1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/param.h> 44 #include <sys/t_lock.h> 45 #include <sys/errno.h> 46 #include <sys/cred.h> 47 #include <sys/user.h> 48 #include <sys/uio.h> 49 #include <sys/file.h> 50 #include <sys/pathname.h> 51 #include <sys/vfs.h> 52 #include <sys/vfs_opreg.h> 53 #include <sys/vnode.h> 54 #include <sys/rwstlock.h> 55 #include <sys/fem.h> 56 #include <sys/stat.h> 57 #include <sys/mode.h> 58 #include <sys/conf.h> 59 #include <sys/sysmacros.h> 60 #include <sys/cmn_err.h> 61 #include <sys/systm.h> 62 #include <sys/kmem.h> 63 #include <sys/debug.h> 64 #include <c2/audit.h> 65 #include <sys/acl.h> 66 #include <sys/nbmlock.h> 67 #include <sys/fcntl.h> 68 #include <fs/fs_subr.h> 69 70 /* Determine if this vnode is a file that is read-only */ 71 #define ISROFILE(vp) \ 72 ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \ 73 (vp)->v_type != VFIFO && vn_is_readonly(vp)) 74 75 /* Tunable via /etc/system; used only by admin/install */ 76 int nfs_global_client_only; 77 78 /* 79 * Array of vopstats_t for per-FS-type vopstats. This array has the same 80 * number of entries as and parallel to the vfssw table. (Arguably, it could 81 * be part of the vfssw table.) Once it's initialized, it's accessed using 82 * the same fstype index that is used to index into the vfssw table. 83 */ 84 vopstats_t **vopstats_fstype; 85 86 /* vopstats initialization template used for fast initialization via bcopy() */ 87 static vopstats_t *vs_templatep; 88 89 /* Kmem cache handle for vsk_anchor_t allocations */ 90 kmem_cache_t *vsk_anchor_cache; 91 92 /* 93 * Root of AVL tree for the kstats associated with vopstats. Lock protects 94 * updates to vsktat_tree. 95 */ 96 avl_tree_t vskstat_tree; 97 kmutex_t vskstat_tree_lock; 98 99 /* Global variable which enables/disables the vopstats collection */ 100 int vopstats_enabled = 1; 101 102 /* 103 * The following is the common set of actions needed to update the 104 * vopstats structure from a vnode op. Both VOPSTATS_UPDATE() and 105 * VOPSTATS_UPDATE_IO() do almost the same thing, except for the 106 * recording of the bytes transferred. Since the code is similar 107 * but small, it is nearly a duplicate. Consequently any changes 108 * to one may need to be reflected in the other. 109 * Rundown of the variables: 110 * vp - Pointer to the vnode 111 * counter - Partial name structure member to update in vopstats for counts 112 * bytecounter - Partial name structure member to update in vopstats for bytes 113 * bytesval - Value to update in vopstats for bytes 114 * fstype - Index into vsanchor_fstype[], same as index into vfssw[] 115 * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i]) 116 */ 117 118 #define VOPSTATS_UPDATE(vp, counter) { \ 119 vfs_t *vfsp = (vp)->v_vfsp; \ 120 if (vfsp && vfsp->vfs_implp && \ 121 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 122 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 123 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 124 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 125 size_t, uint64_t *); \ 126 __dtrace_probe___fsinfo_##counter(vp, 0, stataddr); \ 127 (*stataddr)++; \ 128 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 129 vsp->n##counter.value.ui64++; \ 130 } \ 131 } \ 132 } 133 134 #define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) { \ 135 vfs_t *vfsp = (vp)->v_vfsp; \ 136 if (vfsp && vfsp->vfs_implp && \ 137 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 138 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 139 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 140 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 141 size_t, uint64_t *); \ 142 __dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \ 143 (*stataddr)++; \ 144 vsp->bytecounter.value.ui64 += bytesval; \ 145 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 146 vsp->n##counter.value.ui64++; \ 147 vsp->bytecounter.value.ui64 += bytesval; \ 148 } \ 149 } \ 150 } 151 152 /* 153 * If the filesystem does not support XIDs map credential 154 * If the vfsp is NULL, perhaps we should also map? 155 */ 156 #define VOPXID_MAP_CR(vp, cr) { \ 157 vfs_t *vfsp = (vp)->v_vfsp; \ 158 if (vfsp != NULL && (vfsp->vfs_flag & VFS_XID) == 0) \ 159 cr = crgetmapped(cr); \ 160 } 161 162 /* 163 * Convert stat(2) formats to vnode types and vice versa. (Knows about 164 * numerical order of S_IFMT and vnode types.) 165 */ 166 enum vtype iftovt_tab[] = { 167 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 168 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 169 }; 170 171 ushort_t vttoif_tab[] = { 172 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO, 173 S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0 174 }; 175 176 /* 177 * The system vnode cache. 178 */ 179 180 kmem_cache_t *vn_cache; 181 182 183 /* 184 * Vnode operations vector. 185 */ 186 187 static const fs_operation_trans_def_t vn_ops_table[] = { 188 VOPNAME_OPEN, offsetof(struct vnodeops, vop_open), 189 fs_nosys, fs_nosys, 190 191 VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close), 192 fs_nosys, fs_nosys, 193 194 VOPNAME_READ, offsetof(struct vnodeops, vop_read), 195 fs_nosys, fs_nosys, 196 197 VOPNAME_WRITE, offsetof(struct vnodeops, vop_write), 198 fs_nosys, fs_nosys, 199 200 VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl), 201 fs_nosys, fs_nosys, 202 203 VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl), 204 fs_setfl, fs_nosys, 205 206 VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr), 207 fs_nosys, fs_nosys, 208 209 VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr), 210 fs_nosys, fs_nosys, 211 212 VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access), 213 fs_nosys, fs_nosys, 214 215 VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup), 216 fs_nosys, fs_nosys, 217 218 VOPNAME_CREATE, offsetof(struct vnodeops, vop_create), 219 fs_nosys, fs_nosys, 220 221 VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove), 222 fs_nosys, fs_nosys, 223 224 VOPNAME_LINK, offsetof(struct vnodeops, vop_link), 225 fs_nosys, fs_nosys, 226 227 VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename), 228 fs_nosys, fs_nosys, 229 230 VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir), 231 fs_nosys, fs_nosys, 232 233 VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir), 234 fs_nosys, fs_nosys, 235 236 VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir), 237 fs_nosys, fs_nosys, 238 239 VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink), 240 fs_nosys, fs_nosys, 241 242 VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink), 243 fs_nosys, fs_nosys, 244 245 VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync), 246 fs_nosys, fs_nosys, 247 248 VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive), 249 fs_nosys, fs_nosys, 250 251 VOPNAME_FID, offsetof(struct vnodeops, vop_fid), 252 fs_nosys, fs_nosys, 253 254 VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock), 255 fs_rwlock, fs_rwlock, 256 257 VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock), 258 (fs_generic_func_p) fs_rwunlock, 259 (fs_generic_func_p) fs_rwunlock, /* no errors allowed */ 260 261 VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek), 262 fs_nosys, fs_nosys, 263 264 VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp), 265 fs_cmp, fs_cmp, /* no errors allowed */ 266 267 VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock), 268 fs_frlock, fs_nosys, 269 270 VOPNAME_SPACE, offsetof(struct vnodeops, vop_space), 271 fs_nosys, fs_nosys, 272 273 VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp), 274 fs_nosys, fs_nosys, 275 276 VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage), 277 fs_nosys, fs_nosys, 278 279 VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage), 280 fs_nosys, fs_nosys, 281 282 VOPNAME_MAP, offsetof(struct vnodeops, vop_map), 283 (fs_generic_func_p) fs_nosys_map, 284 (fs_generic_func_p) fs_nosys_map, 285 286 VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap), 287 (fs_generic_func_p) fs_nosys_addmap, 288 (fs_generic_func_p) fs_nosys_addmap, 289 290 VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap), 291 fs_nosys, fs_nosys, 292 293 VOPNAME_POLL, offsetof(struct vnodeops, vop_poll), 294 (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll, 295 296 VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump), 297 fs_nosys, fs_nosys, 298 299 VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf), 300 fs_pathconf, fs_nosys, 301 302 VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio), 303 fs_nosys, fs_nosys, 304 305 VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl), 306 fs_nosys, fs_nosys, 307 308 VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose), 309 (fs_generic_func_p) fs_dispose, 310 (fs_generic_func_p) fs_nodispose, 311 312 VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr), 313 fs_nosys, fs_nosys, 314 315 VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr), 316 fs_fab_acl, fs_nosys, 317 318 VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock), 319 fs_shrlock, fs_nosys, 320 321 VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent), 322 (fs_generic_func_p) fs_vnevent_nosupport, 323 (fs_generic_func_p) fs_vnevent_nosupport, 324 325 NULL, 0, NULL, NULL 326 }; 327 328 /* 329 * Used by the AVL routines to compare two vsk_anchor_t structures in the tree. 330 * We use the f_fsid reported by VFS_STATVFS() since we use that for the 331 * kstat name. 332 */ 333 static int 334 vska_compar(const void *n1, const void *n2) 335 { 336 int ret; 337 ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid; 338 ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid; 339 340 if (p1 < p2) { 341 ret = -1; 342 } else if (p1 > p2) { 343 ret = 1; 344 } else { 345 ret = 0; 346 } 347 348 return (ret); 349 } 350 351 /* 352 * Used to create a single template which will be bcopy()ed to a newly 353 * allocated vsanchor_combo_t structure in new_vsanchor(), below. 