1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * DVA-based Adjustable Relpacement Cache 30 * 31 * While much of the theory of operation used here is 32 * based on the self-tuning, low overhead replacement cache 33 * presented by Megiddo and Modha at FAST 2003, there are some 34 * significant differences: 35 * 36 * 1. The Megiddo and Modha model assumes any page is evictable. 37 * Pages in its cache cannot be "locked" into memory. This makes 38 * the eviction algorithm simple: evict the last page in the list. 39 * This also make the performance characteristics easy to reason 40 * about. Our cache is not so simple. At any given moment, some 41 * subset of the blocks in the cache are un-evictable because we 42 * have handed out a reference to them. Blocks are only evictable 43 * when there are no external references active. This makes 44 * eviction far more problematic: we choose to evict the evictable 45 * blocks that are the "lowest" in the list. 46 * 47 * There are times when it is not possible to evict the requested 48 * space. In these circumstances we are unable to adjust the cache 49 * size. To prevent the cache growing unbounded at these times we 50 * implement a "cache throttle" that slowes the flow of new data 51 * into the cache until we can make space avaiable. 52 * 53 * 2. The Megiddo and Modha model assumes a fixed cache size. 54 * Pages are evicted when the cache is full and there is a cache 55 * miss. Our model has a variable sized cache. It grows with 56 * high use, but also tries to react to memory preasure from the 57 * operating system: decreasing its size when system memory is 58 * tight. 59 * 60 * 3. The Megiddo and Modha model assumes a fixed page size. All 61 * elements of the cache are therefor exactly the same size. So 62 * when adjusting the cache size following a cache miss, its simply 63 * a matter of choosing a single page to evict. In our model, we 64 * have variable sized cache blocks (rangeing from 512 bytes to 65 * 128K bytes). We therefor choose a set of blocks to evict to make 66 * space for a cache miss that approximates as closely as possible 67 * the space used by the new block. 68 * 69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 70 * by N. Megiddo & D. Modha, FAST 2003 71 */ 72 73 /* 74 * The locking model: 75 * 76 * A new reference to a cache buffer can be obtained in two 77 * ways: 1) via a hash table lookup using the DVA as a key, 78 * or 2) via one of the ARC lists. The arc_read() inerface 79 * uses method 1, while the internal arc algorithms for 80 * adjusting the cache use method 2. We therefor provide two 81 * types of locks: 1) the hash table lock array, and 2) the 82 * arc list locks. 83 * 84 * Buffers do not have their own mutexs, rather they rely on the 85 * hash table mutexs for the bulk of their protection (i.e. most 86 * fields in the arc_buf_hdr_t are protected by these mutexs). 87 * 88 * buf_hash_find() returns the appropriate mutex (held) when it 89 * locates the requested buffer in the hash table. It returns 90 * NULL for the mutex if the buffer was not in the table. 91 * 92 * buf_hash_remove() expects the appropriate hash mutex to be 93 * already held before it is invoked. 94 * 95 * Each arc state also has a mutex which is used to protect the 96 * buffer list associated with the state. When attempting to 97 * obtain a hash table lock while holding an arc list lock you 98 * must use: mutex_tryenter() to avoid deadlock. Also note that 99 * the active state mutex must be held before the ghost state mutex. 100 * 101 * Arc buffers may have an associated eviction callback function. 102 * This function will be invoked prior to removing the buffer (e.g. 103 * in arc_do_user_evicts()). Note however that the data associated 104 * with the buffer may be evicted prior to the callback. The callback 105 * must be made with *no locks held* (to prevent deadlock). Additionally, 106 * the users of callbacks must ensure that their private data is 107 * protected from simultaneous callbacks from arc_buf_evict() 108 * and arc_do_user_evicts(). 109 * 110 * Note that the majority of the performance stats are manipulated 111 * with atomic operations. 112 */ 113 114 #include <sys/spa.h> 115 #include <sys/zio.h> 116 #include <sys/zio_checksum.h> 117 #include <sys/zfs_context.h> 118 #include <sys/arc.h> 119 #include <sys/refcount.h> 120 #ifdef _KERNEL 121 #include <sys/vmsystm.h> 122 #include <vm/anon.h> 123 #include <sys/fs/swapnode.h> 124 #include <sys/dnlc.h> 125 #endif 126 #include <sys/callb.h> 127 128 static kmutex_t arc_reclaim_thr_lock; 129 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 130 static uint8_t arc_thread_exit; 131 132 #define ARC_REDUCE_DNLC_PERCENT 3 133 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 134 135 typedef enum arc_reclaim_strategy { 136 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 137 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 138 } arc_reclaim_strategy_t; 139 140 /* number of seconds before growing cache again */ 141 static int arc_grow_retry = 60; 142 143 /* 144 * minimum lifespan of a prefetch block in clock ticks 145 * (initialized in arc_init()) 146 */ 147 static int arc_min_prefetch_lifespan; 148 149 static int arc_dead; 150 151 /* 152 * These tunables are for performance analysis. 153 */ 154 uint64_t zfs_arc_max; 155 uint64_t zfs_arc_min; 156 157 /* 158 * Note that buffers can be on one of 5 states: 159 * ARC_anon - anonymous (discussed below) 160 * ARC_mru - recently used, currently cached 161 * ARC_mru_ghost - recentely used, no longer in cache 162 * ARC_mfu - frequently used, currently cached 163 * ARC_mfu_ghost - frequently used, no longer in cache 164 * When there are no active references to the buffer, they 165 * are linked onto one of the lists in arc. These are the 166 * only buffers that can be evicted or deleted. 167 * 168 * Anonymous buffers are buffers that are not associated with 169 * a DVA. These are buffers that hold dirty block copies 170 * before they are written to stable storage. By definition, 171 * they are "ref'd" and are considered part of arc_mru 172 * that cannot be freed. Generally, they will aquire a DVA 173 * as they are written and migrate onto the arc_mru list. 174 */ 175 176 typedef struct arc_state { 177 list_t list; /* linked list of evictable buffer in state */ 178 uint64_t lsize; /* total size of buffers in the linked list */ 179 uint64_t size; /* total size of all buffers in this state */ 180 uint64_t hits; 181 kmutex_t mtx; 182 } arc_state_t; 183 184 /* The 5 states: */ 185 static arc_state_t ARC_anon; 186 static arc_state_t ARC_mru; 187 static arc_state_t ARC_mru_ghost; 188 static arc_state_t ARC_mfu; 189 static arc_state_t ARC_mfu_ghost; 190 191 static struct arc { 192 arc_state_t *anon; 193 arc_state_t *mru; 194 arc_state_t *mru_ghost; 195 arc_state_t *mfu; 196 arc_state_t *mfu_ghost; 197 uint64_t size; /* Actual total arc size */ 198 uint64_t p; /* Target size (in bytes) of mru */ 199 uint64_t c; /* Target size of cache (in bytes) */ 200 uint64_t c_min; /* Minimum target cache size */ 201 uint64_t c_max; /* Maximum target cache size */ 202 203 /* performance stats */ 204 uint64_t hits; 205 uint64_t misses; 206 uint64_t deleted; 207 uint64_t recycle_miss; 208 uint64_t mutex_miss; 209 uint64_t evict_skip; 210 uint64_t hash_elements; 211 uint64_t hash_elements_max; 212 uint64_t hash_collisions; 213 uint64_t hash_chains; 214 uint32_t hash_chain_max; 215 216 int no_grow; /* Don't try to grow cache size */ 217 } arc; 218 219 static uint64_t arc_tempreserve; 220 221 typedef struct arc_callback arc_callback_t; 222 223 struct arc_callback { 224 arc_done_func_t *acb_done; 225 void *acb_private; 226 arc_byteswap_func_t *acb_byteswap; 227 arc_buf_t *acb_buf; 228 zio_t *acb_zio_dummy; 229 arc_callback_t *acb_next; 230 }; 231 232 struct arc_buf_hdr { 233 /* protected by hash lock */ 234 dva_t b_dva; 235 uint64_t b_birth; 236 uint64_t b_cksum0; 237 238 kmutex_t b_freeze_lock; 239 zio_cksum_t *b_freeze_cksum; 240 241 arc_buf_hdr_t *b_hash_next; 242 arc_buf_t *b_buf; 243 uint32_t b_flags; 244 uint32_t b_datacnt; 245 246 arc_callback_t *b_acb; 247 kcondvar_t b_cv; 248 249 /* immutable */ 250 arc_buf_contents_t b_type; 251 uint64_t b_size; 252 spa_t *b_spa; 253 254 /* protected by arc state mutex */ 255 arc_state_t *b_state; 256 list_node_t b_arc_node; 257 258 /* updated atomically */ 259 clock_t b_arc_access; 260 261 /* self protecting */ 262 refcount_t b_refcnt; 263 }; 264 265 static arc_buf_t *arc_eviction_list; 266 static kmutex_t arc_eviction_mtx; 267 static arc_buf_hdr_t arc_eviction_hdr; 268 static void arc_get_data_buf(arc_buf_t *buf); 269 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 270 271 #define GHOST_STATE(state) \ 272 ((state) == arc.mru_ghost || (state) == arc.mfu_ghost) 273 274 /* 275 * Private ARC flags. These flags are private ARC only flags that will show up 276 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 277 * be passed in as arc_flags in things like arc_read. However, these flags 278 * should never be passed and should only be set by ARC code. When adding new 279 * public flags, make sure not to smash the private ones. 280 */ 281 282 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 283 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 284 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 285 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 286 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 287 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 288 289 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 290 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 291 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 292 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 293 