1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2017 RackTop Systems. 26 */ 27 28 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 29 /* All Rights Reserved */ 30 31 /* 32 * University Copyright- Copyright (c) 1982, 1986, 1988 33 * The Regents of the University of California 34 * All Rights Reserved 35 * 36 * University Acknowledgment- Portions of this document are derived from 37 * software developed by the University of California, Berkeley, and its 38 * contributors. 39 */ 40 41 #include <sys/types.h> 42 #include <sys/t_lock.h> 43 #include <sys/param.h> 44 #include <sys/errno.h> 45 #include <sys/user.h> 46 #include <sys/fstyp.h> 47 #include <sys/kmem.h> 48 #include <sys/systm.h> 49 #include <sys/proc.h> 50 #include <sys/mount.h> 51 #include <sys/vfs.h> 52 #include <sys/vfs_opreg.h> 53 #include <sys/fem.h> 54 #include <sys/mntent.h> 55 #include <sys/stat.h> 56 #include <sys/statvfs.h> 57 #include <sys/statfs.h> 58 #include <sys/cred.h> 59 #include <sys/vnode.h> 60 #include <sys/rwstlock.h> 61 #include <sys/dnlc.h> 62 #include <sys/file.h> 63 #include <sys/time.h> 64 #include <sys/atomic.h> 65 #include <sys/cmn_err.h> 66 #include <sys/buf.h> 67 #include <sys/swap.h> 68 #include <sys/debug.h> 69 #include <sys/vnode.h> 70 #include <sys/modctl.h> 71 #include <sys/ddi.h> 72 #include <sys/pathname.h> 73 #include <sys/bootconf.h> 74 #include <sys/dumphdr.h> 75 #include <sys/dc_ki.h> 76 #include <sys/poll.h> 77 #include <sys/sunddi.h> 78 #include <sys/sysmacros.h> 79 #include <sys/zone.h> 80 #include <sys/policy.h> 81 #include <sys/ctfs.h> 82 #include <sys/objfs.h> 83 #include <sys/console.h> 84 #include <sys/reboot.h> 85 #include <sys/attr.h> 86 #include <sys/zio.h> 87 #include <sys/spa.h> 88 #include <sys/lofi.h> 89 #include <sys/bootprops.h> 90 #include <sys/avl.h> 91 92 #include <vm/page.h> 93 94 #include <fs/fs_subr.h> 95 /* Private interfaces to create vopstats-related data structures */ 96 extern void initialize_vopstats(vopstats_t *); 97 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 98 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 99 100 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 101 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 102 const char *, int, int); 103 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 104 static void vfs_freemnttab(struct vfs *); 105 static void vfs_freeopt(mntopt_t *); 106 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 107 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 108 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 109 static void vfs_createopttbl_extend(mntopts_t *, const char *, 110 const mntopts_t *); 111 static char **vfs_copycancelopt_extend(char **const, int); 112 static void vfs_freecancelopt(char **); 113 static void getrootfs(char **, char **); 114 static int getmacpath(dev_info_t *, void *); 115 static void vfs_mnttabvp_setup(void); 116 117 struct ipmnt { 118 struct ipmnt *mip_next; 119 dev_t mip_dev; 120 struct vfs *mip_vfsp; 121 }; 122 123 static kmutex_t vfs_miplist_mutex; 124 static struct ipmnt *vfs_miplist = NULL; 125 static struct ipmnt *vfs_miplist_end = NULL; 126 127 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 128 129 /* 130 * VFS global data. 131 */ 132 vnode_t *rootdir; /* pointer to root inode vnode. */ 133 vnode_t *devicesdir; /* pointer to inode of devices root */ 134 vnode_t *devdir; /* pointer to inode of dev root */ 135 136 char *server_rootpath; /* root path for diskless clients */ 137 char *server_hostname; /* hostname of diskless server */ 138 139 static struct vfs root; 140 static struct vfs devices; 141 static struct vfs dev; 142 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 143 avl_tree_t vfs_by_dev; /* avl tree to index mounted VFSs by dev */ 144 avl_tree_t vfs_by_mntpnt; /* avl tree to index mounted VFSs by mntpnt */ 145 uint64_t vfs_curr_mntix; /* counter to provide a unique mntix for 146 * entries in the above avl trees. 147 * protected by vfslist lock */ 148 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 149 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 150 /* must be power of 2! */ 151 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 152 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 153 char *vfs_dummyfstype = "\0"; 154 struct pollhead vfs_pollhd; /* for mnttab pollers */ 155 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 156 int mntfstype; /* will be set once mnt fs is mounted */ 157 158 /* 159 * Table for generic options recognized in the VFS layer and acted 160 * on at this level before parsing file system specific options. 161 * The nosuid option is stronger than any of the devices and setuid 162 * options, so those are canceled when nosuid is seen. 163 * 164 * All options which are added here need to be added to the 165 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 166 */ 167 /* 168 * VFS Mount options table 169 */ 170 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 171 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 172 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 173 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 174 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 175 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 176 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 177 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 178 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 179 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 180 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 181 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 182 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 183 184 static const mntopt_t mntopts[] = { 185 /* 186 * option name cancel options default arg flags 187 */ 188 { MNTOPT_REMOUNT, NULL, NULL, 189 MO_NODISPLAY, (void *)0 }, 190 { MNTOPT_RO, ro_cancel, NULL, 0, 191 (void *)0 }, 192 { MNTOPT_RW, rw_cancel, NULL, 0, 193 (void *)0 }, 194 { MNTOPT_SUID, suid_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 199 (void *)0 }, 200 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 201 (void *)0 }, 202 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 203 (void *)0 }, 204 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 205 (void *)0 }, 206 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 207 (void *)0 }, 208 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 209 (void *)0 }, 210 { MNTOPT_EXEC, exec_cancel, NULL, 0, 211 (void *)0 }, 212 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 213 (void *)0 }, 214 }; 215 216 const mntopts_t vfs_mntopts = { 217 sizeof (mntopts) / sizeof (mntopt_t), 218 (mntopt_t *)&mntopts[0] 219 }; 220 221 /* 222 * File system operation dispatch functions. 223 */ 224 225 int 226 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 227 { 228 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 229 } 230 231 int 232 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 233 { 234 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 235 } 236 237 int 238 fsop_root(vfs_t *vfsp, vnode_t **vpp) 239 { 240 refstr_t *mntpt; 241 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 242 /* 243 * Make sure this root has a path. With lofs, it is possible to have 244 * a NULL mountpoint. 245 */ 246 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 247 mntpt = vfs_getmntpoint(vfsp); 248 vn_setpath_str(*vpp, refstr_value(mntpt), 249 strlen(refstr_value(mntpt))); 250 refstr_rele(mntpt); 251 } 252 253 return (ret); 254 } 255 256 int 257 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 258 { 259 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 260 } 261 262 int 263 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 264 { 265 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 266 } 267 268 int 269 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 270 { 271 /* 272 * In order to handle system attribute fids in a manner 273 * transparent to the underlying fs, we embed the fid for 274 * the sysattr parent object in the sysattr fid and tack on 275 * some extra bytes that only the sysattr layer knows about. 276 * 277 * This guarantees that sysattr fids are larger than other fids 278 * for this vfs. If the vfs supports the sysattr view interface 279 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 280 * collision with XATTR_FIDSZ. 281 */ 282 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 283 fidp->fid_len == XATTR_FIDSZ) 284 return (xattr_dir_vget(vfsp, vpp, fidp)); 285 286 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 287 } 288 289 int 290 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 291 { 292 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 293 } 294 295 void 296 fsop_freefs(vfs_t *vfsp) 297 { 298 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 299 } 300 301 int 302 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 303 { 304 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 305 } 306 307 int 308 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 309 { 310 ASSERT((fstype >= 0) && (fstype < nfstype)); 311 312 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 313 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 314 else 315 return (ENOTSUP); 316 } 317 318 /* 319 * File system initialization. vfs_setfsops() must be called from a file 320 * system's init routine. 321 */ 322 323 static int 324 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 325 int *unused_ops) 326 { 327 static const fs_operation_trans_def_t vfs_ops_table[] = { 328 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 329 fs_nosys, fs_nosys, 330 331 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 332 fs_nosys, fs_nosys, 333 334 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 335 fs_nosys, fs_nosys, 336 337 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 338 fs_nosys, fs_nosys, 339 340 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 341 (fs_generic_func_p) fs_sync, 342 (fs_generic_func_p) fs_sync, /* No errors allowed */ 343 344 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 345 fs_nosys, fs_nosys, 346 347 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 348 fs_nosys, fs_nosys, 349 350 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 351 (fs_generic_func_p)fs_freevfs, 352 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 353 354 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 355 (fs_generic_func_p)fs_nosys, 356 (fs_generic_func_p)fs_nosys, 357 358 NULL, 0, NULL, NULL 359 }; 360 361 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 362 } 363 364 void 365 zfs_boot_init() { 366 367 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 368 spa_boot_init(); 369 } 370 371 int 372 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 373 { 374 int error; 375 int unused_ops; 376 377 /* 378 * Verify that fstype refers to a valid fs. Note that 379 * 0 is valid since it's used to set "stray" ops. 380 */ 381 if ((fstype < 0) || (fstype >= nfstype)) 382 return (EINVAL); 383 384 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 385 return (EINVAL); 386 387 /* Set up the operations vector. */ 388 389 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 390 391 if (error != 0) 392 return (error); 393 394 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 395 396 if (actual != NULL) 397 *actual = &vfssw[fstype].vsw_vfsops; 398 399 #if DEBUG 400 if (unused_ops != 0) 401 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 402 "but not used", vfssw[fstype].vsw_name, unused_ops); 403 #endif 404 405 return (0); 406 } 407 408 int 409 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 410 { 411 int error; 412 int unused_ops; 413 414 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 415 416 error = fs_copyfsops(template, *actual, &unused_ops); 417 if (error != 0) { 418 kmem_free(*actual, sizeof (vfsops_t)); 419 *actual = NULL; 420 return (error); 421 } 422 423 return (0); 424 } 425 426 /* 427 * Free a vfsops structure created as a result of vfs_makefsops(). 428 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 429 * vfs_freevfsops_by_type(). 430 */ 431 void 432 vfs_freevfsops(vfsops_t *vfsops) 433 { 434 kmem_free(vfsops, sizeof (vfsops_t)); 435 } 436 437 /* 438 * Since the vfsops structure is part of the vfssw table and wasn't 439 * really allocated, we're not really freeing anything. We keep 440 * the name for consistency with vfs_freevfsops(). We do, however, 441 * need to take care of a little bookkeeping. 442 * NOTE: For a vfsops structure created by vfs_setfsops(), use 443 * vfs_freevfsops_by_type(). 444 */ 445 int 446 vfs_freevfsops_by_type(int fstype) 447 { 448 449 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 450 if ((fstype <= 0) || (fstype >= nfstype)) 451 return (EINVAL); 452 453 WLOCK_VFSSW(); 454 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 455 WUNLOCK_VFSSW(); 456 return (EINVAL); 457 } 458 459 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 460 WUNLOCK_VFSSW(); 461 462 return (0); 463 } 464 465 /* Support routines used to reference vfs_op */ 466 467 /* Set the operations vector for a vfs */ 468 void 469 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 470 { 471 vfsops_t *op; 472 473 ASSERT(vfsp != NULL); 474 ASSERT(vfsops != NULL); 475 476 op = vfsp->vfs_op; 477 membar_consumer(); 478 if (vfsp->vfs_femhead == NULL && 479 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) { 480 return; 481 } 482 fsem_setvfsops(vfsp, vfsops); 483 } 484 485 /* Retrieve the operations vector for a vfs */ 486 vfsops_t * 487 vfs_getops(vfs_t *vfsp) 488 { 489 vfsops_t *op; 490 491 ASSERT(vfsp != NULL); 492 493 op = vfsp->vfs_op; 494 membar_consumer(); 495 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 496 return (op); 497 } else { 498 return (fsem_getvfsops(vfsp)); 499 } 500 } 501 502 /* 503 * Returns non-zero (1) if the vfsops matches that of the vfs. 504 * Returns zero (0) if not. 505 */ 506 int 507 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 508 { 509 return (vfs_getops(vfsp) == vfsops); 510 } 511 512 /* 513 * Returns non-zero (1) if the file system has installed a non-default, 514 * non-error vfs_sync routine. Returns zero (0) otherwise. 515 */ 516 int 517 vfs_can_sync(vfs_t *vfsp) 518 { 519 /* vfs_sync() routine is not the default/error function */ 520 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 521 } 522 523 /* 524 * Initialize a vfs structure. 525 */ 526 void 527 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 528 { 529 /* Other initialization has been moved to vfs_alloc() */ 530 vfsp->vfs_count = 0; 531 vfsp->vfs_next = vfsp; 532 vfsp->vfs_prev = vfsp; 533 vfsp->vfs_zone_next = vfsp; 534 vfsp->vfs_zone_prev = vfsp; 535 vfsp->vfs_lofi_minor = 0; 536 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 537 vfsimpl_setup(vfsp); 538 vfsp->vfs_data = (data); 539 vfs_setops((vfsp), (op)); 540 } 541 542 /* 543 * Allocate and initialize the vfs implementation private data 544 * structure, vfs_impl_t. 545 */ 546 void 547 vfsimpl_setup(vfs_t *vfsp) 548 { 549 int i; 550 551 if (vfsp->vfs_implp != NULL) { 552 return; 553 } 554 555 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 556 /* Note that these are #define'd in vfs.h */ 557 vfsp->vfs_vskap = NULL; 558 vfsp->vfs_fstypevsp = NULL; 559 560 /* Set size of counted array, then zero the array */ 561 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 562 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 563 vfsp->vfs_featureset[i] = 0; 564 } 565 } 566 567 /* 568 * Release the vfs_impl_t structure, if it exists. Some unbundled 569 * filesystems may not use the newer version of vfs and thus 570 * would not contain this implementation private data structure. 571 */ 572 void 573 vfsimpl_teardown(vfs_t *vfsp) 574 { 575 vfs_impl_t *vip = vfsp->vfs_implp; 576 577 if (vip == NULL) 578 return; 579 580 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 581 vfsp->vfs_implp = NULL; 582 } 583 584 /* 585 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 586 * fstatvfs, and sysfs moved to common/syscall. 587 */ 588 589 /* 590 * Update every mounted file system. We call the vfs_sync operation of 591 * each file system type, passing it a NULL vfsp to indicate that all 592 * mounted file systems of that type should be updated. 593 */ 594 void 595 vfs_sync(int flag) 596 { 597 struct vfssw *vswp; 598 RLOCK_VFSSW(); 599 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 600 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 601 vfs_refvfssw(vswp); 602 RUNLOCK_VFSSW(); 603 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 604 CRED()); 605 vfs_unrefvfssw(vswp); 606 RLOCK_VFSSW(); 607 } 608 } 609 RUNLOCK_VFSSW(); 610 } 611 612 void 613 sync(void) 614 { 615 vfs_sync(0); 616 } 617 618 /* 619 * compare function for vfs_by_dev avl tree. compare dev first, then mntix 620 */ 621 static int 622 vfs_cmp_dev(const void *aa, const void *bb) 623 { 624 const vfs_t *a = aa; 625 const vfs_t *b = bb; 626 627 if (a->vfs_dev < b->vfs_dev) 628 return (-1); 629 if (a->vfs_dev > b->vfs_dev) 630 return (1); 631 if (a->vfs_mntix < b->vfs_mntix) 632 return (-1); 633 if (a->vfs_mntix > b->vfs_mntix) 634 return (1); 635 return (0); 636 } 637 638 /* 639 * compare function for vfs_by_mntpnt avl tree. compare mntpnt first, then mntix 640 */ 641 static int 642 vfs_cmp_mntpnt(const void *aa, const void *bb) 643 { 644 const vfs_t *a = aa; 645 const vfs_t *b = bb; 646 int ret; 647 648 ret = strcmp(refstr_value(a->vfs_mntpt), refstr_value(b->vfs_mntpt)); 649 if (ret < 0) 650 return (-1); 651 if (ret > 0) 652 return (1); 653 if (a->vfs_mntix < b->vfs_mntix) 654 return (-1); 655 if (a->vfs_mntix > b->vfs_mntix) 656 return (1); 657 return (0); 658 } 659 660 /* 661 * External routines. 