xref: /titanic_50/usr/src/uts/common/fs/vfs.c (revision 8eea8e29cc4374d1ee24c25a07f45af132db3499)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 
41 #pragma ident	"%Z%%M%	%I%	%E% SMI"
42 
43 #include <sys/types.h>
44 #include <sys/t_lock.h>
45 #include <sys/param.h>
46 #include <sys/errno.h>
47 #include <sys/user.h>
48 #include <sys/fstyp.h>
49 #include <sys/kmem.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/mount.h>
53 #include <sys/vfs.h>
54 #include <sys/fem.h>
55 #include <sys/mntent.h>
56 #include <sys/stat.h>
57 #include <sys/statvfs.h>
58 #include <sys/statfs.h>
59 #include <sys/cred.h>
60 #include <sys/vnode.h>
61 #include <sys/rwstlock.h>
62 #include <sys/dnlc.h>
63 #include <sys/file.h>
64 #include <sys/time.h>
65 #include <sys/atomic.h>
66 #include <sys/cmn_err.h>
67 #include <sys/buf.h>
68 #include <sys/swap.h>
69 #include <sys/debug.h>
70 #include <sys/vnode.h>
71 #include <sys/modctl.h>
72 #include <sys/ddi.h>
73 #include <sys/pathname.h>
74 #include <sys/bootconf.h>
75 #include <sys/dumphdr.h>
76 #include <sys/dc_ki.h>
77 #include <sys/poll.h>
78 #include <sys/sunddi.h>
79 #include <sys/sysmacros.h>
80 #include <sys/zone.h>
81 #include <sys/policy.h>
82 #include <sys/ctfs.h>
83 #include <sys/objfs.h>
84 #include <sys/console.h>
85 #include <sys/reboot.h>
86 
87 #include <vm/page.h>
88 
89 #include <fs/fs_subr.h>
90 
91 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
92 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
93     const char *, int, int);
94 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
95 static void vfs_freemnttab(struct vfs *);
96 static void vfs_freeopt(mntopt_t *);
97 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
98 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
99 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
100 static void vfs_createopttbl_extend(mntopts_t *, const char *,
101     const mntopts_t *);
102 static char **vfs_copycancelopt_extend(char **const, int);
103 static void vfs_freecancelopt(char **);
104 static char *getrootfs(void);
105 static int getmacpath(dev_info_t *, void *);
106 
107 struct ipmnt {
108 	struct ipmnt	*mip_next;
109 	dev_t		mip_dev;
110 	struct vfs	*mip_vfsp;
111 };
112 
113 static kmutex_t		vfs_miplist_mutex;
114 static struct ipmnt	*vfs_miplist = NULL;
115 static struct ipmnt	*vfs_miplist_end = NULL;
116 
117 /*
118  * VFS global data.
119  */
120 vnode_t *rootdir;		/* pointer to root inode vnode. */
121 vnode_t *devicesdir;		/* pointer to inode of devices root */
122 
123 char *server_rootpath;		/* root path for diskless clients */
124 char *server_hostname;		/* hostname of diskless server */
125 
126 static struct vfs root;
127 static struct vfs devices;
128 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
129 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
130 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
131 				/* must be power of 2!	*/
132 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
133 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
134 char *vfs_dummyfstype = "\0";
135 struct pollhead vfs_pollhd;	/* for mnttab pollers */
136 
137 /*
138  * Table for generic options recognized in the VFS layer and acted
139  * on at this level before parsing file system specific options.
140  * The nosuid option is stronger than any of the devices and setuid
141  * options, so those are canceled when nosuid is seen.
142  *
143  * All options which are added here need to be added to the
144  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
145  */
146 /*
147  * VFS Mount options table
148  */
149 static char *ro_cancel[] = { MNTOPT_RW, NULL };
150 static char *rw_cancel[] = { MNTOPT_RO, NULL };
151 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
152 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
153     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
154 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
155 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
156 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
157 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
158 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
159 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
160 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
161 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
162 
163 static const mntopt_t mntopts[] = {
164 /*
165  *	option name		cancel options		default arg	flags
166  */
167 	{ MNTOPT_REMOUNT,	NULL,			NULL,
168 		MO_NODISPLAY, (void *)0 },
169 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
170 		(void *)0 },
171 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
172 		(void *)0 },
173 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
174 		(void *)0 },
175 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
176 		(void *)0 },
177 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
178 		(void *)0 },
179 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
180 		(void *)0 },
181 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
182 		(void *)0 },
183 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
184 		(void *)0 },
185 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
186 		(void *)0 },
187 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
188 		(void *)0 },
189 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
190 		(void *)0 },
191 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
192 		(void *)0 },
193 };
194 
195 const mntopts_t vfs_mntopts = {
196 	sizeof (mntopts) / sizeof (mntopt_t),
197 	(mntopt_t *)&mntopts[0]
198 };
199 
200 /*
201  * File system operation dispatch functions.
202  */
203 
204 int
205 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
206 {
207 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
208 }
209 
210 int
211 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
212 {
213 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
214 }
215 
216 int
217 fsop_root(vfs_t *vfsp, vnode_t **vpp)
218 {
219 	refstr_t *mntpt;
220 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
221 	/*
222 	 * Make sure this root has a path.  With lofs, it is possible to have
223 	 * a NULL mountpoint.
224 	 */
225 	if (vfs_vnode_path && ret == 0 && vfsp->vfs_mntpt != NULL &&
226 	    vn_path(*vpp) == NULL) {
227 		mntpt = vfs_getmntpoint(vfsp);
228 		vn_setpath_str(*vpp, refstr_value(mntpt),
229 		    strlen(refstr_value(mntpt)));
230 		refstr_rele(mntpt);
231 	}
232 
233 	return (ret);
234 }
235 
236 int
237 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
238 {
239 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
240 }
241 
242 int
243 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
244 {
245 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
246 }
247 
248 int
249 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
250 {
251 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
252 }
253 
254 int
255 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
256 {
257 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
258 }
259 
260 void
261 fsop_freefs(vfs_t *vfsp)
262 {
263 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
264 }
265 
266 int
267 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
268 {
269 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
270 }
271 
272 int
273 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
274 {
275 	ASSERT((fstype >= 0) && (fstype < nfstype));
276 
277 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
278 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
279 	else
280 		return (ENOTSUP);
281 }
282 
283 /*
284  * File system initialization.  vfs_setfsops() must be called from a file
285  * system's init routine.
286  */
287 
288 static int
289 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
290     int *unused_ops)
291 {
292 	static const fs_operation_trans_def_t vfs_ops_table[] = {
293 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
294 			fs_nosys, fs_nosys,
295 
296 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
297 			fs_nosys, fs_nosys,
298 
299 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
300 			fs_nosys, fs_nosys,
301 
302 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
303 			fs_nosys, fs_nosys,
304 
305 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
306 			(fs_generic_func_p) fs_sync,
307 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
308 
309 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
310 			fs_nosys, fs_nosys,
311 
312 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
313 			fs_nosys, fs_nosys,
314 
315 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
316 			(fs_generic_func_p)fs_freevfs,
317 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
318 
319 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
320 			(fs_generic_func_p)fs_nosys,
321 			(fs_generic_func_p)fs_nosys,
322 
323 		NULL, 0, NULL, NULL
324 	};
325 
326 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
327 }
328 
329 int
330 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
331 {
332 	int error;
333 	int unused_ops;
334 
335 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
336 
337 	if ((fstype <= 0) || (fstype >= nfstype))
338 		return (EINVAL);
339 
340 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
341 		return (EINVAL);
342 
343 	/* Set up the operations vector. */
344 
345 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
346 
347 	if (error != 0)
348 		return (error);
349 
350 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
351 
352 	if (actual != NULL)
353 		*actual = &vfssw[fstype].vsw_vfsops;
354 
355 #if DEBUG
356 	if (unused_ops != 0)
357 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
358 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
359 #endif
360 
361 	return (0);
362 }
363 
364 int
365 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
366 {
367 	int error;
368 	int unused_ops;
369 
370 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
371 
372 	error = fs_copyfsops(template, *actual, &unused_ops);
373 	if (error != 0) {
374 		kmem_free(*actual, sizeof (vfsops_t));
375 		*actual = NULL;
376 		return (error);
377 	}
378 
379 	return (0);
380 }
381 
382 /*
383  * Free a vfsops structure created as a result of vfs_makefsops().
384  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
385  * vfs_freevfsops_by_type().
386  */
387 void
388 vfs_freevfsops(vfsops_t *vfsops)
389 {
390 	kmem_free(vfsops, sizeof (vfsops_t));
391 }
392 
393 /*
394  * Since the vfsops structure is part of the vfssw table and wasn't
395  * really allocated, we're not really freeing anything.  We keep
396  * the name for consistency with vfs_freevfsops().  We do, however,
397  * need to take care of a little bookkeeping.
398  * NOTE: For a vfsops structure created by vfs_setfsops(), use
399  * vfs_freevfsops_by_type().
400  */
401 int
402 vfs_freevfsops_by_type(int fstype)
403 {
404 
405 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
406 	if ((fstype <= 0) || (fstype >= nfstype))
407 		return (EINVAL);
408 
409 	WLOCK_VFSSW();
410 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
411 		WUNLOCK_VFSSW();
412 		return (EINVAL);
413 	}
414 
415 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
416 	WUNLOCK_VFSSW();
417 
418 	return (0);
419 }
420 
421 /* Support routines used to reference vfs_op */
422 
423 /* Set the operations vector for a vfs */
424 void
425 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
426 {
427 	vfsops_t	*op;
428 
429 	ASSERT(vfsp != NULL);
430 	ASSERT(vfsops != NULL);
431 
432 	op = vfsp->vfs_op;
433 	membar_consumer();
434 	if (vfsp->vfs_femhead == NULL &&
435 	    casptr(&vfsp->vfs_op, op, vfsops) == op) {
436 		return;
437 	}
438 	fsem_setvfsops(vfsp, vfsops);
439 }
440 
441 /* Retrieve the operations vector for a vfs */
442 vfsops_t *
443 vfs_getops(vfs_t *vfsp)
444 {
445 	vfsops_t	*op;
446 
447 	ASSERT(vfsp != NULL);
448 
449 	op = vfsp->vfs_op;
450 	membar_consumer();
451 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
452 		return (op);
453 	} else {
454 		return (fsem_getvfsops(vfsp));
455 	}
456 }
457 
458 /*
459  * Returns non-zero (1) if the vfsops matches that of the vfs.
460  * Returns zero (0) if not.
461  */
462 int
463 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
464 {
465 	return (vfs_getops(vfsp) == vfsops);
466 }
467 
468 /*
469  * Returns non-zero (1) if the file system has installed a non-default,
470  * non-error vfs_sync routine.  Returns zero (0) otherwise.
471  */
472 int
473 vfs_can_sync(vfs_t *vfsp)
474 {
475 	/* vfs_sync() routine is not the default/error function */
476 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
477 }
478 
479 /*
480  * Initialize a vfs structure.
481  */
482 void
483 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
484 {
485 	vfsp->vfs_count = 0;
486 	vfsp->vfs_next = vfsp;
487 	vfsp->vfs_prev = vfsp;
488 	vfsp->vfs_zone_next = vfsp;
489 	vfsp->vfs_zone_prev = vfsp;
490 	vfsp->vfs_flag = 0;
491 	vfsp->vfs_data = (data);
492 	vfsp->vfs_resource = NULL;
493 	vfsp->vfs_mntpt = NULL;
494 	vfsp->vfs_mntopts.mo_count = 0;
495 	vfsp->vfs_mntopts.mo_list = NULL;
496 	vfsp->vfs_femhead = NULL;
497 	vfsp->vfs_zone = NULL;
498 	vfs_setops((vfsp), (op));
499 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
500 }
501 
502 
503 /*
504  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
505  * fstatvfs, and sysfs moved to common/syscall.
506  */
507 
508 /*
509  * Update every mounted file system.  We call the vfs_sync operation of
510  * each file system type, passing it a NULL vfsp to indicate that all
511  * mounted file systems of that type should be updated.
512  */
513 void
514 vfs_sync(int flag)
515 {
516 	struct vfssw *vswp;
517 	RLOCK_VFSSW();
518 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
519 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
520 			vfs_refvfssw(vswp);
521 			RUNLOCK_VFSSW();
522 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
523 			    CRED());
524 			vfs_unrefvfssw(vswp);
525 			RLOCK_VFSSW();
526 		}
527 	}
528 	RUNLOCK_VFSSW();
529 }
530 
531 void
532 sync(void)
533 {
534 	vfs_sync(0);
535 }
536 
537 /*
538  * External routines.
539  */
540 
541 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
542 
543 /*
544  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
545  * but otherwise should be accessed only via vfs_list_lock() and
546  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
547  */
548 static krwlock_t vfslist;
549 
550 /*
551  * Mount devfs on /devices. This is done right after root is mounted
552  * to provide device access support for the system
553  */
554 static void
555 vfs_mountdevices(void)
556 {
557 	struct vfssw *vsw;
558 	struct vnode *mvp;
559 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
560 		NULL,
561 		NULL,
562 		MS_SYSSPACE,
563 		NULL,
564 		NULL,
565 		0,
566 		NULL,
567 		0
568 	};
569 
570 	/*
571 	 * _init devfs module to fill in the vfssw
572 	 */
573 	if (modload("fs", "devfs") == -1)
574 		cmn_err(CE_PANIC, "Cannot _init devfs module\n");
575 
576 	/*
577 	 * Hold vfs
578 	 */
579 	RLOCK_VFSSW();
580 	vsw = vfs_getvfsswbyname("devfs");
581 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
582 	VFS_HOLD(&devices);
583 
584 	/*
585 	 * Locate mount point
586 	 */
587 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
588 		cmn_err(CE_PANIC, "Cannot find /devices\n");
589 
590 	/*
591 	 * Perform the mount of /devices
592 	 */
593 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
594 		cmn_err(CE_PANIC, "Cannot mount /devices\n");
595 
596 	RUNLOCK_VFSSW();
597 
598 	/*
599 	 * Set appropriate members and add to vfs list for mnttab display
600 	 */
601 	vfs_setresource(&devices, "/devices");
602 	vfs_setmntpoint(&devices, "/devices");
603 
604 	/*
605 	 * Hold the root of /devices so it won't go away
606 	 */
607 	if (VFS_ROOT(&devices, &devicesdir))
608 		cmn_err(CE_PANIC, "vfs_mountdevices: not devices root");
609 	VN_HOLD(devicesdir);
610 
611 	if (vfs_lock(&devices) != 0) {
612 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
613 		return;
614 	}
615 
616 	if (vn_vfswlock(mvp) != 0) {
617 		vfs_unlock(&devices);
618 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
619 		return;
620 	}
621 
622 	vfs_add(mvp, &devices, 0);
623 	vn_vfsunlock(mvp);
624 	vfs_unlock(&devices);
625 }
626 
627 /*
628  * Mount required filesystem. This is done right after root is mounted.
