xref: /titanic_50/usr/src/uts/common/fs/zfs/arc.c (revision 56b2bdd1f04d465cfe4a95b88ae5cba5884154e4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * DVA-based Adjustable Replacement Cache
29  *
30  * While much of the theory of operation used here is
31  * based on the self-tuning, low overhead replacement cache
32  * presented by Megiddo and Modha at FAST 2003, there are some
33  * significant differences:
34  *
35  * 1. The Megiddo and Modha model assumes any page is evictable.
36  * Pages in its cache cannot be "locked" into memory.  This makes
37  * the eviction algorithm simple: evict the last page in the list.
38  * This also make the performance characteristics easy to reason
39  * about.  Our cache is not so simple.  At any given moment, some
40  * subset of the blocks in the cache are un-evictable because we
41  * have handed out a reference to them.  Blocks are only evictable
42  * when there are no external references active.  This makes
43  * eviction far more problematic:  we choose to evict the evictable
44  * blocks that are the "lowest" in the list.
45  *
46  * There are times when it is not possible to evict the requested
47  * space.  In these circumstances we are unable to adjust the cache
48  * size.  To prevent the cache growing unbounded at these times we
49  * implement a "cache throttle" that slows the flow of new data
50  * into the cache until we can make space available.
51  *
52  * 2. The Megiddo and Modha model assumes a fixed cache size.
53  * Pages are evicted when the cache is full and there is a cache
54  * miss.  Our model has a variable sized cache.  It grows with
55  * high use, but also tries to react to memory pressure from the
56  * operating system: decreasing its size when system memory is
57  * tight.
58  *
59  * 3. The Megiddo and Modha model assumes a fixed page size. All
60  * elements of the cache are therefor exactly the same size.  So
61  * when adjusting the cache size following a cache miss, its simply
62  * a matter of choosing a single page to evict.  In our model, we
63  * have variable sized cache blocks (rangeing from 512 bytes to
64  * 128K bytes).  We therefor choose a set of blocks to evict to make
65  * space for a cache miss that approximates as closely as possible
66  * the space used by the new block.
67  *
68  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
69  * by N. Megiddo & D. Modha, FAST 2003
70  */
71 
72 /*
73  * The locking model:
74  *
75  * A new reference to a cache buffer can be obtained in two
76  * ways: 1) via a hash table lookup using the DVA as a key,
77  * or 2) via one of the ARC lists.  The arc_read() interface
78  * uses method 1, while the internal arc algorithms for
79  * adjusting the cache use method 2.  We therefor provide two
80  * types of locks: 1) the hash table lock array, and 2) the
81  * arc list locks.
82  *
83  * Buffers do not have their own mutexes, rather they rely on the
84  * hash table mutexes for the bulk of their protection (i.e. most
85  * fields in the arc_buf_hdr_t are protected by these mutexes).
86  *
87  * buf_hash_find() returns the appropriate mutex (held) when it
88  * locates the requested buffer in the hash table.  It returns
89  * NULL for the mutex if the buffer was not in the table.
90  *
91  * buf_hash_remove() expects the appropriate hash mutex to be
92  * already held before it is invoked.
93  *
94  * Each arc state also has a mutex which is used to protect the
95  * buffer list associated with the state.  When attempting to
96  * obtain a hash table lock while holding an arc list lock you
97  * must use: mutex_tryenter() to avoid deadlock.  Also note that
98  * the active state mutex must be held before the ghost state mutex.
99  *
100  * Arc buffers may have an associated eviction callback function.
101  * This function will be invoked prior to removing the buffer (e.g.
102  * in arc_do_user_evicts()).  Note however that the data associated
103  * with the buffer may be evicted prior to the callback.  The callback
104  * must be made with *no locks held* (to prevent deadlock).  Additionally,
105  * the users of callbacks must ensure that their private data is
106  * protected from simultaneous callbacks from arc_buf_evict()
107  * and arc_do_user_evicts().
108  *
109  * Note that the majority of the performance stats are manipulated
110  * with atomic operations.
111  *
112  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
113  *
114  *	- L2ARC buflist creation
115  *	- L2ARC buflist eviction
116  *	- L2ARC write completion, which walks L2ARC buflists
117  *	- ARC header destruction, as it removes from L2ARC buflists
118  *	- ARC header release, as it removes from L2ARC buflists
119  */
120 
121 #include <sys/spa.h>
122 #include <sys/zio.h>
123 #include <sys/zfs_context.h>
124 #include <sys/arc.h>
125 #include <sys/refcount.h>
126 #include <sys/vdev.h>
127 #include <sys/vdev_impl.h>
128 #ifdef _KERNEL
129 #include <sys/vmsystm.h>
130 #include <vm/anon.h>
131 #include <sys/fs/swapnode.h>
132 #include <sys/dnlc.h>
133 #endif
134 #include <sys/callb.h>
135 #include <sys/kstat.h>
136 #include <zfs_fletcher.h>
137 
138 #ifndef _KERNEL
139 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
140 boolean_t arc_watch = B_FALSE;
141 int arc_procfd;
142 #endif
143 
144 static kmutex_t		arc_reclaim_thr_lock;
145 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
146 static uint8_t		arc_thread_exit;
147 
148 extern int zfs_write_limit_shift;
149 extern uint64_t zfs_write_limit_max;
150 extern kmutex_t zfs_write_limit_lock;
151 
152 #define	ARC_REDUCE_DNLC_PERCENT	3
153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
154 
155 typedef enum arc_reclaim_strategy {
156 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
157 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
158 } arc_reclaim_strategy_t;
159 
160 /* number of seconds before growing cache again */
161 static int		arc_grow_retry = 60;
162 
163 /* shift of arc_c for calculating both min and max arc_p */
164 static int		arc_p_min_shift = 4;
165 
166 /* log2(fraction of arc to reclaim) */
167 static int		arc_shrink_shift = 5;
168 
169 /*
170  * minimum lifespan of a prefetch block in clock ticks
171  * (initialized in arc_init())
172  */
173 static int		arc_min_prefetch_lifespan;
174 
175 static int arc_dead;
176 
177 /*
178  * The arc has filled available memory and has now warmed up.
179  */
180 static boolean_t arc_warm;
181 
182 /*
183  * These tunables are for performance analysis.
184  */
185 uint64_t zfs_arc_max;
186 uint64_t zfs_arc_min;
187 uint64_t zfs_arc_meta_limit = 0;
188 int zfs_arc_grow_retry = 0;
189 int zfs_arc_shrink_shift = 0;
190 int zfs_arc_p_min_shift = 0;
191 int zfs_disable_dup_eviction = 0;
192 
193 /*
194  * Note that buffers can be in one of 6 states:
195  *	ARC_anon	- anonymous (discussed below)
196  *	ARC_mru		- recently used, currently cached
197  *	ARC_mru_ghost	- recentely used, no longer in cache
198  *	ARC_mfu		- frequently used, currently cached
199  *	ARC_mfu_ghost	- frequently used, no longer in cache
200  *	ARC_l2c_only	- exists in L2ARC but not other states
201  * When there are no active references to the buffer, they are
202  * are linked onto a list in one of these arc states.  These are
203  * the only buffers that can be evicted or deleted.  Within each
204  * state there are multiple lists, one for meta-data and one for
205  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
206  * etc.) is tracked separately so that it can be managed more
207  * explicitly: favored over data, limited explicitly.
208  *
209  * Anonymous buffers are buffers that are not associated with
210  * a DVA.  These are buffers that hold dirty block copies
211  * before they are written to stable storage.  By definition,
212  * they are "ref'd" and are considered part of arc_mru
213  * that cannot be freed.  Generally, they will aquire a DVA
214  * as they are written and migrate onto the arc_mru list.
215  *
216  * The ARC_l2c_only state is for buffers that are in the second
217  * level ARC but no longer in any of the ARC_m* lists.  The second
218  * level ARC itself may also contain buffers that are in any of
219  * the ARC_m* states - meaning that a buffer can exist in two
220  * places.  The reason for the ARC_l2c_only state is to keep the
221  * buffer header in the hash table, so that reads that hit the
222  * second level ARC benefit from these fast lookups.
223  */
224 
225 typedef struct arc_state {
226 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
227 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
228 	uint64_t arcs_size;	/* total amount of data in this state */
229 	kmutex_t arcs_mtx;
230 } arc_state_t;
231 
232 /* The 6 states: */
233 static arc_state_t ARC_anon;
234 static arc_state_t ARC_mru;
235 static arc_state_t ARC_mru_ghost;
236 static arc_state_t ARC_mfu;
237 static arc_state_t ARC_mfu_ghost;
238 static arc_state_t ARC_l2c_only;
239 
240 typedef struct arc_stats {
241 	kstat_named_t arcstat_hits;
242 	kstat_named_t arcstat_misses;
243 	kstat_named_t arcstat_demand_data_hits;
244 	kstat_named_t arcstat_demand_data_misses;
245 	kstat_named_t arcstat_demand_metadata_hits;
246 	kstat_named_t arcstat_demand_metadata_misses;
247 	kstat_named_t arcstat_prefetch_data_hits;
248 	kstat_named_t arcstat_prefetch_data_misses;
249 	kstat_named_t arcstat_prefetch_metadata_hits;
250 	kstat_named_t arcstat_prefetch_metadata_misses;
251 	kstat_named_t arcstat_mru_hits;
252 	kstat_named_t arcstat_mru_ghost_hits;
253 	kstat_named_t arcstat_mfu_hits;
254 	kstat_named_t arcstat_mfu_ghost_hits;
255 	kstat_named_t arcstat_deleted;
256 	kstat_named_t arcstat_recycle_miss;
257 	kstat_named_t arcstat_mutex_miss;
258 	kstat_named_t arcstat_evict_skip;
259 	kstat_named_t arcstat_evict_l2_cached;
260 	kstat_named_t arcstat_evict_l2_eligible;
261 	kstat_named_t arcstat_evict_l2_ineligible;
262 	kstat_named_t arcstat_hash_elements;
263 	kstat_named_t arcstat_hash_elements_max;
264 	kstat_named_t arcstat_hash_collisions;
265 	kstat_named_t arcstat_hash_chains;
266 	kstat_named_t arcstat_hash_chain_max;
267 	kstat_named_t arcstat_p;
268 	kstat_named_t arcstat_c;
269 	kstat_named_t arcstat_c_min;
270 	kstat_named_t arcstat_c_max;
271 	kstat_named_t arcstat_size;
272 	kstat_named_t arcstat_hdr_size;
273 	kstat_named_t arcstat_data_size;
274 	kstat_named_t arcstat_other_size;
275 	kstat_named_t arcstat_l2_hits;
276 	kstat_named_t arcstat_l2_misses;
277 	kstat_named_t arcstat_l2_feeds;
278 	kstat_named_t arcstat_l2_rw_clash;
279 	kstat_named_t arcstat_l2_read_bytes;
280 	kstat_named_t arcstat_l2_write_bytes;
281 	kstat_named_t arcstat_l2_writes_sent;
282 	kstat_named_t arcstat_l2_writes_done;
283 	kstat_named_t arcstat_l2_writes_error;
284 	kstat_named_t arcstat_l2_writes_hdr_miss;
285 	kstat_named_t arcstat_l2_evict_lock_retry;
286 	kstat_named_t arcstat_l2_evict_reading;
287 	kstat_named_t arcstat_l2_free_on_write;
288 	kstat_named_t arcstat_l2_abort_lowmem;
289 	kstat_named_t arcstat_l2_cksum_bad;
290 	kstat_named_t arcstat_l2_io_error;
291 	kstat_named_t arcstat_l2_size;
292 	kstat_named_t arcstat_l2_hdr_size;
293 	kstat_named_t arcstat_memory_throttle_count;
294 	kstat_named_t arcstat_duplicate_buffers;
295 	kstat_named_t arcstat_duplicate_buffers_size;
296 	kstat_named_t arcstat_duplicate_reads;
297 	kstat_named_t arcstat_meta_used;
298 	kstat_named_t arcstat_meta_limit;
299 	kstat_named_t arcstat_meta_max;
300 } arc_stats_t;
301 
302 static arc_stats_t arc_stats = {
303 	{ "hits",			KSTAT_DATA_UINT64 },
304 	{ "misses",			KSTAT_DATA_UINT64 },
305 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
306 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
307 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
308 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
309 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
310 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
311 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
312 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
313 	{ "mru_hits",			KSTAT_DATA_UINT64 },
314 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
315 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
316 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
317 	{ "deleted",			KSTAT_DATA_UINT64 },
318 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
319 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
320 	{ "evict_skip",			KSTAT_DATA_UINT64 },
321 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
322 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
323 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
324 	{ "hash_elements",		KSTAT_DATA_UINT64 },
325 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
326 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
327 	{ "hash_chains",		KSTAT_DATA_UINT64 },
328 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
329 	{ "p",				KSTAT_DATA_UINT64 },
330 	{ "c",				KSTAT_DATA_UINT64 },
331 	{ "c_min",			KSTAT_DATA_UINT64 },
332 	{ "c_max",			KSTAT_DATA_UINT64 },
333 	{ "size",			KSTAT_DATA_UINT64 },
334 	{ "hdr_size",			KSTAT_DATA_UINT64 },
335 	{ "data_size",			KSTAT_DATA_UINT64 },
336 	{ "other_size",			KSTAT_DATA_UINT64 },
337 	{ "l2_hits",			KSTAT_DATA_UINT64 },
338 	{ "l2_misses",			KSTAT_DATA_UINT64 },
339 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
340 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
341 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
342 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
343 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
344 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
345 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
346 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
347 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
348 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
349 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
350 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
351 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
352 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
353 	{ "l2_size",			KSTAT_DATA_UINT64 },
354 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
355 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
356 	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
357 	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
358 	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
359 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
360 	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
361 	{ "arc_meta_max",		KSTAT_DATA_UINT64 }
362 };
363 
364 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
365 
366 #define	ARCSTAT_INCR(stat, val) \
367 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
368 
369 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
370 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
371 
372 #define	ARCSTAT_MAX(stat, val) {					\
373 	uint64_t m;							\
374 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
375 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
376 		continue;						\
377 }
378 
379 #define	ARCSTAT_MAXSTAT(stat) \
380 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
381 
382 /*
383  * We define a macro to allow ARC hits/misses to be easily broken down by
384  * two separate conditions, giving a total of four different subtypes for
385  * each of hits and misses (so eight statistics total).
386  */
387 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
388 	if (cond1) {							\
389 		if (cond2) {						\
390 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
391 		} else {						\
392 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
393 		}							\
394 	} else {							\
395 		if (cond2) {						\
396 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
397 		} else {						\
398 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
399 		}							\
400 	}
401 
402 kstat_t			*arc_ksp;
403 static arc_state_t	*arc_anon;
404 static arc_state_t	*arc_mru;
405 static arc_state_t	*arc_mru_ghost;
406 static arc_state_t	*arc_mfu;
407 static arc_state_t	*arc_mfu_ghost;
408 static arc_state_t	*arc_l2c_only;
409 
410 /*
411  * There are several ARC variables that are critical to export as kstats --
412  * but we don't want to have to grovel around in the kstat whenever we wish to
413  * manipulate them.  For these variables, we therefore define them to be in
414  * terms of the statistic variable.  This assures that we are not introducing
415  * the possibility of inconsistency by having shadow copies of the variables,
416  * while still allowing the code to be readable.
417  */
418 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
419 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
420 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
421 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
422 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
423 #define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
424 #define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
425 #define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
426 
427 static int		arc_no_grow;	/* Don't try to grow cache size */
428 static uint64_t		arc_tempreserve;
429 static uint64_t		arc_loaned_bytes;
430 
431 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
432 
433 typedef struct arc_callback arc_callback_t;
434 
435 struct arc_callback {
436 	void			*acb_private;
437 	arc_done_func_t		*acb_done;
438 	arc_buf_t		*acb_buf;
439 	zio_t			*acb_zio_dummy;
440 	arc_callback_t		*acb_next;
441 };
442 
443 typedef struct arc_write_callback arc_write_callback_t;
444 
445 struct arc_write_callback {
446 	void		*awcb_private;
447 	arc_done_func_t	*awcb_ready;
448 	arc_done_func_t	*awcb_done;
449 	arc_buf_t	*awcb_buf;
450 };
451 
452 struct arc_buf_hdr {
453 	/* protected by hash lock */
454 	dva_t			b_dva;
455 	uint64_t		b_birth;
456 	uint64_t		b_cksum0;
457 
458 	kmutex_t		b_freeze_lock;
459 	zio_cksum_t		*b_freeze_cksum;
460 	void			*b_thawed;
461 
462 	arc_buf_hdr_t		*b_hash_next;
463 	arc_buf_t		*b_buf;
464 	uint32_t		b_flags;
465 	uint32_t		b_datacnt;
466 
467 	arc_callback_t		*b_acb;
468 	kcondvar_t		b_cv;
469 
470 	/* immutable */
471 	arc_buf_contents_t	b_type;
472 	uint64_t		b_size;
473 	uint64_t		b_spa;
474 
475 	/* protected by arc state mutex */
476 	arc_state_t		*b_state;
477 	list_node_t		b_arc_node;
478 
479 	/* updated atomically */
480 	clock_t			b_arc_access;
481 
482 	/* self protecting */
483 	refcount_t		b_refcnt;
484 
485 	l2arc_buf_hdr_t		*b_l2hdr;
486 	list_node_t		b_l2node;
487 };
488 
489 static arc_buf_t *arc_eviction_list;
490 static kmutex_t arc_eviction_mtx;
491 static arc_buf_hdr_t arc_eviction_hdr;
492 static void arc_get_data_buf(arc_buf_t *buf);
493 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
494 static int arc_evict_needed(arc_buf_contents_t type);
495 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
496 static void arc_buf_watch(arc_buf_t *buf);
497 
498 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
499 
500 #define	GHOST_STATE(state)	\
501 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
502 	(state) == arc_l2c_only)
503 
504 /*
505  * Private ARC flags.  These flags are private ARC only flags that will show up
506  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
507  * be passed in as arc_flags in things like arc_read.  However, these flags
508  * should never be passed and should only be set by ARC code.  When adding new
509  * public flags, make sure not to smash the private ones.