354 */ 355 static vopstats_t * 356 create_vopstats_template() 357 { 358 vopstats_t *vsp; 359 360 vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP); 361 bzero(vsp, sizeof (*vsp)); /* Start fresh */ 362 363 /* VOP_OPEN */ 364 kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64); 365 /* VOP_CLOSE */ 366 kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64); 367 /* VOP_READ I/O */ 368 kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64); 369 kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64); 370 /* VOP_WRITE I/O */ 371 kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64); 372 kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64); 373 /* VOP_IOCTL */ 374 kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64); 375 /* VOP_SETFL */ 376 kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64); 377 /* VOP_GETATTR */ 378 kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64); 379 /* VOP_SETATTR */ 380 kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64); 381 /* VOP_ACCESS */ 382 kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64); 383 /* VOP_LOOKUP */ 384 kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64); 385 /* VOP_CREATE */ 386 kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64); 387 /* VOP_REMOVE */ 388 kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64); 389 /* VOP_LINK */ 390 kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64); 391 /* VOP_RENAME */ 392 kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64); 393 /* VOP_MKDIR */ 394 kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64); 395 /* VOP_RMDIR */ 396 kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64); 397 /* VOP_READDIR I/O */ 398 kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64); 399 kstat_named_init(&vsp->readdir_bytes, "readdir_bytes", 400 KSTAT_DATA_UINT64); 401 /* VOP_SYMLINK */ 402 kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64); 403 /* VOP_READLINK */ 404 kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64); 405 /* VOP_FSYNC */ 406 kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64); 407 /* VOP_INACTIVE */ 408 kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64); 409 /* VOP_FID */ 410 kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64); 411 /* VOP_RWLOCK */ 412 kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64); 413 /* VOP_RWUNLOCK */ 414 kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64); 415 /* VOP_SEEK */ 416 kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64); 417 /* VOP_CMP */ 418 kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64); 419 /* VOP_FRLOCK */ 420 kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64); 421 /* VOP_SPACE */ 422 kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64); 423 /* VOP_REALVP */ 424 kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64); 425 /* VOP_GETPAGE */ 426 kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64); 427 /* VOP_PUTPAGE */ 428 kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64); 429 /* VOP_MAP */ 430 kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64); 431 /* VOP_ADDMAP */ 432 kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64); 433 /* VOP_DELMAP */ 434 kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64); 435 /* VOP_POLL */ 436 kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64); 437 /* VOP_DUMP */ 438 kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64); 439 /* VOP_PATHCONF */ 440 kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64); 441 /* VOP_PAGEIO */ 442 kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64); 443 /* VOP_DUMPCTL */ 444 kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64); 445 /* VOP_DISPOSE */ 446 kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64); 447 /* VOP_SETSECATTR */ 448 kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64); 449 /* VOP_GETSECATTR */ 450 kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64); 451 /* VOP_SHRLOCK */ 452 kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64); 453 /* VOP_VNEVENT */ 454 kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64); 455 456 return (vsp); 457 } 458 459 /* 460 * Creates a kstat structure associated with a vopstats structure. 461 */ 462 kstat_t * 463 new_vskstat(char *ksname, vopstats_t *vsp) 464 { 465 kstat_t *ksp; 466 467 if (!vopstats_enabled) { 468 return (NULL); 469 } 470 471 ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED, 472 sizeof (vopstats_t)/sizeof (kstat_named_t), 473 KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE); 474 if (ksp) { 475 ksp->ks_data = vsp; 476 kstat_install(ksp); 477 } 478 479 return (ksp); 480 } 481 482 /* 483 * Called from vfsinit() to initialize the support mechanisms for vopstats 484 */ 485 void 486 vopstats_startup() 487 { 488 if (!vopstats_enabled) 489 return; 490 491 /* 492 * Creates the AVL tree which holds per-vfs vopstat anchors. This 493 * is necessary since we need to check if a kstat exists before we 494 * attempt to create it. Also, initialize its lock. 495 */ 496 avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t), 497 offsetof(vsk_anchor_t, vsk_node)); 498 mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL); 499 500 vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache", 501 sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL, 502 NULL, NULL, 0); 503 504 /* 505 * Set up the array of pointers for the vopstats-by-FS-type. 506 * The entries will be allocated/initialized as each file system 507 * goes through modload/mod_installfs. 508 */ 509 vopstats_fstype = (vopstats_t **)kmem_zalloc( 510 (sizeof (vopstats_t *) * nfstype), KM_SLEEP); 511 512 /* Set up the global vopstats initialization template */ 513 vs_templatep = create_vopstats_template(); 514 } 515 516 /* 517 * We need to have the all of the counters zeroed. 518 * The initialization of the vopstats_t includes on the order of 519 * 50 calls to kstat_named_init(). Rather that do that on every call, 520 * we do it once in a template (vs_templatep) then bcopy it over. 521 */ 522 void 523 initialize_vopstats(vopstats_t *vsp) 524 { 525 if (vsp == NULL) 526 return; 527 528 bcopy(vs_templatep, vsp, sizeof (vopstats_t)); 529 } 530 531 /* 532 * If possible, determine which vopstats by fstype to use and 533 * return a pointer to the caller. 534 */ 535 vopstats_t * 536 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp) 537 { 538 int fstype = 0; /* Index into vfssw[] */ 539 vopstats_t *vsp = NULL; 540 541 if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 || 542 !vopstats_enabled) 543 return (NULL); 544 /* 545 * Set up the fstype. We go to so much trouble because all versions 546 * of NFS use the same fstype in their vfs even though they have 547 * distinct entries in the vfssw[] table. 548 * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry. 549 */ 550 if (vswp) { 551 fstype = vswp - vfssw; /* Gets us the index */ 552 } else { 553 fstype = vfsp->vfs_fstype; 554 } 555 556 /* 557 * Point to the per-fstype vopstats. The only valid values are 558 * non-zero positive values less than the number of vfssw[] table 559 * entries. 560 */ 561 if (fstype > 0 && fstype < nfstype) { 562 vsp = vopstats_fstype[fstype]; 563 } 564 565 return (vsp); 566 } 567 568 /* 569 * Generate a kstat name, create the kstat structure, and allocate a 570 * vsk_anchor_t to hold it together. Return the pointer to the vsk_anchor_t 571 * to the caller. This must only be called from a mount. 572 */ 573 vsk_anchor_t * 574 get_vskstat_anchor(vfs_t *vfsp) 575 { 576 char kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */ 577 statvfs64_t statvfsbuf; /* Needed to find f_fsid */ 578 vsk_anchor_t *vskp = NULL; /* vfs <--> kstat anchor */ 579 kstat_t *ksp; /* Ptr to new kstat */ 580 avl_index_t where; /* Location in the AVL tree */ 581 582 if (vfsp == NULL || vfsp->vfs_implp == NULL || 583 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 584 return (NULL); 585 586 /* Need to get the fsid to build a kstat name */ 587 if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) { 588 /* Create a name for our kstats based on fsid */ 589 (void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx", 590 VOPSTATS_STR, statvfsbuf.f_fsid); 591 592 /* Allocate and initialize the vsk_anchor_t */ 593 vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP); 594 bzero(vskp, sizeof (*vskp)); 595 vskp->vsk_fsid = statvfsbuf.f_fsid; 596 597 mutex_enter(&vskstat_tree_lock); 598 if (avl_find(&vskstat_tree, vskp, &where) == NULL) { 599 avl_insert(&vskstat_tree, vskp, where); 600 mutex_exit(&vskstat_tree_lock); 601 602 /* 603 * Now that we've got the anchor in the AVL 604 * tree, we can create the kstat. 605 */ 606 ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats); 607 if (ksp) { 608 vskp->vsk_ksp = ksp; 609 } 610 } else { 611 /* Oops, found one! Release memory and lock. */ 612 mutex_exit(&vskstat_tree_lock); 613 kmem_cache_free(vsk_anchor_cache, vskp); 614 vskp = NULL; 615 } 616 } 617 return (vskp); 618 } 619 620 /* 621 * We're in the process of tearing down the vfs and need to cleanup 622 * the data structures associated with the vopstats. Must only be called 623 * from dounmount(). 624 */ 625 void 626 teardown_vopstats(vfs_t *vfsp) 627 { 628 vsk_anchor_t *vskap; 629 avl_index_t where; 630 631 if (vfsp == NULL || vfsp->vfs_implp == NULL || 632 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 633 return; 634 635 /* This is a safe check since VFS_STATS must be set (see above) */ 636 if ((vskap = vfsp->vfs_vskap) == NULL) 637 return; 638 639 /* Whack the pointer right away */ 640 vfsp->vfs_vskap = NULL; 641 642 /* Lock the tree, remove the node, and delete the kstat */ 643 mutex_enter(&vskstat_tree_lock); 644 if (avl_find(&vskstat_tree, vskap, &where)) { 645 avl_remove(&vskstat_tree, vskap); 646 } 647 648 if (vskap->vsk_ksp) { 649 kstat_delete(vskap->vsk_ksp); 650 } 651 mutex_exit(&vskstat_tree_lock); 652 653 kmem_cache_free(vsk_anchor_cache, vskap); 654 } 655 656 /* 657 * Read or write a vnode. Called from kernel code. 658 */ 659 int 660 vn_rdwr( 661 enum uio_rw rw, 662 struct vnode *vp, 663 caddr_t base, 664 ssize_t len, 665 offset_t offset, 666 enum uio_seg seg, 667 int ioflag, 668 rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */ 669 cred_t *cr, 670 ssize_t *residp) 671 { 672 struct uio uio; 673 struct iovec iov; 674 int error; 675 int in_crit = 0; 676 677 if (rw == UIO_WRITE && ISROFILE(vp)) 678 return (EROFS); 679 680 if (len < 0) 681 return (EIO); 682 683 VOPXID_MAP_CR(vp, cr); 684 685 iov.iov_base = base; 686 iov.iov_len = len; 687 uio.uio_iov = &iov; 688 uio.uio_iovcnt = 1; 689 uio.uio_loffset = offset; 690 uio.uio_segflg = (short)seg; 691 uio.uio_resid = len; 692 uio.uio_llimit = ulimit; 693 694 /* 695 * We have to enter the critical region before calling VOP_RWLOCK 696 * to avoid a deadlock with ufs. 697 */ 698 if (nbl_need_check(vp)) { 699 int svmand; 700 701 nbl_start_crit(vp, RW_READER); 702 in_crit = 1; 703 error = nbl_svmand(vp, cr, &svmand); 704 if (error != 0) 705 goto done; 706 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ, 707 uio.uio_offset, uio.uio_resid, svmand)) { 708 error = EACCES; 709 goto done; 710 } 711 } 712 713 (void) VOP_RWLOCK(vp, 714 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); 715 if (rw == UIO_WRITE) { 716 uio.uio_fmode = FWRITE; 717 uio.uio_extflg = UIO_COPY_DEFAULT; 718 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL); 719 } else { 720 uio.uio_fmode = FREAD; 721 uio.uio_extflg = UIO_COPY_CACHED; 722 error = VOP_READ(vp, &uio, ioflag, cr, NULL); 723 } 724 VOP_RWUNLOCK(vp, rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, 725 NULL); 726 if (residp) 727 *residp = uio.uio_resid; 728 else if (uio.uio_resid) 729 error = EIO; 730 731 done: 732 if (in_crit) 733 nbl_end_crit(vp); 734 return (error); 735 } 736 737 /* 738 * Release a vnode. Call VOP_INACTIVE on last reference or 739 * decrement reference count. 740 * 741 * To avoid race conditions, the v_count is left at 1 for 742 * the call to VOP_INACTIVE. This prevents another thread 743 * from reclaiming and releasing the vnode *before* the 744 * VOP_INACTIVE routine has a chance to destroy the vnode. 745 * We can't have more than 1 thread calling VOP_INACTIVE 746 * on a vnode. 747 */ 748 void 749 vn_rele(vnode_t *vp) 750 { 751 if (vp->v_count == 0) 752 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 753 mutex_enter(&vp->v_lock); 754 if (vp->v_count == 1) { 755 mutex_exit(&vp->v_lock); 756 VOP_INACTIVE(vp, CRED()); 757 } else { 758 vp->v_count--; 759 mutex_exit(&vp->v_lock); 760 } 761 } 762 763 /* 764 * Like vn_rele() except that it clears v_stream under v_lock. 765 * This is used by sockfs when it dismantels the association between 766 * the sockfs node and the vnode in the underlaying file system. 