629  */
630 static void
631 vfs_mountfs(char *module, char *spec, char *path)
632 {
633 	struct vnode *mvp;
634 	struct mounta mounta;
635 	vfs_t *vfsp;
636 
637 	mounta.flags = MS_SYSSPACE | MS_DATA;
638 	mounta.fstype = module;
639 	mounta.spec = spec;
640 	mounta.dir = path;
641 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
642 		cmn_err(CE_WARN, "Cannot find %s\n", path);
643 		return;
644 	}
645 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
646 		cmn_err(CE_WARN, "Cannot mount %s\n", path);
647 	else
648 		VFS_RELE(vfsp);
649 	VN_RELE(mvp);
650 }
651 
652 /*
653  * vfs_mountroot is called by main() to mount the root filesystem.
654  */
655 void
656 vfs_mountroot(void)
657 {
658 	struct vnode	*rvp = NULL;
659 	char		*path;
660 	size_t		plen;
661 
662 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
663 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
664 
665 	/*
666 	 * Alloc the vfs hash bucket array and locks
667 	 */
668 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
669 
670 	/*
671 	 * Call machine-dependent routine "rootconf" to choose a root
672 	 * file system type.
673 	 */
674 	if (rootconf())
675 		cmn_err(CE_PANIC, "vfs_mountroot: cannot mount root");
676 	/*
677 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
678 	 * to point to it.  These are used by lookuppn() so that it
679 	 * knows where to start from ('/' or '.').
680 	 */
681 	vfs_setmntpoint(rootvfs, "/");
682 	if (VFS_ROOT(rootvfs, &rootdir))
683 		cmn_err(CE_PANIC, "vfs_mountroot: no root vnode");
684 	u.u_cdir = rootdir;
685 	VN_HOLD(u.u_cdir);
686 	u.u_rdir = NULL;
687 
688 	/*
689 	 * Setup the global zone's rootvp, now that it exists.
690 	 */
691 	global_zone->zone_rootvp = rootdir;
692 	VN_HOLD(global_zone->zone_rootvp);
693 
694 	/*
695 	 * Notify the module code that it can begin using the
696 	 * root filesystem instead of the boot program's services.
697 	 */
698 	modrootloaded = 1;
699 	/*
700 	 * Set up mnttab information for root
701 	 */
702 	vfs_setresource(rootvfs, rootfs.bo_name);
703 
704 	/*
705 	 * Notify cluster software that the root filesystem is available.
706 	 */
707 	clboot_mountroot();
708 
709 	/*
710 	 * Mount /devices, /system/contract, /etc/mnttab, /etc/svc/volatile,
711 	 * /system/object, and /proc.
712 	 */
713 	vfs_mountdevices();
714 
715 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
716 	vfs_mountfs("proc", "/proc", "/proc");
717 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
718 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
719 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
720 
721 #ifdef __sparc
722 	/*
723 	 * This bit of magic can go away when we convert sparc to
724 	 * the new boot architecture based on ramdisk.
725 	 *
726 	 * Booting off a mirrored root volume:
727 	 * At this point, we have booted and mounted root on a
728 	 * single component of the mirror.  Complete the boot
729 	 * by configuring SVM and converting the root to the
730 	 * dev_t of the mirrored root device.  This dev_t conversion
731 	 * only works because the underlying device doesn't change.
732 	 */
733 	if (root_is_svm) {
734 		if (svm_rootconf()) {
735 			cmn_err(CE_PANIC, "vfs_mountroot: cannot remount root");
736 		}
737 
738 		/*
739 		 * mnttab should reflect the new root device
740 		 */
741 		vfs_lock_wait(rootvfs);
742 		vfs_setresource(rootvfs, rootfs.bo_name);
743 		vfs_unlock(rootvfs);
744 	}
745 #endif /* __sparc */
746 
747 	/*
748 	 * Look up the root device via devfs so that a dv_node is
749 	 * created for it. The vnode is never VN_RELE()ed.
750 	 * We allocate more than MAXPATHLEN so that the
751 	 * buffer passed to i_ddi_prompath_to_devfspath() is
752 	 * exactly MAXPATHLEN (the function expects a buffer
753 	 * of that length).
754 	 */
755 	plen = strlen("/devices");
756 	path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
757 	(void) strcpy(path, "/devices");
758 
759 	if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
760 	    != DDI_SUCCESS ||
761 	    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
762 
763 		/* NUL terminate in case "path" has garbage */
764 		path[plen + MAXPATHLEN - 1] = '\0';
765 #ifdef	DEBUG
766 		cmn_err(CE_WARN, "!Cannot lookup root device: %s", path);
767 #endif
768 	}
769 	kmem_free(path, plen + MAXPATHLEN);
770 }
771 
772 /*
773  * Common mount code.  Called from the system call entry point, from autofs,
774  * and from pxfs.
775  *
776  * Takes the effective file system type, mount arguments, the mount point
777  * vnode, flags specifying whether the mount is a remount and whether it
778  * should be entered into the vfs list, and credentials.  Fills in its vfspp
779  * parameter with the mounted file system instance's vfs.
780  *
781  * Note that the effective file system type is specified as a string.  It may
782  * be null, in which case it's determined from the mount arguments, and may
783  * differ from the type specified in the mount arguments; this is a hook to
784  * allow interposition when instantiating file system instances.
785  *
786  * The caller is responsible for releasing its own hold on the mount point
787  * vp (this routine does its own hold when necessary).
788  * Also note that for remounts, the mount point vp should be the vnode for
789  * the root of the file system rather than the vnode that the file system
790  * is mounted on top of.
791  */
792 int
793 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
794 	struct vfs **vfspp)
795 {
796 	struct vfssw	*vswp;
797 	vfsops_t	*vfsops;
798 	struct vfs	*vfsp;
799 	struct vnode	*bvp;
800 	dev_t		bdev = 0;
801 	mntopts_t	mnt_mntopts;
802 	int		error = 0;
803 	int		copyout_error = 0;
804 	int		ovflags;
805 	char		*opts = uap->optptr;
806 	char		*inargs = opts;
807 	int		optlen = uap->optlen;
808 	int		remount;
809 	int		rdonly;
810 	int		nbmand = 0;
811 	int		delmip = 0;
812 	int		addmip = 0;
813 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
814 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
815 				UIO_SYSSPACE : UIO_USERSPACE;
816 	char		*resource = NULL, *mountpt = NULL;
817 	refstr_t	*oldresource, *oldmntpt;
818 	struct pathname	pn, rpn;
819 
820 	/*
821 	 * The v_flag value for the mount point vp is permanently set
822 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
823 	 * for mount point locking.
824 	 */
825 	mutex_enter(&vp->v_lock);
826 	vp->v_flag |= VVFSLOCK;
827 	mutex_exit(&vp->v_lock);
828 
829 	mnt_mntopts.mo_count = 0;
830 	/*
831 	 * Find the ops vector to use to invoke the file system-specific mount
832 	 * method.  If the fsname argument is non-NULL, use it directly.
833 	 * Otherwise, dig the file system type information out of the mount
834 	 * arguments.
835 	 *
836 	 * A side effect is to hold the vfssw entry.
837 	 *
838 	 * Mount arguments can be specified in several ways, which are
839 	 * distinguished by flag bit settings.  The preferred way is to set
840 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
841 	 * type supplied as a character string and the last two arguments
842 	 * being a pointer to a character buffer and the size of the buffer.
843 	 * On entry, the buffer holds a null terminated list of options; on
844 	 * return, the string is the list of options the file system
845 	 * recognized. If MS_DATA is set arguments five and six point to a
846 	 * block of binary data which the file system interprets.
847 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
848 	 * consistently with these conventions.  To handle them, we check to
849 	 * see whether the pointer to the file system name has a numeric value
850 	 * less than 256.  If so, we treat it as an index.
851 	 */
852 	if (fsname != NULL) {
853 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
854 			return (EINVAL);
855 		}
856 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
857 		size_t n;
858 		uint_t fstype;
859 		char name[FSTYPSZ];
860 
861 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
862 			RLOCK_VFSSW();
863 			if (fstype == 0 || fstype >= nfstype ||
864 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
865 				RUNLOCK_VFSSW();
866 				return (EINVAL);
867 			}
868 			(void) strcpy(name, vfssw[fstype].vsw_name);
869 			RUNLOCK_VFSSW();
870 			if ((vswp = vfs_getvfssw(name)) == NULL)
871 				return (EINVAL);
872 		} else {
873 			/*
874 			 * Handle either kernel or user address space.
875 			 */
876 			if (uap->flags & MS_SYSSPACE) {
877 				error = copystr(uap->fstype, name,
878 				    FSTYPSZ, &n);
879 			} else {
880 				error = copyinstr(uap->fstype, name,
881 				    FSTYPSZ, &n);
882 			}
883 			if (error) {
884 				if (error == ENAMETOOLONG)
885 					return (EINVAL);
886 				return (error);
887 			}
888 			if ((vswp = vfs_getvfssw(name)) == NULL)
889 				return (EINVAL);
890 		}
891 	} else {
892 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
893 			return (EINVAL);
894 	}
895 	if (!VFS_INSTALLED(vswp))
896 		return (EINVAL);
897 	vfsops = &vswp->vsw_vfsops;
898 
899 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
900 	/*
901 	 * Fetch mount options and parse them for generic vfs options
902 	 */
903 	if (uap->flags & MS_OPTIONSTR) {
904 		/*
905 		 * Limit the buffer size
906 		 */
907 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
908 			error = EINVAL;
909 			goto errout;
910 		}
911 		if ((uap->flags & MS_SYSSPACE) == 0) {
912 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
913 			inargs[0] = '\0';
914 			if (optlen) {
915 				error = copyinstr(opts, inargs, (size_t)optlen,
916 					NULL);
917 				if (error) {
918 					goto errout;
919 				}
920 			}
921 		}
922 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
923 	}
924 	/*
925 	 * Flag bits override the options string.
926 	 */
927 	if (uap->flags & MS_REMOUNT)
928 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
929 	if (uap->flags & MS_RDONLY)
930 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
931 	if (uap->flags & MS_NOSUID)
932 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
933 
934 	/*
935 	 * Check if this is a remount; must be set in the option string and
936 	 * the file system must support a remount option.
937 	 */
938 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
939 	    MNTOPT_REMOUNT, NULL)) {
940 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
941 			error = ENOTSUP;
942 			goto errout;
943 		}
944 		uap->flags |= MS_REMOUNT;
945 	}
946 
947 	/*
948 	 * uap->flags and vfs_optionisset() should agree.
949 	 */
950 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
951 		uap->flags |= MS_RDONLY;
952 	}
953 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
954 		uap->flags |= MS_NOSUID;
955 	}
956 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
957 	ASSERT(splice || !remount);
958 	/*
959 	 * If we are splicing the fs into the namespace,
960 	 * perform mount point checks.
961 	 *
962 	 * We want to resolve the path for the mount point to eliminate
963 	 * '.' and ".." and symlinks in mount points; we can't do the
964 	 * same for the resource string, since it would turn
965 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
966 	 * this before grabbing vn_vfswlock(), because otherwise we
967 	 * would deadlock with lookuppn().
968 	 */
969 	if (splice) {
970 		ASSERT(vp->v_count > 0);
971 
972 		/*
973 		 * Pick up mount point and device from appropriate space.
974 		 */
975 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
976 			resource = kmem_alloc(pn.pn_pathlen + 1,
977 			    KM_SLEEP);
978 			(void) strcpy(resource, pn.pn_path);
979 			pn_free(&pn);
980 		}
981 		/*
982 		 * Do a lookupname prior to taking the
983 		 * writelock. Mark this as completed if
984 		 * successful for later cleanup and addition to
985 		 * the mount in progress table.
986 		 */
987 		if ((uap->flags & MS_GLOBAL) == 0 &&
988 		    lookupname(uap->spec, fromspace,
989 			    FOLLOW, NULL, &bvp) == 0) {
990 			addmip = 1;
991 		}
992 
993 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
994 			pathname_t *pnp;
995 
996 			if (*pn.pn_path != '/') {
997 				error = EINVAL;
998 				pn_free(&pn);
999 				goto errout;
1000 			}
1001 			pn_alloc(&rpn);
1002 			/*
1003 			 * Kludge to prevent autofs from deadlocking with
1004 			 * itself when it calls domount().
1005 			 *
1006 			 * If autofs is calling, it is because it is doing
1007 			 * (autofs) mounts in the process of an NFS mount.  A
1008 			 * lookuppn() here would cause us to block waiting for
1009 			 * said NFS mount to complete, which can't since this
1010 			 * is the thread that was supposed to doing it.
1011 			 */
1012 			if (fromspace == UIO_USERSPACE) {
1013 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1014 				    NULL)) == 0) {
1015 					pnp = &rpn;
1016 				} else {
1017 					/*
1018 					 * The file disappeared or otherwise
1019 					 * became inaccessible since we opened
1020 					 * it; might as well fail the mount
1021 					 * since the mount point is no longer
1022 					 * accessible.
1023 					 */
1024 					pn_free(&rpn);
1025 					pn_free(&pn);
1026 					goto errout;
1027 				}
1028 			} else {
1029 				pnp = &pn;
1030 			}
1031 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1032 			(void) strcpy(mountpt, pnp->pn_path);
1033 
1034 			/*
1035 			 * If the addition of the zone's rootpath
1036 			 * would push us over a total path length
1037 			 * of MAXPATHLEN, we fail the mount with
1038 			 * ENAMETOOLONG, which is what we would have
1039 			 * gotten if we were trying to perform the same
1040 			 * mount in the global zone.
1041 			 *
1042 			 * strlen() doesn't count the trailing
1043 			 * '\0', but zone_rootpathlen counts both a
1044 			 * trailing '/' and the terminating '\0'.
1045 			 */
1046 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1047 			    strlen(mountpt)) > MAXPATHLEN ||
1048 			    (resource != NULL &&
1049 			    (curproc->p_zone->zone_rootpathlen - 1 +
1050 			    strlen(resource)) > MAXPATHLEN)) {
1051 				error = ENAMETOOLONG;
1052 			}
1053 
1054 			pn_free(&rpn);
1055 			pn_free(&pn);
1056 		}
1057 
1058 		if (error)
1059 			goto errout;
1060 
1061 		/*
1062 		 * Prevent path name resolution from proceeding past
1063 		 * the mount point.
1064 		 */
1065 		if (vn_vfswlock(vp) != 0) {
1066 			error = EBUSY;
1067 			goto errout;
1068 		}
1069 
1070 		/*
1071 		 * Verify that it's legitimate to establish a mount on
1072 		 * the prospective mount point.
1073 		 */
1074 		if (vn_mountedvfs(vp) != NULL) {
1075 			/*
1076 			 * The mount point lock was obtained after some
1077 			 * other thread raced through and established a mount.
1078 			 */
1079 			vn_vfsunlock(vp);
1080 			error = EBUSY;
1081 			goto errout;
1082 		}
1083 		if (vp->v_flag & VNOMOUNT) {
1084 			vn_vfsunlock(vp);
1085 			error = EINVAL;
1086 			goto errout;
1087 		}
1088 	}
1089 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1090 		uap->dataptr = NULL;
1091 		uap->datalen = 0;
1092 	}
1093 
1094 	/*
1095 	 * If this is a remount, we don't want to create a new VFS.