510  */
511 
512 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
513 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
514 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
515 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
516 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
517 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
518 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
519 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
520 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
521 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
522 
523 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
524 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
525 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
526 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
527 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
528 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
529 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
530 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
531 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
532 				    (hdr)->b_l2hdr != NULL)
533 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
534 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
535 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
536 
537 /*
538  * Other sizes
539  */
540 
541 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
542 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
543 
544 /*
545  * Hash table routines
546  */
547 
548 #define	HT_LOCK_PAD	64
549 
550 struct ht_lock {
551 	kmutex_t	ht_lock;
552 #ifdef _KERNEL
553 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
554 #endif
555 };
556 
557 #define	BUF_LOCKS 256
558 typedef struct buf_hash_table {
559 	uint64_t ht_mask;
560 	arc_buf_hdr_t **ht_table;
561 	struct ht_lock ht_locks[BUF_LOCKS];
562 } buf_hash_table_t;
563 
564 static buf_hash_table_t buf_hash_table;
565 
566 #define	BUF_HASH_INDEX(spa, dva, birth) \
567 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
568 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
569 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
570 #define	HDR_LOCK(hdr) \
571 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
572 
573 uint64_t zfs_crc64_table[256];
574 
575 /*
576  * Level 2 ARC
577  */
578 
579 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
580 #define	L2ARC_HEADROOM		2		/* num of writes */
581 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
582 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
583 
584 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
585 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
586 
587 /*
588  * L2ARC Performance Tunables
589  */
590 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
591 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
592 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
593 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
594 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
595 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
596 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
597 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
598 
599 /*
600  * L2ARC Internals
601  */
602 typedef struct l2arc_dev {
603 	vdev_t			*l2ad_vdev;	/* vdev */
604 	spa_t			*l2ad_spa;	/* spa */
605 	uint64_t		l2ad_hand;	/* next write location */
606 	uint64_t		l2ad_write;	/* desired write size, bytes */
607 	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
608 	uint64_t		l2ad_start;	/* first addr on device */
609 	uint64_t		l2ad_end;	/* last addr on device */
610 	uint64_t		l2ad_evict;	/* last addr eviction reached */
611 	boolean_t		l2ad_first;	/* first sweep through */
612 	boolean_t		l2ad_writing;	/* currently writing */
613 	list_t			*l2ad_buflist;	/* buffer list */
614 	list_node_t		l2ad_node;	/* device list node */
615 } l2arc_dev_t;
616 
617 static list_t L2ARC_dev_list;			/* device list */
618 static list_t *l2arc_dev_list;			/* device list pointer */
619 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
620 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
621 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
622 static list_t L2ARC_free_on_write;		/* free after write buf list */
623 static list_t *l2arc_free_on_write;		/* free after write list ptr */
624 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
625 static uint64_t l2arc_ndev;			/* number of devices */
626 
627 typedef struct l2arc_read_callback {
628 	arc_buf_t	*l2rcb_buf;		/* read buffer */
629 	spa_t		*l2rcb_spa;		/* spa */
630 	blkptr_t	l2rcb_bp;		/* original blkptr */
631 	zbookmark_t	l2rcb_zb;		/* original bookmark */
632 	int		l2rcb_flags;		/* original flags */
633 } l2arc_read_callback_t;
634 
635 typedef struct l2arc_write_callback {
636 	l2arc_dev_t	*l2wcb_dev;		/* device info */
637 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
638 } l2arc_write_callback_t;
639 
640 struct l2arc_buf_hdr {
641 	/* protected by arc_buf_hdr  mutex */
642 	l2arc_dev_t	*b_dev;			/* L2ARC device */
643 	uint64_t	b_daddr;		/* disk address, offset byte */
644 };
645 
646 typedef struct l2arc_data_free {
647 	/* protected by l2arc_free_on_write_mtx */
648 	void		*l2df_data;
649 	size_t		l2df_size;
650 	void		(*l2df_func)(void *, size_t);
651 	list_node_t	l2df_list_node;
652 } l2arc_data_free_t;
653 
654 static kmutex_t l2arc_feed_thr_lock;
655 static kcondvar_t l2arc_feed_thr_cv;
656 static uint8_t l2arc_thread_exit;
657 
658 static void l2arc_read_done(zio_t *zio);
659 static void l2arc_hdr_stat_add(void);
660 static void l2arc_hdr_stat_remove(void);
661 
662 static uint64_t
663 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
664 {
665 	uint8_t *vdva = (uint8_t *)dva;
666 	uint64_t crc = -1ULL;
667 	int i;
668 
669 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
670 
671 	for (i = 0; i < sizeof (dva_t); i++)
672 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
673 
674 	crc ^= (spa>>8) ^ birth;
675 
676 	return (crc);
677 }
678 
679 #define	BUF_EMPTY(buf)						\
680 	((buf)->b_dva.dva_word[0] == 0 &&			\
681 	(buf)->b_dva.dva_word[1] == 0 &&			\
682 	(buf)->b_birth == 0)
683 
684 #define	BUF_EQUAL(spa, dva, birth, buf)				\
685 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
686 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
687 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
688 
689 static void
690 buf_discard_identity(arc_buf_hdr_t *hdr)
691 {
692 	hdr->b_dva.dva_word[0] = 0;
693 	hdr->b_dva.dva_word[1] = 0;
694 	hdr->b_birth = 0;
695 	hdr->b_cksum0 = 0;
696 }
697 
698 static arc_buf_hdr_t *
699 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
700 {
701 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
702 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
703 	arc_buf_hdr_t *buf;
704 
705 	mutex_enter(hash_lock);
706 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
707 	    buf = buf->b_hash_next) {
708 		if (BUF_EQUAL(spa, dva, birth, buf)) {
709 			*lockp = hash_lock;
710 			return (buf);
711 		}
712 	}
713 	mutex_exit(hash_lock);
714 	*lockp = NULL;
715 	return (NULL);
716 }
717 
718 /*
719  * Insert an entry into the hash table.  If there is already an element
720  * equal to elem in the hash table, then the already existing element
721  * will be returned and the new element will not be inserted.
722  * Otherwise returns NULL.
723  */
724 static arc_buf_hdr_t *
725 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
726 {
727 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
728 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
729 	arc_buf_hdr_t *fbuf;
730 	uint32_t i;
731 
732 	ASSERT(!HDR_IN_HASH_TABLE(buf));
733 	*lockp = hash_lock;
734 	mutex_enter(hash_lock);
735 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
736 	    fbuf = fbuf->b_hash_next, i++) {
737 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
738 			return (fbuf);
739 	}
740 
741 	buf->b_hash_next = buf_hash_table.ht_table[idx];
742 	buf_hash_table.ht_table[idx] = buf;
743 	buf->b_flags |= ARC_IN_HASH_TABLE;
744 
745 	/* collect some hash table performance data */
746 	if (i > 0) {
747 		ARCSTAT_BUMP(arcstat_hash_collisions);
748 		if (i == 1)
749 			ARCSTAT_BUMP(arcstat_hash_chains);
750 
751 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
752 	}
753 
754 	ARCSTAT_BUMP(arcstat_hash_elements);
755 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
756 
757 	return (NULL);
758 }
759 
760 static void
761 buf_hash_remove(arc_buf_hdr_t *buf)
762 {
763 	arc_buf_hdr_t *fbuf, **bufp;
764 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
765 
766 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
767 	ASSERT(HDR_IN_HASH_TABLE(buf));
768 
769 	bufp = &buf_hash_table.ht_table[idx];
770 	while ((fbuf = *bufp) != buf) {
771 		ASSERT(fbuf != NULL);
772 		bufp = &fbuf->b_hash_next;
773 	}
774 	*bufp = buf->b_hash_next;
775 	buf->b_hash_next = NULL;
776 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
777 
778 	/* collect some hash table performance data */
779 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
780 
781 	if (buf_hash_table.ht_table[idx] &&
782 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
783 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
784 }
785 
786 /*
787  * Global data structures and functions for the buf kmem cache.
788  */
789 static kmem_cache_t *hdr_cache;
790 static kmem_cache_t *buf_cache;
791 
792 static void
793 buf_fini(void)
794 {
795 	int i;
796 
797 	kmem_free(buf_hash_table.ht_table,
798 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
799 	for (i = 0; i < BUF_LOCKS; i++)
800 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
801 	kmem_cache_destroy(hdr_cache);
802 	kmem_cache_destroy(buf_cache);
803 }
804 
805 /*
806  * Constructor callback - called when the cache is empty
807  * and a new buf is requested.
808  */
809 /* ARGSUSED */
810 static int
811 hdr_cons(void *vbuf, void *unused, int kmflag)
812 {
813 	arc_buf_hdr_t *buf = vbuf;
814 
815 	bzero(buf, sizeof (arc_buf_hdr_t));
816 	refcount_create(&buf->b_refcnt);
817 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
818 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
819 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
820 
821 	return (0);
822 }
823 
824 /* ARGSUSED */
825 static int
826 buf_cons(void *vbuf, void *unused, int kmflag)
827 {
828 	arc_buf_t *buf = vbuf;
829 
830 	bzero(buf, sizeof (arc_buf_t));
831 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
832 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
833 
834 	return (0);
835 }
836 
837 /*
838  * Destructor callback - called when a cached buf is
839  * no longer required.
840  */
841 /* ARGSUSED */
842 static void
843 hdr_dest(void *vbuf, void *unused)
844 {
845 	arc_buf_hdr_t *buf = vbuf;
846 
847 	ASSERT(BUF_EMPTY(buf));
848 	refcount_destroy(&buf->b_refcnt);
849 	cv_destroy(&buf->b_cv);
850 	mutex_destroy(&buf->b_freeze_lock);
851 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
852 }
853 
854 /* ARGSUSED */
855 static void
856 buf_dest(void *vbuf, void *unused)
857 {
858 	arc_buf_t *buf = vbuf;
859 
860 	mutex_destroy(&buf->b_evict_lock);
861 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
862 }
863 
864 /*
865  * Reclaim callback -- invoked when memory is low.
866  */
867 /* ARGSUSED */
868 static void
869 hdr_recl(void *unused)
870 {
871 	dprintf("hdr_recl called\n");
872 	/*
873 	 * umem calls the reclaim func when we destroy the buf cache,
874 	 * which is after we do arc_fini().
875 	 */
876 	if (!arc_dead)
877 		cv_signal(&arc_reclaim_thr_cv);
878 }
879 
880 static void
881 buf_init(void)
882 {
883 	uint64_t *ct;
884 	uint64_t hsize = 1ULL << 12;
885 	int i, j;
886 
887 	/*
888 	 * The hash table is big enough to fill all of physical memory
889 	 * with an average 64K block size.  The table will take up
890 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
891 	 */
892 	while (hsize * 65536 < physmem * PAGESIZE)
893 		hsize <<= 1;
894 retry:
895 	buf_hash_table.ht_mask = hsize - 1;
896 	buf_hash_table.ht_table =
897 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
898 	if (buf_hash_table.ht_table == NULL) {
899 		ASSERT(hsize > (1ULL << 8));
900 		hsize >>= 1;
901 		goto retry;
902 	}
903 
904 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
905 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
906 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
907 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
908 
909 	for (i = 0; i < 256; i++)
910 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
911 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
912 
913 	for (i = 0; i < BUF_LOCKS; i++) {
914 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
915 		    NULL, MUTEX_DEFAULT, NULL);
916 	}
917 }
918 
919 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
920 
921 static void
922 arc_cksum_verify(arc_buf_t *buf)
923 {
924 	zio_cksum_t zc;
925 
926 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
927 		return;
928 
929 	mutex_enter(&buf->b_hdr->b_freeze_lock);
930 	if (buf->b_hdr->b_freeze_cksum == NULL ||
931 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
932 		mutex_exit(&buf->b_hdr->b_freeze_lock);
933 		return;
934 	}
935 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
936 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
937 		panic("buffer modified while frozen!");
938 	mutex_exit(&buf->b_hdr->b_freeze_lock);
939 }
940 
941 static int
942 arc_cksum_equal(arc_buf_t *buf)
943 {
944 	zio_cksum_t zc;
945 	int equal;
946 
947 	mutex_enter(&buf->b_hdr->b_freeze_lock);
948 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
949 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
950 	mutex_exit(&buf->b_hdr->b_freeze_lock);
951 
952 	return (equal);
953 }
954 
955 static void
956 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
957 {
958 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
959 		return;
960 
961 	mutex_enter(&buf->b_hdr->b_freeze_lock);
962 	if (buf->b_hdr->b_freeze_cksum != NULL) {
963 		mutex_exit(&buf->b_hdr->b_freeze_lock);
964 		return;
965 	}
966 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
967 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
968 	    buf->b_hdr->b_freeze_cksum);
969 	mutex_exit(&buf->b_hdr->b_freeze_lock);
970 	arc_buf_watch(buf);
971 }
972 
973 #ifndef _KERNEL
974 typedef struct procctl {
975 	long cmd;
976 	prwatch_t prwatch;
977 } procctl_t;
978 #endif
979 
980 /* ARGSUSED */
981 static void
982 arc_buf_unwatch(arc_buf_t *buf)
983 {
984 #ifndef _KERNEL
985 	if (arc_watch) {
986 		int result;
987 		procctl_t ctl;
988 		ctl.cmd = PCWATCH;
989 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
990 		ctl.prwatch.pr_size = 0;
991 		ctl.prwatch.pr_wflags = 0;
992 		result = write(arc_procfd, &ctl, sizeof (ctl));
993 		ASSERT3U(result, ==, sizeof (ctl));
994 	}
995 #endif
996 }
997 
998 /* ARGSUSED */
999 static void
1000 arc_buf_watch(arc_buf_t *buf)
1001 {
1002 #ifndef _KERNEL
1003 	if (arc_watch) {
1004 		int result;
1005 		procctl_t ctl;
1006 		ctl.cmd = PCWATCH;
1007 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1008 		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1009 		ctl.prwatch.pr_wflags = WA_WRITE;
1010 		result = write(arc_procfd, &ctl, sizeof (ctl));
1011 		ASSERT3U(result, ==, sizeof (ctl));
1012 	}
1013 #endif
1014 }
1015 
1016 void
1017 arc_buf_thaw(arc_buf_t *buf)
1018 {
1019 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1020 		if (buf->b_hdr->b_state != arc_anon)
1021 			panic("modifying non-anon buffer!");
1022 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1023 			panic("modifying buffer while i/o in progress!");
1024 		arc_cksum_verify(buf);
1025 	}
1026 
1027 	mutex_enter(&buf->b_hdr->b_freeze_lock);
1028 	if (buf->b_hdr->b_freeze_cksum != NULL) {
1029 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1030 		buf->b_hdr->b_freeze_cksum = NULL;
1031 	}
1032 
1033 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1034 		if (buf->b_hdr->b_thawed)
1035 			kmem_free(buf->b_hdr->b_thawed, 1);
1036 		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1037 	}
1038 
1039 	mutex_exit(&buf->b_hdr->b_freeze_lock);
1040 
1041 	arc_buf_unwatch(buf);
1042 }
1043 
1044 void
1045 arc_buf_freeze(arc_buf_t *buf)
1046 {
1047 	kmutex_t *hash_lock;
1048 
1049 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1050 		return;
1051 
1052 	hash_lock = HDR_LOCK(buf->b_hdr);
1053 	mutex_enter(hash_lock);
1054 
1055 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1056 	    buf->b_hdr->b_state == arc_anon);
1057 	arc_cksum_compute(buf, B_FALSE);
1058 	mutex_exit(hash_lock);
1059 
1060 }
1061 
1062 static void
1063 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1064 {
1065 	ASSERT(MUTEX_HELD(hash_lock));
1066 
1067 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1068 	    (ab->b_state != arc_anon)) {
1069 		uint64_t delta = ab->b_size * ab->b_datacnt;
1070 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
1071 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1072 
1073 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1074 		mutex_enter(&ab->b_state->arcs_mtx);
1075 		ASSERT(list_link_active(&ab->b_arc_node));
1076 		list_remove(list, ab);
1077 		if (GHOST_STATE(ab->b_state)) {
1078 			ASSERT0(ab->b_datacnt);
1079 			ASSERT3P(ab->b_buf, ==, NULL);
1080 			delta = ab->b_size;
1081 		}
1082 		ASSERT(delta > 0);
1083 		ASSERT3U(*size, >=, delta);
1084 		atomic_add_64(size, -delta);
1085 		mutex_exit(&ab->b_state->arcs_mtx);
1086 		/* remove the prefetch flag if we get a reference */
1087 		if (ab->b_flags & ARC_PREFETCH)
1088 			ab->b_flags &= ~ARC_PREFETCH;
1089 	}
1090 }
1091 
1092 static int
1093 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1094 {
1095 	int cnt;
1096 	arc_state_t *state = ab->b_state;
1097 
1098 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1099 	ASSERT(!GHOST_STATE(state));
1100 
1101 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1102 	    (state != arc_anon)) {
1103 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1104 
1105 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1106 		mutex_enter(&state->arcs_mtx);
1107 		ASSERT(!list_link_active(&ab->b_arc_node));
1108 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1109 		ASSERT(ab->b_datacnt > 0);
1110 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1111 		mutex_exit(&state->arcs_mtx);
1112 	}
1113 	return (cnt);
1114 }
1115 
1116 /*
1117  * Move the supplied buffer to the indicated state.  The mutex
1118  * for the buffer must be held by the caller.
1119  */
1120 static void
1121 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1122 {
1123 	arc_state_t *old_state = ab->b_state;
1124 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1125 	uint64_t from_delta, to_delta;
1126 
1127 	ASSERT(MUTEX_HELD(hash_lock));
1128 	ASSERT(new_state != old_state);
1129 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1130 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1131 	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1132 
1133 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1134 
1135 	/*
1136 	 * If this buffer is evictable, transfer it from the
1137 	 * old state list to the new state list.
1138 	 */
1139 	if (refcnt == 0) {
1140 		if (old_state != arc_anon) {
1141 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1142 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1143 
1144 			if (use_mutex)
1145 				mutex_enter(&old_state->arcs_mtx);
1146 
1147 			ASSERT(list_link_active(&ab->b_arc_node));
1148 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1149 
1150 			/*
1151 			 * If prefetching out of the ghost cache,
1152 			 * we will have a non-zero datacnt.
1153 			 */
1154 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1155 				/* ghost elements have a ghost size */
1156 				ASSERT(ab->b_buf == NULL);
1157 				from_delta = ab->b_size;
1158 			}
1159 			ASSERT3U(*size, >=, from_delta);
1160 			atomic_add_64(size, -from_delta);
1161 
1162 			if (use_mutex)
1163 				mutex_exit(&old_state->arcs_mtx);
1164 		}
1165 		if (new_state != arc_anon) {
1166 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1167 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1168 
1169 			if (use_mutex)
1170 				mutex_enter(&new_state->arcs_mtx);
1171 
1172 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1173 
1174 			/* ghost elements have a ghost size */
1175 			if (GHOST_STATE(new_state)) {
1176 				ASSERT(ab->b_datacnt == 0);
1177 				ASSERT(ab->b_buf == NULL);
1178 				to_delta = ab->b_size;
1179 			}
1180 			atomic_add_64(size, to_delta);
1181 
1182 			if (use_mutex)
1183 				mutex_exit(&new_state->arcs_mtx);
1184 		}
1185 	}
1186 
1187 	ASSERT(!BUF_EMPTY(ab));
1188 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1189 		buf_hash_remove(ab);
1190 
1191 	/* adjust state sizes */
1192 	if (to_delta)
1193 		atomic_add_64(&new_state->arcs_size, to_delta);
1194 	if (from_delta) {
1195 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1196 		atomic_add_64(&old_state->arcs_size, -from_delta);
1197 	}
1198 	ab->b_state = new_state;
1199 
1200 	/* adjust l2arc hdr stats */
1201 	if (new_state == arc_l2c_only)
1202 		l2arc_hdr_stat_add();
1203 	else if (old_state == arc_l2c_only)
1204 		l2arc_hdr_stat_remove();
1205 }
1206 
1207 void
1208 arc_space_consume(uint64_t space, arc_space_type_t type)
1209 {
1210 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1211 
1212 	switch (type) {
1213 	case ARC_SPACE_DATA:
1214 		ARCSTAT_INCR(arcstat_data_size, space);
1215 		break;
1216 	case ARC_SPACE_OTHER:
1217 		ARCSTAT_INCR(arcstat_other_size, space);
1218 		break;
1219 	case ARC_SPACE_HDRS:
1220 		ARCSTAT_INCR(arcstat_hdr_size, space);
1221 		break;
1222 	case ARC_SPACE_L2HDRS:
1223 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1224 		break;
1225 	}
1226 
1227 	ARCSTAT_INCR(arcstat_meta_used, space);
1228 	atomic_add_64(&arc_size, space);
1229 }
1230 
1231 void
1232 arc_space_return(uint64_t space, arc_space_type_t type)
1233 {
1234 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1235 
1236 	switch (type) {
1237 	case ARC_SPACE_DATA:
1238 		ARCSTAT_INCR(arcstat_data_size, -space);
1239 		break;
1240 	case ARC_SPACE_OTHER:
1241 		ARCSTAT_INCR(arcstat_other_size, -space);
1242 		break;
1243 	case ARC_SPACE_HDRS:
1244 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1245 		break;
1246 	case ARC_SPACE_L2HDRS:
1247 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1248 		break;
1249 	}
1250 
1251 	ASSERT(arc_meta_used >= space);
1252 	if (arc_meta_max < arc_meta_used)
1253 		arc_meta_max = arc_meta_used;
1254 	ARCSTAT_INCR(arcstat_meta_used, -space);
1255 	ASSERT(arc_size >= space);
1256 	atomic_add_64(&arc_size, -space);
1257 }
1258 
1259 void *
1260 arc_data_buf_alloc(uint64_t size)
1261 {
1262 	if (arc_evict_needed(ARC_BUFC_DATA))
1263 		cv_signal(&arc_reclaim_thr_cv);
1264 	atomic_add_64(&arc_size, size);
1265 	return (zio_data_buf_alloc(size));
1266 }
1267 
1268 void
1269 arc_data_buf_free(void *buf, uint64_t size)
1270 {
1271 	zio_data_buf_free(buf, size);
1272 	ASSERT(arc_size >= size);
1273 	atomic_add_64(&arc_size, -size);
1274 }
1275 
1276 arc_buf_t *
1277 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1278 {
1279 	arc_buf_hdr_t *hdr;
1280 	arc_buf_t *buf;
1281 
1282 	ASSERT3U(size, >, 0);
1283 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1284 	ASSERT(BUF_EMPTY(hdr));
1285 	hdr->b_size = size;
1286 	hdr->b_type = type;
1287 	hdr->b_spa = spa_load_guid(spa);
1288 	hdr->b_state = arc_anon;
1289 	hdr->b_arc_access = 0;
1290 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1291 	buf->b_hdr = hdr;
1292 	buf->b_data = NULL;
1293 	buf->b_efunc = NULL;
1294 	buf->b_private = NULL;
1295 	buf->b_next = NULL;
1296 	hdr->b_buf = buf;
1297 	arc_get_data_buf(buf);
1298 	hdr->b_datacnt = 1;
1299 	hdr->b_flags = 0;
1300 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1301 	(void) refcount_add(&hdr->b_refcnt, tag);
1302 
1303 	return (buf);
1304 }
1305 
1306 static char *arc_onloan_tag = "onloan";
1307 
1308 /*
1309  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1310  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1311  * buffers must be returned to the arc before they can be used by the DMU or
1312  * freed.
