xref: /titanic_50/usr/src/uts/common/fs/vfs.c (revision 356f72340a69936724c69f2f87fffa6f5887f885)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
25  * Copyright 2017 RackTop Systems.
26  * Copyright 2016 Nexenta Systems, Inc.
27  */
28 
29 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
30 /*	  All Rights Reserved  	*/
31 
32 /*
33  * University Copyright- Copyright (c) 1982, 1986, 1988
34  * The Regents of the University of California
35  * All Rights Reserved
36  *
37  * University Acknowledgment- Portions of this document are derived from
38  * software developed by the University of California, Berkeley, and its
39  * contributors.
40  */
41 
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/errno.h>
46 #include <sys/user.h>
47 #include <sys/fstyp.h>
48 #include <sys/kmem.h>
49 #include <sys/systm.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/vfs.h>
53 #include <sys/vfs_opreg.h>
54 #include <sys/fem.h>
55 #include <sys/mntent.h>
56 #include <sys/stat.h>
57 #include <sys/statvfs.h>
58 #include <sys/statfs.h>
59 #include <sys/cred.h>
60 #include <sys/vnode.h>
61 #include <sys/rwstlock.h>
62 #include <sys/dnlc.h>
63 #include <sys/file.h>
64 #include <sys/time.h>
65 #include <sys/atomic.h>
66 #include <sys/cmn_err.h>
67 #include <sys/buf.h>
68 #include <sys/swap.h>
69 #include <sys/debug.h>
70 #include <sys/vnode.h>
71 #include <sys/modctl.h>
72 #include <sys/ddi.h>
73 #include <sys/pathname.h>
74 #include <sys/bootconf.h>
75 #include <sys/dumphdr.h>
76 #include <sys/dc_ki.h>
77 #include <sys/poll.h>
78 #include <sys/sunddi.h>
79 #include <sys/sysmacros.h>
80 #include <sys/zone.h>
81 #include <sys/policy.h>
82 #include <sys/ctfs.h>
83 #include <sys/objfs.h>
84 #include <sys/console.h>
85 #include <sys/reboot.h>
86 #include <sys/attr.h>
87 #include <sys/zio.h>
88 #include <sys/spa.h>
89 #include <sys/lofi.h>
90 #include <sys/bootprops.h>
91 #include <sys/avl.h>
92 
93 #include <vm/page.h>
94 
95 #include <fs/fs_subr.h>
96 /* Private interfaces to create vopstats-related data structures */
97 extern void		initialize_vopstats(vopstats_t *);
98 extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
99 extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
100 
101 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
102 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
103     const char *, int, int);
104 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
105 static void vfs_freemnttab(struct vfs *);
106 static void vfs_freeopt(mntopt_t *);
107 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
108 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
109 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
110 static void vfs_createopttbl_extend(mntopts_t *, const char *,
111     const mntopts_t *);
112 static char **vfs_copycancelopt_extend(char **const, int);
113 static void vfs_freecancelopt(char **);
114 static void getrootfs(char **, char **);
115 static int getmacpath(dev_info_t *, void *);
116 static void vfs_mnttabvp_setup(void);
117 
118 struct ipmnt {
119 	struct ipmnt	*mip_next;
120 	dev_t		mip_dev;
121 	struct vfs	*mip_vfsp;
122 };
123 
124 static kmutex_t		vfs_miplist_mutex;
125 static struct ipmnt	*vfs_miplist = NULL;
126 static struct ipmnt	*vfs_miplist_end = NULL;
127 
128 static kmem_cache_t *vfs_cache;	/* Pointer to VFS kmem cache */
129 
130 /*
131  * VFS global data.
132  */
133 vnode_t *rootdir;		/* pointer to root inode vnode. */
134 vnode_t *devicesdir;		/* pointer to inode of devices root */
135 vnode_t	*devdir;		/* pointer to inode of dev root */
136 
137 char *server_rootpath;		/* root path for diskless clients */
138 char *server_hostname;		/* hostname of diskless server */
139 
140 static struct vfs root;
141 static struct vfs devices;
142 static struct vfs dev;
143 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
144 avl_tree_t vfs_by_dev;		/* avl tree to index mounted VFSs by dev */
145 avl_tree_t vfs_by_mntpnt;	/* avl tree to index mounted VFSs by mntpnt */
146 uint64_t vfs_curr_mntix;	/* counter to provide a unique mntix for
147 				 * entries in the above avl trees.
148 				 * protected by vfslist lock */
149 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
150 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
151 				/* must be power of 2!	*/
152 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
153 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
154 char *vfs_dummyfstype = "\0";
155 struct pollhead vfs_pollhd;	/* for mnttab pollers */
156 struct vnode *vfs_mntdummyvp;	/* to fake mnttab read/write for file events */
157 int	mntfstype;		/* will be set once mnt fs is mounted */
158 
159 /*
160  * Table for generic options recognized in the VFS layer and acted
161  * on at this level before parsing file system specific options.
162  * The nosuid option is stronger than any of the devices and setuid
163  * options, so those are canceled when nosuid is seen.
164  *
165  * All options which are added here need to be added to the
166  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
167  */
168 /*
169  * VFS Mount options table
170  */
171 static char *ro_cancel[] = { MNTOPT_RW, NULL };
172 static char *rw_cancel[] = { MNTOPT_RO, NULL };
173 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
174 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
175     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
176 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
177 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
178 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
179 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
180 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
181 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
182 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
183 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
184 
185 static const mntopt_t mntopts[] = {
186 /*
187  *	option name		cancel options		default arg	flags
188  */
189 	{ MNTOPT_REMOUNT,	NULL,			NULL,
190 		MO_NODISPLAY, (void *)0 },
191 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
192 		(void *)0 },
193 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
194 		(void *)0 },
195 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
196 		(void *)0 },
197 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
198 		(void *)0 },
199 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
200 		(void *)0 },
201 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
202 		(void *)0 },
203 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
204 		(void *)0 },
205 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
206 		(void *)0 },
207 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
208 		(void *)0 },
209 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
210 		(void *)0 },
211 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
212 		(void *)0 },
213 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
214 		(void *)0 },
215 };
216 
217 const mntopts_t vfs_mntopts = {
218 	sizeof (mntopts) / sizeof (mntopt_t),
219 	(mntopt_t *)&mntopts[0]
220 };
221 
222 /*
223  * File system operation dispatch functions.
224  */
225 
226 int
227 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
228 {
229 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
230 }
231 
232 int
233 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
234 {
235 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
236 }
237 
238 int
239 fsop_root(vfs_t *vfsp, vnode_t **vpp)
240 {
241 	refstr_t *mntpt;
242 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
243 	/*
244 	 * Make sure this root has a path.  With lofs, it is possible to have
245 	 * a NULL mountpoint.
246 	 */
247 	if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
248 		mntpt = vfs_getmntpoint(vfsp);
249 		vn_setpath_str(*vpp, refstr_value(mntpt),
250 		    strlen(refstr_value(mntpt)));
251 		refstr_rele(mntpt);
252 	}
253 
254 	return (ret);
255 }
256 
257 int
258 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
259 {
260 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
261 }
262 
263 int
264 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
265 {
266 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
267 }
268 
269 int
270 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
271 {
272 	/*
273 	 * In order to handle system attribute fids in a manner
274 	 * transparent to the underlying fs, we embed the fid for
275 	 * the sysattr parent object in the sysattr fid and tack on
276 	 * some extra bytes that only the sysattr layer knows about.
277 	 *
278 	 * This guarantees that sysattr fids are larger than other fids
279 	 * for this vfs. If the vfs supports the sysattr view interface
280 	 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
281 	 * collision with XATTR_FIDSZ.
282 	 */
283 	if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
284 	    fidp->fid_len == XATTR_FIDSZ)
285 		return (xattr_dir_vget(vfsp, vpp, fidp));
286 
287 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
288 }
289 
290 int
291 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
292 {
293 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
294 }
295 
296 void
297 fsop_freefs(vfs_t *vfsp)
298 {
299 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
300 }
301 
302 int
303 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
304 {
305 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
306 }
307 
308 int
309 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
310 {
311 	ASSERT((fstype >= 0) && (fstype < nfstype));
312 
313 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
314 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
315 	else
316 		return (ENOTSUP);
317 }
318 
319 /*
320  * File system initialization.  vfs_setfsops() must be called from a file
321  * system's init routine.
322  */
323 
324 static int
325 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
326     int *unused_ops)
327 {
328 	static const fs_operation_trans_def_t vfs_ops_table[] = {
329 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
330 			fs_nosys, fs_nosys,
331 
332 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
333 			fs_nosys, fs_nosys,
334 
335 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
336 			fs_nosys, fs_nosys,
337 
338 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
339 			fs_nosys, fs_nosys,
340 
341 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
342 			(fs_generic_func_p) fs_sync,
343 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
344 
345 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
346 			fs_nosys, fs_nosys,
347 
348 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
349 			fs_nosys, fs_nosys,
350 
351 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
352 			(fs_generic_func_p)fs_freevfs,
353 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
354 
355 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
356 			(fs_generic_func_p)fs_nosys,
357 			(fs_generic_func_p)fs_nosys,
358 
359 		NULL, 0, NULL, NULL
360 	};
361 
362 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
363 }
364 
365 void
366 zfs_boot_init() {
367 
368 	if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
369 		spa_boot_init();
370 }
371 
372 int
373 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
374 {
375 	int error;
376 	int unused_ops;
377 
378 	/*
379 	 * Verify that fstype refers to a valid fs.  Note that
380 	 * 0 is valid since it's used to set "stray" ops.
381 	 */
382 	if ((fstype < 0) || (fstype >= nfstype))
383 		return (EINVAL);
384 
385 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
386 		return (EINVAL);
387 
388 	/* Set up the operations vector. */
389 
390 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
391 
392 	if (error != 0)
393 		return (error);
394 
395 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
396 
397 	if (actual != NULL)
398 		*actual = &vfssw[fstype].vsw_vfsops;
399 
400 #if DEBUG
401 	if (unused_ops != 0)
402 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
403 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
404 #endif
405 
406 	return (0);
407 }
408 
409 int
410 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
411 {
412 	int error;
413 	int unused_ops;
414 
415 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
416 
417 	error = fs_copyfsops(template, *actual, &unused_ops);
418 	if (error != 0) {
419 		kmem_free(*actual, sizeof (vfsops_t));
420 		*actual = NULL;
421 		return (error);
422 	}
423 
424 	return (0);
425 }
426 
427 /*
428  * Free a vfsops structure created as a result of vfs_makefsops().
429  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
430  * vfs_freevfsops_by_type().
431  */
432 void
433 vfs_freevfsops(vfsops_t *vfsops)
434 {
435 	kmem_free(vfsops, sizeof (vfsops_t));
436 }
437 
438 /*
439  * Since the vfsops structure is part of the vfssw table and wasn't
440  * really allocated, we're not really freeing anything.  We keep
441  * the name for consistency with vfs_freevfsops().  We do, however,
442  * need to take care of a little bookkeeping.
443  * NOTE: For a vfsops structure created by vfs_setfsops(), use
444  * vfs_freevfsops_by_type().
