {
2081 		/* MFU cases */
2082 		uint64_t mfu_space = arc_c - arc_p;
2083 		state =  (arc_mru->arcs_lsize[type] > 0 &&
2084 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2085 	}
2086 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2087 		if (type == ARC_BUFC_METADATA) {
2088 			buf->b_data = zio_buf_alloc(size);
2089 			arc_space_consume(size);
2090 		} else {
2091 			ASSERT(type == ARC_BUFC_DATA);
2092 			buf->b_data = zio_data_buf_alloc(size);
2093 			atomic_add_64(&arc_size, size);
2094 		}
2095 		ARCSTAT_BUMP(arcstat_recycle_miss);
2096 	}
2097 	ASSERT(buf->b_data != NULL);
2098 out:
2099 	/*
2100 	 * Update the state size.  Note that ghost states have a
2101 	 * "ghost size" and so don't need to be updated.
2102 	 */
2103 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2104 		arc_buf_hdr_t *hdr = buf->b_hdr;
2105 
2106 		atomic_add_64(&hdr->b_state->arcs_size, size);
2107 		if (list_link_active(&hdr->b_arc_node)) {
2108 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2109 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2110 		}
2111 		/*
2112 		 * If we are growing the cache, and we are adding anonymous
2113 		 * data, and we have outgrown arc_p, update arc_p
2114 		 */
2115 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2116 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2117 			arc_p = MIN(arc_c, arc_p + size);
2118 	}
2119 }
2120 
2121 /*
2122  * This routine is called whenever a buffer is accessed.
2123  * NOTE: the hash lock is dropped in this function.
2124  */
2125 static void
2126 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2127 {
2128 	ASSERT(MUTEX_HELD(hash_lock));
2129 
2130 	if (buf->b_state == arc_anon) {
2131 		/*
2132 		 * This buffer is not in the cache, and does not
2133 		 * appear in our "ghost" list.  Add the new buffer
2134 		 * to the MRU state.
2135 		 */
2136 
2137 		ASSERT(buf->b_arc_access == 0);
2138 		buf->b_arc_access = lbolt;
2139 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2140 		arc_change_state(arc_mru, buf, hash_lock);
2141 
2142 	} else if (buf->b_state == arc_mru) {
2143 		/*
2144 		 * If this buffer is here because of a prefetch, then either:
2145 		 * - clear the flag if this is a "referencing" read
2146 		 *   (any subsequent access will bump this into the MFU state).
2147 		 * or
2148 		 * - move the buffer to the head of the list if this is
2149 		 *   another prefetch (to make it less likely to be evicted).
2150 		 */
2151 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2152 			if (refcount_count(&buf->b_refcnt) == 0) {
2153 				ASSERT(list_link_active(&buf->b_arc_node));
2154 			} else {
2155 				buf->b_flags &= ~ARC_PREFETCH;
2156 				ARCSTAT_BUMP(arcstat_mru_hits);
2157 			}
2158 			buf->b_arc_access = lbolt;
2159 			return;
2160 		}
2161 
2162 		/*
2163 		 * This buffer has been "accessed" only once so far,
2164 		 * but it is still in the cache. Move it to the MFU
2165 		 * state.
2166 		 */
2167 		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
2168 			/*
2169 			 * More than 125ms have passed since we
2170 			 * instantiated this buffer.  Move it to the
2171 			 * most frequently used state.
2172 			 */
2173 			buf->b_arc_access = lbolt;
2174 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2175 			arc_change_state(arc_mfu, buf, hash_lock);
2176 		}
2177 		ARCSTAT_BUMP(arcstat_mru_hits);
2178 	} else if (buf->b_state == arc_mru_ghost) {
2179 		arc_state_t	*new_state;
2180 		/*
2181 		 * This buffer has been "accessed" recently, but
2182 		 * was evicted from the cache.  Move it to the
2183 		 * MFU state.
2184 		 */
2185 
2186 		if (buf->b_flags & ARC_PREFETCH) {
2187 			new_state = arc_mru;
2188 			if (refcount_count(&buf->b_refcnt) > 0)
2189 				buf->b_flags &= ~ARC_PREFETCH;
2190 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2191 		} else {
2192 			new_state = arc_mfu;
2193 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2194 		}
2195 
2196 		buf->b_arc_access = lbolt;
2197 		arc_change_state(new_state, buf, hash_lock);
2198 
2199 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2200 	} else if (buf->b_state == arc_mfu) {
2201 		/*
2202 		 * This buffer has been accessed more than once and is
2203 		 * still in the cache.  Keep it in the MFU state.
2204 		 *
2205 		 * NOTE: an add_reference() that occurred when we did
2206 		 * the arc_read() will have kicked this off the list.
2207 		 * If it was a prefetch, we will explicitly move it to
2208 		 * the head of the list now.
2209 		 */
2210 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2211 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2212 			ASSERT(list_link_active(&buf->b_arc_node));
2213 		}
2214 		ARCSTAT_BUMP(arcstat_mfu_hits);
2215 		buf->b_arc_access = lbolt;
2216 	} else if (buf->b_state == arc_mfu_ghost) {
2217 		arc_state_t	*new_state = arc_mfu;
2218 		/*
2219 		 * This buffer has been accessed more than once but has
2220 		 * been evicted from the cache.  Move it back to the
2221 		 * MFU state.
2222 		 */
2223 
2224 		if (buf->b_flags & ARC_PREFETCH) {
2225 			/*
2226 			 * This is a prefetch access...
2227 			 * move this block back to the MRU state.
2228 			 */
2229 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2230 			new_state = arc_mru;
2231 		}
2232 
2233 		buf->b_arc_access = lbolt;
2234 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2235 		arc_change_state(new_state, buf, hash_lock);
2236 
2237 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2238 	} else if (buf->b_state == arc_l2c_only) {
2239 		/*
2240 		 * This buffer is on the 2nd Level ARC.
2241 		 */
2242 
2243 		buf->b_arc_access = lbolt;
2244 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2245 		arc_change_state(arc_mfu, buf, hash_lock);
2246 	} else {
2247 		ASSERT(!"invalid arc state");
2248 	}
2249 }
2250 
2251 /* a generic arc_done_func_t which you can use */
2252 /* ARGSUSED */
2253 void
2254 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2255 {
2256 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2257 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2258 }
2259 
2260 /* a generic arc_done_func_t */
2261 void
2262 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2263 {
2264 	arc_buf_t **bufp = arg;
2265 	if (zio && zio->io_error) {
2266 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2267 		*bufp = NULL;
2268 	} else {
2269 		*bufp = buf;
2270 	}
2271 }
2272 
2273 static void
2274 arc_read_done(zio_t *zio)
2275 {
2276 	arc_buf_hdr_t	*hdr, *found;
2277 	arc_buf_t	*buf;
2278 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2279 	kmutex_t	*hash_lock;
2280 	arc_callback_t	*callback_list, *acb;
2281 	int		freeable = FALSE;
2282 
2283 	buf = zio->io_private;
2284 	hdr = buf->b_hdr;
2285 
2286 	/*
2287 	 * The hdr was inserted into hash-table and removed from lists
2288 	 * prior to starting I/O.  We should find this header, since
2289 	 * it's in the hash table, and it should be legit since it's
2290 	 * not possible to evict it during the I/O.  The only possible
2291 	 * reason for it not to be found is if we were freed during the
2292 	 * read.
2293 	 */
2294 	found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
2295 	    &hash_lock);
2296 
2297 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2298 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2299 	    (found == hdr && HDR_L2_READING(hdr)));
2300 
2301 	hdr->b_flags &= ~ARC_L2_EVICTED;
2302 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2303 		hdr->b_flags |= ARC_DONT_L2CACHE;
2304 
2305 	/* byteswap if necessary */
2306 	callback_list = hdr->b_acb;
2307 	ASSERT(callback_list != NULL);
2308 	if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
2309 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2310 		    byteswap_uint64_array :
2311 		    dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2312 		func(buf->b_data, hdr->b_size);
2313 	}
2314 
2315 	arc_cksum_compute(buf, B_FALSE);
2316 
2317 	/* create copies of the data buffer for the callers */
2318 	abuf = buf;
2319 	for (acb = callback_list; acb; acb = acb->acb_next) {
2320 		if (acb->acb_done) {
2321 			if (abuf == NULL)
2322 				abuf = arc_buf_clone(buf);
2323 			acb->acb_buf = abuf;
2324 			abuf = NULL;
2325 		}
2326 	}
2327 	hdr->b_acb = NULL;
2328 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2329 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2330 	if (abuf == buf)
2331 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2332 
2333 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2334 
2335 	if (zio->io_error != 0) {
2336 		hdr->b_flags |= ARC_IO_ERROR;
2337 		if (hdr->b_state != arc_anon)
2338 			arc_change_state(arc_anon, hdr, hash_lock);
2339 		if (HDR_IN_HASH_TABLE(hdr))
2340 			buf_hash_remove(hdr);
2341 		freeable = refcount_is_zero(&hdr->b_refcnt);
2342 		/* convert checksum errors into IO errors */
2343 		if (zio->io_error == ECKSUM)
2344 			zio->io_error = EIO;
2345 	}
2346 
2347 	/*
2348 	 * Broadcast before we drop the hash_lock to avoid the possibility
2349 	 * that the hdr (and hence the cv) might be freed before we get to
2350 	 * the cv_broadcast().
2351 	 */
2352 	cv_broadcast(&hdr->b_cv);
2353 
2354 	if (hash_lock) {
2355 		/*
2356 		 * Only call arc_access on anonymous buffers.  This is because
2357 		 * if we've issued an I/O for an evicted buffer, we've already
2358 		 * called arc_access (to prevent any simultaneous readers from
2359 		 * getting confused).
2360 		 */
2361 		if (zio->io_error == 0 && hdr->b_state == arc_anon)
2362 			arc_access(hdr, hash_lock);
2363 		mutex_exit(hash_lock);
2364 	} else {
2365 		/*
2366 		 * This block was freed while we waited for the read to
2367 		 * complete.  It has been removed from the hash table and
2368 		 * moved to the anonymous state (so that it won't show up
2369 		 * in the cache).