767 * v_lock has to be held to prevent a thread coming through the lookupname 768 * path from accessing a stream head that is going away. 769 */ 770 void 771 vn_rele_stream(vnode_t *vp) 772 { 773 if (vp->v_count == 0) 774 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 775 mutex_enter(&vp->v_lock); 776 vp->v_stream = NULL; 777 if (vp->v_count == 1) { 778 mutex_exit(&vp->v_lock); 779 VOP_INACTIVE(vp, CRED()); 780 } else { 781 vp->v_count--; 782 mutex_exit(&vp->v_lock); 783 } 784 } 785 786 int 787 vn_open( 788 char *pnamep, 789 enum uio_seg seg, 790 int filemode, 791 int createmode, 792 struct vnode **vpp, 793 enum create crwhy, 794 mode_t umask) 795 { 796 return (vn_openat(pnamep, seg, filemode, 797 createmode, vpp, crwhy, umask, NULL)); 798 } 799 800 801 /* 802 * Open/create a vnode. 803 * This may be callable by the kernel, the only known use 804 * of user context being that the current user credentials 805 * are used for permissions. crwhy is defined iff filemode & FCREAT. 806 */ 807 int 808 vn_openat( 809 char *pnamep, 810 enum uio_seg seg, 811 int filemode, 812 int createmode, 813 struct vnode **vpp, 814 enum create crwhy, 815 mode_t umask, 816 struct vnode *startvp) 817 { 818 struct vnode *vp; 819 int mode; 820 int error; 821 int in_crit = 0; 822 struct vattr vattr; 823 enum symfollow follow; 824 int estale_retry = 0; 825 826 mode = 0; 827 if (filemode & FREAD) 828 mode |= VREAD; 829 if (filemode & (FWRITE|FTRUNC)) 830 mode |= VWRITE; 831 832 /* symlink interpretation */ 833 if (filemode & FNOFOLLOW) 834 follow = NO_FOLLOW; 835 else 836 follow = FOLLOW; 837 838 top: 839 if (filemode & FCREAT) { 840 enum vcexcl excl; 841 842 /* 843 * Wish to create a file. 844 */ 845 vattr.va_type = VREG; 846 vattr.va_mode = createmode; 847 vattr.va_mask = AT_TYPE|AT_MODE; 848 if (filemode & FTRUNC) { 849 vattr.va_size = 0; 850 vattr.va_mask |= AT_SIZE; 851 } 852 if (filemode & FEXCL) 853 excl = EXCL; 854 else 855 excl = NONEXCL; 856 857 if (error = 858 vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy, 859 (filemode & ~(FTRUNC|FEXCL)), 860 umask, startvp)) 861 return (error); 862 } else { 863 /* 864 * Wish to open a file. Just look it up. 865 */ 866 if (error = lookupnameat(pnamep, seg, follow, 867 NULLVPP, &vp, startvp)) { 868 if ((error == ESTALE) && 869 fs_need_estale_retry(estale_retry++)) 870 goto top; 871 return (error); 872 } 873 874 /* 875 * Get the attributes to check whether file is large. 876 * We do this only if the FOFFMAX flag is not set and 877 * only for regular files. 878 */ 879 880 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) { 881 vattr.va_mask = AT_SIZE; 882 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 883 goto out; 884 } 885 if (vattr.va_size > (u_offset_t)MAXOFF32_T) { 886 /* 887 * Large File API - regular open fails 888 * if FOFFMAX flag is set in file mode 889 */ 890 error = EOVERFLOW; 891 goto out; 892 } 893 } 894 /* 895 * Can't write directories, active texts, or 896 * read-only filesystems. Can't truncate files 897 * on which mandatory locking is in effect. 898 */ 899 if (filemode & (FWRITE|FTRUNC)) { 900 /* 901 * Allow writable directory if VDIROPEN flag is set. 902 */ 903 if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) { 904 error = EISDIR; 905 goto out; 906 } 907 if (ISROFILE(vp)) { 908 error = EROFS; 909 goto out; 910 } 911 /* 912 * Can't truncate files on which mandatory locking 913 * or non-blocking mandatory locking is in effect. 914 */ 915 if (filemode & FTRUNC) { 916 vnode_t *rvp; 917 918 if (VOP_REALVP(vp, &rvp) != 0) 919 rvp = vp; 920 if (nbl_need_check(vp)) { 921 nbl_start_crit(vp, RW_READER); 922 in_crit = 1; 923 vattr.va_mask = AT_MODE|AT_SIZE; 924 if ((error = VOP_GETATTR(vp, &vattr, 0, 925 CRED())) == 0) { 926 if (rvp->v_filocks != NULL) 927 if (MANDLOCK(vp, 928 vattr.va_mode)) 929 error = EAGAIN; 930 if (!error) { 931 if (nbl_conflict(vp, 932 NBL_WRITE, 0, 933 vattr.va_size, 0)) 934 error = EACCES; 935 } 936 } 937 } else if (rvp->v_filocks != NULL) { 938 vattr.va_mask = AT_MODE; 939 if ((error = VOP_GETATTR(vp, &vattr, 940 0, CRED())) == 0 && MANDLOCK(vp, 941 vattr.va_mode)) 942 error = EAGAIN; 943 } 944 } 945 if (error) 946 goto out; 947 } 948 /* 949 * Check permissions. 950 */ 951 if (error = VOP_ACCESS(vp, mode, 0, CRED())) 952 goto out; 953 } 954 955 /* 956 * Do remaining checks for FNOFOLLOW and FNOLINKS. 957 */ 958 if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) { 959 error = ELOOP; 960 goto out; 961 } 962 if (filemode & FNOLINKS) { 963 vattr.va_mask = AT_NLINK; 964 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 965 goto out; 966 } 967 if (vattr.va_nlink != 1) { 968 error = EMLINK; 969 goto out; 970 } 971 } 972 973 /* 974 * Opening a socket corresponding to the AF_UNIX pathname 975 * in the filesystem name space is not supported. 976 * However, VSOCK nodes in namefs are supported in order 977 * to make fattach work for sockets. 978 * 979 * XXX This uses VOP_REALVP to distinguish between 980 * an unopened namefs node (where VOP_REALVP returns a 981 * different VSOCK vnode) and a VSOCK created by vn_create 982 * in some file system (where VOP_REALVP would never return 983 * a different vnode). 984 */ 985 if (vp->v_type == VSOCK) { 986 struct vnode *nvp; 987 988 error = VOP_REALVP(vp, &nvp); 989 if (error != 0 || nvp == NULL || nvp == vp || 990 nvp->v_type != VSOCK) { 991 error = EOPNOTSUPP; 992 goto out; 993 } 994 } 995 /* 996 * Do opening protocol. 997 */ 998 error = VOP_OPEN(&vp, filemode, CRED()); 999 /* 1000 * Truncate if required. 1001 */ 1002 if (error == 0 && (filemode & FTRUNC) && !(filemode & FCREAT)) { 1003 vattr.va_size = 0; 1004 vattr.va_mask = AT_SIZE; 1005 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0) 1006 (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED()); 1007 } 1008 out: 1009 ASSERT(vp->v_count > 0); 1010 1011 if (in_crit) { 1012 nbl_end_crit(vp); 1013 in_crit = 0; 1014 } 1015 if (error) { 1016 /* 1017 * The following clause was added to handle a problem 1018 * with NFS consistency. It is possible that a lookup 1019 * of the file to be opened succeeded, but the file 1020 * itself doesn't actually exist on the server. This 1021 * is chiefly due to the DNLC containing an entry for 1022 * the file which has been removed on the server. In 1023 * this case, we just start over. If there was some 1024 * other cause for the ESTALE error, then the lookup 1025 * of the file will fail and the error will be returned 1026 * above instead of looping around from here. 1027 */ 1028 VN_RELE(vp); 1029 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1030 goto top; 1031 } else 1032 *vpp = vp; 1033 return (error); 1034 } 1035 1036 int 1037 vn_create( 1038 char *pnamep, 1039 enum uio_seg seg, 1040 struct vattr *vap, 1041 enum vcexcl excl, 1042 int mode, 1043 struct vnode **vpp, 1044 enum create why, 1045 int flag, 1046 mode_t umask) 1047 { 1048 return (vn_createat(pnamep, seg, vap, excl, mode, vpp, 1049 why, flag, umask, NULL)); 1050 } 1051 1052 /* 1053 * Create a vnode (makenode). 1054 */ 1055 int 1056 vn_createat( 1057 char *pnamep, 1058 enum uio_seg seg, 1059 struct vattr *vap, 1060 enum vcexcl excl, 1061 int mode, 1062 struct vnode **vpp, 1063 enum create why, 1064 int flag, 1065 mode_t umask, 1066 struct vnode *startvp) 1067 { 1068 struct vnode *dvp; /* ptr to parent dir vnode */ 1069 struct vnode *vp = NULL; 1070 struct pathname pn; 1071 int error; 1072 int in_crit = 0; 1073 struct vattr vattr; 1074 enum symfollow follow; 1075 int estale_retry = 0; 1076 1077 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 1078 1079 /* symlink interpretation */ 1080 if ((flag & FNOFOLLOW) || excl == EXCL) 1081 follow = NO_FOLLOW; 1082 else 1083 follow = FOLLOW; 1084 flag &= ~(FNOFOLLOW|FNOLINKS); 1085 1086 top: 1087 /* 1088 * Lookup directory. 1089 * If new object is a file, call lower level to create it. 1090 * Note that it is up to the lower level to enforce exclusive 1091 * creation, if the file is already there. 1092 * This allows the lower level to do whatever 1093 * locking or protocol that is needed to prevent races. 1094 * If the new object is directory call lower level to make 1095 * the new directory, with "." and "..". 1096 */ 1097 if (error = pn_get(pnamep, seg, &pn)) 1098 return (error); 1099 #ifdef C2_AUDIT 1100 if (audit_active) 1101 audit_vncreate_start(); 1102 #endif /* C2_AUDIT */ 1103 dvp = NULL; 1104 *vpp = NULL; 1105 /* 1106 * lookup will find the parent directory for the vnode. 1107 * When it is done the pn holds the name of the entry 1108 * in the directory. 1109 * If this is a non-exclusive create we also find the node itself. 1110 */ 1111 error = lookuppnat(&pn, NULL, follow, &dvp, 1112 (excl == EXCL) ? NULLVPP : vpp, startvp); 1113 if (error) { 1114 pn_free(&pn); 1115 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1116 goto top; 1117 if (why == CRMKDIR && error == EINVAL) 1118 error = EEXIST; /* SVID */ 1119 return (error); 1120 } 1121 1122 if (why != CRMKNOD) 1123 vap->va_mode &= ~VSVTX; 1124 1125 /* 1126 * If default ACLs are defined for the directory don't apply the 1127 * umask if umask is passed. 1128 */ 1129 1130 if (umask) { 1131 1132 vsecattr_t vsec; 1133 1134 vsec.vsa_aclcnt = 0; 1135 vsec.vsa_aclentp = NULL; 1136 vsec.vsa_dfaclcnt = 0; 1137 vsec.vsa_dfaclentp = NULL; 1138 vsec.vsa_mask = VSA_DFACLCNT; 1139 error = VOP_GETSECATTR(dvp, &vsec, 0, CRED()); 1140 /* 1141 * If error is ENOSYS then treat it as no error 1142 * Don't want to force all file systems to support 1143 * aclent_t style of ACL's. 1144 */ 1145 if (error == ENOSYS) 1146 error = 0; 1147 if (error) { 1148 if (*vpp != NULL) 1149 VN_RELE(*vpp); 1150 goto out; 1151 } else { 1152 /* 1153 * Apply the umask if no default ACLs. 1154 */ 1155 if (vsec.vsa_dfaclcnt == 0) 1156 vap->va_mode &= ~umask; 1157 1158 /* 1159 * VOP_GETSECATTR() may have allocated memory for 1160 * ACLs we didn't request, so double-check and 1161 * free it if necessary. 1162 */ 1163 if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL) 1164 kmem_free((caddr_t)vsec.vsa_aclentp, 1165 vsec.vsa_aclcnt * sizeof (aclent_t)); 1166 if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL) 1167 kmem_free((caddr_t)vsec.vsa_dfaclentp, 1168 vsec.vsa_dfaclcnt * sizeof (aclent_t)); 1169 } 1170 } 1171 1172 /* 1173 * In general we want to generate EROFS if the file system is 1174 * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1 1175 * documents the open system call, and it says that O_CREAT has no 1176 * effect if the file already exists. Bug 1119649 states 1177 * that open(path, O_CREAT, ...) fails when attempting to open an 1178 * existing file on a read only file system. Thus, the first part 1179 * of the following if statement has 3 checks: 1180 * if the file exists && 1181 * it is being open with write access && 1182 * the file system is read only 1183 * then generate EROFS 1184 */ 1185 if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) || 1186 (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 1187 if (*vpp) 1188 VN_RELE(*vpp); 1189 error = EROFS; 1190 } else if (excl == NONEXCL && *vpp != NULL) { 1191 vnode_t *rvp; 1192 1193 /* 1194 * File already exists. If a mandatory lock has been 1195 * applied, return error. 