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 294 295 /* 296 * Hash table routines 297 */ 298 299 #define HT_LOCK_PAD 64 300 301 struct ht_lock { 302 kmutex_t ht_lock; 303 #ifdef _KERNEL 304 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 305 #endif 306 }; 307 308 #define BUF_LOCKS 256 309 typedef struct buf_hash_table { 310 uint64_t ht_mask; 311 arc_buf_hdr_t **ht_table; 312 struct ht_lock ht_locks[BUF_LOCKS]; 313 } buf_hash_table_t; 314 315 static buf_hash_table_t buf_hash_table; 316 317 #define BUF_HASH_INDEX(spa, dva, birth) \ 318 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 319 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 320 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 321 #define HDR_LOCK(buf) \ 322 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 323 324 uint64_t zfs_crc64_table[256]; 325 326 static uint64_t 327 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth) 328 { 329 uintptr_t spav = (uintptr_t)spa; 330 uint8_t *vdva = (uint8_t *)dva; 331 uint64_t crc = -1ULL; 332 int i; 333 334 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 335 336 for (i = 0; i < sizeof (dva_t); i++) 337 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 338 339 crc ^= (spav>>8) ^ birth; 340 341 return (crc); 342 } 343 344 #define BUF_EMPTY(buf) \ 345 ((buf)->b_dva.dva_word[0] == 0 && \ 346 (buf)->b_dva.dva_word[1] == 0 && \ 347 (buf)->b_birth == 0) 348 349 #define BUF_EQUAL(spa, dva, birth, buf) \ 350 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 351 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 352 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 353 354 static arc_buf_hdr_t * 355 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp) 356 { 357 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 358 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 359 arc_buf_hdr_t *buf; 360 361 mutex_enter(hash_lock); 362 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 363 buf = buf->b_hash_next) { 364 if (BUF_EQUAL(spa, dva, birth, buf)) { 365 *lockp = hash_lock; 366 return (buf); 367 } 368 } 369 mutex_exit(hash_lock); 370 *lockp = NULL; 371 return (NULL); 372 } 373 374 /* 375 * Insert an entry into the hash table. If there is already an element 376 * equal to elem in the hash table, then the already existing element 377 * will be returned and the new element will not be inserted. 378 * Otherwise returns NULL. 379 */ 380 static arc_buf_hdr_t * 381 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 382 { 383 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 384 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 385 arc_buf_hdr_t *fbuf; 386 uint32_t max, i; 387 388 ASSERT(!HDR_IN_HASH_TABLE(buf)); 389 *lockp = hash_lock; 390 mutex_enter(hash_lock); 391 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 392 fbuf = fbuf->b_hash_next, i++) { 393 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 394 return (fbuf); 395 } 396 397 buf->b_hash_next = buf_hash_table.ht_table[idx]; 398 buf_hash_table.ht_table[idx] = buf; 399 buf->b_flags |= ARC_IN_HASH_TABLE; 400 401 /* collect some hash table performance data */ 402 if (i > 0) { 403 atomic_add_64(&arc.hash_collisions, 1); 404 if (i == 1) 405 atomic_add_64(&arc.hash_chains, 1); 406 } 407 while (i > (max = arc.hash_chain_max) && 408 max != atomic_cas_32(&arc.hash_chain_max, max, i)) { 409 continue; 410 } 411 atomic_add_64(&arc.hash_elements, 1); 412 if (arc.hash_elements > arc.hash_elements_max) 413 atomic_add_64(&arc.hash_elements_max, 1); 414 415 return (NULL); 416 } 417 418 static void 419 buf_hash_remove(arc_buf_hdr_t *buf) 420 { 421 arc_buf_hdr_t *fbuf, **bufp; 422 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 423 424 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 425 ASSERT(HDR_IN_HASH_TABLE(buf)); 426 427 bufp = &buf_hash_table.ht_table[idx]; 428 while ((fbuf = *bufp) != buf) { 429 ASSERT(fbuf != NULL); 430 bufp = &fbuf->b_hash_next; 431 } 432 *bufp = buf->b_hash_next; 433 buf->b_hash_next = NULL; 434 buf->b_flags &= ~ARC_IN_HASH_TABLE; 435 436 /* collect some hash table performance data */ 437 atomic_add_64(&arc.hash_elements, -1); 438 if (buf_hash_table.ht_table[idx] && 439 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 440 atomic_add_64(&arc.hash_chains, -1); 441 } 442 443 /* 444 * Global data structures and functions for the buf kmem cache. 445 */ 446 static kmem_cache_t *hdr_cache; 447 static kmem_cache_t *buf_cache; 448 449 static void 450 buf_fini(void) 451 { 452 int i; 453 454 kmem_free(buf_hash_table.ht_table, 455 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 456 for (i = 0; i < BUF_LOCKS; i++) 457 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 458 kmem_cache_destroy(hdr_cache); 459 kmem_cache_destroy(buf_cache); 460 } 461 462 /* 463 * Constructor callback - called when the cache is empty 464 * and a new buf is requested. 465 */ 466 /* ARGSUSED */ 467 static int 468 hdr_cons(void *vbuf, void *unused, int kmflag) 469 { 470 arc_buf_hdr_t *buf = vbuf; 471 472 bzero(buf, sizeof (arc_buf_hdr_t)); 473 refcount_create(&buf->b_refcnt); 474 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 475 return (0); 476 } 477 478 /* 479 * Destructor callback - called when a cached buf is 480 * no longer required. 481 */ 482 /* ARGSUSED */ 483 static void 484 hdr_dest(void *vbuf, void *unused) 485 { 486 arc_buf_hdr_t *buf = vbuf; 487 488 refcount_destroy(&buf->b_refcnt); 489 cv_destroy(&buf->b_cv); 490 } 491 492 /* 493 * Reclaim callback -- invoked when memory is low. 494 */ 495 /* ARGSUSED */ 496 static void 497 hdr_recl(void *unused) 498 { 499 dprintf("hdr_recl called\n"); 500 /* 501 * umem calls the reclaim func when we destroy the buf cache, 502 * which is after we do arc_fini(). 503 */ 504 if (!arc_dead) 505 cv_signal(&arc_reclaim_thr_cv); 506 } 507 508 static void 509 buf_init(void) 510 { 511 uint64_t *ct; 512 uint64_t hsize = 1ULL << 12; 513 int i, j; 514 515 /* 516 * The hash table is big enough to fill all of physical memory 517 * with an average 64K block size. The table will take up 518 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 519 */ 520 while (hsize * 65536 < physmem * PAGESIZE) 521 hsize <<= 1; 522 retry: 523 buf_hash_table.ht_mask = hsize - 1; 524 buf_hash_table.ht_table = 525 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 526 if (buf_hash_table.ht_table == NULL) { 527 ASSERT(hsize > (1ULL << 8)); 528 hsize >>= 1; 529 goto retry; 530 } 531 532 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 533 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 534 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 535 0, NULL, NULL, NULL, NULL, NULL, 0); 536 537 for (i = 0; i < 256; i++) 538 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 539 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 540 541 for (i = 0; i < BUF_LOCKS; i++) { 542 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 543 NULL, MUTEX_DEFAULT, NULL); 544 } 545 } 546 547 #define ARC_MINTIME (hz>>4) /* 62 ms */ 548 549 static void 550 arc_cksum_verify(arc_buf_t *buf) 551 { 552 zio_cksum_t zc; 553 554 if (!zfs_flags & ZFS_DEBUG_MODIFY) 555 return; 556 557 mutex_enter(&buf->b_hdr->b_freeze_lock); 558 if (buf->b_hdr->b_freeze_cksum == NULL || 559 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 560 mutex_exit(&buf->b_hdr->b_freeze_lock); 561 return; 562 } 563 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 564 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 565 panic("buffer modified while frozen!"); 566 mutex_exit(&buf->b_hdr->b_freeze_lock); 567 } 568 569 static void 570 arc_cksum_compute(arc_buf_t *buf) 571 { 572 if (!zfs_flags & ZFS_DEBUG_MODIFY) 573 return; 574 575 mutex_enter(&buf->b_hdr->b_freeze_lock); 576 if (buf->b_hdr->b_freeze_cksum != NULL) { 577 mutex_exit(&buf->b_hdr->b_freeze_lock); 578 return; 579 } 580 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 581 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 582 buf->b_hdr->b_freeze_cksum); 583 mutex_exit(&buf->b_hdr->b_freeze_lock); 584 } 585 586 void 587 arc_buf_thaw(arc_buf_t *buf) 588 { 589 if (!zfs_flags & ZFS_DEBUG_MODIFY) 590 return; 591 592 if (buf->b_hdr->b_state != arc.anon) 593 panic("modifying non-anon buffer!"); 594 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 595 panic("modifying buffer while i/o in progress!"); 596 arc_cksum_verify(buf); 597 mutex_enter(&buf->b_hdr->b_freeze_lock); 598 if (buf->b_hdr->b_freeze_cksum != NULL) { 599 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 600 buf->b_hdr->b_freeze_cksum = NULL; 601 } 602 mutex_exit(&buf->b_hdr->b_freeze_lock); 603 } 604 605 void 606 arc_buf_freeze(arc_buf_t *buf) 607 { 608 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 609 buf->b_hdr->b_state == arc.anon); 610 arc_cksum_compute(buf); 611 } 612 613 static void 614 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 615 { 616 ASSERT(MUTEX_HELD(hash_lock)); 617 618 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 619 (ab->b_state != arc.anon)) { 620 int delta = ab->b_size * ab->b_datacnt; 621 622 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 623 mutex_enter(&ab->b_state->mtx); 624 ASSERT(list_link_active(&ab->b_arc_node)); 625 list_remove(&ab->b_state->list, ab); 626 if (GHOST_STATE(ab->b_state)) { 627 ASSERT3U(ab->b_datacnt, ==, 0); 628 ASSERT3P(ab->b_buf, ==, NULL); 629 delta = ab->b_size; 630 } 631 ASSERT(delta > 0); 632 ASSERT3U(ab->b_state->lsize, >=, delta); 633 atomic_add_64(&ab->b_state->lsize, -delta); 634 mutex_exit(&ab->b_state->mtx); 635 /* remove the prefetch flag is we get a reference */ 636 if (ab->b_flags & ARC_PREFETCH) 637 ab->b_flags &= ~ARC_PREFETCH; 638 } 639 } 640 641 static int 642 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 643 { 644 int cnt; 645 646 ASSERT(ab->b_state == arc.anon || MUTEX_HELD(hash_lock)); 647 ASSERT(!GHOST_STATE(ab->b_state)); 648 649 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 650 (ab->b_state != arc.anon)) { 651 652 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 653 mutex_enter(&ab->b_state->mtx); 654 ASSERT(!list_link_active(&ab->b_arc_node)); 655 list_insert_head(&ab->b_state->list, ab); 656 ASSERT(ab->b_datacnt > 0); 657 atomic_add_64(&ab->b_state->lsize, ab->b_size * ab->b_datacnt); 658 ASSERT3U(ab->b_state->size, >=, ab->b_state->lsize); 659 mutex_exit(&ab->b_state->mtx); 660 } 661 return (cnt); 662 } 663 664 /* 665 * Move the supplied buffer to the indicated state. The mutex 666 * for the buffer must be held by the caller. 