1096 	 * Instead, we pass the existing one with a remount flag.
1097 	 */
1098 	if (remount) {
1099 		/*
1100 		 * Confirm that the mount point is the root vnode of the
1101 		 * file system that is being remounted.
1102 		 * This can happen if the user specifies a different
1103 		 * mount point directory pathname in the (re)mount command.
1104 		 *
1105 		 * Code below can only be reached if splice is true, so it's
1106 		 * safe to do vn_vfsunlock() here.
1107 		 */
1108 		if ((vp->v_flag & VROOT) == 0) {
1109 			vn_vfsunlock(vp);
1110 			error = ENOENT;
1111 			goto errout;
1112 		}
1113 		/*
1114 		 * Disallow making file systems read-only unless file system
1115 		 * explicitly allows it in its vfssw.  Ignore other flags.
1116 		 */
1117 		if (rdonly && vn_is_readonly(vp) == 0 &&
1118 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1119 			vn_vfsunlock(vp);
1120 			error = EINVAL;
1121 			goto errout;
1122 		}
1123 		/*
1124 		 * Changing the NBMAND setting on remounts is permitted
1125 		 * but logged since it can lead to unexpected behavior.
1126 		 * We also counsel against using it for / and /usr.
1127 		 */
1128 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1129 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1130 			cmn_err(CE_WARN, "domount: nbmand turned %s via "
1131 			    "remounting %s", nbmand ? "on" : "off",
1132 			    refstr_value(vp->v_vfsp->vfs_mntpt));
1133 		}
1134 		vfsp = vp->v_vfsp;
1135 		ovflags = vfsp->vfs_flag;
1136 		vfsp->vfs_flag |= VFS_REMOUNT;
1137 		vfsp->vfs_flag &= ~VFS_RDONLY;
1138 	} else {
1139 		vfsp = kmem_alloc(sizeof (vfs_t), KM_SLEEP);
1140 		VFS_INIT(vfsp, vfsops, NULL);
1141 	}
1142 
1143 	VFS_HOLD(vfsp);
1144 
1145 	/*
1146 	 * The vfs_reflock is not used anymore the code below explicitly
1147 	 * holds it preventing others accesing it directly.
1148 	 */
1149 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1150 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1151 		cmn_err(CE_WARN,
1152 		    "mount type %s couldn't get vfs_reflock\n", vswp->vsw_name);
1153 
1154 	/*
1155 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1156 	 * failures that happen as a side-effect of fsflush() and other mount
1157 	 * and unmount operations that might be going on simultaneously and
1158 	 * may have locked the vfs currently. To not return EBUSY immediately
1159 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1160 	 */
1161 	if (!remount) {
1162 		if (error = vfs_lock(vfsp)) {
1163 			vfsp->vfs_flag = ovflags;
1164 			if (splice)
1165 				vn_vfsunlock(vp);
1166 			kmem_free(vfsp, sizeof (struct vfs));
1167 			goto errout;
1168 		}
1169 	} else {
1170 		vfs_lock_wait(vfsp);
1171 	}
1172 
1173 	/*
1174 	 * Add device to mount in progress table, global mounts require special
1175 	 * handling. It is possible that we have already done the lookupname
1176 	 * on a spliced, non-global fs. If so, we don't want to do it again
1177 	 * since we cannot do a lookupname after taking the
1178 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1179 	 */
1180 	if (!addmip) {
1181 	    if ((uap->flags & MS_GLOBAL) == 0 &&
1182 		lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1183 			addmip = 1;
1184 		}
1185 	}
1186 
1187 	if (addmip) {
1188 		bdev = bvp->v_rdev;
1189 		VN_RELE(bvp);
1190 		vfs_addmip(bdev, vfsp);
1191 		addmip = 0;
1192 		delmip = 1;
1193 	}
1194 	/*
1195 	 * Invalidate cached entry for the mount point.
1196 	 */
1197 	if (splice)
1198 		dnlc_purge_vp(vp);
1199 
1200 	/*
1201 	 * If have an option string but the filesystem doesn't supply a
1202 	 * prototype options table, create a table with the global
1203 	 * options and sufficient room to accept all the options in the
1204 	 * string.  Then parse the passed in option string
1205 	 * accepting all the options in the string.  This gives us an
1206 	 * option table with all the proper cancel properties for the
1207 	 * global options.
1208 	 *
1209 	 * Filesystems that supply a prototype options table are handled
1210 	 * earlier in this function.
1211 	 */
1212 	if (uap->flags & MS_OPTIONSTR) {
1213 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1214 			mntopts_t tmp_mntopts;
1215 
1216 			tmp_mntopts.mo_count = 0;
1217 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1218 			    &mnt_mntopts);
1219 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1220 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1221 			vfs_freeopttbl(&tmp_mntopts);
1222 		}
1223 	}
1224 
1225 	/*
1226 	 * Serialize with zone creations.
1227 	 */
1228 	mount_in_progress();
1229 	/*
1230 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1231 	 * splice it into the file system name space.
1232 	 *
1233 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1234 	 * string if necessary (ie, mntfs), and also for a remount to
1235 	 * change the same (necessary when remounting '/' during boot).
1236 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1237 	 * should be, then hand off control to VFS_MOUNT() which can
1238 	 * override this.
1239 	 *
1240 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1241 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1242 	 * never set those fields to NULL. Several bits of code make
1243 	 * assumptions that the fields are always valid.
1244 	 */
1245 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1246 	if (remount) {
1247 		if ((oldresource = vfsp->vfs_resource) != NULL)
1248 			refstr_hold(oldresource);
1249 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1250 			refstr_hold(oldmntpt);
1251 	}
1252 	vfs_setresource(vfsp, resource);
1253 	vfs_setmntpoint(vfsp, mountpt);
1254 
1255 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1256 
1257 	if (uap->flags & MS_RDONLY)
1258 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1259 	if (uap->flags & MS_NOSUID)
1260 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1261 	if (uap->flags & MS_GLOBAL)
1262 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1263 
1264 	if (error) {
1265 		if (remount) {
1266 			/* put back pre-remount options */
1267 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1268 			vfs_setmntpoint(vfsp, refstr_value(oldmntpt));
1269 			if (oldmntpt)
1270 				refstr_rele(oldmntpt);
1271 			vfs_setresource(vfsp, refstr_value(oldresource));
1272 			if (oldresource)
1273 				refstr_rele(oldresource);
1274 			vfsp->vfs_flag = ovflags;
1275 			vfs_unlock(vfsp);
1276 			VFS_RELE(vfsp);
1277 		} else {
1278 			vfs_unlock(vfsp);
1279 			vfs_freemnttab(vfsp);
1280 			kmem_free(vfsp, sizeof (struct vfs));
1281 		}
1282 	} else {
1283 		/*
1284 		 * Set the mount time to now
1285 		 */
1286 		vfsp->vfs_mtime = ddi_get_time();
1287 		if (remount) {
1288 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1289 			if (oldresource)
1290 				refstr_rele(oldresource);
1291 			if (oldmntpt)
1292 				refstr_rele(oldmntpt);
1293 		} else if (splice) {
1294 			/*
1295 			 * Link vfsp into the name space at the mount
1296 			 * point. Vfs_add() is responsible for
1297 			 * holding the mount point which will be
1298 			 * released when vfs_remove() is called.
1299 			 */
1300 			vfs_add(vp, vfsp, uap->flags);
1301 		} else {
1302 			/*
1303 			 * Hold the reference to file system which is
1304 			 * not linked into the name space.
1305 			 */
1306 			vfsp->vfs_zone = NULL;
1307 			VFS_HOLD(vfsp);
1308 			vfsp->vfs_vnodecovered = NULL;
1309 		}
1310 		/*
1311 		 * Set flags for global options encountered
1312 		 */
1313 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1314 			vfsp->vfs_flag |= VFS_RDONLY;
1315 		else
1316 			vfsp->vfs_flag &= ~VFS_RDONLY;
1317 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1318 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1319 		} else {
1320 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1321 				vfsp->vfs_flag |= VFS_NODEVICES;
1322 			else
1323 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1324 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1325 				vfsp->vfs_flag |= VFS_NOSETUID;
1326 			else
1327 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1328 		}
1329 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1330 			vfsp->vfs_flag |= VFS_NBMAND;
1331 		else
1332 			vfsp->vfs_flag &= ~VFS_NBMAND;
1333 
1334 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1335 			vfsp->vfs_flag |= VFS_XATTR;
1336 		else
1337 			vfsp->vfs_flag &= ~VFS_XATTR;
1338 
1339 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1340 			vfsp->vfs_flag |= VFS_NOEXEC;
1341 		else
1342 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1343 
1344 		/*
1345 		 * Now construct the output option string of options
1346 		 * we recognized.
1347 		 */
1348 		if (uap->flags & MS_OPTIONSTR) {
1349 			vfs_list_read_lock();
1350 			copyout_error = vfs_buildoptionstr(
1351 				&vfsp->vfs_mntopts, inargs, optlen);
1352 			vfs_list_unlock();
1353 			if (copyout_error == 0 &&
1354 			    (uap->flags & MS_SYSSPACE) == 0) {
1355 				copyout_error = copyoutstr(inargs, opts,
1356 				    optlen, NULL);
1357 			}
1358 		}
1359 		vfs_unlock(vfsp);
1360 	}
1361 	mount_completed();
1362 	if (splice)
1363 		vn_vfsunlock(vp);
1364 
1365 	/*
1366 	 * Return vfsp to caller.
1367 	 */
1368 	if ((error == 0) && (copyout_error == 0)) {
1369 		*vfspp = vfsp;
1370 	}
1371 errout:
1372 	vfs_freeopttbl(&mnt_mntopts);
1373 	if (resource != NULL)
1374 		kmem_free(resource, strlen(resource) + 1);
1375 	if (mountpt != NULL)
1376 		kmem_free(mountpt, strlen(mountpt) + 1);
1377 	/*
1378 	 * It is possible we errored prior to adding to mount in progress
1379 	 * table. Must free vnode we acquired with successful lookupname.
1380 	 */
1381 	if (addmip)
1382 		VN_RELE(bvp);
1383 	if (delmip)
1384 		vfs_delmip(vfsp);
1385 	ASSERT(vswp != NULL);
1386 	vfs_unrefvfssw(vswp);
1387 	if (inargs != opts)
1388 		kmem_free(inargs, MAX_MNTOPT_STR);
1389 	if (copyout_error) {
1390 		VFS_RELE(vfsp);
1391 		error = copyout_error;
1392 	}
1393 	return (error);
1394 }
1395 
1396 static void
1397 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath)
1398 {
1399 	size_t len;
1400 	refstr_t *ref;
1401 	zone_t *zone = curproc->p_zone;
1402 	char *sp;
1403 	int have_list_lock = 0;
1404 
1405 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1406 
1407 	/*
1408 	 * New path must be less than MAXPATHLEN because mntfs
1409 	 * will only display up to MAXPATHLEN bytes. This is currently
1410 	 * safe, because domount() uses pn_get(), and other callers
1411 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1412 	 */
1413 
1414 	ASSERT(strlen(newpath) < MAXPATHLEN);
1415 
1416 	/* mntfs requires consistency while vfs list lock is held */
1417 
1418 	if (VFS_ON_LIST(vfsp)) {
1419 		have_list_lock = 1;
1420 		vfs_list_lock();
1421 	}
1422 
1423 	if (*refp != NULL)
1424 		refstr_rele(*refp);
1425 
1426 	/* Do we need to modify the path? */
1427 
1428 	if (zone == global_zone || *newpath != '/') {
1429 		ref = refstr_alloc(newpath);
1430 		goto out;
1431 	}
1432 
1433 	/*
1434 	 * Truncate the trailing '/' in the zoneroot, and merge
1435 	 * in the zone's rootpath with the "newpath" (resource
1436 	 * or mountpoint) passed in.
1437 	 *
1438 	 * The size of the required buffer is thus the size of
1439 	 * the buffer required for the passed-in newpath
1440 	 * (strlen(newpath) + 1), plus the size of the buffer
1441 	 * required to hold zone_rootpath (zone_rootpathlen)
1442 	 * minus one for one of the now-superfluous NUL
1443 	 * terminations, minus one for the trailing '/'.
1444 	 *
1445 	 * That gives us:
1446 	 *
1447 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1448 	 *
1449 	 * Which is what we have below.
1450 	 */
1451 
1452 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1453 	sp = kmem_alloc(len, KM_SLEEP);
1454 
1455 	/*
1456 	 * Copy everything including the trailing slash, which
1457 	 * we then overwrite with the NUL character.
1458 	 */
1459 
1460 	(void) strcpy(sp, zone->zone_rootpath);
1461 	sp[zone->zone_rootpathlen - 2] = '\0';
1462 	(void) strcat(sp, newpath);
1463 
1464 	ref = refstr_alloc(sp);
1465 	kmem_free(sp, len);
1466 out:
1467 	*refp = ref;
1468 
1469 	if (have_list_lock) {
1470 		vfs_mnttab_modtimeupd();
1471 		vfs_list_unlock();
1472 	}
1473 }
1474 
1475 /*
1476  * Record a mounted resource name in a vfs structure.
1477  * If vfsp is already mounted, caller must hold the vfs lock.
1478  */
1479 void
1480 vfs_setresource(struct vfs *vfsp, const char *resource)
1481 {
1482 	if (resource == NULL || resource[0] == '\0')
1483 		resource = VFS_NORESOURCE;
1484 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource);
1485 }
1486 
1487 /*
1488  * Record a mount point name in a vfs structure.
1489  * If vfsp is already mounted, caller must hold the vfs lock.
1490  */
1491 void
1492 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt)
1493 {
1494 	if (mntpt == NULL || mntpt[0] == '\0')
1495 		mntpt = VFS_NOMNTPT;
1496 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt);
1497 }
1498 
1499 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1500 
1501 refstr_t *
1502 vfs_getresource(const struct vfs *vfsp)
1503 {
1504 	refstr_t *resource;
1505 
1506 	vfs_list_read_lock();
1507 	resource = vfsp->vfs_resource;
1508 	refstr_hold(resource);
1509 	vfs_list_unlock();
1510 
1511 	return (resource);
1512 }
1513 
1514 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1515 
1516 refstr_t *
1517 vfs_getmntpoint(const struct vfs *vfsp)
1518 {
1519 	refstr_t *mntpt;
1520 
1521 	vfs_list_read_lock();
1522 	mntpt = vfsp->vfs_mntpt;
1523 	refstr_hold(mntpt);
1524 	vfs_list_unlock();
1525 
1526 	return (mntpt);
1527 }
1528 
1529 /*
1530  * Create an empty options table with enough empty slots to hold all
1531  * The options in the options string passed as an argument.
1532  * Potentially prepend another options table.
1533  *
1534  * Note: caller is responsible for locking the vfs list, if needed,
1535  *       to protect mops.