662 */ 663 664 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 665 666 /* 667 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 668 * but otherwise should be accessed only via vfs_list_lock() and 669 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 670 */ 671 static krwlock_t vfslist; 672 673 /* 674 * Mount devfs on /devices. This is done right after root is mounted 675 * to provide device access support for the system 676 */ 677 static void 678 vfs_mountdevices(void) 679 { 680 struct vfssw *vsw; 681 struct vnode *mvp; 682 struct mounta mounta = { /* fake mounta for devfs_mount() */ 683 NULL, 684 NULL, 685 MS_SYSSPACE, 686 NULL, 687 NULL, 688 0, 689 NULL, 690 0 691 }; 692 693 /* 694 * _init devfs module to fill in the vfssw 695 */ 696 if (modload("fs", "devfs") == -1) 697 panic("Cannot _init devfs module"); 698 699 /* 700 * Hold vfs 701 */ 702 RLOCK_VFSSW(); 703 vsw = vfs_getvfsswbyname("devfs"); 704 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 705 VFS_HOLD(&devices); 706 707 /* 708 * Locate mount point 709 */ 710 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 711 panic("Cannot find /devices"); 712 713 /* 714 * Perform the mount of /devices 715 */ 716 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 717 panic("Cannot mount /devices"); 718 719 RUNLOCK_VFSSW(); 720 721 /* 722 * Set appropriate members and add to vfs list for mnttab display 723 */ 724 vfs_setresource(&devices, "/devices", 0); 725 vfs_setmntpoint(&devices, "/devices", 0); 726 727 /* 728 * Hold the root of /devices so it won't go away 729 */ 730 if (VFS_ROOT(&devices, &devicesdir)) 731 panic("vfs_mountdevices: not devices root"); 732 733 if (vfs_lock(&devices) != 0) { 734 VN_RELE(devicesdir); 735 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 736 return; 737 } 738 739 if (vn_vfswlock(mvp) != 0) { 740 vfs_unlock(&devices); 741 VN_RELE(devicesdir); 742 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 743 return; 744 } 745 746 vfs_add(mvp, &devices, 0); 747 vn_vfsunlock(mvp); 748 vfs_unlock(&devices); 749 VN_RELE(devicesdir); 750 } 751 752 /* 753 * mount the first instance of /dev to root and remain mounted 754 */ 755 static void 756 vfs_mountdev1(void) 757 { 758 struct vfssw *vsw; 759 struct vnode *mvp; 760 struct mounta mounta = { /* fake mounta for sdev_mount() */ 761 NULL, 762 NULL, 763 MS_SYSSPACE | MS_OVERLAY, 764 NULL, 765 NULL, 766 0, 767 NULL, 768 0 769 }; 770 771 /* 772 * _init dev module to fill in the vfssw 773 */ 774 if (modload("fs", "dev") == -1) 775 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 776 777 /* 778 * Hold vfs 779 */ 780 RLOCK_VFSSW(); 781 vsw = vfs_getvfsswbyname("dev"); 782 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 783 VFS_HOLD(&dev); 784 785 /* 786 * Locate mount point 787 */ 788 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 789 cmn_err(CE_PANIC, "Cannot find /dev\n"); 790 791 /* 792 * Perform the mount of /dev 793 */ 794 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 795 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 796 797 RUNLOCK_VFSSW(); 798 799 /* 800 * Set appropriate members and add to vfs list for mnttab display 801 */ 802 vfs_setresource(&dev, "/dev", 0); 803 vfs_setmntpoint(&dev, "/dev", 0); 804 805 /* 806 * Hold the root of /dev so it won't go away 807 */ 808 if (VFS_ROOT(&dev, &devdir)) 809 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 810 811 if (vfs_lock(&dev) != 0) { 812 VN_RELE(devdir); 813 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 814 return; 815 } 816 817 if (vn_vfswlock(mvp) != 0) { 818 vfs_unlock(&dev); 819 VN_RELE(devdir); 820 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 821 return; 822 } 823 824 vfs_add(mvp, &dev, 0); 825 vn_vfsunlock(mvp); 826 vfs_unlock(&dev); 827 VN_RELE(devdir); 828 } 829 830 /* 831 * Mount required filesystem. This is done right after root is mounted. 832 */ 833 static void 834 vfs_mountfs(char *module, char *spec, char *path) 835 { 836 struct vnode *mvp; 837 struct mounta mounta; 838 vfs_t *vfsp; 839 840 bzero(&mounta, sizeof (mounta)); 841 mounta.flags = MS_SYSSPACE | MS_DATA; 842 mounta.fstype = module; 843 mounta.spec = spec; 844 mounta.dir = path; 845 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 846 cmn_err(CE_WARN, "Cannot find %s", path); 847 return; 848 } 849 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 850 cmn_err(CE_WARN, "Cannot mount %s", path); 851 else 852 VFS_RELE(vfsp); 853 VN_RELE(mvp); 854 } 855 856 /* 857 * vfs_mountroot is called by main() to mount the root filesystem. 858 */ 859 void 860 vfs_mountroot(void) 861 { 862 struct vnode *rvp = NULL; 863 char *path; 864 size_t plen; 865 struct vfssw *vswp; 866 proc_t *p; 867 868 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 869 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 870 871 /* 872 * Alloc the avl trees for quick indexing via dev and mountpoint 873 */ 874 avl_create(&vfs_by_dev, vfs_cmp_dev, sizeof(vfs_t), 875 offsetof(vfs_t, vfs_avldev)); 876 avl_create(&vfs_by_mntpnt, vfs_cmp_mntpnt, sizeof(vfs_t), 877 offsetof(vfs_t, vfs_avlmntpnt)); 878 879 /* 880 * Alloc the vfs hash bucket array and locks 881 */ 882 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 883 884 /* 885 * Call machine-dependent routine "rootconf" to choose a root 886 * file system type. 887 */ 888 if (rootconf()) 889 panic("vfs_mountroot: cannot mount root"); 890 /* 891 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 892 * to point to it. These are used by lookuppn() so that it 893 * knows where to start from ('/' or '.'). 894 */ 895 vfs_setmntpoint(rootvfs, "/", 0); 896 if (VFS_ROOT(rootvfs, &rootdir)) 897 panic("vfs_mountroot: no root vnode"); 898 899 /* 900 * At this point, the process tree consists of p0 and possibly some 901 * direct children of p0. (i.e. there are no grandchildren) 902 * 903 * Walk through them all, setting their current directory. 904 */ 905 mutex_enter(&pidlock); 906 for (p = practive; p != NULL; p = p->p_next) { 907 ASSERT(p == &p0 || p->p_parent == &p0); 908 909 PTOU(p)->u_cdir = rootdir; 910 VN_HOLD(PTOU(p)->u_cdir); 911 PTOU(p)->u_rdir = NULL; 912 } 913 mutex_exit(&pidlock); 914 915 /* 916 * Setup the global zone's rootvp, now that it exists. 917 */ 918 global_zone->zone_rootvp = rootdir; 919 VN_HOLD(global_zone->zone_rootvp); 920 921 /* 922 * Notify the module code that it can begin using the 923 * root filesystem instead of the boot program's services. 924 */ 925 modrootloaded = 1; 926 927 /* 928 * Special handling for a ZFS root file system. 929 */ 930 zfs_boot_init(); 931 932 /* 933 * Set up mnttab information for root 934 */ 935 vfs_setresource(rootvfs, rootfs.bo_name, 0); 936 937 /* 938 * Notify cluster software that the root filesystem is available. 939 */ 940 clboot_mountroot(); 941 942 /* Now that we're all done with the root FS, set up its vopstats */ 943 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 944 /* Set flag for statistics collection */ 945 if (vswp->vsw_flag & VSW_STATS) { 946 initialize_vopstats(&rootvfs->vfs_vopstats); 947 rootvfs->vfs_flag |= VFS_STATS; 948 rootvfs->vfs_fstypevsp = 949 get_fstype_vopstats(rootvfs, vswp); 950 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 951 } 952 vfs_unrefvfssw(vswp); 953 } 954 955 /* 956 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 957 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 958 */ 959 vfs_mountdevices(); 960 vfs_mountdev1(); 961 962 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 963 vfs_mountfs("proc", "/proc", "/proc"); 964 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 965 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 966 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 967 vfs_mountfs("bootfs", "bootfs", "/system/boot"); 968 969 if (getzoneid() == GLOBAL_ZONEID) { 970 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 971 } 972 973 #ifdef __sparc 974 /* 975 * This bit of magic can go away when we convert sparc to 976 * the new boot architecture based on ramdisk. 977 * 978 * Booting off a mirrored root volume: 979 * At this point, we have booted and mounted root on a 980 * single component of the mirror. Complete the boot 981 * by configuring SVM and converting the root to the 982 * dev_t of the mirrored root device. This dev_t conversion 983 * only works because the underlying device doesn't change. 984 */ 985 if (root_is_svm) { 986 if (svm_rootconf()) { 987 panic("vfs_mountroot: cannot remount root"); 988 } 989 990 /* 991 * mnttab should reflect the new root device 992 */ 993 vfs_lock_wait(rootvfs); 994 vfs_setresource(rootvfs, rootfs.bo_name, 0); 995 vfs_unlock(rootvfs); 996 } 997 #endif /* __sparc */ 998 999 if (strcmp(rootfs.bo_fstype, "zfs") != 0) { 1000 /* 1001 * Look up the root device via devfs so that a dv_node is 1002 * created for it. The vnode is never VN_RELE()ed. 1003 * We allocate more than MAXPATHLEN so that the 1004 * buffer passed to i_ddi_prompath_to_devfspath() is 1005 * exactly MAXPATHLEN (the function expects a buffer 1006 * of that length). 1007 */ 1008 plen = strlen("/devices"); 1009 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 1010 (void) strcpy(path, "/devices"); 1011 1012 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 1013 != DDI_SUCCESS || 1014 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 1015 1016 /* NUL terminate in case "path" has garbage */ 1017 path[plen + MAXPATHLEN - 1] = '\0'; 1018 #ifdef DEBUG 1019 cmn_err(CE_WARN, "!Cannot lookup root device: %s", 1020 path); 1021 #endif 1022 } 1023 kmem_free(path, plen + MAXPATHLEN); 1024 } 1025 1026 vfs_mnttabvp_setup(); 1027 } 1028 1029 /* 1030 * Check to see if our "block device" is actually a file. If so, 1031 * automatically add a lofi device, and keep track of this fact. 1032 */ 1033 static int 1034 lofi_add(const char *fsname, struct vfs *vfsp, 1035 mntopts_t *mntopts, struct mounta *uap) 1036 { 1037 int fromspace = (uap->flags & MS_SYSSPACE) ? 1038 UIO_SYSSPACE : UIO_USERSPACE; 1039 struct lofi_ioctl *li = NULL; 1040 struct vnode *vp = NULL; 1041 struct pathname pn = { NULL }; 1042 ldi_ident_t ldi_id; 1043 ldi_handle_t ldi_hdl; 1044 vfssw_t *vfssw; 1045 int minor; 1046 int err = 0; 1047 1048 if ((vfssw = vfs_getvfssw(fsname)) == NULL) 1049 return (0); 1050 1051 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 1052 vfs_unrefvfssw(vfssw); 1053 return (0); 1054 } 1055 1056 vfs_unrefvfssw(vfssw); 1057 vfssw = NULL; 1058 1059 if (pn_get(uap->spec, fromspace, &pn) != 0) 1060 return (0); 1061 1062 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 1063 goto out; 1064 1065 if (vp->v_type != VREG) 1066 goto out; 1067 1068 /* OK, this is a lofi mount. */ 1069 1070 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1071 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1072 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1073 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1074 err = EINVAL; 1075 goto out; 1076 } 1077 1078 ldi_id = ldi_ident_from_anon(); 1079 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1080 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1081 1082 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1083 &ldi_hdl, ldi_id); 1084 1085 if (err) 1086 goto out2; 1087 1088 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1089 FREAD | FWRITE | FKIOCTL, kcred, &minor); 1090 1091 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1092 1093 if (!err) 1094 vfsp->vfs_lofi_minor = minor; 1095 1096 out2: 1097 ldi_ident_release(ldi_id); 1098 out: 1099 if (li != NULL) 1100 kmem_free(li, sizeof (*li)); 1101 if (vp != NULL) 1102 VN_RELE(vp); 1103 pn_free(&pn); 1104 return (err); 1105 } 1106 1107 static void 1108 lofi_remove(struct vfs *vfsp) 1109 { 1110 struct lofi_ioctl *li = NULL; 1111 ldi_ident_t ldi_id; 1112 ldi_handle_t ldi_hdl; 1113 int err; 1114 1115 if (vfsp->vfs_lofi_minor == 0) 1116 return; 1117 1118 ldi_id = ldi_ident_from_anon(); 1119 1120 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1121 li->li_minor = vfsp->vfs_lofi_minor; 1122 li->li_cleanup = B_TRUE; 1123 1124 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1125 &ldi_hdl, ldi_id); 1126 1127 if (err) 1128 goto out; 1129 1130 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1131 FREAD | FWRITE | FKIOCTL, kcred, NULL); 1132 1133 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1134 1135 if (!err) 1136 vfsp->vfs_lofi_minor = 0; 1137 1138 out: 1139 ldi_ident_release(ldi_id); 1140 if (li != NULL) 1141 kmem_free(li, sizeof (*li)); 1142 } 1143 1144 /* 1145 * Common mount code. Called from the system call entry point, from autofs, 1146 * nfsv4 trigger mounts, and from pxfs. 1147 * 1148 * Takes the effective file system type, mount arguments, the mount point 1149 * vnode, flags specifying whether the mount is a remount and whether it 1150 * should be entered into the vfs list, and credentials. Fills in its vfspp 1151 * parameter with the mounted file system instance's vfs. 1152 * 1153 * Note that the effective file system type is specified as a string. It may 1154 * be null, in which case it's determined from the mount arguments, and may 1155 * differ from the type specified in the mount arguments; this is a hook to 1156 * allow interposition when instantiating file system instances. 1157 * 1158 * The caller is responsible for releasing its own hold on the mount point 1159 * vp (this routine does its own hold when necessary). 1160 * Also note that for remounts, the mount point vp should be the vnode for 1161 * the root of the file system rather than the vnode that the file system 1162 * is mounted on top of. 1163 */ 1164 int 1165 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1166 struct vfs **vfspp) 1167 { 1168 struct vfssw *vswp; 1169 vfsops_t *vfsops; 1170 struct vfs *vfsp; 1171 struct vnode *bvp; 1172 dev_t bdev = 0; 1173 mntopts_t mnt_mntopts; 1174 int error = 0; 1175 int copyout_error = 0; 1176 int ovflags; 1177 char *opts = uap->optptr; 1178 char *inargs = opts; 1179 int optlen = uap->optlen; 1180 int remount; 1181 int rdonly; 1182 int nbmand = 0; 1183 int delmip = 0; 1184 int addmip = 0; 1185 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1186 int fromspace = (uap->flags & MS_SYSSPACE) ? 1187 UIO_SYSSPACE : UIO_USERSPACE; 1188 char *resource = NULL, *mountpt = NULL; 1189 refstr_t *oldresource, *oldmntpt; 1190 struct pathname pn, rpn; 1191 vsk_anchor_t *vskap; 1192 char fstname[FSTYPSZ]; 1193 zone_t *zone; 1194 1195 /* 1196 * The v_flag value for the mount point vp is permanently set 1197 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1198 * for mount point locking. 1199 */ 1200 mutex_enter(&vp->v_lock); 1201 vp->v_flag |= VVFSLOCK; 1202 mutex_exit(&vp->v_lock); 1203 1204 mnt_mntopts.mo_count = 0; 1205 /* 1206 * Find the ops vector to use to invoke the file system-specific mount 1207 * method. If the fsname argument is non-NULL, use it directly. 1208 * Otherwise, dig the file system type information out of the mount 1209 * arguments. 1210 * 1211 * A side effect is to hold the vfssw entry. 1212 * 1213 * Mount arguments can be specified in several ways, which are 1214 * distinguished by flag bit settings. The preferred way is to set 1215 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1216 * type supplied as a character string and the last two arguments 1217 * being a pointer to a character buffer and the size of the buffer. 1218 * On entry, the buffer holds a null terminated list of options; on 1219 * return, the string is the list of options the file system 1220 * recognized. If MS_DATA is set arguments five and six point to a 1221 * block of binary data which the file system interprets. 1222 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1223 * consistently with these conventions. To handle them, we check to 1224 * see whether the pointer to the file system name has a numeric value 1225 * less than 256. If so, we treat it as an index. 1226 */ 1227 if (fsname != NULL) { 1228 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1229 return (EINVAL); 1230 } 1231 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1232 size_t n; 1233 uint_t fstype; 1234 1235 fsname = fstname; 1236 1237 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1238 RLOCK_VFSSW(); 1239 if (fstype == 0 || fstype >= nfstype || 1240 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1241 RUNLOCK_VFSSW(); 1242 return (EINVAL); 1243 } 1244 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1245 RUNLOCK_VFSSW(); 1246 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1247 return (EINVAL); 1248 } else { 1249 /* 1250 * Handle either kernel or user address space. 