667 */ 668 static void 669 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 670 { 671 arc_state_t *old_state = ab->b_state; 672 int refcnt = refcount_count(&ab->b_refcnt); 673 int from_delta, to_delta; 674 675 ASSERT(MUTEX_HELD(hash_lock)); 676 ASSERT(new_state != old_state); 677 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 678 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 679 680 from_delta = to_delta = ab->b_datacnt * ab->b_size; 681 682 /* 683 * If this buffer is evictable, transfer it from the 684 * old state list to the new state list. 685 */ 686 if (refcnt == 0) { 687 if (old_state != arc.anon) { 688 int use_mutex = !MUTEX_HELD(&old_state->mtx); 689 690 if (use_mutex) 691 mutex_enter(&old_state->mtx); 692 693 ASSERT(list_link_active(&ab->b_arc_node)); 694 list_remove(&old_state->list, ab); 695 696 /* 697 * If prefetching out of the ghost cache, 698 * we will have a non-null datacnt. 699 */ 700 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 701 /* ghost elements have a ghost size */ 702 ASSERT(ab->b_buf == NULL); 703 from_delta = ab->b_size; 704 } 705 ASSERT3U(old_state->lsize, >=, from_delta); 706 atomic_add_64(&old_state->lsize, -from_delta); 707 708 if (use_mutex) 709 mutex_exit(&old_state->mtx); 710 } 711 if (new_state != arc.anon) { 712 int use_mutex = !MUTEX_HELD(&new_state->mtx); 713 714 if (use_mutex) 715 mutex_enter(&new_state->mtx); 716 717 list_insert_head(&new_state->list, ab); 718 719 /* ghost elements have a ghost size */ 720 if (GHOST_STATE(new_state)) { 721 ASSERT(ab->b_datacnt == 0); 722 ASSERT(ab->b_buf == NULL); 723 to_delta = ab->b_size; 724 } 725 atomic_add_64(&new_state->lsize, to_delta); 726 ASSERT3U(new_state->size + to_delta, >=, 727 new_state->lsize); 728 729 if (use_mutex) 730 mutex_exit(&new_state->mtx); 731 } 732 } 733 734 ASSERT(!BUF_EMPTY(ab)); 735 if (new_state == arc.anon && old_state != arc.anon) { 736 buf_hash_remove(ab); 737 } 738 739 /* adjust state sizes */ 740 if (to_delta) 741 atomic_add_64(&new_state->size, to_delta); 742 if (from_delta) { 743 ASSERT3U(old_state->size, >=, from_delta); 744 atomic_add_64(&old_state->size, -from_delta); 745 } 746 ab->b_state = new_state; 747 } 748 749 arc_buf_t * 750 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 751 { 752 arc_buf_hdr_t *hdr; 753 arc_buf_t *buf; 754 755 ASSERT3U(size, >, 0); 756 hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 757 ASSERT(BUF_EMPTY(hdr)); 758 hdr->b_size = size; 759 hdr->b_type = type; 760 hdr->b_spa = spa; 761 hdr->b_state = arc.anon; 762 hdr->b_arc_access = 0; 763 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 764 buf->b_hdr = hdr; 765 buf->b_data = NULL; 766 buf->b_efunc = NULL; 767 buf->b_private = NULL; 768 buf->b_next = NULL; 769 hdr->b_buf = buf; 770 arc_get_data_buf(buf); 771 hdr->b_datacnt = 1; 772 hdr->b_flags = 0; 773 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 774 (void) refcount_add(&hdr->b_refcnt, tag); 775 776 return (buf); 777 } 778 779 static arc_buf_t * 780 arc_buf_clone(arc_buf_t *from) 781 { 782 arc_buf_t *buf; 783 arc_buf_hdr_t *hdr = from->b_hdr; 784 uint64_t size = hdr->b_size; 785 786 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 787 buf->b_hdr = hdr; 788 buf->b_data = NULL; 789 buf->b_efunc = NULL; 790 buf->b_private = NULL; 791 buf->b_next = hdr->b_buf; 792 hdr->b_buf = buf; 793 arc_get_data_buf(buf); 794 bcopy(from->b_data, buf->b_data, size); 795 hdr->b_datacnt += 1; 796 return (buf); 797 } 798 799 void 800 arc_buf_add_ref(arc_buf_t *buf, void* tag) 801 { 802 arc_buf_hdr_t *hdr; 803 kmutex_t *hash_lock; 804 805 /* 806 * Check to see if this buffer is currently being evicted via 807 * arc_do_user_evicts(). 808 */ 809 mutex_enter(&arc_eviction_mtx); 810 hdr = buf->b_hdr; 811 if (hdr == NULL) { 812 mutex_exit(&arc_eviction_mtx); 813 return; 814 } 815 hash_lock = HDR_LOCK(hdr); 816 mutex_exit(&arc_eviction_mtx); 817 818 mutex_enter(hash_lock); 819 if (buf->b_data == NULL) { 820 /* 821 * This buffer is evicted. 822 */ 823 mutex_exit(hash_lock); 824 return; 825 } 826 827 ASSERT(buf->b_hdr == hdr); 828 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 829 add_reference(hdr, hash_lock, tag); 830 arc_access(hdr, hash_lock); 831 mutex_exit(hash_lock); 832 atomic_add_64(&arc.hits, 1); 833 } 834 835 static void 836 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 837 { 838 arc_buf_t **bufp; 839 840 /* free up data associated with the buf */ 841 if (buf->b_data) { 842 arc_state_t *state = buf->b_hdr->b_state; 843 uint64_t size = buf->b_hdr->b_size; 844 arc_buf_contents_t type = buf->b_hdr->b_type; 845 846 arc_cksum_verify(buf); 847 if (!recycle) { 848 if (type == ARC_BUFC_METADATA) { 849 zio_buf_free(buf->b_data, size); 850 } else { 851 ASSERT(type == ARC_BUFC_DATA); 852 zio_data_buf_free(buf->b_data, size); 853 } 854 atomic_add_64(&arc.size, -size); 855 } 856 if (list_link_active(&buf->b_hdr->b_arc_node)) { 857 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 858 ASSERT(state != arc.anon); 859 ASSERT3U(state->lsize, >=, size); 860 atomic_add_64(&state->lsize, -size); 861 } 862 ASSERT3U(state->size, >=, size); 863 atomic_add_64(&state->size, -size); 864 buf->b_data = NULL; 865 ASSERT(buf->b_hdr->b_datacnt > 0); 866 buf->b_hdr->b_datacnt -= 1; 867 } 868 869 /* only remove the buf if requested */ 870 if (!all) 871 return; 872 873 /* remove the buf from the hdr list */ 874 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 875 continue; 876 *bufp = buf->b_next; 877 878 ASSERT(buf->b_efunc == NULL); 879 880 /* clean up the buf */ 881 buf->b_hdr = NULL; 882 kmem_cache_free(buf_cache, buf); 883 } 884 885 static void 886 arc_hdr_destroy(arc_buf_hdr_t *hdr) 887 { 888 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 889 ASSERT3P(hdr->b_state, ==, arc.anon); 890 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 891 892 if (!BUF_EMPTY(hdr)) { 893 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 894 bzero(&hdr->b_dva, sizeof (dva_t)); 895 hdr->b_birth = 0; 896 hdr->b_cksum0 = 0; 897 } 898 while (hdr->b_buf) { 899 arc_buf_t *buf = hdr->b_buf; 900 901 if (buf->b_efunc) { 902 mutex_enter(&arc_eviction_mtx); 903 ASSERT(buf->b_hdr != NULL); 904 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 905 hdr->b_buf = buf->b_next; 906 buf->b_hdr = &arc_eviction_hdr; 907 buf->b_next = arc_eviction_list; 908 arc_eviction_list = buf; 909 mutex_exit(&arc_eviction_mtx); 910 } else { 911 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 912 } 913 } 914 if (hdr->b_freeze_cksum != NULL) { 915 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 916 hdr->b_freeze_cksum = NULL; 917 } 918 919 ASSERT(!list_link_active(&hdr->b_arc_node)); 920 ASSERT3P(hdr->b_hash_next, ==, NULL); 921 ASSERT3P(hdr->b_acb, ==, NULL); 922 kmem_cache_free(hdr_cache, hdr); 923 } 924 925 void 926 arc_buf_free(arc_buf_t *buf, void *tag) 927 { 928 arc_buf_hdr_t *hdr = buf->b_hdr; 929 int hashed = hdr->b_state != arc.anon; 930 931 ASSERT(buf->b_efunc == NULL); 932 ASSERT(buf->b_data != NULL); 933 934 if (hashed) { 935 kmutex_t *hash_lock = HDR_LOCK(hdr); 936 937 mutex_enter(hash_lock); 938 (void) remove_reference(hdr, hash_lock, tag); 939 if (hdr->b_datacnt > 1) 940 arc_buf_destroy(buf, FALSE, TRUE); 941 else 942 hdr->b_flags |= ARC_BUF_AVAILABLE; 943 mutex_exit(hash_lock); 944 } else if (HDR_IO_IN_PROGRESS(hdr)) { 945 int destroy_hdr; 946 /* 947 * We are in the middle of an async write. Don't destroy 948 * this buffer unless the write completes before we finish 949 * decrementing the reference count. 950 */ 951 mutex_enter(&arc_eviction_mtx); 952 (void) remove_reference(hdr, NULL, tag); 953 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 954 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 955 mutex_exit(&arc_eviction_mtx); 956 if (destroy_hdr) 957 arc_hdr_destroy(hdr); 958 } else { 959 if (remove_reference(hdr, NULL, tag) > 0) { 960 ASSERT(HDR_IO_ERROR(hdr)); 961 arc_buf_destroy(buf, FALSE, TRUE); 962 } else { 963 arc_hdr_destroy(hdr); 964 } 965 } 966 } 967 968 int 969 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 970 { 971 arc_buf_hdr_t *hdr = buf->b_hdr; 972 kmutex_t *hash_lock = HDR_LOCK(hdr); 973 int no_callback = (buf->b_efunc == NULL); 974 975 if (hdr->b_state == arc.anon) { 976 arc_buf_free(buf, tag); 977 return (no_callback); 978 } 979 980 mutex_enter(hash_lock); 981 ASSERT(hdr->b_state != arc.anon); 982 ASSERT(buf->b_data != NULL); 983 984 (void) remove_reference(hdr, hash_lock, tag); 985 if (hdr->b_datacnt > 1) { 986 if (no_callback) 987 arc_buf_destroy(buf, FALSE, TRUE); 988 } else if (no_callback) { 989 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 990 hdr->b_flags |= ARC_BUF_AVAILABLE; 991 } 992 ASSERT(no_callback || hdr->b_datacnt > 1 || 993 refcount_is_zero(&hdr->b_refcnt)); 994 mutex_exit(hash_lock); 995 return (no_callback); 996 } 997 998 int 999 arc_buf_size(arc_buf_t *buf) 1000 { 1001 return (buf->b_hdr->b_size); 1002 } 1003 1004 /* 1005 * Evict buffers from list until we've removed the specified number of 1006 * bytes. Move the removed buffers to the appropriate evict state. 