1313  */
1314 arc_buf_t *
1315 arc_loan_buf(spa_t *spa, int size)
1316 {
1317 	arc_buf_t *buf;
1318 
1319 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1320 
1321 	atomic_add_64(&arc_loaned_bytes, size);
1322 	return (buf);
1323 }
1324 
1325 /*
1326  * Return a loaned arc buffer to the arc.
1327  */
1328 void
1329 arc_return_buf(arc_buf_t *buf, void *tag)
1330 {
1331 	arc_buf_hdr_t *hdr = buf->b_hdr;
1332 
1333 	ASSERT(buf->b_data != NULL);
1334 	(void) refcount_add(&hdr->b_refcnt, tag);
1335 	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1336 
1337 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1338 }
1339 
1340 /* Detach an arc_buf from a dbuf (tag) */
1341 void
1342 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1343 {
1344 	arc_buf_hdr_t *hdr;
1345 
1346 	ASSERT(buf->b_data != NULL);
1347 	hdr = buf->b_hdr;
1348 	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1349 	(void) refcount_remove(&hdr->b_refcnt, tag);
1350 	buf->b_efunc = NULL;
1351 	buf->b_private = NULL;
1352 
1353 	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1354 }
1355 
1356 static arc_buf_t *
1357 arc_buf_clone(arc_buf_t *from)
1358 {
1359 	arc_buf_t *buf;
1360 	arc_buf_hdr_t *hdr = from->b_hdr;
1361 	uint64_t size = hdr->b_size;
1362 
1363 	ASSERT(hdr->b_state != arc_anon);
1364 
1365 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1366 	buf->b_hdr = hdr;
1367 	buf->b_data = NULL;
1368 	buf->b_efunc = NULL;
1369 	buf->b_private = NULL;
1370 	buf->b_next = hdr->b_buf;
1371 	hdr->b_buf = buf;
1372 	arc_get_data_buf(buf);
1373 	bcopy(from->b_data, buf->b_data, size);
1374 
1375 	/*
1376 	 * This buffer already exists in the arc so create a duplicate
1377 	 * copy for the caller.  If the buffer is associated with user data
1378 	 * then track the size and number of duplicates.  These stats will be
1379 	 * updated as duplicate buffers are created and destroyed.
1380 	 */
1381 	if (hdr->b_type == ARC_BUFC_DATA) {
1382 		ARCSTAT_BUMP(arcstat_duplicate_buffers);
1383 		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1384 	}
1385 	hdr->b_datacnt += 1;
1386 	return (buf);
1387 }
1388 
1389 void
1390 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1391 {
1392 	arc_buf_hdr_t *hdr;
1393 	kmutex_t *hash_lock;
1394 
1395 	/*
1396 	 * Check to see if this buffer is evicted.  Callers
1397 	 * must verify b_data != NULL to know if the add_ref
1398 	 * was successful.
1399 	 */
1400 	mutex_enter(&buf->b_evict_lock);
1401 	if (buf->b_data == NULL) {
1402 		mutex_exit(&buf->b_evict_lock);
1403 		return;
1404 	}
1405 	hash_lock = HDR_LOCK(buf->b_hdr);
1406 	mutex_enter(hash_lock);
1407 	hdr = buf->b_hdr;
1408 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1409 	mutex_exit(&buf->b_evict_lock);
1410 
1411 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1412 	add_reference(hdr, hash_lock, tag);
1413 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1414 	arc_access(hdr, hash_lock);
1415 	mutex_exit(hash_lock);
1416 	ARCSTAT_BUMP(arcstat_hits);
1417 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1418 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1419 	    data, metadata, hits);
1420 }
1421 
1422 /*
1423  * Free the arc data buffer.  If it is an l2arc write in progress,
1424  * the buffer is placed on l2arc_free_on_write to be freed later.
1425  */
1426 static void
1427 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1428 {
1429 	arc_buf_hdr_t *hdr = buf->b_hdr;
1430 
1431 	if (HDR_L2_WRITING(hdr)) {
1432 		l2arc_data_free_t *df;
1433 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1434 		df->l2df_data = buf->b_data;
1435 		df->l2df_size = hdr->b_size;
1436 		df->l2df_func = free_func;
1437 		mutex_enter(&l2arc_free_on_write_mtx);
1438 		list_insert_head(l2arc_free_on_write, df);
1439 		mutex_exit(&l2arc_free_on_write_mtx);
1440 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1441 	} else {
1442 		free_func(buf->b_data, hdr->b_size);
1443 	}
1444 }
1445 
1446 static void
1447 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1448 {
1449 	arc_buf_t **bufp;
1450 
1451 	/* free up data associated with the buf */
1452 	if (buf->b_data) {
1453 		arc_state_t *state = buf->b_hdr->b_state;
1454 		uint64_t size = buf->b_hdr->b_size;
1455 		arc_buf_contents_t type = buf->b_hdr->b_type;
1456 
1457 		arc_cksum_verify(buf);
1458 		arc_buf_unwatch(buf);
1459 
1460 		if (!recycle) {
1461 			if (type == ARC_BUFC_METADATA) {
1462 				arc_buf_data_free(buf, zio_buf_free);
1463 				arc_space_return(size, ARC_SPACE_DATA);
1464 			} else {
1465 				ASSERT(type == ARC_BUFC_DATA);
1466 				arc_buf_data_free(buf, zio_data_buf_free);
1467 				ARCSTAT_INCR(arcstat_data_size, -size);
1468 				atomic_add_64(&arc_size, -size);
1469 			}
1470 		}
1471 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1472 			uint64_t *cnt = &state->arcs_lsize[type];
1473 
1474 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1475 			ASSERT(state != arc_anon);
1476 
1477 			ASSERT3U(*cnt, >=, size);
1478 			atomic_add_64(cnt, -size);
1479 		}
1480 		ASSERT3U(state->arcs_size, >=, size);
1481 		atomic_add_64(&state->arcs_size, -size);
1482 		buf->b_data = NULL;
1483 
1484 		/*
1485 		 * If we're destroying a duplicate buffer make sure
1486 		 * that the appropriate statistics are updated.
1487 		 */
1488 		if (buf->b_hdr->b_datacnt > 1 &&
1489 		    buf->b_hdr->b_type == ARC_BUFC_DATA) {
1490 			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1491 			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1492 		}
1493 		ASSERT(buf->b_hdr->b_datacnt > 0);
1494 		buf->b_hdr->b_datacnt -= 1;
1495 	}
1496 
1497 	/* only remove the buf if requested */
1498 	if (!all)
1499 		return;
1500 
1501 	/* remove the buf from the hdr list */
1502 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1503 		continue;
1504 	*bufp = buf->b_next;
1505 	buf->b_next = NULL;
1506 
1507 	ASSERT(buf->b_efunc == NULL);
1508 
1509 	/* clean up the buf */
1510 	buf->b_hdr = NULL;
1511 	kmem_cache_free(buf_cache, buf);
1512 }
1513 
1514 static void
1515 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1516 {
1517 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1518 	ASSERT3P(hdr->b_state, ==, arc_anon);
1519 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1520 	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1521 
1522 	if (l2hdr != NULL) {
1523 		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1524 		/*
1525 		 * To prevent arc_free() and l2arc_evict() from
1526 		 * attempting to free the same buffer at the same time,
1527 		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1528 		 * give it priority.  l2arc_evict() can't destroy this
1529 		 * header while we are waiting on l2arc_buflist_mtx.
1530 		 *
1531 		 * The hdr may be removed from l2ad_buflist before we
1532 		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1533 		 */
1534 		if (!buflist_held) {
1535 			mutex_enter(&l2arc_buflist_mtx);
1536 			l2hdr = hdr->b_l2hdr;
1537 		}
1538 
1539 		if (l2hdr != NULL) {
1540 			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1541 			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1542 			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1543 			if (hdr->b_state == arc_l2c_only)
1544 				l2arc_hdr_stat_remove();
1545 			hdr->b_l2hdr = NULL;
1546 		}
1547 
1548 		if (!buflist_held)
1549 			mutex_exit(&l2arc_buflist_mtx);
1550 	}
1551 
1552 	if (!BUF_EMPTY(hdr)) {
1553 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1554 		buf_discard_identity(hdr);
1555 	}
1556 	while (hdr->b_buf) {
1557 		arc_buf_t *buf = hdr->b_buf;
1558 
1559 		if (buf->b_efunc) {
1560 			mutex_enter(&arc_eviction_mtx);
1561 			mutex_enter(&buf->b_evict_lock);
1562 			ASSERT(buf->b_hdr != NULL);
1563 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1564 			hdr->b_buf = buf->b_next;
1565 			buf->b_hdr = &arc_eviction_hdr;
1566 			buf->b_next = arc_eviction_list;
1567 			arc_eviction_list = buf;
1568 			mutex_exit(&buf->b_evict_lock);
1569 			mutex_exit(&arc_eviction_mtx);
1570 		} else {
1571 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1572 		}
1573 	}
1574 	if (hdr->b_freeze_cksum != NULL) {
1575 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1576 		hdr->b_freeze_cksum = NULL;
1577 	}
1578 	if (hdr->b_thawed) {
1579 		kmem_free(hdr->b_thawed, 1);
1580 		hdr->b_thawed = NULL;
1581 	}
1582 
1583 	ASSERT(!list_link_active(&hdr->b_arc_node));
1584 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1585 	ASSERT3P(hdr->b_acb, ==, NULL);
1586 	kmem_cache_free(hdr_cache, hdr);
1587 }
1588 
1589 void
1590 arc_buf_free(arc_buf_t *buf, void *tag)
1591 {
1592 	arc_buf_hdr_t *hdr = buf->b_hdr;
1593 	int hashed = hdr->b_state != arc_anon;
1594 
1595 	ASSERT(buf->b_efunc == NULL);
1596 	ASSERT(buf->b_data != NULL);
1597 
1598 	if (hashed) {
1599 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1600 
1601 		mutex_enter(hash_lock);
1602 		hdr = buf->b_hdr;
1603 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1604 
1605 		(void) remove_reference(hdr, hash_lock, tag);
1606 		if (hdr->b_datacnt > 1) {
1607 			arc_buf_destroy(buf, FALSE, TRUE);
1608 		} else {
1609 			ASSERT(buf == hdr->b_buf);
1610 			ASSERT(buf->b_efunc == NULL);
1611 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1612 		}
1613 		mutex_exit(hash_lock);
1614 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1615 		int destroy_hdr;
1616 		/*
1617 		 * We are in the middle of an async write.  Don't destroy
1618 		 * this buffer unless the write completes before we finish
1619 		 * decrementing the reference count.
1620 		 */
1621 		mutex_enter(&arc_eviction_mtx);
1622 		(void) remove_reference(hdr, NULL, tag);
1623 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1624 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1625 		mutex_exit(&arc_eviction_mtx);
1626 		if (destroy_hdr)
1627 			arc_hdr_destroy(hdr);
1628 	} else {
1629 		if (remove_reference(hdr, NULL, tag) > 0)
1630 			arc_buf_destroy(buf, FALSE, TRUE);
1631 		else
1632 			arc_hdr_destroy(hdr);
1633 	}
1634 }
1635 
1636 boolean_t
1637 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1638 {
1639 	arc_buf_hdr_t *hdr = buf->b_hdr;
1640 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1641 	boolean_t no_callback = (buf->b_efunc == NULL);
1642 
1643 	if (hdr->b_state == arc_anon) {
1644 		ASSERT(hdr->b_datacnt == 1);
1645 		arc_buf_free(buf, tag);
1646 		return (no_callback);
1647 	}
1648 
1649 	mutex_enter(hash_lock);
1650 	hdr = buf->b_hdr;
1651 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1652 	ASSERT(hdr->b_state != arc_anon);
1653 	ASSERT(buf->b_data != NULL);
1654 
1655 	(void) remove_reference(hdr, hash_lock, tag);
1656 	if (hdr->b_datacnt > 1) {
1657 		if (no_callback)
1658 			arc_buf_destroy(buf, FALSE, TRUE);
1659 	} else if (no_callback) {
1660 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1661 		ASSERT(buf->b_efunc == NULL);
1662 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1663 	}
1664 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1665 	    refcount_is_zero(&hdr->b_refcnt));
1666 	mutex_exit(hash_lock);
1667 	return (no_callback);
1668 }
1669 
1670 int
1671 arc_buf_size(arc_buf_t *buf)
1672 {
1673 	return (buf->b_hdr->b_size);
1674 }
1675 
1676 /*
1677  * Called from the DMU to determine if the current buffer should be
1678  * evicted. In order to ensure proper locking, the eviction must be initiated
1679  * from the DMU. Return true if the buffer is associated with user data and
1680  * duplicate buffers still exist.
1681  */
1682 boolean_t
1683 arc_buf_eviction_needed(arc_buf_t *buf)
1684 {
1685 	arc_buf_hdr_t *hdr;
1686 	boolean_t evict_needed = B_FALSE;
1687 
1688 	if (zfs_disable_dup_eviction)
1689 		return (B_FALSE);
1690 
1691 	mutex_enter(&buf->b_evict_lock);
1692 	hdr = buf->b_hdr;
1693 	if (hdr == NULL) {
1694 		/*
1695 		 * We are in arc_do_user_evicts(); let that function
1696 		 * perform the eviction.
1697 		 */
1698 		ASSERT(buf->b_data == NULL);
1699 		mutex_exit(&buf->b_evict_lock);
1700 		return (B_FALSE);
1701 	} else if (buf->b_data == NULL) {
1702 		/*
1703 		 * We have already been added to the arc eviction list;
1704 		 * recommend eviction.
1705 		 */
1706 		ASSERT3P(hdr, ==, &arc_eviction_hdr);
1707 		mutex_exit(&buf->b_evict_lock);
1708 		return (B_TRUE);
1709 	}
1710 
1711 	if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1712 		evict_needed = B_TRUE;
1713 
1714 	mutex_exit(&buf->b_evict_lock);
1715 	return (evict_needed);
1716 }
1717 
1718 /*
1719  * Evict buffers from list until we've removed the specified number of
1720  * bytes.  Move the removed buffers to the appropriate evict state.
1721  * If the recycle flag is set, then attempt to "recycle" a buffer:
1722  * - look for a buffer to evict that is `bytes' long.
1723  * - return the data block from this buffer rather than freeing it.
1724  * This flag is used by callers that are trying to make space for a
1725  * new buffer in a full arc cache.
1726  *
1727  * This function makes a "best effort".  It skips over any buffers
1728  * it can't get a hash_lock on, and so may not catch all candidates.
1729  * It may also return without evicting as much space as requested.
1730  */
1731 static void *
1732 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1733     arc_buf_contents_t type)
1734 {
1735 	arc_state_t *evicted_state;
1736 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1737 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1738 	list_t *list = &state->arcs_list[type];
1739 	kmutex_t *hash_lock;
1740 	boolean_t have_lock;
1741 	void *stolen = NULL;
1742 
1743 	ASSERT(state == arc_mru || state == arc_mfu);
1744 
1745 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1746 
1747 	mutex_enter(&state->arcs_mtx);
1748 	mutex_enter(&evicted_state->arcs_mtx);
1749 
1750 	for (ab = list_tail(list); ab; ab = ab_prev) {
1751 		ab_prev = list_prev(list, ab);
1752 		/* prefetch buffers have a minimum lifespan */
1753 		if (HDR_IO_IN_PROGRESS(ab) ||
1754 		    (spa && ab->b_spa != spa) ||
1755 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1756 		    ddi_get_lbolt() - ab->b_arc_access <
1757 		    arc_min_prefetch_lifespan)) {
1758 			skipped++;
1759 			continue;
1760 		}
1761 		/* "lookahead" for better eviction candidate */
1762 		if (recycle && ab->b_size != bytes &&
1763 		    ab_prev && ab_prev->b_size == bytes)
1764 			continue;
1765 		hash_lock = HDR_LOCK(ab);
1766 		have_lock = MUTEX_HELD(hash_lock);
1767 		if (have_lock || mutex_tryenter(hash_lock)) {
1768 			ASSERT0(refcount_count(&ab->b_refcnt));
1769 			ASSERT(ab->b_datacnt > 0);
1770 			while (ab->b_buf) {
1771 				arc_buf_t *buf = ab->b_buf;
1772 				if (!mutex_tryenter(&buf->b_evict_lock)) {
1773 					missed += 1;
1774 					break;
1775 				}
1776 				if (buf->b_data) {
1777 					bytes_evicted += ab->b_size;
1778 					if (recycle && ab->b_type == type &&
1779 					    ab->b_size == bytes &&
1780 					    !HDR_L2_WRITING(ab)) {
1781 						stolen = buf->b_data;
1782 						recycle = FALSE;
1783 					}
1784 				}
1785 				if (buf->b_efunc) {
1786 					mutex_enter(&arc_eviction_mtx);
1787 					arc_buf_destroy(buf,
1788 					    buf->b_data == stolen, FALSE);
1789 					ab->b_buf = buf->b_next;
1790 					buf->b_hdr = &arc_eviction_hdr;
1791 					buf->b_next = arc_eviction_list;
1792 					arc_eviction_list = buf;
1793 					mutex_exit(&arc_eviction_mtx);
1794 					mutex_exit(&buf->b_evict_lock);
1795 				} else {
1796 					mutex_exit(&buf->b_evict_lock);
1797 					arc_buf_destroy(buf,
1798 					    buf->b_data == stolen, TRUE);
1799 				}
1800 			}
1801 
1802 			if (ab->b_l2hdr) {
1803 				ARCSTAT_INCR(arcstat_evict_l2_cached,
1804 				    ab->b_size);
1805 			} else {
1806 				if (l2arc_write_eligible(ab->b_spa, ab)) {
1807 					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1808 					    ab->b_size);
1809 				} else {
1810 					ARCSTAT_INCR(
1811 					    arcstat_evict_l2_ineligible,
1812 					    ab->b_size);
1813 				}
1814 			}
1815 
1816 			if (ab->b_datacnt == 0) {
1817 				arc_change_state(evicted_state, ab, hash_lock);
1818 				ASSERT(HDR_IN_HASH_TABLE(ab));
1819 				ab->b_flags |= ARC_IN_HASH_TABLE;
1820 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1821 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1822 			}
1823 			if (!have_lock)
1824 				mutex_exit(hash_lock);
1825 			if (bytes >= 0 && bytes_evicted >= bytes)
1826 				break;
1827 		} else {
1828 			missed += 1;
1829 		}
1830 	}
1831 
1832 	mutex_exit(&evicted_state->arcs_mtx);
1833 	mutex_exit(&state->arcs_mtx);
1834 
1835 	if (bytes_evicted < bytes)
1836 		dprintf("only evicted %lld bytes from %x",
1837 		    (longlong_t)bytes_evicted, state);
1838 
1839 	if (skipped)
1840 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1841 
1842 	if (missed)
1843 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1844 
1845 	/*
1846 	 * We have just evicted some data into the ghost state, make
1847 	 * sure we also adjust the ghost state size if necessary.