1196 */ 1197 vp = *vpp; 1198 if (VOP_REALVP(vp, &rvp) != 0) 1199 rvp = vp; 1200 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) { 1201 nbl_start_crit(vp, RW_READER); 1202 in_crit = 1; 1203 } 1204 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) { 1205 vattr.va_mask = AT_MODE|AT_SIZE; 1206 if (error = VOP_GETATTR(vp, &vattr, 0, CRED())) { 1207 goto out; 1208 } 1209 if (MANDLOCK(vp, vattr.va_mode)) { 1210 error = EAGAIN; 1211 goto out; 1212 } 1213 /* 1214 * File cannot be truncated if non-blocking mandatory 1215 * locks are currently on the file. 1216 */ 1217 if ((vap->va_mask & AT_SIZE) && in_crit) { 1218 u_offset_t offset; 1219 ssize_t length; 1220 1221 offset = vap->va_size > vattr.va_size ? 1222 vattr.va_size : vap->va_size; 1223 length = vap->va_size > vattr.va_size ? 1224 vap->va_size - vattr.va_size : 1225 vattr.va_size - vap->va_size; 1226 if (nbl_conflict(vp, NBL_WRITE, offset, 1227 length, 0)) { 1228 error = EACCES; 1229 goto out; 1230 } 1231 } 1232 } 1233 1234 /* 1235 * If the file is the root of a VFS, we've crossed a 1236 * mount point and the "containing" directory that we 1237 * acquired above (dvp) is irrelevant because it's in 1238 * a different file system. We apply VOP_CREATE to the 1239 * target itself instead of to the containing directory 1240 * and supply a null path name to indicate (conventionally) 1241 * the node itself as the "component" of interest. 1242 * 1243 * The intercession of the file system is necessary to 1244 * ensure that the appropriate permission checks are 1245 * done. 1246 */ 1247 if (vp->v_flag & VROOT) { 1248 ASSERT(why != CRMKDIR); 1249 error = 1250 VOP_CREATE(vp, "", vap, excl, mode, vpp, CRED(), 1251 flag); 1252 /* 1253 * If the create succeeded, it will have created 1254 * a new reference to the vnode. Give up the 1255 * original reference. The assertion should not 1256 * get triggered because NBMAND locks only apply to 1257 * VREG files. And if in_crit is non-zero for some 1258 * reason, detect that here, rather than when we 1259 * deference a null vp. 1260 */ 1261 ASSERT(in_crit == 0); 1262 VN_RELE(vp); 1263 vp = NULL; 1264 goto out; 1265 } 1266 1267 /* 1268 * Large File API - non-large open (FOFFMAX flag not set) 1269 * of regular file fails if the file size exceeds MAXOFF32_T. 1270 */ 1271 if (why != CRMKDIR && 1272 !(flag & FOFFMAX) && 1273 (vp->v_type == VREG)) { 1274 vattr.va_mask = AT_SIZE; 1275 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 1276 goto out; 1277 } 1278 if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) { 1279 error = EOVERFLOW; 1280 goto out; 1281 } 1282 } 1283 } 1284 1285 if (error == 0) { 1286 /* 1287 * Call mkdir() if specified, otherwise create(). 1288 */ 1289 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */ 1290 1291 if (why == CRMKDIR) 1292 error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED()); 1293 else if (!must_be_dir) 1294 error = VOP_CREATE(dvp, pn.pn_path, vap, 1295 excl, mode, vpp, CRED(), flag); 1296 else 1297 error = ENOTDIR; 1298 } 1299 1300 out: 1301 1302 #ifdef C2_AUDIT 1303 if (audit_active) 1304 audit_vncreate_finish(*vpp, error); 1305 #endif /* C2_AUDIT */ 1306 if (in_crit) { 1307 nbl_end_crit(vp); 1308 in_crit = 0; 1309 } 1310 if (vp != NULL) { 1311 VN_RELE(vp); 1312 vp = NULL; 1313 } 1314 pn_free(&pn); 1315 VN_RELE(dvp); 1316 /* 1317 * The following clause was added to handle a problem 1318 * with NFS consistency. It is possible that a lookup 1319 * of the file to be created succeeded, but the file 1320 * itself doesn't actually exist on the server. This 1321 * is chiefly due to the DNLC containing an entry for 1322 * the file which has been removed on the server. In 1323 * this case, we just start over. If there was some 1324 * other cause for the ESTALE error, then the lookup 1325 * of the file will fail and the error will be returned 1326 * above instead of looping around from here. 1327 */ 1328 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1329 goto top; 1330 return (error); 1331 } 1332 1333 int 1334 vn_link(char *from, char *to, enum uio_seg seg) 1335 { 1336 struct vnode *fvp; /* from vnode ptr */ 1337 struct vnode *tdvp; /* to directory vnode ptr */ 1338 struct pathname pn; 1339 int error; 1340 struct vattr vattr; 1341 dev_t fsid; 1342 int estale_retry = 0; 1343 1344 top: 1345 fvp = tdvp = NULL; 1346 if (error = pn_get(to, seg, &pn)) 1347 return (error); 1348 if (error = lookupname(from, seg, NO_FOLLOW, NULLVPP, &fvp)) 1349 goto out; 1350 if (error = lookuppn(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP)) 1351 goto out; 1352 /* 1353 * Make sure both source vnode and target directory vnode are 1354 * in the same vfs and that it is writeable. 1355 */ 1356 vattr.va_mask = AT_FSID; 1357 if (error = VOP_GETATTR(fvp, &vattr, 0, CRED())) 1358 goto out; 1359 fsid = vattr.va_fsid; 1360 vattr.va_mask = AT_FSID; 1361 if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED())) 1362 goto out; 1363 if (fsid != vattr.va_fsid) { 1364 error = EXDEV; 1365 goto out; 1366 } 1367 if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) { 1368 error = EROFS; 1369 goto out; 1370 } 1371 /* 1372 * Do the link. 1373 */ 1374 (void) pn_fixslash(&pn); 1375 error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED()); 1376 out: 1377 pn_free(&pn); 1378 if (fvp) 1379 VN_RELE(fvp); 1380 if (tdvp) 1381 VN_RELE(tdvp); 1382 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1383 goto top; 1384 return (error); 1385 } 1386 1387 int 1388 vn_rename(char *from, char *to, enum uio_seg seg) 1389 { 1390 return (vn_renameat(NULL, from, NULL, to, seg)); 1391 } 1392 1393 int 1394 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp, 1395 char *tname, enum uio_seg seg) 1396 { 1397 int error; 1398 struct vattr vattr; 1399 struct pathname fpn; /* from pathname */ 1400 struct pathname tpn; /* to pathname */ 1401 dev_t fsid; 1402 int in_crit = 0; 1403 vnode_t *fromvp, *fvp; 1404 vnode_t *tovp; 1405 int estale_retry = 0; 1406 1407 top: 1408 fvp = fromvp = tovp = NULL; 1409 /* 1410 * Get to and from pathnames. 1411 */ 1412 if (error = pn_get(fname, seg, &fpn)) 1413 return (error); 1414 if (error = pn_get(tname, seg, &tpn)) { 1415 pn_free(&fpn); 1416 return (error); 1417 } 1418 1419 /* 1420 * First we need to resolve the correct directories 1421 * The passed in directories may only be a starting point, 1422 * but we need the real directories the file(s) live in. 1423 * For example the fname may be something like usr/lib/sparc 1424 * and we were passed in the / directory, but we need to 1425 * use the lib directory for the rename. 1426 */ 1427 1428 #ifdef C2_AUDIT 1429 if (audit_active) 1430 audit_setfsat_path(1); 1431 #endif /* C2_AUDIT */ 1432 /* 1433 * Lookup to and from directories. 1434 */ 1435 if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) { 1436 goto out; 1437 } 1438 1439 /* 1440 * Make sure there is an entry. 1441 */ 1442 if (fvp == NULL) { 1443 error = ENOENT; 1444 goto out; 1445 } 1446 1447 #ifdef C2_AUDIT 1448 if (audit_active) 1449 audit_setfsat_path(3); 1450 #endif /* C2_AUDIT */ 1451 if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, NULLVPP, tdvp)) { 1452 goto out; 1453 } 1454 1455 /* 1456 * Make sure both the from vnode directory and the to directory 1457 * are in the same vfs and the to directory is writable. 1458 * We check fsid's, not vfs pointers, so loopback fs works. 1459 */ 1460 if (fromvp != tovp) { 1461 vattr.va_mask = AT_FSID; 1462 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED())) 1463 goto out; 1464 fsid = vattr.va_fsid; 1465 vattr.va_mask = AT_FSID; 1466 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED())) 1467 goto out; 1468 if (fsid != vattr.va_fsid) { 1469 error = EXDEV; 1470 goto out; 1471 } 1472 } 1473 1474 if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) { 1475 error = EROFS; 1476 goto out; 1477 } 1478 1479 if (nbl_need_check(fvp)) { 1480 nbl_start_crit(fvp, RW_READER); 1481 in_crit = 1; 1482 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0)) { 1483 error = EACCES; 1484 goto out; 1485 } 1486 } 1487 1488 /* 1489 * Do the rename. 1490 */ 1491 (void) pn_fixslash(&tpn); 1492 error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED()); 1493 1494 out: 1495 pn_free(&fpn); 1496 pn_free(&tpn); 1497 if (in_crit) { 1498 nbl_end_crit(fvp); 1499 in_crit = 0; 1500 } 1501 if (fromvp) 1502 VN_RELE(fromvp); 1503 if (tovp) 1504 VN_RELE(tovp); 1505 if (fvp) 1506 VN_RELE(fvp); 1507 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1508 goto top; 1509 return (error); 1510 } 1511 1512 /* 1513 * Remove a file or directory. 1514 */ 1515 int 1516 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag) 1517 { 1518 return (vn_removeat(NULL, fnamep, seg, dirflag)); 1519 } 1520 1521 int 1522 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag) 1523 { 1524 struct vnode *vp; /* entry vnode */ 1525 struct vnode *dvp; /* ptr to parent dir vnode */ 1526 struct vnode *coveredvp; 1527 struct pathname pn; /* name of entry */ 1528 enum vtype vtype; 1529 int error; 1530 struct vfs *vfsp; 1531 struct vfs *dvfsp; /* ptr to parent dir vfs */ 1532 int in_crit = 0; 1533 int estale_retry = 0; 1534 1535 top: 1536 if (error = pn_get(fnamep, seg, &pn)) 1537 return (error); 1538 dvp = vp = NULL; 1539 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) { 1540 pn_free(&pn); 1541 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1542 goto top; 1543 return (error); 1544 } 1545 1546 /* 1547 * Make sure there is an entry. 1548 */ 1549 if (vp == NULL) { 1550 error = ENOENT; 1551 goto out; 1552 } 1553 1554 vfsp = vp->v_vfsp; 1555 dvfsp = dvp->v_vfsp; 1556 1557 /* 1558 * If the named file is the root of a mounted filesystem, fail, 1559 * unless it's marked unlinkable. In that case, unmount the 1560 * filesystem and proceed to unlink the covered vnode. (If the 1561 * covered vnode is a directory, use rmdir instead of unlink, 1562 * to avoid file system corruption.) 1563 */ 1564 if (vp->v_flag & VROOT) { 1565 if (vfsp->vfs_flag & VFS_UNLINKABLE) { 1566 if (dirflag == RMDIRECTORY) { 1567 /* 1568 * User called rmdir(2) on a file that has 1569 * been namefs mounted on top of. Since 1570 * namefs doesn't allow directories to 1571 * be mounted on other files we know 1572 * vp is not of type VDIR so fail to operation. 1573 */ 1574 error = ENOTDIR; 1575 goto out; 1576 } 1577 coveredvp = vfsp->vfs_vnodecovered; 1578 VN_HOLD(coveredvp); 1579 VN_RELE(vp); 1580 vp = NULL; 1581 if ((error = vn_vfswlock(coveredvp)) == 0) 1582 error = dounmount(vfsp, 0, CRED()); 1583 /* 1584 * Unmounted the namefs file system; now get 1585 * the object it was mounted over. 1586 */ 1587 vp = coveredvp; 1588 /* 1589 * If namefs was mounted over a directory, then 1590 * we want to use rmdir() instead of unlink(). 1591 */ 1592 if (vp->v_type == VDIR) 1593 dirflag = RMDIRECTORY; 1594 } else 1595 error = EBUSY; 1596 1597 if (error) 1598 goto out; 1599 } 1600 1601 /* 1602 * Make sure filesystem is writeable. 1603 * We check the parent directory's vfs in case this is an lofs vnode. 1604 */ 1605 if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) { 1606 error = EROFS; 1607 goto out; 1608 } 1609 1610 vtype = vp->v_type; 1611 1612 /* 1613 * If there is the possibility of an nbmand share reservation, make 1614 * sure it's okay to remove the file. Keep a reference to the 1615 * vnode, so that we can exit the nbl critical region after 1616 * calling VOP_REMOVE. 1617 * If there is no possibility of an nbmand share reservation, 1618 * release the vnode reference now. Filesystems like NFS may 1619 * behave differently if there is an extra reference, so get rid of 1620 * this one. Fortunately, we can't have nbmand mounts on NFS 1621 * filesystems. 