1007 * If the recycle flag is set, then attempt to "recycle" a buffer: 1008 * - look for a buffer to evict that is `bytes' long. 1009 * - return the data block from this buffer rather than freeing it. 1010 * This flag is used by callers that are trying to make space for a 1011 * new buffer in a full arc cache. 1012 */ 1013 static void * 1014 arc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle, 1015 arc_buf_contents_t type) 1016 { 1017 arc_state_t *evicted_state; 1018 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1019 arc_buf_hdr_t *ab, *ab_prev = NULL; 1020 kmutex_t *hash_lock; 1021 boolean_t have_lock; 1022 void *stolen = NULL; 1023 1024 ASSERT(state == arc.mru || state == arc.mfu); 1025 1026 evicted_state = (state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 1027 1028 mutex_enter(&state->mtx); 1029 mutex_enter(&evicted_state->mtx); 1030 1031 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 1032 ab_prev = list_prev(&state->list, ab); 1033 /* prefetch buffers have a minimum lifespan */ 1034 if (HDR_IO_IN_PROGRESS(ab) || 1035 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1036 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 1037 skipped++; 1038 continue; 1039 } 1040 /* "lookahead" for better eviction candidate */ 1041 if (recycle && ab->b_size != bytes && 1042 ab_prev && ab_prev->b_size == bytes) 1043 continue; 1044 hash_lock = HDR_LOCK(ab); 1045 have_lock = MUTEX_HELD(hash_lock); 1046 if (have_lock || mutex_tryenter(hash_lock)) { 1047 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1048 ASSERT(ab->b_datacnt > 0); 1049 while (ab->b_buf) { 1050 arc_buf_t *buf = ab->b_buf; 1051 if (buf->b_data) { 1052 bytes_evicted += ab->b_size; 1053 if (recycle && ab->b_type == type && 1054 ab->b_size == bytes) { 1055 stolen = buf->b_data; 1056 recycle = FALSE; 1057 } 1058 } 1059 if (buf->b_efunc) { 1060 mutex_enter(&arc_eviction_mtx); 1061 arc_buf_destroy(buf, 1062 buf->b_data == stolen, FALSE); 1063 ab->b_buf = buf->b_next; 1064 buf->b_hdr = &arc_eviction_hdr; 1065 buf->b_next = arc_eviction_list; 1066 arc_eviction_list = buf; 1067 mutex_exit(&arc_eviction_mtx); 1068 } else { 1069 arc_buf_destroy(buf, 1070 buf->b_data == stolen, TRUE); 1071 } 1072 } 1073 ASSERT(ab->b_datacnt == 0); 1074 arc_change_state(evicted_state, ab, hash_lock); 1075 ASSERT(HDR_IN_HASH_TABLE(ab)); 1076 ab->b_flags = ARC_IN_HASH_TABLE; 1077 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1078 if (!have_lock) 1079 mutex_exit(hash_lock); 1080 if (bytes >= 0 && bytes_evicted >= bytes) 1081 break; 1082 } else { 1083 missed += 1; 1084 } 1085 } 1086 mutex_exit(&evicted_state->mtx); 1087 mutex_exit(&state->mtx); 1088 1089 if (bytes_evicted < bytes) 1090 dprintf("only evicted %lld bytes from %x", 1091 (longlong_t)bytes_evicted, state); 1092 1093 if (skipped) 1094 atomic_add_64(&arc.evict_skip, skipped); 1095 if (missed) 1096 atomic_add_64(&arc.mutex_miss, missed); 1097 return (stolen); 1098 } 1099 1100 /* 1101 * Remove buffers from list until we've removed the specified number of 1102 * bytes. Destroy the buffers that are removed. 1103 */ 1104 static void 1105 arc_evict_ghost(arc_state_t *state, int64_t bytes) 1106 { 1107 arc_buf_hdr_t *ab, *ab_prev; 1108 kmutex_t *hash_lock; 1109 uint64_t bytes_deleted = 0; 1110 uint_t bufs_skipped = 0; 1111 1112 ASSERT(GHOST_STATE(state)); 1113 top: 1114 mutex_enter(&state->mtx); 1115 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 1116 ab_prev = list_prev(&state->list, ab); 1117 hash_lock = HDR_LOCK(ab); 1118 if (mutex_tryenter(hash_lock)) { 1119 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1120 ASSERT(ab->b_buf == NULL); 1121 arc_change_state(arc.anon, ab, hash_lock); 1122 mutex_exit(hash_lock); 1123 atomic_add_64(&arc.deleted, 1); 1124 bytes_deleted += ab->b_size; 1125 arc_hdr_destroy(ab); 1126 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1127 if (bytes >= 0 && bytes_deleted >= bytes) 1128 break; 1129 } else { 1130 if (bytes < 0) { 1131 mutex_exit(&state->mtx); 1132 mutex_enter(hash_lock); 1133 mutex_exit(hash_lock); 1134 goto top; 1135 } 1136 bufs_skipped += 1; 1137 } 1138 } 1139 mutex_exit(&state->mtx); 1140 1141 if (bufs_skipped) { 1142 atomic_add_64(&arc.mutex_miss, bufs_skipped); 1143 ASSERT(bytes >= 0); 1144 } 1145 1146 if (bytes_deleted < bytes) 1147 dprintf("only deleted %lld bytes from %p", 1148 (longlong_t)bytes_deleted, state); 1149 } 1150 1151 static void 1152 arc_adjust(void) 1153 { 1154 int64_t top_sz, mru_over, arc_over; 1155 1156 top_sz = arc.anon->size + arc.mru->size; 1157 1158 if (top_sz > arc.p && arc.mru->lsize > 0) { 1159 int64_t toevict = MIN(arc.mru->lsize, top_sz-arc.p); 1160 (void) arc_evict(arc.mru, toevict, FALSE, ARC_BUFC_UNDEF); 1161 top_sz = arc.anon->size + arc.mru->size; 1162 } 1163 1164 mru_over = top_sz + arc.mru_ghost->size - arc.c; 1165 1166 if (mru_over > 0) { 1167 if (arc.mru_ghost->lsize > 0) { 1168 int64_t todelete = MIN(arc.mru_ghost->lsize, mru_over); 1169 arc_evict_ghost(arc.mru_ghost, todelete); 1170 } 1171 } 1172 1173 if ((arc_over = arc.size - arc.c) > 0) { 1174 int64_t tbl_over; 1175 1176 if (arc.mfu->lsize > 0) { 1177 int64_t toevict = MIN(arc.mfu->lsize, arc_over); 1178 (void) arc_evict(arc.mfu, toevict, FALSE, 1179 ARC_BUFC_UNDEF); 1180 } 1181 1182 tbl_over = arc.size + arc.mru_ghost->lsize + 1183 arc.mfu_ghost->lsize - arc.c*2; 1184 1185 if (tbl_over > 0 && arc.mfu_ghost->lsize > 0) { 1186 int64_t todelete = MIN(arc.mfu_ghost->lsize, tbl_over); 1187 arc_evict_ghost(arc.mfu_ghost, todelete); 1188 } 1189 } 1190 } 1191 1192 static void 1193 arc_do_user_evicts(void) 1194 { 1195 mutex_enter(&arc_eviction_mtx); 1196 while (arc_eviction_list != NULL) { 1197 arc_buf_t *buf = arc_eviction_list; 1198 arc_eviction_list = buf->b_next; 1199 buf->b_hdr = NULL; 1200 mutex_exit(&arc_eviction_mtx); 1201 1202 if (buf->b_efunc != NULL) 1203 VERIFY(buf->b_efunc(buf) == 0); 1204 1205 buf->b_efunc = NULL; 1206 buf->b_private = NULL; 1207 kmem_cache_free(buf_cache, buf); 1208 mutex_enter(&arc_eviction_mtx); 1209 } 1210 mutex_exit(&arc_eviction_mtx); 1211 } 1212 1213 /* 1214 * Flush all *evictable* data from the cache. 1215 * NOTE: this will not touch "active" (i.e. referenced) data. 1216 */ 1217 void 1218 arc_flush(void) 1219 { 1220 while (list_head(&arc.mru->list)) 1221 (void) arc_evict(arc.mru, -1, FALSE, ARC_BUFC_UNDEF); 1222 while (list_head(&arc.mfu->list)) 1223 (void) arc_evict(arc.mfu, -1, FALSE, ARC_BUFC_UNDEF); 1224 1225 arc_evict_ghost(arc.mru_ghost, -1); 1226 arc_evict_ghost(arc.mfu_ghost, -1); 1227 1228 mutex_enter(&arc_reclaim_thr_lock); 1229 arc_do_user_evicts(); 1230 mutex_exit(&arc_reclaim_thr_lock); 1231 ASSERT(arc_eviction_list == NULL); 1232 } 1233 1234 int arc_shrink_shift = 5; /* log2(fraction of arc to reclaim) */ 1235 1236 void 1237 arc_shrink(void) 1238 { 1239 if (arc.c > arc.c_min) { 1240 uint64_t to_free; 1241 1242 #ifdef _KERNEL 1243 to_free = MAX(arc.c >> arc_shrink_shift, ptob(needfree)); 1244 #else 1245 to_free = arc.c >> arc_shrink_shift; 1246 #endif 1247 if (arc.c > arc.c_min + to_free) 1248 atomic_add_64(&arc.c, -to_free); 1249 else 1250 arc.c = arc.c_min; 1251 1252 atomic_add_64(&arc.p, -(arc.p >> arc_shrink_shift)); 1253 if (arc.c > arc.size) 1254 arc.c = MAX(arc.size, arc.c_min); 1255 if (arc.p > arc.c) 1256 arc.p = (arc.c >> 1); 1257 ASSERT(arc.c >= arc.c_min); 1258 ASSERT((int64_t)arc.p >= 0); 1259 } 1260 1261 if (arc.size > arc.c) 1262 arc_adjust(); 1263 } 1264 1265 static int 1266 arc_reclaim_needed(void) 1267 { 1268 uint64_t extra; 1269 1270 #ifdef _KERNEL 1271 1272 if (needfree) 1273 return (1); 1274 1275 /* 1276 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1277 */ 1278 extra = desfree; 1279 1280 /* 1281 * check that we're out of range of the pageout scanner. It starts to 1282 * schedule paging if freemem is less than lotsfree and needfree. 1283 * lotsfree is the high-water mark for pageout, and needfree is the 1284 * number of needed free pages. We add extra pages here to make sure 1285 * the scanner doesn't start up while we're freeing memory. 1286 */ 1287 if (freemem < lotsfree + needfree + extra) 1288 return (1); 1289 1290 /* 1291 * check to make sure that swapfs has enough space so that anon 1292 * reservations can still succeeed. anon_resvmem() checks that the 1293 * availrmem is greater than swapfs_minfree, and the number of reserved 1294 * swap pages. We also add a bit of extra here just to prevent 1295 * circumstances from getting really dire. 1296 */ 1297 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1298 return (1); 1299 1300 #if defined(__i386) 1301 /* 1302 * If we're on an i386 platform, it's possible that we'll exhaust the 1303 * kernel heap space before we ever run out of available physical 1304 * memory. Most checks of the size of the heap_area compare against 1305 * tune.t_minarmem, which is the minimum available real memory that we 1306 * can have in the system. However, this is generally fixed at 25 pages 1307 * which is so low that it's useless. In this comparison, we seek to 1308 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1309 * heap is allocated. (Or, in the caclulation, if less than 1/4th is 1310 * free) 1311 */ 1312 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1313 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1314 return (1); 1315 #endif 1316 1317 #else 1318 if (spa_get_random(100) == 0) 1319 return (1); 1320 #endif 1321 return (0); 1322 } 1323 1324 static void 1325 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1326 { 1327 size_t i; 1328 kmem_cache_t *prev_cache = NULL; 1329 kmem_cache_t *prev_data_cache = NULL; 1330 extern kmem_cache_t *zio_buf_cache[]; 1331 extern kmem_cache_t *zio_data_buf_cache[]; 1332 1333 #ifdef _KERNEL 1334 /* 1335 * First purge some DNLC entries, in case the DNLC is using 1336 * up too much memory. 