1848 	 */
1849 	if (arc_no_grow &&
1850 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1851 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1852 		    arc_mru_ghost->arcs_size - arc_c;
1853 
1854 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1855 			int64_t todelete =
1856 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1857 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1858 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1859 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1860 			    arc_mru_ghost->arcs_size +
1861 			    arc_mfu_ghost->arcs_size - arc_c);
1862 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1863 		}
1864 	}
1865 
1866 	return (stolen);
1867 }
1868 
1869 /*
1870  * Remove buffers from list until we've removed the specified number of
1871  * bytes.  Destroy the buffers that are removed.
1872  */
1873 static void
1874 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1875 {
1876 	arc_buf_hdr_t *ab, *ab_prev;
1877 	arc_buf_hdr_t marker = { 0 };
1878 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1879 	kmutex_t *hash_lock;
1880 	uint64_t bytes_deleted = 0;
1881 	uint64_t bufs_skipped = 0;
1882 
1883 	ASSERT(GHOST_STATE(state));
1884 top:
1885 	mutex_enter(&state->arcs_mtx);
1886 	for (ab = list_tail(list); ab; ab = ab_prev) {
1887 		ab_prev = list_prev(list, ab);
1888 		if (spa && ab->b_spa != spa)
1889 			continue;
1890 
1891 		/* ignore markers */
1892 		if (ab->b_spa == 0)
1893 			continue;
1894 
1895 		hash_lock = HDR_LOCK(ab);
1896 		/* caller may be trying to modify this buffer, skip it */
1897 		if (MUTEX_HELD(hash_lock))
1898 			continue;
1899 		if (mutex_tryenter(hash_lock)) {
1900 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1901 			ASSERT(ab->b_buf == NULL);
1902 			ARCSTAT_BUMP(arcstat_deleted);
1903 			bytes_deleted += ab->b_size;
1904 
1905 			if (ab->b_l2hdr != NULL) {
1906 				/*
1907 				 * This buffer is cached on the 2nd Level ARC;
1908 				 * don't destroy the header.
1909 				 */
1910 				arc_change_state(arc_l2c_only, ab, hash_lock);
1911 				mutex_exit(hash_lock);
1912 			} else {
1913 				arc_change_state(arc_anon, ab, hash_lock);
1914 				mutex_exit(hash_lock);
1915 				arc_hdr_destroy(ab);
1916 			}
1917 
1918 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1919 			if (bytes >= 0 && bytes_deleted >= bytes)
1920 				break;
1921 		} else if (bytes < 0) {
1922 			/*
1923 			 * Insert a list marker and then wait for the
1924 			 * hash lock to become available. Once its
1925 			 * available, restart from where we left off.
1926 			 */
1927 			list_insert_after(list, ab, &marker);
1928 			mutex_exit(&state->arcs_mtx);
1929 			mutex_enter(hash_lock);
1930 			mutex_exit(hash_lock);
1931 			mutex_enter(&state->arcs_mtx);
1932 			ab_prev = list_prev(list, &marker);
1933 			list_remove(list, &marker);
1934 		} else
1935 			bufs_skipped += 1;
1936 	}
1937 	mutex_exit(&state->arcs_mtx);
1938 
1939 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1940 	    (bytes < 0 || bytes_deleted < bytes)) {
1941 		list = &state->arcs_list[ARC_BUFC_METADATA];
1942 		goto top;
1943 	}
1944 
1945 	if (bufs_skipped) {
1946 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1947 		ASSERT(bytes >= 0);
1948 	}
1949 
1950 	if (bytes_deleted < bytes)
1951 		dprintf("only deleted %lld bytes from %p",
1952 		    (longlong_t)bytes_deleted, state);
1953 }
1954 
1955 static void
1956 arc_adjust(void)
1957 {
1958 	int64_t adjustment, delta;
1959 
1960 	/*
1961 	 * Adjust MRU size
1962 	 */
1963 
1964 	adjustment = MIN((int64_t)(arc_size - arc_c),
1965 	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1966 	    arc_p));
1967 
1968 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1969 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1970 		(void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
1971 		adjustment -= delta;
1972 	}
1973 
1974 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1975 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1976 		(void) arc_evict(arc_mru, NULL, delta, FALSE,
1977 		    ARC_BUFC_METADATA);
1978 	}
1979 
1980 	/*
1981 	 * Adjust MFU size
1982 	 */
1983 
1984 	adjustment = arc_size - arc_c;
1985 
1986 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1987 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1988 		(void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
1989 		adjustment -= delta;
1990 	}
1991 
1992 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1993 		int64_t delta = MIN(adjustment,
1994 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1995 		(void) arc_evict(arc_mfu, NULL, delta, FALSE,
1996 		    ARC_BUFC_METADATA);
1997 	}
1998 
1999 	/*
2000 	 * Adjust ghost lists
2001 	 */
2002 
2003 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2004 
2005 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2006 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2007 		arc_evict_ghost(arc_mru_ghost, NULL, delta);
2008 	}
2009 
2010 	adjustment =
2011 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2012 
2013 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2014 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2015 		arc_evict_ghost(arc_mfu_ghost, NULL, delta);
2016 	}
2017 }
2018 
2019 static void
2020 arc_do_user_evicts(void)
2021 {
2022 	mutex_enter(&arc_eviction_mtx);
2023 	while (arc_eviction_list != NULL) {
2024 		arc_buf_t *buf = arc_eviction_list;
2025 		arc_eviction_list = buf->b_next;
2026 		mutex_enter(&buf->b_evict_lock);
2027 		buf->b_hdr = NULL;
2028 		mutex_exit(&buf->b_evict_lock);
2029 		mutex_exit(&arc_eviction_mtx);
2030 
2031 		if (buf->b_efunc != NULL)
2032 			VERIFY(buf->b_efunc(buf) == 0);
2033 
2034 		buf->b_efunc = NULL;
2035 		buf->b_private = NULL;
2036 		kmem_cache_free(buf_cache, buf);
2037 		mutex_enter(&arc_eviction_mtx);
2038 	}
2039 	mutex_exit(&arc_eviction_mtx);
2040 }
2041 
2042 /*
2043  * Flush all *evictable* data from the cache for the given spa.
2044  * NOTE: this will not touch "active" (i.e. referenced) data.
2045  */
2046 void
2047 arc_flush(spa_t *spa)
2048 {
2049 	uint64_t guid = 0;
2050 
2051 	if (spa)
2052 		guid = spa_load_guid(spa);
2053 
2054 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
2055 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2056 		if (spa)
2057 			break;
2058 	}
2059 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
2060 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2061 		if (spa)
2062 			break;
2063 	}
2064 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
2065 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2066 		if (spa)
2067 			break;
2068 	}
2069 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
2070 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2071 		if (spa)
2072 			break;
2073 	}
2074 
2075 	arc_evict_ghost(arc_mru_ghost, guid, -1);
2076 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2077 
2078 	mutex_enter(&arc_reclaim_thr_lock);
2079 	arc_do_user_evicts();
2080 	mutex_exit(&arc_reclaim_thr_lock);
2081 	ASSERT(spa || arc_eviction_list == NULL);
2082 }
2083 
2084 void
2085 arc_shrink(void)
2086 {
2087 	if (arc_c > arc_c_min) {
2088 		uint64_t to_free;
2089 
2090 #ifdef _KERNEL
2091 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2092 #else
2093 		to_free = arc_c >> arc_shrink_shift;
2094 #endif
2095 		if (arc_c > arc_c_min + to_free)
2096 			atomic_add_64(&arc_c, -to_free);
2097 		else
2098 			arc_c = arc_c_min;
2099 
2100 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2101 		if (arc_c > arc_size)
2102 			arc_c = MAX(arc_size, arc_c_min);
2103 		if (arc_p > arc_c)
2104 			arc_p = (arc_c >> 1);
2105 		ASSERT(arc_c >= arc_c_min);
2106 		ASSERT((int64_t)arc_p >= 0);
2107 	}
2108 
2109 	if (arc_size > arc_c)
2110 		arc_adjust();
2111 }
2112 
2113 /*
2114  * Determine if the system is under memory pressure and is asking
2115  * to reclaim memory. A return value of 1 indicates that the system
2116  * is under memory pressure and that the arc should adjust accordingly.
2117  */
2118 static int
2119 arc_reclaim_needed(void)
2120 {
2121 	uint64_t extra;
2122 
2123 #ifdef _KERNEL
2124 
2125 	if (needfree)
2126 		return (1);
2127 
2128 	/*
2129 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2130 	 */
2131 	extra = desfree;
2132 
2133 	/*
2134 	 * check that we're out of range of the pageout scanner.  It starts to
2135 	 * schedule paging if freemem is less than lotsfree and needfree.
2136 	 * lotsfree is the high-water mark for pageout, and needfree is the
2137 	 * number of needed free pages.  We add extra pages here to make sure
2138 	 * the scanner doesn't start up while we're freeing memory.
2139 	 */
2140 	if (freemem < lotsfree + needfree + extra)
2141 		return (1);
2142 
2143 	/*
2144 	 * check to make sure that swapfs has enough space so that anon
2145 	 * reservations can still succeed. anon_resvmem() checks that the
2146 	 * availrmem is greater than swapfs_minfree, and the number of reserved
2147 	 * swap pages.  We also add a bit of extra here just to prevent
2148 	 * circumstances from getting really dire.
2149 	 */
2150 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2151 		return (1);
2152 
2153 #if defined(__i386)
2154 	/*
2155 	 * If we're on an i386 platform, it's possible that we'll exhaust the
2156 	 * kernel heap space before we ever run out of available physical
2157 	 * memory.  Most checks of the size of the heap_area compare against
2158 	 * tune.t_minarmem, which is the minimum available real memory that we
2159 	 * can have in the system.  However, this is generally fixed at 25 pages
2160 	 * which is so low that it's useless.  In this comparison, we seek to
2161 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2162 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2163 	 * free)
2164 	 */
2165 	if (vmem_size(heap_arena, VMEM_FREE) <
2166 	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2))
2167 		return (1);
2168 #endif
2169 
2170 	/*
2171 	 * If zio data pages are being allocated out of a separate heap segment,
2172 	 * then enforce that the size of available vmem for this arena remains
2173 	 * above about 1/16th free.
2174 	 *
2175 	 * Note: The 1/16th arena free requirement was put in place
2176 	 * to aggressively evict memory from the arc in order to avoid
2177 	 * memory fragmentation issues.
2178 	 */
2179 	if (zio_arena != NULL &&
2180 	    vmem_size(zio_arena, VMEM_FREE) <
2181 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2182 		return (1);
2183 #else
2184 	if (spa_get_random(100) == 0)
2185 		return (1);
2186 #endif
2187 	return (0);
2188 }
2189 
2190 static void
2191 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2192 {
2193 	size_t			i;
2194 	kmem_cache_t		*prev_cache = NULL;
2195 	kmem_cache_t		*prev_data_cache = NULL;
2196 	extern kmem_cache_t	*zio_buf_cache[];
2197 	extern kmem_cache_t	*zio_data_buf_cache[];
2198 
2199 #ifdef _KERNEL
2200 	if (arc_meta_used >= arc_meta_limit) {
2201 		/*
2202 		 * We are exceeding our meta-data cache limit.
2203 		 * Purge some DNLC entries to release holds on meta-data.
2204 		 */
2205 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2206 	}
2207 #if defined(__i386)
2208 	/*
2209 	 * Reclaim unused memory from all kmem caches.
2210 	 */
2211 	kmem_reap();
2212 #endif
2213 #endif
2214 
2215 	/*
2216 	 * An aggressive reclamation will shrink the cache size as well as
2217 	 * reap free buffers from the arc kmem caches.
2218 	 */
2219 	if (strat == ARC_RECLAIM_AGGR)
2220 		arc_shrink();
2221 
2222 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2223 		if (zio_buf_cache[i] != prev_cache) {
2224 			prev_cache = zio_buf_cache[i];
2225 			kmem_cache_reap_now(zio_buf_cache[i]);
2226 		}
2227 		if (zio_data_buf_cache[i] != prev_data_cache) {
2228 			prev_data_cache = zio_data_buf_cache[i];
2229 			kmem_cache_reap_now(zio_data_buf_cache[i]);
2230 		}
2231 	}
2232 	kmem_cache_reap_now(buf_cache);
2233 	kmem_cache_reap_now(hdr_cache);
2234 
2235 	/*
2236 	 * Ask the vmem areana to reclaim unused memory from its
2237 	 * quantum caches.
2238 	 */
2239 	if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2240 		vmem_qcache_reap(zio_arena);
2241 }
2242 
2243 static void
2244 arc_reclaim_thread(void)
2245 {
2246 	clock_t			growtime = 0;
2247 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2248 	callb_cpr_t		cpr;
2249 
2250 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2251 
2252 	mutex_enter(&arc_reclaim_thr_lock);
2253 	while (arc_thread_exit == 0) {
2254 		if (arc_reclaim_needed()) {
2255 
2256 			if (arc_no_grow) {
2257 				if (last_reclaim == ARC_RECLAIM_CONS) {
2258 					last_reclaim = ARC_RECLAIM_AGGR;
2259 				} else {
2260 					last_reclaim = ARC_RECLAIM_CONS;
2261 				}
2262 			} else {
2263 				arc_no_grow = TRUE;
2264 				last_reclaim = ARC_RECLAIM_AGGR;
2265 				membar_producer();
2266 			}
2267 
2268 			/* reset the growth delay for every reclaim */
2269 			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2270 
2271 			arc_kmem_reap_now(last_reclaim);
2272 			arc_warm = B_TRUE;
2273 
2274 		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2275 			arc_no_grow = FALSE;
2276 		}
2277 
2278 		arc_adjust();
2279 
2280 		if (arc_eviction_list != NULL)
2281 			arc_do_user_evicts();
2282 
2283 		/* block until needed, or one second, whichever is shorter */
2284 		CALLB_CPR_SAFE_BEGIN(&cpr);
2285 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2286 		    &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2287 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2288 	}
2289 
2290 	arc_thread_exit = 0;
2291 	cv_broadcast(&arc_reclaim_thr_cv);
2292 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2293 	thread_exit();
2294 }
2295 
2296 /*
2297  * Adapt arc info given the number of bytes we are trying to add and
2298  * the state that we are comming from.  This function is only called
2299  * when we are adding new content to the cache.
2300  */
2301 static void
2302 arc_adapt(int bytes, arc_state_t *state)
2303 {
2304 	int mult;
2305 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2306 
2307 	if (state == arc_l2c_only)
2308 		return;
2309 
2310 	ASSERT(bytes > 0);
2311 	/*
2312 	 * Adapt the target size of the MRU list:
2313 	 *	- if we just hit in the MRU ghost list, then increase
2314 	 *	  the target size of the MRU list.
2315 	 *	- if we just hit in the MFU ghost list, then increase
2316 	 *	  the target size of the MFU list by decreasing the
2317 	 *	  target size of the MRU list.
2318 	 */
2319 	if (state == arc_mru_ghost) {
2320 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2321 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2322 		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2323 
2324 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2325 	} else if (state == arc_mfu_ghost) {
2326 		uint64_t delta;
2327 
2328 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2329 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2330 		mult = MIN(mult, 10);
2331 
2332 		delta = MIN(bytes * mult, arc_p);
2333 		arc_p = MAX(arc_p_min, arc_p - delta);
2334 	}
2335 	ASSERT((int64_t)arc_p >= 0);
2336 
2337 	if (arc_reclaim_needed()) {
2338 		cv_signal(&arc_reclaim_thr_cv);
2339 		return;
2340 	}
2341 
2342 	if (arc_no_grow)
2343 		return;
2344 
2345 	if (arc_c >= arc_c_max)
2346 		return;
2347 
2348 	/*
2349 	 * If we're within (2 * maxblocksize) bytes of the target
2350 	 * cache size, increment the target cache size
2351 	 */
2352 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2353 		atomic_add_64(&arc_c, (int64_t)bytes);
2354 		if (arc_c > arc_c_max)
2355 			arc_c = arc_c_max;
2356 		else if (state == arc_anon)
2357 			atomic_add_64(&arc_p, (int64_t)bytes);
2358 		if (arc_p > arc_c)
2359 			arc_p = arc_c;
2360 	}
2361 	ASSERT((int64_t)arc_p >= 0);
2362 }
2363 
2364 /*
2365  * Check if the cache has reached its limits and eviction is required
2366  * prior to insert.
2367  */
2368 static int
2369 arc_evict_needed(arc_buf_contents_t type)
2370 {
2371 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2372 		return (1);
2373 
2374 	if (arc_reclaim_needed())
2375 		return (1);
2376 
2377 	return (arc_size > arc_c);
2378 }
2379 
2380 /*
2381  * The buffer, supplied as the first argument, needs a data block.
2382  * So, if we are at cache max, determine which cache should be victimized.
2383  * We have the following cases:
2384  *
2385  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2386  * In this situation if we're out of space, but the resident size of the MFU is
2387  * under the limit, victimize the MFU cache to satisfy this insertion request.
2388  *
2389  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2390  * Here, we've used up all of the available space for the MRU, so we need to
2391  * evict from our own cache instead.  Evict from the set of resident MRU
2392  * entries.
2393  *
2394  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2395  * c minus p represents the MFU space in the cache, since p is the size of the
2396  * cache that is dedicated to the MRU.  In this situation there's still space on
2397  * the MFU side, so the MRU side needs to be victimized.
2398  *
2399  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2400  * MFU's resident set is consuming more space than it has been allotted.  In
2401  * this situation, we must victimize our own cache, the MFU, for this insertion.
2402  */
2403 static void
2404 arc_get_data_buf(arc_buf_t *buf)
2405 {
2406 	arc_state_t		*state = buf->b_hdr->b_state;
2407 	uint64_t		size = buf->b_hdr->b_size;
2408 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2409 
2410 	arc_adapt(size, state);
2411 
2412 	/*
2413 	 * We have not yet reached cache maximum size,
2414 	 * just allocate a new buffer.
2415 	 */
2416 	if (!arc_evict_needed(type)) {
2417 		if (type == ARC_BUFC_METADATA) {
2418 			buf->b_data = zio_buf_alloc(size);
2419 			arc_space_consume(size, ARC_SPACE_DATA);
2420 		} else {
2421 			ASSERT(type == ARC_BUFC_DATA);
2422 			buf->b_data = zio_data_buf_alloc(size);
2423 			ARCSTAT_INCR(arcstat_data_size, size);
2424 			atomic_add_64(&arc_size, size);
2425 		}
2426 		goto out;
2427 	}
2428 
2429 	/*
2430 	 * If we are prefetching from the mfu ghost list, this buffer
2431 	 * will end up on the mru list; so steal space from there.