2370 		 */
2371 		ASSERT3P(hdr->b_state, ==, arc_anon);
2372 		freeable = refcount_is_zero(&hdr->b_refcnt);
2373 	}
2374 
2375 	/* execute each callback and free its structure */
2376 	while ((acb = callback_list) != NULL) {
2377 		if (acb->acb_done)
2378 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2379 
2380 		if (acb->acb_zio_dummy != NULL) {
2381 			acb->acb_zio_dummy->io_error = zio->io_error;
2382 			zio_nowait(acb->acb_zio_dummy);
2383 		}
2384 
2385 		callback_list = acb->acb_next;
2386 		kmem_free(acb, sizeof (arc_callback_t));
2387 	}
2388 
2389 	if (freeable)
2390 		arc_hdr_destroy(hdr);
2391 }
2392 
2393 /*
2394  * "Read" the block block at the specified DVA (in bp) via the
2395  * cache.  If the block is found in the cache, invoke the provided
2396  * callback immediately and return.  Note that the `zio' parameter
2397  * in the callback will be NULL in this case, since no IO was
2398  * required.  If the block is not in the cache pass the read request
2399  * on to the spa with a substitute callback function, so that the
2400  * requested block will be added to the cache.
2401  *
2402  * If a read request arrives for a block that has a read in-progress,
2403  * either wait for the in-progress read to complete (and return the
2404  * results); or, if this is a read with a "done" func, add a record
2405  * to the read to invoke the "done" func when the read completes,
2406  * and return; or just return.
2407  *
2408  * arc_read_done() will invoke all the requested "done" functions
2409  * for readers of this block.
2410  *
2411  * Normal callers should use arc_read and pass the arc buffer and offset
2412  * for the bp.  But if you know you don't need locking, you can use
2413  * arc_read_bp.
2414  */
2415 int
2416 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf,
2417     arc_done_func_t *done, void *private, int priority, int flags,
2418     uint32_t *arc_flags, const zbookmark_t *zb)
2419 {
2420 	int err;
2421 
2422 	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2423 	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2424 	rw_enter(&pbuf->b_hdr->b_datalock, RW_READER);
2425 
2426 	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2427 	    flags, arc_flags, zb);
2428 
2429 	rw_exit(&pbuf->b_hdr->b_datalock);
2430 	return (err);
2431 }
2432 
2433 int
2434 arc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp,
2435     arc_done_func_t *done, void *private, int priority, int flags,
2436     uint32_t *arc_flags, const zbookmark_t *zb)
2437 {
2438 	arc_buf_hdr_t *hdr;
2439 	arc_buf_t *buf;
2440 	kmutex_t *hash_lock;
2441 	zio_t *rzio;
2442 
2443 top:
2444 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2445 	if (hdr && hdr->b_datacnt > 0) {
2446 
2447 		*arc_flags |= ARC_CACHED;
2448 
2449 		if (HDR_IO_IN_PROGRESS(hdr)) {
2450 
2451 			if (*arc_flags & ARC_WAIT) {
2452 				cv_wait(&hdr->b_cv, hash_lock);
2453 				mutex_exit(hash_lock);
2454 				goto top;
2455 			}
2456 			ASSERT(*arc_flags & ARC_NOWAIT);
2457 
2458 			if (done) {
2459 				arc_callback_t	*acb = NULL;
2460 
2461 				acb = kmem_zalloc(sizeof (arc_callback_t),
2462 				    KM_SLEEP);
2463 				acb->acb_done = done;
2464 				acb->acb_private = private;
2465 				if (pio != NULL)
2466 					acb->acb_zio_dummy = zio_null(pio,
2467 					    spa, NULL, NULL, flags);
2468 
2469 				ASSERT(acb->acb_done != NULL);
2470 				acb->acb_next = hdr->b_acb;
2471 				hdr->b_acb = acb;
2472 				add_reference(hdr, hash_lock, private);
2473 				mutex_exit(hash_lock);
2474 				return (0);
2475 			}
2476 			mutex_exit(hash_lock);
2477 			return (0);
2478 		}
2479 
2480 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2481 
2482 		if (done) {
2483 			add_reference(hdr, hash_lock, private);
2484 			/*
2485 			 * If this block is already in use, create a new
2486 			 * copy of the data so that we will be guaranteed
2487 			 * that arc_release() will always succeed.
2488 			 */
2489 			buf = hdr->b_buf;
2490 			ASSERT(buf);
2491 			ASSERT(buf->b_data);
2492 			if (HDR_BUF_AVAILABLE(hdr)) {
2493 				ASSERT(buf->b_efunc == NULL);
2494 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2495 			} else {
2496 				buf = arc_buf_clone(buf);
2497 			}
2498 		} else if (*arc_flags & ARC_PREFETCH &&
2499 		    refcount_count(&hdr->b_refcnt) == 0) {
2500 			hdr->b_flags |= ARC_PREFETCH;
2501 		}
2502 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2503 		arc_access(hdr, hash_lock);
2504 		mutex_exit(hash_lock);
2505 		ARCSTAT_BUMP(arcstat_hits);
2506 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2507 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2508 		    data, metadata, hits);
2509 
2510 		if (done)
2511 			done(NULL, buf, private);
2512 	} else {
2513 		uint64_t size = BP_GET_LSIZE(bp);
2514 		arc_callback_t	*acb;
2515 		vdev_t *vd = NULL;
2516 		daddr_t addr;
2517 
2518 		if (hdr == NULL) {
2519 			/* this block is not in the cache */
2520 			arc_buf_hdr_t	*exists;
2521 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2522 			buf = arc_buf_alloc(spa, size, private, type);
2523 			hdr = buf->b_hdr;
2524 			hdr->b_dva = *BP_IDENTITY(bp);
2525 			hdr->b_birth = bp->blk_birth;
2526 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2527 			exists = buf_hash_insert(hdr, &hash_lock);
2528 			if (exists) {
2529 				/* somebody beat us to the hash insert */
2530 				mutex_exit(hash_lock);
2531 				bzero(&hdr->b_dva, sizeof (dva_t));
2532 				hdr->b_birth = 0;
2533 				hdr->b_cksum0 = 0;
2534 				(void) arc_buf_remove_ref(buf, private);
2535 				goto top; /* restart the IO request */
2536 			}
2537 			/* if this is a prefetch, we don't have a reference */
2538 			if (*arc_flags & ARC_PREFETCH) {
2539 				(void) remove_reference(hdr, hash_lock,
2540 				    private);
2541 				hdr->b_flags |= ARC_PREFETCH;
2542 			}
2543 			if (BP_GET_LEVEL(bp) > 0)
2544 				hdr->b_flags |= ARC_INDIRECT;
2545 		} else {
2546 			/* this block is in the ghost cache */
2547 			ASSERT(GHOST_STATE(hdr->b_state));
2548 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2549 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2550 			ASSERT(hdr->b_buf == NULL);
2551 
2552 			/* if this is a prefetch, we don't have a reference */
2553 			if (*arc_flags & ARC_PREFETCH)
2554 				hdr->b_flags |= ARC_PREFETCH;
2555 			else
2556 				add_reference(hdr, hash_lock, private);
2557 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2558 			buf->b_hdr = hdr;
2559 			buf->b_data = NULL;
2560 			buf->b_efunc = NULL;
2561 			buf->b_private = NULL;
2562 			buf->b_next = NULL;
2563 			hdr->b_buf = buf;
2564 			arc_get_data_buf(buf);
2565 			ASSERT(hdr->b_datacnt == 0);
2566 			hdr->b_datacnt = 1;
2567 
2568 		}
2569 
2570 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2571 		acb->acb_done = done;
2572 		acb->acb_private = private;
2573 
2574 		ASSERT(hdr->b_acb == NULL);
2575 		hdr->b_acb = acb;
2576 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2577 
2578 		/*
2579 		 * If the buffer has been evicted, migrate it to a present state
2580 		 * before issuing the I/O.  Once we drop the hash-table lock,
2581 		 * the header will be marked as I/O in progress and have an
2582 		 * attached buffer.  At this point, anybody who finds this
2583 		 * buffer ought to notice that it's legit but has a pending I/O.
2584 		 */
2585 
2586 		if (GHOST_STATE(hdr->b_state))
2587 			arc_access(hdr, hash_lock);
2588 
2589 		if (hdr->b_l2hdr != NULL) {
2590 			vd = hdr->b_l2hdr->b_dev->l2ad_vdev;
2591 			addr = hdr->b_l2hdr->b_daddr;
2592 		}
2593 
2594 		mutex_exit(hash_lock);
2595 
2596 		ASSERT3U(hdr->b_size, ==, size);
2597 		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
2598 		    zbookmark_t *, zb);
2599 		ARCSTAT_BUMP(arcstat_misses);
2600 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2601 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2602 		    data, metadata, misses);
2603 
2604 		if (l2arc_ndev != 0) {
2605 			/*
2606 			 * Lock out device removal.
2607 			 */
2608 			spa_config_enter(spa, RW_READER, FTAG);
2609 
2610 			/*
2611 			 * Read from the L2ARC if the following are true:
2612 			 * 1. The L2ARC vdev was previously cached.
2613 			 * 2. This buffer still has L2ARC metadata.
2614 			 * 3. This buffer isn't currently writing to the L2ARC.
2615 			 * 4. The L2ARC entry wasn't evicted, which may
2616 			 *    also have invalidated the vdev.
2617 			 */
2618 			if (vd != NULL && hdr->b_l2hdr != NULL &&
2619 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
2620 				l2arc_read_callback_t *cb;
2621 
2622 				if (vdev_is_dead(vd))
2623 					goto l2skip;
2624 
2625 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2626 				ARCSTAT_BUMP(arcstat_l2_hits);
2627 
2628 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2629 				    KM_SLEEP);
2630 				cb->l2rcb_buf = buf;
2631 				cb->l2rcb_spa = spa;
2632 				cb->l2rcb_bp = *bp;
2633 				cb->l2rcb_zb = *zb;
2634 				cb->l2rcb_flags = flags;
2635 
2636 				/*
2637 				 * l2arc read.