1337 */ 1338 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1339 1340 #if defined(__i386) 1341 /* 1342 * Reclaim unused memory from all kmem caches. 1343 */ 1344 kmem_reap(); 1345 #endif 1346 #endif 1347 1348 /* 1349 * An agressive reclamation will shrink the cache size as well as 1350 * reap free buffers from the arc kmem caches. 1351 */ 1352 if (strat == ARC_RECLAIM_AGGR) 1353 arc_shrink(); 1354 1355 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1356 if (zio_buf_cache[i] != prev_cache) { 1357 prev_cache = zio_buf_cache[i]; 1358 kmem_cache_reap_now(zio_buf_cache[i]); 1359 } 1360 if (zio_data_buf_cache[i] != prev_data_cache) { 1361 prev_data_cache = zio_data_buf_cache[i]; 1362 kmem_cache_reap_now(zio_data_buf_cache[i]); 1363 } 1364 } 1365 kmem_cache_reap_now(buf_cache); 1366 kmem_cache_reap_now(hdr_cache); 1367 } 1368 1369 static void 1370 arc_reclaim_thread(void) 1371 { 1372 clock_t growtime = 0; 1373 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1374 callb_cpr_t cpr; 1375 1376 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1377 1378 mutex_enter(&arc_reclaim_thr_lock); 1379 while (arc_thread_exit == 0) { 1380 if (arc_reclaim_needed()) { 1381 1382 if (arc.no_grow) { 1383 if (last_reclaim == ARC_RECLAIM_CONS) { 1384 last_reclaim = ARC_RECLAIM_AGGR; 1385 } else { 1386 last_reclaim = ARC_RECLAIM_CONS; 1387 } 1388 } else { 1389 arc.no_grow = TRUE; 1390 last_reclaim = ARC_RECLAIM_AGGR; 1391 membar_producer(); 1392 } 1393 1394 /* reset the growth delay for every reclaim */ 1395 growtime = lbolt + (arc_grow_retry * hz); 1396 ASSERT(growtime > 0); 1397 1398 arc_kmem_reap_now(last_reclaim); 1399 1400 } else if ((growtime > 0) && ((growtime - lbolt) <= 0)) { 1401 arc.no_grow = FALSE; 1402 } 1403 1404 if (arc_eviction_list != NULL) 1405 arc_do_user_evicts(); 1406 1407 /* block until needed, or one second, whichever is shorter */ 1408 CALLB_CPR_SAFE_BEGIN(&cpr); 1409 (void) cv_timedwait(&arc_reclaim_thr_cv, 1410 &arc_reclaim_thr_lock, (lbolt + hz)); 1411 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1412 } 1413 1414 arc_thread_exit = 0; 1415 cv_broadcast(&arc_reclaim_thr_cv); 1416 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1417 thread_exit(); 1418 } 1419 1420 /* 1421 * Adapt arc info given the number of bytes we are trying to add and 1422 * the state that we are comming from. This function is only called 1423 * when we are adding new content to the cache. 1424 */ 1425 static void 1426 arc_adapt(int bytes, arc_state_t *state) 1427 { 1428 int mult; 1429 1430 ASSERT(bytes > 0); 1431 /* 1432 * Adapt the target size of the MRU list: 1433 * - if we just hit in the MRU ghost list, then increase 1434 * the target size of the MRU list. 1435 * - if we just hit in the MFU ghost list, then increase 1436 * the target size of the MFU list by decreasing the 1437 * target size of the MRU list. 1438 */ 1439 if (state == arc.mru_ghost) { 1440 mult = ((arc.mru_ghost->size >= arc.mfu_ghost->size) ? 1441 1 : (arc.mfu_ghost->size/arc.mru_ghost->size)); 1442 1443 arc.p = MIN(arc.c, arc.p + bytes * mult); 1444 } else if (state == arc.mfu_ghost) { 1445 mult = ((arc.mfu_ghost->size >= arc.mru_ghost->size) ? 1446 1 : (arc.mru_ghost->size/arc.mfu_ghost->size)); 1447 1448 arc.p = MAX(0, (int64_t)arc.p - bytes * mult); 1449 } 1450 ASSERT((int64_t)arc.p >= 0); 1451 1452 if (arc_reclaim_needed()) { 1453 cv_signal(&arc_reclaim_thr_cv); 1454 return; 1455 } 1456 1457 if (arc.no_grow) 1458 return; 1459 1460 if (arc.c >= arc.c_max) 1461 return; 1462 1463 /* 1464 * If we're within (2 * maxblocksize) bytes of the target 1465 * cache size, increment the target cache size 1466 */ 1467 if (arc.size > arc.c - (2ULL << SPA_MAXBLOCKSHIFT)) { 1468 atomic_add_64(&arc.c, (int64_t)bytes); 1469 if (arc.c > arc.c_max) 1470 arc.c = arc.c_max; 1471 else if (state == arc.anon) 1472 atomic_add_64(&arc.p, (int64_t)bytes); 1473 if (arc.p > arc.c) 1474 arc.p = arc.c; 1475 } 1476 ASSERT((int64_t)arc.p >= 0); 1477 } 1478 1479 /* 1480 * Check if the cache has reached its limits and eviction is required 1481 * prior to insert. 1482 */ 1483 static int 1484 arc_evict_needed() 1485 { 1486 if (arc_reclaim_needed()) 1487 return (1); 1488 1489 return (arc.size > arc.c); 1490 } 1491 1492 /* 1493 * The buffer, supplied as the first argument, needs a data block. 1494 * So, if we are at cache max, determine which cache should be victimized. 1495 * We have the following cases: 1496 * 1497 * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru) -> 1498 * In this situation if we're out of space, but the resident size of the MFU is 1499 * under the limit, victimize the MFU cache to satisfy this insertion request. 1500 * 1501 * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru) -> 1502 * Here, we've used up all of the available space for the MRU, so we need to 1503 * evict from our own cache instead. Evict from the set of resident MRU 1504 * entries. 1505 * 1506 * 3. Insert for MFU (c - p) > sizeof(arc.mfu) -> 1507 * c minus p represents the MFU space in the cache, since p is the size of the 1508 * cache that is dedicated to the MRU. In this situation there's still space on 1509 * the MFU side, so the MRU side needs to be victimized. 1510 * 1511 * 4. Insert for MFU (c - p) < sizeof(arc.mfu) -> 1512 * MFU's resident set is consuming more space than it has been allotted. In 1513 * this situation, we must victimize our own cache, the MFU, for this insertion. 1514 */ 1515 static void 1516 arc_get_data_buf(arc_buf_t *buf) 1517 { 1518 arc_state_t *state = buf->b_hdr->b_state; 1519 uint64_t size = buf->b_hdr->b_size; 1520 arc_buf_contents_t type = buf->b_hdr->b_type; 1521 1522 arc_adapt(size, state); 1523 1524 /* 1525 * We have not yet reached cache maximum size, 1526 * just allocate a new buffer. 1527 */ 1528 if (!arc_evict_needed()) { 1529 if (type == ARC_BUFC_METADATA) { 1530 buf->b_data = zio_buf_alloc(size); 1531 } else { 1532 ASSERT(type == ARC_BUFC_DATA); 1533 buf->b_data = zio_data_buf_alloc(size); 1534 } 1535 atomic_add_64(&arc.size, size); 1536 goto out; 1537 } 1538 1539 /* 1540 * If we are prefetching from the mfu ghost list, this buffer 1541 * will end up on the mru list; so steal space from there. 1542 */ 1543 if (state == arc.mfu_ghost) 1544 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc.mru : arc.mfu; 1545 else if (state == arc.mru_ghost) 1546 state = arc.mru; 1547 1548 if (state == arc.mru || state == arc.anon) { 1549 uint64_t mru_used = arc.anon->size + arc.mru->size; 1550 state = (arc.p > mru_used) ? arc.mfu : arc.mru; 1551 } else { 1552 /* MFU cases */ 1553 uint64_t mfu_space = arc.c - arc.p; 1554 state = (mfu_space > arc.mfu->size) ? arc.mru : arc.mfu; 1555 } 1556 if ((buf->b_data = arc_evict(state, size, TRUE, type)) == NULL) { 1557 if (type == ARC_BUFC_METADATA) { 1558 buf->b_data = zio_buf_alloc(size); 1559 } else { 1560 ASSERT(type == ARC_BUFC_DATA); 1561 buf->b_data = zio_data_buf_alloc(size); 1562 } 1563 atomic_add_64(&arc.size, size); 1564 atomic_add_64(&arc.recycle_miss, 1); 1565 } 1566 ASSERT(buf->b_data != NULL); 1567 out: 1568 /* 1569 * Update the state size. Note that ghost states have a 1570 * "ghost size" and so don't need to be updated. 1571 */ 1572 if (!GHOST_STATE(buf->b_hdr->b_state)) { 1573 arc_buf_hdr_t *hdr = buf->b_hdr; 1574 1575 atomic_add_64(&hdr->b_state->size, size); 1576 if (list_link_active(&hdr->b_arc_node)) { 1577 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1578 atomic_add_64(&hdr->b_state->lsize, size); 1579 } 1580 } 1581 } 1582 1583 /* 1584 * This routine is called whenever a buffer is accessed. 1585 * NOTE: the hash lock is dropped in this function. 1586 */ 1587 static void 1588 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 1589 { 1590 ASSERT(MUTEX_HELD(hash_lock)); 1591 1592 if (buf->b_state == arc.anon) { 1593 /* 1594 * This buffer is not in the cache, and does not 1595 * appear in our "ghost" list. Add the new buffer 1596 * to the MRU state. 1597 */ 1598 1599 ASSERT(buf->b_arc_access == 0); 1600 buf->b_arc_access = lbolt; 1601 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1602 arc_change_state(arc.mru, buf, hash_lock); 1603 1604 } else if (buf->b_state == arc.mru) { 1605 /* 1606 * If this buffer is here because of a prefetch, then either: 1607 * - clear the flag if this is a "referencing" read 1608 * (any subsequent access will bump this into the MFU state). 1609 * or 1610 * - move the buffer to the head of the list if this is 1611 * another prefetch (to make it less likely to be evicted). 1612 */ 1613 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1614 if (refcount_count(&buf->b_refcnt) == 0) { 1615 ASSERT(list_link_active(&buf->b_arc_node)); 1616 mutex_enter(&arc.mru->mtx); 1617 list_remove(&arc.mru->list, buf); 1618 list_insert_head(&arc.mru->list, buf); 1619 mutex_exit(&arc.mru->mtx); 1620 } else { 1621 buf->b_flags &= ~ARC_PREFETCH; 1622 atomic_add_64(&arc.mru->hits, 1); 1623 } 1624 buf->b_arc_access = lbolt; 1625 return; 1626 } 1627 1628 /* 1629 * This buffer has been "accessed" only once so far, 1630 * but it is still in the cache. Move it to the MFU 1631 * state. 1632 */ 1633 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 1634 /* 1635 * More than 125ms have passed since we 1636 * instantiated this buffer. Move it to the 1637 * most frequently used state. 1638 */ 1639 buf->b_arc_access = lbolt; 1640 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1641 arc_change_state(arc.mfu, buf, hash_lock); 1642 } 1643 atomic_add_64(&arc.mru->hits, 1); 1644 } else if (buf->b_state == arc.mru_ghost) { 1645 arc_state_t *new_state; 1646 /* 1647 * This buffer has been "accessed" recently, but 1648 * was evicted from the cache. Move it to the 1649 * MFU state. 