445  */
446 int
447 vfs_freevfsops_by_type(int fstype)
448 {
449 
450 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
451 	if ((fstype <= 0) || (fstype >= nfstype))
452 		return (EINVAL);
453 
454 	WLOCK_VFSSW();
455 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
456 		WUNLOCK_VFSSW();
457 		return (EINVAL);
458 	}
459 
460 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
461 	WUNLOCK_VFSSW();
462 
463 	return (0);
464 }
465 
466 /* Support routines used to reference vfs_op */
467 
468 /* Set the operations vector for a vfs */
469 void
470 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
471 {
472 	vfsops_t	*op;
473 
474 	ASSERT(vfsp != NULL);
475 	ASSERT(vfsops != NULL);
476 
477 	op = vfsp->vfs_op;
478 	membar_consumer();
479 	if (vfsp->vfs_femhead == NULL &&
480 	    atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
481 		return;
482 	}
483 	fsem_setvfsops(vfsp, vfsops);
484 }
485 
486 /* Retrieve the operations vector for a vfs */
487 vfsops_t *
488 vfs_getops(vfs_t *vfsp)
489 {
490 	vfsops_t	*op;
491 
492 	ASSERT(vfsp != NULL);
493 
494 	op = vfsp->vfs_op;
495 	membar_consumer();
496 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
497 		return (op);
498 	} else {
499 		return (fsem_getvfsops(vfsp));
500 	}
501 }
502 
503 /*
504  * Returns non-zero (1) if the vfsops matches that of the vfs.
505  * Returns zero (0) if not.
506  */
507 int
508 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
509 {
510 	return (vfs_getops(vfsp) == vfsops);
511 }
512 
513 /*
514  * Returns non-zero (1) if the file system has installed a non-default,
515  * non-error vfs_sync routine.  Returns zero (0) otherwise.
516  */
517 int
518 vfs_can_sync(vfs_t *vfsp)
519 {
520 	/* vfs_sync() routine is not the default/error function */
521 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
522 }
523 
524 /*
525  * Initialize a vfs structure.
526  */
527 void
528 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
529 {
530 	/* Other initialization has been moved to vfs_alloc() */
531 	vfsp->vfs_count = 0;
532 	vfsp->vfs_next = vfsp;
533 	vfsp->vfs_prev = vfsp;
534 	vfsp->vfs_zone_next = vfsp;
535 	vfsp->vfs_zone_prev = vfsp;
536 	vfsp->vfs_lofi_minor = 0;
537 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
538 	vfsimpl_setup(vfsp);
539 	vfsp->vfs_data = (data);
540 	vfs_setops((vfsp), (op));
541 }
542 
543 /*
544  * Allocate and initialize the vfs implementation private data
545  * structure, vfs_impl_t.
546  */
547 void
548 vfsimpl_setup(vfs_t *vfsp)
549 {
550 	int i;
551 
552 	if (vfsp->vfs_implp != NULL) {
553 		return;
554 	}
555 
556 	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
557 	/* Note that these are #define'd in vfs.h */
558 	vfsp->vfs_vskap = NULL;
559 	vfsp->vfs_fstypevsp = NULL;
560 
561 	/* Set size of counted array, then zero the array */
562 	vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
563 	for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
564 		vfsp->vfs_featureset[i] = 0;
565 	}
566 }
567 
568 /*
569  * Release the vfs_impl_t structure, if it exists. Some unbundled
570  * filesystems may not use the newer version of vfs and thus
571  * would not contain this implementation private data structure.
572  */
573 void
574 vfsimpl_teardown(vfs_t *vfsp)
575 {
576 	vfs_impl_t	*vip = vfsp->vfs_implp;
577 
578 	if (vip == NULL)
579 		return;
580 
581 	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
582 	vfsp->vfs_implp = NULL;
583 }
584 
585 /*
586  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
587  * fstatvfs, and sysfs moved to common/syscall.
588  */
589 
590 /*
591  * Update every mounted file system.  We call the vfs_sync operation of
592  * each file system type, passing it a NULL vfsp to indicate that all
593  * mounted file systems of that type should be updated.
594  */
595 void
596 vfs_sync(int flag)
597 {
598 	struct vfssw *vswp;
599 	RLOCK_VFSSW();
600 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
601 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
602 			vfs_refvfssw(vswp);
603 			RUNLOCK_VFSSW();
604 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
605 			    CRED());
606 			vfs_unrefvfssw(vswp);
607 			RLOCK_VFSSW();
608 		}
609 	}
610 	RUNLOCK_VFSSW();
611 }
612 
613 void
614 sync(void)
615 {
616 	vfs_sync(0);
617 }
618 
619 /*
620  * compare function for vfs_by_dev avl tree. compare dev first, then mntix
621  */
622 static int
623 vfs_cmp_dev(const void *aa, const void *bb)
624 {
625 	const vfs_t *a = aa;
626 	const vfs_t *b = bb;
627 
628 	if (a->vfs_dev < b->vfs_dev)
629 		return (-1);
630 	if (a->vfs_dev > b->vfs_dev)
631 		return (1);
632 	if (a->vfs_mntix < b->vfs_mntix)
633 		return (-1);
634 	if (a->vfs_mntix > b->vfs_mntix)
635 		return (1);
636 	return (0);
637 }
638 
639 /*
640  * compare function for vfs_by_mntpnt avl tree. compare mntpnt first, then mntix
641  */
642 static int
643 vfs_cmp_mntpnt(const void *aa, const void *bb)
644 {
645 	const vfs_t *a = aa;
646 	const vfs_t *b = bb;
647 	int ret;
648 
649 	ret = strcmp(refstr_value(a->vfs_mntpt), refstr_value(b->vfs_mntpt));
650 	if (ret < 0)
651 		return (-1);
652 	if (ret > 0)
653 		return (1);
654 	if (a->vfs_mntix < b->vfs_mntix)
655 		return (-1);
656 	if (a->vfs_mntix > b->vfs_mntix)
657 		return (1);
658 	return (0);
659 }
660 
661 /*
662  * External routines.
663  */
664 
665 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
666 
667 /*
668  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
669  * but otherwise should be accessed only via vfs_list_lock() and
670  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
671  */
672 static krwlock_t vfslist;
673 
674 /*
675  * Mount devfs on /devices. This is done right after root is mounted
676  * to provide device access support for the system
677  */
678 static void
679 vfs_mountdevices(void)
680 {
681 	struct vfssw *vsw;
682 	struct vnode *mvp;
683 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
684 		NULL,
685 		NULL,
686 		MS_SYSSPACE,
687 		NULL,
688 		NULL,
689 		0,
690 		NULL,
691 		0
692 	};
693 
694 	/*
695 	 * _init devfs module to fill in the vfssw
696 	 */
697 	if (modload("fs", "devfs") == -1)
698 		panic("Cannot _init devfs module");
699 
700 	/*
701 	 * Hold vfs
702 	 */
703 	RLOCK_VFSSW();
704 	vsw = vfs_getvfsswbyname("devfs");
705 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
706 	VFS_HOLD(&devices);
707 
708 	/*
709 	 * Locate mount point
710 	 */
711 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
712 		panic("Cannot find /devices");
713 
714 	/*
715 	 * Perform the mount of /devices
716 	 */
717 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
718 		panic("Cannot mount /devices");
719 
720 	RUNLOCK_VFSSW();
721 
722 	/*
723 	 * Set appropriate members and add to vfs list for mnttab display
724 	 */
725 	vfs_setresource(&devices, "/devices", 0);
726 	vfs_setmntpoint(&devices, "/devices", 0);
727 
728 	/*
729 	 * Hold the root of /devices so it won't go away
730 	 */
731 	if (VFS_ROOT(&devices, &devicesdir))
732 		panic("vfs_mountdevices: not devices root");
733 
734 	if (vfs_lock(&devices) != 0) {
735 		VN_RELE(devicesdir);
736 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
737 		return;
738 	}
739 
740 	if (vn_vfswlock(mvp) != 0) {
741 		vfs_unlock(&devices);
742 		VN_RELE(devicesdir);
743 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
744 		return;
745 	}
746 
747 	vfs_add(mvp, &devices, 0);
748 	vn_vfsunlock(mvp);
749 	vfs_unlock(&devices);
750 	VN_RELE(devicesdir);
751 }
752 
753 /*
754  * mount the first instance of /dev  to root and remain mounted
755  */
756 static void
757 vfs_mountdev1(void)
758 {
759 	struct vfssw *vsw;
760 	struct vnode *mvp;
761 	struct mounta mounta = {	/* fake mounta for sdev_mount() */
762 		NULL,
763 		NULL,
764 		MS_SYSSPACE | MS_OVERLAY,
765 		NULL,
766 		NULL,
767 		0,
768 		NULL,
769 		0
770 	};
771 
772 	/*
773 	 * _init dev module to fill in the vfssw
774 	 */
775 	if (modload("fs", "dev") == -1)
776 		cmn_err(CE_PANIC, "Cannot _init dev module\n");
777 
778 	/*
779 	 * Hold vfs
780 	 */
781 	RLOCK_VFSSW();
782 	vsw = vfs_getvfsswbyname("dev");
783 	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
784 	VFS_HOLD(&dev);
785 
786 	/*
787 	 * Locate mount point
788 	 */
789 	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
790 		cmn_err(CE_PANIC, "Cannot find /dev\n");
791 
792 	/*
793 	 * Perform the mount of /dev
794 	 */
795 	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
796 		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
797 
798 	RUNLOCK_VFSSW();
799 
800 	/*
801 	 * Set appropriate members and add to vfs list for mnttab display
802 	 */
803 	vfs_setresource(&dev, "/dev", 0);
804 	vfs_setmntpoint(&dev, "/dev", 0);
805 
806 	/*
807 	 * Hold the root of /dev so it won't go away
808 	 */
809 	if (VFS_ROOT(&dev, &devdir))
810 		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
811 
812 	if (vfs_lock(&dev) != 0) {
813 		VN_RELE(devdir);
814 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
815 		return;
816 	}
817 
818 	if (vn_vfswlock(mvp) != 0) {
819 		vfs_unlock(&dev);
820 		VN_RELE(devdir);
821 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
822 		return;
823 	}
824 
825 	vfs_add(mvp, &dev, 0);
826 	vn_vfsunlock(mvp);
827 	vfs_unlock(&dev);
828 	VN_RELE(devdir);
829 }
830 
831 /*
832  * Mount required filesystem. This is done right after root is mounted.
833  */
834 static void
835 vfs_mountfs(char *module, char *spec, char *path)
836 {
837 	struct vnode *mvp;
838 	struct mounta mounta;
839 	vfs_t *vfsp;
840 
841 	bzero(&mounta, sizeof (mounta));
842 	mounta.flags = MS_SYSSPACE | MS_DATA;
843 	mounta.fstype = module;
844 	mounta.spec = spec;
845 	mounta.dir = path;
846 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
847 		cmn_err(CE_WARN, "Cannot find %s", path);
848 		return;
849 	}
850 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
851 		cmn_err(CE_WARN, "Cannot mount %s", path);
852 	else
853 		VFS_RELE(vfsp);
854 	VN_RELE(mvp);
855 }
856 
857 /*
858  * vfs_mountroot is called by main() to mount the root filesystem.