2638 				 */
2639 				rzio = zio_read_phys(pio, vd, addr, size,
2640 				    buf->b_data, ZIO_CHECKSUM_OFF,
2641 				    l2arc_read_done, cb, priority, flags |
2642 				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL,
2643 				    B_FALSE);
2644 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2645 				    zio_t *, rzio);
2646 				spa_config_exit(spa, FTAG);
2647 
2648 				if (*arc_flags & ARC_NOWAIT) {
2649 					zio_nowait(rzio);
2650 					return (0);
2651 				}
2652 
2653 				ASSERT(*arc_flags & ARC_WAIT);
2654 				if (zio_wait(rzio) == 0)
2655 					return (0);
2656 
2657 				/* l2arc read error; goto zio_read() */
2658 			} else {
2659 				DTRACE_PROBE1(l2arc__miss,
2660 				    arc_buf_hdr_t *, hdr);
2661 				ARCSTAT_BUMP(arcstat_l2_misses);
2662 				if (HDR_L2_WRITING(hdr))
2663 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2664 l2skip:
2665 				spa_config_exit(spa, FTAG);
2666 			}
2667 		}
2668 
2669 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2670 		    arc_read_done, buf, priority, flags, zb);
2671 
2672 		if (*arc_flags & ARC_WAIT)
2673 			return (zio_wait(rzio));
2674 
2675 		ASSERT(*arc_flags & ARC_NOWAIT);
2676 		zio_nowait(rzio);
2677 	}
2678 	return (0);
2679 }
2680 
2681 /*
2682  * arc_read() variant to support pool traversal.  If the block is already
2683  * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
2684  * The idea is that we don't want pool traversal filling up memory, but
2685  * if the ARC already has the data anyway, we shouldn't pay for the I/O.
2686  */
2687 int
2688 arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
2689 {
2690 	arc_buf_hdr_t *hdr;
2691 	kmutex_t *hash_mtx;
2692 	int rc = 0;
2693 
2694 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
2695 
2696 	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
2697 		arc_buf_t *buf = hdr->b_buf;
2698 
2699 		ASSERT(buf);
2700 		while (buf->b_data == NULL) {
2701 			buf = buf->b_next;
2702 			ASSERT(buf);
2703 		}
2704 		bcopy(buf->b_data, data, hdr->b_size);
2705 	} else {
2706 		rc = ENOENT;
2707 	}
2708 
2709 	if (hash_mtx)
2710 		mutex_exit(hash_mtx);
2711 
2712 	return (rc);
2713 }
2714 
2715 void
2716 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2717 {
2718 	ASSERT(buf->b_hdr != NULL);
2719 	ASSERT(buf->b_hdr->b_state != arc_anon);
2720 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2721 	buf->b_efunc = func;
2722 	buf->b_private = private;
2723 }
2724 
2725 /*
2726  * This is used by the DMU to let the ARC know that a buffer is
2727  * being evicted, so the ARC should clean up.  If this arc buf
2728  * is not yet in the evicted state, it will be put there.
2729  */
2730 int
2731 arc_buf_evict(arc_buf_t *buf)
2732 {
2733 	arc_buf_hdr_t *hdr;
2734 	kmutex_t *hash_lock;
2735 	arc_buf_t **bufp;
2736 
2737 	mutex_enter(&arc_eviction_mtx);
2738 	hdr = buf->b_hdr;
2739 	if (hdr == NULL) {
2740 		/*
2741 		 * We are in arc_do_user_evicts().
2742 		 */
2743 		ASSERT(buf->b_data == NULL);
2744 		mutex_exit(&arc_eviction_mtx);
2745 		return (0);
2746 	}
2747 	hash_lock = HDR_LOCK(hdr);
2748 	mutex_exit(&arc_eviction_mtx);
2749 
2750 	mutex_enter(hash_lock);
2751 
2752 	if (buf->b_data == NULL) {
2753 		/*
2754 		 * We are on the eviction list.
2755 		 */
2756 		mutex_exit(hash_lock);
2757 		mutex_enter(&arc_eviction_mtx);
2758 		if (buf->b_hdr == NULL) {
2759 			/*
2760 			 * We are already in arc_do_user_evicts().
2761 			 */
2762 			mutex_exit(&arc_eviction_mtx);
2763 			return (0);
2764 		} else {
2765 			arc_buf_t copy = *buf; /* structure assignment */
2766 			/*
2767 			 * Process this buffer now
2768 			 * but let arc_do_user_evicts() do the reaping.
2769 			 */
2770 			buf->b_efunc = NULL;
2771 			mutex_exit(&arc_eviction_mtx);
2772 			VERIFY(copy.b_efunc(&copy) == 0);
2773 			return (1);
2774 		}
2775 	}
2776 
2777 	ASSERT(buf->b_hdr == hdr);
2778 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2779 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2780 
2781 	/*
2782 	 * Pull this buffer off of the hdr
2783 	 */
2784 	bufp = &hdr->b_buf;
2785 	while (*bufp != buf)
2786 		bufp = &(*bufp)->b_next;
2787 	*bufp = buf->b_next;
2788 
2789 	ASSERT(buf->b_data != NULL);
2790 	arc_buf_destroy(buf, FALSE, FALSE);
2791 
2792 	if (hdr->b_datacnt == 0) {
2793 		arc_state_t *old_state = hdr->b_state;
2794 		arc_state_t *evicted_state;
2795 
2796 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2797 
2798 		evicted_state =
2799 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2800 
2801 		mutex_enter(&old_state->arcs_mtx);
2802 		mutex_enter(&evicted_state->arcs_mtx);
2803 
2804 		arc_change_state(evicted_state, hdr, hash_lock);
2805 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2806 		hdr->b_flags |= ARC_IN_HASH_TABLE;
2807 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2808 
2809 		mutex_exit(&evicted_state->arcs_mtx);
2810 		mutex_exit(&old_state->arcs_mtx);
2811 	}
2812 	mutex_exit(hash_lock);
2813 
2814 	VERIFY(buf->b_efunc(buf) == 0);
2815 	buf->b_efunc = NULL;
2816 	buf->b_private = NULL;
2817 	buf->b_hdr = NULL;
2818 	kmem_cache_free(buf_cache, buf);
2819 	return (1);
2820 }
2821 
2822 /*
2823  * Release this buffer from the cache.  This must be done
2824  * after a read and prior to modifying the buffer contents.
2825  * If the buffer has more than one reference, we must make
2826  * a new hdr for the buffer.
2827  */
2828 void
2829 arc_release(arc_buf_t *buf, void *tag)
2830 {
2831 	arc_buf_hdr_t *hdr = buf->b_hdr;
2832 	kmutex_t *hash_lock = HDR_LOCK(hdr);
2833 	l2arc_buf_hdr_t *l2hdr = NULL;
2834 	uint64_t buf_size;
2835 
2836 	/* this buffer is not on any list */
2837 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2838 	ASSERT(!(hdr->b_flags & ARC_STORED));
2839 
2840 	if (hdr->b_state == arc_anon) {
2841 		/* this buffer is already released */
2842 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2843 		ASSERT(BUF_EMPTY(hdr));
2844 		ASSERT(buf->b_efunc == NULL);
2845 		arc_buf_thaw(buf);
2846 		return;
2847 	}
2848 
2849 	mutex_enter(hash_lock);
2850 
2851 	/*
2852 	 * Do we have more than one buf?
2853 	 */
2854 	if (hdr->b_buf != buf || buf->b_next != NULL) {
2855 		arc_buf_hdr_t *nhdr;
2856 		arc_buf_t **bufp;
2857 		uint64_t blksz = hdr->b_size;
2858 		spa_t *spa = hdr->b_spa;
2859 		arc_buf_contents_t type = hdr->b_type;
2860 		uint32_t flags = hdr->b_flags;
2861 
2862 		ASSERT(hdr->b_datacnt > 1);
2863 		/*
2864 		 * Pull the data off of this buf and attach it to
2865 		 * a new anonymous buf.
2866 		 */
2867 		(void) remove_reference(hdr, hash_lock, tag);
2868 		bufp = &hdr->b_buf;
2869 		while (*bufp != buf)
2870 			bufp = &(*bufp)->b_next;
2871 		*bufp = (*bufp)->b_next;
2872 		buf->b_next = NULL;
2873 
2874 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
2875 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
2876 		if (refcount_is_zero(&hdr->b_refcnt)) {
2877 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
2878 			ASSERT3U(*size, >=, hdr->b_size);
2879 			atomic_add_64(size, -hdr->b_size);
2880 		}
2881 		hdr->b_datacnt -= 1;
2882 		if (hdr->b_l2hdr != NULL) {
2883 			mutex_enter(&l2arc_buflist_mtx);
2884 			l2hdr = hdr->b_l2hdr;
2885 			hdr->b_l2hdr = NULL;
2886 			buf_size = hdr->b_size;
2887 		}
2888 		arc_cksum_verify(buf);
2889 
2890 		mutex_exit(hash_lock);
2891 
2892 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
2893 		nhdr->b_size = blksz;
2894 		nhdr->b_spa = spa;
2895 		nhdr->b_type = type;
2896 		nhdr->b_buf = buf;
2897 		nhdr->b_state = arc_anon;
2898 		nhdr->b_arc_access = 0;
2899 		nhdr->b_flags = flags & ARC_L2_WRITING;
2900 		nhdr->b_l2hdr = NULL;
2901 		nhdr->b_datacnt = 1;
2902 		nhdr->b_freeze_cksum = NULL;
2903 		(void) refcount_add(&nhdr->b_refcnt, tag);
2904 		buf->b_hdr = nhdr;
2905 		atomic_add_64(&arc_anon->arcs_size, blksz);
2906 	} else {
2907 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2908 		ASSERT(!list_link_active(&hdr->b_arc_node));
2909 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2910 		arc_change_state(arc_anon, hdr, hash_lock);
2911 		hdr->b_arc_access = 0;
2912 		if (hdr->b_l2hdr != NULL) {
2913 			mutex_enter(&l2arc_buflist_mtx);
2914 			l2hdr = hdr->b_l2hdr;
2915 			hdr->b_l2hdr = NULL;
2916 			buf_size = hdr->b_size;
2917 		}
2918 		mutex_exit(hash_lock);
2919 
2920 		bzero(&hdr->b_dva, sizeof (dva_t));
2921 		hdr->b_birth = 0;
2922 		hdr->b_cksum0 = 0;
2923 		arc_buf_thaw(buf);
2924 	}
2925 	buf->b_efunc = NULL;
2926 	buf->b_private = NULL;
2927 
2928 	if (l2hdr) {
2929 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
2930 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
2931 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
2932 	}
2933 	if (MUTEX_HELD(&l2arc_buflist_mtx))
2934 		mutex_exit(&l2arc_buflist_mtx);
2935 }
2936 
2937 int
2938 arc_released(arc_buf_t *buf)
2939 {
2940 	return (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
2941 }
2942 
2943 int
2944 arc_has_callback(arc_buf_t *buf)
2945 {
2946 	return (buf->b_efunc != NULL);
2947 }
2948 
2949 #ifdef ZFS_DEBUG
2950 int
2951 arc_referenced(arc_buf_t *buf)
2952 {
2953 	return (refcount_count(&buf->b_hdr->b_refcnt));
2954 }
2955 #endif
2956 
2957 static void
2958 arc_write_ready(zio_t *zio)
2959 {
2960 	arc_write_callback_t *callback = zio->io_private;
2961 	arc_buf_t *buf = callback->awcb_buf;
2962 	arc_buf_hdr_t *hdr = buf->b_hdr;
2963 
2964 	if (zio->io_error == 0 && callback->awcb_ready) {
2965 		ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
2966 		callback->awcb_ready(zio, buf, callback->awcb_private);
2967 	}
2968 	/*
2969 	 * If the IO is already in progress, then this is a re-write
2970 	 * attempt, so we need to thaw and re-compute the cksum. It is
2971 	 * the responsibility of the callback to handle the freeing
2972 	 * and accounting for any re-write attempt. If we don't have a
2973 	 * callback registered then simply free the block here.