1622 */ 1623 if (nbl_need_check(vp)) { 1624 nbl_start_crit(vp, RW_READER); 1625 in_crit = 1; 1626 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0)) { 1627 error = EACCES; 1628 goto out; 1629 } 1630 } else { 1631 VN_RELE(vp); 1632 vp = NULL; 1633 } 1634 1635 if (dirflag == RMDIRECTORY) { 1636 /* 1637 * Caller is using rmdir(2), which can only be applied to 1638 * directories. 1639 */ 1640 if (vtype != VDIR) { 1641 error = ENOTDIR; 1642 } else { 1643 vnode_t *cwd; 1644 proc_t *pp = curproc; 1645 1646 mutex_enter(&pp->p_lock); 1647 cwd = PTOU(pp)->u_cdir; 1648 VN_HOLD(cwd); 1649 mutex_exit(&pp->p_lock); 1650 error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED()); 1651 VN_RELE(cwd); 1652 } 1653 } else { 1654 /* 1655 * Unlink(2) can be applied to anything. 1656 */ 1657 error = VOP_REMOVE(dvp, pn.pn_path, CRED()); 1658 } 1659 1660 out: 1661 pn_free(&pn); 1662 if (in_crit) { 1663 nbl_end_crit(vp); 1664 in_crit = 0; 1665 } 1666 if (vp != NULL) 1667 VN_RELE(vp); 1668 if (dvp != NULL) 1669 VN_RELE(dvp); 1670 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1671 goto top; 1672 return (error); 1673 } 1674 1675 /* 1676 * Utility function to compare equality of vnodes. 1677 * Compare the underlying real vnodes, if there are underlying vnodes. 1678 * This is a more thorough comparison than the VN_CMP() macro provides. 1679 */ 1680 int 1681 vn_compare(vnode_t *vp1, vnode_t *vp2) 1682 { 1683 vnode_t *realvp; 1684 1685 if (vp1 != NULL && VOP_REALVP(vp1, &realvp) == 0) 1686 vp1 = realvp; 1687 if (vp2 != NULL && VOP_REALVP(vp2, &realvp) == 0) 1688 vp2 = realvp; 1689 return (VN_CMP(vp1, vp2)); 1690 } 1691 1692 /* 1693 * The number of locks to hash into. This value must be a power 1694 * of 2 minus 1 and should probably also be prime. 1695 */ 1696 #define NUM_BUCKETS 1023 1697 1698 struct vn_vfslocks_bucket { 1699 kmutex_t vb_lock; 1700 vn_vfslocks_entry_t *vb_list; 1701 char pad[64 - sizeof (kmutex_t) - sizeof (void *)]; 1702 }; 1703 1704 /* 1705 * Total number of buckets will be NUM_BUCKETS + 1 . 1706 */ 1707 1708 #pragma align 64(vn_vfslocks_buckets) 1709 static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1]; 1710 1711 #define VN_VFSLOCKS_SHIFT 9 1712 1713 #define VN_VFSLOCKS_HASH(vfsvpptr) \ 1714 ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS) 1715 1716 /* 1717 * vn_vfslocks_getlock() uses an HASH scheme to generate 1718 * rwstlock using vfs/vnode pointer passed to it. 1719 * 1720 * vn_vfslocks_rele() releases a reference in the 1721 * HASH table which allows the entry allocated by 1722 * vn_vfslocks_getlock() to be freed at a later 1723 * stage when the refcount drops to zero. 1724 */ 1725 1726 vn_vfslocks_entry_t * 1727 vn_vfslocks_getlock(void *vfsvpptr) 1728 { 1729 struct vn_vfslocks_bucket *bp; 1730 vn_vfslocks_entry_t *vep; 1731 vn_vfslocks_entry_t *tvep; 1732 1733 ASSERT(vfsvpptr != NULL); 1734 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)]; 1735 1736 mutex_enter(&bp->vb_lock); 1737 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1738 if (vep->ve_vpvfs == vfsvpptr) { 1739 vep->ve_refcnt++; 1740 mutex_exit(&bp->vb_lock); 1741 return (vep); 1742 } 1743 } 1744 mutex_exit(&bp->vb_lock); 1745 vep = kmem_alloc(sizeof (*vep), KM_SLEEP); 1746 rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL); 1747 vep->ve_vpvfs = (char *)vfsvpptr; 1748 vep->ve_refcnt = 1; 1749 mutex_enter(&bp->vb_lock); 1750 for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) { 1751 if (tvep->ve_vpvfs == vfsvpptr) { 1752 tvep->ve_refcnt++; 1753 mutex_exit(&bp->vb_lock); 1754 1755 /* 1756 * There is already an entry in the hash 1757 * destroy what we just allocated. 1758 */ 1759 rwst_destroy(&vep->ve_lock); 1760 kmem_free(vep, sizeof (*vep)); 1761 return (tvep); 1762 } 1763 } 1764 vep->ve_next = bp->vb_list; 1765 bp->vb_list = vep; 1766 mutex_exit(&bp->vb_lock); 1767 return (vep); 1768 } 1769 1770 void 1771 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent) 1772 { 1773 struct vn_vfslocks_bucket *bp; 1774 vn_vfslocks_entry_t *vep; 1775 vn_vfslocks_entry_t *pvep; 1776 1777 ASSERT(vepent != NULL); 1778 ASSERT(vepent->ve_vpvfs != NULL); 1779 1780 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)]; 1781 1782 mutex_enter(&bp->vb_lock); 1783 vepent->ve_refcnt--; 1784 1785 if ((int32_t)vepent->ve_refcnt < 0) 1786 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative"); 1787 1788 if (vepent->ve_refcnt == 0) { 1789 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1790 if (vep->ve_vpvfs == vepent->ve_vpvfs) { 1791 if (bp->vb_list == vep) 1792 bp->vb_list = vep->ve_next; 1793 else { 1794 /* LINTED */ 1795 pvep->ve_next = vep->ve_next; 1796 } 1797 mutex_exit(&bp->vb_lock); 1798 rwst_destroy(&vep->ve_lock); 1799 kmem_free(vep, sizeof (*vep)); 1800 return; 1801 } 1802 pvep = vep; 1803 } 1804 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found"); 1805 } 1806 mutex_exit(&bp->vb_lock); 1807 } 1808 1809 /* 1810 * vn_vfswlock_wait is used to implement a lock which is logically a writers 1811 * lock protecting the v_vfsmountedhere field. 1812 * vn_vfswlock_wait has been modified to be similar to vn_vfswlock, 1813 * except that it blocks to acquire the lock VVFSLOCK. 1814 * 1815 * traverse() and routines re-implementing part of traverse (e.g. autofs) 1816 * need to hold this lock. mount(), vn_rename(), vn_remove() and so on 1817 * need the non-blocking version of the writers lock i.e. vn_vfswlock 1818 */ 1819 int 1820 vn_vfswlock_wait(vnode_t *vp) 1821 { 1822 int retval; 1823 vn_vfslocks_entry_t *vpvfsentry; 1824 ASSERT(vp != NULL); 1825 1826 vpvfsentry = vn_vfslocks_getlock(vp); 1827 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER); 1828 1829 if (retval == EINTR) { 1830 vn_vfslocks_rele(vpvfsentry); 1831 return (EINTR); 1832 } 1833 return (retval); 1834 } 1835 1836 int 1837 vn_vfsrlock_wait(vnode_t *vp) 1838 { 1839 int retval; 1840 vn_vfslocks_entry_t *vpvfsentry; 1841 ASSERT(vp != NULL); 1842 1843 vpvfsentry = vn_vfslocks_getlock(vp); 1844 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER); 1845 1846 if (retval == EINTR) { 1847 vn_vfslocks_rele(vpvfsentry); 1848 return (EINTR); 1849 } 1850 1851 return (retval); 1852 } 1853 1854 1855 /* 1856 * vn_vfswlock is used to implement a lock which is logically a writers lock 1857 * protecting the v_vfsmountedhere field. 1858 */ 1859 int 1860 vn_vfswlock(vnode_t *vp) 1861 { 1862 vn_vfslocks_entry_t *vpvfsentry; 1863 1864 /* 1865 * If vp is NULL then somebody is trying to lock the covered vnode 1866 * of /. (vfs_vnodecovered is NULL for /). This situation will 1867 * only happen when unmounting /. Since that operation will fail 1868 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1869 */ 1870 if (vp == NULL) 1871 return (EBUSY); 1872 1873 vpvfsentry = vn_vfslocks_getlock(vp); 1874 1875 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 1876 return (0); 1877 1878 vn_vfslocks_rele(vpvfsentry); 1879 return (EBUSY); 1880 } 1881 1882 int 1883 vn_vfsrlock(vnode_t *vp) 1884 { 1885 vn_vfslocks_entry_t *vpvfsentry; 1886 1887 /* 1888 * If vp is NULL then somebody is trying to lock the covered vnode 1889 * of /. (vfs_vnodecovered is NULL for /). This situation will 1890 * only happen when unmounting /. Since that operation will fail 1891 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1892 */ 1893 if (vp == NULL) 1894 return (EBUSY); 1895 1896 vpvfsentry = vn_vfslocks_getlock(vp); 1897 1898 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 1899 return (0); 1900 1901 vn_vfslocks_rele(vpvfsentry); 1902 return (EBUSY); 1903 } 1904 1905 void 1906 vn_vfsunlock(vnode_t *vp) 1907 { 1908 vn_vfslocks_entry_t *vpvfsentry; 1909 1910 /* 1911 * ve_refcnt needs to be decremented twice. 1912 * 1. To release refernce after a call to vn_vfslocks_getlock() 1913 * 2. To release the reference from the locking routines like 1914 * vn_vfsrlock/vn_vfswlock etc,. 1915 */ 1916 vpvfsentry = vn_vfslocks_getlock(vp); 1917 vn_vfslocks_rele(vpvfsentry); 1918 1919 rwst_exit(&vpvfsentry->ve_lock); 1920 vn_vfslocks_rele(vpvfsentry); 1921 } 1922 1923 int 1924 vn_vfswlock_held(vnode_t *vp) 1925 { 1926 int held; 1927 vn_vfslocks_entry_t *vpvfsentry; 1928 1929 ASSERT(vp != NULL); 1930 1931 vpvfsentry = vn_vfslocks_getlock(vp); 1932 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 1933 1934 vn_vfslocks_rele(vpvfsentry); 1935 return (held); 1936 } 1937 1938 1939 int 1940 vn_make_ops( 1941 const char *name, /* Name of file system */ 1942 const fs_operation_def_t *templ, /* Operation specification */ 1943 vnodeops_t **actual) /* Return the vnodeops */ 1944 { 1945 int unused_ops; 1946 int error; 1947 1948 *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP); 1949 1950 (*actual)->vnop_name = name; 1951 1952 error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ); 1953 if (error) { 1954 kmem_free(*actual, sizeof (vnodeops_t)); 1955 } 1956 1957 #if DEBUG 1958 if (unused_ops != 0) 1959 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied " 1960 "but not used", name, unused_ops); 1961 #endif 1962 1963 return (error); 1964 } 1965 1966 /* 1967 * Free the vnodeops created as a result of vn_make_ops() 1968 */ 1969 void 1970 vn_freevnodeops(vnodeops_t *vnops) 1971 { 1972 kmem_free(vnops, sizeof (vnodeops_t)); 1973 } 1974 1975 /* 1976 * Vnode cache. 1977 */ 1978 1979 /* ARGSUSED */ 1980 static int 1981 vn_cache_constructor(void *buf, void *cdrarg, int kmflags) 1982 { 1983 struct vnode *vp; 1984 1985 vp = buf; 1986 1987 mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL); 1988 cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL); 1989 rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL); 1990 rw_init(&vp->v_mslock, NULL, RW_DEFAULT, NULL); 1991 1992 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 1993 vp->v_path = NULL; 1994 vp->v_mpssdata = NULL; 1995 1996 return (0); 1997 } 1998 1999 /* ARGSUSED */ 2000 static void 2001 vn_cache_destructor(void *buf, void *cdrarg) 2002 { 2003 struct vnode *vp; 2004 2005 vp = buf; 2006 2007 rw_destroy(&vp->v_mslock); 2008 rw_destroy(&vp->v_nbllock); 2009 cv_destroy(&vp->v_cv); 2010 mutex_destroy(&vp->v_lock); 2011 } 2012 2013 void 2014 vn_create_cache(void) 2015 { 2016 vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode), 64, 2017 vn_cache_constructor, vn_cache_destructor, NULL, NULL, 2018 NULL, 0); 2019 } 2020 2021 void 2022 vn_destroy_cache(void) 2023 { 2024 kmem_cache_destroy(vn_cache); 2025 } 2026 2027 /* 2028 * Used by file systems when fs-specific nodes (e.g., ufs inodes) are 2029 * cached by the file system and vnodes remain associated. 2030 */ 2031 void 2032 vn_recycle(vnode_t *vp) 2033 { 2034 ASSERT(vp->v_pages == NULL); 2035 2036 /* 2037 * XXX - This really belongs in vn_reinit(), but we have some issues 2038 * with the counts. Best to have it here for clean initialization. 2039 */ 2040 vp->v_rdcnt = 0; 2041 vp->v_wrcnt = 0; 2042 vp->v_mmap_read = 0; 2043 vp->v_mmap_write = 0; 2044 2045 /* 2046 * If FEM was in use, make sure everything gets cleaned up 2047 * NOTE: vp->v_femhead is initialized to NULL in the vnode 2048 * constructor. 2049 */ 2050 if (vp->v_femhead) { 2051 /* XXX - There should be a free_femhead() that does all this */ 2052 ASSERT(vp->v_femhead->femh_list == NULL); 2053 mutex_destroy(&vp->v_femhead->femh_lock); 2054 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2055 vp->v_femhead = NULL; 2056 } 2057 if (vp->v_path) { 2058 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2059 vp->v_path = NULL; 2060 } 2061 vp->v_mpssdata = NULL; 2062 } 2063 2064 /* 2065 * Used to reset the vnode fields including those that are directly accessible 2066 * as well as those which require an accessor function. 