859  */
860 void
861 vfs_mountroot(void)
862 {
863 	struct vnode	*rvp = NULL;
864 	char		*path;
865 	size_t		plen;
866 	struct vfssw	*vswp;
867 	proc_t		*p;
868 
869 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
870 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
871 
872 	/*
873 	 * Alloc the avl trees for quick indexing via dev and mountpoint
874 	 */
875 	avl_create(&vfs_by_dev, vfs_cmp_dev, sizeof(vfs_t),
876 	    offsetof(vfs_t, vfs_avldev));
877 	avl_create(&vfs_by_mntpnt, vfs_cmp_mntpnt, sizeof(vfs_t),
878 	    offsetof(vfs_t, vfs_avlmntpnt));
879 
880 	/*
881 	 * Alloc the vfs hash bucket array and locks
882 	 */
883 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
884 
885 	/*
886 	 * Call machine-dependent routine "rootconf" to choose a root
887 	 * file system type.
888 	 */
889 	if (rootconf())
890 		panic("vfs_mountroot: cannot mount root");
891 	/*
892 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
893 	 * to point to it.  These are used by lookuppn() so that it
894 	 * knows where to start from ('/' or '.').
895 	 */
896 	vfs_setmntpoint(rootvfs, "/", 0);
897 	if (VFS_ROOT(rootvfs, &rootdir))
898 		panic("vfs_mountroot: no root vnode");
899 
900 	/*
901 	 * At this point, the process tree consists of p0 and possibly some
902 	 * direct children of p0.  (i.e. there are no grandchildren)
903 	 *
904 	 * Walk through them all, setting their current directory.
905 	 */
906 	mutex_enter(&pidlock);
907 	for (p = practive; p != NULL; p = p->p_next) {
908 		ASSERT(p == &p0 || p->p_parent == &p0);
909 
910 		PTOU(p)->u_cdir = rootdir;
911 		VN_HOLD(PTOU(p)->u_cdir);
912 		PTOU(p)->u_rdir = NULL;
913 	}
914 	mutex_exit(&pidlock);
915 
916 	/*
917 	 * Setup the global zone's rootvp, now that it exists.
918 	 */
919 	global_zone->zone_rootvp = rootdir;
920 	VN_HOLD(global_zone->zone_rootvp);
921 
922 	/*
923 	 * Notify the module code that it can begin using the
924 	 * root filesystem instead of the boot program's services.
925 	 */
926 	modrootloaded = 1;
927 
928 	/*
929 	 * Special handling for a ZFS root file system.
930 	 */
931 	zfs_boot_init();
932 
933 	/*
934 	 * Set up mnttab information for root
935 	 */
936 	vfs_setresource(rootvfs, rootfs.bo_name, 0);
937 
938 	/*
939 	 * Notify cluster software that the root filesystem is available.
940 	 */
941 	clboot_mountroot();
942 
943 	/* Now that we're all done with the root FS, set up its vopstats */
944 	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
945 		/* Set flag for statistics collection */
946 		if (vswp->vsw_flag & VSW_STATS) {
947 			initialize_vopstats(&rootvfs->vfs_vopstats);
948 			rootvfs->vfs_flag |= VFS_STATS;
949 			rootvfs->vfs_fstypevsp =
950 			    get_fstype_vopstats(rootvfs, vswp);
951 			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
952 		}
953 		vfs_unrefvfssw(vswp);
954 	}
955 
956 	/*
957 	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
958 	 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
959 	 */
960 	vfs_mountdevices();
961 	vfs_mountdev1();
962 
963 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
964 	vfs_mountfs("proc", "/proc", "/proc");
965 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
966 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
967 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
968 	vfs_mountfs("bootfs", "bootfs", "/system/boot");
969 
970 	if (getzoneid() == GLOBAL_ZONEID) {
971 		vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
972 	}
973 
974 	if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
975 		/*
976 		 * Look up the root device via devfs so that a dv_node is
977 		 * created for it. The vnode is never VN_RELE()ed.
978 		 * We allocate more than MAXPATHLEN so that the
979 		 * buffer passed to i_ddi_prompath_to_devfspath() is
980 		 * exactly MAXPATHLEN (the function expects a buffer
981 		 * of that length).
982 		 */
983 		plen = strlen("/devices");
984 		path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
985 		(void) strcpy(path, "/devices");
986 
987 		if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
988 		    != DDI_SUCCESS ||
989 		    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
990 
991 			/* NUL terminate in case "path" has garbage */
992 			path[plen + MAXPATHLEN - 1] = '\0';
993 #ifdef	DEBUG
994 			cmn_err(CE_WARN, "!Cannot lookup root device: %s",
995 			    path);
996 #endif
997 		}
998 		kmem_free(path, plen + MAXPATHLEN);
999 	}
1000 
1001 	vfs_mnttabvp_setup();
1002 }
1003 
1004 /*
1005  * Check to see if our "block device" is actually a file.  If so,
1006  * automatically add a lofi device, and keep track of this fact.
1007  */
1008 static int
1009 lofi_add(const char *fsname, struct vfs *vfsp,
1010     mntopts_t *mntopts, struct mounta *uap)
1011 {
1012 	int fromspace = (uap->flags & MS_SYSSPACE) ?
1013 	    UIO_SYSSPACE : UIO_USERSPACE;
1014 	struct lofi_ioctl *li = NULL;
1015 	struct vnode *vp = NULL;
1016 	struct pathname	pn = { NULL };
1017 	ldi_ident_t ldi_id;
1018 	ldi_handle_t ldi_hdl;
1019 	vfssw_t *vfssw;
1020 	int minor;
1021 	int err = 0;
1022 
1023 	if ((vfssw = vfs_getvfssw(fsname)) == NULL)
1024 		return (0);
1025 
1026 	if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
1027 		vfs_unrefvfssw(vfssw);
1028 		return (0);
1029 	}
1030 
1031 	vfs_unrefvfssw(vfssw);
1032 	vfssw = NULL;
1033 
1034 	if (pn_get(uap->spec, fromspace, &pn) != 0)
1035 		return (0);
1036 
1037 	if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1038 		goto out;
1039 
1040 	if (vp->v_type != VREG)
1041 		goto out;
1042 
1043 	/* OK, this is a lofi mount. */
1044 
1045 	if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1046 	    vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1047 	    vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1048 	    vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1049 		err = EINVAL;
1050 		goto out;
1051 	}
1052 
1053 	ldi_id = ldi_ident_from_anon();
1054 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1055 	(void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1056 
1057 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1058 	    &ldi_hdl, ldi_id);
1059 
1060 	if (err)
1061 		goto out2;
1062 
1063 	err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1064 	    FREAD | FWRITE | FKIOCTL, kcred, &minor);
1065 
1066 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1067 
1068 	if (!err)
1069 		vfsp->vfs_lofi_minor = minor;
1070 
1071 out2:
1072 	ldi_ident_release(ldi_id);
1073 out:
1074 	if (li != NULL)
1075 		kmem_free(li, sizeof (*li));
1076 	if (vp != NULL)
1077 		VN_RELE(vp);
1078 	pn_free(&pn);
1079 	return (err);
1080 }
1081 
1082 static void
1083 lofi_remove(struct vfs *vfsp)
1084 {
1085 	struct lofi_ioctl *li = NULL;
1086 	ldi_ident_t ldi_id;
1087 	ldi_handle_t ldi_hdl;
1088 	int err;
1089 
1090 	if (vfsp->vfs_lofi_minor == 0)
1091 		return;
1092 
1093 	ldi_id = ldi_ident_from_anon();
1094 
1095 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1096 	li->li_minor = vfsp->vfs_lofi_minor;
1097 	li->li_cleanup = B_TRUE;
1098 
1099 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1100 	    &ldi_hdl, ldi_id);
1101 
1102 	if (err)
1103 		goto out;
1104 
1105 	err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1106 	    FREAD | FWRITE | FKIOCTL, kcred, NULL);
1107 
1108 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1109 
1110 	if (!err)
1111 		vfsp->vfs_lofi_minor = 0;
1112 
1113 out:
1114 	ldi_ident_release(ldi_id);
1115 	if (li != NULL)
1116 		kmem_free(li, sizeof (*li));
1117 }
1118 
1119 /*
1120  * Common mount code.  Called from the system call entry point, from autofs,
1121  * nfsv4 trigger mounts, and from pxfs.
1122  *
1123  * Takes the effective file system type, mount arguments, the mount point
1124  * vnode, flags specifying whether the mount is a remount and whether it
1125  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1126  * parameter with the mounted file system instance's vfs.
1127  *
1128  * Note that the effective file system type is specified as a string.  It may
1129  * be null, in which case it's determined from the mount arguments, and may
1130  * differ from the type specified in the mount arguments; this is a hook to
1131  * allow interposition when instantiating file system instances.
1132  *
1133  * The caller is responsible for releasing its own hold on the mount point
1134  * vp (this routine does its own hold when necessary).
1135  * Also note that for remounts, the mount point vp should be the vnode for
1136  * the root of the file system rather than the vnode that the file system
1137  * is mounted on top of.
1138  */
1139 int
1140 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1141 	struct vfs **vfspp)
1142 {
1143 	struct vfssw	*vswp;
1144 	vfsops_t	*vfsops;
1145 	struct vfs	*vfsp;
1146 	struct vnode	*bvp;
1147 	dev_t		bdev = 0;
1148 	mntopts_t	mnt_mntopts;
1149 	int		error = 0;
1150 	int		copyout_error = 0;
1151 	int		ovflags;
1152 	char		*opts = uap->optptr;
1153 	char		*inargs = opts;
1154 	int		optlen = uap->optlen;
1155 	int		remount;
1156 	int		rdonly;
1157 	int		nbmand = 0;
1158 	int		delmip = 0;
1159 	int		addmip = 0;
1160 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
1161 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
1162 	    UIO_SYSSPACE : UIO_USERSPACE;
1163 	char		*resource = NULL, *mountpt = NULL;
1164 	refstr_t	*oldresource, *oldmntpt;
1165 	struct pathname	pn, rpn;
1166 	vsk_anchor_t	*vskap;
1167 	char fstname[FSTYPSZ];
1168 	zone_t		*zone;
1169 
1170 	/*
1171 	 * The v_flag value for the mount point vp is permanently set
1172 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1173 	 * for mount point locking.
1174 	 */
1175 	mutex_enter(&vp->v_lock);
1176 	vp->v_flag |= VVFSLOCK;
1177 	mutex_exit(&vp->v_lock);
1178 
1179 	mnt_mntopts.mo_count = 0;
1180 	/*
1181 	 * Find the ops vector to use to invoke the file system-specific mount
1182 	 * method.  If the fsname argument is non-NULL, use it directly.
1183 	 * Otherwise, dig the file system type information out of the mount
1184 	 * arguments.
1185 	 *
1186 	 * A side effect is to hold the vfssw entry.
1187 	 *
1188 	 * Mount arguments can be specified in several ways, which are
1189 	 * distinguished by flag bit settings.  The preferred way is to set
1190 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1191 	 * type supplied as a character string and the last two arguments
1192 	 * being a pointer to a character buffer and the size of the buffer.