2974 	 */
2975 	if (HDR_IO_IN_PROGRESS(hdr)) {
2976 		if (!BP_IS_HOLE(&zio->io_bp_orig) &&
2977 		    callback->awcb_ready == NULL) {
2978 			zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg,
2979 			    &zio->io_bp_orig, NULL, NULL));
2980 		}
2981 		mutex_enter(&hdr->b_freeze_lock);
2982 		if (hdr->b_freeze_cksum != NULL) {
2983 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2984 			hdr->b_freeze_cksum = NULL;
2985 		}
2986 		mutex_exit(&hdr->b_freeze_lock);
2987 	}
2988 	arc_cksum_compute(buf, B_FALSE);
2989 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
2990 }
2991 
2992 static void
2993 arc_write_done(zio_t *zio)
2994 {
2995 	arc_write_callback_t *callback = zio->io_private;
2996 	arc_buf_t *buf = callback->awcb_buf;
2997 	arc_buf_hdr_t *hdr = buf->b_hdr;
2998 
2999 	hdr->b_acb = NULL;
3000 
3001 	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3002 	hdr->b_birth = zio->io_bp->blk_birth;
3003 	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3004 	/*
3005 	 * If the block to be written was all-zero, we may have
3006 	 * compressed it away.  In this case no write was performed
3007 	 * so there will be no dva/birth-date/checksum.  The buffer
3008 	 * must therefor remain anonymous (and uncached).
3009 	 */
3010 	if (!BUF_EMPTY(hdr)) {
3011 		arc_buf_hdr_t *exists;
3012 		kmutex_t *hash_lock;
3013 
3014 		arc_cksum_verify(buf);
3015 
3016 		exists = buf_hash_insert(hdr, &hash_lock);
3017 		if (exists) {
3018 			/*
3019 			 * This can only happen if we overwrite for
3020 			 * sync-to-convergence, because we remove
3021 			 * buffers from the hash table when we arc_free().
3022 			 */
3023 			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
3024 			    BP_IDENTITY(zio->io_bp)));
3025 			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
3026 			    zio->io_bp->blk_birth);
3027 
3028 			ASSERT(refcount_is_zero(&exists->b_refcnt));
3029 			arc_change_state(arc_anon, exists, hash_lock);
3030 			mutex_exit(hash_lock);
3031 			arc_hdr_destroy(exists);
3032 			exists = buf_hash_insert(hdr, &hash_lock);
3033 			ASSERT3P(exists, ==, NULL);
3034 		}
3035 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3036 		/* if it's not anon, we are doing a scrub */
3037 		if (hdr->b_state == arc_anon)
3038 			arc_access(hdr, hash_lock);
3039 		mutex_exit(hash_lock);
3040 	} else if (callback->awcb_done == NULL) {
3041 		int destroy_hdr;
3042 		/*
3043 		 * This is an anonymous buffer with no user callback,
3044 		 * destroy it if there are no active references.
3045 		 */
3046 		mutex_enter(&arc_eviction_mtx);
3047 		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
3048 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3049 		mutex_exit(&arc_eviction_mtx);
3050 		if (destroy_hdr)
3051 			arc_hdr_destroy(hdr);
3052 	} else {
3053 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3054 	}
3055 	hdr->b_flags &= ~ARC_STORED;
3056 
3057 	if (callback->awcb_done) {
3058 		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3059 		callback->awcb_done(zio, buf, callback->awcb_private);
3060 	}
3061 
3062 	kmem_free(callback, sizeof (arc_write_callback_t));
3063 }
3064 
3065 static void
3066 write_policy(spa_t *spa, const writeprops_t *wp,
3067     int *cksump, int *compp, int *copiesp)
3068 {
3069 	int copies = wp->wp_copies;
3070 	boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata);
3071 
3072 	/* Determine copies setting */
3073 	if (ismd)
3074 		copies++;
3075 	*copiesp = MIN(copies, spa_max_replication(spa));
3076 
3077 	/* Determine checksum setting */
3078 	if (ismd) {
3079 		/*
3080 		 * Metadata always gets checksummed.  If the data
3081 		 * checksum is multi-bit correctable, and it's not a
3082 		 * ZBT-style checksum, then it's suitable for metadata
3083 		 * as well.  Otherwise, the metadata checksum defaults
3084 		 * to fletcher4.
3085 		 */
3086 		if (zio_checksum_table[wp->wp_oschecksum].ci_correctable &&
3087 		    !zio_checksum_table[wp->wp_oschecksum].ci_zbt)
3088 			*cksump = wp->wp_oschecksum;
3089 		else
3090 			*cksump = ZIO_CHECKSUM_FLETCHER_4;
3091 	} else {
3092 		*cksump = zio_checksum_select(wp->wp_dnchecksum,
3093 		    wp->wp_oschecksum);
3094 	}
3095 
3096 	/* Determine compression setting */
3097 	if (ismd) {
3098 		/*
3099 		 * XXX -- we should design a compression algorithm
3100 		 * that specializes in arrays of bps.
3101 		 */
3102 		*compp = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
3103 		    ZIO_COMPRESS_LZJB;
3104 	} else {
3105 		*compp = zio_compress_select(wp->wp_dncompress,
3106 		    wp->wp_oscompress);
3107 	}
3108 }
3109 
3110 zio_t *
3111 arc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp,
3112     uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
3113     arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
3114     int flags, const zbookmark_t *zb)
3115 {
3116 	arc_buf_hdr_t *hdr = buf->b_hdr;
3117 	arc_write_callback_t *callback;
3118 	zio_t	*zio;
3119 	int cksum, comp, copies;
3120 
3121 	ASSERT(!HDR_IO_ERROR(hdr));
3122 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3123 	ASSERT(hdr->b_acb == 0);
3124 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3125 	callback->awcb_ready = ready;
3126 	callback->awcb_done = done;
3127 	callback->awcb_private = private;
3128 	callback->awcb_buf = buf;
3129 
3130 	write_policy(spa, wp, &cksum, &comp, &copies);
3131 	zio = zio_write(pio, spa, cksum, comp, copies, txg, bp,
3132 	    buf->b_data, hdr->b_size, arc_write_ready, arc_write_done,
3133 	    callback, priority, flags, zb);
3134 
3135 	return (zio);
3136 }
3137 
3138 int
3139 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
3140     zio_done_func_t *done, void *private, uint32_t arc_flags)
3141 {
3142 	arc_buf_hdr_t *ab;
3143 	kmutex_t *hash_lock;
3144 	zio_t	*zio;
3145 
3146 	/*
3147 	 * If this buffer is in the cache, release it, so it
3148 	 * can be re-used.
3149 	 */
3150 	ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
3151 	if (ab != NULL) {
3152 		/*
3153 		 * The checksum of blocks to free is not always
3154 		 * preserved (eg. on the deadlist).  However, if it is
3155 		 * nonzero, it should match what we have in the cache.
3156 		 */
3157 		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
3158 		    ab->b_cksum0 == bp->blk_cksum.zc_word[0]);
3159 		if (ab->b_state != arc_anon)
3160 			arc_change_state(arc_anon, ab, hash_lock);
3161 		if (HDR_IO_IN_PROGRESS(ab)) {
3162 			/*
3163 			 * This should only happen when we prefetch.
3164 			 */
3165 			ASSERT(ab->b_flags & ARC_PREFETCH);
3166 			ASSERT3U(ab->b_datacnt, ==, 1);
3167 			ab->b_flags |= ARC_FREED_IN_READ;
3168 			if (HDR_IN_HASH_TABLE(ab))
3169 				buf_hash_remove(ab);
3170 			ab->b_arc_access = 0;
3171 			bzero(&ab->b_dva, sizeof (dva_t));
3172 			ab->b_birth = 0;
3173 			ab->b_cksum0 = 0;
3174 			ab->b_buf->b_efunc = NULL;
3175 			ab->b_buf->b_private = NULL;
3176 			mutex_exit(hash_lock);
3177 		} else if (refcount_is_zero(&ab->b_refcnt)) {
3178 			ab->b_flags |= ARC_FREE_IN_PROGRESS;
3179 			mutex_exit(hash_lock);
3180 			arc_hdr_destroy(ab);
3181 			ARCSTAT_BUMP(arcstat_deleted);
3182 		} else {
3183 			/*
3184 			 * We still have an active reference on this
3185 			 * buffer.  This can happen, e.g., from
3186 			 * dbuf_unoverride().