2432 	 */
2433 	if (state == arc_mfu_ghost)
2434 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2435 	else if (state == arc_mru_ghost)
2436 		state = arc_mru;
2437 
2438 	if (state == arc_mru || state == arc_anon) {
2439 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2440 		state = (arc_mfu->arcs_lsize[type] >= size &&
2441 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2442 	} else {
2443 		/* MFU cases */
2444 		uint64_t mfu_space = arc_c - arc_p;
2445 		state =  (arc_mru->arcs_lsize[type] >= size &&
2446 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2447 	}
2448 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2449 		if (type == ARC_BUFC_METADATA) {
2450 			buf->b_data = zio_buf_alloc(size);
2451 			arc_space_consume(size, ARC_SPACE_DATA);
2452 		} else {
2453 			ASSERT(type == ARC_BUFC_DATA);
2454 			buf->b_data = zio_data_buf_alloc(size);
2455 			ARCSTAT_INCR(arcstat_data_size, size);
2456 			atomic_add_64(&arc_size, size);
2457 		}
2458 		ARCSTAT_BUMP(arcstat_recycle_miss);
2459 	}
2460 	ASSERT(buf->b_data != NULL);
2461 out:
2462 	/*
2463 	 * Update the state size.  Note that ghost states have a
2464 	 * "ghost size" and so don't need to be updated.
2465 	 */
2466 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2467 		arc_buf_hdr_t *hdr = buf->b_hdr;
2468 
2469 		atomic_add_64(&hdr->b_state->arcs_size, size);
2470 		if (list_link_active(&hdr->b_arc_node)) {
2471 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2472 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2473 		}
2474 		/*
2475 		 * If we are growing the cache, and we are adding anonymous
2476 		 * data, and we have outgrown arc_p, update arc_p
2477 		 */
2478 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2479 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2480 			arc_p = MIN(arc_c, arc_p + size);
2481 	}
2482 }
2483 
2484 /*
2485  * This routine is called whenever a buffer is accessed.
2486  * NOTE: the hash lock is dropped in this function.
2487  */
2488 static void
2489 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2490 {
2491 	clock_t now;
2492 
2493 	ASSERT(MUTEX_HELD(hash_lock));
2494 
2495 	if (buf->b_state == arc_anon) {
2496 		/*
2497 		 * This buffer is not in the cache, and does not
2498 		 * appear in our "ghost" list.  Add the new buffer
2499 		 * to the MRU state.
2500 		 */
2501 
2502 		ASSERT(buf->b_arc_access == 0);
2503 		buf->b_arc_access = ddi_get_lbolt();
2504 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2505 		arc_change_state(arc_mru, buf, hash_lock);
2506 
2507 	} else if (buf->b_state == arc_mru) {
2508 		now = ddi_get_lbolt();
2509 
2510 		/*
2511 		 * If this buffer is here because of a prefetch, then either:
2512 		 * - clear the flag if this is a "referencing" read
2513 		 *   (any subsequent access will bump this into the MFU state).
2514 		 * or
2515 		 * - move the buffer to the head of the list if this is
2516 		 *   another prefetch (to make it less likely to be evicted).
2517 		 */
2518 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2519 			if (refcount_count(&buf->b_refcnt) == 0) {
2520 				ASSERT(list_link_active(&buf->b_arc_node));
2521 			} else {
2522 				buf->b_flags &= ~ARC_PREFETCH;
2523 				ARCSTAT_BUMP(arcstat_mru_hits);
2524 			}
2525 			buf->b_arc_access = now;
2526 			return;
2527 		}
2528 
2529 		/*
2530 		 * This buffer has been "accessed" only once so far,
2531 		 * but it is still in the cache. Move it to the MFU
2532 		 * state.
2533 		 */
2534 		if (now > buf->b_arc_access + ARC_MINTIME) {
2535 			/*
2536 			 * More than 125ms have passed since we
2537 			 * instantiated this buffer.  Move it to the
2538 			 * most frequently used state.
2539 			 */
2540 			buf->b_arc_access = now;
2541 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2542 			arc_change_state(arc_mfu, buf, hash_lock);
2543 		}
2544 		ARCSTAT_BUMP(arcstat_mru_hits);
2545 	} else if (buf->b_state == arc_mru_ghost) {
2546 		arc_state_t	*new_state;
2547 		/*
2548 		 * This buffer has been "accessed" recently, but
2549 		 * was evicted from the cache.  Move it to the
2550 		 * MFU state.
2551 		 */
2552 
2553 		if (buf->b_flags & ARC_PREFETCH) {
2554 			new_state = arc_mru;
2555 			if (refcount_count(&buf->b_refcnt) > 0)
2556 				buf->b_flags &= ~ARC_PREFETCH;
2557 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2558 		} else {
2559 			new_state = arc_mfu;
2560 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2561 		}
2562 
2563 		buf->b_arc_access = ddi_get_lbolt();
2564 		arc_change_state(new_state, buf, hash_lock);
2565 
2566 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2567 	} else if (buf->b_state == arc_mfu) {
2568 		/*
2569 		 * This buffer has been accessed more than once and is
2570 		 * still in the cache.  Keep it in the MFU state.
2571 		 *
2572 		 * NOTE: an add_reference() that occurred when we did
2573 		 * the arc_read() will have kicked this off the list.
2574 		 * If it was a prefetch, we will explicitly move it to
2575 		 * the head of the list now.
2576 		 */
2577 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2578 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2579 			ASSERT(list_link_active(&buf->b_arc_node));
2580 		}
2581 		ARCSTAT_BUMP(arcstat_mfu_hits);
2582 		buf->b_arc_access = ddi_get_lbolt();
2583 	} else if (buf->b_state == arc_mfu_ghost) {
2584 		arc_state_t	*new_state = arc_mfu;
2585 		/*
2586 		 * This buffer has been accessed more than once but has
2587 		 * been evicted from the cache.  Move it back to the
2588 		 * MFU state.
2589 		 */
2590 
2591 		if (buf->b_flags & ARC_PREFETCH) {
2592 			/*
2593 			 * This is a prefetch access...
2594 			 * move this block back to the MRU state.
2595 			 */
2596 			ASSERT0(refcount_count(&buf->b_refcnt));
2597 			new_state = arc_mru;
2598 		}
2599 
2600 		buf->b_arc_access = ddi_get_lbolt();
2601 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2602 		arc_change_state(new_state, buf, hash_lock);
2603 
2604 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2605 	} else if (buf->b_state == arc_l2c_only) {
2606 		/*
2607 		 * This buffer is on the 2nd Level ARC.
2608 		 */
2609 
2610 		buf->b_arc_access = ddi_get_lbolt();
2611 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2612 		arc_change_state(arc_mfu, buf, hash_lock);
2613 	} else {
2614 		ASSERT(!"invalid arc state");
2615 	}
2616 }
2617 
2618 /* a generic arc_done_func_t which you can use */
2619 /* ARGSUSED */
2620 void
2621 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2622 {
2623 	if (zio == NULL || zio->io_error == 0)
2624 		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2625 	VERIFY(arc_buf_remove_ref(buf, arg));
2626 }
2627 
2628 /* a generic arc_done_func_t */
2629 void
2630 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2631 {
2632 	arc_buf_t **bufp = arg;
2633 	if (zio && zio->io_error) {
2634 		VERIFY(arc_buf_remove_ref(buf, arg));
2635 		*bufp = NULL;
2636 	} else {
2637 		*bufp = buf;
2638 		ASSERT(buf->b_data);
2639 	}
2640 }
2641 
2642 static void
2643 arc_read_done(zio_t *zio)
2644 {
2645 	arc_buf_hdr_t	*hdr, *found;
2646 	arc_buf_t	*buf;
2647 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2648 	kmutex_t	*hash_lock;
2649 	arc_callback_t	*callback_list, *acb;
2650 	int		freeable = FALSE;
2651 
2652 	buf = zio->io_private;
2653 	hdr = buf->b_hdr;
2654 
2655 	/*
2656 	 * The hdr was inserted into hash-table and removed from lists
2657 	 * prior to starting I/O.  We should find this header, since
2658 	 * it's in the hash table, and it should be legit since it's
2659 	 * not possible to evict it during the I/O.  The only possible
2660 	 * reason for it not to be found is if we were freed during the
2661 	 * read.
2662 	 */
2663 	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2664 	    &hash_lock);
2665 
2666 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2667 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2668 	    (found == hdr && HDR_L2_READING(hdr)));
2669 
2670 	hdr->b_flags &= ~ARC_L2_EVICTED;
2671 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2672 		hdr->b_flags &= ~ARC_L2CACHE;
2673 
2674 	/* byteswap if necessary */
2675 	callback_list = hdr->b_acb;
2676 	ASSERT(callback_list != NULL);
2677 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2678 		dmu_object_byteswap_t bswap =
2679 		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2680 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2681 		    byteswap_uint64_array :
2682 		    dmu_ot_byteswap[bswap].ob_func;
2683 		func(buf->b_data, hdr->b_size);
2684 	}
2685 
2686 	arc_cksum_compute(buf, B_FALSE);
2687 	arc_buf_watch(buf);
2688 
2689 	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2690 		/*
2691 		 * Only call arc_access on anonymous buffers.  This is because
2692 		 * if we've issued an I/O for an evicted buffer, we've already
2693 		 * called arc_access (to prevent any simultaneous readers from
2694 		 * getting confused).
2695 		 */
2696 		arc_access(hdr, hash_lock);
2697 	}
2698 
2699 	/* create copies of the data buffer for the callers */
2700 	abuf = buf;
2701 	for (acb = callback_list; acb; acb = acb->acb_next) {
2702 		if (acb->acb_done) {
2703 			if (abuf == NULL) {
2704 				ARCSTAT_BUMP(arcstat_duplicate_reads);
2705 				abuf = arc_buf_clone(buf);
2706 			}
2707 			acb->acb_buf = abuf;
2708 			abuf = NULL;
2709 		}
2710 	}
2711 	hdr->b_acb = NULL;
2712 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2713 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2714 	if (abuf == buf) {
2715 		ASSERT(buf->b_efunc == NULL);
2716 		ASSERT(hdr->b_datacnt == 1);
2717 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2718 	}
2719 
2720 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2721 
2722 	if (zio->io_error != 0) {
2723 		hdr->b_flags |= ARC_IO_ERROR;
2724 		if (hdr->b_state != arc_anon)
2725 			arc_change_state(arc_anon, hdr, hash_lock);
2726 		if (HDR_IN_HASH_TABLE(hdr))
2727 			buf_hash_remove(hdr);
2728 		freeable = refcount_is_zero(&hdr->b_refcnt);
2729 	}
2730 
2731 	/*
2732 	 * Broadcast before we drop the hash_lock to avoid the possibility
2733 	 * that the hdr (and hence the cv) might be freed before we get to
2734 	 * the cv_broadcast().
2735 	 */
2736 	cv_broadcast(&hdr->b_cv);
2737 
2738 	if (hash_lock) {
2739 		mutex_exit(hash_lock);
2740 	} else {
2741 		/*
2742 		 * This block was freed while we waited for the read to
2743 		 * complete.  It has been removed from the hash table and
2744 		 * moved to the anonymous state (so that it won't show up
2745 		 * in the cache).
2746 		 */
2747 		ASSERT3P(hdr->b_state, ==, arc_anon);
2748 		freeable = refcount_is_zero(&hdr->b_refcnt);
2749 	}
2750 
2751 	/* execute each callback and free its structure */
2752 	while ((acb = callback_list) != NULL) {
2753 		if (acb->acb_done)
2754 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2755 
2756 		if (acb->acb_zio_dummy != NULL) {
2757 			acb->acb_zio_dummy->io_error = zio->io_error;
2758 			zio_nowait(acb->acb_zio_dummy);
2759 		}
2760 
2761 		callback_list = acb->acb_next;
2762 		kmem_free(acb, sizeof (arc_callback_t));
2763 	}
2764 
2765 	if (freeable)
2766 		arc_hdr_destroy(hdr);
2767 }
2768 
2769 /*
2770  * "Read" the block at the specified DVA (in bp) via the
2771  * cache.  If the block is found in the cache, invoke the provided
2772  * callback immediately and return.  Note that the `zio' parameter
2773  * in the callback will be NULL in this case, since no IO was
2774  * required.  If the block is not in the cache pass the read request
2775  * on to the spa with a substitute callback function, so that the
2776  * requested block will be added to the cache.
2777  *
2778  * If a read request arrives for a block that has a read in-progress,
2779  * either wait for the in-progress read to complete (and return the
2780  * results); or, if this is a read with a "done" func, add a record
2781  * to the read to invoke the "done" func when the read completes,
2782  * and return; or just return.
2783  *
2784  * arc_read_done() will invoke all the requested "done" functions
2785  * for readers of this block.
2786  */
2787 int
2788 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2789     void *private, int priority, int zio_flags, uint32_t *arc_flags,
2790     const zbookmark_t *zb)
2791 {
2792 	arc_buf_hdr_t *hdr;
2793 	arc_buf_t *buf = NULL;
2794 	kmutex_t *hash_lock;
2795 	zio_t *rzio;
2796 	uint64_t guid = spa_load_guid(spa);
2797 
2798 top:
2799 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2800 	    &hash_lock);
2801 	if (hdr && hdr->b_datacnt > 0) {
2802 
2803 		*arc_flags |= ARC_CACHED;
2804 
2805 		if (HDR_IO_IN_PROGRESS(hdr)) {
2806 
2807 			if (*arc_flags & ARC_WAIT) {
2808 				cv_wait(&hdr->b_cv, hash_lock);
2809 				mutex_exit(hash_lock);
2810 				goto top;
2811 			}
2812 			ASSERT(*arc_flags & ARC_NOWAIT);
2813 
2814 			if (done) {
2815 				arc_callback_t	*acb = NULL;
2816 
2817 				acb = kmem_zalloc(sizeof (arc_callback_t),
2818 				    KM_SLEEP);
2819 				acb->acb_done = done;
2820 				acb->acb_private = private;
2821 				if (pio != NULL)
2822 					acb->acb_zio_dummy = zio_null(pio,
2823 					    spa, NULL, NULL, NULL, zio_flags);
2824 
2825 				ASSERT(acb->acb_done != NULL);
2826 				acb->acb_next = hdr->b_acb;
2827 				hdr->b_acb = acb;
2828 				add_reference(hdr, hash_lock, private);
2829 				mutex_exit(hash_lock);
2830 				return (0);
2831 			}
2832 			mutex_exit(hash_lock);
2833 			return (0);
2834 		}
2835 
2836 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2837 
2838 		if (done) {
2839 			add_reference(hdr, hash_lock, private);
2840 			/*
2841 			 * If this block is already in use, create a new
2842 			 * copy of the data so that we will be guaranteed
2843 			 * that arc_release() will always succeed.
2844 			 */
2845 			buf = hdr->b_buf;
2846 			ASSERT(buf);
2847 			ASSERT(buf->b_data);
2848 			if (HDR_BUF_AVAILABLE(hdr)) {
2849 				ASSERT(buf->b_efunc == NULL);
2850 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2851 			} else {
2852 				buf = arc_buf_clone(buf);
2853 			}
2854 
2855 		} else if (*arc_flags & ARC_PREFETCH &&
2856 		    refcount_count(&hdr->b_refcnt) == 0) {
2857 			hdr->b_flags |= ARC_PREFETCH;
2858 		}
2859 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2860 		arc_access(hdr, hash_lock);
2861 		if (*arc_flags & ARC_L2CACHE)
2862 			hdr->b_flags |= ARC_L2CACHE;
2863 		mutex_exit(hash_lock);
2864 		ARCSTAT_BUMP(arcstat_hits);
2865 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2866 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2867 		    data, metadata, hits);
2868 
2869 		if (done)
2870 			done(NULL, buf, private);
2871 	} else {
2872 		uint64_t size = BP_GET_LSIZE(bp);
2873 		arc_callback_t	*acb;
2874 		vdev_t *vd = NULL;
2875 		uint64_t addr = 0;
2876 		boolean_t devw = B_FALSE;
2877 
2878 		if (hdr == NULL) {
2879 			/* this block is not in the cache */
2880 			arc_buf_hdr_t	*exists;
2881 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2882 			buf = arc_buf_alloc(spa, size, private, type);
2883 			hdr = buf->b_hdr;
2884 			hdr->b_dva = *BP_IDENTITY(bp);
2885 			hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2886 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2887 			exists = buf_hash_insert(hdr, &hash_lock);
2888 			if (exists) {
2889 				/* somebody beat us to the hash insert */
2890 				mutex_exit(hash_lock);
2891 				buf_discard_identity(hdr);
2892 				(void) arc_buf_remove_ref(buf, private);
2893 				goto top; /* restart the IO request */
2894 			}
2895 			/* if this is a prefetch, we don't have a reference */
2896 			if (*arc_flags & ARC_PREFETCH) {
2897 				(void) remove_reference(hdr, hash_lock,
2898 				    private);
2899 				hdr->b_flags |= ARC_PREFETCH;
2900 			}
2901 			if (*arc_flags & ARC_L2CACHE)
2902 				hdr->b_flags |= ARC_L2CACHE;
2903 			if (BP_GET_LEVEL(bp) > 0)
2904 				hdr->b_flags |= ARC_INDIRECT;
2905 		} else {
2906 			/* this block is in the ghost cache */
2907 			ASSERT(GHOST_STATE(hdr->b_state));
2908 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2909 			ASSERT0(refcount_count(&hdr->b_refcnt));
2910 			ASSERT(hdr->b_buf == NULL);
2911 
2912 			/* if this is a prefetch, we don't have a reference */
2913 			if (*arc_flags & ARC_PREFETCH)
2914 				hdr->b_flags |= ARC_PREFETCH;
2915 			else
2916 				add_reference(hdr, hash_lock, private);
2917 			if (*arc_flags & ARC_L2CACHE)
2918 				hdr->b_flags |= ARC_L2CACHE;
2919 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2920 			buf->b_hdr = hdr;
2921 			buf->b_data = NULL;
2922 			buf->b_efunc = NULL;
2923 			buf->b_private = NULL;
2924 			buf->b_next = NULL;
2925 			hdr->b_buf = buf;
2926 			ASSERT(hdr->b_datacnt == 0);
2927 			hdr->b_datacnt = 1;
2928 			arc_get_data_buf(buf);
2929 			arc_access(hdr, hash_lock);
2930 		}
2931 
2932 		ASSERT(!GHOST_STATE(hdr->b_state));
2933 
2934 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2935 		acb->acb_done = done;
2936 		acb->acb_private = private;
2937 
2938 		ASSERT(hdr->b_acb == NULL);
2939 		hdr->b_acb = acb;
2940 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2941 
2942 		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2943 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2944 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2945 			addr = hdr->b_l2hdr->b_daddr;
2946 			/*
2947 			 * Lock out device removal.
2948 			 */
2949 			if (vdev_is_dead(vd) ||
2950 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2951 				vd = NULL;
2952 		}
2953 
2954 		mutex_exit(hash_lock);
2955 
2956 		ASSERT3U(hdr->b_size, ==, size);
2957 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2958 		    uint64_t, size, zbookmark_t *, zb);
2959 		ARCSTAT_BUMP(arcstat_misses);
2960 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2961 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2962 		    data, metadata, misses);
2963 
2964 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2965 			/*
2966 			 * Read from the L2ARC if the following are true:
2967 			 * 1. The L2ARC vdev was previously cached.
2968 			 * 2. This buffer still has L2ARC metadata.
2969 			 * 3. This buffer isn't currently writing to the L2ARC.
2970 			 * 4. The L2ARC entry wasn't evicted, which may
2971 			 *    also have invalidated the vdev.