1193 	 * On entry, the buffer holds a null terminated list of options; on
1194 	 * return, the string is the list of options the file system
1195 	 * recognized. If MS_DATA is set arguments five and six point to a
1196 	 * block of binary data which the file system interprets.
1197 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1198 	 * consistently with these conventions.  To handle them, we check to
1199 	 * see whether the pointer to the file system name has a numeric value
1200 	 * less than 256.  If so, we treat it as an index.
1201 	 */
1202 	if (fsname != NULL) {
1203 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1204 			return (EINVAL);
1205 		}
1206 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1207 		size_t n;
1208 		uint_t fstype;
1209 
1210 		fsname = fstname;
1211 
1212 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1213 			RLOCK_VFSSW();
1214 			if (fstype == 0 || fstype >= nfstype ||
1215 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1216 				RUNLOCK_VFSSW();
1217 				return (EINVAL);
1218 			}
1219 			(void) strcpy(fsname, vfssw[fstype].vsw_name);
1220 			RUNLOCK_VFSSW();
1221 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1222 				return (EINVAL);
1223 		} else {
1224 			/*
1225 			 * Handle either kernel or user address space.
1226 			 */
1227 			if (uap->flags & MS_SYSSPACE) {
1228 				error = copystr(uap->fstype, fsname,
1229 				    FSTYPSZ, &n);
1230 			} else {
1231 				error = copyinstr(uap->fstype, fsname,
1232 				    FSTYPSZ, &n);
1233 			}
1234 			if (error) {
1235 				if (error == ENAMETOOLONG)
1236 					return (EINVAL);
1237 				return (error);
1238 			}
1239 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1240 				return (EINVAL);
1241 		}
1242 	} else {
1243 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1244 			return (EINVAL);
1245 		fsname = vswp->vsw_name;
1246 	}
1247 	if (!VFS_INSTALLED(vswp))
1248 		return (EINVAL);
1249 
1250 	if ((error = secpolicy_fs_allowed_mount(fsname)) != 0)  {
1251 		vfs_unrefvfssw(vswp);
1252 		return (error);
1253 	}
1254 
1255 	vfsops = &vswp->vsw_vfsops;
1256 
1257 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1258 	/*
1259 	 * Fetch mount options and parse them for generic vfs options
1260 	 */
1261 	if (uap->flags & MS_OPTIONSTR) {
1262 		/*
1263 		 * Limit the buffer size
1264 		 */
1265 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1266 			error = EINVAL;
1267 			goto errout;
1268 		}
1269 		if ((uap->flags & MS_SYSSPACE) == 0) {
1270 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1271 			inargs[0] = '\0';
1272 			if (optlen) {
1273 				error = copyinstr(opts, inargs, (size_t)optlen,
1274 				    NULL);
1275 				if (error) {
1276 					goto errout;
1277 				}
1278 			}
1279 		}
1280 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1281 	}
1282 	/*
1283 	 * Flag bits override the options string.
1284 	 */
1285 	if (uap->flags & MS_REMOUNT)
1286 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1287 	if (uap->flags & MS_RDONLY)
1288 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1289 	if (uap->flags & MS_NOSUID)
1290 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1291 
1292 	/*
1293 	 * Check if this is a remount; must be set in the option string and
1294 	 * the file system must support a remount option.
1295 	 */
1296 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1297 	    MNTOPT_REMOUNT, NULL)) {
1298 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1299 			error = ENOTSUP;
1300 			goto errout;
1301 		}
1302 		uap->flags |= MS_REMOUNT;
1303 	}
1304 
1305 	/*
1306 	 * uap->flags and vfs_optionisset() should agree.
1307 	 */
1308 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1309 		uap->flags |= MS_RDONLY;
1310 	}
1311 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1312 		uap->flags |= MS_NOSUID;
1313 	}
1314 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1315 	ASSERT(splice || !remount);
1316 	/*
1317 	 * If we are splicing the fs into the namespace,
1318 	 * perform mount point checks.
1319 	 *
1320 	 * We want to resolve the path for the mount point to eliminate
1321 	 * '.' and ".." and symlinks in mount points; we can't do the
1322 	 * same for the resource string, since it would turn
1323 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1324 	 * this before grabbing vn_vfswlock(), because otherwise we
1325 	 * would deadlock with lookuppn().
1326 	 */
1327 	if (splice) {
1328 		ASSERT(vp->v_count > 0);
1329 
1330 		/*
1331 		 * Pick up mount point and device from appropriate space.
1332 		 */
1333 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1334 			resource = kmem_alloc(pn.pn_pathlen + 1,
1335 			    KM_SLEEP);
1336 			(void) strcpy(resource, pn.pn_path);
1337 			pn_free(&pn);
1338 		}
1339 		/*
1340 		 * Do a lookupname prior to taking the
1341 		 * writelock. Mark this as completed if
1342 		 * successful for later cleanup and addition to
1343 		 * the mount in progress table.
1344 		 */
1345 		if ((uap->flags & MS_GLOBAL) == 0 &&
1346 		    lookupname(uap->spec, fromspace,
1347 		    FOLLOW, NULL, &bvp) == 0) {
1348 			addmip = 1;
1349 		}
1350 
1351 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1352 			pathname_t *pnp;
1353 
1354 			if (*pn.pn_path != '/') {
1355 				error = EINVAL;
1356 				pn_free(&pn);
1357 				goto errout;
1358 			}
1359 			pn_alloc(&rpn);
1360 			/*
1361 			 * Kludge to prevent autofs from deadlocking with
1362 			 * itself when it calls domount().
1363 			 *
1364 			 * If autofs is calling, it is because it is doing
1365 			 * (autofs) mounts in the process of an NFS mount.  A
1366 			 * lookuppn() here would cause us to block waiting for
1367 			 * said NFS mount to complete, which can't since this
1368 			 * is the thread that was supposed to doing it.
1369 			 */
1370 			if (fromspace == UIO_USERSPACE) {
1371 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1372 				    NULL)) == 0) {
1373 					pnp = &rpn;
1374 				} else {
1375 					/*
1376 					 * The file disappeared or otherwise
1377 					 * became inaccessible since we opened
1378 					 * it; might as well fail the mount
1379 					 * since the mount point is no longer
1380 					 * accessible.
1381 					 */
1382 					pn_free(&rpn);
1383 					pn_free(&pn);
1384 					goto errout;
1385 				}
1386 			} else {
1387 				pnp = &pn;
1388 			}
1389 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1390 			(void) strcpy(mountpt, pnp->pn_path);
1391 
1392 			/*
1393 			 * If the addition of the zone's rootpath
1394 			 * would push us over a total path length
1395 			 * of MAXPATHLEN, we fail the mount with
1396 			 * ENAMETOOLONG, which is what we would have
1397 			 * gotten if we were trying to perform the same
1398 			 * mount in the global zone.
1399 			 *
1400 			 * strlen() doesn't count the trailing
1401 			 * '\0', but zone_rootpathlen counts both a
1402 			 * trailing '/' and the terminating '\0'.
1403 			 */
1404 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1405 			    strlen(mountpt)) > MAXPATHLEN ||
1406 			    (resource != NULL &&
1407 			    (curproc->p_zone->zone_rootpathlen - 1 +
1408 			    strlen(resource)) > MAXPATHLEN)) {
1409 				error = ENAMETOOLONG;
1410 			}
1411 
1412 			pn_free(&rpn);
1413 			pn_free(&pn);
1414 		}
1415 
1416 		if (error)
1417 			goto errout;
1418 
1419 		/*
1420 		 * Prevent path name resolution from proceeding past
1421 		 * the mount point.
1422 		 */
1423 		if (vn_vfswlock(vp) != 0) {
1424 			error = EBUSY;
1425 			goto errout;
1426 		}
1427 
1428 		/*
1429 		 * Verify that it's legitimate to establish a mount on
1430 		 * the prospective mount point.
1431 		 */
1432 		if (vn_mountedvfs(vp) != NULL) {
1433 			/*
1434 			 * The mount point lock was obtained after some
1435 			 * other thread raced through and established a mount.
1436 			 */
1437 			vn_vfsunlock(vp);
1438 			error = EBUSY;
1439 			goto errout;
1440 		}
1441 		if (vp->v_flag & VNOMOUNT) {
1442 			vn_vfsunlock(vp);
1443 			error = EINVAL;
1444 			goto errout;
1445 		}
1446 	}
1447 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1448 		uap->dataptr = NULL;
1449 		uap->datalen = 0;
1450 	}
1451 
1452 	/*
1453 	 * If this is a remount, we don't want to create a new VFS.
1454 	 * Instead, we pass the existing one with a remount flag.
1455 	 */
1456 	if (remount) {
1457 		/*
1458 		 * Confirm that the mount point is the root vnode of the
1459 		 * file system that is being remounted.
1460 		 * This can happen if the user specifies a different
1461 		 * mount point directory pathname in the (re)mount command.
1462 		 *
1463 		 * Code below can only be reached if splice is true, so it's
1464 		 * safe to do vn_vfsunlock() here.
1465 		 */
1466 		if ((vp->v_flag & VROOT) == 0) {
1467 			vn_vfsunlock(vp);
1468 			error = ENOENT;
1469 			goto errout;
1470 		}
1471 		/*
1472 		 * Disallow making file systems read-only unless file system
1473 		 * explicitly allows it in its vfssw.  Ignore other flags.
1474 		 */
1475 		if (rdonly && vn_is_readonly(vp) == 0 &&
1476 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1477 			vn_vfsunlock(vp);
1478 			error = EINVAL;
1479 			goto errout;
1480 		}
1481 		/*
1482 		 * Disallow changing the NBMAND disposition of the file
1483 		 * system on remounts.
1484 		 */
1485 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1486 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1487 			vn_vfsunlock(vp);
1488 			error = EINVAL;
1489 			goto errout;
1490 		}
1491 		vfsp = vp->v_vfsp;
1492 		ovflags = vfsp->vfs_flag;
1493 		vfsp->vfs_flag |= VFS_REMOUNT;
1494 		vfsp->vfs_flag &= ~VFS_RDONLY;
1495 	} else {
1496 		vfsp = vfs_alloc(KM_SLEEP);
1497 		VFS_INIT(vfsp, vfsops, NULL);
1498 	}
1499 
1500 	VFS_HOLD(vfsp);
1501 
1502 	if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1503 		if (!remount) {
1504 			if (splice)
1505 				vn_vfsunlock(vp);
1506 			vfs_free(vfsp);
1507 		} else {
1508 			vn_vfsunlock(vp);
1509 			VFS_RELE(vfsp);
1510 		}
1511 		goto errout;
1512 	}
1513 
1514 	/*
1515 	 * PRIV_SYS_MOUNT doesn't mean you can become root.
1516 	 */
1517 	if (vfsp->vfs_lofi_minor != 0) {
1518 		uap->flags |= MS_NOSUID;
1519 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1520 	}
1521 
1522 	/*
1523 	 * The vfs_reflock is not used anymore the code below explicitly
1524 	 * holds it preventing others accesing it directly.