1251 */ 1252 if (uap->flags & MS_SYSSPACE) { 1253 error = copystr(uap->fstype, fsname, 1254 FSTYPSZ, &n); 1255 } else { 1256 error = copyinstr(uap->fstype, fsname, 1257 FSTYPSZ, &n); 1258 } 1259 if (error) { 1260 if (error == ENAMETOOLONG) 1261 return (EINVAL); 1262 return (error); 1263 } 1264 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1265 return (EINVAL); 1266 } 1267 } else { 1268 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1269 return (EINVAL); 1270 fsname = vswp->vsw_name; 1271 } 1272 if (!VFS_INSTALLED(vswp)) 1273 return (EINVAL); 1274 1275 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) { 1276 vfs_unrefvfssw(vswp); 1277 return (error); 1278 } 1279 1280 vfsops = &vswp->vsw_vfsops; 1281 1282 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1283 /* 1284 * Fetch mount options and parse them for generic vfs options 1285 */ 1286 if (uap->flags & MS_OPTIONSTR) { 1287 /* 1288 * Limit the buffer size 1289 */ 1290 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1291 error = EINVAL; 1292 goto errout; 1293 } 1294 if ((uap->flags & MS_SYSSPACE) == 0) { 1295 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1296 inargs[0] = '\0'; 1297 if (optlen) { 1298 error = copyinstr(opts, inargs, (size_t)optlen, 1299 NULL); 1300 if (error) { 1301 goto errout; 1302 } 1303 } 1304 } 1305 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1306 } 1307 /* 1308 * Flag bits override the options string. 1309 */ 1310 if (uap->flags & MS_REMOUNT) 1311 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1312 if (uap->flags & MS_RDONLY) 1313 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1314 if (uap->flags & MS_NOSUID) 1315 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1316 1317 /* 1318 * Check if this is a remount; must be set in the option string and 1319 * the file system must support a remount option. 1320 */ 1321 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1322 MNTOPT_REMOUNT, NULL)) { 1323 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1324 error = ENOTSUP; 1325 goto errout; 1326 } 1327 uap->flags |= MS_REMOUNT; 1328 } 1329 1330 /* 1331 * uap->flags and vfs_optionisset() should agree. 1332 */ 1333 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1334 uap->flags |= MS_RDONLY; 1335 } 1336 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1337 uap->flags |= MS_NOSUID; 1338 } 1339 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1340 ASSERT(splice || !remount); 1341 /* 1342 * If we are splicing the fs into the namespace, 1343 * perform mount point checks. 1344 * 1345 * We want to resolve the path for the mount point to eliminate 1346 * '.' and ".." and symlinks in mount points; we can't do the 1347 * same for the resource string, since it would turn 1348 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1349 * this before grabbing vn_vfswlock(), because otherwise we 1350 * would deadlock with lookuppn(). 1351 */ 1352 if (splice) { 1353 ASSERT(vp->v_count > 0); 1354 1355 /* 1356 * Pick up mount point and device from appropriate space. 1357 */ 1358 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1359 resource = kmem_alloc(pn.pn_pathlen + 1, 1360 KM_SLEEP); 1361 (void) strcpy(resource, pn.pn_path); 1362 pn_free(&pn); 1363 } 1364 /* 1365 * Do a lookupname prior to taking the 1366 * writelock. Mark this as completed if 1367 * successful for later cleanup and addition to 1368 * the mount in progress table. 1369 */ 1370 if ((uap->flags & MS_GLOBAL) == 0 && 1371 lookupname(uap->spec, fromspace, 1372 FOLLOW, NULL, &bvp) == 0) { 1373 addmip = 1; 1374 } 1375 1376 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1377 pathname_t *pnp; 1378 1379 if (*pn.pn_path != '/') { 1380 error = EINVAL; 1381 pn_free(&pn); 1382 goto errout; 1383 } 1384 pn_alloc(&rpn); 1385 /* 1386 * Kludge to prevent autofs from deadlocking with 1387 * itself when it calls domount(). 1388 * 1389 * If autofs is calling, it is because it is doing 1390 * (autofs) mounts in the process of an NFS mount. A 1391 * lookuppn() here would cause us to block waiting for 1392 * said NFS mount to complete, which can't since this 1393 * is the thread that was supposed to doing it. 1394 */ 1395 if (fromspace == UIO_USERSPACE) { 1396 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1397 NULL)) == 0) { 1398 pnp = &rpn; 1399 } else { 1400 /* 1401 * The file disappeared or otherwise 1402 * became inaccessible since we opened 1403 * it; might as well fail the mount 1404 * since the mount point is no longer 1405 * accessible. 1406 */ 1407 pn_free(&rpn); 1408 pn_free(&pn); 1409 goto errout; 1410 } 1411 } else { 1412 pnp = &pn; 1413 } 1414 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1415 (void) strcpy(mountpt, pnp->pn_path); 1416 1417 /* 1418 * If the addition of the zone's rootpath 1419 * would push us over a total path length 1420 * of MAXPATHLEN, we fail the mount with 1421 * ENAMETOOLONG, which is what we would have 1422 * gotten if we were trying to perform the same 1423 * mount in the global zone. 1424 * 1425 * strlen() doesn't count the trailing 1426 * '\0', but zone_rootpathlen counts both a 1427 * trailing '/' and the terminating '\0'. 1428 */ 1429 if ((curproc->p_zone->zone_rootpathlen - 1 + 1430 strlen(mountpt)) > MAXPATHLEN || 1431 (resource != NULL && 1432 (curproc->p_zone->zone_rootpathlen - 1 + 1433 strlen(resource)) > MAXPATHLEN)) { 1434 error = ENAMETOOLONG; 1435 } 1436 1437 pn_free(&rpn); 1438 pn_free(&pn); 1439 } 1440 1441 if (error) 1442 goto errout; 1443 1444 /* 1445 * Prevent path name resolution from proceeding past 1446 * the mount point. 1447 */ 1448 if (vn_vfswlock(vp) != 0) { 1449 error = EBUSY; 1450 goto errout; 1451 } 1452 1453 /* 1454 * Verify that it's legitimate to establish a mount on 1455 * the prospective mount point. 1456 */ 1457 if (vn_mountedvfs(vp) != NULL) { 1458 /* 1459 * The mount point lock was obtained after some 1460 * other thread raced through and established a mount. 1461 */ 1462 vn_vfsunlock(vp); 1463 error = EBUSY; 1464 goto errout; 1465 } 1466 if (vp->v_flag & VNOMOUNT) { 1467 vn_vfsunlock(vp); 1468 error = EINVAL; 1469 goto errout; 1470 } 1471 } 1472 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1473 uap->dataptr = NULL; 1474 uap->datalen = 0; 1475 } 1476 1477 /* 1478 * If this is a remount, we don't want to create a new VFS. 1479 * Instead, we pass the existing one with a remount flag. 1480 */ 1481 if (remount) { 1482 /* 1483 * Confirm that the mount point is the root vnode of the 1484 * file system that is being remounted. 1485 * This can happen if the user specifies a different 1486 * mount point directory pathname in the (re)mount command. 1487 * 1488 * Code below can only be reached if splice is true, so it's 1489 * safe to do vn_vfsunlock() here. 1490 */ 1491 if ((vp->v_flag & VROOT) == 0) { 1492 vn_vfsunlock(vp); 1493 error = ENOENT; 1494 goto errout; 1495 } 1496 /* 1497 * Disallow making file systems read-only unless file system 1498 * explicitly allows it in its vfssw. Ignore other flags. 1499 */ 1500 if (rdonly && vn_is_readonly(vp) == 0 && 1501 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1502 vn_vfsunlock(vp); 1503 error = EINVAL; 1504 goto errout; 1505 } 1506 /* 1507 * Disallow changing the NBMAND disposition of the file 1508 * system on remounts. 1509 */ 1510 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1511 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1512 vn_vfsunlock(vp); 1513 error = EINVAL; 1514 goto errout; 1515 } 1516 vfsp = vp->v_vfsp; 1517 ovflags = vfsp->vfs_flag; 1518 vfsp->vfs_flag |= VFS_REMOUNT; 1519 vfsp->vfs_flag &= ~VFS_RDONLY; 1520 } else { 1521 vfsp = vfs_alloc(KM_SLEEP); 1522 VFS_INIT(vfsp, vfsops, NULL); 1523 } 1524 1525 VFS_HOLD(vfsp); 1526 1527 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1528 if (!remount) { 1529 if (splice) 1530 vn_vfsunlock(vp); 1531 vfs_free(vfsp); 1532 } else { 1533 vn_vfsunlock(vp); 1534 VFS_RELE(vfsp); 1535 } 1536 goto errout; 1537 } 1538 1539 /* 1540 * PRIV_SYS_MOUNT doesn't mean you can become root. 1541 */ 1542 if (vfsp->vfs_lofi_minor != 0) { 1543 uap->flags |= MS_NOSUID; 1544 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1545 } 1546 1547 /* 1548 * The vfs_reflock is not used anymore the code below explicitly 1549 * holds it preventing others accesing it directly. 1550 */ 1551 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1552 !(vfsp->vfs_flag & VFS_REMOUNT)) 1553 cmn_err(CE_WARN, 1554 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1555 1556 /* 1557 * Lock the vfs. If this is a remount we want to avoid spurious umount 1558 * failures that happen as a side-effect of fsflush() and other mount 1559 * and unmount operations that might be going on simultaneously and 1560 * may have locked the vfs currently. To not return EBUSY immediately 1561 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1562 */ 1563 if (!remount) { 1564 if (error = vfs_lock(vfsp)) { 1565 vfsp->vfs_flag = ovflags; 1566 1567 lofi_remove(vfsp); 1568 1569 if (splice) 1570 vn_vfsunlock(vp); 1571 vfs_free(vfsp); 1572 goto errout; 1573 } 1574 } else { 1575 vfs_lock_wait(vfsp); 1576 } 1577 1578 /* 1579 * Add device to mount in progress table, global mounts require special 1580 * handling. It is possible that we have already done the lookupname 1581 * on a spliced, non-global fs. If so, we don't want to do it again 1582 * since we cannot do a lookupname after taking the 1583 * wlock above. This case is for a non-spliced, non-global filesystem. 1584 */ 1585 if (!addmip) { 1586 if ((uap->flags & MS_GLOBAL) == 0 && 1587 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1588 addmip = 1; 1589 } 1590 } 1591 1592 if (addmip) { 1593 vnode_t *lvp = NULL; 1594 1595 error = vfs_get_lofi(vfsp, &lvp); 1596 if (error > 0) { 1597 lofi_remove(vfsp); 1598 1599 if (splice) 1600 vn_vfsunlock(vp); 1601 vfs_unlock(vfsp); 1602 1603 if (remount) { 1604 VFS_RELE(vfsp); 1605 } else { 1606 vfs_free(vfsp); 1607 } 1608 1609 goto errout; 1610 } else if (error == -1) { 1611 bdev = bvp->v_rdev; 1612 VN_RELE(bvp); 1613 } else { 1614 bdev = lvp->v_rdev; 1615 VN_RELE(lvp); 1616 VN_RELE(bvp); 1617 } 1618 1619 vfs_addmip(bdev, vfsp); 1620 addmip = 0; 1621 delmip = 1; 1622 } 1623 /* 1624 * Invalidate cached entry for the mount point. 1625 */ 1626 if (splice) 1627 dnlc_purge_vp(vp); 1628 1629 /* 1630 * If have an option string but the filesystem doesn't supply a 1631 * prototype options table, create a table with the global 1632 * options and sufficient room to accept all the options in the 1633 * string. Then parse the passed in option string 1634 * accepting all the options in the string. This gives us an 1635 * option table with all the proper cancel properties for the 1636 * global options. 1637 * 1638 * Filesystems that supply a prototype options table are handled 1639 * earlier in this function. 1640 */ 1641 if (uap->flags & MS_OPTIONSTR) { 1642 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1643 mntopts_t tmp_mntopts; 1644 1645 tmp_mntopts.mo_count = 0; 1646 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1647 &mnt_mntopts); 1648 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1649 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1650 vfs_freeopttbl(&tmp_mntopts); 1651 } 1652 } 1653 1654 /* 1655 * Serialize with zone state transitions. 1656 * See vfs_list_add; zone mounted into is: 1657 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt)) 1658 * not the zone doing the mount (curproc->p_zone), but if we're already 1659 * inside a NGZ, then we know what zone we are. 1660 */ 1661 if (INGLOBALZONE(curproc)) { 1662 zone = zone_find_by_path(mountpt); 1663 ASSERT(zone != NULL); 1664 } else { 1665 zone = curproc->p_zone; 1666 /* 1667 * zone_find_by_path does a hold, so do one here too so that 1668 * we can do a zone_rele after mount_completed. 1669 */ 1670 zone_hold(zone); 1671 } 1672 mount_in_progress(zone); 1673 /* 1674 * Instantiate (or reinstantiate) the file system. If appropriate, 1675 * splice it into the file system name space. 1676 * 1677 * We want VFS_MOUNT() to be able to override the vfs_resource 1678 * string if necessary (ie, mntfs), and also for a remount to 1679 * change the same (necessary when remounting '/' during boot). 1680 * So we set up vfs_mntpt and vfs_resource to what we think they 1681 * should be, then hand off control to VFS_MOUNT() which can 1682 * override this. 1683 * 1684 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1685 * a vfs which is on the vfs list (i.e. during a remount), we must 1686 * never set those fields to NULL. Several bits of code make 1687 * assumptions that the fields are always valid. 1688 */ 1689 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1690 if (remount) { 1691 if ((oldresource = vfsp->vfs_resource) != NULL) 1692 refstr_hold(oldresource); 1693 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1694 refstr_hold(oldmntpt); 1695 } 1696 vfs_setresource(vfsp, resource, 0); 1697 vfs_setmntpoint(vfsp, mountpt, 0); 1698 1699 /* 1700 * going to mount on this vnode, so notify. 1701 */ 1702 vnevent_mountedover(vp, NULL); 1703 error = VFS_MOUNT(vfsp, vp, uap, credp); 1704 1705 if (uap->flags & MS_RDONLY) 1706 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1707 if (uap->flags & MS_NOSUID) 1708 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1709 if (uap->flags & MS_GLOBAL) 1710 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1711 1712 if (error) { 1713 lofi_remove(vfsp); 1714 1715 if (remount) { 1716 /* put back pre-remount options */ 1717 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1718 vfs_setmntpoint(vfsp, refstr_value(oldmntpt), 1719 VFSSP_VERBATIM); 1720 if (oldmntpt) 1721 refstr_rele(oldmntpt); 1722 vfs_setresource(vfsp, refstr_value(oldresource), 1723 VFSSP_VERBATIM); 1724 if (oldresource) 1725 refstr_rele(oldresource); 1726 vfsp->vfs_flag = ovflags; 1727 vfs_unlock(vfsp); 1728 VFS_RELE(vfsp); 1729 } else { 1730 vfs_unlock(vfsp); 1731 vfs_freemnttab(vfsp); 1732 vfs_free(vfsp); 1733 } 1734 } else { 1735 /* 1736 * Set the mount time to now 1737 */ 1738 vfsp->vfs_mtime = ddi_get_time(); 1739 if (remount) { 1740 vfsp->vfs_flag &= ~VFS_REMOUNT; 1741 if (oldresource) 1742 refstr_rele(oldresource); 1743 if (oldmntpt) 1744 refstr_rele(oldmntpt); 1745 } else if (splice) { 1746 /* 1747 * Link vfsp into the name space at the mount 1748 * point. Vfs_add() is responsible for 1749 * holding the mount point which will be 1750 * released when vfs_remove() is called. 1751 */ 1752 vfs_add(vp, vfsp, uap->flags); 1753 } else { 1754 /* 1755 * Hold the reference to file system which is 1756 * not linked into the name space. 1757 */ 1758 vfsp->vfs_zone = NULL; 1759 VFS_HOLD(vfsp); 1760 vfsp->vfs_vnodecovered = NULL; 1761 } 1762 /* 1763 * Set flags for global options encountered 1764 */ 1765 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1766 vfsp->vfs_flag |= VFS_RDONLY; 1767 else 1768 vfsp->vfs_flag &= ~VFS_RDONLY; 1769 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1770 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1771 } else { 1772 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1773 vfsp->vfs_flag |= VFS_NODEVICES; 1774 else 1775 vfsp->vfs_flag &= ~VFS_NODEVICES; 1776 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1777 vfsp->vfs_flag |= VFS_NOSETUID; 1778 else 1779 vfsp->vfs_flag &= ~VFS_NOSETUID; 1780 } 1781 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1782 vfsp->vfs_flag |= VFS_NBMAND; 1783 else 1784 vfsp->vfs_flag &= ~VFS_NBMAND; 1785 1786 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1787 vfsp->vfs_flag |= VFS_XATTR; 1788 else 1789 vfsp->vfs_flag &= ~VFS_XATTR; 1790 1791 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1792 vfsp->vfs_flag |= VFS_NOEXEC; 1793 else 1794 vfsp->vfs_flag &= ~VFS_NOEXEC; 1795 1796 /* 1797 * Now construct the output option string of options 1798 * we recognized. 1799 */ 1800 if (uap->flags & MS_OPTIONSTR) { 1801 vfs_list_read_lock(); 1802 copyout_error = vfs_buildoptionstr( 1803 &vfsp->vfs_mntopts, inargs, optlen); 1804 vfs_list_unlock(); 1805 if (copyout_error == 0 && 1806 (uap->flags & MS_SYSSPACE) == 0) { 1807 copyout_error = copyoutstr(inargs, opts, 1808 optlen, NULL); 1809 } 1810 } 1811 1812 /* 1813 * If this isn't a remount, set up the vopstats before 1814 * anyone can touch this. We only allow spliced file 1815 * systems (file systems which are in the namespace) to 1816 * have the VFS_STATS flag set. 1817 * NOTE: PxFS mounts the underlying file system with 1818 * MS_NOSPLICE set and copies those vfs_flags to its private 1819 * vfs structure. As a result, PxFS should never have 1820 * the VFS_STATS flag or else we might access the vfs 1821 * statistics-related fields prior to them being 1822 * properly initialized. 