2972 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
2973 			 */
2974 			if (hdr->b_l2hdr != NULL &&
2975 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2976 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2977 				l2arc_read_callback_t *cb;
2978 
2979 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2980 				ARCSTAT_BUMP(arcstat_l2_hits);
2981 
2982 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2983 				    KM_SLEEP);
2984 				cb->l2rcb_buf = buf;
2985 				cb->l2rcb_spa = spa;
2986 				cb->l2rcb_bp = *bp;
2987 				cb->l2rcb_zb = *zb;
2988 				cb->l2rcb_flags = zio_flags;
2989 
2990 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
2991 				    addr + size < vd->vdev_psize -
2992 				    VDEV_LABEL_END_SIZE);
2993 
2994 				/*
2995 				 * l2arc read.  The SCL_L2ARC lock will be
2996 				 * released by l2arc_read_done().
2997 				 */
2998 				rzio = zio_read_phys(pio, vd, addr, size,
2999 				    buf->b_data, ZIO_CHECKSUM_OFF,
3000 				    l2arc_read_done, cb, priority, zio_flags |
3001 				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
3002 				    ZIO_FLAG_DONT_PROPAGATE |
3003 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
3004 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3005 				    zio_t *, rzio);
3006 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
3007 
3008 				if (*arc_flags & ARC_NOWAIT) {
3009 					zio_nowait(rzio);
3010 					return (0);
3011 				}
3012 
3013 				ASSERT(*arc_flags & ARC_WAIT);
3014 				if (zio_wait(rzio) == 0)
3015 					return (0);
3016 
3017 				/* l2arc read error; goto zio_read() */
3018 			} else {
3019 				DTRACE_PROBE1(l2arc__miss,
3020 				    arc_buf_hdr_t *, hdr);
3021 				ARCSTAT_BUMP(arcstat_l2_misses);
3022 				if (HDR_L2_WRITING(hdr))
3023 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3024 				spa_config_exit(spa, SCL_L2ARC, vd);
3025 			}
3026 		} else {
3027 			if (vd != NULL)
3028 				spa_config_exit(spa, SCL_L2ARC, vd);
3029 			if (l2arc_ndev != 0) {
3030 				DTRACE_PROBE1(l2arc__miss,
3031 				    arc_buf_hdr_t *, hdr);
3032 				ARCSTAT_BUMP(arcstat_l2_misses);
3033 			}
3034 		}
3035 
3036 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3037 		    arc_read_done, buf, priority, zio_flags, zb);
3038 
3039 		if (*arc_flags & ARC_WAIT)
3040 			return (zio_wait(rzio));
3041 
3042 		ASSERT(*arc_flags & ARC_NOWAIT);
3043 		zio_nowait(rzio);
3044 	}
3045 	return (0);
3046 }
3047 
3048 void
3049 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3050 {
3051 	ASSERT(buf->b_hdr != NULL);
3052 	ASSERT(buf->b_hdr->b_state != arc_anon);
3053 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3054 	ASSERT(buf->b_efunc == NULL);
3055 	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3056 
3057 	buf->b_efunc = func;
3058 	buf->b_private = private;
3059 }
3060 
3061 /*
3062  * This is used by the DMU to let the ARC know that a buffer is
3063  * being evicted, so the ARC should clean up.  If this arc buf
3064  * is not yet in the evicted state, it will be put there.
3065  */
3066 int
3067 arc_buf_evict(arc_buf_t *buf)
3068 {
3069 	arc_buf_hdr_t *hdr;
3070 	kmutex_t *hash_lock;
3071 	arc_buf_t **bufp;
3072 
3073 	mutex_enter(&buf->b_evict_lock);
3074 	hdr = buf->b_hdr;
3075 	if (hdr == NULL) {
3076 		/*
3077 		 * We are in arc_do_user_evicts().
3078 		 */
3079 		ASSERT(buf->b_data == NULL);
3080 		mutex_exit(&buf->b_evict_lock);
3081 		return (0);
3082 	} else if (buf->b_data == NULL) {
3083 		arc_buf_t copy = *buf; /* structure assignment */
3084 		/*
3085 		 * We are on the eviction list; process this buffer now
3086 		 * but let arc_do_user_evicts() do the reaping.
3087 		 */
3088 		buf->b_efunc = NULL;
3089 		mutex_exit(&buf->b_evict_lock);
3090 		VERIFY(copy.b_efunc(&copy) == 0);
3091 		return (1);
3092 	}
3093 	hash_lock = HDR_LOCK(hdr);
3094 	mutex_enter(hash_lock);
3095 	hdr = buf->b_hdr;
3096 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3097 
3098 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3099 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3100 
3101 	/*
3102 	 * Pull this buffer off of the hdr
3103 	 */
3104 	bufp = &hdr->b_buf;
3105 	while (*bufp != buf)
3106 		bufp = &(*bufp)->b_next;
3107 	*bufp = buf->b_next;
3108 
3109 	ASSERT(buf->b_data != NULL);
3110 	arc_buf_destroy(buf, FALSE, FALSE);
3111 
3112 	if (hdr->b_datacnt == 0) {
3113 		arc_state_t *old_state = hdr->b_state;
3114 		arc_state_t *evicted_state;
3115 
3116 		ASSERT(hdr->b_buf == NULL);
3117 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
3118 
3119 		evicted_state =
3120 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3121 
3122 		mutex_enter(&old_state->arcs_mtx);
3123 		mutex_enter(&evicted_state->arcs_mtx);
3124 
3125 		arc_change_state(evicted_state, hdr, hash_lock);
3126 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3127 		hdr->b_flags |= ARC_IN_HASH_TABLE;
3128 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3129 
3130 		mutex_exit(&evicted_state->arcs_mtx);
3131 		mutex_exit(&old_state->arcs_mtx);
3132 	}
3133 	mutex_exit(hash_lock);
3134 	mutex_exit(&buf->b_evict_lock);
3135 
3136 	VERIFY(buf->b_efunc(buf) == 0);
3137 	buf->b_efunc = NULL;
3138 	buf->b_private = NULL;
3139 	buf->b_hdr = NULL;
3140 	buf->b_next = NULL;
3141 	kmem_cache_free(buf_cache, buf);
3142 	return (1);
3143 }
3144 
3145 /*
3146  * Release this buffer from the cache.  This must be done
3147  * after a read and prior to modifying the buffer contents.
3148  * If the buffer has more than one reference, we must make
3149  * a new hdr for the buffer.
3150  */
3151 void
3152 arc_release(arc_buf_t *buf, void *tag)
3153 {
3154 	arc_buf_hdr_t *hdr;
3155 	kmutex_t *hash_lock = NULL;
3156 	l2arc_buf_hdr_t *l2hdr;
3157 	uint64_t buf_size;
3158 
3159 	/*
3160 	 * It would be nice to assert that if it's DMU metadata (level >
3161 	 * 0 || it's the dnode file), then it must be syncing context.
3162 	 * But we don't know that information at this level.
3163 	 */
3164 
3165 	mutex_enter(&buf->b_evict_lock);
3166 	hdr = buf->b_hdr;
3167 
3168 	/* this buffer is not on any list */
3169 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3170 
3171 	if (hdr->b_state == arc_anon) {
3172 		/* this buffer is already released */
3173 		ASSERT(buf->b_efunc == NULL);
3174 	} else {
3175 		hash_lock = HDR_LOCK(hdr);
3176 		mutex_enter(hash_lock);
3177 		hdr = buf->b_hdr;
3178 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3179 	}
3180 
3181 	l2hdr = hdr->b_l2hdr;
3182 	if (l2hdr) {
3183 		mutex_enter(&l2arc_buflist_mtx);
3184 		hdr->b_l2hdr = NULL;
3185 	}
3186 	buf_size = hdr->b_size;
3187 
3188 	/*
3189 	 * Do we have more than one buf?
3190 	 */
3191 	if (hdr->b_datacnt > 1) {
3192 		arc_buf_hdr_t *nhdr;
3193 		arc_buf_t **bufp;
3194 		uint64_t blksz = hdr->b_size;
3195 		uint64_t spa = hdr->b_spa;
3196 		arc_buf_contents_t type = hdr->b_type;
3197 		uint32_t flags = hdr->b_flags;
3198 
3199 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3200 		/*
3201 		 * Pull the data off of this hdr and attach it to
3202 		 * a new anonymous hdr.
3203 		 */
3204 		(void) remove_reference(hdr, hash_lock, tag);
3205 		bufp = &hdr->b_buf;
3206 		while (*bufp != buf)
3207 			bufp = &(*bufp)->b_next;
3208 		*bufp = buf->b_next;
3209 		buf->b_next = NULL;
3210 
3211 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3212 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3213 		if (refcount_is_zero(&hdr->b_refcnt)) {
3214 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3215 			ASSERT3U(*size, >=, hdr->b_size);
3216 			atomic_add_64(size, -hdr->b_size);
3217 		}
3218 
3219 		/*
3220 		 * We're releasing a duplicate user data buffer, update
3221 		 * our statistics accordingly.
3222 		 */
3223 		if (hdr->b_type == ARC_BUFC_DATA) {
3224 			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3225 			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3226 			    -hdr->b_size);
3227 		}
3228 		hdr->b_datacnt -= 1;
3229 		arc_cksum_verify(buf);
3230 		arc_buf_unwatch(buf);
3231 
3232 		mutex_exit(hash_lock);
3233 
3234 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3235 		nhdr->b_size = blksz;
3236 		nhdr->b_spa = spa;
3237 		nhdr->b_type = type;
3238 		nhdr->b_buf = buf;
3239 		nhdr->b_state = arc_anon;
3240 		nhdr->b_arc_access = 0;
3241 		nhdr->b_flags = flags & ARC_L2_WRITING;
3242 		nhdr->b_l2hdr = NULL;
3243 		nhdr->b_datacnt = 1;
3244 		nhdr->b_freeze_cksum = NULL;
3245 		(void) refcount_add(&nhdr->b_refcnt, tag);
3246 		buf->b_hdr = nhdr;
3247 		mutex_exit(&buf->b_evict_lock);
3248 		atomic_add_64(&arc_anon->arcs_size, blksz);
3249 	} else {
3250 		mutex_exit(&buf->b_evict_lock);
3251 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3252 		ASSERT(!list_link_active(&hdr->b_arc_node));
3253 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3254 		if (hdr->b_state != arc_anon)
3255 			arc_change_state(arc_anon, hdr, hash_lock);
3256 		hdr->b_arc_access = 0;
3257 		if (hash_lock)
3258 			mutex_exit(hash_lock);
3259 
3260 		buf_discard_identity(hdr);
3261 		arc_buf_thaw(buf);
3262 	}
3263 	buf->b_efunc = NULL;
3264 	buf->b_private = NULL;
3265 
3266 	if (l2hdr) {
3267 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3268 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3269 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3270 		mutex_exit(&l2arc_buflist_mtx);
3271 	}
3272 }
3273 
3274 int
3275 arc_released(arc_buf_t *buf)
3276 {
3277 	int released;
3278 
3279 	mutex_enter(&buf->b_evict_lock);
3280 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3281 	mutex_exit(&buf->b_evict_lock);
3282 	return (released);
3283 }
3284 
3285 int
3286 arc_has_callback(arc_buf_t *buf)
3287 {
3288 	int callback;
3289 
3290 	mutex_enter(&buf->b_evict_lock);
3291 	callback = (buf->b_efunc != NULL);
3292 	mutex_exit(&buf->b_evict_lock);
3293 	return (callback);
3294 }
3295 
3296 #ifdef ZFS_DEBUG
3297 int
3298 arc_referenced(arc_buf_t *buf)
3299 {
3300 	int referenced;
3301 
3302 	mutex_enter(&buf->b_evict_lock);
3303 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3304 	mutex_exit(&buf->b_evict_lock);
3305 	return (referenced);
3306 }
3307 #endif
3308 
3309 static void
3310 arc_write_ready(zio_t *zio)
3311 {
3312 	arc_write_callback_t *callback = zio->io_private;
3313 	arc_buf_t *buf = callback->awcb_buf;
3314 	arc_buf_hdr_t *hdr = buf->b_hdr;
3315 
3316 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3317 	callback->awcb_ready(zio, buf, callback->awcb_private);
3318 
3319 	/*
3320 	 * If the IO is already in progress, then this is a re-write
3321 	 * attempt, so we need to thaw and re-compute the cksum.
3322 	 * It is the responsibility of the callback to handle the
3323 	 * accounting for any re-write attempt.
3324 	 */
3325 	if (HDR_IO_IN_PROGRESS(hdr)) {
3326 		mutex_enter(&hdr->b_freeze_lock);
3327 		if (hdr->b_freeze_cksum != NULL) {
3328 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3329 			hdr->b_freeze_cksum = NULL;
3330 		}
3331 		mutex_exit(&hdr->b_freeze_lock);
3332 	}
3333 	arc_cksum_compute(buf, B_FALSE);
3334 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3335 }
3336 
3337 static void
3338 arc_write_done(zio_t *zio)
3339 {
3340 	arc_write_callback_t *callback = zio->io_private;
3341 	arc_buf_t *buf = callback->awcb_buf;
3342 	arc_buf_hdr_t *hdr = buf->b_hdr;
3343 
3344 	ASSERT(hdr->b_acb == NULL);
3345 
3346 	if (zio->io_error == 0) {
3347 		hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3348 		hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3349 		hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3350 	} else {
3351 		ASSERT(BUF_EMPTY(hdr));
3352 	}
3353 
3354 	/*
3355 	 * If the block to be written was all-zero, we may have
3356 	 * compressed it away.  In this case no write was performed
3357 	 * so there will be no dva/birth/checksum.  The buffer must
3358 	 * therefore remain anonymous (and uncached).
3359 	 */
3360 	if (!BUF_EMPTY(hdr)) {
3361 		arc_buf_hdr_t *exists;
3362 		kmutex_t *hash_lock;
3363 
3364 		ASSERT(zio->io_error == 0);
3365 
3366 		arc_cksum_verify(buf);
3367 
3368 		exists = buf_hash_insert(hdr, &hash_lock);
3369 		if (exists) {
3370 			/*
3371 			 * This can only happen if we overwrite for
3372 			 * sync-to-convergence, because we remove
3373 			 * buffers from the hash table when we arc_free().
3374 			 */
3375 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3376 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3377 					panic("bad overwrite, hdr=%p exists=%p",
3378 					    (void *)hdr, (void *)exists);
3379 				ASSERT(refcount_is_zero(&exists->b_refcnt));
3380 				arc_change_state(arc_anon, exists, hash_lock);
3381 				mutex_exit(hash_lock);
3382 				arc_hdr_destroy(exists);
3383 				exists = buf_hash_insert(hdr, &hash_lock);
3384 				ASSERT3P(exists, ==, NULL);
3385 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3386 				/* nopwrite */
3387 				ASSERT(zio->io_prop.zp_nopwrite);
3388 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3389 					panic("bad nopwrite, hdr=%p exists=%p",
3390 					    (void *)hdr, (void *)exists);
3391 			} else {
3392 				/* Dedup */
3393 				ASSERT(hdr->b_datacnt == 1);
3394 				ASSERT(hdr->b_state == arc_anon);
3395 				ASSERT(BP_GET_DEDUP(zio->io_bp));
3396 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3397 			}
3398 		}
3399 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3400 		/* if it's not anon, we are doing a scrub */
3401 		if (!exists && hdr->b_state == arc_anon)
3402 			arc_access(hdr, hash_lock);
3403 		mutex_exit(hash_lock);
3404 	} else {
3405 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3406 	}
3407 
3408 	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3409 	callback->awcb_done(zio, buf, callback->awcb_private);
3410 
3411 	kmem_free(callback, sizeof (arc_write_callback_t));
3412 }
3413 
3414 zio_t *
3415 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3416     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3417     arc_done_func_t *ready, arc_done_func_t *done, void *private,
3418     int priority, int zio_flags, const zbookmark_t *zb)
3419 {
3420 	arc_buf_hdr_t *hdr = buf->b_hdr;
3421 	arc_write_callback_t *callback;
3422 	zio_t *zio;
3423 
3424 	ASSERT(ready != NULL);
3425 	ASSERT(done != NULL);
3426 	ASSERT(!HDR_IO_ERROR(hdr));
3427 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3428 	ASSERT(hdr->b_acb == NULL);
3429 	if (l2arc)
3430 		hdr->b_flags |= ARC_L2CACHE;
3431 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3432 	callback->awcb_ready = ready;
3433 	callback->awcb_done = done;
3434 	callback->awcb_private = private;
3435 	callback->awcb_buf = buf;
3436 
3437 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3438 	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3439 
3440 	return (zio);
3441 }
3442 
3443 static int
3444 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3445 {
3446 #ifdef _KERNEL
3447 	uint64_t available_memory = ptob(freemem);
3448 	static uint64_t page_load = 0;
3449 	static uint64_t last_txg = 0;
3450 
3451 #if defined(__i386)
3452 	available_memory =
3453 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3454 #endif
3455 	if (available_memory >= zfs_write_limit_max)
3456 		return (0);
3457 
3458 	if (txg > last_txg) {
3459 		last_txg = txg;
3460 		page_load = 0;
3461 	}
3462 	/*
3463 	 * If we are in pageout, we know that memory is already tight,
3464 	 * the arc is already going to be evicting, so we just want to
3465 	 * continue to let page writes occur as quickly as possible.
3466 	 */
3467 	if (curproc == proc_pageout) {
3468 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3469 			return (SET_ERROR(ERESTART));
3470 		/* Note: reserve is inflated, so we deflate */
3471 		page_load += reserve / 8;
3472 		return (0);
3473 	} else if (page_load > 0 && arc_reclaim_needed()) {
3474 		/* memory is low, delay before restarting */
3475 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3476 		return (SET_ERROR(EAGAIN));
3477 	}
3478 	page_load = 0;
3479 
3480 	if (arc_size > arc_c_min) {
3481 		uint64_t evictable_memory =
3482 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3483 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3484 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3485 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3486 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3487 	}
3488 
3489 	if (inflight_data > available_memory / 4) {
3490 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3491 		return (SET_ERROR(ERESTART));
3492 	}
3493 #endif
3494 	return (0);
3495 }
3496 
3497 void
3498 arc_tempreserve_clear(uint64_t reserve)
3499 {
3500 	atomic_add_64(&arc_tempreserve, -reserve);
3501 	ASSERT((int64_t)arc_tempreserve >= 0);
3502 }
3503 
3504 int
3505 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3506 {
3507 	int error;
3508 	uint64_t anon_size;
3509 
3510 #ifdef ZFS_DEBUG
3511 	/*
3512 	 * Once in a while, fail for no reason.  Everything should cope.
3513 	 */
3514 	if (spa_get_random(10000) == 0) {
3515 		dprintf("forcing random failure\n");
3516 		return (SET_ERROR(ERESTART));
3517 	}
3518 #endif
3519 	if (reserve > arc_c/4 && !arc_no_grow)
3520 		arc_c = MIN(arc_c_max, reserve * 4);
3521 	if (reserve > arc_c)
3522 		return (SET_ERROR(ENOMEM));
3523 
3524 	/*
3525 	 * Don't count loaned bufs as in flight dirty data to prevent long
3526 	 * network delays from blocking transactions that are ready to be
3527 	 * assigned to a txg.
3528 	 */
3529 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3530 
3531 	/*
3532 	 * Writes will, almost always, require additional memory allocations
3533 	 * in order to compress/encrypt/etc the data.  We therefor need to
3534 	 * make sure that there is sufficient available memory for this.
3535 	 */
3536 	if (error = arc_memory_throttle(reserve, anon_size, txg))
3537 		return (error);
3538 
3539 	/*
3540 	 * Throttle writes when the amount of dirty data in the cache
3541 	 * gets too large.  We try to keep the cache less than half full
3542 	 * of dirty blocks so that our sync times don't grow too large.
3543 	 * Note: if two requests come in concurrently, we might let them
3544 	 * both succeed, when one of them should fail.  Not a huge deal.