2067 * 2068 * Does not initialize: 2069 * synchronization objects: v_lock, v_nbllock, v_cv 2070 * v_data (since FS-nodes and vnodes point to each other and should 2071 * be updated simultaneously) 2072 * v_op (in case someone needs to make a VOP call on this object) 2073 */ 2074 void 2075 vn_reinit(vnode_t *vp) 2076 { 2077 vp->v_count = 1; 2078 vp->v_vfsp = NULL; 2079 vp->v_stream = NULL; 2080 vp->v_vfsmountedhere = NULL; 2081 vp->v_flag = 0; 2082 vp->v_type = VNON; 2083 vp->v_rdev = NODEV; 2084 2085 vp->v_filocks = NULL; 2086 vp->v_shrlocks = NULL; 2087 vp->v_pages = NULL; 2088 vp->v_npages = 0; 2089 vp->v_msnpages = 0; 2090 vp->v_scanfront = NULL; 2091 vp->v_scanback = NULL; 2092 2093 vp->v_locality = NULL; 2094 vp->v_scantime = 0; 2095 vp->v_mset = 0; 2096 vp->v_msflags = 0; 2097 vp->v_msnext = NULL; 2098 vp->v_msprev = NULL; 2099 2100 /* Handles v_femhead, v_path, and the r/w/map counts */ 2101 vn_recycle(vp); 2102 } 2103 2104 vnode_t * 2105 vn_alloc(int kmflag) 2106 { 2107 vnode_t *vp; 2108 2109 vp = kmem_cache_alloc(vn_cache, kmflag); 2110 2111 if (vp != NULL) { 2112 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 2113 vn_reinit(vp); 2114 } 2115 2116 return (vp); 2117 } 2118 2119 void 2120 vn_free(vnode_t *vp) 2121 { 2122 /* 2123 * Some file systems call vn_free() with v_count of zero, 2124 * some with v_count of 1. In any case, the value should 2125 * never be anything else. 2126 */ 2127 ASSERT((vp->v_count == 0) || (vp->v_count == 1)); 2128 if (vp->v_path != NULL) { 2129 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2130 vp->v_path = NULL; 2131 } 2132 2133 /* If FEM was in use, make sure everything gets cleaned up */ 2134 if (vp->v_femhead) { 2135 /* XXX - There should be a free_femhead() that does all this */ 2136 ASSERT(vp->v_femhead->femh_list == NULL); 2137 mutex_destroy(&vp->v_femhead->femh_lock); 2138 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2139 vp->v_femhead = NULL; 2140 } 2141 vp->v_mpssdata = NULL; 2142 kmem_cache_free(vn_cache, vp); 2143 } 2144 2145 /* 2146 * vnode status changes, should define better states than 1, 0. 2147 */ 2148 void 2149 vn_reclaim(vnode_t *vp) 2150 { 2151 vfs_t *vfsp = vp->v_vfsp; 2152 2153 if (vfsp == NULL || 2154 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2155 return; 2156 } 2157 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED); 2158 } 2159 2160 void 2161 vn_idle(vnode_t *vp) 2162 { 2163 vfs_t *vfsp = vp->v_vfsp; 2164 2165 if (vfsp == NULL || 2166 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2167 return; 2168 } 2169 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED); 2170 } 2171 void 2172 vn_exists(vnode_t *vp) 2173 { 2174 vfs_t *vfsp = vp->v_vfsp; 2175 2176 if (vfsp == NULL || 2177 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2178 return; 2179 } 2180 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS); 2181 } 2182 2183 void 2184 vn_invalid(vnode_t *vp) 2185 { 2186 vfs_t *vfsp = vp->v_vfsp; 2187 2188 if (vfsp == NULL || 2189 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2190 return; 2191 } 2192 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED); 2193 } 2194 2195 /* Vnode event notification */ 2196 2197 int 2198 vnevent_support(vnode_t *vp) 2199 { 2200 if (vp == NULL) 2201 return (EINVAL); 2202 2203 return (VOP_VNEVENT(vp, VE_SUPPORT)); 2204 } 2205 2206 void 2207 vnevent_rename_src(vnode_t *vp) 2208 { 2209 if (vp == NULL || vp->v_femhead == NULL) { 2210 return; 2211 } 2212 (void) VOP_VNEVENT(vp, VE_RENAME_SRC); 2213 } 2214 2215 void 2216 vnevent_rename_dest(vnode_t *vp) 2217 { 2218 if (vp == NULL || vp->v_femhead == NULL) { 2219 return; 2220 } 2221 (void) VOP_VNEVENT(vp, VE_RENAME_DEST); 2222 } 2223 2224 void 2225 vnevent_remove(vnode_t *vp) 2226 { 2227 if (vp == NULL || vp->v_femhead == NULL) { 2228 return; 2229 } 2230 (void) VOP_VNEVENT(vp, VE_REMOVE); 2231 } 2232 2233 void 2234 vnevent_rmdir(vnode_t *vp) 2235 { 2236 if (vp == NULL || vp->v_femhead == NULL) { 2237 return; 2238 } 2239 (void) VOP_VNEVENT(vp, VE_RMDIR); 2240 } 2241 2242 /* 2243 * Vnode accessors. 2244 */ 2245 2246 int 2247 vn_is_readonly(vnode_t *vp) 2248 { 2249 return (vp->v_vfsp->vfs_flag & VFS_RDONLY); 2250 } 2251 2252 int 2253 vn_has_flocks(vnode_t *vp) 2254 { 2255 return (vp->v_filocks != NULL); 2256 } 2257 2258 int 2259 vn_has_mandatory_locks(vnode_t *vp, int mode) 2260 { 2261 return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode))); 2262 } 2263 2264 int 2265 vn_has_cached_data(vnode_t *vp) 2266 { 2267 return (vp->v_pages != NULL); 2268 } 2269 2270 /* 2271 * Return 0 if the vnode in question shouldn't be permitted into a zone via 2272 * zone_enter(2). 2273 */ 2274 int 2275 vn_can_change_zones(vnode_t *vp) 2276 { 2277 struct vfssw *vswp; 2278 int allow = 1; 2279 vnode_t *rvp; 2280 2281 if (nfs_global_client_only != 0) 2282 return (1); 2283 2284 /* 2285 * We always want to look at the underlying vnode if there is one. 2286 */ 2287 if (VOP_REALVP(vp, &rvp) != 0) 2288 rvp = vp; 2289 /* 2290 * Some pseudo filesystems (including doorfs) don't actually register 2291 * their vfsops_t, so the following may return NULL; we happily let 2292 * such vnodes switch zones. 2293 */ 2294 vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp)); 2295 if (vswp != NULL) { 2296 if (vswp->vsw_flag & VSW_NOTZONESAFE) 2297 allow = 0; 2298 vfs_unrefvfssw(vswp); 2299 } 2300 return (allow); 2301 } 2302 2303 /* 2304 * Return nonzero if the vnode is a mount point, zero if not. 2305 */ 2306 int 2307 vn_ismntpt(vnode_t *vp) 2308 { 2309 return (vp->v_vfsmountedhere != NULL); 2310 } 2311 2312 /* Retrieve the vfs (if any) mounted on this vnode */ 2313 vfs_t * 2314 vn_mountedvfs(vnode_t *vp) 2315 { 2316 return (vp->v_vfsmountedhere); 2317 } 2318 2319 /* 2320 * vn_is_opened() checks whether a particular file is opened and 2321 * whether the open is for read and/or write. 2322 * 2323 * Vnode counts are only kept on regular files (v_type=VREG). 2324 */ 2325 int 2326 vn_is_opened( 2327 vnode_t *vp, 2328 v_mode_t mode) 2329 { 2330 2331 ASSERT(vp != NULL); 2332 2333 switch (mode) { 2334 case V_WRITE: 2335 if (vp->v_wrcnt) 2336 return (V_TRUE); 2337 break; 2338 case V_RDANDWR: 2339 if (vp->v_rdcnt && vp->v_wrcnt) 2340 return (V_TRUE); 2341 break; 2342 case V_RDORWR: 2343 if (vp->v_rdcnt || vp->v_wrcnt) 2344 return (V_TRUE); 2345 break; 2346 case V_READ: 2347 if (vp->v_rdcnt) 2348 return (V_TRUE); 2349 break; 2350 } 2351 2352 return (V_FALSE); 2353 } 2354 2355 /* 2356 * vn_is_mapped() checks whether a particular file is mapped and whether 2357 * the file is mapped read and/or write. 2358 */ 2359 int 2360 vn_is_mapped( 2361 vnode_t *vp, 2362 v_mode_t mode) 2363 { 2364 2365 ASSERT(vp != NULL); 2366 2367 #if !defined(_LP64) 2368 switch (mode) { 2369 /* 2370 * The atomic_add_64_nv functions force atomicity in the 2371 * case of 32 bit architectures. Otherwise the 64 bit values 2372 * require two fetches. The value of the fields may be 2373 * (potentially) changed between the first fetch and the 2374 * second 2375 */ 2376 case V_WRITE: 2377 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0)) 2378 return (V_TRUE); 2379 break; 2380 case V_RDANDWR: 2381 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) && 2382 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2383 return (V_TRUE); 2384 break; 2385 case V_RDORWR: 2386 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) || 2387 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2388 return (V_TRUE); 2389 break; 2390 case V_READ: 2391 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0)) 2392 return (V_TRUE); 2393 break; 2394 } 2395 #else 2396 switch (mode) { 2397 case V_WRITE: 2398 if (vp->v_mmap_write) 2399 return (V_TRUE); 2400 break; 2401 case V_RDANDWR: 2402 if (vp->v_mmap_read && vp->v_mmap_write) 2403 return (V_TRUE); 2404 break; 2405 case V_RDORWR: 2406 if (vp->v_mmap_read || vp->v_mmap_write) 2407 return (V_TRUE); 2408 break; 2409 case V_READ: 2410 if (vp->v_mmap_read) 2411 return (V_TRUE); 2412 break; 2413 } 2414 #endif 2415 2416 return (V_FALSE); 2417 } 2418 2419 /* 2420 * Set the operations vector for a vnode. 2421 * 2422 * FEM ensures that the v_femhead pointer is filled in before the 2423 * v_op pointer is changed. This means that if the v_femhead pointer 2424 * is NULL, and the v_op field hasn't changed since before which checked 2425 * the v_femhead pointer; then our update is ok - we are not racing with 2426 * FEM. 2427 */ 2428 void 2429 vn_setops(vnode_t *vp, vnodeops_t *vnodeops) 2430 { 2431 vnodeops_t *op; 2432 2433 ASSERT(vp != NULL); 2434 ASSERT(vnodeops != NULL); 2435 2436 op = vp->v_op; 2437 membar_consumer(); 2438 /* 2439 * If vp->v_femhead == NULL, then we'll call casptr() to do the 2440 * compare-and-swap on vp->v_op. If either fails, then FEM is 2441 * in effect on the vnode and we need to have FEM deal with it. 2442 */ 2443 if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) { 2444 fem_setvnops(vp, vnodeops); 2445 } 2446 } 2447 2448 /* 2449 * Retrieve the operations vector for a vnode 2450 * As with vn_setops(above); make sure we aren't racing with FEM. 2451 * FEM sets the v_op to a special, internal, vnodeops that wouldn't 2452 * make sense to the callers of this routine. 2453 */ 2454 vnodeops_t * 2455 vn_getops(vnode_t *vp) 2456 { 2457 vnodeops_t *op; 2458 2459 ASSERT(vp != NULL); 2460 2461 op = vp->v_op; 2462 membar_consumer(); 2463 if (vp->v_femhead == NULL && op == vp->v_op) { 2464 return (op); 2465 } else { 2466 return (fem_getvnops(vp)); 2467 } 2468 } 2469 2470 /* 2471 * Returns non-zero (1) if the vnodeops matches that of the vnode. 2472 * Returns zero (0) if not. 2473 */ 2474 int 2475 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops) 2476 { 2477 return (vn_getops(vp) == vnodeops); 2478 } 2479 2480 /* 2481 * Returns non-zero (1) if the specified operation matches the 2482 * corresponding operation for that the vnode. 2483 * Returns zero (0) if not. 2484 */ 2485 2486 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0)) 2487 2488 int 2489 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp) 2490 { 2491 const fs_operation_trans_def_t *otdp; 2492 fs_generic_func_p *loc = NULL; 2493 vnodeops_t *vop = vn_getops(vp); 2494 2495 ASSERT(vopname != NULL); 2496 2497 for (otdp = vn_ops_table; otdp->name != NULL; otdp++) { 2498 if (MATCHNAME(otdp->name, vopname)) { 2499 loc = (fs_generic_func_p *)((char *)(vop) 2500 + otdp->offset); 2501 break; 2502 } 2503 } 2504 2505 return ((loc != NULL) && (*loc == funcp)); 2506 } 2507 2508 /* 2509 * fs_new_caller_id() needs to return a unique ID on a given local system. 2510 * The IDs do not need to survive across reboots. These are primarily 2511 * used so that (FEM) monitors can detect particular callers (such as 2512 * the NFS server) to a given vnode/vfs operation. 2513 */ 2514 u_longlong_t 2515 fs_new_caller_id() 2516 { 2517 static uint64_t next_caller_id = 0LL; /* First call returns 1 */ 2518 2519 return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1)); 2520 } 2521 2522 /* 2523 * Given a starting vnode and a path, updates the path in the target vnode in 2524 * a safe manner. If the vnode already has path information embedded, then the 2525 * cached path is left untouched. 