1650 */ 1651 1652 if (buf->b_flags & ARC_PREFETCH) { 1653 new_state = arc.mru; 1654 if (refcount_count(&buf->b_refcnt) > 0) 1655 buf->b_flags &= ~ARC_PREFETCH; 1656 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1657 } else { 1658 new_state = arc.mfu; 1659 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1660 } 1661 1662 buf->b_arc_access = lbolt; 1663 arc_change_state(new_state, buf, hash_lock); 1664 1665 atomic_add_64(&arc.mru_ghost->hits, 1); 1666 } else if (buf->b_state == arc.mfu) { 1667 /* 1668 * This buffer has been accessed more than once and is 1669 * still in the cache. Keep it in the MFU state. 1670 * 1671 * NOTE: an add_reference() that occurred when we did 1672 * the arc_read() will have kicked this off the list. 1673 * If it was a prefetch, we will explicitly move it to 1674 * the head of the list now. 1675 */ 1676 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1677 ASSERT(refcount_count(&buf->b_refcnt) == 0); 1678 ASSERT(list_link_active(&buf->b_arc_node)); 1679 mutex_enter(&arc.mfu->mtx); 1680 list_remove(&arc.mfu->list, buf); 1681 list_insert_head(&arc.mfu->list, buf); 1682 mutex_exit(&arc.mfu->mtx); 1683 } 1684 atomic_add_64(&arc.mfu->hits, 1); 1685 buf->b_arc_access = lbolt; 1686 } else if (buf->b_state == arc.mfu_ghost) { 1687 arc_state_t *new_state = arc.mfu; 1688 /* 1689 * This buffer has been accessed more than once but has 1690 * been evicted from the cache. Move it back to the 1691 * MFU state. 1692 */ 1693 1694 if (buf->b_flags & ARC_PREFETCH) { 1695 /* 1696 * This is a prefetch access... 1697 * move this block back to the MRU state. 1698 */ 1699 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 1700 new_state = arc.mru; 1701 } 1702 1703 buf->b_arc_access = lbolt; 1704 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1705 arc_change_state(new_state, buf, hash_lock); 1706 1707 atomic_add_64(&arc.mfu_ghost->hits, 1); 1708 } else { 1709 ASSERT(!"invalid arc state"); 1710 } 1711 } 1712 1713 /* a generic arc_done_func_t which you can use */ 1714 /* ARGSUSED */ 1715 void 1716 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 1717 { 1718 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 1719 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1720 } 1721 1722 /* a generic arc_done_func_t which you can use */ 1723 void 1724 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 1725 { 1726 arc_buf_t **bufp = arg; 1727 if (zio && zio->io_error) { 1728 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1729 *bufp = NULL; 1730 } else { 1731 *bufp = buf; 1732 } 1733 } 1734 1735 static void 1736 arc_read_done(zio_t *zio) 1737 { 1738 arc_buf_hdr_t *hdr, *found; 1739 arc_buf_t *buf; 1740 arc_buf_t *abuf; /* buffer we're assigning to callback */ 1741 kmutex_t *hash_lock; 1742 arc_callback_t *callback_list, *acb; 1743 int freeable = FALSE; 1744 1745 buf = zio->io_private; 1746 hdr = buf->b_hdr; 1747 1748 /* 1749 * The hdr was inserted into hash-table and removed from lists 1750 * prior to starting I/O. We should find this header, since 1751 * it's in the hash table, and it should be legit since it's 1752 * not possible to evict it during the I/O. The only possible 1753 * reason for it not to be found is if we were freed during the 1754 * read. 1755 */ 1756 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 1757 &hash_lock); 1758 1759 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 1760 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp)))); 1761 1762 /* byteswap if necessary */ 1763 callback_list = hdr->b_acb; 1764 ASSERT(callback_list != NULL); 1765 if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap) 1766 callback_list->acb_byteswap(buf->b_data, hdr->b_size); 1767 1768 arc_cksum_compute(buf); 1769 1770 /* create copies of the data buffer for the callers */ 1771 abuf = buf; 1772 for (acb = callback_list; acb; acb = acb->acb_next) { 1773 if (acb->acb_done) { 1774 if (abuf == NULL) 1775 abuf = arc_buf_clone(buf); 1776 acb->acb_buf = abuf; 1777 abuf = NULL; 1778 } 1779 } 1780 hdr->b_acb = NULL; 1781 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 1782 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 1783 if (abuf == buf) 1784 hdr->b_flags |= ARC_BUF_AVAILABLE; 1785 1786 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 1787 1788 if (zio->io_error != 0) { 1789 hdr->b_flags |= ARC_IO_ERROR; 1790 if (hdr->b_state != arc.anon) 1791 arc_change_state(arc.anon, hdr, hash_lock); 1792 if (HDR_IN_HASH_TABLE(hdr)) 1793 buf_hash_remove(hdr); 1794 freeable = refcount_is_zero(&hdr->b_refcnt); 1795 /* convert checksum errors into IO errors */ 1796 if (zio->io_error == ECKSUM) 1797 zio->io_error = EIO; 1798 } 1799 1800 /* 1801 * Broadcast before we drop the hash_lock to avoid the possibility 1802 * that the hdr (and hence the cv) might be freed before we get to 1803 * the cv_broadcast(). 1804 */ 1805 cv_broadcast(&hdr->b_cv); 1806 1807 if (hash_lock) { 1808 /* 1809 * Only call arc_access on anonymous buffers. This is because 1810 * if we've issued an I/O for an evicted buffer, we've already 1811 * called arc_access (to prevent any simultaneous readers from 1812 * getting confused). 1813 */ 1814 if (zio->io_error == 0 && hdr->b_state == arc.anon) 1815 arc_access(hdr, hash_lock); 1816 mutex_exit(hash_lock); 1817 } else { 1818 /* 1819 * This block was freed while we waited for the read to 1820 * complete. It has been removed from the hash table and 1821 * moved to the anonymous state (so that it won't show up 1822 * in the cache). 1823 */ 1824 ASSERT3P(hdr->b_state, ==, arc.anon); 1825 freeable = refcount_is_zero(&hdr->b_refcnt); 1826 } 1827 1828 /* execute each callback and free its structure */ 1829 while ((acb = callback_list) != NULL) { 1830 if (acb->acb_done) 1831 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 1832 1833 if (acb->acb_zio_dummy != NULL) { 1834 acb->acb_zio_dummy->io_error = zio->io_error; 1835 zio_nowait(acb->acb_zio_dummy); 1836 } 1837 1838 callback_list = acb->acb_next; 1839 kmem_free(acb, sizeof (arc_callback_t)); 1840 } 1841 1842 if (freeable) 1843 arc_hdr_destroy(hdr); 1844 } 1845 1846 /* 1847 * "Read" the block block at the specified DVA (in bp) via the 1848 * cache. If the block is found in the cache, invoke the provided 1849 * callback immediately and return. Note that the `zio' parameter 1850 * in the callback will be NULL in this case, since no IO was 1851 * required. If the block is not in the cache pass the read request 1852 * on to the spa with a substitute callback function, so that the 1853 * requested block will be added to the cache. 1854 * 1855 * If a read request arrives for a block that has a read in-progress, 1856 * either wait for the in-progress read to complete (and return the 1857 * results); or, if this is a read with a "done" func, add a record 1858 * to the read to invoke the "done" func when the read completes, 1859 * and return; or just return. 1860 * 1861 * arc_read_done() will invoke all the requested "done" functions 1862 * for readers of this block. 1863 */ 1864 int 1865 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap, 1866 arc_done_func_t *done, void *private, int priority, int flags, 1867 uint32_t *arc_flags, zbookmark_t *zb) 1868 { 1869 arc_buf_hdr_t *hdr; 1870 arc_buf_t *buf; 1871 kmutex_t *hash_lock; 1872 zio_t *rzio; 1873 1874 top: 1875 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 1876 if (hdr && hdr->b_datacnt > 0) { 1877 1878 *arc_flags |= ARC_CACHED; 1879 1880 if (HDR_IO_IN_PROGRESS(hdr)) { 1881 1882 if (*arc_flags & ARC_WAIT) { 1883 cv_wait(&hdr->b_cv, hash_lock); 1884 mutex_exit(hash_lock); 1885 goto top; 1886 } 1887 ASSERT(*arc_flags & ARC_NOWAIT); 1888 1889 if (done) { 1890 arc_callback_t *acb = NULL; 1891 1892 acb = kmem_zalloc(sizeof (arc_callback_t), 1893 KM_SLEEP); 1894 acb->acb_done = done; 1895 acb->acb_private = private; 1896 acb->acb_byteswap = swap; 1897 if (pio != NULL) 1898 acb->acb_zio_dummy = zio_null(pio, 1899 spa, NULL, NULL, flags); 1900 1901 ASSERT(acb->acb_done != NULL); 1902 acb->acb_next = hdr->b_acb; 1903 hdr->b_acb = acb; 1904 add_reference(hdr, hash_lock, private); 1905 mutex_exit(hash_lock); 1906 return (0); 1907 } 1908 mutex_exit(hash_lock); 1909 return (0); 1910 } 1911 1912 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 1913 1914 if (done) { 1915 add_reference(hdr, hash_lock, private); 1916 /* 1917 * If this block is already in use, create a new 1918 * copy of the data so that we will be guaranteed 1919 * that arc_release() will always succeed. 