1525 	 */
1526 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1527 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1528 		cmn_err(CE_WARN,
1529 		    "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1530 
1531 	/*
1532 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1533 	 * failures that happen as a side-effect of fsflush() and other mount
1534 	 * and unmount operations that might be going on simultaneously and
1535 	 * may have locked the vfs currently. To not return EBUSY immediately
1536 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1537 	 */
1538 	if (!remount) {
1539 		if (error = vfs_lock(vfsp)) {
1540 			vfsp->vfs_flag = ovflags;
1541 
1542 			lofi_remove(vfsp);
1543 
1544 			if (splice)
1545 				vn_vfsunlock(vp);
1546 			vfs_free(vfsp);
1547 			goto errout;
1548 		}
1549 	} else {
1550 		vfs_lock_wait(vfsp);
1551 	}
1552 
1553 	/*
1554 	 * Add device to mount in progress table, global mounts require special
1555 	 * handling. It is possible that we have already done the lookupname
1556 	 * on a spliced, non-global fs. If so, we don't want to do it again
1557 	 * since we cannot do a lookupname after taking the
1558 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1559 	 */
1560 	if (!addmip) {
1561 		if ((uap->flags & MS_GLOBAL) == 0 &&
1562 		    lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1563 			addmip = 1;
1564 		}
1565 	}
1566 
1567 	if (addmip) {
1568 		vnode_t *lvp = NULL;
1569 
1570 		error = vfs_get_lofi(vfsp, &lvp);
1571 		if (error > 0) {
1572 			lofi_remove(vfsp);
1573 
1574 			if (splice)
1575 				vn_vfsunlock(vp);
1576 			vfs_unlock(vfsp);
1577 
1578 			if (remount) {
1579 				VFS_RELE(vfsp);
1580 			} else {
1581 				vfs_free(vfsp);
1582 			}
1583 
1584 			goto errout;
1585 		} else if (error == -1) {
1586 			bdev = bvp->v_rdev;
1587 			VN_RELE(bvp);
1588 		} else {
1589 			bdev = lvp->v_rdev;
1590 			VN_RELE(lvp);
1591 			VN_RELE(bvp);
1592 		}
1593 
1594 		vfs_addmip(bdev, vfsp);
1595 		addmip = 0;
1596 		delmip = 1;
1597 	}
1598 	/*
1599 	 * Invalidate cached entry for the mount point.
1600 	 */
1601 	if (splice)
1602 		dnlc_purge_vp(vp);
1603 
1604 	/*
1605 	 * If have an option string but the filesystem doesn't supply a
1606 	 * prototype options table, create a table with the global
1607 	 * options and sufficient room to accept all the options in the
1608 	 * string.  Then parse the passed in option string
1609 	 * accepting all the options in the string.  This gives us an
1610 	 * option table with all the proper cancel properties for the
1611 	 * global options.
1612 	 *
1613 	 * Filesystems that supply a prototype options table are handled
1614 	 * earlier in this function.
1615 	 */
1616 	if (uap->flags & MS_OPTIONSTR) {
1617 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1618 			mntopts_t tmp_mntopts;
1619 
1620 			tmp_mntopts.mo_count = 0;
1621 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1622 			    &mnt_mntopts);
1623 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1624 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1625 			vfs_freeopttbl(&tmp_mntopts);
1626 		}
1627 	}
1628 
1629 	/*
1630 	 * Serialize with zone state transitions.
1631 	 * See vfs_list_add; zone mounted into is:
1632 	 * 	zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1633 	 * not the zone doing the mount (curproc->p_zone), but if we're already
1634 	 * inside a NGZ, then we know what zone we are.
1635 	 */
1636 	if (INGLOBALZONE(curproc)) {
1637 		zone = zone_find_by_path(mountpt);
1638 		ASSERT(zone != NULL);
1639 	} else {
1640 		zone = curproc->p_zone;
1641 		/*
1642 		 * zone_find_by_path does a hold, so do one here too so that
1643 		 * we can do a zone_rele after mount_completed.
1644 		 */
1645 		zone_hold(zone);
1646 	}
1647 	mount_in_progress(zone);
1648 	/*
1649 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1650 	 * splice it into the file system name space.
1651 	 *
1652 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1653 	 * string if necessary (ie, mntfs), and also for a remount to
1654 	 * change the same (necessary when remounting '/' during boot).
1655 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1656 	 * should be, then hand off control to VFS_MOUNT() which can
1657 	 * override this.
1658 	 *
1659 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1660 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1661 	 * never set those fields to NULL. Several bits of code make
1662 	 * assumptions that the fields are always valid.
1663 	 */
1664 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1665 	if (remount) {
1666 		if ((oldresource = vfsp->vfs_resource) != NULL)
1667 			refstr_hold(oldresource);
1668 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1669 			refstr_hold(oldmntpt);
1670 	}
1671 	vfs_setresource(vfsp, resource, 0);
1672 	vfs_setmntpoint(vfsp, mountpt, 0);
1673 
1674 	/*
1675 	 * going to mount on this vnode, so notify.
1676 	 */
1677 	vnevent_mountedover(vp, NULL);
1678 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1679 
1680 	if (uap->flags & MS_RDONLY)
1681 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1682 	if (uap->flags & MS_NOSUID)
1683 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1684 	if (uap->flags & MS_GLOBAL)
1685 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1686 
1687 	if (error) {
1688 		lofi_remove(vfsp);
1689 
1690 		if (remount) {
1691 			/* put back pre-remount options */
1692 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1693 			vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1694 			    VFSSP_VERBATIM);
1695 			if (oldmntpt)
1696 				refstr_rele(oldmntpt);
1697 			vfs_setresource(vfsp, refstr_value(oldresource),
1698 			    VFSSP_VERBATIM);
1699 			if (oldresource)
1700 				refstr_rele(oldresource);
1701 			vfsp->vfs_flag = ovflags;
1702 			vfs_unlock(vfsp);
1703 			VFS_RELE(vfsp);
1704 		} else {
1705 			vfs_unlock(vfsp);
1706 			vfs_freemnttab(vfsp);
1707 			vfs_free(vfsp);
1708 		}
1709 	} else {
1710 		/*
1711 		 * Set the mount time to now
1712 		 */
1713 		vfsp->vfs_mtime = ddi_get_time();
1714 		if (remount) {
1715 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1716 			if (oldresource)
1717 				refstr_rele(oldresource);
1718 			if (oldmntpt)
1719 				refstr_rele(oldmntpt);
1720 		} else if (splice) {
1721 			/*
1722 			 * Link vfsp into the name space at the mount
1723 			 * point. Vfs_add() is responsible for
1724 			 * holding the mount point which will be
1725 			 * released when vfs_remove() is called.
1726 			 */
1727 			vfs_add(vp, vfsp, uap->flags);
1728 		} else {
1729 			/*
1730 			 * Hold the reference to file system which is
1731 			 * not linked into the name space.
1732 			 */
1733 			vfsp->vfs_zone = NULL;
1734 			VFS_HOLD(vfsp);
1735 			vfsp->vfs_vnodecovered = NULL;
1736 		}
1737 		/*
1738 		 * Set flags for global options encountered
1739 		 */
1740 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1741 			vfsp->vfs_flag |= VFS_RDONLY;
1742 		else
1743 			vfsp->vfs_flag &= ~VFS_RDONLY;
1744 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1745 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1746 		} else {
1747 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1748 				vfsp->vfs_flag |= VFS_NODEVICES;
1749 			else
1750 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1751 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1752 				vfsp->vfs_flag |= VFS_NOSETUID;
1753 			else
1754 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1755 		}
1756 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1757 			vfsp->vfs_flag |= VFS_NBMAND;
1758 		else
1759 			vfsp->vfs_flag &= ~VFS_NBMAND;
1760 
1761 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1762 			vfsp->vfs_flag |= VFS_XATTR;
1763 		else
1764 			vfsp->vfs_flag &= ~VFS_XATTR;
1765 
1766 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1767 			vfsp->vfs_flag |= VFS_NOEXEC;
1768 		else
1769 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1770 
1771 		/*
1772 		 * Now construct the output option string of options
1773 		 * we recognized.
1774 		 */
1775 		if (uap->flags & MS_OPTIONSTR) {
1776 			vfs_list_read_lock();
1777 			copyout_error = vfs_buildoptionstr(
1778 			    &vfsp->vfs_mntopts, inargs, optlen);
1779 			vfs_list_unlock();
1780 			if (copyout_error == 0 &&
1781 			    (uap->flags & MS_SYSSPACE) == 0) {
1782 				copyout_error = copyoutstr(inargs, opts,
1783 				    optlen, NULL);
1784 			}
1785 		}
1786 
1787 		/*
1788 		 * If this isn't a remount, set up the vopstats before
1789 		 * anyone can touch this. We only allow spliced file
1790 		 * systems (file systems which are in the namespace) to
1791 		 * have the VFS_STATS flag set.
1792 		 * NOTE: PxFS mounts the underlying file system with
1793 		 * MS_NOSPLICE set and copies those vfs_flags to its private
1794 		 * vfs structure. As a result, PxFS should never have
1795 		 * the VFS_STATS flag or else we might access the vfs
1796 		 * statistics-related fields prior to them being
1797 		 * properly initialized.
1798 		 */
1799 		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1800 			initialize_vopstats(&vfsp->vfs_vopstats);
1801 			/*
1802 			 * We need to set vfs_vskap to NULL because there's
1803 			 * a chance it won't be set below.  This is checked
1804 			 * in teardown_vopstats() so we can't have garbage.
1805 			 */
1806 			vfsp->vfs_vskap = NULL;
1807 			vfsp->vfs_flag |= VFS_STATS;
1808 			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1809 		}
1810 
1811 		if (vswp->vsw_flag & VSW_XID)
1812 			vfsp->vfs_flag |= VFS_XID;
1813 
1814 		vfs_unlock(vfsp);
1815 	}
1816 	mount_completed(zone);
1817 	zone_rele(zone);
1818 	if (splice)
1819 		vn_vfsunlock(vp);
1820 
1821 	if ((error == 0) && (copyout_error == 0)) {
1822 		if (!remount) {
1823 			/*
1824 			 * Don't call get_vskstat_anchor() while holding
1825 			 * locks since it allocates memory and calls
1826 			 * VFS_STATVFS().  For NFS, the latter can generate
1827 			 * an over-the-wire call.
1828 			 */
1829 			vskap = get_vskstat_anchor(vfsp);
1830 			/* Only take the lock if we have something to do */
1831 			if (vskap != NULL) {
1832 				vfs_lock_wait(vfsp);
1833 				if (vfsp->vfs_flag & VFS_STATS) {
1834 					vfsp->vfs_vskap = vskap;
1835 				}
1836 				vfs_unlock(vfsp);
1837 			}
1838 		}
1839 		/* Return vfsp to caller. */
1840 		*vfspp = vfsp;
1841 	}
1842 errout:
1843 	vfs_freeopttbl(&mnt_mntopts);
1844 	if (resource != NULL)
1845 		kmem_free(resource, strlen(resource) + 1);
1846 	if (mountpt != NULL)
1847 		kmem_free(mountpt, strlen(mountpt) + 1);
1848 	/*
1849 	 * It is possible we errored prior to adding to mount in progress
1850 	 * table. Must free vnode we acquired with successful lookupname.