2526 */ 2527 2528 size_t max_vnode_path = 4 * MAXPATHLEN; 2529 2530 void 2531 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp, 2532 const char *path, size_t plen) 2533 { 2534 char *rpath; 2535 vnode_t *base; 2536 size_t rpathlen, rpathalloc; 2537 int doslash = 1; 2538 2539 if (*path == '/') { 2540 base = rootvp; 2541 path++; 2542 plen--; 2543 } else { 2544 base = startvp; 2545 } 2546 2547 /* 2548 * We cannot grab base->v_lock while we hold vp->v_lock because of 2549 * the potential for deadlock. 2550 */ 2551 mutex_enter(&base->v_lock); 2552 if (base->v_path == NULL) { 2553 mutex_exit(&base->v_lock); 2554 return; 2555 } 2556 2557 rpathlen = strlen(base->v_path); 2558 rpathalloc = rpathlen + plen + 1; 2559 /* Avoid adding a slash if there's already one there */ 2560 if (base->v_path[rpathlen-1] == '/') 2561 doslash = 0; 2562 else 2563 rpathalloc++; 2564 2565 /* 2566 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held, 2567 * so we must do this dance. If, by chance, something changes the path, 2568 * just give up since there is no real harm. 2569 */ 2570 mutex_exit(&base->v_lock); 2571 2572 /* Paths should stay within reason */ 2573 if (rpathalloc > max_vnode_path) 2574 return; 2575 2576 rpath = kmem_alloc(rpathalloc, KM_SLEEP); 2577 2578 mutex_enter(&base->v_lock); 2579 if (base->v_path == NULL || strlen(base->v_path) != rpathlen) { 2580 mutex_exit(&base->v_lock); 2581 kmem_free(rpath, rpathalloc); 2582 return; 2583 } 2584 bcopy(base->v_path, rpath, rpathlen); 2585 mutex_exit(&base->v_lock); 2586 2587 if (doslash) 2588 rpath[rpathlen++] = '/'; 2589 bcopy(path, rpath + rpathlen, plen); 2590 rpath[rpathlen + plen] = '\0'; 2591 2592 mutex_enter(&vp->v_lock); 2593 if (vp->v_path != NULL) { 2594 mutex_exit(&vp->v_lock); 2595 kmem_free(rpath, rpathalloc); 2596 } else { 2597 vp->v_path = rpath; 2598 mutex_exit(&vp->v_lock); 2599 } 2600 } 2601 2602 /* 2603 * Sets the path to the vnode to be the given string, regardless of current 2604 * context. The string must be a complete path from rootdir. This is only used 2605 * by fsop_root() for setting the path based on the mountpoint. 2606 */ 2607 void 2608 vn_setpath_str(struct vnode *vp, const char *str, size_t len) 2609 { 2610 char *buf = kmem_alloc(len + 1, KM_SLEEP); 2611 2612 mutex_enter(&vp->v_lock); 2613 if (vp->v_path != NULL) { 2614 mutex_exit(&vp->v_lock); 2615 kmem_free(buf, len + 1); 2616 return; 2617 } 2618 2619 vp->v_path = buf; 2620 bcopy(str, vp->v_path, len); 2621 vp->v_path[len] = '\0'; 2622 2623 mutex_exit(&vp->v_lock); 2624 } 2625 2626 /* 2627 * Similar to vn_setpath_str(), this function sets the path of the destination 2628 * vnode to the be the same as the source vnode. 2629 */ 2630 void 2631 vn_copypath(struct vnode *src, struct vnode *dst) 2632 { 2633 char *buf; 2634 int alloc; 2635 2636 mutex_enter(&src->v_lock); 2637 if (src->v_path == NULL) { 2638 mutex_exit(&src->v_lock); 2639 return; 2640 } 2641 alloc = strlen(src->v_path) + 1; 2642 2643 /* avoid kmem_alloc() with lock held */ 2644 mutex_exit(&src->v_lock); 2645 buf = kmem_alloc(alloc, KM_SLEEP); 2646 mutex_enter(&src->v_lock); 2647 if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) { 2648 mutex_exit(&src->v_lock); 2649 kmem_free(buf, alloc); 2650 return; 2651 } 2652 bcopy(src->v_path, buf, alloc); 2653 mutex_exit(&src->v_lock); 2654 2655 mutex_enter(&dst->v_lock); 2656 if (dst->v_path != NULL) { 2657 mutex_exit(&dst->v_lock); 2658 kmem_free(buf, alloc); 2659 return; 2660 } 2661 dst->v_path = buf; 2662 mutex_exit(&dst->v_lock); 2663 } 2664 2665 /* 2666 * XXX Private interface for segvn routines that handle vnode 2667 * large page segments. 2668 * 2669 * return 1 if vp's file system VOP_PAGEIO() implementation 2670 * can be safely used instead of VOP_GETPAGE() for handling 2671 * pagefaults against regular non swap files. VOP_PAGEIO() 2672 * interface is considered safe here if its implementation 2673 * is very close to VOP_GETPAGE() implementation. 2674 * e.g. It zero's out the part of the page beyond EOF. Doesn't 2675 * panic if there're file holes but instead returns an error. 2676 * Doesn't assume file won't be changed by user writes, etc. 2677 * 2678 * return 0 otherwise. 2679 * 2680 * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs. 2681 */ 2682 int 2683 vn_vmpss_usepageio(vnode_t *vp) 2684 { 2685 vfs_t *vfsp = vp->v_vfsp; 2686 char *fsname = vfssw[vfsp->vfs_fstype].vsw_name; 2687 char *pageio_ok_fss[] = {"ufs", "nfs", NULL}; 2688 char **fsok = pageio_ok_fss; 2689 2690 if (fsname == NULL) { 2691 return (0); 2692 } 2693 2694 for (; *fsok; fsok++) { 2695 if (strcmp(*fsok, fsname) == 0) { 2696 return (1); 2697 } 2698 } 2699 return (0); 2700 } 2701 2702 /* VOP_XXX() macros call the corresponding fop_xxx() function */ 2703 2704 int 2705 fop_open( 2706 vnode_t **vpp, 2707 int mode, 2708 cred_t *cr) 2709 { 2710 int ret; 2711 vnode_t *vp = *vpp; 2712 2713 VN_HOLD(vp); 2714 /* 2715 * Adding to the vnode counts before calling open 2716 * avoids the need for a mutex. It circumvents a race 2717 * condition where a query made on the vnode counts results in a 2718 * false negative. The inquirer goes away believing the file is 2719 * not open when there is an open on the file already under way. 2720 * 2721 * The counts are meant to prevent NFS from granting a delegation 2722 * when it would be dangerous to do so. 2723 * 2724 * The vnode counts are only kept on regular files 2725 */ 2726 if ((*vpp)->v_type == VREG) { 2727 if (mode & FREAD) 2728 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2729 if (mode & FWRITE) 2730 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2731 } 2732 2733 VOPXID_MAP_CR(vp, cr); 2734 2735 ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr); 2736 2737 if (ret) { 2738 /* 2739 * Use the saved vp just in case the vnode ptr got trashed 2740 * by the error. 2741 */ 2742 VOPSTATS_UPDATE(vp, open); 2743 if ((vp->v_type == VREG) && (mode & FREAD)) 2744 atomic_add_32(&(vp->v_rdcnt), -1); 2745 if ((vp->v_type == VREG) && (mode & FWRITE)) 2746 atomic_add_32(&(vp->v_wrcnt), -1); 2747 } else { 2748 /* 2749 * Some filesystems will return a different vnode, 2750 * but the same path was still used to open it. 2751 * So if we do change the vnode and need to 2752 * copy over the path, do so here, rather than special 2753 * casing each filesystem. Adjust the vnode counts to 2754 * reflect the vnode switch. 2755 */ 2756 VOPSTATS_UPDATE(*vpp, open); 2757 if (*vpp != vp && *vpp != NULL) { 2758 vn_copypath(vp, *vpp); 2759 if (((*vpp)->v_type == VREG) && (mode & FREAD)) 2760 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2761 if ((vp->v_type == VREG) && (mode & FREAD)) 2762 atomic_add_32(&(vp->v_rdcnt), -1); 2763 if (((*vpp)->v_type == VREG) && (mode & FWRITE)) 2764 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2765 if ((vp->v_type == VREG) && (mode & FWRITE)) 2766 atomic_add_32(&(vp->v_wrcnt), -1); 2767 } 2768 } 2769 VN_RELE(vp); 2770 return (ret); 2771 } 2772 2773 int 2774 fop_close( 2775 vnode_t *vp, 2776 int flag, 2777 int count, 2778 offset_t offset, 2779 cred_t *cr) 2780 { 2781 int err; 2782 2783 VOPXID_MAP_CR(vp, cr); 2784 2785 err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr); 2786 VOPSTATS_UPDATE(vp, close); 2787 /* 2788 * Check passed in count to handle possible dups. Vnode counts are only 2789 * kept on regular files 2790 */ 2791 if ((vp->v_type == VREG) && (count == 1)) { 2792 if (flag & FREAD) { 2793 ASSERT(vp->v_rdcnt > 0); 2794 atomic_add_32(&(vp->v_rdcnt), -1); 2795 } 2796 if (flag & FWRITE) { 2797 ASSERT(vp->v_wrcnt > 0); 2798 atomic_add_32(&(vp->v_wrcnt), -1); 2799 } 2800 } 2801 return (err); 2802 } 2803 2804 int 2805 fop_read( 2806 vnode_t *vp, 2807 uio_t *uiop, 2808 int ioflag, 2809 cred_t *cr, 2810 struct caller_context *ct) 2811 { 2812 int err; 2813 ssize_t resid_start = uiop->uio_resid; 2814 2815 VOPXID_MAP_CR(vp, cr); 2816 2817 err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct); 2818 VOPSTATS_UPDATE_IO(vp, read, 2819 read_bytes, (resid_start - uiop->uio_resid)); 2820 return (err); 2821 } 2822 2823 int 2824 fop_write( 2825 vnode_t *vp, 2826 uio_t *uiop, 2827 int ioflag, 2828 cred_t *cr, 2829 struct caller_context *ct) 2830 { 2831 int err; 2832 ssize_t resid_start = uiop->uio_resid; 2833 2834 VOPXID_MAP_CR(vp, cr); 2835 2836 err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct); 2837 VOPSTATS_UPDATE_IO(vp, write, 2838 write_bytes, (resid_start - uiop->uio_resid)); 2839 return (err); 2840 } 2841 2842 int 2843 fop_ioctl( 2844 vnode_t *vp, 2845 int cmd, 2846 intptr_t arg, 2847 int flag, 2848 cred_t *cr, 2849 int *rvalp) 2850 { 2851 int err; 2852 2853 VOPXID_MAP_CR(vp, cr); 2854 2855 err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp); 2856 VOPSTATS_UPDATE(vp, ioctl); 2857 return (err); 2858 } 2859 2860 int 2861 fop_setfl( 2862 vnode_t *vp, 2863 int oflags, 2864 int nflags, 2865 cred_t *cr) 2866 { 2867 int err; 2868 2869 VOPXID_MAP_CR(vp, cr); 2870 2871 err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr); 2872 VOPSTATS_UPDATE(vp, setfl); 2873 return (err); 2874 } 2875 2876 int 2877 fop_getattr( 2878 vnode_t *vp, 2879 vattr_t *vap, 2880 int flags, 2881 cred_t *cr) 2882 { 2883 int err; 2884 2885 VOPXID_MAP_CR(vp, cr); 2886 2887 err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr); 2888 VOPSTATS_UPDATE(vp, getattr); 2889 return (err); 2890 } 2891 2892 int 2893 fop_setattr( 2894 vnode_t *vp, 2895 vattr_t *vap, 2896 int flags, 2897 cred_t *cr, 2898 caller_context_t *ct) 2899 { 2900 int err; 2901 2902 VOPXID_MAP_CR(vp, cr); 2903 2904 err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct); 2905 VOPSTATS_UPDATE(vp, setattr); 2906 return (err); 2907 } 2908 2909 int 2910 fop_access( 2911 vnode_t *vp, 2912 int mode, 2913 int flags, 2914 cred_t *cr) 2915 { 2916 int err; 2917 2918 VOPXID_MAP_CR(vp, cr); 2919 2920 err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr); 2921 VOPSTATS_UPDATE(vp, access); 2922 return (err); 2923 } 2924 2925 int 2926 fop_lookup( 2927 vnode_t *dvp, 2928 char *nm, 2929 vnode_t **vpp, 2930 pathname_t *pnp, 2931 int flags, 2932 vnode_t *rdir, 2933 cred_t *cr) 2934 { 2935 int ret; 2936 2937 VOPXID_MAP_CR(dvp, cr); 2938 2939 ret = (*(dvp)->v_op->vop_lookup)(dvp, nm, vpp, pnp, flags, rdir, cr); 2940 if (ret == 0 && *vpp) { 2941 VOPSTATS_UPDATE(*vpp, lookup); 2942 if ((*vpp)->v_path == NULL) { 2943 vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm)); 2944 } 2945 } 2946 2947 return (ret); 2948 } 2949 2950 int 2951 fop_create( 2952 vnode_t *dvp, 2953 char *name, 2954 vattr_t *vap, 2955 vcexcl_t excl, 2956 int mode, 2957 vnode_t **vpp, 2958 cred_t *cr, 2959 int flag) 2960 { 2961 int ret; 2962 2963 VOPXID_MAP_CR(dvp, cr); 2964 2965 ret = (*(dvp)->v_op->vop_create) 2966 (dvp, name, vap, excl, mode, vpp, cr, flag); 2967 if (ret == 0 && *vpp) { 2968 VOPSTATS_UPDATE(*vpp, create); 2969 if ((*vpp)->v_path == NULL) { 2970 vn_setpath(rootdir, dvp, *vpp, name, strlen(name)); 2971 } 2972 } 2973 2974 return (ret); 2975 } 2976 2977 int 2978 fop_remove( 2979 vnode_t *dvp, 2980 char *nm, 2981 cred_t *cr) 2982 { 2983 int err; 2984 2985 VOPXID_MAP_CR(dvp, cr); 2986 2987 err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr); 2988 VOPSTATS_UPDATE(dvp, remove); 2989 return (err); 2990 } 2991 2992 int 2993 fop_link( 2994 vnode_t *tdvp, 2995 vnode_t *svp, 2996 char *tnm, 2997 cred_t *cr) 2998 { 2999 int err; 3000 3001 VOPXID_MAP_CR(tdvp, cr); 