1536  */
1537 static void
1538 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1539     const mntopts_t *mtmpl)
1540 {
1541 	const char *s = opts;
1542 	uint_t count;
1543 
1544 	if (opts == NULL || *opts == '\0') {
1545 		count = 0;
1546 	} else {
1547 		count = 1;
1548 
1549 		/*
1550 		 * Count number of options in the string
1551 		 */
1552 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
1553 			count++;
1554 			s++;
1555 		}
1556 	}
1557 	vfs_copyopttbl_extend(mtmpl, mops, count);
1558 }
1559 
1560 /*
1561  * Create an empty options table with enough empty slots to hold all
1562  * The options in the options string passed as an argument.
1563  *
1564  * This function is *not* for general use by filesystems.
1565  *
1566  * Note: caller is responsible for locking the vfs list, if needed,
1567  *       to protect mops.
1568  */
1569 void
1570 vfs_createopttbl(mntopts_t *mops, const char *opts)
1571 {
1572 	vfs_createopttbl_extend(mops, opts, NULL);
1573 }
1574 
1575 
1576 /*
1577  * Swap two mount options tables
1578  */
1579 static void
1580 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
1581 {
1582 	uint_t tmpcnt;
1583 	mntopt_t *tmplist;
1584 
1585 	tmpcnt = optbl2->mo_count;
1586 	tmplist = optbl2->mo_list;
1587 	optbl2->mo_count = optbl1->mo_count;
1588 	optbl2->mo_list = optbl1->mo_list;
1589 	optbl1->mo_count = tmpcnt;
1590 	optbl1->mo_list = tmplist;
1591 }
1592 
1593 static void
1594 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
1595 {
1596 	vfs_list_lock();
1597 	vfs_swapopttbl_nolock(optbl1, optbl2);
1598 	vfs_mnttab_modtimeupd();
1599 	vfs_list_unlock();
1600 }
1601 
1602 static char **
1603 vfs_copycancelopt_extend(char **const moc, int extend)
1604 {
1605 	int i = 0;
1606 	int j;
1607 	char **result;
1608 
1609 	if (moc != NULL) {
1610 		for (; moc[i] != NULL; i++)
1611 			/* count number of options to cancel */;
1612 	}
1613 
1614 	if (i + extend == 0)
1615 		return (NULL);
1616 
1617 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
1618 
1619 	for (j = 0; j < i; j++) {
1620 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
1621 		(void) strcpy(result[j], moc[j]);
1622 	}
1623 	for (; j <= i + extend; j++)
1624 		result[j] = NULL;
1625 
1626 	return (result);
1627 }
1628 
1629 static void
1630 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
1631 {
1632 	char *sp, *dp;
1633 
1634 	d->mo_flags = s->mo_flags;
1635 	d->mo_data = s->mo_data;
1636 	sp = s->mo_name;
1637 	if (sp != NULL) {
1638 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
1639 		(void) strcpy(dp, sp);
1640 		d->mo_name = dp;
1641 	} else {
1642 		d->mo_name = NULL; /* should never happen */
1643 	}
1644 
1645 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
1646 
1647 	sp = s->mo_arg;
1648 	if (sp != NULL) {
1649 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
1650 		(void) strcpy(dp, sp);
1651 		d->mo_arg = dp;
1652 	} else {
1653 		d->mo_arg = NULL;
1654 	}
1655 }
1656 
1657 /*
1658  * Copy a mount options table, possibly allocating some spare
1659  * slots at the end.  It is permissible to copy_extend the NULL table.
1660  */
1661 static void
1662 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
1663 {
1664 	uint_t i, count;
1665 	mntopt_t *motbl;
1666 
1667 	/*
1668 	 * Clear out any existing stuff in the options table being initialized
1669 	 */
1670 	vfs_freeopttbl(dmo);
1671 	count = (smo == NULL) ? 0 : smo->mo_count;
1672 	if ((count + extra) == 0)	/* nothing to do */
1673 		return;
1674 	dmo->mo_count = count + extra;
1675 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
1676 	dmo->mo_list = motbl;
1677 	for (i = 0; i < count; i++) {
1678 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
1679 	}
1680 	for (i = count; i < count + extra; i++) {
1681 		motbl[i].mo_flags = MO_EMPTY;
1682 	}
1683 }
1684 
1685 /*
1686  * Copy a mount options table.
1687  *
1688  * This function is *not* for general use by filesystems.
1689  *
1690  * Note: caller is responsible for locking the vfs list, if needed,
1691  *       to protect smo and dmo.
1692  */
1693 void
1694 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
1695 {
1696 	vfs_copyopttbl_extend(smo, dmo, 0);
1697 }
1698 
1699 static char **
1700 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
1701 {
1702 	int c1 = 0;
1703 	int c2 = 0;
1704 	char **result;
1705 	char **sp1, **sp2, **dp;
1706 
1707 	/*
1708 	 * First we count both lists of cancel options.
1709 	 * If either is NULL or has no elements, we return a copy of
1710 	 * the other.
1711 	 */
1712 	if (mop1->mo_cancel != NULL) {
1713 		for (; mop1->mo_cancel[c1] != NULL; c1++)
1714 			/* count cancel options in mop1 */;
1715 	}
1716 
1717 	if (c1 == 0)
1718 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
1719 
1720 	if (mop2->mo_cancel != NULL) {
1721 		for (; mop2->mo_cancel[c2] != NULL; c2++)
1722 			/* count cancel options in mop2 */;
1723 	}
1724 
1725 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
1726 
1727 	if (c2 == 0)
1728 		return (result);
1729 
1730 	/*
1731 	 * When we get here, we've got two sets of cancel options;
1732 	 * we need to merge the two sets.  We know that the result
1733 	 * array has "c1+c2+1" entries and in the end we might shrink
1734 	 * it.
1735 	 * Result now has a copy of the c1 entries from mop1; we'll
1736 	 * now lookup all the entries of mop2 in mop1 and copy it if
1737 	 * it is unique.
1738 	 * This operation is O(n^2) but it's only called once per
1739 	 * filesystem per duplicate option.  This is a situation
1740 	 * which doesn't arise with the filesystems in ON and
1741 	 * n is generally 1.
1742 	 */
1743 
1744 	dp = &result[c1];
1745 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
1746 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
1747 			if (strcmp(*sp1, *sp2) == 0)
1748 				break;
1749 		}
1750 		if (*sp1 == NULL) {
1751 			/*
1752 			 * Option *sp2 not found in mop1, so copy it.
1753 			 * The calls to vfs_copycancelopt_extend()
1754 			 * guarantee that there's enough room.
1755 			 */
1756 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
1757 			(void) strcpy(*dp++, *sp2);
1758 		}
1759 	}
1760 	if (dp != &result[c1+c2]) {
1761 		size_t bytes = (dp - result + 1) * sizeof (char *);
1762 		char **nres = kmem_alloc(bytes, KM_SLEEP);
1763 
1764 		bcopy(result, nres, bytes);
1765 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
1766 		result = nres;
1767 	}
1768 	return (result);
1769 }
1770 
1771 /*
1772  * Merge two mount option tables (outer and inner) into one.  This is very
1773  * similar to "merging" global variables and automatic variables in C.
1774  *
1775  * This isn't (and doesn't have to be) fast.
1776  *
1777  * This function is *not* for general use by filesystems.
1778  *
1779  * Note: caller is responsible for locking the vfs list, if needed,
1780  *       to protect omo, imo & dmo.
1781  */
1782 void
1783 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
1784 {
1785 	uint_t i, count;
1786 	mntopt_t *mop, *motbl;
1787 	uint_t freeidx;
1788 
1789 	/*
1790 	 * First determine how much space we need to allocate.
1791 	 */
1792 	count = omo->mo_count;
1793 	for (i = 0; i < imo->mo_count; i++) {
1794 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
1795 			continue;
1796 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
1797 			count++;
1798 	}
1799 	ASSERT(count >= omo->mo_count &&
1800 	    count <= omo->mo_count + imo->mo_count);
1801 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
1802 	for (i = 0; i < omo->mo_count; i++)
1803 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
1804 	freeidx = omo->mo_count;
1805 	for (i = 0; i < imo->mo_count; i++) {
1806 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
1807 			continue;
1808 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
1809 			char **newcanp;
1810 			uint_t index = mop - omo->mo_list;
1811 
1812 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
1813 
1814 			vfs_freeopt(&motbl[index]);
1815 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
1816 
1817 			vfs_freecancelopt(motbl[index].mo_cancel);
1818 			motbl[index].mo_cancel = newcanp;
1819 		} else {
1820 			/*
1821 			 * If it's a new option, just copy it over to the first
1822 			 * free location.
1823 			 */
1824 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
1825 		}
1826 	}
1827 	dmo->mo_count = count;
1828 	dmo->mo_list = motbl;
1829 }
1830 
1831 /*
1832  * Functions to set and clear mount options in a mount options table.
1833  */
1834 
1835 /*
1836  * Clear a mount option, if it exists.
1837  *
1838  * The update_mnttab arg indicates whether mops is part of a vfs that is on
1839  * the vfs list.
1840  */
1841 static void
1842 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
1843 {
1844 	struct mntopt *mop;
1845 	uint_t i, count;
1846 
1847 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
1848 
1849 	count = mops->mo_count;
1850 	for (i = 0; i < count; i++) {
1851 		mop = &mops->mo_list[i];
1852 
1853 		if (mop->mo_flags & MO_EMPTY)
1854 			continue;
1855 		if (strcmp(opt, mop->mo_name))
1856 			continue;
1857 		mop->mo_flags &= ~MO_SET;
1858 		if (mop->mo_arg != NULL) {
1859 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
1860 		}
1861 		mop->mo_arg = NULL;
1862 		if (update_mnttab)
1863 			vfs_mnttab_modtimeupd();
1864 		break;
1865 	}
1866 }
1867 
1868 void
1869 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
1870 {
1871 	int gotlock = 0;
1872 
1873 	if (VFS_ON_LIST(vfsp)) {
1874 		gotlock = 1;
1875 		vfs_list_lock();
1876 	}
1877 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
1878 	if (gotlock)
1879 		vfs_list_unlock();
1880 }
1881 
1882 
1883 /*
1884  * Set a mount option on.  If it's not found in the table, it's silently
1885  * ignored.  If the option has MO_IGNORE set, it is still set unless the
1886  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
1887  * bits can be used to toggle the MO_NODISPLAY bit for the option.
1888  * If the VFS_CREATEOPT flag bit is set then the first option slot with
1889  * MO_EMPTY set is created as the option passed in.
1890  *
1891  * The update_mnttab arg indicates whether mops is part of a vfs that is on
1892  * the vfs list.
1893  */
1894 static void
1895 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
1896     const char *arg, int flags, int update_mnttab)
1897 {
1898 	mntopt_t *mop;
1899 	uint_t i, count;
1900 	char *sp;
1901 
1902 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
1903 
1904 	if (flags & VFS_CREATEOPT) {
1905 		if (vfs_hasopt(mops, opt) != NULL) {
1906 			flags &= ~VFS_CREATEOPT;
1907 		}
1908 	}
1909 	count = mops->mo_count;
1910 	for (i = 0; i < count; i++) {
1911 		mop = &mops->mo_list[i];
1912 
1913 		if (mop->mo_flags & MO_EMPTY) {
1914 			if ((flags & VFS_CREATEOPT) == 0)
1915 				continue;
1916 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
1917 			(void) strcpy(sp, opt);
1918 			mop->mo_name = sp;
1919 			if (arg != NULL)
1920 				mop->mo_flags = MO_HASVALUE;
1921 			else
1922 				mop->mo_flags = 0;
1923 		} else if (strcmp(opt, mop->mo_name)) {
1924 			continue;
1925 		}
1926 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
1927 			break;
1928 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
1929 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
1930 			(void) strcpy(sp, arg);
1931 		} else {
1932 			sp = NULL;
1933 		}
1934 		if (mop->mo_arg != NULL)
1935 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
1936 		mop->mo_arg = sp;
1937 		if (flags & VFS_DISPLAY)
1938 			mop->mo_flags &= ~MO_NODISPLAY;
1939 		if (flags & VFS_NODISPLAY)
1940 			mop->mo_flags |= MO_NODISPLAY;
1941 		mop->mo_flags |= MO_SET;
1942 		if (mop->mo_cancel != NULL) {
1943 			char **cp;
1944 
1945 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
1946 				vfs_clearmntopt_nolock(mops, *cp, 0);
1947 		}
1948 		if (update_mnttab)
1949 			vfs_mnttab_modtimeupd();
1950 		break;
1951 	}
1952 }
1953 
1954 void
1955 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
1956 {
1957 	int gotlock = 0;
1958 
1959 	if (VFS_ON_LIST(vfsp)) {
1960 		gotlock = 1;
1961 		vfs_list_lock();
1962 	}
1963 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
1964 	if (gotlock)
1965 		vfs_list_unlock();
1966 }
1967 
1968 
1969 /*
1970  * Add a "tag" option to a mounted file system's options list.
1971  *
1972  * Note: caller is responsible for locking the vfs list, if needed,
1973  *       to protect mops.
1974  */
1975 static mntopt_t *
1976 vfs_addtag(mntopts_t *mops, const char *tag)
1977 {
1978 	uint_t count;
1979 	mntopt_t *mop, *motbl;
1980 
1981 	count = mops->mo_count + 1;
1982 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
1983 	if (mops->mo_count) {
1984 		size_t len = (count - 1) * sizeof (mntopt_t);
1985 
1986 		bcopy(mops->mo_list, motbl, len);
1987 		kmem_free(mops->mo_list, len);
1988 	}
1989 	mops->mo_count = count;
1990 	mops->mo_list = motbl;
1991 	mop = &motbl[count - 1];
1992 	mop->mo_flags = MO_TAG;
1993 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
1994 	(void) strcpy(mop->mo_name, tag);
1995 	return (mop);
1996 }
1997 
1998 /*
1999  * Allow users to set arbitrary "tags" in a vfs's mount options.
2000  * Broader use within the kernel is discouraged.
2001  */
2002 int
2003 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2004     cred_t *cr)
2005 {
2006 	vfs_t *vfsp;
2007 	mntopts_t *mops;
2008 	mntopt_t *mop;
2009 	int found = 0;
2010 	dev_t dev = makedevice(major, minor);
2011 	int err = 0;
2012 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2013 
2014 	/*
2015 	 * Find the desired mounted file system
2016 	 */
2017 	vfs_list_lock();
2018 	vfsp = rootvfs;
2019 	do {
2020 		if (vfsp->vfs_dev == dev &&
2021 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2022 			found = 1;
2023 			break;
2024 		}
2025 		vfsp = vfsp->vfs_next;
2026 	} while (vfsp != rootvfs);
2027 
2028 	if (!found) {
2029 		err = EINVAL;
2030 		goto out;
2031 	}
2032 	err = secpolicy_fs_config(cr, vfsp);
2033 	if (err != 0)
2034 		goto out;
2035 
2036 	mops = &vfsp->vfs_mntopts;
2037 	/*
2038 	 * Add tag if it doesn't already exist
2039 	 */
2040 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2041 		int len;
2042 
2043 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2044 		len = strlen(buf);
2045 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2046 			err = ENAMETOOLONG;
2047 			goto out;
2048 		}
2049 		mop = vfs_addtag(mops, tag);
2050 	}
2051 	if ((mop->mo_flags & MO_TAG) == 0) {
2052 		err = EINVAL;
2053 		goto out;
2054 	}
2055 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2056 out:
2057 	vfs_list_unlock();
2058 	kmem_free(buf, MAX_MNTOPT_STR);
2059 	return (err);
2060 }
2061 
2062 /*
2063  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2064  * Broader use within the kernel is discouraged.