1851 	 */
1852 	if (addmip)
1853 		VN_RELE(bvp);
1854 	if (delmip)
1855 		vfs_delmip(vfsp);
1856 	ASSERT(vswp != NULL);
1857 	vfs_unrefvfssw(vswp);
1858 	if (inargs != opts)
1859 		kmem_free(inargs, MAX_MNTOPT_STR);
1860 	if (copyout_error) {
1861 		lofi_remove(vfsp);
1862 		VFS_RELE(vfsp);
1863 		error = copyout_error;
1864 	}
1865 	return (error);
1866 }
1867 
1868 static void
1869 vfs_setpath(
1870     struct vfs *vfsp,		/* vfs being updated */
1871     refstr_t **refp,		/* Ref-count string to contain the new path */
1872     const char *newpath,	/* Path to add to refp (above) */
1873     uint32_t flag)		/* flag */
1874 {
1875 	size_t len;
1876 	refstr_t *ref;
1877 	zone_t *zone = curproc->p_zone;
1878 	char *sp;
1879 	int have_list_lock = 0;
1880 
1881 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1882 
1883 	/*
1884 	 * New path must be less than MAXPATHLEN because mntfs
1885 	 * will only display up to MAXPATHLEN bytes. This is currently
1886 	 * safe, because domount() uses pn_get(), and other callers
1887 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1888 	 */
1889 
1890 	ASSERT(strlen(newpath) < MAXPATHLEN);
1891 
1892 	/* mntfs requires consistency while vfs list lock is held */
1893 
1894 	if (VFS_ON_LIST(vfsp)) {
1895 		have_list_lock = 1;
1896 		vfs_list_lock();
1897 	}
1898 
1899 	if (*refp != NULL)
1900 		refstr_rele(*refp);
1901 
1902 	/*
1903 	 * If we are in a non-global zone then we prefix the supplied path,
1904 	 * newpath, with the zone's root path, with two exceptions. The first
1905 	 * is where we have been explicitly directed to avoid doing so; this
1906 	 * will be the case following a failed remount, where the path supplied
1907 	 * will be a saved version which must now be restored. The second
1908 	 * exception is where newpath is not a pathname but a descriptive name,
1909 	 * e.g. "procfs".
1910 	 */
1911 	if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1912 		ref = refstr_alloc(newpath);
1913 		goto out;
1914 	}
1915 
1916 	/*
1917 	 * Truncate the trailing '/' in the zoneroot, and merge
1918 	 * in the zone's rootpath with the "newpath" (resource
1919 	 * or mountpoint) passed in.
1920 	 *
1921 	 * The size of the required buffer is thus the size of
1922 	 * the buffer required for the passed-in newpath
1923 	 * (strlen(newpath) + 1), plus the size of the buffer
1924 	 * required to hold zone_rootpath (zone_rootpathlen)
1925 	 * minus one for one of the now-superfluous NUL
1926 	 * terminations, minus one for the trailing '/'.
1927 	 *
1928 	 * That gives us:
1929 	 *
1930 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1931 	 *
1932 	 * Which is what we have below.
1933 	 */
1934 
1935 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1936 	sp = kmem_alloc(len, KM_SLEEP);
1937 
1938 	/*
1939 	 * Copy everything including the trailing slash, which
1940 	 * we then overwrite with the NUL character.
1941 	 */
1942 
1943 	(void) strcpy(sp, zone->zone_rootpath);
1944 	sp[zone->zone_rootpathlen - 2] = '\0';
1945 	(void) strcat(sp, newpath);
1946 
1947 	ref = refstr_alloc(sp);
1948 	kmem_free(sp, len);
1949 out:
1950 	*refp = ref;
1951 
1952 	if (have_list_lock) {
1953 		vfs_mnttab_modtimeupd();
1954 		vfs_list_unlock();
1955 	}
1956 }
1957 
1958 /*
1959  * Record a mounted resource name in a vfs structure.
1960  * If vfsp is already mounted, caller must hold the vfs lock.
1961  */
1962 void
1963 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1964 {
1965 	if (resource == NULL || resource[0] == '\0')
1966 		resource = VFS_NORESOURCE;
1967 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1968 }
1969 
1970 /*
1971  * Record a mount point name in a vfs structure.
1972  * If vfsp is already mounted, caller must hold the vfs lock.
1973  */
1974 void
1975 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1976 {
1977 	if (mntpt == NULL || mntpt[0] == '\0')
1978 		mntpt = VFS_NOMNTPT;
1979 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1980 }
1981 
1982 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1983 
1984 refstr_t *
1985 vfs_getresource(const struct vfs *vfsp)
1986 {
1987 	refstr_t *resource;
1988 
1989 	vfs_list_read_lock();
1990 	resource = vfsp->vfs_resource;
1991 	refstr_hold(resource);
1992 	vfs_list_unlock();
1993 
1994 	return (resource);
1995 }
1996 
1997 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1998 
1999 refstr_t *
2000 vfs_getmntpoint(const struct vfs *vfsp)
2001 {
2002 	refstr_t *mntpt;
2003 
2004 	vfs_list_read_lock();
2005 	mntpt = vfsp->vfs_mntpt;
2006 	refstr_hold(mntpt);
2007 	vfs_list_unlock();
2008 
2009 	return (mntpt);
2010 }
2011 
2012 /*
2013  * Create an empty options table with enough empty slots to hold all
2014  * The options in the options string passed as an argument.
2015  * Potentially prepend another options table.
2016  *
2017  * Note: caller is responsible for locking the vfs list, if needed,
2018  *       to protect mops.
2019  */
2020 static void
2021 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
2022     const mntopts_t *mtmpl)
2023 {
2024 	const char *s = opts;
2025 	uint_t count;
2026 
2027 	if (opts == NULL || *opts == '\0') {
2028 		count = 0;
2029 	} else {
2030 		count = 1;
2031 
2032 		/*
2033 		 * Count number of options in the string
2034 		 */
2035 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2036 			count++;
2037 			s++;
2038 		}
2039 	}
2040 	vfs_copyopttbl_extend(mtmpl, mops, count);
2041 }
2042 
2043 /*
2044  * Create an empty options table with enough empty slots to hold all
2045  * The options in the options string passed as an argument.
2046  *
2047  * This function is *not* for general use by filesystems.
2048  *
2049  * Note: caller is responsible for locking the vfs list, if needed,
2050  *       to protect mops.
2051  */
2052 void
2053 vfs_createopttbl(mntopts_t *mops, const char *opts)
2054 {
2055 	vfs_createopttbl_extend(mops, opts, NULL);
2056 }
2057 
2058 
2059 /*
2060  * Swap two mount options tables
2061  */
2062 static void
2063 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2064 {
2065 	uint_t tmpcnt;
2066 	mntopt_t *tmplist;
2067 
2068 	tmpcnt = optbl2->mo_count;
2069 	tmplist = optbl2->mo_list;
2070 	optbl2->mo_count = optbl1->mo_count;
2071 	optbl2->mo_list = optbl1->mo_list;
2072 	optbl1->mo_count = tmpcnt;
2073 	optbl1->mo_list = tmplist;
2074 }
2075 
2076 static void
2077 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2078 {
2079 	vfs_list_lock();
2080 	vfs_swapopttbl_nolock(optbl1, optbl2);
2081 	vfs_mnttab_modtimeupd();
2082 	vfs_list_unlock();
2083 }
2084 
2085 static char **
2086 vfs_copycancelopt_extend(char **const moc, int extend)
2087 {
2088 	int i = 0;
2089 	int j;
2090 	char **result;
2091 
2092 	if (moc != NULL) {
2093 		for (; moc[i] != NULL; i++)
2094 			/* count number of options to cancel */;
2095 	}
2096 
2097 	if (i + extend == 0)
2098 		return (NULL);
2099 
2100 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2101 
2102 	for (j = 0; j < i; j++) {
2103 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2104 		(void) strcpy(result[j], moc[j]);
2105 	}
2106 	for (; j <= i + extend; j++)
2107 		result[j] = NULL;
2108 
2109 	return (result);
2110 }
2111 
2112 static void
2113 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2114 {
2115 	char *sp, *dp;
2116 
2117 	d->mo_flags = s->mo_flags;
2118 	d->mo_data = s->mo_data;
2119 	sp = s->mo_name;
2120 	if (sp != NULL) {
2121 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2122 		(void) strcpy(dp, sp);
2123 		d->mo_name = dp;
2124 	} else {
2125 		d->mo_name = NULL; /* should never happen */
2126 	}
2127 
2128 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2129 
2130 	sp = s->mo_arg;
2131 	if (sp != NULL) {
2132 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2133 		(void) strcpy(dp, sp);
2134 		d->mo_arg = dp;
2135 	} else {
2136 		d->mo_arg = NULL;
2137 	}
2138 }
2139 
2140 /*
2141  * Copy a mount options table, possibly allocating some spare
2142  * slots at the end.  It is permissible to copy_extend the NULL table.
2143  */
2144 static void
2145 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2146 {
2147 	uint_t i, count;
2148 	mntopt_t *motbl;
2149 
2150 	/*
2151 	 * Clear out any existing stuff in the options table being initialized
2152 	 */
2153 	vfs_freeopttbl(dmo);
2154 	count = (smo == NULL) ? 0 : smo->mo_count;
2155 	if ((count + extra) == 0)	/* nothing to do */
2156 		return;
2157 	dmo->mo_count = count + extra;
2158 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2159 	dmo->mo_list = motbl;
2160 	for (i = 0; i < count; i++) {
2161 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2162 	}
2163 	for (i = count; i < count + extra; i++) {
2164 		motbl[i].mo_flags = MO_EMPTY;
2165 	}
2166 }
2167 
2168 /*
2169  * Copy a mount options table.
2170  *
2171  * This function is *not* for general use by filesystems.
2172  *
2173  * Note: caller is responsible for locking the vfs list, if needed,
2174  *       to protect smo and dmo.
2175  */
2176 void
2177 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2178 {
2179 	vfs_copyopttbl_extend(smo, dmo, 0);
2180 }
2181 
2182 static char **
2183 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2184 {
2185 	int c1 = 0;
2186 	int c2 = 0;
2187 	char **result;
2188 	char **sp1, **sp2, **dp;
2189 
2190 	/*
2191 	 * First we count both lists of cancel options.
2192 	 * If either is NULL or has no elements, we return a copy of
2193 	 * the other.
2194 	 */
2195 	if (mop1->mo_cancel != NULL) {
2196 		for (; mop1->mo_cancel[c1] != NULL; c1++)
2197 			/* count cancel options in mop1 */;
2198 	}
2199 
2200 	if (c1 == 0)
2201 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2202 
2203 	if (mop2->mo_cancel != NULL) {
2204 		for (; mop2->mo_cancel[c2] != NULL; c2++)
2205 			/* count cancel options in mop2 */;
2206 	}
2207 
2208 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2209 
2210 	if (c2 == 0)
2211 		return (result);
2212 
2213 	/*
2214 	 * When we get here, we've got two sets of cancel options;
2215 	 * we need to merge the two sets.  We know that the result
2216 	 * array has "c1+c2+1" entries and in the end we might shrink
2217 	 * it.
2218 	 * Result now has a copy of the c1 entries from mop1; we'll
2219 	 * now lookup all the entries of mop2 in mop1 and copy it if
2220 	 * it is unique.