1823 */ 1824 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1825 initialize_vopstats(&vfsp->vfs_vopstats); 1826 /* 1827 * We need to set vfs_vskap to NULL because there's 1828 * a chance it won't be set below. This is checked 1829 * in teardown_vopstats() so we can't have garbage. 1830 */ 1831 vfsp->vfs_vskap = NULL; 1832 vfsp->vfs_flag |= VFS_STATS; 1833 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1834 } 1835 1836 if (vswp->vsw_flag & VSW_XID) 1837 vfsp->vfs_flag |= VFS_XID; 1838 1839 vfs_unlock(vfsp); 1840 } 1841 mount_completed(zone); 1842 zone_rele(zone); 1843 if (splice) 1844 vn_vfsunlock(vp); 1845 1846 if ((error == 0) && (copyout_error == 0)) { 1847 if (!remount) { 1848 /* 1849 * Don't call get_vskstat_anchor() while holding 1850 * locks since it allocates memory and calls 1851 * VFS_STATVFS(). For NFS, the latter can generate 1852 * an over-the-wire call. 1853 */ 1854 vskap = get_vskstat_anchor(vfsp); 1855 /* Only take the lock if we have something to do */ 1856 if (vskap != NULL) { 1857 vfs_lock_wait(vfsp); 1858 if (vfsp->vfs_flag & VFS_STATS) { 1859 vfsp->vfs_vskap = vskap; 1860 } 1861 vfs_unlock(vfsp); 1862 } 1863 } 1864 /* Return vfsp to caller. */ 1865 *vfspp = vfsp; 1866 } 1867 errout: 1868 vfs_freeopttbl(&mnt_mntopts); 1869 if (resource != NULL) 1870 kmem_free(resource, strlen(resource) + 1); 1871 if (mountpt != NULL) 1872 kmem_free(mountpt, strlen(mountpt) + 1); 1873 /* 1874 * It is possible we errored prior to adding to mount in progress 1875 * table. Must free vnode we acquired with successful lookupname. 1876 */ 1877 if (addmip) 1878 VN_RELE(bvp); 1879 if (delmip) 1880 vfs_delmip(vfsp); 1881 ASSERT(vswp != NULL); 1882 vfs_unrefvfssw(vswp); 1883 if (inargs != opts) 1884 kmem_free(inargs, MAX_MNTOPT_STR); 1885 if (copyout_error) { 1886 lofi_remove(vfsp); 1887 VFS_RELE(vfsp); 1888 error = copyout_error; 1889 } 1890 return (error); 1891 } 1892 1893 static void 1894 vfs_setpath( 1895 struct vfs *vfsp, /* vfs being updated */ 1896 refstr_t **refp, /* Ref-count string to contain the new path */ 1897 const char *newpath, /* Path to add to refp (above) */ 1898 uint32_t flag) /* flag */ 1899 { 1900 size_t len; 1901 refstr_t *ref; 1902 zone_t *zone = curproc->p_zone; 1903 char *sp; 1904 int have_list_lock = 0; 1905 1906 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1907 1908 /* 1909 * New path must be less than MAXPATHLEN because mntfs 1910 * will only display up to MAXPATHLEN bytes. This is currently 1911 * safe, because domount() uses pn_get(), and other callers 1912 * similarly cap the size to fewer than MAXPATHLEN bytes. 1913 */ 1914 1915 ASSERT(strlen(newpath) < MAXPATHLEN); 1916 1917 /* mntfs requires consistency while vfs list lock is held */ 1918 1919 if (VFS_ON_LIST(vfsp)) { 1920 have_list_lock = 1; 1921 vfs_list_lock(); 1922 } 1923 1924 if (*refp != NULL) 1925 refstr_rele(*refp); 1926 1927 /* 1928 * If we are in a non-global zone then we prefix the supplied path, 1929 * newpath, with the zone's root path, with two exceptions. The first 1930 * is where we have been explicitly directed to avoid doing so; this 1931 * will be the case following a failed remount, where the path supplied 1932 * will be a saved version which must now be restored. The second 1933 * exception is where newpath is not a pathname but a descriptive name, 1934 * e.g. "procfs". 1935 */ 1936 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') { 1937 ref = refstr_alloc(newpath); 1938 goto out; 1939 } 1940 1941 /* 1942 * Truncate the trailing '/' in the zoneroot, and merge 1943 * in the zone's rootpath with the "newpath" (resource 1944 * or mountpoint) passed in. 1945 * 1946 * The size of the required buffer is thus the size of 1947 * the buffer required for the passed-in newpath 1948 * (strlen(newpath) + 1), plus the size of the buffer 1949 * required to hold zone_rootpath (zone_rootpathlen) 1950 * minus one for one of the now-superfluous NUL 1951 * terminations, minus one for the trailing '/'. 1952 * 1953 * That gives us: 1954 * 1955 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1956 * 1957 * Which is what we have below. 1958 */ 1959 1960 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1961 sp = kmem_alloc(len, KM_SLEEP); 1962 1963 /* 1964 * Copy everything including the trailing slash, which 1965 * we then overwrite with the NUL character. 1966 */ 1967 1968 (void) strcpy(sp, zone->zone_rootpath); 1969 sp[zone->zone_rootpathlen - 2] = '\0'; 1970 (void) strcat(sp, newpath); 1971 1972 ref = refstr_alloc(sp); 1973 kmem_free(sp, len); 1974 out: 1975 *refp = ref; 1976 1977 if (have_list_lock) { 1978 vfs_mnttab_modtimeupd(); 1979 vfs_list_unlock(); 1980 } 1981 } 1982 1983 /* 1984 * Record a mounted resource name in a vfs structure. 1985 * If vfsp is already mounted, caller must hold the vfs lock. 1986 */ 1987 void 1988 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag) 1989 { 1990 if (resource == NULL || resource[0] == '\0') 1991 resource = VFS_NORESOURCE; 1992 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag); 1993 } 1994 1995 /* 1996 * Record a mount point name in a vfs structure. 1997 * If vfsp is already mounted, caller must hold the vfs lock. 1998 */ 1999 void 2000 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag) 2001 { 2002 if (mntpt == NULL || mntpt[0] == '\0') 2003 mntpt = VFS_NOMNTPT; 2004 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag); 2005 } 2006 2007 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 2008 2009 refstr_t * 2010 vfs_getresource(const struct vfs *vfsp) 2011 { 2012 refstr_t *resource; 2013 2014 vfs_list_read_lock(); 2015 resource = vfsp->vfs_resource; 2016 refstr_hold(resource); 2017 vfs_list_unlock(); 2018 2019 return (resource); 2020 } 2021 2022 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 2023 2024 refstr_t * 2025 vfs_getmntpoint(const struct vfs *vfsp) 2026 { 2027 refstr_t *mntpt; 2028 2029 vfs_list_read_lock(); 2030 mntpt = vfsp->vfs_mntpt; 2031 refstr_hold(mntpt); 2032 vfs_list_unlock(); 2033 2034 return (mntpt); 2035 } 2036 2037 /* 2038 * Create an empty options table with enough empty slots to hold all 2039 * The options in the options string passed as an argument. 2040 * Potentially prepend another options table. 2041 * 2042 * Note: caller is responsible for locking the vfs list, if needed, 2043 * to protect mops. 2044 */ 2045 static void 2046 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 2047 const mntopts_t *mtmpl) 2048 { 2049 const char *s = opts; 2050 uint_t count; 2051 2052 if (opts == NULL || *opts == '\0') { 2053 count = 0; 2054 } else { 2055 count = 1; 2056 2057 /* 2058 * Count number of options in the string 2059 */ 2060 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 2061 count++; 2062 s++; 2063 } 2064 } 2065 vfs_copyopttbl_extend(mtmpl, mops, count); 2066 } 2067 2068 /* 2069 * Create an empty options table with enough empty slots to hold all 2070 * The options in the options string passed as an argument. 2071 * 2072 * This function is *not* for general use by filesystems. 2073 * 2074 * Note: caller is responsible for locking the vfs list, if needed, 2075 * to protect mops. 2076 */ 2077 void 2078 vfs_createopttbl(mntopts_t *mops, const char *opts) 2079 { 2080 vfs_createopttbl_extend(mops, opts, NULL); 2081 } 2082 2083 2084 /* 2085 * Swap two mount options tables 2086 */ 2087 static void 2088 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2089 { 2090 uint_t tmpcnt; 2091 mntopt_t *tmplist; 2092 2093 tmpcnt = optbl2->mo_count; 2094 tmplist = optbl2->mo_list; 2095 optbl2->mo_count = optbl1->mo_count; 2096 optbl2->mo_list = optbl1->mo_list; 2097 optbl1->mo_count = tmpcnt; 2098 optbl1->mo_list = tmplist; 2099 } 2100 2101 static void 2102 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2103 { 2104 vfs_list_lock(); 2105 vfs_swapopttbl_nolock(optbl1, optbl2); 2106 vfs_mnttab_modtimeupd(); 2107 vfs_list_unlock(); 2108 } 2109 2110 static char ** 2111 vfs_copycancelopt_extend(char **const moc, int extend) 2112 { 2113 int i = 0; 2114 int j; 2115 char **result; 2116 2117 if (moc != NULL) { 2118 for (; moc[i] != NULL; i++) 2119 /* count number of options to cancel */; 2120 } 2121 2122 if (i + extend == 0) 2123 return (NULL); 2124 2125 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2126 2127 for (j = 0; j < i; j++) { 2128 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2129 (void) strcpy(result[j], moc[j]); 2130 } 2131 for (; j <= i + extend; j++) 2132 result[j] = NULL; 2133 2134 return (result); 2135 } 2136 2137 static void 2138 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2139 { 2140 char *sp, *dp; 2141 2142 d->mo_flags = s->mo_flags; 2143 d->mo_data = s->mo_data; 2144 sp = s->mo_name; 2145 if (sp != NULL) { 2146 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2147 (void) strcpy(dp, sp); 2148 d->mo_name = dp; 2149 } else { 2150 d->mo_name = NULL; /* should never happen */ 2151 } 2152 2153 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2154 2155 sp = s->mo_arg; 2156 if (sp != NULL) { 2157 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2158 (void) strcpy(dp, sp); 2159 d->mo_arg = dp; 2160 } else { 2161 d->mo_arg = NULL; 2162 } 2163 } 2164 2165 /* 2166 * Copy a mount options table, possibly allocating some spare 2167 * slots at the end. It is permissible to copy_extend the NULL table. 2168 */ 2169 static void 2170 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2171 { 2172 uint_t i, count; 2173 mntopt_t *motbl; 2174 2175 /* 2176 * Clear out any existing stuff in the options table being initialized 2177 */ 2178 vfs_freeopttbl(dmo); 2179 count = (smo == NULL) ? 0 : smo->mo_count; 2180 if ((count + extra) == 0) /* nothing to do */ 2181 return; 2182 dmo->mo_count = count + extra; 2183 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2184 dmo->mo_list = motbl; 2185 for (i = 0; i < count; i++) { 2186 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2187 } 2188 for (i = count; i < count + extra; i++) { 2189 motbl[i].mo_flags = MO_EMPTY; 2190 } 2191 } 2192 2193 /* 2194 * Copy a mount options table. 2195 * 2196 * This function is *not* for general use by filesystems. 2197 * 2198 * Note: caller is responsible for locking the vfs list, if needed, 2199 * to protect smo and dmo. 2200 */ 2201 void 2202 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2203 { 2204 vfs_copyopttbl_extend(smo, dmo, 0); 2205 } 2206 2207 static char ** 2208 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2209 { 2210 int c1 = 0; 2211 int c2 = 0; 2212 char **result; 2213 char **sp1, **sp2, **dp; 2214 2215 /* 2216 * First we count both lists of cancel options. 2217 * If either is NULL or has no elements, we return a copy of 2218 * the other. 2219 */ 2220 if (mop1->mo_cancel != NULL) { 2221 for (; mop1->mo_cancel[c1] != NULL; c1++) 2222 /* count cancel options in mop1 */; 2223 } 2224 2225 if (c1 == 0) 2226 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2227 2228 if (mop2->mo_cancel != NULL) { 2229 for (; mop2->mo_cancel[c2] != NULL; c2++) 2230 /* count cancel options in mop2 */; 2231 } 2232 2233 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2234 2235 if (c2 == 0) 2236 return (result); 2237 2238 /* 2239 * When we get here, we've got two sets of cancel options; 2240 * we need to merge the two sets. We know that the result 2241 * array has "c1+c2+1" entries and in the end we might shrink 2242 * it. 2243 * Result now has a copy of the c1 entries from mop1; we'll 2244 * now lookup all the entries of mop2 in mop1 and copy it if 2245 * it is unique. 2246 * This operation is O(n^2) but it's only called once per 2247 * filesystem per duplicate option. This is a situation 2248 * which doesn't arise with the filesystems in ON and 2249 * n is generally 1. 2250 */ 2251 2252 dp = &result[c1]; 2253 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2254 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2255 if (strcmp(*sp1, *sp2) == 0) 2256 break; 2257 } 2258 if (*sp1 == NULL) { 2259 /* 2260 * Option *sp2 not found in mop1, so copy it. 2261 * The calls to vfs_copycancelopt_extend() 2262 * guarantee that there's enough room. 2263 */ 2264 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2265 (void) strcpy(*dp++, *sp2); 2266 } 2267 } 2268 if (dp != &result[c1+c2]) { 2269 size_t bytes = (dp - result + 1) * sizeof (char *); 2270 char **nres = kmem_alloc(bytes, KM_SLEEP); 2271 2272 bcopy(result, nres, bytes); 2273 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2274 result = nres; 2275 } 2276 return (result); 2277 } 2278 2279 /* 2280 * Merge two mount option tables (outer and inner) into one. This is very 2281 * similar to "merging" global variables and automatic variables in C. 2282 * 2283 * This isn't (and doesn't have to be) fast. 2284 * 2285 * This function is *not* for general use by filesystems. 2286 * 2287 * Note: caller is responsible for locking the vfs list, if needed, 2288 * to protect omo, imo & dmo. 2289 */ 2290 void 2291 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2292 { 2293 uint_t i, count; 2294 mntopt_t *mop, *motbl; 2295 uint_t freeidx; 2296 2297 /* 2298 * First determine how much space we need to allocate. 2299 */ 2300 count = omo->mo_count; 2301 for (i = 0; i < imo->mo_count; i++) { 2302 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2303 continue; 2304 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2305 count++; 2306 } 2307 ASSERT(count >= omo->mo_count && 2308 count <= omo->mo_count + imo->mo_count); 2309 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2310 for (i = 0; i < omo->mo_count; i++) 2311 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2312 freeidx = omo->mo_count; 2313 for (i = 0; i < imo->mo_count; i++) { 2314 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2315 continue; 2316 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2317 char **newcanp; 2318 uint_t index = mop - omo->mo_list; 2319 2320 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2321 2322 vfs_freeopt(&motbl[index]); 2323 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2324 2325 vfs_freecancelopt(motbl[index].mo_cancel); 2326 motbl[index].mo_cancel = newcanp; 2327 } else { 2328 /* 2329 * If it's a new option, just copy it over to the first 2330 * free location. 2331 */ 2332 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2333 } 2334 } 2335 dmo->mo_count = count; 2336 dmo->mo_list = motbl; 2337 } 2338 2339 /* 2340 * Functions to set and clear mount options in a mount options table. 2341 */ 2342 2343 /* 2344 * Clear a mount option, if it exists. 2345 * 2346 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2347 * the vfs list. 2348 */ 2349 static void 2350 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2351 { 2352 struct mntopt *mop; 2353 uint_t i, count; 2354 2355 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2356 2357 count = mops->mo_count; 2358 for (i = 0; i < count; i++) { 2359 mop = &mops->mo_list[i]; 2360 2361 if (mop->mo_flags & MO_EMPTY) 2362 continue; 2363 if (strcmp(opt, mop->mo_name)) 2364 continue; 2365 mop->mo_flags &= ~MO_SET; 2366 if (mop->mo_arg != NULL) { 2367 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2368 } 2369 mop->mo_arg = NULL; 2370 if (update_mnttab) 2371 vfs_mnttab_modtimeupd(); 2372 break; 2373 } 2374 } 2375 2376 void 2377 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2378 { 2379 int gotlock = 0; 2380 2381 if (VFS_ON_LIST(vfsp)) { 2382 gotlock = 1; 2383 vfs_list_lock(); 2384 } 2385 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2386 if (gotlock) 2387 vfs_list_unlock(); 2388 } 2389 2390 2391 /* 2392 * Set a mount option on. If it's not found in the table, it's silently 2393 * ignored. If the option has MO_IGNORE set, it is still set unless the 2394 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2395 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2396 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2397 * MO_EMPTY set is created as the option passed in. 2398 * 2399 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2400 * the vfs list. 2401 */ 2402 static void 2403 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2404 const char *arg, int flags, int update_mnttab) 2405 { 2406 mntopt_t *mop; 2407 uint_t i, count; 2408 char *sp; 2409 2410 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2411 2412 if (flags & VFS_CREATEOPT) { 2413 if (vfs_hasopt(mops, opt) != NULL) { 2414 flags &= ~VFS_CREATEOPT; 2415 } 2416 } 2417 count = mops->mo_count; 2418 for (i = 0; i < count; i++) { 2419 mop = &mops->mo_list[i]; 2420 2421 if (mop->mo_flags & MO_EMPTY) { 2422 if ((flags & VFS_CREATEOPT) == 0) 2423 continue; 2424 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2425 (void) strcpy(sp, opt); 2426 mop->mo_name = sp; 2427 if (arg != NULL) 2428 mop->mo_flags = MO_HASVALUE; 2429 else 2430 mop->mo_flags = 0; 2431 } else if (strcmp(opt, mop->mo_name)) { 2432 continue; 2433 } 2434 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2435 break; 2436 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2437 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2438 (void) strcpy(sp, arg); 2439 } else { 2440 sp = NULL; 2441 } 2442 if (mop->mo_arg != NULL) 2443 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2444 mop->mo_arg = sp; 2445 if (flags & VFS_DISPLAY) 2446 mop->mo_flags &= ~MO_NODISPLAY; 2447 if (flags & VFS_NODISPLAY) 2448 mop->mo_flags |= MO_NODISPLAY; 2449 mop->mo_flags |= MO_SET; 2450 if (mop->mo_cancel != NULL) { 2451 char **cp; 2452 2453 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2454 vfs_clearmntopt_nolock(mops, *cp, 0); 2455 } 2456 if (update_mnttab) 2457 vfs_mnttab_modtimeupd(); 2458 break; 2459 } 2460 } 2461 2462 void 2463 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2464 { 2465 int gotlock = 0; 2466 2467 if (VFS_ON_LIST(vfsp)) { 2468 gotlock = 1; 2469 vfs_list_lock(); 2470 } 2471 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2472 if (gotlock) 2473 vfs_list_unlock(); 2474 } 2475 2476 2477 /* 2478 * Add a "tag" option to a mounted file system's options list. 2479 * 2480 * Note: caller is responsible for locking the vfs list, if needed, 2481 * to protect mops. 2482 */ 2483 static mntopt_t * 2484 vfs_addtag(mntopts_t *mops, const char *tag) 2485 { 2486 uint_t count; 2487 mntopt_t *mop, *motbl; 2488 2489 count = mops->mo_count + 1; 2490 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2491 if (mops->mo_count) { 2492 size_t len = (count - 1) * sizeof (mntopt_t); 2493 2494 bcopy(mops->mo_list, motbl, len); 2495 kmem_free(mops->mo_list, len); 2496 } 2497 mops->mo_count = count; 2498 mops->mo_list = motbl; 2499 mop = &motbl[count - 1]; 2500 mop->mo_flags = MO_TAG; 2501 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2502 (void) strcpy(mop->mo_name, tag); 2503 return (mop); 2504 } 2505 2506 /* 2507 * Allow users to set arbitrary "tags" in a vfs's mount options. 