3187 			 */
3188 			ASSERT(!HDR_IN_HASH_TABLE(ab));
3189 			ab->b_arc_access = 0;
3190 			bzero(&ab->b_dva, sizeof (dva_t));
3191 			ab->b_birth = 0;
3192 			ab->b_cksum0 = 0;
3193 			ab->b_buf->b_efunc = NULL;
3194 			ab->b_buf->b_private = NULL;
3195 			mutex_exit(hash_lock);
3196 		}
3197 	}
3198 
3199 	zio = zio_free(pio, spa, txg, bp, done, private);
3200 
3201 	if (arc_flags & ARC_WAIT)
3202 		return (zio_wait(zio));
3203 
3204 	ASSERT(arc_flags & ARC_NOWAIT);
3205 	zio_nowait(zio);
3206 
3207 	return (0);
3208 }
3209 
3210 static int
3211 arc_memory_throttle(uint64_t reserve, uint64_t txg)
3212 {
3213 #ifdef _KERNEL
3214 	uint64_t inflight_data = arc_anon->arcs_size;
3215 	uint64_t available_memory = ptob(freemem);
3216 	static uint64_t page_load = 0;
3217 	static uint64_t last_txg = 0;
3218 
3219 #if defined(__i386)
3220 	available_memory =
3221 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3222 #endif
3223 	if (available_memory >= zfs_write_limit_max)
3224 		return (0);
3225 
3226 	if (txg > last_txg) {
3227 		last_txg = txg;
3228 		page_load = 0;
3229 	}
3230 	/*
3231 	 * If we are in pageout, we know that memory is already tight,
3232 	 * the arc is already going to be evicting, so we just want to
3233 	 * continue to let page writes occur as quickly as possible.
3234 	 */
3235 	if (curproc == proc_pageout) {
3236 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3237 			return (ERESTART);
3238 		/* Note: reserve is inflated, so we deflate */
3239 		page_load += reserve / 8;
3240 		return (0);
3241 	} else if (page_load > 0 && arc_reclaim_needed()) {
3242 		/* memory is low, delay before restarting */
3243 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3244 		return (EAGAIN);
3245 	}
3246 	page_load = 0;
3247 
3248 	if (arc_size > arc_c_min) {
3249 		uint64_t evictable_memory =
3250 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3251 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3252 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3253 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3254 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3255 	}
3256 
3257 	if (inflight_data > available_memory / 4) {
3258 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3259 		return (ERESTART);
3260 	}
3261 #endif
3262 	return (0);
3263 }
3264 
3265 void
3266 arc_tempreserve_clear(uint64_t reserve)
3267 {
3268 	atomic_add_64(&arc_tempreserve, -reserve);
3269 	ASSERT((int64_t)arc_tempreserve >= 0);
3270 }
3271 
3272 int
3273 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3274 {
3275 	int error;
3276 
3277 #ifdef ZFS_DEBUG
3278 	/*
3279 	 * Once in a while, fail for no reason.  Everything should cope.
3280 	 */
3281 	if (spa_get_random(10000) == 0) {
3282 		dprintf("forcing random failure\n");
3283 		return (ERESTART);
3284 	}
3285 #endif
3286 	if (reserve > arc_c/4 && !arc_no_grow)
3287 		arc_c = MIN(arc_c_max, reserve * 4);
3288 	if (reserve > arc_c)
3289 		return (ENOMEM);
3290 
3291 	/*
3292 	 * Writes will, almost always, require additional memory allocations
3293 	 * in order to compress/encrypt/etc the data.  We therefor need to
3294 	 * make sure that there is sufficient available memory for this.
3295 	 */
3296 	if (error = arc_memory_throttle(reserve, txg))
3297 		return (error);
3298 
3299 	/*
3300 	 * Throttle writes when the amount of dirty data in the cache
3301 	 * gets too large.  We try to keep the cache less than half full
3302 	 * of dirty blocks so that our sync times don't grow too large.
3303 	 * Note: if two requests come in concurrently, we might let them
3304 	 * both succeed, when one of them should fail.  Not a huge deal.
3305 	 */
3306 	if (reserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 &&
3307 	    arc_anon->arcs_size > arc_c / 4) {
3308 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3309 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3310 		    arc_tempreserve>>10,
3311 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3312 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3313 		    reserve>>10, arc_c>>10);
3314 		return (ERESTART);
3315 	}
3316 	atomic_add_64(&arc_tempreserve, reserve);
3317 	return (0);
3318 }
3319 
3320 void
3321 arc_init(void)
3322 {
3323 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3324 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3325 
3326 	/* Convert seconds to clock ticks */
3327 	arc_min_prefetch_lifespan = 1 * hz;
3328 
3329 	/* Start out with 1/8 of all memory */
3330 	arc_c = physmem * PAGESIZE / 8;
3331 
3332 #ifdef _KERNEL
3333 	/*
3334 	 * On architectures where the physical memory can be larger
3335 	 * than the addressable space (intel in 32-bit mode), we may
3336 	 * need to limit the cache to 1/8 of VM size.
3337 	 */
3338 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3339 #endif
3340 
3341 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3342 	arc_c_min = MAX(arc_c / 4, 64<<20);
3343 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3344 	if (arc_c * 8 >= 1<<30)
3345 		arc_c_max = (arc_c * 8) - (1<<30);
3346 	else
3347 		arc_c_max = arc_c_min;
3348 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3349 
3350 	/*
3351 	 * Allow the tunables to override our calculations if they are
3352 	 * reasonable (ie. over 64MB)
3353 	 */
3354 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3355 		arc_c_max = zfs_arc_max;
3356 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3357 		arc_c_min = zfs_arc_min;
3358 
3359 	arc_c = arc_c_max;
3360 	arc_p = (arc_c >> 1);
3361 
3362 	/* limit meta-data to 1/4 of the arc capacity */
3363 	arc_meta_limit = arc_c_max / 4;
3364 
3365 	/* Allow the tunable to override if it is reasonable */
3366 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3367 		arc_meta_limit = zfs_arc_meta_limit;
3368 
3369 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3370 		arc_c_min = arc_meta_limit / 2;
3371 
3372 	/* if kmem_flags are set, lets try to use less memory */
3373 	if (kmem_debugging())
3374 		arc_c = arc_c / 2;
3375 	if (arc_c < arc_c_min)
3376 		arc_c = arc_c_min;
3377 
3378 	arc_anon = &ARC_anon;
3379 	arc_mru = &ARC_mru;
3380 	arc_mru_ghost = &ARC_mru_ghost;
3381 	arc_mfu = &ARC_mfu;
3382 	arc_mfu_ghost = &ARC_mfu_ghost;
3383 	arc_l2c_only = &ARC_l2c_only;
3384 	arc_size = 0;
3385 
3386 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3387 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3388 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3389 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3390 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3391 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3392 
3393 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3394 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3395 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3396 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3397 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3398 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3399 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3400 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3401 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3402 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3403 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3404 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3405 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3406 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3407 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3408 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3409 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3410 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3411 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3412 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3413 
3414 	buf_init();
3415 
3416 	arc_thread_exit = 0;
3417 	arc_eviction_list = NULL;
3418 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3419 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3420 
3421 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3422 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3423 
3424 	if (arc_ksp != NULL) {
3425 		arc_ksp->ks_data = &arc_stats;
3426 		kstat_install(arc_ksp);
3427 	}
3428 
3429 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3430 	    TS_RUN, minclsyspri);
3431 
3432 	arc_dead = FALSE;
3433 	arc_warm = B_FALSE;
3434 
3435 	if (zfs_write_limit_max == 0)
3436 		zfs_write_limit_max = physmem * PAGESIZE >>
3437 		    zfs_write_limit_shift;
3438 	else
3439 		zfs_write_limit_shift = 0;
3440 }
3441 
3442 void
3443 arc_fini(void)
3444 {
3445 	mutex_enter(&arc_reclaim_thr_lock);
3446 	arc_thread_exit = 1;
3447 	while (arc_thread_exit != 0)
3448 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3449 	mutex_exit(&arc_reclaim_thr_lock);
3450 
3451 	arc_flush(NULL);
3452 
3453 	arc_dead = TRUE;
3454 
3455 	if (arc_ksp != NULL) {
3456 		kstat_delete(arc_ksp);
3457 		arc_ksp = NULL;
3458 	}
3459 
3460 	mutex_destroy(&arc_eviction_mtx);
3461 	mutex_destroy(&arc_reclaim_thr_lock);
3462 	cv_destroy(&arc_reclaim_thr_cv);
3463 
3464 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3465 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3466 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3467 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3468 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3469 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3470 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3471 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3472 
3473 	mutex_destroy(&arc_anon->arcs_mtx);
3474 	mutex_destroy(&arc_mru->arcs_mtx);
3475 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3476 	mutex_destroy(&arc_mfu->arcs_mtx);
3477 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3478 
3479 	buf_fini();
3480 }
3481 
3482 /*
3483  * Level 2 ARC
3484  *
3485  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3486  * It uses dedicated storage devices to hold cached data, which are populated
3487  * using large infrequent writes.  The main role of this cache is to boost
3488  * the performance of random read workloads.  The intended L2ARC devices
3489  * include short-stroked disks, solid state disks, and other media with
3490  * substantially faster read latency than disk.
3491  *
3492  *                 +-----------------------+
3493  *                 |         ARC           |
3494  *                 +-----------------------+
3495  *                    |         ^     ^
3496  *                    |         |     |
3497  *      l2arc_feed_thread()    arc_read()
3498  *                    |         |     |
3499  *                    |  l2arc read   |
3500  *                    V         |     |
3501  *               +---------------+    |
3502  *               |     L2ARC     |    |
3503  *               +---------------+    |
3504  *                   |    ^           |
3505  *          l2arc_write() |           |
3506  *                   |    |           |
3507  *                   V    |           |
3508  *                 +-------+      +-------+
3509  *                 | vdev  |      | vdev  |
3510  *                 | cache |      | cache |
3511  *                 +-------+      +-------+
3512  *                 +=========+     .-----.
3513  *                 :  L2ARC  :    |-_____-|
3514  *                 : devices :    | Disks |
3515  *                 +=========+    `-_____-'
3516  *
3517  * Read requests are satisfied from the following sources, in order:
3518  *
3519  *	1) ARC
3520  *	2) vdev cache of L2ARC devices
3521  *	3) L2ARC devices
3522  *	4) vdev cache of disks
3523  *	5) disks
3524  *
3525  * Some L2ARC device types exhibit extremely slow write performance.
3526  * To accommodate for this there are some significant differences between
3527  * the L2ARC and traditional cache design:
3528  *
3529  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3530  * the ARC behave as usual, freeing buffers and placing headers on ghost
3531  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3532  * this would add inflated write latencies for all ARC memory pressure.