2221 	 * This operation is O(n^2) but it's only called once per
2222 	 * filesystem per duplicate option.  This is a situation
2223 	 * which doesn't arise with the filesystems in ON and
2224 	 * n is generally 1.
2225 	 */
2226 
2227 	dp = &result[c1];
2228 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2229 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2230 			if (strcmp(*sp1, *sp2) == 0)
2231 				break;
2232 		}
2233 		if (*sp1 == NULL) {
2234 			/*
2235 			 * Option *sp2 not found in mop1, so copy it.
2236 			 * The calls to vfs_copycancelopt_extend()
2237 			 * guarantee that there's enough room.
2238 			 */
2239 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2240 			(void) strcpy(*dp++, *sp2);
2241 		}
2242 	}
2243 	if (dp != &result[c1+c2]) {
2244 		size_t bytes = (dp - result + 1) * sizeof (char *);
2245 		char **nres = kmem_alloc(bytes, KM_SLEEP);
2246 
2247 		bcopy(result, nres, bytes);
2248 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2249 		result = nres;
2250 	}
2251 	return (result);
2252 }
2253 
2254 /*
2255  * Merge two mount option tables (outer and inner) into one.  This is very
2256  * similar to "merging" global variables and automatic variables in C.
2257  *
2258  * This isn't (and doesn't have to be) fast.
2259  *
2260  * This function is *not* for general use by filesystems.
2261  *
2262  * Note: caller is responsible for locking the vfs list, if needed,
2263  *       to protect omo, imo & dmo.
2264  */
2265 void
2266 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2267 {
2268 	uint_t i, count;
2269 	mntopt_t *mop, *motbl;
2270 	uint_t freeidx;
2271 
2272 	/*
2273 	 * First determine how much space we need to allocate.
2274 	 */
2275 	count = omo->mo_count;
2276 	for (i = 0; i < imo->mo_count; i++) {
2277 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2278 			continue;
2279 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2280 			count++;
2281 	}
2282 	ASSERT(count >= omo->mo_count &&
2283 	    count <= omo->mo_count + imo->mo_count);
2284 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2285 	for (i = 0; i < omo->mo_count; i++)
2286 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2287 	freeidx = omo->mo_count;
2288 	for (i = 0; i < imo->mo_count; i++) {
2289 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2290 			continue;
2291 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2292 			char **newcanp;
2293 			uint_t index = mop - omo->mo_list;
2294 
2295 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2296 
2297 			vfs_freeopt(&motbl[index]);
2298 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2299 
2300 			vfs_freecancelopt(motbl[index].mo_cancel);
2301 			motbl[index].mo_cancel = newcanp;
2302 		} else {
2303 			/*
2304 			 * If it's a new option, just copy it over to the first
2305 			 * free location.
2306 			 */
2307 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2308 		}
2309 	}
2310 	dmo->mo_count = count;
2311 	dmo->mo_list = motbl;
2312 }
2313 
2314 /*
2315  * Functions to set and clear mount options in a mount options table.
2316  */
2317 
2318 /*
2319  * Clear a mount option, if it exists.
2320  *
2321  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2322  * the vfs list.
2323  */
2324 static void
2325 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2326 {
2327 	struct mntopt *mop;
2328 	uint_t i, count;
2329 
2330 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2331 
2332 	count = mops->mo_count;
2333 	for (i = 0; i < count; i++) {
2334 		mop = &mops->mo_list[i];
2335 
2336 		if (mop->mo_flags & MO_EMPTY)
2337 			continue;
2338 		if (strcmp(opt, mop->mo_name))
2339 			continue;
2340 		mop->mo_flags &= ~MO_SET;
2341 		if (mop->mo_arg != NULL) {
2342 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2343 		}
2344 		mop->mo_arg = NULL;
2345 		if (update_mnttab)
2346 			vfs_mnttab_modtimeupd();
2347 		break;
2348 	}
2349 }
2350 
2351 void
2352 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2353 {
2354 	int gotlock = 0;
2355 
2356 	if (VFS_ON_LIST(vfsp)) {
2357 		gotlock = 1;
2358 		vfs_list_lock();
2359 	}
2360 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2361 	if (gotlock)
2362 		vfs_list_unlock();
2363 }
2364 
2365 
2366 /*
2367  * Set a mount option on.  If it's not found in the table, it's silently
2368  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2369  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2370  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2371  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2372  * MO_EMPTY set is created as the option passed in.
2373  *
2374  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2375  * the vfs list.
2376  */
2377 static void
2378 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2379     const char *arg, int flags, int update_mnttab)
2380 {
2381 	mntopt_t *mop;
2382 	uint_t i, count;
2383 	char *sp;
2384 
2385 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2386 
2387 	if (flags & VFS_CREATEOPT) {
2388 		if (vfs_hasopt(mops, opt) != NULL) {
2389 			flags &= ~VFS_CREATEOPT;
2390 		}
2391 	}
2392 	count = mops->mo_count;
2393 	for (i = 0; i < count; i++) {
2394 		mop = &mops->mo_list[i];
2395 
2396 		if (mop->mo_flags & MO_EMPTY) {
2397 			if ((flags & VFS_CREATEOPT) == 0)
2398 				continue;
2399 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2400 			(void) strcpy(sp, opt);
2401 			mop->mo_name = sp;
2402 			if (arg != NULL)
2403 				mop->mo_flags = MO_HASVALUE;
2404 			else
2405 				mop->mo_flags = 0;
2406 		} else if (strcmp(opt, mop->mo_name)) {
2407 			continue;
2408 		}
2409 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2410 			break;
2411 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2412 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2413 			(void) strcpy(sp, arg);
2414 		} else {
2415 			sp = NULL;
2416 		}
2417 		if (mop->mo_arg != NULL)
2418 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2419 		mop->mo_arg = sp;
2420 		if (flags & VFS_DISPLAY)
2421 			mop->mo_flags &= ~MO_NODISPLAY;
2422 		if (flags & VFS_NODISPLAY)
2423 			mop->mo_flags |= MO_NODISPLAY;
2424 		mop->mo_flags |= MO_SET;
2425 		if (mop->mo_cancel != NULL) {
2426 			char **cp;
2427 
2428 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2429 				vfs_clearmntopt_nolock(mops, *cp, 0);
2430 		}
2431 		if (update_mnttab)
2432 			vfs_mnttab_modtimeupd();
2433 		break;
2434 	}
2435 }
2436 
2437 void
2438 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2439 {
2440 	int gotlock = 0;
2441 
2442 	if (VFS_ON_LIST(vfsp)) {
2443 		gotlock = 1;
2444 		vfs_list_lock();
2445 	}
2446 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2447 	if (gotlock)
2448 		vfs_list_unlock();
2449 }
2450 
2451 
2452 /*
2453  * Add a "tag" option to a mounted file system's options list.
2454  *
2455  * Note: caller is responsible for locking the vfs list, if needed,
2456  *       to protect mops.
2457  */
2458 static mntopt_t *
2459 vfs_addtag(mntopts_t *mops, const char *tag)
2460 {
2461 	uint_t count;
2462 	mntopt_t *mop, *motbl;
2463 
2464 	count = mops->mo_count + 1;
2465 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2466 	if (mops->mo_count) {
2467 		size_t len = (count - 1) * sizeof (mntopt_t);
2468 
2469 		bcopy(mops->mo_list, motbl, len);
2470 		kmem_free(mops->mo_list, len);
2471 	}
2472 	mops->mo_count = count;
2473 	mops->mo_list = motbl;
2474 	mop = &motbl[count - 1];
2475 	mop->mo_flags = MO_TAG;
2476 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2477 	(void) strcpy(mop->mo_name, tag);
2478 	return (mop);
2479 }
2480 
2481 /*
2482  * Allow users to set arbitrary "tags" in a vfs's mount options.
2483  * Broader use within the kernel is discouraged.
2484  */
2485 int
2486 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2487     cred_t *cr)
2488 {
2489 	vfs_t *vfsp;
2490 	mntopts_t *mops;
2491 	mntopt_t *mop;
2492 	int found = 0;
2493 	dev_t dev = makedevice(major, minor);
2494 	int err = 0;
2495 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2496 
2497 	/*
2498 	 * Find the desired mounted file system
2499 	 */
2500 	vfs_list_lock();
2501 	vfsp = rootvfs;
2502 	do {
2503 		if (vfsp->vfs_dev == dev &&
2504 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2505 			found = 1;
2506 			break;
2507 		}
2508 		vfsp = vfsp->vfs_next;
2509 	} while (vfsp != rootvfs);
2510 
2511 	if (!found) {
2512 		err = EINVAL;
2513 		goto out;
2514 	}
2515 	err = secpolicy_fs_config(cr, vfsp);
2516 	if (err != 0)
2517 		goto out;
2518 
2519 	mops = &vfsp->vfs_mntopts;
2520 	/*
2521 	 * Add tag if it doesn't already exist
2522 	 */
2523 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2524 		int len;
2525 
2526 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2527 		len = strlen(buf);
2528 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2529 			err = ENAMETOOLONG;
2530 			goto out;
2531 		}
2532 		mop = vfs_addtag(mops, tag);
2533 	}
2534 	if ((mop->mo_flags & MO_TAG) == 0) {
2535 		err = EINVAL;
2536 		goto out;
2537 	}
2538 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2539 out:
2540 	vfs_list_unlock();
2541 	kmem_free(buf, MAX_MNTOPT_STR);
2542 	return (err);
2543 }
2544 
2545 /*
2546  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2547  * Broader use within the kernel is discouraged.
2548  */
2549 int
2550 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2551     cred_t *cr)
2552 {
2553 	vfs_t *vfsp;
2554 	mntopt_t *mop;
2555 	int found = 0;
2556 	dev_t dev = makedevice(major, minor);
2557 	int err = 0;
2558 
2559 	/*
2560 	 * Find the desired mounted file system
2561 	 */
2562 	vfs_list_lock();
2563 	vfsp = rootvfs;
2564 	do {
2565 		if (vfsp->vfs_dev == dev &&
2566 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2567 			found = 1;
2568 			break;
2569 		}
2570 		vfsp = vfsp->vfs_next;
2571 	} while (vfsp != rootvfs);
2572 
2573 	if (!found) {
2574 		err = EINVAL;
2575 		goto out;
2576 	}
2577 	err = secpolicy_fs_config(cr, vfsp);
2578 	if (err != 0)
2579 		goto out;
2580 
2581 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2582 		err = EINVAL;
2583 		goto out;
2584 	}
2585 	if ((mop->mo_flags & MO_TAG) == 0) {
2586 		err = EINVAL;
2587 		goto out;
2588 	}
2589 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2590 out:
2591 	vfs_list_unlock();
2592 	return (err);
2593 }
2594 
2595 /*
2596  * Function to parse an option string and fill in a mount options table.
2597  * Unknown options are silently ignored.  The input option string is modified
2598  * by replacing separators with nulls.  If the create flag is set, options
2599  * not found in the table are just added on the fly.  The table must have
2600  * an option slot marked MO_EMPTY to add an option on the fly.
2601  *
2602  * This function is *not* for general use by filesystems.
2603  *
2604  * Note: caller is responsible for locking the vfs list, if needed,
2605  *       to protect mops..