1920 */ 1921 buf = hdr->b_buf; 1922 ASSERT(buf); 1923 ASSERT(buf->b_data); 1924 if (HDR_BUF_AVAILABLE(hdr)) { 1925 ASSERT(buf->b_efunc == NULL); 1926 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 1927 } else { 1928 buf = arc_buf_clone(buf); 1929 } 1930 } else if (*arc_flags & ARC_PREFETCH && 1931 refcount_count(&hdr->b_refcnt) == 0) { 1932 hdr->b_flags |= ARC_PREFETCH; 1933 } 1934 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1935 arc_access(hdr, hash_lock); 1936 mutex_exit(hash_lock); 1937 atomic_add_64(&arc.hits, 1); 1938 if (done) 1939 done(NULL, buf, private); 1940 } else { 1941 uint64_t size = BP_GET_LSIZE(bp); 1942 arc_callback_t *acb; 1943 1944 if (hdr == NULL) { 1945 /* this block is not in the cache */ 1946 arc_buf_hdr_t *exists; 1947 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 1948 buf = arc_buf_alloc(spa, size, private, type); 1949 hdr = buf->b_hdr; 1950 hdr->b_dva = *BP_IDENTITY(bp); 1951 hdr->b_birth = bp->blk_birth; 1952 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 1953 exists = buf_hash_insert(hdr, &hash_lock); 1954 if (exists) { 1955 /* somebody beat us to the hash insert */ 1956 mutex_exit(hash_lock); 1957 bzero(&hdr->b_dva, sizeof (dva_t)); 1958 hdr->b_birth = 0; 1959 hdr->b_cksum0 = 0; 1960 (void) arc_buf_remove_ref(buf, private); 1961 goto top; /* restart the IO request */ 1962 } 1963 /* if this is a prefetch, we don't have a reference */ 1964 if (*arc_flags & ARC_PREFETCH) { 1965 (void) remove_reference(hdr, hash_lock, 1966 private); 1967 hdr->b_flags |= ARC_PREFETCH; 1968 } 1969 if (BP_GET_LEVEL(bp) > 0) 1970 hdr->b_flags |= ARC_INDIRECT; 1971 } else { 1972 /* this block is in the ghost cache */ 1973 ASSERT(GHOST_STATE(hdr->b_state)); 1974 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1975 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 1976 ASSERT(hdr->b_buf == NULL); 1977 1978 /* if this is a prefetch, we don't have a reference */ 1979 if (*arc_flags & ARC_PREFETCH) 1980 hdr->b_flags |= ARC_PREFETCH; 1981 else 1982 add_reference(hdr, hash_lock, private); 1983 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1984 buf->b_hdr = hdr; 1985 buf->b_data = NULL; 1986 buf->b_efunc = NULL; 1987 buf->b_private = NULL; 1988 buf->b_next = NULL; 1989 hdr->b_buf = buf; 1990 arc_get_data_buf(buf); 1991 ASSERT(hdr->b_datacnt == 0); 1992 hdr->b_datacnt = 1; 1993 1994 } 1995 1996 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 1997 acb->acb_done = done; 1998 acb->acb_private = private; 1999 acb->acb_byteswap = swap; 2000 2001 ASSERT(hdr->b_acb == NULL); 2002 hdr->b_acb = acb; 2003 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2004 2005 /* 2006 * If the buffer has been evicted, migrate it to a present state 2007 * before issuing the I/O. Once we drop the hash-table lock, 2008 * the header will be marked as I/O in progress and have an 2009 * attached buffer. At this point, anybody who finds this 2010 * buffer ought to notice that it's legit but has a pending I/O. 2011 */ 2012 2013 if (GHOST_STATE(hdr->b_state)) 2014 arc_access(hdr, hash_lock); 2015 mutex_exit(hash_lock); 2016 2017 ASSERT3U(hdr->b_size, ==, size); 2018 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 2019 zbookmark_t *, zb); 2020 atomic_add_64(&arc.misses, 1); 2021 2022 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2023 arc_read_done, buf, priority, flags, zb); 2024 2025 if (*arc_flags & ARC_WAIT) 2026 return (zio_wait(rzio)); 2027 2028 ASSERT(*arc_flags & ARC_NOWAIT); 2029 zio_nowait(rzio); 2030 } 2031 return (0); 2032 } 2033 2034 /* 2035 * arc_read() variant to support pool traversal. If the block is already 2036 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 2037 * The idea is that we don't want pool traversal filling up memory, but 2038 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 2039 */ 2040 int 2041 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 2042 { 2043 arc_buf_hdr_t *hdr; 2044 kmutex_t *hash_mtx; 2045 int rc = 0; 2046 2047 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 2048 2049 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 2050 arc_buf_t *buf = hdr->b_buf; 2051 2052 ASSERT(buf); 2053 while (buf->b_data == NULL) { 2054 buf = buf->b_next; 2055 ASSERT(buf); 2056 } 2057 bcopy(buf->b_data, data, hdr->b_size); 2058 } else { 2059 rc = ENOENT; 2060 } 2061 2062 if (hash_mtx) 2063 mutex_exit(hash_mtx); 2064 2065 return (rc); 2066 } 2067 2068 void 2069 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2070 { 2071 ASSERT(buf->b_hdr != NULL); 2072 ASSERT(buf->b_hdr->b_state != arc.anon); 2073 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2074 buf->b_efunc = func; 2075 buf->b_private = private; 2076 } 2077 2078 /* 2079 * This is used by the DMU to let the ARC know that a buffer is 2080 * being evicted, so the ARC should clean up. If this arc buf 2081 * is not yet in the evicted state, it will be put there. 2082 */ 2083 int 2084 arc_buf_evict(arc_buf_t *buf) 2085 { 2086 arc_buf_hdr_t *hdr; 2087 kmutex_t *hash_lock; 2088 arc_buf_t **bufp; 2089 2090 mutex_enter(&arc_eviction_mtx); 2091 hdr = buf->b_hdr; 2092 if (hdr == NULL) { 2093 /* 2094 * We are in arc_do_user_evicts(). 2095 */ 2096 ASSERT(buf->b_data == NULL); 2097 mutex_exit(&arc_eviction_mtx); 2098 return (0); 2099 } 2100 hash_lock = HDR_LOCK(hdr); 2101 mutex_exit(&arc_eviction_mtx); 2102 2103 mutex_enter(hash_lock); 2104 2105 if (buf->b_data == NULL) { 2106 /* 2107 * We are on the eviction list. 2108 */ 2109 mutex_exit(hash_lock); 2110 mutex_enter(&arc_eviction_mtx); 2111 if (buf->b_hdr == NULL) { 2112 /* 2113 * We are already in arc_do_user_evicts(). 2114 */ 2115 mutex_exit(&arc_eviction_mtx); 2116 return (0); 2117 } else { 2118 arc_buf_t copy = *buf; /* structure assignment */ 2119 /* 2120 * Process this buffer now 2121 * but let arc_do_user_evicts() do the reaping. 2122 */ 2123 buf->b_efunc = NULL; 2124 mutex_exit(&arc_eviction_mtx); 2125 VERIFY(copy.b_efunc(©) == 0); 2126 return (1); 2127 } 2128 } 2129 2130 ASSERT(buf->b_hdr == hdr); 2131 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2132 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 2133 2134 /* 2135 * Pull this buffer off of the hdr 2136 */ 2137 bufp = &hdr->b_buf; 2138 while (*bufp != buf) 2139 bufp = &(*bufp)->b_next; 2140 *bufp = buf->b_next; 2141 2142 ASSERT(buf->b_data != NULL); 2143 arc_buf_destroy(buf, FALSE, FALSE); 2144 2145 if (hdr->b_datacnt == 0) { 2146 arc_state_t *old_state = hdr->b_state; 2147 arc_state_t *evicted_state; 2148 2149 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2150 2151 evicted_state = 2152 (old_state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 2153 2154 mutex_enter(&old_state->mtx); 2155 mutex_enter(&evicted_state->mtx); 2156 2157 arc_change_state(evicted_state, hdr, hash_lock); 2158 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2159 hdr->b_flags = ARC_IN_HASH_TABLE; 2160 2161 mutex_exit(&evicted_state->mtx); 2162 mutex_exit(&old_state->mtx); 2163 } 2164 mutex_exit(hash_lock); 2165 2166 VERIFY(buf->b_efunc(buf) == 0); 2167 buf->b_efunc = NULL; 2168 buf->b_private = NULL; 2169 buf->b_hdr = NULL; 2170 kmem_cache_free(buf_cache, buf); 2171 return (1); 2172 } 2173 2174 /* 2175 * Release this buffer from the cache. This must be done 2176 * after a read and prior to modifying the buffer contents. 2177 * If the buffer has more than one reference, we must make 2178 * make a new hdr for the buffer. 2179 */ 2180 void 2181 arc_release(arc_buf_t *buf, void *tag) 2182 { 2183 arc_buf_hdr_t *hdr = buf->b_hdr; 2184 kmutex_t *hash_lock = HDR_LOCK(hdr); 2185 2186 /* this buffer is not on any list */ 2187 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2188 2189 if (hdr->b_state == arc.anon) { 2190 /* this buffer is already released */ 2191 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2192 ASSERT(BUF_EMPTY(hdr)); 2193 ASSERT(buf->b_efunc == NULL); 2194 arc_buf_thaw(buf); 2195 return; 2196 } 2197 2198 mutex_enter(hash_lock); 2199 2200 /* 2201 * Do we have more than one buf? 2202 */ 2203 if (hdr->b_buf != buf || buf->b_next != NULL) { 2204 arc_buf_hdr_t *nhdr; 2205 arc_buf_t **bufp; 2206 uint64_t blksz = hdr->b_size; 2207 spa_t *spa = hdr->b_spa; 2208 arc_buf_contents_t type = hdr->b_type; 2209 2210 ASSERT(hdr->b_datacnt > 1); 2211 /* 2212 * Pull the data off of this buf and attach it to 2213 * a new anonymous buf. 2214 */ 2215 (void) remove_reference(hdr, hash_lock, tag); 2216 bufp = &hdr->b_buf; 2217 while (*bufp != buf) 2218 bufp = &(*bufp)->b_next; 2219 *bufp = (*bufp)->b_next; 2220 2221 ASSERT3U(hdr->b_state->size, >=, hdr->b_size); 2222 atomic_add_64(&hdr->b_state->size, -hdr->b_size); 2223 if (refcount_is_zero(&hdr->b_refcnt)) { 2224 ASSERT3U(hdr->b_state->lsize, >=, hdr->b_size); 2225 atomic_add_64(&hdr->b_state->lsize, -hdr->b_size); 2226 } 2227 hdr->b_datacnt -= 1; 2228 2229 mutex_exit(hash_lock); 2230 2231 nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 2232 nhdr->b_size = blksz; 2233 nhdr->b_spa = spa; 2234 nhdr->b_type = type; 2235 nhdr->b_buf = buf; 2236 nhdr->b_state = arc.anon; 2237 nhdr->b_arc_access = 0; 2238 nhdr->b_flags = 0; 2239 nhdr->b_datacnt = 1; 2240 nhdr->b_freeze_cksum = 2241 kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 2242 *nhdr->b_freeze_cksum = *hdr->b_freeze_cksum; /* struct copy */ 2243 buf->b_hdr = nhdr; 2244 buf->b_next = NULL; 2245 (void) refcount_add(&nhdr->b_refcnt, tag); 2246 atomic_add_64(&arc.anon->size, blksz); 2247 2248 hdr = nhdr; 2249 } else { 2250 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 2251 ASSERT(!list_link_active(&hdr->b_arc_node)); 2252 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2253 arc_change_state(arc.anon, hdr, hash_lock); 2254 hdr->b_arc_access = 0; 2255 mutex_exit(hash_lock); 2256 bzero(&hdr->b_dva, sizeof (dva_t)); 2257 hdr->b_birth = 0; 2258 hdr->b_cksum0 = 0; 2259 } 2260 buf->b_efunc = NULL; 2261 buf->b_private = NULL; 2262 arc_buf_thaw(buf); 2263 } 2264 2265 int 2266 arc_released(arc_buf_t *buf) 2267 { 2268 return (buf->b_data != NULL && buf->b_hdr->b_state == arc.anon); 2269 } 2270 2271 int 2272 arc_has_callback(arc_buf_t *buf) 2273 { 2274 return (buf->b_efunc != NULL); 2275 } 2276 2277 #ifdef ZFS_DEBUG 2278 int 2279 arc_referenced(arc_buf_t *buf) 2280 { 2281 return (refcount_count(&buf->b_hdr->b_refcnt)); 2282 } 2283 #endif 2284 2285 static void 2286 arc_write_done(zio_t *zio) 2287 { 2288 arc_buf_t *buf; 2289 arc_buf_hdr_t *hdr; 2290 arc_callback_t *acb; 2291 2292 buf = zio->io_private; 2293 hdr = buf->b_hdr; 2294 acb = hdr->b_acb; 2295 hdr->b_acb = NULL; 2296 ASSERT(acb != NULL); 2297 2298 /* this buffer is on no lists and is not in the hash table */ 2299 ASSERT3P(hdr->b_state, ==, arc.anon); 2300 2301 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 2302 hdr->b_birth = zio->io_bp->blk_birth; 2303 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 2304 /* 2305 * If the block to be written was all-zero, we may have 2306 * compressed it away. In this case no write was performed 2307 * so there will be no dva/birth-date/checksum. The buffer 2308 * must therefor remain anonymous (and uncached). 