3533  *
3534  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3535  * It does this by periodically scanning buffers from the eviction-end of
3536  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3537  * not already there.  It scans until a headroom of buffers is satisfied,
3538  * which itself is a buffer for ARC eviction.  The thread that does this is
3539  * l2arc_feed_thread(), illustrated below; example sizes are included to
3540  * provide a better sense of ratio than this diagram:
3541  *
3542  *	       head -->                        tail
3543  *	        +---------------------+----------+
3544  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3545  *	        +---------------------+----------+   |   o L2ARC eligible
3546  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3547  *	        +---------------------+----------+   |
3548  *	             15.9 Gbytes      ^ 32 Mbytes    |
3549  *	                           headroom          |
3550  *	                                      l2arc_feed_thread()
3551  *	                                             |
3552  *	                 l2arc write hand <--[oooo]--'
3553  *	                         |           8 Mbyte
3554  *	                         |          write max
3555  *	                         V
3556  *		  +==============================+
3557  *	L2ARC dev |####|#|###|###|    |####| ... |
3558  *	          +==============================+
3559  *	                     32 Gbytes
3560  *
3561  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3562  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3563  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3564  * safe to say that this is an uncommon case, since buffers at the end of
3565  * the ARC lists have moved there due to inactivity.
3566  *
3567  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3568  * then the L2ARC simply misses copying some buffers.  This serves as a
3569  * pressure valve to prevent heavy read workloads from both stalling the ARC
3570  * with waits and clogging the L2ARC with writes.  This also helps prevent
3571  * the potential for the L2ARC to churn if it attempts to cache content too
3572  * quickly, such as during backups of the entire pool.
3573  *
3574  * 5. After system boot and before the ARC has filled main memory, there are
3575  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3576  * lists can remain mostly static.  Instead of searching from tail of these
3577  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3578  * for eligible buffers, greatly increasing its chance of finding them.
3579  *
3580  * The L2ARC device write speed is also boosted during this time so that
3581  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3582  * there are no L2ARC reads, and no fear of degrading read performance
3583  * through increased writes.
3584  *
3585  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3586  * the vdev queue can aggregate them into larger and fewer writes.  Each
3587  * device is written to in a rotor fashion, sweeping writes through
3588  * available space then repeating.
3589  *
3590  * 7. The L2ARC does not store dirty content.  It never needs to flush
3591  * write buffers back to disk based storage.
3592  *
3593  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3594  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3595  *
3596  * The performance of the L2ARC can be tweaked by a number of tunables, which
3597  * may be necessary for different workloads:
3598  *
3599  *	l2arc_write_max		max write bytes per interval
3600  *	l2arc_write_boost	extra write bytes during device warmup
3601  *	l2arc_noprefetch	skip caching prefetched buffers
3602  *	l2arc_headroom		number of max device writes to precache
3603  *	l2arc_feed_secs		seconds between L2ARC writing
3604  *
3605  * Tunables may be removed or added as future performance improvements are
3606  * integrated, and also may become zpool properties.
3607  */
3608 
3609 static void
3610 l2arc_hdr_stat_add(void)
3611 {
3612 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3613 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3614 }
3615 
3616 static void
3617 l2arc_hdr_stat_remove(void)
3618 {
3619 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3620 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3621 }
3622 
3623 /*
3624  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3625  * If a device is returned, this also returns holding the spa config lock.
3626  */
3627 static l2arc_dev_t *
3628 l2arc_dev_get_next(void)
3629 {
3630 	l2arc_dev_t *first, *next = NULL;
3631 
3632 	/*
3633 	 * Lock out the removal of spas (spa_namespace_lock), then removal
3634 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
3635 	 * both locks will be dropped and a spa config lock held instead.
3636 	 */
3637 	mutex_enter(&spa_namespace_lock);
3638 	mutex_enter(&l2arc_dev_mtx);
3639 
3640 	/* if there are no vdevs, there is nothing to do */
3641 	if (l2arc_ndev == 0)
3642 		goto out;
3643 
3644 	first = NULL;
3645 	next = l2arc_dev_last;
3646 	do {
3647 		/* loop around the list looking for a non-faulted vdev */
3648 		if (next == NULL) {
3649 			next = list_head(l2arc_dev_list);
3650 		} else {
3651 			next = list_next(l2arc_dev_list, next);
3652 			if (next == NULL)
3653 				next = list_head(l2arc_dev_list);
3654 		}
3655 
3656 		/* if we have come back to the start, bail out */
3657 		if (first == NULL)
3658 			first = next;
3659 		else if (next == first)
3660 			break;
3661 
3662 	} while (vdev_is_dead(next->l2ad_vdev));
3663 
3664 	/* if we were unable to find any usable vdevs, return NULL */
3665 	if (vdev_is_dead(next->l2ad_vdev))
3666 		next = NULL;
3667 
3668 	l2arc_dev_last = next;
3669 
3670 out:
3671 	mutex_exit(&l2arc_dev_mtx);
3672 
3673 	/*
3674 	 * Grab the config lock to prevent the 'next' device from being
3675 	 * removed while we are writing to it.
3676 	 */
3677 	if (next != NULL)
3678 		spa_config_enter(next->l2ad_spa, RW_READER, next);
3679 	mutex_exit(&spa_namespace_lock);
3680 
3681 	return (next);
3682 }
3683 
3684 /*
3685  * Free buffers that were tagged for destruction.
3686  */
3687 static void
3688 l2arc_do_free_on_write()
3689 {
3690 	list_t *buflist;
3691 	l2arc_data_free_t *df, *df_prev;
3692 
3693 	mutex_enter(&l2arc_free_on_write_mtx);
3694 	buflist = l2arc_free_on_write;
3695 
3696 	for (df = list_tail(buflist); df; df = df_prev) {
3697 		df_prev = list_prev(buflist, df);
3698 		ASSERT(df->l2df_data != NULL);
3699 		ASSERT(df->l2df_func != NULL);
3700 		df->l2df_func(df->l2df_data, df->l2df_size);
3701 		list_remove(buflist, df);
3702 		kmem_free(df, sizeof (l2arc_data_free_t));
3703 	}
3704 
3705 	mutex_exit(&l2arc_free_on_write_mtx);
3706 }
3707 
3708 /*
3709  * A write to a cache device has completed.  Update all headers to allow
3710  * reads from these buffers to begin.
3711  */
3712 static void
3713 l2arc_write_done(zio_t *zio)
3714 {
3715 	l2arc_write_callback_t *cb;
3716 	l2arc_dev_t *dev;
3717 	list_t *buflist;
3718 	arc_buf_hdr_t *head, *ab, *ab_prev;
3719 	l2arc_buf_hdr_t *abl2;
3720 	kmutex_t *hash_lock;
3721 
3722 	cb = zio->io_private;
3723 	ASSERT(cb != NULL);
3724 	dev = cb->l2wcb_dev;
3725 	ASSERT(dev != NULL);
3726 	head = cb->l2wcb_head;
3727 	ASSERT(head != NULL);
3728 	buflist = dev->l2ad_buflist;
3729 	ASSERT(buflist != NULL);
3730 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3731 	    l2arc_write_callback_t *, cb);
3732 
3733 	if (zio->io_error != 0)
3734 		ARCSTAT_BUMP(arcstat_l2_writes_error);
3735 
3736 	mutex_enter(&l2arc_buflist_mtx);
3737 
3738 	/*
3739 	 * All writes completed, or an error was hit.
3740 	 */
3741 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3742 		ab_prev = list_prev(buflist, ab);
3743 
3744 		hash_lock = HDR_LOCK(ab);
3745 		if (!mutex_tryenter(hash_lock)) {
3746 			/*
3747 			 * This buffer misses out.  It may be in a stage
3748 			 * of eviction.  Its ARC_L2_WRITING flag will be
3749 			 * left set, denying reads to this buffer.
3750 			 */
3751 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3752 			continue;
3753 		}
3754 
3755 		if (zio->io_error != 0) {
3756 			/*
3757 			 * Error - drop L2ARC entry.
3758 			 */
3759 			list_remove(buflist, ab);
3760 			abl2 = ab->b_l2hdr;
3761 			ab->b_l2hdr = NULL;
3762 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3763 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3764 		}
3765 
3766 		/*
3767 		 * Allow ARC to begin reads to this L2ARC entry.
3768 		 */
3769 		ab->b_flags &= ~ARC_L2_WRITING;
3770 
3771 		mutex_exit(hash_lock);
3772 	}
3773 
3774 	atomic_inc_64(&l2arc_writes_done);
3775 	list_remove(buflist, head);
3776 	kmem_cache_free(hdr_cache, head);
3777 	mutex_exit(&l2arc_buflist_mtx);
3778 
3779 	l2arc_do_free_on_write();
3780 
3781 	kmem_free(cb, sizeof (l2arc_write_callback_t));
3782 }
3783 
3784 /*
3785  * A read to a cache device completed.  Validate buffer contents before
3786  * handing over to the regular ARC routines.
3787  */
3788 static void
3789 l2arc_read_done(zio_t *zio)
3790 {
3791 	l2arc_read_callback_t *cb;
3792 	arc_buf_hdr_t *hdr;
3793 	arc_buf_t *buf;
3794 	zio_t *rzio;
3795 	kmutex_t *hash_lock;
3796 	int equal;
3797 
3798 	cb = zio->io_private;
3799 	ASSERT(cb != NULL);
3800 	buf = cb->l2rcb_buf;
3801 	ASSERT(buf != NULL);
3802 	hdr = buf->b_hdr;
3803 	ASSERT(hdr != NULL);
3804 
3805 	hash_lock = HDR_LOCK(hdr);
3806 	mutex_enter(hash_lock);
3807 
3808 	/*
3809 	 * Check this survived the L2ARC journey.
3810 	 */
3811 	equal = arc_cksum_equal(buf);
3812 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
3813 		mutex_exit(hash_lock);
3814 		zio->io_private = buf;
3815 		arc_read_done(zio);
3816 	} else {
3817 		mutex_exit(hash_lock);
3818 		/*
3819 		 * Buffer didn't survive caching.  Increment stats and
3820 		 * reissue to the original storage device.
3821 		 */
3822 		if (zio->io_error != 0) {
3823 			ARCSTAT_BUMP(arcstat_l2_io_error);
3824 		} else {
3825 			zio->io_error = EIO;
3826 		}
3827 		if (!equal)
3828 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
3829 
3830 		if (zio->io_waiter == NULL) {
3831 			/*
3832 			 * Let the resent I/O call arc_read_done() instead.