2508 * Broader use within the kernel is discouraged. 2509 */ 2510 int 2511 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2512 cred_t *cr) 2513 { 2514 vfs_t *vfsp; 2515 mntopts_t *mops; 2516 mntopt_t *mop; 2517 int found = 0; 2518 dev_t dev = makedevice(major, minor); 2519 int err = 0; 2520 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2521 2522 /* 2523 * Find the desired mounted file system 2524 */ 2525 vfs_list_lock(); 2526 vfsp = rootvfs; 2527 do { 2528 if (vfsp->vfs_dev == dev && 2529 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2530 found = 1; 2531 break; 2532 } 2533 vfsp = vfsp->vfs_next; 2534 } while (vfsp != rootvfs); 2535 2536 if (!found) { 2537 err = EINVAL; 2538 goto out; 2539 } 2540 err = secpolicy_fs_config(cr, vfsp); 2541 if (err != 0) 2542 goto out; 2543 2544 mops = &vfsp->vfs_mntopts; 2545 /* 2546 * Add tag if it doesn't already exist 2547 */ 2548 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2549 int len; 2550 2551 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2552 len = strlen(buf); 2553 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2554 err = ENAMETOOLONG; 2555 goto out; 2556 } 2557 mop = vfs_addtag(mops, tag); 2558 } 2559 if ((mop->mo_flags & MO_TAG) == 0) { 2560 err = EINVAL; 2561 goto out; 2562 } 2563 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2564 out: 2565 vfs_list_unlock(); 2566 kmem_free(buf, MAX_MNTOPT_STR); 2567 return (err); 2568 } 2569 2570 /* 2571 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2572 * Broader use within the kernel is discouraged. 2573 */ 2574 int 2575 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2576 cred_t *cr) 2577 { 2578 vfs_t *vfsp; 2579 mntopt_t *mop; 2580 int found = 0; 2581 dev_t dev = makedevice(major, minor); 2582 int err = 0; 2583 2584 /* 2585 * Find the desired mounted file system 2586 */ 2587 vfs_list_lock(); 2588 vfsp = rootvfs; 2589 do { 2590 if (vfsp->vfs_dev == dev && 2591 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2592 found = 1; 2593 break; 2594 } 2595 vfsp = vfsp->vfs_next; 2596 } while (vfsp != rootvfs); 2597 2598 if (!found) { 2599 err = EINVAL; 2600 goto out; 2601 } 2602 err = secpolicy_fs_config(cr, vfsp); 2603 if (err != 0) 2604 goto out; 2605 2606 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2607 err = EINVAL; 2608 goto out; 2609 } 2610 if ((mop->mo_flags & MO_TAG) == 0) { 2611 err = EINVAL; 2612 goto out; 2613 } 2614 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2615 out: 2616 vfs_list_unlock(); 2617 return (err); 2618 } 2619 2620 /* 2621 * Function to parse an option string and fill in a mount options table. 2622 * Unknown options are silently ignored. The input option string is modified 2623 * by replacing separators with nulls. If the create flag is set, options 2624 * not found in the table are just added on the fly. The table must have 2625 * an option slot marked MO_EMPTY to add an option on the fly. 2626 * 2627 * This function is *not* for general use by filesystems. 2628 * 2629 * Note: caller is responsible for locking the vfs list, if needed, 2630 * to protect mops.. 2631 */ 2632 void 2633 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2634 { 2635 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2636 int setflg = VFS_NOFORCEOPT; 2637 2638 if (osp == NULL) 2639 return; 2640 while (*s != '\0') { 2641 p = strchr(s, ','); /* find next option */ 2642 if (p == NULL) { 2643 cp = NULL; 2644 p = s + strlen(s); 2645 } else { 2646 cp = p; /* save location of comma */ 2647 *p++ = '\0'; /* mark end and point to next option */ 2648 } 2649 nextop = p; 2650 p = strchr(s, '='); /* look for value */ 2651 if (p == NULL) { 2652 valp = NULL; /* no value supplied */ 2653 } else { 2654 ep = p; /* save location of equals */ 2655 *p++ = '\0'; /* end option and point to value */ 2656 valp = p; 2657 } 2658 /* 2659 * set option into options table 2660 */ 2661 if (create) 2662 setflg |= VFS_CREATEOPT; 2663 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2664 if (cp != NULL) 2665 *cp = ','; /* restore the comma */ 2666 if (valp != NULL) 2667 *ep = '='; /* restore the equals */ 2668 s = nextop; 2669 } 2670 } 2671 2672 /* 2673 * Function to inquire if an option exists in a mount options table. 2674 * Returns a pointer to the option if it exists, else NULL. 2675 * 2676 * This function is *not* for general use by filesystems. 2677 * 2678 * Note: caller is responsible for locking the vfs list, if needed, 2679 * to protect mops. 2680 */ 2681 struct mntopt * 2682 vfs_hasopt(const mntopts_t *mops, const char *opt) 2683 { 2684 struct mntopt *mop; 2685 uint_t i, count; 2686 2687 count = mops->mo_count; 2688 for (i = 0; i < count; i++) { 2689 mop = &mops->mo_list[i]; 2690 2691 if (mop->mo_flags & MO_EMPTY) 2692 continue; 2693 if (strcmp(opt, mop->mo_name) == 0) 2694 return (mop); 2695 } 2696 return (NULL); 2697 } 2698 2699 /* 2700 * Function to inquire if an option is set in a mount options table. 2701 * Returns non-zero if set and fills in the arg pointer with a pointer to 2702 * the argument string or NULL if there is no argument string. 2703 */ 2704 static int 2705 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2706 { 2707 struct mntopt *mop; 2708 uint_t i, count; 2709 2710 count = mops->mo_count; 2711 for (i = 0; i < count; i++) { 2712 mop = &mops->mo_list[i]; 2713 2714 if (mop->mo_flags & MO_EMPTY) 2715 continue; 2716 if (strcmp(opt, mop->mo_name)) 2717 continue; 2718 if ((mop->mo_flags & MO_SET) == 0) 2719 return (0); 2720 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2721 *argp = mop->mo_arg; 2722 return (1); 2723 } 2724 return (0); 2725 } 2726 2727 2728 int 2729 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2730 { 2731 int ret; 2732 2733 vfs_list_read_lock(); 2734 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2735 vfs_list_unlock(); 2736 return (ret); 2737 } 2738 2739 2740 /* 2741 * Construct a comma separated string of the options set in the given 2742 * mount table, return the string in the given buffer. Return non-zero if 2743 * the buffer would overflow. 2744 * 2745 * This function is *not* for general use by filesystems. 2746 * 2747 * Note: caller is responsible for locking the vfs list, if needed, 2748 * to protect mp. 2749 */ 2750 int 2751 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2752 { 2753 char *cp; 2754 uint_t i; 2755 2756 buf[0] = '\0'; 2757 cp = buf; 2758 for (i = 0; i < mp->mo_count; i++) { 2759 struct mntopt *mop; 2760 2761 mop = &mp->mo_list[i]; 2762 if (mop->mo_flags & MO_SET) { 2763 int optlen, comma = 0; 2764 2765 if (buf[0] != '\0') 2766 comma = 1; 2767 optlen = strlen(mop->mo_name); 2768 if (strlen(buf) + comma + optlen + 1 > len) 2769 goto err; 2770 if (comma) 2771 *cp++ = ','; 2772 (void) strcpy(cp, mop->mo_name); 2773 cp += optlen; 2774 /* 2775 * Append option value if there is one 2776 */ 2777 if (mop->mo_arg != NULL) { 2778 int arglen; 2779 2780 arglen = strlen(mop->mo_arg); 2781 if (strlen(buf) + arglen + 2 > len) 2782 goto err; 2783 *cp++ = '='; 2784 (void) strcpy(cp, mop->mo_arg); 2785 cp += arglen; 2786 } 2787 } 2788 } 2789 return (0); 2790 err: 2791 return (EOVERFLOW); 2792 } 2793 2794 static void 2795 vfs_freecancelopt(char **moc) 2796 { 2797 if (moc != NULL) { 2798 int ccnt = 0; 2799 char **cp; 2800 2801 for (cp = moc; *cp != NULL; cp++) { 2802 kmem_free(*cp, strlen(*cp) + 1); 2803 ccnt++; 2804 } 2805 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2806 } 2807 } 2808 2809 static void 2810 vfs_freeopt(mntopt_t *mop) 2811 { 2812 if (mop->mo_name != NULL) 2813 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2814 2815 vfs_freecancelopt(mop->mo_cancel); 2816 2817 if (mop->mo_arg != NULL) 2818 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2819 } 2820 2821 /* 2822 * Free a mount options table 2823 * 2824 * This function is *not* for general use by filesystems. 2825 * 2826 * Note: caller is responsible for locking the vfs list, if needed, 2827 * to protect mp. 2828 */ 2829 void 2830 vfs_freeopttbl(mntopts_t *mp) 2831 { 2832 uint_t i, count; 2833 2834 count = mp->mo_count; 2835 for (i = 0; i < count; i++) { 2836 vfs_freeopt(&mp->mo_list[i]); 2837 } 2838 if (count) { 2839 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2840 mp->mo_count = 0; 2841 mp->mo_list = NULL; 2842 } 2843 } 2844 2845 2846 /* ARGSUSED */ 2847 static int 2848 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2849 caller_context_t *ct) 2850 { 2851 return (0); 2852 } 2853 2854 /* ARGSUSED */ 2855 static int 2856 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2857 caller_context_t *ct) 2858 { 2859 return (0); 2860 } 2861 2862 /* 2863 * The dummy vnode is currently used only by file events notification 2864 * module which is just interested in the timestamps. 2865 */ 2866 /* ARGSUSED */ 2867 static int 2868 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2869 caller_context_t *ct) 2870 { 2871 bzero(vap, sizeof (vattr_t)); 2872 vap->va_type = VREG; 2873 vap->va_nlink = 1; 2874 vap->va_ctime = vfs_mnttab_ctime; 2875 /* 2876 * it is ok to just copy mtime as the time will be monotonically 2877 * increasing. 2878 */ 2879 vap->va_mtime = vfs_mnttab_mtime; 2880 vap->va_atime = vap->va_mtime; 2881 return (0); 2882 } 2883 2884 static void 2885 vfs_mnttabvp_setup(void) 2886 { 2887 vnode_t *tvp; 2888 vnodeops_t *vfs_mntdummyvnops; 2889 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2890 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2891 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2892 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2893 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2894 NULL, NULL 2895 }; 2896 2897 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2898 &vfs_mntdummyvnops) != 0) { 2899 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2900 /* Shouldn't happen, but not bad enough to panic */ 2901 return; 2902 } 2903 2904 /* 2905 * A global dummy vnode is allocated to represent mntfs files. 2906 * The mntfs file (/etc/mnttab) can be monitored for file events 2907 * and receive an event when mnttab changes. Dummy VOP calls 2908 * will be made on this vnode. The file events notification module 2909 * intercepts this vnode and delivers relevant events. 2910 */ 2911 tvp = vn_alloc(KM_SLEEP); 2912 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2913 vn_setops(tvp, vfs_mntdummyvnops); 2914 tvp->v_type = VREG; 2915 /* 2916 * The mnt dummy ops do not reference v_data. 2917 * No other module intercepting this vnode should either. 2918 * Just set it to point to itself. 2919 */ 2920 tvp->v_data = (caddr_t)tvp; 2921 tvp->v_vfsp = rootvfs; 2922 vfs_mntdummyvp = tvp; 2923 } 2924 2925 /* 2926 * performs fake read/write ops 2927 */ 2928 static void 2929 vfs_mnttab_rwop(int rw) 2930 { 2931 struct uio uio; 2932 struct iovec iov; 2933 char buf[1]; 2934 2935 if (vfs_mntdummyvp == NULL) 2936 return; 2937 2938 bzero(&uio, sizeof (uio)); 2939 bzero(&iov, sizeof (iov)); 2940 iov.iov_base = buf; 2941 iov.iov_len = 0; 2942 uio.uio_iov = &iov; 2943 uio.uio_iovcnt = 1; 2944 uio.uio_loffset = 0; 2945 uio.uio_segflg = UIO_SYSSPACE; 2946 uio.uio_resid = 0; 2947 if (rw) { 2948 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2949 } else { 2950 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2951 } 2952 } 2953 2954 /* 2955 * Generate a write operation. 2956 */ 2957 void 2958 vfs_mnttab_writeop(void) 2959 { 2960 vfs_mnttab_rwop(1); 2961 } 2962 2963 /* 2964 * Generate a read operation. 2965 */ 2966 void 2967 vfs_mnttab_readop(void) 2968 { 2969 vfs_mnttab_rwop(0); 2970 } 2971 2972 /* 2973 * Free any mnttab information recorded in the vfs struct. 2974 * The vfs must not be on the vfs list. 2975 */ 2976 static void 2977 vfs_freemnttab(struct vfs *vfsp) 2978 { 2979 ASSERT(!VFS_ON_LIST(vfsp)); 2980 2981 /* 2982 * Free device and mount point information 2983 */ 2984 if (vfsp->vfs_mntpt != NULL) { 2985 refstr_rele(vfsp->vfs_mntpt); 2986 vfsp->vfs_mntpt = NULL; 2987 } 2988 if (vfsp->vfs_resource != NULL) { 2989 refstr_rele(vfsp->vfs_resource); 2990 vfsp->vfs_resource = NULL; 2991 } 2992 /* 2993 * Now free mount options information 2994 */ 2995 vfs_freeopttbl(&vfsp->vfs_mntopts); 2996 } 2997 2998 /* 2999 * Return the last mnttab modification time 3000 */ 3001 void 3002 vfs_mnttab_modtime(timespec_t *ts) 3003 { 3004 ASSERT(RW_LOCK_HELD(&vfslist)); 3005 *ts = vfs_mnttab_mtime; 3006 } 3007 3008 /* 3009 * See if mnttab is changed 3010 */ 3011 void 3012 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 3013 { 3014 int changed; 3015 3016 *phpp = (struct pollhead *)NULL; 3017 3018 /* 3019 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 3020 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 3021 * to not grab the vfs list lock because tv_sec is monotonically 3022 * increasing. 3023 */ 3024 3025 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 3026 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 3027 if (!changed) { 3028 *phpp = &vfs_pollhd; 3029 } 3030 } 3031 3032 /* Provide a unique and monotonically-increasing timestamp. */ 3033 void 3034 vfs_mono_time(timespec_t *ts) 3035 { 3036 static volatile hrtime_t hrt; /* The saved time. */ 3037 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */ 3038 timespec_t newts; 3039 3040 /* 3041 * Try gethrestime() first, but be prepared to fabricate a sensible 3042 * answer at the first sign of any trouble. 3043 */ 3044 gethrestime(&newts); 3045 newhrt = ts2hrt(&newts); 3046 for (;;) { 3047 oldhrt = hrt; 3048 if (newhrt <= hrt) 3049 newhrt = hrt + 1; 3050 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt) 3051 break; 3052 } 3053 hrt2ts(newhrt, ts); 3054 } 3055 3056 /* 3057 * Update the mnttab modification time and wake up any waiters for 3058 * mnttab changes 3059 */ 3060 void 3061 vfs_mnttab_modtimeupd() 3062 { 3063 hrtime_t oldhrt, newhrt; 3064 3065 ASSERT(RW_WRITE_HELD(&vfslist)); 3066 oldhrt = ts2hrt(&vfs_mnttab_mtime); 3067 gethrestime(&vfs_mnttab_mtime); 3068 newhrt = ts2hrt(&vfs_mnttab_mtime); 3069 if (oldhrt == (hrtime_t)0) 3070 vfs_mnttab_ctime = vfs_mnttab_mtime; 3071 /* 3072 * Attempt to provide unique mtime (like uniqtime but not). 3073 */ 3074 if (newhrt == oldhrt) { 3075 newhrt++; 3076 hrt2ts(newhrt, &vfs_mnttab_mtime); 3077 } 3078 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 3079 vfs_mnttab_writeop(); 3080 } 3081 3082 int 3083 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 3084 { 3085 vnode_t *coveredvp; 3086 int error; 3087 extern void teardown_vopstats(vfs_t *); 3088 3089 /* 3090 * Get covered vnode. This will be NULL if the vfs is not linked 3091 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3092 */ 3093 coveredvp = vfsp->vfs_vnodecovered; 3094 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3095 3096 /* 3097 * Purge all dnlc entries for this vfs. 3098 */ 3099 (void) dnlc_purge_vfsp(vfsp, 0); 3100 3101 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3102 if ((flag & MS_FORCE) == 0) 3103 (void) VFS_SYNC(vfsp, 0, cr); 3104 3105 /* 3106 * Lock the vfs to maintain fs status quo during unmount. This 3107 * has to be done after the sync because ufs_update tries to acquire 3108 * the vfs_reflock. 3109 */ 3110 vfs_lock_wait(vfsp); 3111 3112 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3113 vfs_unlock(vfsp); 3114 if (coveredvp != NULL) 3115 vn_vfsunlock(coveredvp); 3116 } else if (coveredvp != NULL) { 3117 teardown_vopstats(vfsp); 3118 /* 3119 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3120 * when it frees vfsp so we do a VN_HOLD() so we can 3121 * continue to use coveredvp afterwards. 