3545 	 */
3546 
3547 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3548 	    anon_size > arc_c / 4) {
3549 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3550 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3551 		    arc_tempreserve>>10,
3552 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3553 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3554 		    reserve>>10, arc_c>>10);
3555 		return (SET_ERROR(ERESTART));
3556 	}
3557 	atomic_add_64(&arc_tempreserve, reserve);
3558 	return (0);
3559 }
3560 
3561 void
3562 arc_init(void)
3563 {
3564 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3565 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3566 
3567 	/* Convert seconds to clock ticks */
3568 	arc_min_prefetch_lifespan = 1 * hz;
3569 
3570 	/* Start out with 1/8 of all memory */
3571 	arc_c = physmem * PAGESIZE / 8;
3572 
3573 #ifdef _KERNEL
3574 	/*
3575 	 * On architectures where the physical memory can be larger
3576 	 * than the addressable space (intel in 32-bit mode), we may
3577 	 * need to limit the cache to 1/8 of VM size.
3578 	 */
3579 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3580 #endif
3581 
3582 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3583 	arc_c_min = MAX(arc_c / 4, 64<<20);
3584 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3585 	if (arc_c * 8 >= 1<<30)
3586 		arc_c_max = (arc_c * 8) - (1<<30);
3587 	else
3588 		arc_c_max = arc_c_min;
3589 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3590 
3591 	/*
3592 	 * Allow the tunables to override our calculations if they are
3593 	 * reasonable (ie. over 64MB)
3594 	 */
3595 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3596 		arc_c_max = zfs_arc_max;
3597 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3598 		arc_c_min = zfs_arc_min;
3599 
3600 	arc_c = arc_c_max;
3601 	arc_p = (arc_c >> 1);
3602 
3603 	/* limit meta-data to 1/4 of the arc capacity */
3604 	arc_meta_limit = arc_c_max / 4;
3605 
3606 	/* Allow the tunable to override if it is reasonable */
3607 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3608 		arc_meta_limit = zfs_arc_meta_limit;
3609 
3610 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3611 		arc_c_min = arc_meta_limit / 2;
3612 
3613 	if (zfs_arc_grow_retry > 0)
3614 		arc_grow_retry = zfs_arc_grow_retry;
3615 
3616 	if (zfs_arc_shrink_shift > 0)
3617 		arc_shrink_shift = zfs_arc_shrink_shift;
3618 
3619 	if (zfs_arc_p_min_shift > 0)
3620 		arc_p_min_shift = zfs_arc_p_min_shift;
3621 
3622 	/* if kmem_flags are set, lets try to use less memory */
3623 	if (kmem_debugging())
3624 		arc_c = arc_c / 2;
3625 	if (arc_c < arc_c_min)
3626 		arc_c = arc_c_min;
3627 
3628 	arc_anon = &ARC_anon;
3629 	arc_mru = &ARC_mru;
3630 	arc_mru_ghost = &ARC_mru_ghost;
3631 	arc_mfu = &ARC_mfu;
3632 	arc_mfu_ghost = &ARC_mfu_ghost;
3633 	arc_l2c_only = &ARC_l2c_only;
3634 	arc_size = 0;
3635 
3636 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3637 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3638 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3639 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3640 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3641 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3642 
3643 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3644 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3645 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3646 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3647 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3648 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3649 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3650 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3651 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3652 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3653 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3654 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3655 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3656 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3657 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3658 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3659 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3660 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3661 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3662 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3663 
3664 	buf_init();
3665 
3666 	arc_thread_exit = 0;
3667 	arc_eviction_list = NULL;
3668 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3669 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3670 
3671 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3672 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3673 
3674 	if (arc_ksp != NULL) {
3675 		arc_ksp->ks_data = &arc_stats;
3676 		kstat_install(arc_ksp);
3677 	}
3678 
3679 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3680 	    TS_RUN, minclsyspri);
3681 
3682 	arc_dead = FALSE;
3683 	arc_warm = B_FALSE;
3684 
3685 	if (zfs_write_limit_max == 0)
3686 		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3687 	else
3688 		zfs_write_limit_shift = 0;
3689 	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3690 }
3691 
3692 void
3693 arc_fini(void)
3694 {
3695 	mutex_enter(&arc_reclaim_thr_lock);
3696 	arc_thread_exit = 1;
3697 	while (arc_thread_exit != 0)
3698 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3699 	mutex_exit(&arc_reclaim_thr_lock);
3700 
3701 	arc_flush(NULL);
3702 
3703 	arc_dead = TRUE;
3704 
3705 	if (arc_ksp != NULL) {
3706 		kstat_delete(arc_ksp);
3707 		arc_ksp = NULL;
3708 	}
3709 
3710 	mutex_destroy(&arc_eviction_mtx);
3711 	mutex_destroy(&arc_reclaim_thr_lock);
3712 	cv_destroy(&arc_reclaim_thr_cv);
3713 
3714 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3715 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3716 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3717 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3718 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3719 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3720 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3721 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3722 
3723 	mutex_destroy(&arc_anon->arcs_mtx);
3724 	mutex_destroy(&arc_mru->arcs_mtx);
3725 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3726 	mutex_destroy(&arc_mfu->arcs_mtx);
3727 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3728 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3729 
3730 	mutex_destroy(&zfs_write_limit_lock);
3731 
3732 	buf_fini();
3733 
3734 	ASSERT(arc_loaned_bytes == 0);
3735 }
3736 
3737 /*
3738  * Level 2 ARC
3739  *
3740  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3741  * It uses dedicated storage devices to hold cached data, which are populated
3742  * using large infrequent writes.  The main role of this cache is to boost
3743  * the performance of random read workloads.  The intended L2ARC devices
3744  * include short-stroked disks, solid state disks, and other media with
3745  * substantially faster read latency than disk.
3746  *
3747  *                 +-----------------------+
3748  *                 |         ARC           |
3749  *                 +-----------------------+
3750  *                    |         ^     ^
3751  *                    |         |     |
3752  *      l2arc_feed_thread()    arc_read()
3753  *                    |         |     |
3754  *                    |  l2arc read   |
3755  *                    V         |     |
3756  *               +---------------+    |
3757  *               |     L2ARC     |    |
3758  *               +---------------+    |
3759  *                   |    ^           |
3760  *          l2arc_write() |           |
3761  *                   |    |           |
3762  *                   V    |           |
3763  *                 +-------+      +-------+
3764  *                 | vdev  |      | vdev  |
3765  *                 | cache |      | cache |
3766  *                 +-------+      +-------+
3767  *                 +=========+     .-----.
3768  *                 :  L2ARC  :    |-_____-|
3769  *                 : devices :    | Disks |
3770  *                 +=========+    `-_____-'
3771  *
3772  * Read requests are satisfied from the following sources, in order:
3773  *
3774  *	1) ARC
3775  *	2) vdev cache of L2ARC devices
3776  *	3) L2ARC devices
3777  *	4) vdev cache of disks
3778  *	5) disks
3779  *
3780  * Some L2ARC device types exhibit extremely slow write performance.
3781  * To accommodate for this there are some significant differences between
3782  * the L2ARC and traditional cache design:
3783  *
3784  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3785  * the ARC behave as usual, freeing buffers and placing headers on ghost
3786  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3787  * this would add inflated write latencies for all ARC memory pressure.
3788  *
3789  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3790  * It does this by periodically scanning buffers from the eviction-end of
3791  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3792  * not already there.  It scans until a headroom of buffers is satisfied,
3793  * which itself is a buffer for ARC eviction.  The thread that does this is
3794  * l2arc_feed_thread(), illustrated below; example sizes are included to
3795  * provide a better sense of ratio than this diagram:
3796  *
3797  *	       head -->                        tail
3798  *	        +---------------------+----------+
3799  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3800  *	        +---------------------+----------+   |   o L2ARC eligible
3801  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3802  *	        +---------------------+----------+   |
3803  *	             15.9 Gbytes      ^ 32 Mbytes    |
3804  *	                           headroom          |
3805  *	                                      l2arc_feed_thread()
3806  *	                                             |
3807  *	                 l2arc write hand <--[oooo]--'
3808  *	                         |           8 Mbyte
3809  *	                         |          write max
3810  *	                         V
3811  *		  +==============================+
3812  *	L2ARC dev |####|#|###|###|    |####| ... |
3813  *	          +==============================+
3814  *	                     32 Gbytes
3815  *
3816  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3817  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3818  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3819  * safe to say that this is an uncommon case, since buffers at the end of
3820  * the ARC lists have moved there due to inactivity.
3821  *
3822  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3823  * then the L2ARC simply misses copying some buffers.  This serves as a
3824  * pressure valve to prevent heavy read workloads from both stalling the ARC
3825  * with waits and clogging the L2ARC with writes.  This also helps prevent
3826  * the potential for the L2ARC to churn if it attempts to cache content too
3827  * quickly, such as during backups of the entire pool.
3828  *
3829  * 5. After system boot and before the ARC has filled main memory, there are
3830  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3831  * lists can remain mostly static.  Instead of searching from tail of these
3832  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3833  * for eligible buffers, greatly increasing its chance of finding them.
3834  *
3835  * The L2ARC device write speed is also boosted during this time so that
3836  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3837  * there are no L2ARC reads, and no fear of degrading read performance
3838  * through increased writes.
3839  *
3840  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3841  * the vdev queue can aggregate them into larger and fewer writes.  Each
3842  * device is written to in a rotor fashion, sweeping writes through
3843  * available space then repeating.
3844  *
3845  * 7. The L2ARC does not store dirty content.  It never needs to flush
3846  * write buffers back to disk based storage.
3847  *
3848  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3849  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3850  *
3851  * The performance of the L2ARC can be tweaked by a number of tunables, which
3852  * may be necessary for different workloads:
3853  *
3854  *	l2arc_write_max		max write bytes per interval
3855  *	l2arc_write_boost	extra write bytes during device warmup
3856  *	l2arc_noprefetch	skip caching prefetched buffers
3857  *	l2arc_headroom		number of max device writes to precache
3858  *	l2arc_feed_secs		seconds between L2ARC writing
3859  *
3860  * Tunables may be removed or added as future performance improvements are
3861  * integrated, and also may become zpool properties.
3862  *
3863  * There are three key functions that control how the L2ARC warms up:
3864  *
3865  *	l2arc_write_eligible()	check if a buffer is eligible to cache
3866  *	l2arc_write_size()	calculate how much to write
3867  *	l2arc_write_interval()	calculate sleep delay between writes
3868  *
3869  * These three functions determine what to write, how much, and how quickly
3870  * to send writes.
3871  */
3872 
3873 static boolean_t
3874 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3875 {
3876 	/*
3877 	 * A buffer is *not* eligible for the L2ARC if it:
3878 	 * 1. belongs to a different spa.
3879 	 * 2. is already cached on the L2ARC.
3880 	 * 3. has an I/O in progress (it may be an incomplete read).
3881 	 * 4. is flagged not eligible (zfs property).
3882 	 */
3883 	if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
3884 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3885 		return (B_FALSE);
3886 
3887 	return (B_TRUE);
3888 }
3889 
3890 static uint64_t
3891 l2arc_write_size(l2arc_dev_t *dev)
3892 {
3893 	uint64_t size;
3894 
3895 	size = dev->l2ad_write;
3896 
3897 	if (arc_warm == B_FALSE)
3898 		size += dev->l2ad_boost;
3899 
3900 	return (size);
3901 
3902 }
3903 
3904 static clock_t
3905 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3906 {
3907 	clock_t interval, next, now;
3908 
3909 	/*
3910 	 * If the ARC lists are busy, increase our write rate; if the
3911 	 * lists are stale, idle back.  This is achieved by checking
3912 	 * how much we previously wrote - if it was more than half of
3913 	 * what we wanted, schedule the next write much sooner.
3914 	 */
3915 	if (l2arc_feed_again && wrote > (wanted / 2))
3916 		interval = (hz * l2arc_feed_min_ms) / 1000;
3917 	else
3918 		interval = hz * l2arc_feed_secs;
3919 
3920 	now = ddi_get_lbolt();
3921 	next = MAX(now, MIN(now + interval, began + interval));
3922 
3923 	return (next);
3924 }
3925 
3926 static void
3927 l2arc_hdr_stat_add(void)
3928 {
3929 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3930 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3931 }
3932 
3933 static void
3934 l2arc_hdr_stat_remove(void)
3935 {
3936 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3937 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3938 }
3939 
3940 /*
3941  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3942  * If a device is returned, this also returns holding the spa config lock.
3943  */
3944 static l2arc_dev_t *
3945 l2arc_dev_get_next(void)
3946 {
3947 	l2arc_dev_t *first, *next = NULL;
3948 
3949 	/*
3950 	 * Lock out the removal of spas (spa_namespace_lock), then removal
3951 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
3952 	 * both locks will be dropped and a spa config lock held instead.
3953 	 */
3954 	mutex_enter(&spa_namespace_lock);
3955 	mutex_enter(&l2arc_dev_mtx);
3956 
3957 	/* if there are no vdevs, there is nothing to do */
3958 	if (l2arc_ndev == 0)
3959 		goto out;
3960 
3961 	first = NULL;
3962 	next = l2arc_dev_last;
3963 	do {
3964 		/* loop around the list looking for a non-faulted vdev */
3965 		if (next == NULL) {
3966 			next = list_head(l2arc_dev_list);
3967 		} else {
3968 			next = list_next(l2arc_dev_list, next);
3969 			if (next == NULL)
3970 				next = list_head(l2arc_dev_list);
3971 		}
3972 
3973 		/* if we have come back to the start, bail out */
3974 		if (first == NULL)
3975 			first = next;
3976 		else if (next == first)
3977 			break;
3978 
3979 	} while (vdev_is_dead(next->l2ad_vdev));
3980 
3981 	/* if we were unable to find any usable vdevs, return NULL */
3982 	if (vdev_is_dead(next->l2ad_vdev))
3983 		next = NULL;
3984 
3985 	l2arc_dev_last = next;
3986 
3987 out:
3988 	mutex_exit(&l2arc_dev_mtx);
3989 
3990 	/*
3991 	 * Grab the config lock to prevent the 'next' device from being
3992 	 * removed while we are writing to it.
3993 	 */
3994 	if (next != NULL)
3995 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3996 	mutex_exit(&spa_namespace_lock);
3997 
3998 	return (next);
3999 }
4000 
4001 /*
4002  * Free buffers that were tagged for destruction.
4003  */
4004 static void
4005 l2arc_do_free_on_write()
4006 {
4007 	list_t *buflist;
4008 	l2arc_data_free_t *df, *df_prev;
4009 
4010 	mutex_enter(&l2arc_free_on_write_mtx);
4011 	buflist = l2arc_free_on_write;
4012 
4013 	for (df = list_tail(buflist); df; df = df_prev) {
4014 		df_prev = list_prev(buflist, df);
4015 		ASSERT(df->l2df_data != NULL);
4016 		ASSERT(df->l2df_func != NULL);
4017 		df->l2df_func(df->l2df_data, df->l2df_size);
4018 		list_remove(buflist, df);
4019 		kmem_free(df, sizeof (l2arc_data_free_t));
4020 	}
4021 
4022 	mutex_exit(&l2arc_free_on_write_mtx);
4023 }
4024 
4025 /*
4026  * A write to a cache device has completed.  Update all headers to allow
4027  * reads from these buffers to begin.
4028  */
4029 static void
4030 l2arc_write_done(zio_t *zio)
4031 {
4032 	l2arc_write_callback_t *cb;
4033 	l2arc_dev_t *dev;
4034 	list_t *buflist;
4035 	arc_buf_hdr_t *head, *ab, *ab_prev;
4036 	l2arc_buf_hdr_t *abl2;
4037 	kmutex_t *hash_lock;
4038 
4039 	cb = zio->io_private;
4040 	ASSERT(cb != NULL);
4041 	dev = cb->l2wcb_dev;
4042 	ASSERT(dev != NULL);
4043 	head = cb->l2wcb_head;
4044 	ASSERT(head != NULL);
4045 	buflist = dev->l2ad_buflist;
4046 	ASSERT(buflist != NULL);
4047 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4048 	    l2arc_write_callback_t *, cb);
4049 
4050 	if (zio->io_error != 0)
4051 		ARCSTAT_BUMP(arcstat_l2_writes_error);
4052 
4053 	mutex_enter(&l2arc_buflist_mtx);
4054 
4055 	/*
4056 	 * All writes completed, or an error was hit.
4057 	 */
4058 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4059 		ab_prev = list_prev(buflist, ab);
4060 
4061 		hash_lock = HDR_LOCK(ab);
4062 		if (!mutex_tryenter(hash_lock)) {
4063 			/*
4064 			 * This buffer misses out.  It may be in a stage
4065 			 * of eviction.  Its ARC_L2_WRITING flag will be
4066 			 * left set, denying reads to this buffer.
4067 			 */
4068 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4069 			continue;
4070 		}
4071 
4072 		if (zio->io_error != 0) {
4073 			/*
4074 			 * Error - drop L2ARC entry.
4075 			 */
4076 			list_remove(buflist, ab);
4077 			abl2 = ab->b_l2hdr;
4078 			ab->b_l2hdr = NULL;
4079 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4080 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4081 		}
4082 
4083 		/*
4084 		 * Allow ARC to begin reads to this L2ARC entry.
4085 		 */
4086 		ab->b_flags &= ~ARC_L2_WRITING;
4087 
4088 		mutex_exit(hash_lock);
4089 	}
4090 
4091 	atomic_inc_64(&l2arc_writes_done);
4092 	list_remove(buflist, head);
4093 	kmem_cache_free(hdr_cache, head);
4094 	mutex_exit(&l2arc_buflist_mtx);
4095 
4096 	l2arc_do_free_on_write();
4097 
4098 	kmem_free(cb, sizeof (l2arc_write_callback_t));
4099 }
4100 
4101 /*
4102  * A read to a cache device completed.  Validate buffer contents before
4103  * handing over to the regular ARC routines.
4104  */
4105 static void
4106 l2arc_read_done(zio_t *zio)
4107 {
4108 	l2arc_read_callback_t *cb;
4109 	arc_buf_hdr_t *hdr;
4110 	arc_buf_t *buf;
4111 	kmutex_t *hash_lock;
4112 	int equal;
4113 
4114 	ASSERT(zio->io_vd != NULL);
4115 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4116 
4117 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4118 
4119 	cb = zio->io_private;
4120 	ASSERT(cb != NULL);
4121 	buf = cb->l2rcb_buf;
4122 	ASSERT(buf != NULL);
4123 
4124 	hash_lock = HDR_LOCK(buf->b_hdr);
4125 	mutex_enter(hash_lock);
4126 	hdr = buf->b_hdr;
4127 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4128 
4129 	/*
4130 	 * Check this survived the L2ARC journey.
4131 	 */
4132 	equal = arc_cksum_equal(buf);
4133 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4134 		mutex_exit(hash_lock);
4135 		zio->io_private = buf;
4136 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4137 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4138 		arc_read_done(zio);
4139 	} else {
4140 		mutex_exit(hash_lock);
4141 		/*
4142 		 * Buffer didn't survive caching.  Increment stats and
4143 		 * reissue to the original storage device.
4144 		 */
4145 		if (zio->io_error != 0) {
4146 			ARCSTAT_BUMP(arcstat_l2_io_error);
4147 		} else {
4148 			zio->io_error = SET_ERROR(EIO);
4149 		}
4150 		if (!equal)
4151 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4152 
4153 		/*
4154 		 * If there's no waiter, issue an async i/o to the primary
4155 		 * storage now.  If there *is* a waiter, the caller must
4156 		 * issue the i/o in a context where it's OK to block.
4157 		 */
4158 		if (zio->io_waiter == NULL) {
4159 			zio_t *pio = zio_unique_parent(zio);
4160 
4161 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4162 
4163 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4164 			    buf->b_data, zio->io_size, arc_read_done, buf,
4165 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4166 		}
4167 	}
4168 
4169 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4170 }
4171 
4172 /*
4173  * This is the list priority from which the L2ARC will search for pages to
4174  * cache.  This is used within loops (0..3) to cycle through lists in the
4175  * desired order.  This order can have a significant effect on cache
4176  * performance.