2065  */
2066 int
2067 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2068     cred_t *cr)
2069 {
2070 	vfs_t *vfsp;
2071 	mntopt_t *mop;
2072 	int found = 0;
2073 	dev_t dev = makedevice(major, minor);
2074 	int err = 0;
2075 
2076 	/*
2077 	 * Find the desired mounted file system
2078 	 */
2079 	vfs_list_lock();
2080 	vfsp = rootvfs;
2081 	do {
2082 		if (vfsp->vfs_dev == dev &&
2083 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2084 			found = 1;
2085 			break;
2086 		}
2087 		vfsp = vfsp->vfs_next;
2088 	} while (vfsp != rootvfs);
2089 
2090 	if (!found) {
2091 		err = EINVAL;
2092 		goto out;
2093 	}
2094 	err = secpolicy_fs_config(cr, vfsp);
2095 	if (err != 0)
2096 		goto out;
2097 
2098 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2099 		err = EINVAL;
2100 		goto out;
2101 	}
2102 	if ((mop->mo_flags & MO_TAG) == 0) {
2103 		err = EINVAL;
2104 		goto out;
2105 	}
2106 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2107 out:
2108 	vfs_list_unlock();
2109 	return (err);
2110 }
2111 
2112 /*
2113  * Function to parse an option string and fill in a mount options table.
2114  * Unknown options are silently ignored.  The input option string is modified
2115  * by replacing separators with nulls.  If the create flag is set, options
2116  * not found in the table are just added on the fly.  The table must have
2117  * an option slot marked MO_EMPTY to add an option on the fly.
2118  *
2119  * This function is *not* for general use by filesystems.
2120  *
2121  * Note: caller is responsible for locking the vfs list, if needed,
2122  *       to protect mops..
2123  */
2124 void
2125 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2126 {
2127 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2128 	int setflg = VFS_NOFORCEOPT;
2129 
2130 	if (osp == NULL)
2131 		return;
2132 	while (*s != '\0') {
2133 		p = strchr(s, ',');	/* find next option */
2134 		if (p == NULL) {
2135 			cp = NULL;
2136 			p = s + strlen(s);
2137 		} else {
2138 			cp = p;		/* save location of comma */
2139 			*p++ = '\0';	/* mark end and point to next option */
2140 		}
2141 		nextop = p;
2142 		p = strchr(s, '=');	/* look for value */
2143 		if (p == NULL) {
2144 			valp = NULL;	/* no value supplied */
2145 		} else {
2146 			ep = p;		/* save location of equals */
2147 			*p++ = '\0';	/* end option and point to value */
2148 			valp = p;
2149 		}
2150 		/*
2151 		 * set option into options table
2152 		 */
2153 		if (create)
2154 			setflg |= VFS_CREATEOPT;
2155 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2156 		if (cp != NULL)
2157 			*cp = ',';	/* restore the comma */
2158 		if (valp != NULL)
2159 			*ep = '=';	/* restore the equals */
2160 		s = nextop;
2161 	}
2162 }
2163 
2164 /*
2165  * Function to inquire if an option exists in a mount options table.
2166  * Returns a pointer to the option if it exists, else NULL.
2167  *
2168  * This function is *not* for general use by filesystems.
2169  *
2170  * Note: caller is responsible for locking the vfs list, if needed,
2171  *       to protect mops.
2172  */
2173 struct mntopt *
2174 vfs_hasopt(const mntopts_t *mops, const char *opt)
2175 {
2176 	struct mntopt *mop;
2177 	uint_t i, count;
2178 
2179 	count = mops->mo_count;
2180 	for (i = 0; i < count; i++) {
2181 		mop = &mops->mo_list[i];
2182 
2183 		if (mop->mo_flags & MO_EMPTY)
2184 			continue;
2185 		if (strcmp(opt, mop->mo_name) == 0)
2186 			return (mop);
2187 	}
2188 	return (NULL);
2189 }
2190 
2191 /*
2192  * Function to inquire if an option is set in a mount options table.
2193  * Returns non-zero if set and fills in the arg pointer with a pointer to
2194  * the argument string or NULL if there is no argument string.
2195  */
2196 static int
2197 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2198 {
2199 	struct mntopt *mop;
2200 	uint_t i, count;
2201 
2202 	count = mops->mo_count;
2203 	for (i = 0; i < count; i++) {
2204 		mop = &mops->mo_list[i];
2205 
2206 		if (mop->mo_flags & MO_EMPTY)
2207 			continue;
2208 		if (strcmp(opt, mop->mo_name))
2209 			continue;
2210 		if ((mop->mo_flags & MO_SET) == 0)
2211 			return (0);
2212 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2213 			*argp = mop->mo_arg;
2214 		return (1);
2215 	}
2216 	return (0);
2217 }
2218 
2219 
2220 int
2221 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2222 {
2223 	int ret;
2224 
2225 	vfs_list_read_lock();
2226 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2227 	vfs_list_unlock();
2228 	return (ret);
2229 }
2230 
2231 
2232 /*
2233  * Construct a comma separated string of the options set in the given
2234  * mount table, return the string in the given buffer.  Return non-zero if
2235  * the buffer would overflow.
2236  *
2237  * This function is *not* for general use by filesystems.
2238  *
2239  * Note: caller is responsible for locking the vfs list, if needed,
2240  *       to protect mp.
2241  */
2242 int
2243 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2244 {
2245 	char *cp;
2246 	uint_t i;
2247 
2248 	buf[0] = '\0';
2249 	cp = buf;
2250 	for (i = 0; i < mp->mo_count; i++) {
2251 		struct mntopt *mop;
2252 
2253 		mop = &mp->mo_list[i];
2254 		if (mop->mo_flags & MO_SET) {
2255 			int optlen, comma = 0;
2256 
2257 			if (buf[0] != '\0')
2258 				comma = 1;
2259 			optlen = strlen(mop->mo_name);
2260 			if (strlen(buf) + comma + optlen + 1 > len)
2261 				goto err;
2262 			if (comma)
2263 				*cp++ = ',';
2264 			(void) strcpy(cp, mop->mo_name);
2265 			cp += optlen;
2266 			/*
2267 			 * Append option value if there is one
2268 			 */
2269 			if (mop->mo_arg != NULL) {
2270 				int arglen;
2271 
2272 				arglen = strlen(mop->mo_arg);
2273 				if (strlen(buf) + arglen + 2 > len)
2274 					goto err;
2275 				*cp++ = '=';
2276 				(void) strcpy(cp, mop->mo_arg);
2277 				cp += arglen;
2278 			}
2279 		}
2280 	}
2281 	return (0);
2282 err:
2283 	return (EOVERFLOW);
2284 }
2285 
2286 static void
2287 vfs_freecancelopt(char **moc)
2288 {
2289 	if (moc != NULL) {
2290 		int ccnt = 0;
2291 		char **cp;
2292 
2293 		for (cp = moc; *cp != NULL; cp++) {
2294 			kmem_free(*cp, strlen(*cp) + 1);
2295 			ccnt++;
2296 		}
2297 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2298 	}
2299 }
2300 
2301 static void
2302 vfs_freeopt(mntopt_t *mop)
2303 {
2304 	if (mop->mo_name != NULL)
2305 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2306 
2307 	vfs_freecancelopt(mop->mo_cancel);
2308 
2309 	if (mop->mo_arg != NULL)
2310 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2311 }
2312 
2313 /*
2314  * Free a mount options table
2315  *
2316  * This function is *not* for general use by filesystems.
2317  *
2318  * Note: caller is responsible for locking the vfs list, if needed,
2319  *       to protect mp.
2320  */
2321 void
2322 vfs_freeopttbl(mntopts_t *mp)
2323 {
2324 	uint_t i, count;
2325 
2326 	count = mp->mo_count;
2327 	for (i = 0; i < count; i++) {
2328 		vfs_freeopt(&mp->mo_list[i]);
2329 	}
2330 	if (count) {
2331 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2332 		mp->mo_count = 0;
2333 		mp->mo_list = NULL;
2334 	}
2335 }
2336 
2337 /*
2338  * Free any mnttab information recorded in the vfs struct.
2339  * The vfs must not be on the vfs list.
2340  */
2341 static void
2342 vfs_freemnttab(struct vfs *vfsp)
2343 {
2344 	ASSERT(!VFS_ON_LIST(vfsp));
2345 
2346 	/*
2347 	 * Free device and mount point information
2348 	 */
2349 	if (vfsp->vfs_mntpt != NULL) {
2350 		refstr_rele(vfsp->vfs_mntpt);
2351 		vfsp->vfs_mntpt = NULL;
2352 	}
2353 	if (vfsp->vfs_resource != NULL) {
2354 		refstr_rele(vfsp->vfs_resource);
2355 		vfsp->vfs_resource = NULL;
2356 	}
2357 	/*
2358 	 * Now free mount options information
2359 	 */
2360 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2361 }
2362 
2363 /*
2364  * Return the last mnttab modification time
2365  */
2366 void
2367 vfs_mnttab_modtime(timespec_t *ts)
2368 {
2369 	ASSERT(RW_LOCK_HELD(&vfslist));
2370 	*ts = vfs_mnttab_mtime;
2371 }
2372 
2373 /*
2374  * See if mnttab is changed
2375  */
2376 void
2377 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2378 {
2379 	int changed;
2380 
2381 	*phpp = (struct pollhead *)NULL;
2382 
2383 	/*
2384 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2385 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2386 	 * to not grab the vfs list lock because tv_sec is monotonically
2387 	 * increasing.
2388 	 */
2389 
2390 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2391 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2392 	if (!changed) {
2393 		*phpp = &vfs_pollhd;
2394 	}
2395 }
2396 
2397 /*
2398  * Update the mnttab modification time and wake up any waiters for
2399  * mnttab changes
2400  */
2401 void
2402 vfs_mnttab_modtimeupd()
2403 {
2404 	hrtime_t oldhrt, newhrt;
2405 
2406 	ASSERT(RW_WRITE_HELD(&vfslist));
2407 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
2408 	gethrestime(&vfs_mnttab_mtime);
2409 	newhrt = ts2hrt(&vfs_mnttab_mtime);
2410 	if (oldhrt == (hrtime_t)0)
2411 		vfs_mnttab_ctime = vfs_mnttab_mtime;
2412 	/*
2413 	 * Attempt to provide unique mtime (like uniqtime but not).
2414 	 */
2415 	if (newhrt == oldhrt) {
2416 		newhrt++;
2417 		hrt2ts(newhrt, &vfs_mnttab_mtime);
2418 	}
2419 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
2420 }
2421 
2422 int
2423 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
2424 {
2425 	vnode_t *coveredvp;
2426 	int error;
2427 
2428 	/*
2429 	 * Get covered vnode. This will be NULL if the vfs is not linked
2430 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
2431 	 */
2432 	coveredvp = vfsp->vfs_vnodecovered;
2433 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
2434 
2435 	/*
2436 	 * Purge all dnlc entries for this vfs.
2437 	 */
2438 	(void) dnlc_purge_vfsp(vfsp, 0);
2439 
2440 	/* For forcible umount, skip VFS_SYNC() since it may hang */
2441 	if ((flag & MS_FORCE) == 0)
2442 		(void) VFS_SYNC(vfsp, 0, cr);
2443 
2444 	/*
2445 	 * Lock the vfs to maintain fs status quo during unmount.  This
2446 	 * has to be done after the sync because ufs_update tries to acquire
2447 	 * the vfs_reflock.
2448 	 */
2449 	vfs_lock_wait(vfsp);
2450 
2451 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
2452 		vfs_unlock(vfsp);
2453 		if (coveredvp != NULL)
2454 			vn_vfsunlock(coveredvp);
2455 	} else if (coveredvp != NULL) {
2456 		/*
2457 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
2458 		 * when it frees vfsp so we do a VN_HOLD() so we can
2459 		 * continue to use coveredvp afterwards.
2460 		 */
2461 		VN_HOLD(coveredvp);
2462 		vfs_remove(vfsp);
2463 		vn_vfsunlock(coveredvp);
2464 		VN_RELE(coveredvp);
2465 	} else {
2466 		/*
2467 		 * Release the reference to vfs that is not linked
2468 		 * into the name space.
2469 		 */
2470 		vfs_unlock(vfsp);
2471 		VFS_RELE(vfsp);
2472 	}
2473 	return (error);
2474 }
2475 
2476 
2477 /*
2478  * Vfs_unmountall() is called by uadmin() to unmount all
2479  * mounted file systems (except the root file system) during shutdown.
2480  * It follows the existing locking protocol when traversing the vfs list
2481  * to sync and unmount vfses. Even though there should be no
2482  * other thread running while the system is shutting down, it is prudent
2483  * to still follow the locking protocol.
2484  */
2485 void
2486 vfs_unmountall(void)
2487 {
2488 	struct vfs *vfsp;
2489 	struct vfs *prev_vfsp = NULL;
2490 	int error;
2491 
2492 	/*
2493 	 * Toss all dnlc entries now so that the per-vfs sync
2494 	 * and unmount operations don't have to slog through
2495 	 * a bunch of uninteresting vnodes over and over again.
2496 	 */
2497 	dnlc_purge();
2498 
2499 	vfs_list_lock();
2500 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
2501 		prev_vfsp = vfsp->vfs_prev;
2502 
2503 		if (vfs_lock(vfsp) != 0)
2504 			continue;
2505 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
2506 		vfs_unlock(vfsp);
2507 		if (error)
2508 			continue;
2509 
2510 		vfs_list_unlock();
2511 
2512 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
2513 		(void) dounmount(vfsp, 0, CRED());
2514 
2515 		/*
2516 		 * Since we dropped the vfslist lock above we must
2517 		 * verify that next_vfsp still exists, else start over.
2518 		 */
2519 		vfs_list_lock();
2520 		for (vfsp = rootvfs->vfs_prev;
2521 			vfsp != rootvfs; vfsp = vfsp->vfs_prev)
2522 			if (vfsp == prev_vfsp)
2523 				break;
2524 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
2525 			prev_vfsp = rootvfs->vfs_prev;
2526 	}
2527 	vfs_list_unlock();
2528 }
2529 
2530 /*
2531  * Called to add an entry to the end of the vfs mount in progress list
2532  */
2533 void
2534 vfs_addmip(dev_t dev, struct vfs *vfsp)
2535 {
2536 	struct ipmnt *mipp;
2537 
2538 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
2539 	mipp->mip_next = NULL;
2540 	mipp->mip_dev = dev;
2541 	mipp->mip_vfsp = vfsp;
2542 	mutex_enter(&vfs_miplist_mutex);
2543 	if (vfs_miplist_end != NULL)
2544 		vfs_miplist_end->mip_next = mipp;
2545 	else
2546 		vfs_miplist = mipp;
2547 	vfs_miplist_end = mipp;
2548 	mutex_exit(&vfs_miplist_mutex);
2549 }
2550 
2551 /*
2552  * Called to remove an entry from the mount in progress list
2553  * Either because the mount completed or it failed.