3122 */ 3123 VN_HOLD(coveredvp); 3124 vfs_remove(vfsp); 3125 vn_vfsunlock(coveredvp); 3126 VN_RELE(coveredvp); 3127 } else { 3128 teardown_vopstats(vfsp); 3129 /* 3130 * Release the reference to vfs that is not linked 3131 * into the name space. 3132 */ 3133 vfs_unlock(vfsp); 3134 VFS_RELE(vfsp); 3135 } 3136 return (error); 3137 } 3138 3139 3140 /* 3141 * Vfs_unmountall() is called by uadmin() to unmount all 3142 * mounted file systems (except the root file system) during shutdown. 3143 * It follows the existing locking protocol when traversing the vfs list 3144 * to sync and unmount vfses. Even though there should be no 3145 * other thread running while the system is shutting down, it is prudent 3146 * to still follow the locking protocol. 3147 */ 3148 void 3149 vfs_unmountall(void) 3150 { 3151 struct vfs *vfsp; 3152 struct vfs *prev_vfsp = NULL; 3153 int error; 3154 3155 /* 3156 * Toss all dnlc entries now so that the per-vfs sync 3157 * and unmount operations don't have to slog through 3158 * a bunch of uninteresting vnodes over and over again. 3159 */ 3160 dnlc_purge(); 3161 3162 vfs_list_lock(); 3163 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3164 prev_vfsp = vfsp->vfs_prev; 3165 3166 if (vfs_lock(vfsp) != 0) 3167 continue; 3168 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3169 vfs_unlock(vfsp); 3170 if (error) 3171 continue; 3172 3173 vfs_list_unlock(); 3174 3175 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3176 (void) dounmount(vfsp, 0, CRED()); 3177 3178 /* 3179 * Since we dropped the vfslist lock above we must 3180 * verify that next_vfsp still exists, else start over. 3181 */ 3182 vfs_list_lock(); 3183 for (vfsp = rootvfs->vfs_prev; 3184 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3185 if (vfsp == prev_vfsp) 3186 break; 3187 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3188 prev_vfsp = rootvfs->vfs_prev; 3189 } 3190 vfs_list_unlock(); 3191 } 3192 3193 /* 3194 * Called to add an entry to the end of the vfs mount in progress list 3195 */ 3196 void 3197 vfs_addmip(dev_t dev, struct vfs *vfsp) 3198 { 3199 struct ipmnt *mipp; 3200 3201 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3202 mipp->mip_next = NULL; 3203 mipp->mip_dev = dev; 3204 mipp->mip_vfsp = vfsp; 3205 mutex_enter(&vfs_miplist_mutex); 3206 if (vfs_miplist_end != NULL) 3207 vfs_miplist_end->mip_next = mipp; 3208 else 3209 vfs_miplist = mipp; 3210 vfs_miplist_end = mipp; 3211 mutex_exit(&vfs_miplist_mutex); 3212 } 3213 3214 /* 3215 * Called to remove an entry from the mount in progress list 3216 * Either because the mount completed or it failed. 3217 */ 3218 void 3219 vfs_delmip(struct vfs *vfsp) 3220 { 3221 struct ipmnt *mipp, *mipprev; 3222 3223 mutex_enter(&vfs_miplist_mutex); 3224 mipprev = NULL; 3225 for (mipp = vfs_miplist; 3226 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3227 mipprev = mipp; 3228 } 3229 if (mipp == NULL) 3230 return; /* shouldn't happen */ 3231 if (mipp == vfs_miplist_end) 3232 vfs_miplist_end = mipprev; 3233 if (mipprev == NULL) 3234 vfs_miplist = mipp->mip_next; 3235 else 3236 mipprev->mip_next = mipp->mip_next; 3237 mutex_exit(&vfs_miplist_mutex); 3238 kmem_free(mipp, sizeof (struct ipmnt)); 3239 } 3240 3241 /* 3242 * vfs_add is called by a specific filesystem's mount routine to add 3243 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3244 * The vfs should already have been locked by the caller. 3245 * 3246 * coveredvp is NULL if this is the root. 3247 */ 3248 void 3249 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3250 { 3251 int newflag; 3252 3253 ASSERT(vfs_lock_held(vfsp)); 3254 VFS_HOLD(vfsp); 3255 newflag = vfsp->vfs_flag; 3256 if (mflag & MS_RDONLY) 3257 newflag |= VFS_RDONLY; 3258 else 3259 newflag &= ~VFS_RDONLY; 3260 if (mflag & MS_NOSUID) 3261 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3262 else 3263 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3264 if (mflag & MS_NOMNTTAB) 3265 newflag |= VFS_NOMNTTAB; 3266 else 3267 newflag &= ~VFS_NOMNTTAB; 3268 3269 if (coveredvp != NULL) { 3270 ASSERT(vn_vfswlock_held(coveredvp)); 3271 coveredvp->v_vfsmountedhere = vfsp; 3272 VN_HOLD(coveredvp); 3273 } 3274 vfsp->vfs_vnodecovered = coveredvp; 3275 vfsp->vfs_flag = newflag; 3276 3277 vfs_list_add(vfsp); 3278 } 3279 3280 /* 3281 * Remove a vfs from the vfs list, null out the pointer from the 3282 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3283 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3284 * reference to the vfs and to the covered vnode. 3285 * 3286 * Called from dounmount after it's confirmed with the file system 3287 * that the unmount is legal. 3288 */ 3289 void 3290 vfs_remove(struct vfs *vfsp) 3291 { 3292 vnode_t *vp; 3293 3294 ASSERT(vfs_lock_held(vfsp)); 3295 3296 /* 3297 * Can't unmount root. Should never happen because fs will 3298 * be busy. 3299 */ 3300 if (vfsp == rootvfs) 3301 panic("vfs_remove: unmounting root"); 3302 3303 vfs_list_remove(vfsp); 3304 3305 /* 3306 * Unhook from the file system name space. 3307 */ 3308 vp = vfsp->vfs_vnodecovered; 3309 ASSERT(vn_vfswlock_held(vp)); 3310 vp->v_vfsmountedhere = NULL; 3311 vfsp->vfs_vnodecovered = NULL; 3312 VN_RELE(vp); 3313 3314 /* 3315 * Release lock and wakeup anybody waiting. 3316 */ 3317 vfs_unlock(vfsp); 3318 VFS_RELE(vfsp); 3319 } 3320 3321 /* 3322 * Lock a filesystem to prevent access to it while mounting, 3323 * unmounting and syncing. Return EBUSY immediately if lock 3324 * can't be acquired. 3325 */ 3326 int 3327 vfs_lock(vfs_t *vfsp) 3328 { 3329 vn_vfslocks_entry_t *vpvfsentry; 3330 3331 vpvfsentry = vn_vfslocks_getlock(vfsp); 3332 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3333 return (0); 3334 3335 vn_vfslocks_rele(vpvfsentry); 3336 return (EBUSY); 3337 } 3338 3339 int 3340 vfs_rlock(vfs_t *vfsp) 3341 { 3342 vn_vfslocks_entry_t *vpvfsentry; 3343 3344 vpvfsentry = vn_vfslocks_getlock(vfsp); 3345 3346 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3347 return (0); 3348 3349 vn_vfslocks_rele(vpvfsentry); 3350 return (EBUSY); 3351 } 3352 3353 void 3354 vfs_lock_wait(vfs_t *vfsp) 3355 { 3356 vn_vfslocks_entry_t *vpvfsentry; 3357 3358 vpvfsentry = vn_vfslocks_getlock(vfsp); 3359 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3360 } 3361 3362 void 3363 vfs_rlock_wait(vfs_t *vfsp) 3364 { 3365 vn_vfslocks_entry_t *vpvfsentry; 3366 3367 vpvfsentry = vn_vfslocks_getlock(vfsp); 3368 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3369 } 3370 3371 /* 3372 * Unlock a locked filesystem. 3373 */ 3374 void 3375 vfs_unlock(vfs_t *vfsp) 3376 { 3377 vn_vfslocks_entry_t *vpvfsentry; 3378 3379 /* 3380 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3381 * And these changes should remain for the patch changes as it is. 3382 */ 3383 if (panicstr) 3384 return; 3385 3386 /* 3387 * ve_refcount needs to be dropped twice here. 3388 * 1. To release refernce after a call to vfs_locks_getlock() 3389 * 2. To release the reference from the locking routines like 3390 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3391 */ 3392 3393 vpvfsentry = vn_vfslocks_getlock(vfsp); 3394 vn_vfslocks_rele(vpvfsentry); 3395 3396 rwst_exit(&vpvfsentry->ve_lock); 3397 vn_vfslocks_rele(vpvfsentry); 3398 } 3399 3400 /* 3401 * Utility routine that allows a filesystem to construct its 3402 * fsid in "the usual way" - by munging some underlying dev_t and 3403 * the filesystem type number into the 64-bit fsid. Note that 3404 * this implicitly relies on dev_t persistence to make filesystem 3405 * id's persistent. 3406 * 3407 * There's nothing to prevent an individual fs from constructing its 3408 * fsid in a different way, and indeed they should. 3409 * 3410 * Since we want fsids to be 32-bit quantities (so that they can be 3411 * exported identically by either 32-bit or 64-bit APIs, as well as 3412 * the fact that fsid's are "known" to NFS), we compress the device 3413 * number given down to 32-bits, and panic if that isn't possible. 3414 */ 3415 void 3416 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3417 { 3418 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3419 panic("device number too big for fsid!"); 3420 fsi->val[1] = val; 3421 } 3422 3423 int 3424 vfs_lock_held(vfs_t *vfsp) 3425 { 3426 int held; 3427 vn_vfslocks_entry_t *vpvfsentry; 3428 3429 /* 3430 * vfs_lock_held will mimic sema_held behaviour 3431 * if panicstr is set. And these changes should remain 3432 * for the patch changes as it is. 3433 */ 3434 if (panicstr) 3435 return (1); 3436 3437 vpvfsentry = vn_vfslocks_getlock(vfsp); 3438 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3439 3440 vn_vfslocks_rele(vpvfsentry); 3441 return (held); 3442 } 3443 3444 struct _kthread * 3445 vfs_lock_owner(vfs_t *vfsp) 3446 { 3447 struct _kthread *owner; 3448 vn_vfslocks_entry_t *vpvfsentry; 3449 3450 /* 3451 * vfs_wlock_held will mimic sema_held behaviour 3452 * if panicstr is set. And these changes should remain 3453 * for the patch changes as it is. 3454 */ 3455 if (panicstr) 3456 return (NULL); 3457 3458 vpvfsentry = vn_vfslocks_getlock(vfsp); 3459 owner = rwst_owner(&vpvfsentry->ve_lock); 3460 3461 vn_vfslocks_rele(vpvfsentry); 3462 return (owner); 3463 } 3464 3465 /* 3466 * vfs list locking. 3467 * 3468 * Rather than manipulate the vfslist lock directly, we abstract into lock 3469 * and unlock routines to allow the locking implementation to be changed for 3470 * clustering. 3471 * 3472 * Whenever the vfs list is modified through its hash links, the overall list 3473 * lock must be obtained before locking the relevant hash bucket. But to see 3474 * whether a given vfs is on the list, it suffices to obtain the lock for the 3475 * hash bucket without getting the overall list lock. (See getvfs() below.) 3476 */ 3477 3478 void 3479 vfs_list_lock() 3480 { 3481 rw_enter(&vfslist, RW_WRITER); 3482 } 3483 3484 void 3485 vfs_list_read_lock() 3486 { 3487 rw_enter(&vfslist, RW_READER); 3488 } 3489 3490 void 3491 vfs_list_unlock() 3492 { 3493 rw_exit(&vfslist); 3494 } 3495 3496 /* 3497 * Low level worker routines for adding entries to and removing entries from 3498 * the vfs list. 3499 */ 3500 3501 static void 3502 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3503 { 3504 int vhno; 3505 struct vfs **hp; 3506 dev_t dev; 3507 3508 ASSERT(RW_WRITE_HELD(&vfslist)); 3509 3510 dev = expldev(vfsp->vfs_fsid.val[0]); 3511 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3512 3513 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3514 3515 /* 3516 * Link into the hash table, inserting it at the end, so that LOFS 3517 * with the same fsid as UFS (or other) file systems will not hide the 3518 * UFS. 3519 */ 3520 if (insert_at_head) { 3521 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3522 rvfs_list[vhno].rvfs_head = vfsp; 3523 } else { 3524 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3525 hp = &(*hp)->vfs_hash) 3526 continue; 3527 /* 3528 * hp now contains the address of the pointer to update 3529 * to effect the insertion. 3530 */ 3531 vfsp->vfs_hash = NULL; 3532 *hp = vfsp; 3533 } 3534 3535 rvfs_list[vhno].rvfs_len++; 3536 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3537 } 3538 3539 3540 static void 3541 vfs_hash_remove(struct vfs *vfsp) 3542 { 3543 int vhno; 3544 struct vfs *tvfsp; 3545 dev_t dev; 3546 3547 ASSERT(RW_WRITE_HELD(&vfslist)); 3548 3549 dev = expldev(vfsp->vfs_fsid.val[0]); 3550 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3551 3552 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3553 3554 /* 3555 * Remove from hash. 3556 */ 3557 if (rvfs_list[vhno].rvfs_head == vfsp) { 3558 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3559 rvfs_list[vhno].rvfs_len--; 3560 goto foundit; 3561 } 3562 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3563 tvfsp = tvfsp->vfs_hash) { 3564 if (tvfsp->vfs_hash == vfsp) { 3565 tvfsp->vfs_hash = vfsp->vfs_hash; 3566 rvfs_list[vhno].rvfs_len--; 3567 goto foundit; 3568 } 3569 } 3570 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3571 3572 foundit: 3573 3574 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3575 } 3576 3577 3578 void 3579 vfs_list_add(struct vfs *vfsp) 3580 { 3581 zone_t *zone; 3582 3583 /* 3584 * Typically, the vfs_t will have been created on behalf of the file 3585 * system in vfs_init, where it will have been provided with a 3586 * vfs_impl_t. This, however, might be lacking if the vfs_t was created 3587 * by an unbundled file system. We therefore check for such an example 3588 * before stamping the vfs_t with its creation time for the benefit of 3589 * mntfs. 3590 */ 3591 if (vfsp->vfs_implp == NULL) 3592 vfsimpl_setup(vfsp); 3593 vfs_mono_time(&vfsp->vfs_hrctime); 3594 3595 /* 3596 * The zone that owns the mount is the one that performed the mount. 3597 * Note that this isn't necessarily the same as the zone mounted into. 3598 * The corresponding zone_rele_ref() will be done when the vfs_t 3599 * is being free'd. 3600 */ 3601 vfsp->vfs_zone = curproc->p_zone; 3602 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref); 3603 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref, 3604 ZONE_REF_VFS); 3605 3606 /* 3607 * Find the zone mounted into, and put this mount on its vfs list. 3608 */ 3609 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3610 ASSERT(zone != NULL); 3611 /* 3612 * Special casing for the root vfs. This structure is allocated 3613 * statically and hooked onto rootvfs at link time. During the 3614 * vfs_mountroot call at system startup time, the root file system's 3615 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3616 * as argument. The code below must detect and handle this special 3617 * case. The only apparent justification for this special casing is 3618 * to ensure that the root file system appears at the head of the 3619 * list. 3620 * 3621 * XXX: I'm assuming that it's ok to do normal list locking when 3622 * adding the entry for the root file system (this used to be 3623 * done with no locks held). 3624 */ 3625 vfs_list_lock(); 3626 /* 3627 * Link into the vfs list proper. 3628 */ 3629 if (vfsp == &root) { 3630 /* 3631 * Assert: This vfs is already on the list as its first entry. 3632 * Thus, there's nothing to do. 3633 */ 3634 ASSERT(rootvfs == vfsp); 3635 /* 3636 * Add it to the head of the global zone's vfslist. 3637 */ 3638 ASSERT(zone == global_zone); 3639 ASSERT(zone->zone_vfslist == NULL); 3640 zone->zone_vfslist = vfsp; 3641 } else { 3642 /* 3643 * Link to end of list using vfs_prev (as rootvfs is now a 3644 * doubly linked circular list) so list is in mount order for 3645 * mnttab use. 3646 */ 3647 rootvfs->vfs_prev->vfs_next = vfsp; 3648 vfsp->vfs_prev = rootvfs->vfs_prev; 3649 rootvfs->vfs_prev = vfsp; 3650 vfsp->vfs_next = rootvfs; 3651 3652 /* 3653 * Do it again for the zone-private list (which may be NULL). 3654 */ 3655 if (zone->zone_vfslist == NULL) { 3656 ASSERT(zone != global_zone); 3657 zone->zone_vfslist = vfsp; 3658 } else { 3659 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3660 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3661 zone->zone_vfslist->vfs_zone_prev = vfsp; 3662 vfsp->vfs_zone_next = zone->zone_vfslist; 3663 } 3664 } 3665 3666 /* 3667 * Link into the hash table, inserting it at the end, so that LOFS 3668 * with the same fsid as UFS (or other) file systems will not hide 3669 * the UFS. 3670 */ 3671 vfs_hash_add(vfsp, 0); 3672 3673 /* 3674 * Link into tree indexed by mntpoint, for vfs_mntpoint2vfsp 3675 * mntix discerns entries with the same key 3676 */ 3677 vfsp->vfs_mntix = ++vfs_curr_mntix; 3678 avl_add(&vfs_by_dev, vfsp); 3679 3680 /* 3681 * Link into tree indexed by dev, for vfs_devismounted 3682 */ 3683 avl_add(&vfs_by_mntpnt, vfsp); 3684 3685 /* 3686 * update the mnttab modification time 3687 */ 3688 vfs_mnttab_modtimeupd(); 3689 vfs_list_unlock(); 3690 zone_rele(zone); 3691 } 3692 3693 void 3694 vfs_list_remove(struct vfs *vfsp) 3695 { 3696 zone_t *zone; 3697 3698 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3699 ASSERT(zone != NULL); 3700 /* 3701 * Callers are responsible for preventing attempts to unmount the 3702 * root. 3703 */ 3704 ASSERT(vfsp != rootvfs); 3705 3706 vfs_list_lock(); 3707 3708 /* 3709 * Remove from avl trees 3710 */ 3711 avl_remove(&vfs_by_mntpnt, vfsp); 3712 avl_remove(&vfs_by_dev, vfsp); 3713 3714 /* 3715 * Remove from hash. 3716 */ 3717 vfs_hash_remove(vfsp); 3718 3719 /* 3720 * Remove from vfs list. 3721 */ 3722 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3723 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3724 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3725 3726 /* 3727 * Remove from zone-specific vfs list. 3728 */ 3729 if (zone->zone_vfslist == vfsp) 3730 zone->zone_vfslist = vfsp->vfs_zone_next; 3731 3732 if (vfsp->vfs_zone_next == vfsp) { 3733 ASSERT(vfsp->vfs_zone_prev == vfsp); 3734 ASSERT(zone->zone_vfslist == vfsp); 3735 zone->zone_vfslist = NULL; 3736 } 3737 3738 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3739 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3740 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3741 3742 /* 3743 * update the mnttab modification time 3744 */ 3745 vfs_mnttab_modtimeupd(); 3746 vfs_list_unlock(); 3747 zone_rele(zone); 3748 } 3749 3750 struct vfs * 3751 getvfs(fsid_t *fsid) 3752 { 3753 struct vfs *vfsp; 3754 int val0 = fsid->val[0]; 3755 int val1 = fsid->val[1]; 3756 dev_t dev = expldev(val0); 3757 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3758 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3759 3760 mutex_enter(hmp); 3761 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3762 if (vfsp->vfs_fsid.val[0] == val0 && 3763 vfsp->vfs_fsid.val[1] == val1) { 3764 VFS_HOLD(vfsp); 3765 mutex_exit(hmp); 3766 return (vfsp); 3767 } 3768 } 3769 mutex_exit(hmp); 3770 return (NULL); 3771 } 3772 3773 /* 3774 * Search the vfs mount in progress list for a specified device/vfs entry. 