2309 */ 2310 if (!BUF_EMPTY(hdr)) { 2311 arc_buf_hdr_t *exists; 2312 kmutex_t *hash_lock; 2313 2314 arc_cksum_verify(buf); 2315 2316 exists = buf_hash_insert(hdr, &hash_lock); 2317 if (exists) { 2318 /* 2319 * This can only happen if we overwrite for 2320 * sync-to-convergence, because we remove 2321 * buffers from the hash table when we arc_free(). 2322 */ 2323 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 2324 BP_IDENTITY(zio->io_bp))); 2325 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 2326 zio->io_bp->blk_birth); 2327 2328 ASSERT(refcount_is_zero(&exists->b_refcnt)); 2329 arc_change_state(arc.anon, exists, hash_lock); 2330 mutex_exit(hash_lock); 2331 arc_hdr_destroy(exists); 2332 exists = buf_hash_insert(hdr, &hash_lock); 2333 ASSERT3P(exists, ==, NULL); 2334 } 2335 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2336 arc_access(hdr, hash_lock); 2337 mutex_exit(hash_lock); 2338 } else if (acb->acb_done == NULL) { 2339 int destroy_hdr; 2340 /* 2341 * This is an anonymous buffer with no user callback, 2342 * destroy it if there are no active references. 2343 */ 2344 mutex_enter(&arc_eviction_mtx); 2345 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 2346 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2347 mutex_exit(&arc_eviction_mtx); 2348 if (destroy_hdr) 2349 arc_hdr_destroy(hdr); 2350 } else { 2351 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2352 } 2353 2354 if (acb->acb_done) { 2355 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 2356 acb->acb_done(zio, buf, acb->acb_private); 2357 } 2358 2359 kmem_free(acb, sizeof (arc_callback_t)); 2360 } 2361 2362 int 2363 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 2364 uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 2365 arc_done_func_t *done, void *private, int priority, int flags, 2366 uint32_t arc_flags, zbookmark_t *zb) 2367 { 2368 arc_buf_hdr_t *hdr = buf->b_hdr; 2369 arc_callback_t *acb; 2370 zio_t *rzio; 2371 2372 /* this is a private buffer - no locking required */ 2373 ASSERT3P(hdr->b_state, ==, arc.anon); 2374 ASSERT(BUF_EMPTY(hdr)); 2375 ASSERT(!HDR_IO_ERROR(hdr)); 2376 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 2377 ASSERT(hdr->b_acb == 0); 2378 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2379 acb->acb_done = done; 2380 acb->acb_private = private; 2381 acb->acb_byteswap = (arc_byteswap_func_t *)-1; 2382 hdr->b_acb = acb; 2383 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2384 arc_cksum_compute(buf); 2385 rzio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp, 2386 buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags, zb); 2387 2388 if (arc_flags & ARC_WAIT) 2389 return (zio_wait(rzio)); 2390 2391 ASSERT(arc_flags & ARC_NOWAIT); 2392 zio_nowait(rzio); 2393 2394 return (0); 2395 } 2396 2397 int 2398 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 2399 zio_done_func_t *done, void *private, uint32_t arc_flags) 2400 { 2401 arc_buf_hdr_t *ab; 2402 kmutex_t *hash_lock; 2403 zio_t *zio; 2404 2405 /* 2406 * If this buffer is in the cache, release it, so it 2407 * can be re-used. 2408 */ 2409 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2410 if (ab != NULL) { 2411 /* 2412 * The checksum of blocks to free is not always 2413 * preserved (eg. on the deadlist). However, if it is 2414 * nonzero, it should match what we have in the cache. 2415 */ 2416 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 2417 ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 2418 if (ab->b_state != arc.anon) 2419 arc_change_state(arc.anon, ab, hash_lock); 2420 if (HDR_IO_IN_PROGRESS(ab)) { 2421 /* 2422 * This should only happen when we prefetch. 2423 */ 2424 ASSERT(ab->b_flags & ARC_PREFETCH); 2425 ASSERT3U(ab->b_datacnt, ==, 1); 2426 ab->b_flags |= ARC_FREED_IN_READ; 2427 if (HDR_IN_HASH_TABLE(ab)) 2428 buf_hash_remove(ab); 2429 ab->b_arc_access = 0; 2430 bzero(&ab->b_dva, sizeof (dva_t)); 2431 ab->b_birth = 0; 2432 ab->b_cksum0 = 0; 2433 ab->b_buf->b_efunc = NULL; 2434 ab->b_buf->b_private = NULL; 2435 mutex_exit(hash_lock); 2436 } else if (refcount_is_zero(&ab->b_refcnt)) { 2437 mutex_exit(hash_lock); 2438 arc_hdr_destroy(ab); 2439 atomic_add_64(&arc.deleted, 1); 2440 } else { 2441 /* 2442 * We still have an active reference on this 2443 * buffer. This can happen, e.g., from 2444 * dbuf_unoverride(). 2445 */ 2446 ASSERT(!HDR_IN_HASH_TABLE(ab)); 2447 ab->b_arc_access = 0; 2448 bzero(&ab->b_dva, sizeof (dva_t)); 2449 ab->b_birth = 0; 2450 ab->b_cksum0 = 0; 2451 ab->b_buf->b_efunc = NULL; 2452 ab->b_buf->b_private = NULL; 2453 mutex_exit(hash_lock); 2454 } 2455 } 2456 2457 zio = zio_free(pio, spa, txg, bp, done, private); 2458 2459 if (arc_flags & ARC_WAIT) 2460 return (zio_wait(zio)); 2461 2462 ASSERT(arc_flags & ARC_NOWAIT); 2463 zio_nowait(zio); 2464 2465 return (0); 2466 } 2467 2468 void 2469 arc_tempreserve_clear(uint64_t tempreserve) 2470 { 2471 atomic_add_64(&arc_tempreserve, -tempreserve); 2472 ASSERT((int64_t)arc_tempreserve >= 0); 2473 } 2474 2475 int 2476 arc_tempreserve_space(uint64_t tempreserve) 2477 { 2478 #ifdef ZFS_DEBUG 2479 /* 2480 * Once in a while, fail for no reason. Everything should cope. 2481 */ 2482 if (spa_get_random(10000) == 0) { 2483 dprintf("forcing random failure\n"); 2484 return (ERESTART); 2485 } 2486 #endif 2487 if (tempreserve > arc.c/4 && !arc.no_grow) 2488 arc.c = MIN(arc.c_max, tempreserve * 4); 2489 if (tempreserve > arc.c) 2490 return (ENOMEM); 2491 2492 /* 2493 * Throttle writes when the amount of dirty data in the cache 2494 * gets too large. We try to keep the cache less than half full 2495 * of dirty blocks so that our sync times don't grow too large. 2496 * Note: if two requests come in concurrently, we might let them 2497 * both succeed, when one of them should fail. Not a huge deal. 2498 * 2499 * XXX The limit should be adjusted dynamically to keep the time 2500 * to sync a dataset fixed (around 1-5 seconds?). 2501 */ 2502 2503 if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 && 2504 arc_tempreserve + arc.anon->size > arc.c / 4) { 2505 dprintf("failing, arc_tempreserve=%lluK anon=%lluK " 2506 "tempreserve=%lluK arc.c=%lluK\n", 2507 arc_tempreserve>>10, arc.anon->lsize>>10, 2508 tempreserve>>10, arc.c>>10); 2509 return (ERESTART); 2510 } 2511 atomic_add_64(&arc_tempreserve, tempreserve); 2512 return (0); 2513 } 2514 2515 void 2516 arc_init(void) 2517 { 2518 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 2519 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 2520 2521 /* Convert seconds to clock ticks */ 2522 arc_min_prefetch_lifespan = 1 * hz; 2523 2524 /* Start out with 1/8 of all memory */ 2525 arc.c = physmem * PAGESIZE / 8; 2526 2527 #ifdef _KERNEL 2528 /* 2529 * On architectures where the physical memory can be larger 2530 * than the addressable space (intel in 32-bit mode), we may 2531 * need to limit the cache to 1/8 of VM size. 2532 */ 2533 arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 2534 #endif 2535 2536 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 2537 arc.c_min = MAX(arc.c / 4, 64<<20); 2538 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 2539 if (arc.c * 8 >= 1<<30) 2540 arc.c_max = (arc.c * 8) - (1<<30); 2541 else 2542 arc.c_max = arc.c_min; 2543 arc.c_max = MAX(arc.c * 6, arc.c_max); 2544 2545 /* 2546 * Allow the tunables to override our calculations if they are 2547 * reasonable (ie. over 64MB) 2548 */ 2549 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 2550 arc.c_max = zfs_arc_max; 2551 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc.c_max) 2552 arc.c_min = zfs_arc_min; 2553 2554 arc.c = arc.c_max; 2555 arc.p = (arc.c >> 1); 2556 2557 /* if kmem_flags are set, lets try to use less memory */ 2558 if (kmem_debugging()) 2559 arc.c = arc.c / 2; 2560 if (arc.c < arc.c_min) 2561 arc.c = arc.c_min; 2562 2563 arc.anon = &ARC_anon; 2564 arc.mru = &ARC_mru; 2565 arc.mru_ghost = &ARC_mru_ghost; 2566 arc.mfu = &ARC_mfu; 2567 arc.mfu_ghost = &ARC_mfu_ghost; 2568 arc.size = 0; 2569 2570 arc.hits = 0; 2571 arc.recycle_miss = 0; 2572 arc.evict_skip = 0; 2573 arc.mutex_miss = 0; 2574 2575 mutex_init(&arc.anon->mtx, NULL, MUTEX_DEFAULT, NULL); 2576 mutex_init(&arc.mru->mtx, NULL, MUTEX_DEFAULT, NULL); 2577 mutex_init(&arc.mru_ghost->mtx, NULL, MUTEX_DEFAULT, NULL); 2578 mutex_init(&arc.mfu->mtx, NULL, MUTEX_DEFAULT, NULL); 2579 mutex_init(&arc.mfu_ghost->mtx, NULL, MUTEX_DEFAULT, NULL); 2580 2581 list_create(&arc.mru->list, sizeof (arc_buf_hdr_t), 2582 offsetof(arc_buf_hdr_t, b_arc_node)); 2583 list_create(&arc.mru_ghost->list, sizeof (arc_buf_hdr_t), 2584 offsetof(arc_buf_hdr_t, b_arc_node)); 2585 list_create(&arc.mfu->list, sizeof (arc_buf_hdr_t), 2586 offsetof(arc_buf_hdr_t, b_arc_node)); 2587 list_create(&arc.mfu_ghost->list, sizeof (arc_buf_hdr_t), 2588 offsetof(arc_buf_hdr_t, b_arc_node)); 2589 2590 buf_init(); 2591 2592 arc_thread_exit = 0; 2593 arc_eviction_list = NULL; 2594 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 2595 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 2596 2597 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 2598 TS_RUN, minclsyspri); 2599 2600 arc_dead = FALSE; 2601 } 2602 2603 void 2604 arc_fini(void) 2605 { 2606 mutex_enter(&arc_reclaim_thr_lock); 2607 arc_thread_exit = 1; 2608 while (arc_thread_exit != 0) 2609 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 2610 mutex_exit(&arc_reclaim_thr_lock); 2611 2612 arc_flush(); 2613 2614 arc_dead = TRUE; 2615 2616 mutex_destroy(&arc_eviction_mtx); 2617 mutex_destroy(&arc_reclaim_thr_lock); 2618 cv_destroy(&arc_reclaim_thr_cv); 2619 2620 list_destroy(&arc.mru->list); 2621 list_destroy(&arc.mru_ghost->list); 2622 list_destroy(&arc.mfu->list); 2623 list_destroy(&arc.mfu_ghost->list); 2624 2625 mutex_destroy(&arc.anon->mtx); 2626 mutex_destroy(&arc.mru->mtx); 2627 mutex_destroy(&arc.mru_ghost->mtx); 2628 mutex_destroy(&arc.mfu->mtx); 2629 mutex_destroy(&arc.mfu_ghost->mtx); 2630 2631 buf_fini(); 2632 } 2633