2554  */
2555 void
2556 vfs_delmip(struct vfs *vfsp)
2557 {
2558 	struct ipmnt *mipp, *mipprev;
2559 
2560 	mutex_enter(&vfs_miplist_mutex);
2561 	mipprev = NULL;
2562 	for (mipp = vfs_miplist;
2563 		mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
2564 		mipprev = mipp;
2565 	}
2566 	if (mipp == NULL)
2567 		return; /* shouldn't happen */
2568 	if (mipp == vfs_miplist_end)
2569 		vfs_miplist_end = mipprev;
2570 	if (mipprev == NULL)
2571 		vfs_miplist = mipp->mip_next;
2572 	else
2573 		mipprev->mip_next = mipp->mip_next;
2574 	mutex_exit(&vfs_miplist_mutex);
2575 	kmem_free(mipp, sizeof (struct ipmnt));
2576 }
2577 
2578 /*
2579  * vfs_add is called by a specific filesystem's mount routine to add
2580  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
2581  * The vfs should already have been locked by the caller.
2582  *
2583  * coveredvp is NULL if this is the root.
2584  */
2585 void
2586 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
2587 {
2588 	int newflag;
2589 
2590 	ASSERT(vfs_lock_held(vfsp));
2591 	VFS_HOLD(vfsp);
2592 	newflag = vfsp->vfs_flag;
2593 	if (mflag & MS_RDONLY)
2594 		newflag |= VFS_RDONLY;
2595 	else
2596 		newflag &= ~VFS_RDONLY;
2597 	if (mflag & MS_NOSUID)
2598 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
2599 	else
2600 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
2601 	if (mflag & MS_NOMNTTAB)
2602 		newflag |= VFS_NOMNTTAB;
2603 	else
2604 		newflag &= ~VFS_NOMNTTAB;
2605 
2606 	if (coveredvp != NULL) {
2607 		ASSERT(vn_vfswlock_held(coveredvp));
2608 		coveredvp->v_vfsmountedhere = vfsp;
2609 		VN_HOLD(coveredvp);
2610 	}
2611 	vfsp->vfs_vnodecovered = coveredvp;
2612 	vfsp->vfs_flag = newflag;
2613 
2614 	vfs_list_add(vfsp);
2615 }
2616 
2617 /*
2618  * Remove a vfs from the vfs list, null out the pointer from the
2619  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
2620  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
2621  * reference to the vfs and to the covered vnode.
2622  *
2623  * Called from dounmount after it's confirmed with the file system
2624  * that the unmount is legal.
2625  */
2626 void
2627 vfs_remove(struct vfs *vfsp)
2628 {
2629 	vnode_t *vp;
2630 
2631 	ASSERT(vfs_lock_held(vfsp));
2632 
2633 	/*
2634 	 * Can't unmount root.  Should never happen because fs will
2635 	 * be busy.
2636 	 */
2637 	if (vfsp == rootvfs)
2638 		cmn_err(CE_PANIC, "vfs_remove: unmounting root");
2639 
2640 	vfs_list_remove(vfsp);
2641 
2642 	/*
2643 	 * Unhook from the file system name space.
2644 	 */
2645 	vp = vfsp->vfs_vnodecovered;
2646 	ASSERT(vn_vfswlock_held(vp));
2647 	vp->v_vfsmountedhere = NULL;
2648 	vfsp->vfs_vnodecovered = NULL;
2649 	VN_RELE(vp);
2650 
2651 	/*
2652 	 * Release lock and wakeup anybody waiting.
2653 	 */
2654 	vfs_unlock(vfsp);
2655 	VFS_RELE(vfsp);
2656 }
2657 
2658 /*
2659  * Lock a filesystem to prevent access to it while mounting,
2660  * unmounting and syncing.  Return EBUSY immediately if lock
2661  * can't be acquired.
2662  */
2663 int
2664 vfs_lock(vfs_t *vfsp)
2665 {
2666 	vn_vfslocks_entry_t *vpvfsentry;
2667 
2668 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2669 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
2670 		return (0);
2671 
2672 	vn_vfslocks_rele(vpvfsentry);
2673 	return (EBUSY);
2674 }
2675 
2676 int
2677 vfs_rlock(vfs_t *vfsp)
2678 {
2679 	vn_vfslocks_entry_t *vpvfsentry;
2680 
2681 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2682 
2683 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
2684 		return (0);
2685 
2686 	vn_vfslocks_rele(vpvfsentry);
2687 	return (EBUSY);
2688 }
2689 
2690 void
2691 vfs_lock_wait(vfs_t *vfsp)
2692 {
2693 	vn_vfslocks_entry_t *vpvfsentry;
2694 
2695 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2696 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
2697 }
2698 
2699 void
2700 vfs_rlock_wait(vfs_t *vfsp)
2701 {
2702 	vn_vfslocks_entry_t *vpvfsentry;
2703 
2704 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2705 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
2706 }
2707 
2708 /*
2709  * Unlock a locked filesystem.
2710  */
2711 void
2712 vfs_unlock(vfs_t *vfsp)
2713 {
2714 	vn_vfslocks_entry_t *vpvfsentry;
2715 
2716 	/*
2717 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
2718 	 * And these changes should remain for the patch changes as it is.
2719 	 */
2720 	if (panicstr)
2721 		return;
2722 
2723 	/*
2724 	 * ve_refcount needs to be dropped twice here.
2725 	 * 1. To release refernce after a call to vfs_locks_getlock()
2726 	 * 2. To release the reference from the locking routines like
2727 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
2728 	 */
2729 
2730 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2731 	vn_vfslocks_rele(vpvfsentry);
2732 
2733 	rwst_exit(&vpvfsentry->ve_lock);
2734 	vn_vfslocks_rele(vpvfsentry);
2735 }
2736 
2737 /*
2738  * Utility routine that allows a filesystem to construct its
2739  * fsid in "the usual way" - by munging some underlying dev_t and
2740  * the filesystem type number into the 64-bit fsid.  Note that
2741  * this implicitly relies on dev_t persistence to make filesystem
2742  * id's persistent.
2743  *
2744  * There's nothing to prevent an individual fs from constructing its
2745  * fsid in a different way, and indeed they should.
2746  *
2747  * Since we want fsids to be 32-bit quantities (so that they can be
2748  * exported identically by either 32-bit or 64-bit APIs, as well as
2749  * the fact that fsid's are "known" to NFS), we compress the device
2750  * number given down to 32-bits, and panic if that isn't possible.
2751  */
2752 void
2753 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
2754 {
2755 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
2756 		panic("device number too big for fsid!");
2757 	fsi->val[1] = val;
2758 }
2759 
2760 int
2761 vfs_lock_held(vfs_t *vfsp)
2762 {
2763 	int held;
2764 	vn_vfslocks_entry_t *vpvfsentry;
2765 
2766 	/*
2767 	 * vfs_lock_held will mimic sema_held behaviour
2768 	 * if panicstr is set. And these changes should remain
2769 	 * for the patch changes as it is.
2770 	 */
2771 	if (panicstr)
2772 		return (1);
2773 
2774 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2775 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
2776 
2777 	vn_vfslocks_rele(vpvfsentry);
2778 	return (held);
2779 }
2780 
2781 struct _kthread *
2782 vfs_lock_owner(vfs_t *vfsp)
2783 {
2784 	struct _kthread *owner;
2785 	vn_vfslocks_entry_t *vpvfsentry;
2786 
2787 	/*
2788 	 * vfs_wlock_held will mimic sema_held behaviour
2789 	 * if panicstr is set. And these changes should remain
2790 	 * for the patch changes as it is.
2791 	 */
2792 	if (panicstr)
2793 		return (NULL);
2794 
2795 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2796 	owner = rwst_owner(&vpvfsentry->ve_lock);
2797 
2798 	vn_vfslocks_rele(vpvfsentry);
2799 	return (owner);
2800 }
2801 
2802 /*
2803  * vfs list locking.
2804  *
2805  * Rather than manipulate the vfslist lock directly, we abstract into lock
2806  * and unlock routines to allow the locking implementation to be changed for
2807  * clustering.
2808  *
2809  * Whenever the vfs list is modified through its hash links, the overall list
2810  * lock must be obtained before locking the relevant hash bucket.  But to see
2811  * whether a given vfs is on the list, it suffices to obtain the lock for the
2812  * hash bucket without getting the overall list lock.  (See getvfs() below.)
2813  */
2814 
2815 void
2816 vfs_list_lock()
2817 {
2818 	rw_enter(&vfslist, RW_WRITER);
2819 }
2820 
2821 void
2822 vfs_list_read_lock()
2823 {
2824 	rw_enter(&vfslist, RW_READER);
2825 }
2826 
2827 void
2828 vfs_list_unlock()
2829 {
2830 	rw_exit(&vfslist);
2831 }
2832 
2833 /*
2834  * Low level worker routines for adding entries to and removing entries from
2835  * the vfs list.
2836  */
2837 
2838 static void
2839 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
2840 {
2841 	int vhno;
2842 	struct vfs **hp;
2843 	dev_t dev;
2844 
2845 	ASSERT(RW_WRITE_HELD(&vfslist));
2846 
2847 	dev = expldev(vfsp->vfs_fsid.val[0]);
2848 	vhno = VFSHASH(getmajor(dev), getminor(dev));
2849 
2850 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
2851 
2852 	/*
2853 	 * Link into the hash table, inserting it at the end, so that LOFS
2854 	 * with the same fsid as UFS (or other) file systems will not hide the
2855 	 * UFS.
2856 	 */
2857 	if (insert_at_head) {
2858 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
2859 		rvfs_list[vhno].rvfs_head = vfsp;
2860 	} else {
2861 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
2862 		    hp = &(*hp)->vfs_hash)
2863 			continue;
2864 		/*
2865 		 * hp now contains the address of the pointer to update
2866 		 * to effect the insertion.
2867 		 */
2868 		vfsp->vfs_hash = NULL;
2869 		*hp = vfsp;
2870 	}
2871 
2872 	rvfs_list[vhno].rvfs_len++;
2873 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
2874 }
2875 
2876 
2877 static void
2878 vfs_hash_remove(struct vfs *vfsp)
2879 {
2880 	int vhno;
2881 	struct vfs *tvfsp;
2882 	dev_t dev;
2883 
2884 	ASSERT(RW_WRITE_HELD(&vfslist));
2885 
2886 	dev = expldev(vfsp->vfs_fsid.val[0]);
2887 	vhno = VFSHASH(getmajor(dev), getminor(dev));
2888 
2889 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
2890 
2891 	/*
2892 	 * Remove from hash.
2893 	 */
2894 	if (rvfs_list[vhno].rvfs_head == vfsp) {
2895 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
2896 		rvfs_list[vhno].rvfs_len--;
2897 		goto foundit;
2898 	}
2899 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
2900 	    tvfsp = tvfsp->vfs_hash) {
2901 		if (tvfsp->vfs_hash == vfsp) {
2902 			tvfsp->vfs_hash = vfsp->vfs_hash;
2903 			rvfs_list[vhno].rvfs_len--;
2904 			goto foundit;
2905 		}
2906 	}
2907 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
2908 
2909 foundit:
2910 
2911 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
2912 }
2913 
2914 
2915 void
2916 vfs_list_add(struct vfs *vfsp)
2917 {
2918 	zone_t *zone;
2919 
2920 	/*
2921 	 * The zone that owns the mount is the one that performed the mount.
2922 	 * Note that this isn't necessarily the same as the zone mounted into.
2923 	 * The corresponding zone_rele() will be done when the vfs_t is
2924 	 * being free'd.
2925 	 */
2926 	vfsp->vfs_zone = curproc->p_zone;
2927 	zone_hold(vfsp->vfs_zone);
2928 
2929 	/*
2930 	 * Find the zone mounted into, and put this mount on its vfs list.
2931 	 */
2932 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
2933 	ASSERT(zone != NULL);
2934 	/*
2935 	 * Special casing for the root vfs.  This structure is allocated
2936 	 * statically and hooked onto rootvfs at link time.  During the
2937 	 * vfs_mountroot call at system startup time, the root file system's
2938 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
2939 	 * as argument.  The code below must detect and handle this special
2940 	 * case.  The only apparent justification for this special casing is
2941 	 * to ensure that the root file system appears at the head of the
2942 	 * list.
2943 	 *
2944 	 * XXX:	I'm assuming that it's ok to do normal list locking when
2945 	 *	adding the entry for the root file system (this used to be
2946 	 *	done with no locks held).
2947 	 */
2948 	vfs_list_lock();
2949 	/*
2950 	 * Link into the vfs list proper.
2951 	 */
2952 	if (vfsp == &root) {
2953 		/*
2954 		 * Assert: This vfs is already on the list as its first entry.
2955 		 * Thus, there's nothing to do.
2956 		 */
2957 		ASSERT(rootvfs == vfsp);
2958 		/*
2959 		 * Add it to the head of the global zone's vfslist.
2960 		 */
2961 		ASSERT(zone == global_zone);
2962 		ASSERT(zone->zone_vfslist == NULL);
2963 		zone->zone_vfslist = vfsp;
2964 	} else {
2965 		/*
2966 		 * Link to end of list using vfs_prev (as rootvfs is now a
2967 		 * doubly linked circular list) so list is in mount order for
2968 		 * mnttab use.
2969 		 */
2970 		rootvfs->vfs_prev->vfs_next = vfsp;
2971 		vfsp->vfs_prev = rootvfs->vfs_prev;
2972 		rootvfs->vfs_prev = vfsp;
2973 		vfsp->vfs_next = rootvfs;
2974 
2975 		/*
2976 		 * Do it again for the zone-private list (which may be NULL).
2977 		 */
2978 		if (zone->zone_vfslist == NULL) {
2979 			ASSERT(zone != global_zone);
2980 			zone->zone_vfslist = vfsp;
2981 		} else {
2982 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
2983 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
2984 			zone->zone_vfslist->vfs_zone_prev = vfsp;
2985 			vfsp->vfs_zone_next = zone->zone_vfslist;
2986 		}
2987 	}
2988 
2989 	/*
2990 	 * Link into the hash table, inserting it at the end, so that LOFS
2991 	 * with the same fsid as UFS (or other) file systems will not hide
2992 	 * the UFS.