3833 			 */
3834 			zio->io_done = NULL;
3835 			zio->io_flags &= ~ZIO_FLAG_DONT_CACHE;
3836 
3837 			rzio = zio_read(NULL, cb->l2rcb_spa, &cb->l2rcb_bp,
3838 			    buf->b_data, zio->io_size, arc_read_done, buf,
3839 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb);
3840 
3841 			(void) zio_nowait(rzio);
3842 		}
3843 	}
3844 
3845 	kmem_free(cb, sizeof (l2arc_read_callback_t));
3846 }
3847 
3848 /*
3849  * This is the list priority from which the L2ARC will search for pages to
3850  * cache.  This is used within loops (0..3) to cycle through lists in the
3851  * desired order.  This order can have a significant effect on cache
3852  * performance.
3853  *
3854  * Currently the metadata lists are hit first, MFU then MRU, followed by
3855  * the data lists.  This function returns a locked list, and also returns
3856  * the lock pointer.
3857  */
3858 static list_t *
3859 l2arc_list_locked(int list_num, kmutex_t **lock)
3860 {
3861 	list_t *list;
3862 
3863 	ASSERT(list_num >= 0 && list_num <= 3);
3864 
3865 	switch (list_num) {
3866 	case 0:
3867 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
3868 		*lock = &arc_mfu->arcs_mtx;
3869 		break;
3870 	case 1:
3871 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
3872 		*lock = &arc_mru->arcs_mtx;
3873 		break;
3874 	case 2:
3875 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
3876 		*lock = &arc_mfu->arcs_mtx;
3877 		break;
3878 	case 3:
3879 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
3880 		*lock = &arc_mru->arcs_mtx;
3881 		break;
3882 	}
3883 
3884 	ASSERT(!(MUTEX_HELD(*lock)));
3885 	mutex_enter(*lock);
3886 	return (list);
3887 }
3888 
3889 /*
3890  * Evict buffers from the device write hand to the distance specified in
3891  * bytes.  This distance may span populated buffers, it may span nothing.
3892  * This is clearing a region on the L2ARC device ready for writing.
3893  * If the 'all' boolean is set, every buffer is evicted.
3894  */
3895 static void
3896 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
3897 {
3898 	list_t *buflist;
3899 	l2arc_buf_hdr_t *abl2;
3900 	arc_buf_hdr_t *ab, *ab_prev;
3901 	kmutex_t *hash_lock;
3902 	uint64_t taddr;
3903 
3904 	buflist = dev->l2ad_buflist;
3905 
3906 	if (buflist == NULL)
3907 		return;
3908 
3909 	if (!all && dev->l2ad_first) {
3910 		/*
3911 		 * This is the first sweep through the device.  There is
3912 		 * nothing to evict.
3913 		 */
3914 		return;
3915 	}
3916 
3917 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
3918 		/*
3919 		 * When nearing the end of the device, evict to the end
3920 		 * before the device write hand jumps to the start.
3921 		 */
3922 		taddr = dev->l2ad_end;
3923 	} else {
3924 		taddr = dev->l2ad_hand + distance;
3925 	}
3926 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
3927 	    uint64_t, taddr, boolean_t, all);
3928 
3929 top:
3930 	mutex_enter(&l2arc_buflist_mtx);
3931 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
3932 		ab_prev = list_prev(buflist, ab);
3933 
3934 		hash_lock = HDR_LOCK(ab);
3935 		if (!mutex_tryenter(hash_lock)) {
3936 			/*
3937 			 * Missed the hash lock.  Retry.
3938 			 */
3939 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
3940 			mutex_exit(&l2arc_buflist_mtx);
3941 			mutex_enter(hash_lock);
3942 			mutex_exit(hash_lock);
3943 			goto top;
3944 		}
3945 
3946 		if (HDR_L2_WRITE_HEAD(ab)) {
3947 			/*
3948 			 * We hit a write head node.  Leave it for
3949 			 * l2arc_write_done().
3950 			 */
3951 			list_remove(buflist, ab);
3952 			mutex_exit(hash_lock);
3953 			continue;
3954 		}
3955 
3956 		if (!all && ab->b_l2hdr != NULL &&
3957 		    (ab->b_l2hdr->b_daddr > taddr ||
3958 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
3959 			/*
3960 			 * We've evicted to the target address,
3961 			 * or the end of the device.
3962 			 */
3963 			mutex_exit(hash_lock);
3964 			break;
3965 		}
3966 
3967 		if (HDR_FREE_IN_PROGRESS(ab)) {
3968 			/*
3969 			 * Already on the path to destruction.
3970 			 */
3971 			mutex_exit(hash_lock);
3972 			continue;
3973 		}
3974 
3975 		if (ab->b_state == arc_l2c_only) {
3976 			ASSERT(!HDR_L2_READING(ab));
3977 			/*
3978 			 * This doesn't exist in the ARC.  Destroy.
3979 			 * arc_hdr_destroy() will call list_remove()
3980 			 * and decrement arcstat_l2_size.
3981 			 */
3982 			arc_change_state(arc_anon, ab, hash_lock);
3983 			arc_hdr_destroy(ab);
3984 		} else {
3985 			/*
3986 			 * Invalidate issued or about to be issued
3987 			 * reads, since we may be about to write
3988 			 * over this location.
3989 			 */
3990 			if (HDR_L2_READING(ab)) {
3991 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
3992 				ab->b_flags |= ARC_L2_EVICTED;
3993 			}
3994 
3995 			/*
3996 			 * Tell ARC this no longer exists in L2ARC.
3997 			 */
3998 			if (ab->b_l2hdr != NULL) {
3999 				abl2 = ab->b_l2hdr;
4000 				ab->b_l2hdr = NULL;
4001 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4002 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4003 			}
4004 			list_remove(buflist, ab);
4005 
4006 			/*
4007 			 * This may have been leftover after a
4008 			 * failed write.
4009 			 */
4010 			ab->b_flags &= ~ARC_L2_WRITING;
4011 		}
4012 		mutex_exit(hash_lock);
4013 	}
4014 	mutex_exit(&l2arc_buflist_mtx);
4015 
4016 	spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict));
4017 	dev->l2ad_evict = taddr;
4018 }
4019 
4020 /*
4021  * Find and write ARC buffers to the L2ARC device.
4022  *
4023  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4024  * for reading until they have completed writing.
4025  */
4026 static void
4027 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4028 {
4029 	arc_buf_hdr_t *ab, *ab_prev, *head;
4030 	l2arc_buf_hdr_t *hdrl2;
4031 	list_t *list;
4032 	uint64_t passed_sz, write_sz, buf_sz, headroom;
4033 	void *buf_data;
4034 	kmutex_t *hash_lock, *list_lock;
4035 	boolean_t have_lock, full;
4036 	l2arc_write_callback_t *cb;
4037 	zio_t *pio, *wzio;
4038 
4039 	ASSERT(dev->l2ad_vdev != NULL);
4040 
4041 	pio = NULL;
4042 	write_sz = 0;
4043 	full = B_FALSE;
4044 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4045 	head->b_flags |= ARC_L2_WRITE_HEAD;
4046 
4047 	/*
4048 	 * Copy buffers for L2ARC writing.
4049 	 */
4050 	mutex_enter(&l2arc_buflist_mtx);
4051 	for (int try = 0; try <= 3; try++) {
4052 		list = l2arc_list_locked(try, &list_lock);
4053 		passed_sz = 0;
4054 
4055 		/*
4056 		 * L2ARC fast warmup.
4057 		 *
4058 		 * Until the ARC is warm and starts to evict, read from the
4059 		 * head of the ARC lists rather than the tail.
4060 		 */
4061 		headroom = target_sz * l2arc_headroom;
4062 		if (arc_warm == B_FALSE)
4063 			ab = list_head(list);
4064 		else
4065 			ab = list_tail(list);
4066 
4067 		for (; ab; ab = ab_prev) {
4068 			if (arc_warm == B_FALSE)
4069 				ab_prev = list_next(list, ab);
4070 			else
4071 				ab_prev = list_prev(list, ab);
4072 
4073 			hash_lock = HDR_LOCK(ab);
4074 			have_lock = MUTEX_HELD(hash_lock);
4075 			if (!have_lock && !mutex_tryenter(hash_lock)) {
4076 				/*
4077 				 * Skip this buffer rather than waiting.
4078 				 */
4079 				continue;
4080 			}
4081 
4082 			passed_sz += ab->b_size;
4083 			if (passed_sz > headroom) {
4084 				/*
4085 				 * Searched too far.
4086 				 */
4087 				mutex_exit(hash_lock);
4088 				break;
4089 			}
4090 
4091 			if (ab->b_spa != spa) {
4092 				mutex_exit(hash_lock);
4093 				continue;
4094 			}
4095 
4096 			if (ab->b_l2hdr != NULL) {
4097 				/*
4098 				 * Already in L2ARC.
4099 				 */
4100 				mutex_exit(hash_lock);
4101 				continue;
4102 			}
4103 
4104 			if (HDR_IO_IN_PROGRESS(ab) || HDR_DONT_L2CACHE(ab)) {
4105 				mutex_exit(hash_lock);
4106 				continue;
4107 			}
4108 
4109 			if ((write_sz + ab->b_size) > target_sz) {
4110 				full = B_TRUE;
4111 				mutex_exit(hash_lock);
4112 				break;
4113 			}
4114 
4115 			if (ab->b_buf == NULL) {
4116 				DTRACE_PROBE1(l2arc__buf__null, void *, ab);
4117 				mutex_exit(hash_lock);
4118 				continue;
4119 			}
4120 
4121 			if (pio == NULL) {
4122 				/*
4123 				 * Insert a dummy header on the buflist so
4124 				 * l2arc_write_done() can find where the
4125 				 * write buffers begin without searching.
4126 				 */
4127 				list_insert_head(dev->l2ad_buflist, head);
4128 
4129 				cb = kmem_alloc(
4130 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4131 				cb->l2wcb_dev = dev;
4132 				cb->l2wcb_head = head;
4133 				pio = zio_root(spa, l2arc_write_done, cb,
4134 				    ZIO_FLAG_CANFAIL);
4135 			}
4136 
4137 			/*
4138 			 * Create and add a new L2ARC header.