3775 * Returns 0 if the first entry in the list that the device matches has the 3776 * given vfs pointer as well. If the device matches but a different vfs 3777 * pointer is encountered in the list before the given vfs pointer then 3778 * a 1 is returned. 3779 */ 3780 3781 int 3782 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3783 { 3784 int retval = 0; 3785 struct ipmnt *mipp; 3786 3787 mutex_enter(&vfs_miplist_mutex); 3788 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3789 if (mipp->mip_dev == dev) { 3790 if (mipp->mip_vfsp != vfsp) 3791 retval = 1; 3792 break; 3793 } 3794 } 3795 mutex_exit(&vfs_miplist_mutex); 3796 return (retval); 3797 } 3798 3799 /* 3800 * Search the vfs list for a specified device. Returns 1, if entry is found 3801 * or 0 if no suitable entry is found. 3802 */ 3803 3804 int 3805 vfs_devismounted(dev_t dev) 3806 { 3807 struct vfs *vfsp; 3808 int found = 0; 3809 struct vfs search; 3810 avl_index_t index; 3811 3812 search.vfs_dev = dev; 3813 search.vfs_mntix = 0; 3814 3815 vfs_list_read_lock(); 3816 3817 /* 3818 * there might be several entries with the same dev in the tree, 3819 * only discerned by mntix. To find the first, we start with a mntix 3820 * of 0. The search will fail. The following avl_nearest will give 3821 * us the actual first entry. 3822 */ 3823 VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL); 3824 vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER); 3825 3826 if (vfsp != NULL && vfsp->vfs_dev == dev) 3827 found = 1; 3828 3829 vfs_list_unlock(); 3830 return (found); 3831 } 3832 3833 /* 3834 * Search the vfs list for a specified device. Returns a pointer to it 3835 * or NULL if no suitable entry is found. The caller of this routine 3836 * is responsible for releasing the returned vfs pointer. 3837 */ 3838 struct vfs * 3839 vfs_dev2vfsp(dev_t dev) 3840 { 3841 struct vfs *vfsp; 3842 int found; 3843 struct vfs search; 3844 avl_index_t index; 3845 3846 search.vfs_dev = dev; 3847 search.vfs_mntix = 0; 3848 3849 vfs_list_read_lock(); 3850 3851 /* 3852 * there might be several entries with the same dev in the tree, 3853 * only discerned by mntix. To find the first, we start with a mntix 3854 * of 0. The search will fail. The following avl_nearest will give 3855 * us the actual first entry. 3856 */ 3857 VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL); 3858 vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER); 3859 3860 found = 0; 3861 while (vfsp != NULL && vfsp->vfs_dev == dev) { 3862 /* 3863 * The following could be made more efficient by making 3864 * the entire loop use vfs_zone_next if the call is from 3865 * a zone. The only callers, however, ustat(2) and 3866 * umount2(2), don't seem to justify the added 3867 * complexity at present. 3868 */ 3869 if (ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3870 curproc->p_zone)) { 3871 VFS_HOLD(vfsp); 3872 found = 1; 3873 break; 3874 } 3875 vfsp = AVL_NEXT(&vfs_by_dev, vfsp); 3876 } 3877 vfs_list_unlock(); 3878 return (found ? vfsp : NULL); 3879 } 3880 3881 /* 3882 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3883 * or NULL if no suitable entry is found. The caller of this routine 3884 * is responsible for releasing the returned vfs pointer. 3885 * 3886 * Note that if multiple mntpoints match, the last one matching is 3887 * returned in an attempt to return the "top" mount when overlay 3888 * mounts are covering the same mount point. This is accomplished by starting 3889 * at the end of the list and working our way backwards, stopping at the first 3890 * matching mount. 3891 */ 3892 struct vfs * 3893 vfs_mntpoint2vfsp(const char *mp) 3894 { 3895 struct vfs *vfsp; 3896 struct vfs *retvfsp = NULL; 3897 zone_t *zone = curproc->p_zone; 3898 struct vfs *list; 3899 3900 vfs_list_read_lock(); 3901 if (getzoneid() == GLOBAL_ZONEID) { 3902 /* 3903 * The global zone may see filesystems in any zone. 3904 */ 3905 struct vfs search; 3906 search.vfs_mntpt = refstr_alloc(mp); 3907 search.vfs_mntix = UINT64_MAX; 3908 avl_index_t index; 3909 3910 /* 3911 * there might be several entries with the same mntpnt in the 3912 * tree, only discerned by mntix. To find the last, we start 3913 * with a mntix of UINT64_MAX. The search will fail. The 3914 * following avl_nearest will give us the actual last entry 3915 * matching the mntpnt. 3916 */ 3917 VERIFY(avl_find(&vfs_by_mntpnt, &search, &index) == 0); 3918 vfsp = avl_nearest(&vfs_by_mntpnt, index, AVL_BEFORE); 3919 3920 refstr_rele(search.vfs_mntpt); 3921 3922 if (vfsp != NULL && 3923 strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) 3924 retvfsp = vfsp; 3925 } else if ((list = zone->zone_vfslist) != NULL) { 3926 const char *mntpt; 3927 3928 vfsp = list->vfs_zone_prev; 3929 do { 3930 mntpt = refstr_value(vfsp->vfs_mntpt); 3931 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3932 if (strcmp(mntpt, mp) == 0) { 3933 retvfsp = vfsp; 3934 break; 3935 } 3936 vfsp = vfsp->vfs_zone_prev; 3937 } while (vfsp != list->vfs_zone_prev); 3938 } 3939 if (retvfsp) 3940 VFS_HOLD(retvfsp); 3941 vfs_list_unlock(); 3942 return (retvfsp); 3943 } 3944 3945 /* 3946 * Search the vfs list for a specified vfsops. 3947 * if vfs entry is found then return 1, else 0. 3948 */ 3949 int 3950 vfs_opsinuse(vfsops_t *ops) 3951 { 3952 struct vfs *vfsp; 3953 int found; 3954 3955 vfs_list_read_lock(); 3956 vfsp = rootvfs; 3957 found = 0; 3958 do { 3959 if (vfs_getops(vfsp) == ops) { 3960 found = 1; 3961 break; 3962 } 3963 vfsp = vfsp->vfs_next; 3964 } while (vfsp != rootvfs); 3965 vfs_list_unlock(); 3966 return (found); 3967 } 3968 3969 /* 3970 * Allocate an entry in vfssw for a file system type 3971 */ 3972 struct vfssw * 3973 allocate_vfssw(const char *type) 3974 { 3975 struct vfssw *vswp; 3976 3977 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3978 /* 3979 * The vfssw table uses the empty string to identify an 3980 * available entry; we cannot add any type which has 3981 * a leading NUL. The string length is limited to 3982 * the size of the st_fstype array in struct stat. 3983 */ 3984 return (NULL); 3985 } 3986 3987 ASSERT(VFSSW_WRITE_LOCKED()); 3988 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3989 if (!ALLOCATED_VFSSW(vswp)) { 3990 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3991 (void) strcpy(vswp->vsw_name, type); 3992 ASSERT(vswp->vsw_count == 0); 3993 vswp->vsw_count = 1; 3994 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3995 return (vswp); 3996 } 3997 return (NULL); 3998 } 3999 4000 /* 4001 * Impose additional layer of translation between vfstype names 4002 * and module names in the filesystem. 4003 */ 4004 static const char * 4005 vfs_to_modname(const char *vfstype) 4006 { 4007 if (strcmp(vfstype, "proc") == 0) { 4008 vfstype = "procfs"; 4009 } else if (strcmp(vfstype, "fd") == 0) { 4010 vfstype = "fdfs"; 4011 } else if (strncmp(vfstype, "nfs", 3) == 0) { 4012 vfstype = "nfs"; 4013 } 4014 4015 return (vfstype); 4016 } 4017 4018 /* 4019 * Find a vfssw entry given a file system type name. 4020 * Try to autoload the filesystem if it's not found. 4021 * If it's installed, return the vfssw locked to prevent unloading. 4022 */ 4023 struct vfssw * 4024 vfs_getvfssw(const char *type) 4025 { 4026 struct vfssw *vswp; 4027 const char *modname; 4028 4029 RLOCK_VFSSW(); 4030 vswp = vfs_getvfsswbyname(type); 4031 modname = vfs_to_modname(type); 4032 4033 if (rootdir == NULL) { 4034 /* 4035 * If we haven't yet loaded the root file system, then our 4036 * _init won't be called until later. Allocate vfssw entry, 4037 * because mod_installfs won't be called. 4038 */ 4039 if (vswp == NULL) { 4040 RUNLOCK_VFSSW(); 4041 WLOCK_VFSSW(); 4042 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 4043 if ((vswp = allocate_vfssw(type)) == NULL) { 4044 WUNLOCK_VFSSW(); 4045 return (NULL); 4046 } 4047 } 4048 WUNLOCK_VFSSW(); 4049 RLOCK_VFSSW(); 4050 } 4051 if (!VFS_INSTALLED(vswp)) { 4052 RUNLOCK_VFSSW(); 4053 (void) modloadonly("fs", modname); 4054 } else 4055 RUNLOCK_VFSSW(); 4056 return (vswp); 4057 } 4058 4059 /* 4060 * Try to load the filesystem. Before calling modload(), we drop 4061 * our lock on the VFS switch table, and pick it up after the 4062 * module is loaded. However, there is a potential race: the 4063 * module could be unloaded after the call to modload() completes 4064 * but before we pick up the lock and drive on. Therefore, 4065 * we keep reloading the module until we've loaded the module 4066 * _and_ we have the lock on the VFS switch table. 4067 */ 4068 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 4069 RUNLOCK_VFSSW(); 4070 if (modload("fs", modname) == -1) 4071 return (NULL); 4072 RLOCK_VFSSW(); 4073 if (vswp == NULL) 4074 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 4075 break; 4076 } 4077 RUNLOCK_VFSSW(); 4078 4079 return (vswp); 4080 } 4081 4082 /* 4083 * Find a vfssw entry given a file system type name. 4084 */ 4085 struct vfssw * 4086 vfs_getvfsswbyname(const char *type) 4087 { 4088 struct vfssw *vswp; 4089 4090 ASSERT(VFSSW_LOCKED()); 4091 if (type == NULL || *type == '\0') 4092 return (NULL); 4093 4094 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4095 if (strcmp(type, vswp->vsw_name) == 0) { 4096 vfs_refvfssw(vswp); 4097 return (vswp); 4098 } 4099 } 4100 4101 return (NULL); 4102 } 4103 4104 /* 4105 * Find a vfssw entry given a set of vfsops. 4106 */ 4107 struct vfssw * 4108 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 4109 { 4110 struct vfssw *vswp; 4111 4112 RLOCK_VFSSW(); 4113 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4114 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 4115 vfs_refvfssw(vswp); 4116 RUNLOCK_VFSSW(); 4117 return (vswp); 4118 } 4119 } 4120 RUNLOCK_VFSSW(); 4121 4122 return (NULL); 4123 } 4124 4125 /* 4126 * Reference a vfssw entry. 4127 */ 4128 void 4129 vfs_refvfssw(struct vfssw *vswp) 4130 { 4131 4132 mutex_enter(&vswp->vsw_lock); 4133 vswp->vsw_count++; 4134 mutex_exit(&vswp->vsw_lock); 4135 } 4136 4137 /* 4138 * Unreference a vfssw entry. 4139 */ 4140 void 4141 vfs_unrefvfssw(struct vfssw *vswp) 4142 { 4143 4144 mutex_enter(&vswp->vsw_lock); 4145 vswp->vsw_count--; 4146 mutex_exit(&vswp->vsw_lock); 4147 } 4148 4149 int sync_timeout = 30; /* timeout for syncing a page during panic */ 4150 int sync_timeleft; /* portion of sync_timeout remaining */ 4151 4152 static int sync_retries = 20; /* number of retries when not making progress */ 4153 static int sync_triesleft; /* portion of sync_retries remaining */ 4154 4155 static pgcnt_t old_pgcnt, new_pgcnt; 4156 static int new_bufcnt, old_bufcnt; 4157 4158 /* 4159 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4160 * complete. We wait by counting the number of dirty pages and buffers, 4161 * pushing them out using bio_busy() and page_busy(), and then counting again. 4162 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4163 * the SYNC phase of the panic code (see comments in panic.c). It should only 4164 * be used after some higher-level mechanism has quiesced the system so that 4165 * new writes are not being initiated while we are waiting for completion. 4166 * 4167 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4168 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4169 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4170 * Together these ensure that syncing completes if our i/o paths are stuck. 4171 * The counters are declared above so they can be found easily in the debugger. 4172 * 4173 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4174 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4175 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4176 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4177 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4178 * deadlocking or hanging inside of a broken filesystem or driver routine. 4179 * 4180 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4181 * sync_retries consecutive calls to bio_busy() and page_busy() without 4182 * decreasing either the number of dirty buffers or dirty pages below the 4183 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4184 * 4185 * Each loop iteration ends with a call to delay() one second to allow time for 4186 * i/o completion and to permit the user time to read our progress messages. 4187 */ 4188 void 4189 vfs_syncall(void) 4190 { 4191 if (rootdir == NULL && !modrootloaded) 4192 return; /* panic during boot - no filesystems yet */ 4193 4194 printf("syncing file systems..."); 4195 vfs_syncprogress(); 4196 sync(); 4197 4198 vfs_syncprogress(); 4199 sync_triesleft = sync_retries; 4200 4201 old_bufcnt = new_bufcnt = INT_MAX; 4202 old_pgcnt = new_pgcnt = ULONG_MAX; 4203 4204 while (sync_triesleft > 0) { 4205 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4206 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4207 4208 new_bufcnt = bio_busy(B_TRUE); 4209 new_pgcnt = page_busy(B_TRUE); 4210 vfs_syncprogress(); 4211 4212 if (new_bufcnt == 0 && new_pgcnt == 0) 4213 break; 4214 4215 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4216 sync_triesleft = sync_retries; 4217 else 4218 sync_triesleft--; 4219 4220 if (new_bufcnt) 4221 printf(" [%d]", new_bufcnt); 4222 if (new_pgcnt) 4223 printf(" %lu", new_pgcnt); 4224 4225 delay(hz); 4226 } 4227 4228 if (new_bufcnt != 0 || new_pgcnt != 0) 4229 printf(" done (not all i/o completed)\n"); 4230 else 4231 printf(" done\n"); 4232 4233 sync_timeleft = 0; 4234 delay(hz); 4235 } 4236 4237 /* 4238 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4239 * sync_timeout to indicate that we are making progress and the deadman() 4240 * omnipresent cyclic should not yet time us out. Note that it is safe to 4241 * store to sync_timeleft here since the deadman() is firing at high-level 4242 * on top of us. If we are racing with the deadman(), either the deadman() 4243 * will decrement the old value and then we will reset it, or we will 4244 * reset it and then the deadman() will immediately decrement it. In either 4245 * case, correct behavior results. 4246 */ 4247 void 4248 vfs_syncprogress(void) 4249 { 4250 if (panicstr) 4251 sync_timeleft = sync_timeout; 4252 } 4253 4254 /* 4255 * Map VFS flags to statvfs flags. These shouldn't really be separate 4256 * flags at all. 4257 */ 4258 uint_t 4259 vf_to_stf(uint_t vf) 4260 { 4261 uint_t stf = 0; 4262 4263 if (vf & VFS_RDONLY) 4264 stf |= ST_RDONLY; 4265 if (vf & VFS_NOSETUID) 4266 stf |= ST_NOSUID; 4267 if (vf & VFS_NOTRUNC) 4268 stf |= ST_NOTRUNC; 4269 4270 return (stf); 4271 } 4272 4273 /* 4274 * Entries for (illegal) fstype 0. 4275 */ 4276 /* ARGSUSED */ 4277 int 4278 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4279 { 4280 cmn_err(CE_PANIC, "stray vfs operation"); 4281 return (0); 4282 } 4283 4284 /* 4285 * Entries for (illegal) fstype 0. 4286 */ 4287 int 4288 vfsstray(void) 4289 { 4290 cmn_err(CE_PANIC, "stray vfs operation"); 4291 return (0); 4292 } 4293 4294 /* 4295 * Support for dealing with forced UFS unmount and its interaction with 4296 * LOFS. Could be used by any filesystem. 4297 * See bug 1203132. 4298 */ 4299 int 4300 vfs_EIO(void) 4301 { 4302 return (EIO); 4303 } 4304 4305 /* 4306 * We've gotta define the op for sync separately, since the compiler gets 4307 * confused if we mix and match ANSI and normal style prototypes when 4308 * a "short" argument is present and spits out a warning. 