2993 	 */
2994 	vfs_hash_add(vfsp, 0);
2995 
2996 	/*
2997 	 * update the mnttab modification time
2998 	 */
2999 	vfs_mnttab_modtimeupd();
3000 	vfs_list_unlock();
3001 	zone_rele(zone);
3002 }
3003 
3004 void
3005 vfs_list_remove(struct vfs *vfsp)
3006 {
3007 	zone_t *zone;
3008 
3009 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3010 	ASSERT(zone != NULL);
3011 	/*
3012 	 * Callers are responsible for preventing attempts to unmount the
3013 	 * root.
3014 	 */
3015 	ASSERT(vfsp != rootvfs);
3016 
3017 	vfs_list_lock();
3018 
3019 	/*
3020 	 * Remove from hash.
3021 	 */
3022 	vfs_hash_remove(vfsp);
3023 
3024 	/*
3025 	 * Remove from vfs list.
3026 	 */
3027 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3028 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3029 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3030 
3031 	/*
3032 	 * Remove from zone-specific vfs list.
3033 	 */
3034 	if (zone->zone_vfslist == vfsp)
3035 		zone->zone_vfslist = vfsp->vfs_zone_next;
3036 
3037 	if (vfsp->vfs_zone_next == vfsp) {
3038 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3039 		ASSERT(zone->zone_vfslist == vfsp);
3040 		zone->zone_vfslist = NULL;
3041 	}
3042 
3043 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3044 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3045 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3046 
3047 	/*
3048 	 * update the mnttab modification time
3049 	 */
3050 	vfs_mnttab_modtimeupd();
3051 	vfs_list_unlock();
3052 	zone_rele(zone);
3053 }
3054 
3055 struct vfs *
3056 getvfs(fsid_t *fsid)
3057 {
3058 	struct vfs *vfsp;
3059 	int val0 = fsid->val[0];
3060 	int val1 = fsid->val[1];
3061 	dev_t dev = expldev(val0);
3062 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3063 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3064 
3065 	mutex_enter(hmp);
3066 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3067 		if (vfsp->vfs_fsid.val[0] == val0 &&
3068 		    vfsp->vfs_fsid.val[1] == val1) {
3069 			VFS_HOLD(vfsp);
3070 			mutex_exit(hmp);
3071 			return (vfsp);
3072 		}
3073 	}
3074 	mutex_exit(hmp);
3075 	return (NULL);
3076 }
3077 
3078 /*
3079  * Search the vfs mount in progress list for a specified device/vfs entry.
3080  * Returns 0 if the first entry in the list that the device matches has the
3081  * given vfs pointer as well.  If the device matches but a different vfs
3082  * pointer is encountered in the list before the given vfs pointer then
3083  * a 1 is returned.
3084  */
3085 
3086 int
3087 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3088 {
3089 	int retval = 0;
3090 	struct ipmnt *mipp;
3091 
3092 	mutex_enter(&vfs_miplist_mutex);
3093 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3094 		if (mipp->mip_dev == dev) {
3095 			if (mipp->mip_vfsp != vfsp)
3096 				retval = 1;
3097 			break;
3098 		}
3099 	}
3100 	mutex_exit(&vfs_miplist_mutex);
3101 	return (retval);
3102 }
3103 
3104 /*
3105  * Search the vfs list for a specified device.  Returns 1, if entry is found
3106  * or 0 if no suitable entry is found.
3107  */
3108 
3109 int
3110 vfs_devismounted(dev_t dev)
3111 {
3112 	struct vfs *vfsp;
3113 	int found;
3114 
3115 	vfs_list_read_lock();
3116 	vfsp = rootvfs;
3117 	found = 0;
3118 	do {
3119 		if (vfsp->vfs_dev == dev) {
3120 			found = 1;
3121 			break;
3122 		}
3123 		vfsp = vfsp->vfs_next;
3124 	} while (vfsp != rootvfs);
3125 
3126 	vfs_list_unlock();
3127 	return (found);
3128 }
3129 
3130 /*
3131  * Search the vfs list for a specified device.  Returns a pointer to it
3132  * or NULL if no suitable entry is found. The caller of this routine
3133  * is responsible for releasing the returned vfs pointer.
3134  */
3135 struct vfs *
3136 vfs_dev2vfsp(dev_t dev)
3137 {
3138 	struct vfs *vfsp;
3139 	int found;
3140 
3141 	vfs_list_read_lock();
3142 	vfsp = rootvfs;
3143 	found = 0;
3144 	do {
3145 		/*
3146 		 * The following could be made more efficient by making
3147 		 * the entire loop use vfs_zone_next if the call is from
3148 		 * a zone.  The only callers, however, ustat(2) and
3149 		 * umount2(2), don't seem to justify the added
3150 		 * complexity at present.
3151 		 */
3152 		if (vfsp->vfs_dev == dev &&
3153 		    ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3154 		    curproc->p_zone)) {
3155 			VFS_HOLD(vfsp);
3156 			found = 1;
3157 			break;
3158 		}
3159 		vfsp = vfsp->vfs_next;
3160 	} while (vfsp != rootvfs);
3161 	vfs_list_unlock();
3162 	return (found ? vfsp: NULL);
3163 }
3164 
3165 /*
3166  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3167  * or NULL if no suitable entry is found. The caller of this routine
3168  * is responsible for releasing the returned vfs pointer.
3169  *
3170  * Note that if multiple mntpoints match, the last one matching is
3171  * returned in an attempt to return the "top" mount when overlay
3172  * mounts are covering the same mount point.  This is accomplished by starting
3173  * at the end of the list and working our way backwards, stopping at the first
3174  * matching mount.
3175  */
3176 struct vfs *
3177 vfs_mntpoint2vfsp(const char *mp)
3178 {
3179 	struct vfs *vfsp;
3180 	struct vfs *retvfsp = NULL;
3181 	zone_t *zone = curproc->p_zone;
3182 	struct vfs *list;
3183 
3184 	vfs_list_read_lock();
3185 	if (getzoneid() == GLOBAL_ZONEID) {
3186 		/*
3187 		 * The global zone may see filesystems in any zone.
3188 		 */
3189 		vfsp = rootvfs->vfs_prev;
3190 		do {
3191 			if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3192 				retvfsp = vfsp;
3193 				break;
3194 			}
3195 			vfsp = vfsp->vfs_prev;
3196 		} while (vfsp != rootvfs->vfs_prev);
3197 	} else if ((list = zone->zone_vfslist) != NULL) {
3198 		const char *mntpt;
3199 
3200 		vfsp = list->vfs_zone_prev;
3201 		do {
3202 			mntpt = refstr_value(vfsp->vfs_mntpt);
3203 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3204 			if (strcmp(mntpt, mp) == 0) {
3205 				retvfsp = vfsp;
3206 				break;
3207 			}
3208 			vfsp = vfsp->vfs_zone_prev;
3209 		} while (vfsp != list->vfs_zone_prev);
3210 	}
3211 	if (retvfsp)
3212 		VFS_HOLD(retvfsp);
3213 	vfs_list_unlock();
3214 	return (retvfsp);
3215 }
3216 
3217 /*
3218  * Search the vfs list for a specified vfsops.
3219  * if vfs entry is found then return 1, else 0.
3220  */
3221 int
3222 vfs_opsinuse(vfsops_t *ops)
3223 {
3224 	struct vfs *vfsp;
3225 	int found;
3226 
3227 	vfs_list_read_lock();
3228 	vfsp = rootvfs;
3229 	found = 0;
3230 	do {
3231 		if (vfs_getops(vfsp) == ops) {
3232 			found = 1;
3233 			break;
3234 		}
3235 		vfsp = vfsp->vfs_next;
3236 	} while (vfsp != rootvfs);
3237 	vfs_list_unlock();
3238 	return (found);
3239 }
3240 
3241 /*
3242  * Allocate an entry in vfssw for a file system type
3243  */
3244 struct vfssw *
3245 allocate_vfssw(char *type)
3246 {
3247 	struct vfssw *vswp;
3248 
3249 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3250 		/*
3251 		 * The vfssw table uses the empty string to identify an
3252 		 * available entry; we cannot add any type which has
3253 		 * a leading NUL. The string length is limited to
3254 		 * the size of the st_fstype array in struct stat.
3255 		 */
3256 		return (NULL);
3257 	}
3258 
3259 	ASSERT(VFSSW_WRITE_LOCKED());
3260 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3261 		if (!ALLOCATED_VFSSW(vswp)) {
3262 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3263 			(void) strcpy(vswp->vsw_name, type);
3264 			ASSERT(vswp->vsw_count == 0);
3265 			vswp->vsw_count = 1;
3266 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3267 			return (vswp);
3268 		}
3269 	return (NULL);
3270 }
3271 
3272 /*
3273  * Impose additional layer of translation between vfstype names
3274  * and module names in the filesystem.
3275  */
3276 static char *
3277 vfs_to_modname(char *vfstype)
3278 {
3279 	if (strcmp(vfstype, "proc") == 0) {
3280 		vfstype = "procfs";
3281 	} else if (strcmp(vfstype, "fd") == 0) {
3282 		vfstype = "fdfs";
3283 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3284 		vfstype = "nfs";
3285 	}
3286 
3287 	return (vfstype);
3288 }
3289 
3290 /*
3291  * Find a vfssw entry given a file system type name.
3292  * Try to autoload the filesystem if it's not found.
3293  * If it's installed, return the vfssw locked to prevent unloading.
3294  */
3295 struct vfssw *
3296 vfs_getvfssw(char *type)
3297 {
3298 	struct vfssw *vswp;
3299 	char	*modname;
3300 
3301 	RLOCK_VFSSW();
3302 	vswp = vfs_getvfsswbyname(type);
3303 	modname = vfs_to_modname(type);
3304 
3305 	if (rootdir == NULL) {
3306 		/*
3307 		 * If we haven't yet loaded the root file system, then our
3308 		 * _init won't be called until later. Allocate vfssw entry,
3309 		 * because mod_installfs won't be called.
3310 		 */
3311 		if (vswp == NULL) {
3312 			RUNLOCK_VFSSW();
3313 			WLOCK_VFSSW();
3314 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3315 				if ((vswp = allocate_vfssw(type)) == NULL) {
3316 					WUNLOCK_VFSSW();
3317 					return (NULL);
3318 				}
3319 			}
3320 			WUNLOCK_VFSSW();
3321 			RLOCK_VFSSW();
3322 		}
3323 		if (!VFS_INSTALLED(vswp)) {
3324 			RUNLOCK_VFSSW();
3325 			(void) modloadonly("fs", modname);
3326 		} else
3327 			RUNLOCK_VFSSW();
3328 		return (vswp);
3329 	}
3330 
3331 	/*
3332 	 * Try to load the filesystem.  Before calling modload(), we drop
3333 	 * our lock on the VFS switch table, and pick it up after the
3334 	 * module is loaded.  However, there is a potential race:  the
3335 	 * module could be unloaded after the call to modload() completes
3336 	 * but before we pick up the lock and drive on.  Therefore,
3337 	 * we keep reloading the module until we've loaded the module
3338 	 * _and_ we have the lock on the VFS switch table.
3339 	 */
3340 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3341 		RUNLOCK_VFSSW();
3342 		if (modload("fs", modname) == -1)
3343 			return (NULL);
3344 		RLOCK_VFSSW();
3345 		if (vswp == NULL)
3346 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3347 				break;
3348 	}
3349 	RUNLOCK_VFSSW();
3350 
3351 	return (vswp);
3352 }
3353 
3354 /*
3355  * Find a vfssw entry given a file system type name.
3356  */
3357 struct vfssw *
3358 vfs_getvfsswbyname(char *type)
3359 {
3360 	struct vfssw *vswp;
3361 
3362 	ASSERT(VFSSW_LOCKED());
3363 	if (type == NULL || *type == '\0')
3364 		return (NULL);
3365 
3366 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3367 		if (strcmp(type, vswp->vsw_name) == 0) {
3368 			vfs_refvfssw(vswp);
3369 			return (vswp);
3370 		}
3371 	}
3372 
3373 	return (NULL);
3374 }
3375 
3376 /*
3377  * Find a vfssw entry given a set of vfsops.
3378  */
3379 struct vfssw *
3380 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
3381 {
3382 	struct vfssw *vswp;
3383 
3384 	RLOCK_VFSSW();
3385 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3386 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
3387 			vfs_refvfssw(vswp);
3388 			RUNLOCK_VFSSW();
3389 			return (vswp);
3390 		}
3391 	}
3392 	RUNLOCK_VFSSW();
3393 
3394 	return (NULL);
3395 }
3396 
3397 /*
3398  * Reference a vfssw entry.
3399  */
3400 void
3401 vfs_refvfssw(struct vfssw *vswp)
3402 {
3403 
3404 	mutex_enter(&vswp->vsw_lock);
3405 	vswp->vsw_count++;
3406 	mutex_exit(&vswp->vsw_lock);
3407 }
3408 
3409 /*
3410  * Unreference a vfssw entry.
3411  */
3412 void
3413 vfs_unrefvfssw(struct vfssw *vswp)
3414 {
3415 
3416 	mutex_enter(&vswp->vsw_lock);
3417 	vswp->vsw_count--;
3418 	mutex_exit(&vswp->vsw_lock);
3419 }
3420 
3421 int sync_timeout = 30;		/* timeout for syncing a page during panic */
3422 int sync_timeleft;		/* portion of sync_timeout remaining */
3423 
3424 static int sync_retries = 20;	/* number of retries when not making progress */
3425 static int sync_triesleft;	/* portion of sync_retries remaining */
3426 
3427 static pgcnt_t old_pgcnt, new_pgcnt;
3428 static int new_bufcnt, old_bufcnt;
3429 
3430 /*
3431  * Sync all of the mounted filesystems, and then wait for the actual i/o to
3432  * complete.  We wait by counting the number of dirty pages and buffers,
3433  * pushing them out using bio_busy() and page_busy(), and then counting again.
3434  * This routine is used during both the uadmin A_SHUTDOWN code as well as
3435  * the SYNC phase of the panic code (see comments in panic.c).  It should only
3436  * be used after some higher-level mechanism has quiesced the system so that
3437  * new writes are not being initiated while we are waiting for completion.
3438  *
3439  * To ensure finite running time, our algorithm uses two timeout mechanisms:
3440  * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
3441  * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
3442  * Together these ensure that syncing completes if our i/o paths are stuck.
3443  * The counters are declared above so they can be found easily in the debugger.
3444  *
3445  * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
3446  * vfs_syncprogress() subroutine whenever we make progress through the lists of
3447  * pages and buffers.  It is decremented and expired by the deadman() cyclic.
3448  * When vfs_syncall() decides it is done, we disable the deadman() counter by
3449  * setting sync_timeleft to zero.  This timer guards against vfs_syncall()
3450  * deadlocking or hanging inside of a broken filesystem or driver routine.
3451  *
3452  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
3453  * sync_retries consecutive calls to bio_busy() and page_busy() without
3454  * decreasing either the number of dirty buffers or dirty pages below the
3455  * lowest count we have seen so far, we give up and return from vfs_syncall().
3456  *
3457  * Each loop iteration ends with a call to delay() one second to allow time for
3458  * i/o completion and to permit the user time to read our progress messages.