4139 			 */
4140 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4141 			hdrl2->b_dev = dev;
4142 			hdrl2->b_daddr = dev->l2ad_hand;
4143 
4144 			ab->b_flags |= ARC_L2_WRITING;
4145 			ab->b_l2hdr = hdrl2;
4146 			list_insert_head(dev->l2ad_buflist, ab);
4147 			buf_data = ab->b_buf->b_data;
4148 			buf_sz = ab->b_size;
4149 
4150 			/*
4151 			 * Compute and store the buffer cksum before
4152 			 * writing.  On debug the cksum is verified first.
4153 			 */
4154 			arc_cksum_verify(ab->b_buf);
4155 			arc_cksum_compute(ab->b_buf, B_TRUE);
4156 
4157 			mutex_exit(hash_lock);
4158 
4159 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4160 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4161 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4162 			    ZIO_FLAG_CANFAIL, B_FALSE);
4163 
4164 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4165 			    zio_t *, wzio);
4166 			(void) zio_nowait(wzio);
4167 
4168 			write_sz += buf_sz;
4169 			dev->l2ad_hand += buf_sz;
4170 		}
4171 
4172 		mutex_exit(list_lock);
4173 
4174 		if (full == B_TRUE)
4175 			break;
4176 	}
4177 	mutex_exit(&l2arc_buflist_mtx);
4178 
4179 	if (pio == NULL) {
4180 		ASSERT3U(write_sz, ==, 0);
4181 		kmem_cache_free(hdr_cache, head);
4182 		return;
4183 	}
4184 
4185 	ASSERT3U(write_sz, <=, target_sz);
4186 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4187 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4188 	spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz);
4189 
4190 	/*
4191 	 * Bump device hand to the device start if it is approaching the end.
4192 	 * l2arc_evict() will already have evicted ahead for this case.
4193 	 */
4194 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4195 		spa_l2cache_space_update(dev->l2ad_vdev, 0,
4196 		    dev->l2ad_end - dev->l2ad_hand);
4197 		dev->l2ad_hand = dev->l2ad_start;
4198 		dev->l2ad_evict = dev->l2ad_start;
4199 		dev->l2ad_first = B_FALSE;
4200 	}
4201 
4202 	(void) zio_wait(pio);
4203 }
4204 
4205 /*
4206  * This thread feeds the L2ARC at regular intervals.  This is the beating
4207  * heart of the L2ARC.
4208  */
4209 static void
4210 l2arc_feed_thread(void)
4211 {
4212 	callb_cpr_t cpr;
4213 	l2arc_dev_t *dev;
4214 	spa_t *spa;
4215 	uint64_t size;
4216 
4217 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4218 
4219 	mutex_enter(&l2arc_feed_thr_lock);
4220 
4221 	while (l2arc_thread_exit == 0) {
4222 		/*
4223 		 * Pause for l2arc_feed_secs seconds between writes.
4224 		 */
4225 		CALLB_CPR_SAFE_BEGIN(&cpr);
4226 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4227 		    lbolt + (hz * l2arc_feed_secs));
4228 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4229 
4230 		/*
4231 		 * Quick check for L2ARC devices.
4232 		 */
4233 		mutex_enter(&l2arc_dev_mtx);
4234 		if (l2arc_ndev == 0) {
4235 			mutex_exit(&l2arc_dev_mtx);
4236 			continue;
4237 		}
4238 		mutex_exit(&l2arc_dev_mtx);
4239 
4240 		/*
4241 		 * This selects the next l2arc device to write to, and in
4242 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4243 		 * will return NULL if there are now no l2arc devices or if
4244 		 * they are all faulted.
4245 		 *
4246 		 * If a device is returned, its spa's config lock is also
4247 		 * held to prevent device removal.  l2arc_dev_get_next()
4248 		 * will grab and release l2arc_dev_mtx.
4249 		 */
4250 		if ((dev = l2arc_dev_get_next()) == NULL)
4251 			continue;
4252 
4253 		spa = dev->l2ad_spa;
4254 		ASSERT(spa != NULL);
4255 
4256 		/*
4257 		 * Avoid contributing to memory pressure.
4258 		 */
4259 		if (arc_reclaim_needed()) {
4260 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4261 			spa_config_exit(spa, dev);
4262 			continue;
4263 		}
4264 
4265 		ARCSTAT_BUMP(arcstat_l2_feeds);
4266 
4267 		size = dev->l2ad_write;
4268 		if (arc_warm == B_FALSE)
4269 			size += dev->l2ad_boost;
4270 
4271 		/*
4272 		 * Evict L2ARC buffers that will be overwritten.
4273 		 */
4274 		l2arc_evict(dev, size, B_FALSE);
4275 
4276 		/*
4277 		 * Write ARC buffers.
4278 		 */
4279 		l2arc_write_buffers(spa, dev, size);
4280 		spa_config_exit(spa, dev);
4281 	}
4282 
4283 	l2arc_thread_exit = 0;
4284 	cv_broadcast(&l2arc_feed_thr_cv);
4285 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4286 	thread_exit();
4287 }
4288 
4289 boolean_t
4290 l2arc_vdev_present(vdev_t *vd)
4291 {
4292 	l2arc_dev_t *dev;
4293 
4294 	mutex_enter(&l2arc_dev_mtx);
4295 	for (dev = list_head(l2arc_dev_list); dev != NULL;
4296 	    dev = list_next(l2arc_dev_list, dev)) {
4297 		if (dev->l2ad_vdev == vd)
4298 			break;
4299 	}
4300 	mutex_exit(&l2arc_dev_mtx);
4301 
4302 	return (dev != NULL);
4303 }
4304 
4305 /*
4306  * Add a vdev for use by the L2ARC.  By this point the spa has already
4307  * validated the vdev and opened it.
4308  */
4309 void
4310 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end)
4311 {
4312 	l2arc_dev_t *adddev;
4313 
4314 	ASSERT(!l2arc_vdev_present(vd));
4315 
4316 	/*
4317 	 * Create a new l2arc device entry.
4318 	 */
4319 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4320 	adddev->l2ad_spa = spa;
4321 	adddev->l2ad_vdev = vd;
4322 	adddev->l2ad_write = l2arc_write_max;
4323 	adddev->l2ad_boost = l2arc_write_boost;
4324 	adddev->l2ad_start = start;
4325 	adddev->l2ad_end = end;
4326 	adddev->l2ad_hand = adddev->l2ad_start;
4327 	adddev->l2ad_evict = adddev->l2ad_start;
4328 	adddev->l2ad_first = B_TRUE;
4329 	ASSERT3U(adddev->l2ad_write, >, 0);
4330 
4331 	/*
4332 	 * This is a list of all ARC buffers that are still valid on the
4333 	 * device.
4334 	 */
4335 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4336 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4337 	    offsetof(arc_buf_hdr_t, b_l2node));
4338 
4339 	spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0);
4340 
4341 	/*
4342 	 * Add device to global list
4343 	 */
4344 	mutex_enter(&l2arc_dev_mtx);
4345 	list_insert_head(l2arc_dev_list, adddev);
4346 	atomic_inc_64(&l2arc_ndev);
4347 	mutex_exit(&l2arc_dev_mtx);
4348 }
4349 
4350 /*
4351  * Remove a vdev from the L2ARC.
4352  */
4353 void
4354 l2arc_remove_vdev(vdev_t *vd)
4355 {
4356 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4357 
4358 	/*
4359 	 * Find the device by vdev
4360 	 */
4361 	mutex_enter(&l2arc_dev_mtx);
4362 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4363 		nextdev = list_next(l2arc_dev_list, dev);
4364 		if (vd == dev->l2ad_vdev) {
4365 			remdev = dev;
4366 			break;
4367 		}
4368 	}
4369 	ASSERT(remdev != NULL);
4370 
4371 	/*
4372 	 * Remove device from global list
4373 	 */
4374 	list_remove(l2arc_dev_list, remdev);
4375 	l2arc_dev_last = NULL;		/* may have been invalidated */
4376 	atomic_dec_64(&l2arc_ndev);
4377 	mutex_exit(&l2arc_dev_mtx);
4378 
4379 	/*
4380 	 * Clear all buflists and ARC references.  L2ARC device flush.
4381 	 */
4382 	l2arc_evict(remdev, 0, B_TRUE);
4383 	list_destroy(remdev->l2ad_buflist);
4384 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4385 	kmem_free(remdev, sizeof (l2arc_dev_t));
4386 }
4387 
4388 void
4389 l2arc_init()
4390 {
4391 	l2arc_thread_exit = 0;
4392 	l2arc_ndev = 0;
4393 	l2arc_writes_sent = 0;
4394 	l2arc_writes_done = 0;
4395 
4396 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4397 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4398 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4399 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4400 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4401 
4402 	l2arc_dev_list = &L2ARC_dev_list;
4403 	l2arc_free_on_write = &L2ARC_free_on_write;
4404 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4405 	    offsetof(l2arc_dev_t, l2ad_node));
4406 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4407 	    offsetof(l2arc_data_free_t, l2df_list_node));
4408 
4409 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4410 	    TS_RUN, minclsyspri);
4411 }
4412 
4413 void
4414 l2arc_fini()
4415 {
4416 	/*
4417 	 * This is called from dmu_fini(), which is called from spa_fini();
4418 	 * Because of this, we can assume that all l2arc devices have
4419 	 * already been removed when the pools themselves were removed.
4420 	 */
4421 
4422 	mutex_enter(&l2arc_feed_thr_lock);
4423 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4424 	l2arc_thread_exit = 1;
4425 	while (l2arc_thread_exit != 0)
4426 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4427 	mutex_exit(&l2arc_feed_thr_lock);
4428 
4429 	l2arc_do_free_on_write();
4430 
4431 	mutex_destroy(&l2arc_feed_thr_lock);
4432 	cv_destroy(&l2arc_feed_thr_cv);
4433 	mutex_destroy(&l2arc_dev_mtx);
4434 	mutex_destroy(&l2arc_buflist_mtx);
4435 	mutex_destroy(&l2arc_free_on_write_mtx);
4436 
4437 	list_destroy(l2arc_dev_list);
4438 	list_destroy(l2arc_free_on_write);
4439 }
4440