4309 */ 4310 /*ARGSUSED*/ 4311 int 4312 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4313 { 4314 return (EIO); 4315 } 4316 4317 vfs_t EIO_vfs; 4318 vfsops_t *EIO_vfsops; 4319 4320 /* 4321 * Called from startup() to initialize all loaded vfs's 4322 */ 4323 void 4324 vfsinit(void) 4325 { 4326 struct vfssw *vswp; 4327 int error; 4328 extern int vopstats_enabled; 4329 extern void vopstats_startup(); 4330 4331 static const fs_operation_def_t EIO_vfsops_template[] = { 4332 VFSNAME_MOUNT, { .error = vfs_EIO }, 4333 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4334 VFSNAME_ROOT, { .error = vfs_EIO }, 4335 VFSNAME_STATVFS, { .error = vfs_EIO }, 4336 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4337 VFSNAME_VGET, { .error = vfs_EIO }, 4338 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4339 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4340 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4341 NULL, NULL 4342 }; 4343 4344 static const fs_operation_def_t stray_vfsops_template[] = { 4345 VFSNAME_MOUNT, { .error = vfsstray }, 4346 VFSNAME_UNMOUNT, { .error = vfsstray }, 4347 VFSNAME_ROOT, { .error = vfsstray }, 4348 VFSNAME_STATVFS, { .error = vfsstray }, 4349 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4350 VFSNAME_VGET, { .error = vfsstray }, 4351 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4352 VFSNAME_FREEVFS, { .error = vfsstray }, 4353 VFSNAME_VNSTATE, { .error = vfsstray }, 4354 NULL, NULL 4355 }; 4356 4357 /* Create vfs cache */ 4358 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4359 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4360 4361 /* Initialize the vnode cache (file systems may use it during init). */ 4362 vn_create_cache(); 4363 4364 /* Setup event monitor framework */ 4365 fem_init(); 4366 4367 /* Initialize the dummy stray file system type. */ 4368 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4369 4370 /* Initialize the dummy EIO file system. */ 4371 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4372 if (error != 0) { 4373 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4374 /* Shouldn't happen, but not bad enough to panic */ 4375 } 4376 4377 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4378 4379 /* 4380 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4381 * on this vfs can immediately notice it's invalid. 4382 */ 4383 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4384 4385 /* 4386 * Call the init routines of non-loadable filesystems only. 4387 * Filesystems which are loaded as separate modules will be 4388 * initialized by the module loading code instead. 4389 */ 4390 4391 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4392 RLOCK_VFSSW(); 4393 if (vswp->vsw_init != NULL) 4394 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4395 RUNLOCK_VFSSW(); 4396 } 4397 4398 vopstats_startup(); 4399 4400 if (vopstats_enabled) { 4401 /* EIO_vfs can collect stats, but we don't retrieve them */ 4402 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4403 EIO_vfs.vfs_fstypevsp = NULL; 4404 EIO_vfs.vfs_vskap = NULL; 4405 EIO_vfs.vfs_flag |= VFS_STATS; 4406 } 4407 4408 xattr_init(); 4409 4410 reparse_point_init(); 4411 } 4412 4413 vfs_t * 4414 vfs_alloc(int kmflag) 4415 { 4416 vfs_t *vfsp; 4417 4418 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4419 4420 /* 4421 * Do the simplest initialization here. 4422 * Everything else gets done in vfs_init() 4423 */ 4424 bzero(vfsp, sizeof (vfs_t)); 4425 return (vfsp); 4426 } 4427 4428 void 4429 vfs_free(vfs_t *vfsp) 4430 { 4431 /* 4432 * One would be tempted to assert that "vfsp->vfs_count == 0". 4433 * The problem is that this gets called out of domount() with 4434 * a partially initialized vfs and a vfs_count of 1. This is 4435 * also called from vfs_rele() with a vfs_count of 0. We can't 4436 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4437 * returned. This is because VFS_MOUNT() fully initializes the 4438 * vfs structure and its associated data. VFS_RELE() will call 4439 * VFS_FREEVFS() which may panic the system if the data structures 4440 * aren't fully initialized from a successful VFS_MOUNT()). 4441 */ 4442 4443 /* If FEM was in use, make sure everything gets cleaned up */ 4444 if (vfsp->vfs_femhead) { 4445 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4446 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4447 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4448 vfsp->vfs_femhead = NULL; 4449 } 4450 4451 if (vfsp->vfs_implp) 4452 vfsimpl_teardown(vfsp); 4453 sema_destroy(&vfsp->vfs_reflock); 4454 kmem_cache_free(vfs_cache, vfsp); 4455 } 4456 4457 /* 4458 * Increments the vfs reference count by one atomically. 4459 */ 4460 void 4461 vfs_hold(vfs_t *vfsp) 4462 { 4463 atomic_inc_32(&vfsp->vfs_count); 4464 ASSERT(vfsp->vfs_count != 0); 4465 } 4466 4467 /* 4468 * Decrements the vfs reference count by one atomically. When 4469 * vfs reference count becomes zero, it calls the file system 4470 * specific vfs_freevfs() to free up the resources. 4471 */ 4472 void 4473 vfs_rele(vfs_t *vfsp) 4474 { 4475 ASSERT(vfsp->vfs_count != 0); 4476 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) { 4477 VFS_FREEVFS(vfsp); 4478 lofi_remove(vfsp); 4479 if (vfsp->vfs_zone) 4480 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref, 4481 ZONE_REF_VFS); 4482 vfs_freemnttab(vfsp); 4483 vfs_free(vfsp); 4484 } 4485 } 4486 4487 /* 4488 * Generic operations vector support. 4489 * 4490 * This is used to build operations vectors for both the vfs and vnode. 4491 * It's normally called only when a file system is loaded. 4492 * 4493 * There are many possible algorithms for this, including the following: 4494 * 4495 * (1) scan the list of known operations; for each, see if the file system 4496 * includes an entry for it, and fill it in as appropriate. 4497 * 4498 * (2) set up defaults for all known operations. scan the list of ops 4499 * supplied by the file system; for each which is both supplied and 4500 * known, fill it in. 4501 * 4502 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4503 * in entries as we go. 4504 * 4505 * we choose (1) for simplicity, and because performance isn't critical here. 4506 * note that (2) could be sped up using a precomputed hash table on known ops. 4507 * (3) could be faster than either, but only if the lists were very large or 4508 * supplied in sorted order. 4509 * 4510 */ 4511 4512 int 4513 fs_build_vector(void *vector, int *unused_ops, 4514 const fs_operation_trans_def_t *translation, 4515 const fs_operation_def_t *operations) 4516 { 4517 int i, num_trans, num_ops, used; 4518 4519 /* 4520 * Count the number of translations and the number of supplied 4521 * operations. 4522 */ 4523 4524 { 4525 const fs_operation_trans_def_t *p; 4526 4527 for (num_trans = 0, p = translation; 4528 p->name != NULL; 4529 num_trans++, p++) 4530 ; 4531 } 4532 4533 { 4534 const fs_operation_def_t *p; 4535 4536 for (num_ops = 0, p = operations; 4537 p->name != NULL; 4538 num_ops++, p++) 4539 ; 4540 } 4541 4542 /* Walk through each operation known to our caller. There will be */ 4543 /* one entry in the supplied "translation table" for each. */ 4544 4545 used = 0; 4546 4547 for (i = 0; i < num_trans; i++) { 4548 int j, found; 4549 char *curname; 4550 fs_generic_func_p result; 4551 fs_generic_func_p *location; 4552 4553 curname = translation[i].name; 4554 4555 /* Look for a matching operation in the list supplied by the */ 4556 /* file system. */ 4557 4558 found = 0; 4559 4560 for (j = 0; j < num_ops; j++) { 4561 if (strcmp(operations[j].name, curname) == 0) { 4562 used++; 4563 found = 1; 4564 break; 4565 } 4566 } 4567 4568 /* 4569 * If the file system is using a "placeholder" for default 4570 * or error functions, grab the appropriate function out of 4571 * the translation table. If the file system didn't supply 4572 * this operation at all, use the default function. 4573 */ 4574 4575 if (found) { 4576 result = operations[j].func.fs_generic; 4577 if (result == fs_default) { 4578 result = translation[i].defaultFunc; 4579 } else if (result == fs_error) { 4580 result = translation[i].errorFunc; 4581 } else if (result == NULL) { 4582 /* Null values are PROHIBITED */ 4583 return (EINVAL); 4584 } 4585 } else { 4586 result = translation[i].defaultFunc; 4587 } 4588 4589 /* Now store the function into the operations vector. */ 4590 4591 location = (fs_generic_func_p *) 4592 (((char *)vector) + translation[i].offset); 4593 4594 *location = result; 4595 } 4596 4597 *unused_ops = num_ops - used; 4598 4599 return (0); 4600 } 4601 4602 /* Placeholder functions, should never be called. */ 4603 4604 int 4605 fs_error(void) 4606 { 4607 cmn_err(CE_PANIC, "fs_error called"); 4608 return (0); 4609 } 4610 4611 int 4612 fs_default(void) 4613 { 4614 cmn_err(CE_PANIC, "fs_default called"); 4615 return (0); 4616 } 4617 4618 #ifdef __sparc 4619 4620 /* 4621 * Part of the implementation of booting off a mirrored root 4622 * involves a change of dev_t for the root device. To 4623 * accomplish this, first remove the existing hash table 4624 * entry for the root device, convert to the new dev_t, 4625 * then re-insert in the hash table at the head of the list. 4626 */ 4627 void 4628 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4629 { 4630 vfs_list_lock(); 4631 4632 vfs_hash_remove(vfsp); 4633 4634 vfsp->vfs_dev = ndev; 4635 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4636 4637 vfs_hash_add(vfsp, 1); 4638 4639 vfs_list_unlock(); 4640 } 4641 4642 #else /* x86 NEWBOOT */ 4643 4644 #if defined(__x86) 4645 extern int hvmboot_rootconf(); 4646 #endif /* __x86 */ 4647 4648 extern ib_boot_prop_t *iscsiboot_prop; 4649 4650 int 4651 rootconf() 4652 { 4653 int error; 4654 struct vfssw *vsw; 4655 extern void pm_init(); 4656 char *fstyp, *fsmod; 4657 int ret = -1; 4658 4659 getrootfs(&fstyp, &fsmod); 4660 4661 #if defined(__x86) 4662 /* 4663 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4664 * which lives in /platform/i86hvm, and hence is only available when 4665 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4666 * is not available then the modstub for this function will return 0. 4667 * If the hvm_bootstrap misc module is available it will be loaded 4668 * and hvmboot_rootconf() will be invoked. 4669 */ 4670 if (error = hvmboot_rootconf()) 4671 return (error); 4672 #endif /* __x86 */ 4673 4674 if (error = clboot_rootconf()) 4675 return (error); 4676 4677 if (modload("fs", fsmod) == -1) 4678 panic("Cannot _init %s module", fsmod); 4679 4680 RLOCK_VFSSW(); 4681 vsw = vfs_getvfsswbyname(fstyp); 4682 RUNLOCK_VFSSW(); 4683 if (vsw == NULL) { 4684 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4685 return (ENXIO); 4686 } 4687 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4688 VFS_HOLD(rootvfs); 4689 4690 /* always mount readonly first */ 4691 rootvfs->vfs_flag |= VFS_RDONLY; 4692 4693 pm_init(); 4694 4695 if (netboot && iscsiboot_prop) { 4696 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4697 " shouldn't happen in the same time"); 4698 return (EINVAL); 4699 } 4700 4701 if (netboot || iscsiboot_prop) { 4702 ret = strplumb(); 4703 if (ret != 0) { 4704 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4705 return (EFAULT); 4706 } 4707 } 4708 4709 if ((ret == 0) && iscsiboot_prop) { 4710 ret = modload("drv", "iscsi"); 4711 /* -1 indicates fail */ 4712 if (ret == -1) { 4713 cmn_err(CE_WARN, "Failed to load iscsi module"); 4714 iscsi_boot_prop_free(); 4715 return (EINVAL); 4716 } else { 4717 if (!i_ddi_attach_pseudo_node("iscsi")) { 4718 cmn_err(CE_WARN, 4719 "Failed to attach iscsi driver"); 4720 iscsi_boot_prop_free(); 4721 return (ENODEV); 4722 } 4723 } 4724 } 4725 4726 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4727 vfs_unrefvfssw(vsw); 4728 rootdev = rootvfs->vfs_dev; 4729 4730 if (error) 4731 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4732 rootfs.bo_name, fstyp); 4733 else 4734 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4735 rootfs.bo_name, fstyp); 4736 return (error); 4737 } 4738 4739 /* 4740 * XXX this is called by nfs only and should probably be removed 4741 * If booted with ASKNAME, prompt on the console for a filesystem 4742 * name and return it. 4743 */ 4744 void 4745 getfsname(char *askfor, char *name, size_t namelen) 4746 { 4747 if (boothowto & RB_ASKNAME) { 4748 printf("%s name: ", askfor); 4749 console_gets(name, namelen); 4750 } 4751 } 4752 4753 /* 4754 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4755 * property. 4756 * 4757 * Filesystem types starting with the prefix "nfs" are diskless clients; 4758 * init the root filename name (rootfs.bo_name), too. 4759 * 4760 * If we are booting via NFS we currently have these options: 4761 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4762 * nfs2 - force NFS V2 4763 * nfs3 - force NFS V3 4764 * nfs4 - force NFS V4 4765 * Because we need to maintain backward compatibility with the naming 4766 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4767 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4768 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4769 * This is only for root filesystems, all other uses will expect 4770 * that "nfs" == NFS V2. 4771 */ 4772 static void 4773 getrootfs(char **fstypp, char **fsmodp) 4774 { 4775 extern char *strplumb_get_netdev_path(void); 4776 char *propstr = NULL; 4777 4778 /* 4779 * Check fstype property; for diskless it should be one of "nfs", 4780 * "nfs2", "nfs3" or "nfs4". 4781 */ 4782 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4783 DDI_PROP_DONTPASS, "fstype", &propstr) 4784 == DDI_SUCCESS) { 4785 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4786 ddi_prop_free(propstr); 4787 4788 /* 4789 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4790 * assume the type of this root filesystem is 'zfs'. 4791 */ 4792 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4793 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4794 == DDI_SUCCESS) { 4795 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4796 ddi_prop_free(propstr); 4797 } 4798 4799 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4800 *fstypp = *fsmodp = rootfs.bo_fstype; 4801 return; 4802 } 4803 4804 ++netboot; 4805 4806 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4807 (void) strcpy(rootfs.bo_fstype, "nfs"); 4808 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4809 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4810 4811 /* 4812 * check if path to network interface is specified in bootpath 4813 * or by a hypervisor domain configuration file. 4814 * XXPV - enable strlumb_get_netdev_path() 4815 */ 4816 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4817 "xpv-nfsroot")) { 4818 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4819 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4820 DDI_PROP_DONTPASS, "bootpath", &propstr) 4821 == DDI_SUCCESS) { 4822 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4823 ddi_prop_free(propstr); 4824 } else { 4825 /* attempt to determine netdev_path via boot_mac address */ 4826 netdev_path = strplumb_get_netdev_path(); 4827 if (netdev_path == NULL) 4828 panic("cannot find boot network interface"); 4829 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4830 } 4831 *fstypp = rootfs.bo_fstype; 4832 *fsmodp = "nfs"; 4833 } 4834 #endif 4835 4836 /* 4837 * VFS feature routines 4838 */ 4839 4840 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4841 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4842 4843 /* Register a feature in the vfs */ 4844 void 4845 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4846 { 4847 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4848 if (vfsp->vfs_implp == NULL) 4849 return; 4850 4851 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4852 } 4853 4854 void 4855 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature) 4856 { 4857 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4858 if (vfsp->vfs_implp == NULL) 4859 return; 4860 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature); 4861 } 4862 4863 /* 4864 * Query a vfs for a feature. 4865 * Returns 1 if feature is present, 0 if not 4866 */ 4867 int 4868 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4869 { 4870 int ret = 0; 4871 4872 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4873 if (vfsp->vfs_implp == NULL) 4874 return (ret); 4875 4876 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4877 ret = 1; 4878 4879 return (ret); 4880 } 4881 4882 /* 4883 * Propagate feature set from one vfs to another 4884 */ 4885 void 4886 vfs_propagate_features(vfs_t *from, vfs_t *to) 4887 { 4888 int i; 4889 4890 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4891 return; 4892 4893 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4894 to->vfs_featureset[i] = from->vfs_featureset[i]; 4895 } 4896 } 4897 4898 #define LOFINODE_PATH "/dev/lofi/%d" 4899 4900 /* 4901 * Return the vnode for the lofi node if there's a lofi mount in place. 4902 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4903 * failure. 4904 */ 4905 int 4906 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4907 { 4908 char *path = NULL; 4909 int strsize; 4910 int err; 4911 4912 if (vfsp->vfs_lofi_minor == 0) { 4913 *vpp = NULL; 4914 return (-1); 4915 } 4916 4917 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor); 4918 path = kmem_alloc(strsize + 1, KM_SLEEP); 4919 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor); 4920 4921 /* 4922 * We may be inside a zone, so we need to use the /dev path, but 4923 * it's created asynchronously, so we wait here. 4924 */ 4925 for (;;) { 4926 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4927 4928 if (err != ENOENT) 4929 break; 4930 4931 if ((err = delay_sig(hz / 8)) == EINTR) 4932 break; 4933 } 4934 4935 if (err) 4936 *vpp = NULL; 4937 4938 kmem_free(path, strsize + 1); 4939 return (err); 4940 } 4941