3459  */
3460 void
3461 vfs_syncall(void)
3462 {
3463 	if (rootdir == NULL && !modrootloaded)
3464 		return; /* panic during boot - no filesystems yet */
3465 
3466 	printf("syncing file systems...");
3467 	vfs_syncprogress();
3468 	sync();
3469 
3470 	vfs_syncprogress();
3471 	sync_triesleft = sync_retries;
3472 
3473 	old_bufcnt = new_bufcnt = INT_MAX;
3474 	old_pgcnt = new_pgcnt = ULONG_MAX;
3475 
3476 	while (sync_triesleft > 0) {
3477 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
3478 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
3479 
3480 		new_bufcnt = bio_busy(B_TRUE);
3481 		new_pgcnt = page_busy(B_TRUE);
3482 		vfs_syncprogress();
3483 
3484 		if (new_bufcnt == 0 && new_pgcnt == 0)
3485 			break;
3486 
3487 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
3488 			sync_triesleft = sync_retries;
3489 		else
3490 			sync_triesleft--;
3491 
3492 		if (new_bufcnt)
3493 			printf(" [%d]", new_bufcnt);
3494 		if (new_pgcnt)
3495 			printf(" %lu", new_pgcnt);
3496 
3497 		delay(hz);
3498 	}
3499 
3500 	if (new_bufcnt != 0 || new_pgcnt != 0)
3501 		printf(" done (not all i/o completed)\n");
3502 	else
3503 		printf(" done\n");
3504 
3505 	sync_timeleft = 0;
3506 	delay(hz);
3507 }
3508 
3509 /*
3510  * If we are in the middle of the sync phase of panic, reset sync_timeleft to
3511  * sync_timeout to indicate that we are making progress and the deadman()
3512  * omnipresent cyclic should not yet time us out.  Note that it is safe to
3513  * store to sync_timeleft here since the deadman() is firing at high-level
3514  * on top of us.  If we are racing with the deadman(), either the deadman()
3515  * will decrement the old value and then we will reset it, or we will
3516  * reset it and then the deadman() will immediately decrement it.  In either
3517  * case, correct behavior results.
3518  */
3519 void
3520 vfs_syncprogress(void)
3521 {
3522 	if (panicstr)
3523 		sync_timeleft = sync_timeout;
3524 }
3525 
3526 /*
3527  * Map VFS flags to statvfs flags.  These shouldn't really be separate
3528  * flags at all.
3529  */
3530 uint_t
3531 vf_to_stf(uint_t vf)
3532 {
3533 	uint_t stf = 0;
3534 
3535 	if (vf & VFS_RDONLY)
3536 		stf |= ST_RDONLY;
3537 	if (vf & VFS_NOSETUID)
3538 		stf |= ST_NOSUID;
3539 	if (vf & VFS_NOTRUNC)
3540 		stf |= ST_NOTRUNC;
3541 
3542 	return (stf);
3543 }
3544 
3545 /*
3546  * Use old-style function prototype for vfsstray() so
3547  * that we can use it anywhere in the vfsops structure.
3548  */
3549 int vfsstray();
3550 
3551 /*
3552  * Entries for (illegal) fstype 0.
3553  */
3554 /* ARGSUSED */
3555 int
3556 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
3557 {
3558 	cmn_err(CE_PANIC, "stray vfs operation");
3559 	return (0);
3560 }
3561 
3562 vfsops_t vfs_strayops = {
3563 	vfsstray,
3564 	vfsstray,
3565 	vfsstray,
3566 	vfsstray,
3567 	vfsstray_sync,
3568 	vfsstray,
3569 	vfsstray,
3570 	vfsstray
3571 };
3572 
3573 /*
3574  * Entries for (illegal) fstype 0.
3575  */
3576 int
3577 vfsstray(void)
3578 {
3579 	cmn_err(CE_PANIC, "stray vfs operation");
3580 	return (0);
3581 }
3582 
3583 /*
3584  * Support for dealing with forced UFS unmount and its interaction with
3585  * LOFS. Could be used by any filesystem.
3586  * See bug 1203132.
3587  */
3588 int
3589 vfs_EIO(void)
3590 {
3591 	return (EIO);
3592 }
3593 
3594 /*
3595  * We've gotta define the op for sync separately, since the compiler gets
3596  * confused if we mix and match ANSI and normal style prototypes when
3597  * a "short" argument is present and spits out a warning.
3598  */
3599 /*ARGSUSED*/
3600 int
3601 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
3602 {
3603 	return (EIO);
3604 }
3605 
3606 vfs_t EIO_vfs;
3607 vfsops_t *EIO_vfsops;
3608 
3609 /*
3610  * Called from startup() to initialize all loaded vfs's
3611  */
3612 void
3613 vfsinit(void)
3614 {
3615 	struct vfssw *vswp;
3616 	int error;
3617 
3618 	static const fs_operation_def_t EIO_vfsops_template[] = {
3619 		VFSNAME_MOUNT,		vfs_EIO,
3620 		VFSNAME_UNMOUNT,	vfs_EIO,
3621 		VFSNAME_ROOT,		vfs_EIO,
3622 		VFSNAME_STATVFS,	vfs_EIO,
3623 		VFSNAME_SYNC, (fs_generic_func_p) vfs_EIO_sync,
3624 		VFSNAME_VGET,		vfs_EIO,
3625 		VFSNAME_MOUNTROOT,	vfs_EIO,
3626 		VFSNAME_FREEVFS,	vfs_EIO,
3627 		VFSNAME_VNSTATE,	vfs_EIO,
3628 		NULL, NULL
3629 	};
3630 
3631 
3632 	/* Initialize the vnode cache (file systems may use it during init). */
3633 
3634 	vn_create_cache();
3635 
3636 	/* Setup event monitor framework */
3637 
3638 	fem_init();
3639 
3640 	/* Initialize the dummy stray file system type. */
3641 
3642 	vfssw[0].vsw_vfsops = vfs_strayops;
3643 
3644 	/* Initialize the dummy EIO file system. */
3645 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
3646 	if (error != 0) {
3647 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
3648 		/* Shouldn't happen, but not bad enough to panic */
3649 	}
3650 
3651 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
3652 
3653 	/*
3654 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
3655 	 * on this vfs can immediately notice it's invalid.
3656 	 */
3657 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
3658 
3659 	/*
3660 	 * Call the init routines of non-loadable filesystems only.
3661 	 * Filesystems which are loaded as separate modules will be
3662 	 * initialized by the module loading code instead.
3663 	 */
3664 
3665 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3666 		RLOCK_VFSSW();
3667 		if (vswp->vsw_init != NULL)
3668 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
3669 		RUNLOCK_VFSSW();
3670 	}
3671 }
3672 
3673 /*
3674  * Increments the vfs reference count by one atomically.
3675  */
3676 void
3677 vfs_hold(vfs_t *vfsp)
3678 {
3679 	atomic_add_32(&vfsp->vfs_count, 1);
3680 	ASSERT(vfsp->vfs_count != 0);
3681 }
3682 
3683 /*
3684  * Decrements the vfs reference count by one atomically. When
3685  * vfs reference count becomes zero, it calls the file system
3686  * specific vfs_freevfs() to free up the resources.
3687  */
3688 void
3689 vfs_rele(vfs_t *vfsp)
3690 {
3691 	ASSERT(vfsp->vfs_count != 0);
3692 	if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) {
3693 		VFS_FREEVFS(vfsp);
3694 		if (vfsp->vfs_zone)
3695 			zone_rele(vfsp->vfs_zone);
3696 		vfs_freemnttab(vfsp);
3697 		sema_destroy(&vfsp->vfs_reflock);
3698 		kmem_free(vfsp, sizeof (*vfsp));
3699 	}
3700 }
3701 
3702 /*
3703  * Generic operations vector support.
3704  *
3705  * This is used to build operations vectors for both the vfs and vnode.
3706  * It's normally called only when a file system is loaded.
3707  *
3708  * There are many possible algorithms for this, including the following:
3709  *
3710  *   (1) scan the list of known operations; for each, see if the file system
3711  *       includes an entry for it, and fill it in as appropriate.
3712  *
3713  *   (2) set up defaults for all known operations.  scan the list of ops
3714  *       supplied by the file system; for each which is both supplied and
3715  *       known, fill it in.
3716  *
3717  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
3718  *       in entries as we go.
3719  *
3720  * we choose (1) for simplicity, and because performance isn't critical here.
3721  * note that (2) could be sped up using a precomputed hash table on known ops.
3722  * (3) could be faster than either, but only if the lists were very large or
3723  * supplied in sorted order.
3724  *
3725  */
3726 
3727 int
3728 fs_build_vector(void *vector, int *unused_ops,
3729     const fs_operation_trans_def_t *translation,
3730     const fs_operation_def_t *operations)
3731 {
3732 	int i, num_trans, num_ops, used;
3733 
3734 	/* Count the number of translations and the number of supplied */
3735 	/* operations. */
3736 
3737 	{
3738 		const fs_operation_trans_def_t *p;
3739 
3740 		for (num_trans = 0, p = translation;
3741 		    p->name != NULL;
3742 		    num_trans++, p++)
3743 			;
3744 	}
3745 
3746 	{
3747 		const fs_operation_def_t *p;
3748 
3749 		for (num_ops = 0, p = operations;
3750 		    p->name != NULL;
3751 		    num_ops++, p++)
3752 			;
3753 	}
3754 
3755 	/* Walk through each operation known to our caller.  There will be */
3756 	/* one entry in the supplied "translation table" for each. */
3757 
3758 	used = 0;
3759 
3760 	for (i = 0; i < num_trans; i++) {
3761 		int j, found;
3762 		char *curname;
3763 		fs_generic_func_p result;
3764 		fs_generic_func_p *location;
3765 
3766 		curname = translation[i].name;
3767 
3768 		/* Look for a matching operation in the list supplied by the */
3769 		/* file system. */
3770 
3771 		found = 0;
3772 
3773 		for (j = 0; j < num_ops; j++) {
3774 			if (strcmp(operations[j].name, curname) == 0) {
3775 				used++;
3776 				found = 1;
3777 				break;
3778 			}
3779 		}
3780 
3781 		/* If the file system is using a "placeholder" for default */
3782 		/* or error functions, grab the appropriate function out of */
3783 		/* the translation table.  If the file system didn't supply */
3784 		/* this operation at all, use the default function. */
3785 
3786 		if (found) {
3787 			result = operations[j].func;
3788 			if (result == fs_default) {
3789 				result = translation[i].defaultFunc;
3790 			} else if (result == fs_error) {
3791 				result = translation[i].errorFunc;
3792 			} else if (result == NULL) {
3793 				/* Null values are PROHIBITED */
3794 				return (EINVAL);
3795 			}
3796 		} else {
3797 			result = translation[i].defaultFunc;
3798 		}
3799 
3800 		/* Now store the function into the operations vector. */
3801 
3802 		location = (fs_generic_func_p *)
3803 		    (((char *)vector) + translation[i].offset);
3804 
3805 		*location = result;
3806 	}
3807 
3808 	*unused_ops = num_ops - used;
3809 
3810 	return (0);
3811 }
3812 
3813 /* Placeholder functions, should never be called. */
3814 
3815 int
3816 fs_error(void)
3817 {
3818 	cmn_err(CE_PANIC, "fs_error called");
3819 	return (0);
3820 }
3821 
3822 int
3823 fs_default(void)
3824 {
3825 	cmn_err(CE_PANIC, "fs_default called");
3826 	return (0);
3827 }
3828 
3829 #ifdef __sparc
3830 
3831 /*
3832  * Part of the implementation of booting off a mirrored root
3833  * involves a change of dev_t for the root device.  To
3834  * accomplish this, first remove the existing hash table
3835  * entry for the root device, convert to the new dev_t,
3836  * then re-insert in the hash table at the head of the list.
3837  */
3838 void
3839 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
3840 {
3841 	vfs_list_lock();
3842 
3843 	vfs_hash_remove(vfsp);
3844 
3845 	vfsp->vfs_dev = ndev;
3846 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
3847 
3848 	vfs_hash_add(vfsp, 1);
3849 
3850 	vfs_list_unlock();
3851 }
3852 
3853 #else /* x86 NEWBOOT */
3854 
3855 int
3856 rootconf()
3857 {
3858 	int error;
3859 	struct vfssw *vsw;
3860 	extern void pm_init();
3861 	char *fstyp;
3862 
3863 	fstyp = getrootfs();
3864 
3865 	if (error = clboot_rootconf())
3866 		return (error);
3867 
3868 	if (modload("fs", fstyp) == -1)
3869 		cmn_err(CE_PANIC, "Cannot _init %s module\n", fstyp);
3870 
3871 	RLOCK_VFSSW();
3872 	vsw = vfs_getvfsswbyname(fstyp);
3873 	RUNLOCK_VFSSW();
3874 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
3875 	VFS_HOLD(rootvfs);
3876 
3877 	/* always mount readonly first */
3878 	rootvfs->vfs_flag |= VFS_RDONLY;
3879 
3880 	pm_init();
3881 
3882 	if (netboot)
3883 		(void) strplumb();
3884 
3885 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
3886 	vfs_unrefvfssw(vsw);
3887 	rootdev = rootvfs->vfs_dev;
3888 
3889 	if (error)
3890 		cmn_err(CE_PANIC, "cannot mount root path %s", svm_bootpath);
3891 	return (error);
3892 }
3893 
3894 /*
3895  * XXX this is called by nfs only and should probably be removed
3896  * If booted with ASKNAME, prompt on the console for a filesystem
3897  * name and return it.
3898  */
3899 void
3900 getfsname(char *askfor, char *name, size_t namelen)
3901 {
3902 	if (boothowto & RB_ASKNAME) {
3903 		printf("%s name: ", askfor);
3904 		console_gets(name, namelen);
3905 	}
3906 }
3907 
3908 /*
3909  * If server_path exists, then we are booting a diskless
3910  * client. Otherwise, we default to ufs. Zfs should perhaps be
3911  * another property.
3912  */
3913 static char *
3914 getrootfs(void)
3915 {
3916 	extern char *strplumb_get_netdev_path(void);
3917 	char *propstr = NULL;
3918 
3919 	/* check fstype property; it should be nfsdyn for diskless */
3920 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
3921 	    DDI_PROP_DONTPASS, "fstype", &propstr)
3922 	    == DDI_SUCCESS) {
3923 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
3924 		ddi_prop_free(propstr);
3925 	}
3926 
3927 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0)
3928 		return (rootfs.bo_fstype);
3929 
3930 	++netboot;
3931 	/* check if path to network interface is specified in bootpath */
3932 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
3933 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
3934 	    == DDI_SUCCESS) {
3935 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
3936 		ddi_prop_free(propstr);
3937 	} else {
3938 		/* attempt to determine netdev_path via boot_mac address */
3939 		netdev_path = strplumb_get_netdev_path();
3940 		if (netdev_path == NULL)
3941 			cmn_err(CE_PANIC,
3942 			    "Cannot find boot network interface\n");
3943 		(void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
3944 	}
3945 	return ("nfs");
3946 }
3947 #endif
3948