4177  *
4178  * Currently the metadata lists are hit first, MFU then MRU, followed by
4179  * the data lists.  This function returns a locked list, and also returns
4180  * the lock pointer.
4181  */
4182 static list_t *
4183 l2arc_list_locked(int list_num, kmutex_t **lock)
4184 {
4185 	list_t *list = NULL;
4186 
4187 	ASSERT(list_num >= 0 && list_num <= 3);
4188 
4189 	switch (list_num) {
4190 	case 0:
4191 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4192 		*lock = &arc_mfu->arcs_mtx;
4193 		break;
4194 	case 1:
4195 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4196 		*lock = &arc_mru->arcs_mtx;
4197 		break;
4198 	case 2:
4199 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4200 		*lock = &arc_mfu->arcs_mtx;
4201 		break;
4202 	case 3:
4203 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4204 		*lock = &arc_mru->arcs_mtx;
4205 		break;
4206 	}
4207 
4208 	ASSERT(!(MUTEX_HELD(*lock)));
4209 	mutex_enter(*lock);
4210 	return (list);
4211 }
4212 
4213 /*
4214  * Evict buffers from the device write hand to the distance specified in
4215  * bytes.  This distance may span populated buffers, it may span nothing.
4216  * This is clearing a region on the L2ARC device ready for writing.
4217  * If the 'all' boolean is set, every buffer is evicted.
4218  */
4219 static void
4220 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4221 {
4222 	list_t *buflist;
4223 	l2arc_buf_hdr_t *abl2;
4224 	arc_buf_hdr_t *ab, *ab_prev;
4225 	kmutex_t *hash_lock;
4226 	uint64_t taddr;
4227 
4228 	buflist = dev->l2ad_buflist;
4229 
4230 	if (buflist == NULL)
4231 		return;
4232 
4233 	if (!all && dev->l2ad_first) {
4234 		/*
4235 		 * This is the first sweep through the device.  There is
4236 		 * nothing to evict.
4237 		 */
4238 		return;
4239 	}
4240 
4241 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4242 		/*
4243 		 * When nearing the end of the device, evict to the end
4244 		 * before the device write hand jumps to the start.
4245 		 */
4246 		taddr = dev->l2ad_end;
4247 	} else {
4248 		taddr = dev->l2ad_hand + distance;
4249 	}
4250 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4251 	    uint64_t, taddr, boolean_t, all);
4252 
4253 top:
4254 	mutex_enter(&l2arc_buflist_mtx);
4255 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4256 		ab_prev = list_prev(buflist, ab);
4257 
4258 		hash_lock = HDR_LOCK(ab);
4259 		if (!mutex_tryenter(hash_lock)) {
4260 			/*
4261 			 * Missed the hash lock.  Retry.
4262 			 */
4263 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4264 			mutex_exit(&l2arc_buflist_mtx);
4265 			mutex_enter(hash_lock);
4266 			mutex_exit(hash_lock);
4267 			goto top;
4268 		}
4269 
4270 		if (HDR_L2_WRITE_HEAD(ab)) {
4271 			/*
4272 			 * We hit a write head node.  Leave it for
4273 			 * l2arc_write_done().
4274 			 */
4275 			list_remove(buflist, ab);
4276 			mutex_exit(hash_lock);
4277 			continue;
4278 		}
4279 
4280 		if (!all && ab->b_l2hdr != NULL &&
4281 		    (ab->b_l2hdr->b_daddr > taddr ||
4282 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4283 			/*
4284 			 * We've evicted to the target address,
4285 			 * or the end of the device.
4286 			 */
4287 			mutex_exit(hash_lock);
4288 			break;
4289 		}
4290 
4291 		if (HDR_FREE_IN_PROGRESS(ab)) {
4292 			/*
4293 			 * Already on the path to destruction.
4294 			 */
4295 			mutex_exit(hash_lock);
4296 			continue;
4297 		}
4298 
4299 		if (ab->b_state == arc_l2c_only) {
4300 			ASSERT(!HDR_L2_READING(ab));
4301 			/*
4302 			 * This doesn't exist in the ARC.  Destroy.
4303 			 * arc_hdr_destroy() will call list_remove()
4304 			 * and decrement arcstat_l2_size.
4305 			 */
4306 			arc_change_state(arc_anon, ab, hash_lock);
4307 			arc_hdr_destroy(ab);
4308 		} else {
4309 			/*
4310 			 * Invalidate issued or about to be issued
4311 			 * reads, since we may be about to write
4312 			 * over this location.
4313 			 */
4314 			if (HDR_L2_READING(ab)) {
4315 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4316 				ab->b_flags |= ARC_L2_EVICTED;
4317 			}
4318 
4319 			/*
4320 			 * Tell ARC this no longer exists in L2ARC.
4321 			 */
4322 			if (ab->b_l2hdr != NULL) {
4323 				abl2 = ab->b_l2hdr;
4324 				ab->b_l2hdr = NULL;
4325 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4326 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4327 			}
4328 			list_remove(buflist, ab);
4329 
4330 			/*
4331 			 * This may have been leftover after a
4332 			 * failed write.
4333 			 */
4334 			ab->b_flags &= ~ARC_L2_WRITING;
4335 		}
4336 		mutex_exit(hash_lock);
4337 	}
4338 	mutex_exit(&l2arc_buflist_mtx);
4339 
4340 	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4341 	dev->l2ad_evict = taddr;
4342 }
4343 
4344 /*
4345  * Find and write ARC buffers to the L2ARC device.
4346  *
4347  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4348  * for reading until they have completed writing.
4349  */
4350 static uint64_t
4351 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4352 {
4353 	arc_buf_hdr_t *ab, *ab_prev, *head;
4354 	l2arc_buf_hdr_t *hdrl2;
4355 	list_t *list;
4356 	uint64_t passed_sz, write_sz, buf_sz, headroom;
4357 	void *buf_data;
4358 	kmutex_t *hash_lock, *list_lock;
4359 	boolean_t have_lock, full;
4360 	l2arc_write_callback_t *cb;
4361 	zio_t *pio, *wzio;
4362 	uint64_t guid = spa_load_guid(spa);
4363 
4364 	ASSERT(dev->l2ad_vdev != NULL);
4365 
4366 	pio = NULL;
4367 	write_sz = 0;
4368 	full = B_FALSE;
4369 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4370 	head->b_flags |= ARC_L2_WRITE_HEAD;
4371 
4372 	/*
4373 	 * Copy buffers for L2ARC writing.
4374 	 */
4375 	mutex_enter(&l2arc_buflist_mtx);
4376 	for (int try = 0; try <= 3; try++) {
4377 		list = l2arc_list_locked(try, &list_lock);
4378 		passed_sz = 0;
4379 
4380 		/*
4381 		 * L2ARC fast warmup.
4382 		 *
4383 		 * Until the ARC is warm and starts to evict, read from the
4384 		 * head of the ARC lists rather than the tail.
4385 		 */
4386 		headroom = target_sz * l2arc_headroom;
4387 		if (arc_warm == B_FALSE)
4388 			ab = list_head(list);
4389 		else
4390 			ab = list_tail(list);
4391 
4392 		for (; ab; ab = ab_prev) {
4393 			if (arc_warm == B_FALSE)
4394 				ab_prev = list_next(list, ab);
4395 			else
4396 				ab_prev = list_prev(list, ab);
4397 
4398 			hash_lock = HDR_LOCK(ab);
4399 			have_lock = MUTEX_HELD(hash_lock);
4400 			if (!have_lock && !mutex_tryenter(hash_lock)) {
4401 				/*
4402 				 * Skip this buffer rather than waiting.
4403 				 */
4404 				continue;
4405 			}
4406 
4407 			passed_sz += ab->b_size;
4408 			if (passed_sz > headroom) {
4409 				/*
4410 				 * Searched too far.
4411 				 */
4412 				mutex_exit(hash_lock);
4413 				break;
4414 			}
4415 
4416 			if (!l2arc_write_eligible(guid, ab)) {
4417 				mutex_exit(hash_lock);
4418 				continue;
4419 			}
4420 
4421 			if ((write_sz + ab->b_size) > target_sz) {
4422 				full = B_TRUE;
4423 				mutex_exit(hash_lock);
4424 				break;
4425 			}
4426 
4427 			if (pio == NULL) {
4428 				/*
4429 				 * Insert a dummy header on the buflist so
4430 				 * l2arc_write_done() can find where the
4431 				 * write buffers begin without searching.
4432 				 */
4433 				list_insert_head(dev->l2ad_buflist, head);
4434 
4435 				cb = kmem_alloc(
4436 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4437 				cb->l2wcb_dev = dev;
4438 				cb->l2wcb_head = head;
4439 				pio = zio_root(spa, l2arc_write_done, cb,
4440 				    ZIO_FLAG_CANFAIL);
4441 			}
4442 
4443 			/*
4444 			 * Create and add a new L2ARC header.
4445 			 */
4446 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4447 			hdrl2->b_dev = dev;
4448 			hdrl2->b_daddr = dev->l2ad_hand;
4449 
4450 			ab->b_flags |= ARC_L2_WRITING;
4451 			ab->b_l2hdr = hdrl2;
4452 			list_insert_head(dev->l2ad_buflist, ab);
4453 			buf_data = ab->b_buf->b_data;
4454 			buf_sz = ab->b_size;
4455 
4456 			/*
4457 			 * Compute and store the buffer cksum before
4458 			 * writing.  On debug the cksum is verified first.
4459 			 */
4460 			arc_cksum_verify(ab->b_buf);
4461 			arc_cksum_compute(ab->b_buf, B_TRUE);
4462 
4463 			mutex_exit(hash_lock);
4464 
4465 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4466 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4467 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4468 			    ZIO_FLAG_CANFAIL, B_FALSE);
4469 
4470 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4471 			    zio_t *, wzio);
4472 			(void) zio_nowait(wzio);
4473 
4474 			/*
4475 			 * Keep the clock hand suitably device-aligned.
4476 			 */
4477 			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4478 
4479 			write_sz += buf_sz;
4480 			dev->l2ad_hand += buf_sz;
4481 		}
4482 
4483 		mutex_exit(list_lock);
4484 
4485 		if (full == B_TRUE)
4486 			break;
4487 	}
4488 	mutex_exit(&l2arc_buflist_mtx);
4489 
4490 	if (pio == NULL) {
4491 		ASSERT0(write_sz);
4492 		kmem_cache_free(hdr_cache, head);
4493 		return (0);
4494 	}
4495 
4496 	ASSERT3U(write_sz, <=, target_sz);
4497 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4498 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4499 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4500 	vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4501 
4502 	/*
4503 	 * Bump device hand to the device start if it is approaching the end.
4504 	 * l2arc_evict() will already have evicted ahead for this case.
4505 	 */
4506 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4507 		vdev_space_update(dev->l2ad_vdev,
4508 		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
4509 		dev->l2ad_hand = dev->l2ad_start;
4510 		dev->l2ad_evict = dev->l2ad_start;
4511 		dev->l2ad_first = B_FALSE;
4512 	}
4513 
4514 	dev->l2ad_writing = B_TRUE;
4515 	(void) zio_wait(pio);
4516 	dev->l2ad_writing = B_FALSE;
4517 
4518 	return (write_sz);
4519 }
4520 
4521 /*
4522  * This thread feeds the L2ARC at regular intervals.  This is the beating
4523  * heart of the L2ARC.
4524  */
4525 static void
4526 l2arc_feed_thread(void)
4527 {
4528 	callb_cpr_t cpr;
4529 	l2arc_dev_t *dev;
4530 	spa_t *spa;
4531 	uint64_t size, wrote;
4532 	clock_t begin, next = ddi_get_lbolt();
4533 
4534 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4535 
4536 	mutex_enter(&l2arc_feed_thr_lock);
4537 
4538 	while (l2arc_thread_exit == 0) {
4539 		CALLB_CPR_SAFE_BEGIN(&cpr);
4540 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4541 		    next);
4542 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4543 		next = ddi_get_lbolt() + hz;
4544 
4545 		/*
4546 		 * Quick check for L2ARC devices.
4547 		 */
4548 		mutex_enter(&l2arc_dev_mtx);
4549 		if (l2arc_ndev == 0) {
4550 			mutex_exit(&l2arc_dev_mtx);
4551 			continue;
4552 		}
4553 		mutex_exit(&l2arc_dev_mtx);
4554 		begin = ddi_get_lbolt();
4555 
4556 		/*
4557 		 * This selects the next l2arc device to write to, and in
4558 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4559 		 * will return NULL if there are now no l2arc devices or if
4560 		 * they are all faulted.
4561 		 *
4562 		 * If a device is returned, its spa's config lock is also
4563 		 * held to prevent device removal.  l2arc_dev_get_next()
4564 		 * will grab and release l2arc_dev_mtx.
4565 		 */
4566 		if ((dev = l2arc_dev_get_next()) == NULL)
4567 			continue;
4568 
4569 		spa = dev->l2ad_spa;
4570 		ASSERT(spa != NULL);
4571 
4572 		/*
4573 		 * If the pool is read-only then force the feed thread to
4574 		 * sleep a little longer.
4575 		 */
4576 		if (!spa_writeable(spa)) {
4577 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4578 			spa_config_exit(spa, SCL_L2ARC, dev);
4579 			continue;
4580 		}
4581 
4582 		/*
4583 		 * Avoid contributing to memory pressure.
4584 		 */
4585 		if (arc_reclaim_needed()) {
4586 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4587 			spa_config_exit(spa, SCL_L2ARC, dev);
4588 			continue;
4589 		}
4590 
4591 		ARCSTAT_BUMP(arcstat_l2_feeds);
4592 
4593 		size = l2arc_write_size(dev);
4594 
4595 		/*
4596 		 * Evict L2ARC buffers that will be overwritten.
4597 		 */
4598 		l2arc_evict(dev, size, B_FALSE);
4599 
4600 		/*
4601 		 * Write ARC buffers.
4602 		 */
4603 		wrote = l2arc_write_buffers(spa, dev, size);
4604 
4605 		/*
4606 		 * Calculate interval between writes.
4607 		 */
4608 		next = l2arc_write_interval(begin, size, wrote);
4609 		spa_config_exit(spa, SCL_L2ARC, dev);
4610 	}
4611 
4612 	l2arc_thread_exit = 0;
4613 	cv_broadcast(&l2arc_feed_thr_cv);
4614 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4615 	thread_exit();
4616 }
4617 
4618 boolean_t
4619 l2arc_vdev_present(vdev_t *vd)
4620 {
4621 	l2arc_dev_t *dev;
4622 
4623 	mutex_enter(&l2arc_dev_mtx);
4624 	for (dev = list_head(l2arc_dev_list); dev != NULL;
4625 	    dev = list_next(l2arc_dev_list, dev)) {
4626 		if (dev->l2ad_vdev == vd)
4627 			break;
4628 	}
4629 	mutex_exit(&l2arc_dev_mtx);
4630 
4631 	return (dev != NULL);
4632 }
4633 
4634 /*
4635  * Add a vdev for use by the L2ARC.  By this point the spa has already
4636  * validated the vdev and opened it.
4637  */
4638 void
4639 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4640 {
4641 	l2arc_dev_t *adddev;
4642 
4643 	ASSERT(!l2arc_vdev_present(vd));
4644 
4645 	/*
4646 	 * Create a new l2arc device entry.
4647 	 */
4648 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4649 	adddev->l2ad_spa = spa;
4650 	adddev->l2ad_vdev = vd;
4651 	adddev->l2ad_write = l2arc_write_max;
4652 	adddev->l2ad_boost = l2arc_write_boost;
4653 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4654 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4655 	adddev->l2ad_hand = adddev->l2ad_start;
4656 	adddev->l2ad_evict = adddev->l2ad_start;
4657 	adddev->l2ad_first = B_TRUE;
4658 	adddev->l2ad_writing = B_FALSE;
4659 	ASSERT3U(adddev->l2ad_write, >, 0);
4660 
4661 	/*
4662 	 * This is a list of all ARC buffers that are still valid on the
4663 	 * device.
4664 	 */
4665 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4666 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4667 	    offsetof(arc_buf_hdr_t, b_l2node));
4668 
4669 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
4670 
4671 	/*
4672 	 * Add device to global list
4673 	 */
4674 	mutex_enter(&l2arc_dev_mtx);
4675 	list_insert_head(l2arc_dev_list, adddev);
4676 	atomic_inc_64(&l2arc_ndev);
4677 	mutex_exit(&l2arc_dev_mtx);
4678 }
4679 
4680 /*
4681  * Remove a vdev from the L2ARC.
4682  */
4683 void
4684 l2arc_remove_vdev(vdev_t *vd)
4685 {
4686 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4687 
4688 	/*
4689 	 * Find the device by vdev
4690 	 */
4691 	mutex_enter(&l2arc_dev_mtx);
4692 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4693 		nextdev = list_next(l2arc_dev_list, dev);
4694 		if (vd == dev->l2ad_vdev) {
4695 			remdev = dev;
4696 			break;
4697 		}
4698 	}
4699 	ASSERT(remdev != NULL);
4700 
4701 	/*
4702 	 * Remove device from global list
4703 	 */
4704 	list_remove(l2arc_dev_list, remdev);
4705 	l2arc_dev_last = NULL;		/* may have been invalidated */
4706 	atomic_dec_64(&l2arc_ndev);
4707 	mutex_exit(&l2arc_dev_mtx);
4708 
4709 	/*
4710 	 * Clear all buflists and ARC references.  L2ARC device flush.
4711 	 */
4712 	l2arc_evict(remdev, 0, B_TRUE);
4713 	list_destroy(remdev->l2ad_buflist);
4714 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4715 	kmem_free(remdev, sizeof (l2arc_dev_t));
4716 }
4717 
4718 void
4719 l2arc_init(void)
4720 {
4721 	l2arc_thread_exit = 0;
4722 	l2arc_ndev = 0;
4723 	l2arc_writes_sent = 0;
4724 	l2arc_writes_done = 0;
4725 
4726 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4727 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4728 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4729 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4730 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4731 
4732 	l2arc_dev_list = &L2ARC_dev_list;
4733 	l2arc_free_on_write = &L2ARC_free_on_write;
4734 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4735 	    offsetof(l2arc_dev_t, l2ad_node));
4736 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4737 	    offsetof(l2arc_data_free_t, l2df_list_node));
4738 }
4739 
4740 void
4741 l2arc_fini(void)
4742 {
4743 	/*
4744 	 * This is called from dmu_fini(), which is called from spa_fini();
4745 	 * Because of this, we can assume that all l2arc devices have
4746 	 * already been removed when the pools themselves were removed.
4747 	 */
4748 
4749 	l2arc_do_free_on_write();
4750 
4751 	mutex_destroy(&l2arc_feed_thr_lock);
4752 	cv_destroy(&l2arc_feed_thr_cv);
4753 	mutex_destroy(&l2arc_dev_mtx);
4754 	mutex_destroy(&l2arc_buflist_mtx);
4755 	mutex_destroy(&l2arc_free_on_write_mtx);
4756 
4757 	list_destroy(l2arc_dev_list);
4758 	list_destroy(l2arc_free_on_write);
4759 }
4760 
4761 void
4762 l2arc_start(void)
4763 {
4764 	if (!(spa_mode_global & FWRITE))
4765 		return;
4766 
4767 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4768 	    TS_RUN, minclsyspri);
4769 }
4770 
4771 void
4772 l2arc_stop(void)
4773 {
4774 	if (!(spa_mode_global & FWRITE))
4775 		return;
4776 
4777 	mutex_enter(&l2arc_feed_thr_lock);
4778 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4779 	l2arc_thread_exit = 1;
4780 	while (l2arc_thread_exit != 0)
4781 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4782 	mutex_exit(&l2arc_feed_thr_lock);
4783 }
4784