3002 3003 err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr); 3004 VOPSTATS_UPDATE(tdvp, link); 3005 return (err); 3006 } 3007 3008 int 3009 fop_rename( 3010 vnode_t *sdvp, 3011 char *snm, 3012 vnode_t *tdvp, 3013 char *tnm, 3014 cred_t *cr) 3015 { 3016 int err; 3017 3018 VOPXID_MAP_CR(tdvp, cr); 3019 3020 err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr); 3021 VOPSTATS_UPDATE(sdvp, rename); 3022 return (err); 3023 } 3024 3025 int 3026 fop_mkdir( 3027 vnode_t *dvp, 3028 char *dirname, 3029 vattr_t *vap, 3030 vnode_t **vpp, 3031 cred_t *cr) 3032 { 3033 int ret; 3034 3035 VOPXID_MAP_CR(dvp, cr); 3036 3037 ret = (*(dvp)->v_op->vop_mkdir)(dvp, dirname, vap, vpp, cr); 3038 if (ret == 0 && *vpp) { 3039 VOPSTATS_UPDATE(*vpp, mkdir); 3040 if ((*vpp)->v_path == NULL) { 3041 vn_setpath(rootdir, dvp, *vpp, dirname, 3042 strlen(dirname)); 3043 } 3044 } 3045 3046 return (ret); 3047 } 3048 3049 int 3050 fop_rmdir( 3051 vnode_t *dvp, 3052 char *nm, 3053 vnode_t *cdir, 3054 cred_t *cr) 3055 { 3056 int err; 3057 3058 VOPXID_MAP_CR(dvp, cr); 3059 3060 err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr); 3061 VOPSTATS_UPDATE(dvp, rmdir); 3062 return (err); 3063 } 3064 3065 int 3066 fop_readdir( 3067 vnode_t *vp, 3068 uio_t *uiop, 3069 cred_t *cr, 3070 int *eofp) 3071 { 3072 int err; 3073 ssize_t resid_start = uiop->uio_resid; 3074 3075 VOPXID_MAP_CR(vp, cr); 3076 3077 err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp); 3078 VOPSTATS_UPDATE_IO(vp, readdir, 3079 readdir_bytes, (resid_start - uiop->uio_resid)); 3080 return (err); 3081 } 3082 3083 int 3084 fop_symlink( 3085 vnode_t *dvp, 3086 char *linkname, 3087 vattr_t *vap, 3088 char *target, 3089 cred_t *cr) 3090 { 3091 int err; 3092 3093 VOPXID_MAP_CR(dvp, cr); 3094 3095 err = (*(dvp)->v_op->vop_symlink) (dvp, linkname, vap, target, cr); 3096 VOPSTATS_UPDATE(dvp, symlink); 3097 return (err); 3098 } 3099 3100 int 3101 fop_readlink( 3102 vnode_t *vp, 3103 uio_t *uiop, 3104 cred_t *cr) 3105 { 3106 int err; 3107 3108 VOPXID_MAP_CR(vp, cr); 3109 3110 err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr); 3111 VOPSTATS_UPDATE(vp, readlink); 3112 return (err); 3113 } 3114 3115 int 3116 fop_fsync( 3117 vnode_t *vp, 3118 int syncflag, 3119 cred_t *cr) 3120 { 3121 int err; 3122 3123 VOPXID_MAP_CR(vp, cr); 3124 3125 err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr); 3126 VOPSTATS_UPDATE(vp, fsync); 3127 return (err); 3128 } 3129 3130 void 3131 fop_inactive( 3132 vnode_t *vp, 3133 cred_t *cr) 3134 { 3135 /* Need to update stats before vop call since we may lose the vnode */ 3136 VOPSTATS_UPDATE(vp, inactive); 3137 3138 VOPXID_MAP_CR(vp, cr); 3139 3140 (*(vp)->v_op->vop_inactive)(vp, cr); 3141 } 3142 3143 int 3144 fop_fid( 3145 vnode_t *vp, 3146 fid_t *fidp) 3147 { 3148 int err; 3149 3150 err = (*(vp)->v_op->vop_fid)(vp, fidp); 3151 VOPSTATS_UPDATE(vp, fid); 3152 return (err); 3153 } 3154 3155 int 3156 fop_rwlock( 3157 vnode_t *vp, 3158 int write_lock, 3159 caller_context_t *ct) 3160 { 3161 int ret; 3162 3163 ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct)); 3164 VOPSTATS_UPDATE(vp, rwlock); 3165 return (ret); 3166 } 3167 3168 void 3169 fop_rwunlock( 3170 vnode_t *vp, 3171 int write_lock, 3172 caller_context_t *ct) 3173 { 3174 (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct); 3175 VOPSTATS_UPDATE(vp, rwunlock); 3176 } 3177 3178 int 3179 fop_seek( 3180 vnode_t *vp, 3181 offset_t ooff, 3182 offset_t *noffp) 3183 { 3184 int err; 3185 3186 err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp); 3187 VOPSTATS_UPDATE(vp, seek); 3188 return (err); 3189 } 3190 3191 int 3192 fop_cmp( 3193 vnode_t *vp1, 3194 vnode_t *vp2) 3195 { 3196 int err; 3197 3198 err = (*(vp1)->v_op->vop_cmp)(vp1, vp2); 3199 VOPSTATS_UPDATE(vp1, cmp); 3200 return (err); 3201 } 3202 3203 int 3204 fop_frlock( 3205 vnode_t *vp, 3206 int cmd, 3207 flock64_t *bfp, 3208 int flag, 3209 offset_t offset, 3210 struct flk_callback *flk_cbp, 3211 cred_t *cr) 3212 { 3213 int err; 3214 3215 VOPXID_MAP_CR(vp, cr); 3216 3217 err = (*(vp)->v_op->vop_frlock) 3218 (vp, cmd, bfp, flag, offset, flk_cbp, cr); 3219 VOPSTATS_UPDATE(vp, frlock); 3220 return (err); 3221 } 3222 3223 int 3224 fop_space( 3225 vnode_t *vp, 3226 int cmd, 3227 flock64_t *bfp, 3228 int flag, 3229 offset_t offset, 3230 cred_t *cr, 3231 caller_context_t *ct) 3232 { 3233 int err; 3234 3235 VOPXID_MAP_CR(vp, cr); 3236 3237 err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct); 3238 VOPSTATS_UPDATE(vp, space); 3239 return (err); 3240 } 3241 3242 int 3243 fop_realvp( 3244 vnode_t *vp, 3245 vnode_t **vpp) 3246 { 3247 int err; 3248 3249 err = (*(vp)->v_op->vop_realvp)(vp, vpp); 3250 VOPSTATS_UPDATE(vp, realvp); 3251 return (err); 3252 } 3253 3254 int 3255 fop_getpage( 3256 vnode_t *vp, 3257 offset_t off, 3258 size_t len, 3259 uint_t *protp, 3260 page_t **plarr, 3261 size_t plsz, 3262 struct seg *seg, 3263 caddr_t addr, 3264 enum seg_rw rw, 3265 cred_t *cr) 3266 { 3267 int err; 3268 3269 VOPXID_MAP_CR(vp, cr); 3270 3271 err = (*(vp)->v_op->vop_getpage) 3272 (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr); 3273 VOPSTATS_UPDATE(vp, getpage); 3274 return (err); 3275 } 3276 3277 int 3278 fop_putpage( 3279 vnode_t *vp, 3280 offset_t off, 3281 size_t len, 3282 int flags, 3283 cred_t *cr) 3284 { 3285 int err; 3286 3287 VOPXID_MAP_CR(vp, cr); 3288 3289 err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr); 3290 VOPSTATS_UPDATE(vp, putpage); 3291 return (err); 3292 } 3293 3294 int 3295 fop_map( 3296 vnode_t *vp, 3297 offset_t off, 3298 struct as *as, 3299 caddr_t *addrp, 3300 size_t len, 3301 uchar_t prot, 3302 uchar_t maxprot, 3303 uint_t flags, 3304 cred_t *cr) 3305 { 3306 int err; 3307 3308 VOPXID_MAP_CR(vp, cr); 3309 3310 err = (*(vp)->v_op->vop_map) 3311 (vp, off, as, addrp, len, prot, maxprot, flags, cr); 3312 VOPSTATS_UPDATE(vp, map); 3313 return (err); 3314 } 3315 3316 int 3317 fop_addmap( 3318 vnode_t *vp, 3319 offset_t off, 3320 struct as *as, 3321 caddr_t addr, 3322 size_t len, 3323 uchar_t prot, 3324 uchar_t maxprot, 3325 uint_t flags, 3326 cred_t *cr) 3327 { 3328 int error; 3329 u_longlong_t delta; 3330 3331 VOPXID_MAP_CR(vp, cr); 3332 3333 error = (*(vp)->v_op->vop_addmap) 3334 (vp, off, as, addr, len, prot, maxprot, flags, cr); 3335 3336 if ((!error) && (vp->v_type == VREG)) { 3337 delta = (u_longlong_t)btopr(len); 3338 /* 3339 * If file is declared MAP_PRIVATE, it can't be written back 3340 * even if open for write. Handle as read. 3341 */ 3342 if (flags & MAP_PRIVATE) { 3343 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3344 (int64_t)delta); 3345 } else { 3346 /* 3347 * atomic_add_64 forces the fetch of a 64 bit value to 3348 * be atomic on 32 bit machines 3349 */ 3350 if (maxprot & PROT_WRITE) 3351 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3352 (int64_t)delta); 3353 if (maxprot & PROT_READ) 3354 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3355 (int64_t)delta); 3356 if (maxprot & PROT_EXEC) 3357 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3358 (int64_t)delta); 3359 } 3360 } 3361 VOPSTATS_UPDATE(vp, addmap); 3362 return (error); 3363 } 3364 3365 int 3366 fop_delmap( 3367 vnode_t *vp, 3368 offset_t off, 3369 struct as *as, 3370 caddr_t addr, 3371 size_t len, 3372 uint_t prot, 3373 uint_t maxprot, 3374 uint_t flags, 3375 cred_t *cr) 3376 { 3377 int error; 3378 u_longlong_t delta; 3379 3380 VOPXID_MAP_CR(vp, cr); 3381 3382 error = (*(vp)->v_op->vop_delmap) 3383 (vp, off, as, addr, len, prot, maxprot, flags, cr); 3384 3385 /* 3386 * NFS calls into delmap twice, the first time 3387 * it simply establishes a callback mechanism and returns EAGAIN 3388 * while the real work is being done upon the second invocation. 3389 * We have to detect this here and only decrement the counts upon 3390 * the second delmap request. 3391 */ 3392 if ((error != EAGAIN) && (vp->v_type == VREG)) { 3393 3394 delta = (u_longlong_t)btopr(len); 3395 3396 if (flags & MAP_PRIVATE) { 3397 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3398 (int64_t)(-delta)); 3399 } else { 3400 /* 3401 * atomic_add_64 forces the fetch of a 64 bit value 3402 * to be atomic on 32 bit machines 3403 */ 3404 if (maxprot & PROT_WRITE) 3405 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3406 (int64_t)(-delta)); 3407 if (maxprot & PROT_READ) 3408 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3409 (int64_t)(-delta)); 3410 if (maxprot & PROT_EXEC) 3411 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3412 (int64_t)(-delta)); 3413 } 3414 } 3415 VOPSTATS_UPDATE(vp, delmap); 3416 return (error); 3417 } 3418 3419 3420 int 3421 fop_poll( 3422 vnode_t *vp, 3423 short events, 3424 int anyyet, 3425 short *reventsp, 3426 struct pollhead **phpp) 3427 { 3428 int err; 3429 3430 err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp); 3431 VOPSTATS_UPDATE(vp, poll); 3432 return (err); 3433 } 3434 3435 int 3436 fop_dump( 3437 vnode_t *vp, 3438 caddr_t addr, 3439 int lbdn, 3440 int dblks) 3441 { 3442 int err; 3443 3444 err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks); 3445 VOPSTATS_UPDATE(vp, dump); 3446 return (err); 3447 } 3448 3449 int 3450 fop_pathconf( 3451 vnode_t *vp, 3452 int cmd, 3453 ulong_t *valp, 3454 cred_t *cr) 3455 { 3456 int err; 3457 3458 VOPXID_MAP_CR(vp, cr); 3459 3460 err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr); 3461 VOPSTATS_UPDATE(vp, pathconf); 3462 return (err); 3463 } 3464 3465 int 3466 fop_pageio( 3467 vnode_t *vp, 3468 struct page *pp, 3469 u_offset_t io_off, 3470 size_t io_len, 3471 int flags, 3472 cred_t *cr) 3473 { 3474 int err; 3475 3476 VOPXID_MAP_CR(vp, cr); 3477 3478 err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr); 3479 VOPSTATS_UPDATE(vp, pageio); 3480 return (err); 3481 } 3482 3483 int 3484 fop_dumpctl( 3485 vnode_t *vp, 3486 int action, 3487 int *blkp) 3488 { 3489 int err; 3490 err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp); 3491 VOPSTATS_UPDATE(vp, dumpctl); 3492 return (err); 3493 } 3494 3495 void 3496 fop_dispose( 3497 vnode_t *vp, 3498 page_t *pp, 3499 int flag, 3500 int dn, 3501 cred_t *cr) 3502 { 3503 /* Must do stats first since it's possible to lose the vnode */ 3504 VOPSTATS_UPDATE(vp, dispose); 3505 3506 VOPXID_MAP_CR(vp, cr); 3507 3508 (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr); 3509 } 3510 3511 int 3512 fop_setsecattr( 3513 vnode_t *vp, 3514 vsecattr_t *vsap, 3515 int flag, 3516 cred_t *cr) 3517 { 3518 int err; 3519 3520 VOPXID_MAP_CR(vp, cr); 3521 3522 err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr); 3523 VOPSTATS_UPDATE(vp, setsecattr); 3524 return (err); 3525 } 3526 3527 int 3528 fop_getsecattr( 3529 vnode_t *vp, 3530 vsecattr_t *vsap, 3531 int flag, 3532 cred_t *cr) 3533 { 3534 int err; 3535 3536 VOPXID_MAP_CR(vp, cr); 3537 3538 err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr); 3539 VOPSTATS_UPDATE(vp, getsecattr); 3540 return (err); 3541 } 3542 3543 int 3544 fop_shrlock( 3545 vnode_t *vp, 3546 int cmd, 3547 struct shrlock *shr, 3548 int flag, 3549 cred_t *cr) 3550 { 3551 int err; 3552 3553 VOPXID_MAP_CR(vp, cr); 3554 3555 err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr); 3556 VOPSTATS_UPDATE(vp, shrlock); 3557 return (err); 3558 } 3559 3560 int 3561 fop_vnevent(vnode_t *vp, vnevent_t vnevent) 3562 { 3563 int err; 3564 3565 err = (*(vp)->v_op->vop_vnevent)(vp, vnevent); 3566 VOPSTATS_UPDATE(vp, vnevent); 3567 return (err); 3568 } 3569