2606  */
2607 void
2608 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2609 {
2610 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2611 	int setflg = VFS_NOFORCEOPT;
2612 
2613 	if (osp == NULL)
2614 		return;
2615 	while (*s != '\0') {
2616 		p = strchr(s, ',');	/* find next option */
2617 		if (p == NULL) {
2618 			cp = NULL;
2619 			p = s + strlen(s);
2620 		} else {
2621 			cp = p;		/* save location of comma */
2622 			*p++ = '\0';	/* mark end and point to next option */
2623 		}
2624 		nextop = p;
2625 		p = strchr(s, '=');	/* look for value */
2626 		if (p == NULL) {
2627 			valp = NULL;	/* no value supplied */
2628 		} else {
2629 			ep = p;		/* save location of equals */
2630 			*p++ = '\0';	/* end option and point to value */
2631 			valp = p;
2632 		}
2633 		/*
2634 		 * set option into options table
2635 		 */
2636 		if (create)
2637 			setflg |= VFS_CREATEOPT;
2638 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2639 		if (cp != NULL)
2640 			*cp = ',';	/* restore the comma */
2641 		if (valp != NULL)
2642 			*ep = '=';	/* restore the equals */
2643 		s = nextop;
2644 	}
2645 }
2646 
2647 /*
2648  * Function to inquire if an option exists in a mount options table.
2649  * Returns a pointer to the option if it exists, else NULL.
2650  *
2651  * This function is *not* for general use by filesystems.
2652  *
2653  * Note: caller is responsible for locking the vfs list, if needed,
2654  *       to protect mops.
2655  */
2656 struct mntopt *
2657 vfs_hasopt(const mntopts_t *mops, const char *opt)
2658 {
2659 	struct mntopt *mop;
2660 	uint_t i, count;
2661 
2662 	count = mops->mo_count;
2663 	for (i = 0; i < count; i++) {
2664 		mop = &mops->mo_list[i];
2665 
2666 		if (mop->mo_flags & MO_EMPTY)
2667 			continue;
2668 		if (strcmp(opt, mop->mo_name) == 0)
2669 			return (mop);
2670 	}
2671 	return (NULL);
2672 }
2673 
2674 /*
2675  * Function to inquire if an option is set in a mount options table.
2676  * Returns non-zero if set and fills in the arg pointer with a pointer to
2677  * the argument string or NULL if there is no argument string.
2678  */
2679 static int
2680 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2681 {
2682 	struct mntopt *mop;
2683 	uint_t i, count;
2684 
2685 	count = mops->mo_count;
2686 	for (i = 0; i < count; i++) {
2687 		mop = &mops->mo_list[i];
2688 
2689 		if (mop->mo_flags & MO_EMPTY)
2690 			continue;
2691 		if (strcmp(opt, mop->mo_name))
2692 			continue;
2693 		if ((mop->mo_flags & MO_SET) == 0)
2694 			return (0);
2695 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2696 			*argp = mop->mo_arg;
2697 		return (1);
2698 	}
2699 	return (0);
2700 }
2701 
2702 
2703 int
2704 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2705 {
2706 	int ret;
2707 
2708 	vfs_list_read_lock();
2709 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2710 	vfs_list_unlock();
2711 	return (ret);
2712 }
2713 
2714 
2715 /*
2716  * Construct a comma separated string of the options set in the given
2717  * mount table, return the string in the given buffer.  Return non-zero if
2718  * the buffer would overflow.
2719  *
2720  * This function is *not* for general use by filesystems.
2721  *
2722  * Note: caller is responsible for locking the vfs list, if needed,
2723  *       to protect mp.
2724  */
2725 int
2726 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2727 {
2728 	char *cp;
2729 	uint_t i;
2730 
2731 	buf[0] = '\0';
2732 	cp = buf;
2733 	for (i = 0; i < mp->mo_count; i++) {
2734 		struct mntopt *mop;
2735 
2736 		mop = &mp->mo_list[i];
2737 		if (mop->mo_flags & MO_SET) {
2738 			int optlen, comma = 0;
2739 
2740 			if (buf[0] != '\0')
2741 				comma = 1;
2742 			optlen = strlen(mop->mo_name);
2743 			if (strlen(buf) + comma + optlen + 1 > len)
2744 				goto err;
2745 			if (comma)
2746 				*cp++ = ',';
2747 			(void) strcpy(cp, mop->mo_name);
2748 			cp += optlen;
2749 			/*
2750 			 * Append option value if there is one
2751 			 */
2752 			if (mop->mo_arg != NULL) {
2753 				int arglen;
2754 
2755 				arglen = strlen(mop->mo_arg);
2756 				if (strlen(buf) + arglen + 2 > len)
2757 					goto err;
2758 				*cp++ = '=';
2759 				(void) strcpy(cp, mop->mo_arg);
2760 				cp += arglen;
2761 			}
2762 		}
2763 	}
2764 	return (0);
2765 err:
2766 	return (EOVERFLOW);
2767 }
2768 
2769 static void
2770 vfs_freecancelopt(char **moc)
2771 {
2772 	if (moc != NULL) {
2773 		int ccnt = 0;
2774 		char **cp;
2775 
2776 		for (cp = moc; *cp != NULL; cp++) {
2777 			kmem_free(*cp, strlen(*cp) + 1);
2778 			ccnt++;
2779 		}
2780 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2781 	}
2782 }
2783 
2784 static void
2785 vfs_freeopt(mntopt_t *mop)
2786 {
2787 	if (mop->mo_name != NULL)
2788 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2789 
2790 	vfs_freecancelopt(mop->mo_cancel);
2791 
2792 	if (mop->mo_arg != NULL)
2793 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2794 }
2795 
2796 /*
2797  * Free a mount options table
2798  *
2799  * This function is *not* for general use by filesystems.
2800  *
2801  * Note: caller is responsible for locking the vfs list, if needed,
2802  *       to protect mp.
2803  */
2804 void
2805 vfs_freeopttbl(mntopts_t *mp)
2806 {
2807 	uint_t i, count;
2808 
2809 	count = mp->mo_count;
2810 	for (i = 0; i < count; i++) {
2811 		vfs_freeopt(&mp->mo_list[i]);
2812 	}
2813 	if (count) {
2814 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2815 		mp->mo_count = 0;
2816 		mp->mo_list = NULL;
2817 	}
2818 }
2819 
2820 
2821 /* ARGSUSED */
2822 static int
2823 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2824 	caller_context_t *ct)
2825 {
2826 	return (0);
2827 }
2828 
2829 /* ARGSUSED */
2830 static int
2831 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2832 	caller_context_t *ct)
2833 {
2834 	return (0);
2835 }
2836 
2837 /*
2838  * The dummy vnode is currently used only by file events notification
2839  * module which is just interested in the timestamps.
2840  */
2841 /* ARGSUSED */
2842 static int
2843 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2844     caller_context_t *ct)
2845 {
2846 	bzero(vap, sizeof (vattr_t));
2847 	vap->va_type = VREG;
2848 	vap->va_nlink = 1;
2849 	vap->va_ctime = vfs_mnttab_ctime;
2850 	/*
2851 	 * it is ok to just copy mtime as the time will be monotonically
2852 	 * increasing.
2853 	 */
2854 	vap->va_mtime = vfs_mnttab_mtime;
2855 	vap->va_atime = vap->va_mtime;
2856 	return (0);
2857 }
2858 
2859 static void
2860 vfs_mnttabvp_setup(void)
2861 {
2862 	vnode_t *tvp;
2863 	vnodeops_t *vfs_mntdummyvnops;
2864 	const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2865 		VOPNAME_READ, 		{ .vop_read = vfs_mntdummyread },
2866 		VOPNAME_WRITE, 		{ .vop_write = vfs_mntdummywrite },
2867 		VOPNAME_GETATTR,	{ .vop_getattr = vfs_mntdummygetattr },
2868 		VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
2869 		NULL,			NULL
2870 	};
2871 
2872 	if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2873 	    &vfs_mntdummyvnops) != 0) {
2874 		cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2875 		/* Shouldn't happen, but not bad enough to panic */
2876 		return;
2877 	}
2878 
2879 	/*
2880 	 * A global dummy vnode is allocated to represent mntfs files.
2881 	 * The mntfs file (/etc/mnttab) can be monitored for file events
2882 	 * and receive an event when mnttab changes. Dummy VOP calls
2883 	 * will be made on this vnode. The file events notification module
2884 	 * intercepts this vnode and delivers relevant events.
2885 	 */
2886 	tvp = vn_alloc(KM_SLEEP);
2887 	tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2888 	vn_setops(tvp, vfs_mntdummyvnops);
2889 	tvp->v_type = VREG;
2890 	/*
2891 	 * The mnt dummy ops do not reference v_data.
2892 	 * No other module intercepting this vnode should either.
2893 	 * Just set it to point to itself.
2894 	 */
2895 	tvp->v_data = (caddr_t)tvp;
2896 	tvp->v_vfsp = rootvfs;
2897 	vfs_mntdummyvp = tvp;
2898 }
2899 
2900 /*
2901  * performs fake read/write ops
2902  */
2903 static void
2904 vfs_mnttab_rwop(int rw)
2905 {
2906 	struct uio	uio;
2907 	struct iovec	iov;
2908 	char	buf[1];
2909 
2910 	if (vfs_mntdummyvp == NULL)
2911 		return;
2912 
2913 	bzero(&uio, sizeof (uio));
2914 	bzero(&iov, sizeof (iov));
2915 	iov.iov_base = buf;
2916 	iov.iov_len = 0;
2917 	uio.uio_iov = &iov;
2918 	uio.uio_iovcnt = 1;
2919 	uio.uio_loffset = 0;
2920 	uio.uio_segflg = UIO_SYSSPACE;
2921 	uio.uio_resid = 0;
2922 	if (rw) {
2923 		(void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2924 	} else {
2925 		(void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2926 	}
2927 }
2928 
2929 /*
2930  * Generate a write operation.
2931  */
2932 void
2933 vfs_mnttab_writeop(void)
2934 {
2935 	vfs_mnttab_rwop(1);
2936 }
2937 
2938 /*
2939  * Generate a read operation.
2940  */
2941 void
2942 vfs_mnttab_readop(void)
2943 {
2944 	vfs_mnttab_rwop(0);
2945 }
2946 
2947 /*
2948  * Free any mnttab information recorded in the vfs struct.
2949  * The vfs must not be on the vfs list.
2950  */
2951 static void
2952 vfs_freemnttab(struct vfs *vfsp)
2953 {
2954 	ASSERT(!VFS_ON_LIST(vfsp));
2955 
2956 	/*
2957 	 * Free device and mount point information
2958 	 */
2959 	if (vfsp->vfs_mntpt != NULL) {
2960 		refstr_rele(vfsp->vfs_mntpt);
2961 		vfsp->vfs_mntpt = NULL;
2962 	}
2963 	if (vfsp->vfs_resource != NULL) {
2964 		refstr_rele(vfsp->vfs_resource);
2965 		vfsp->vfs_resource = NULL;
2966 	}
2967 	/*
2968 	 * Now free mount options information
2969 	 */
2970 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2971 }
2972 
2973 /*
2974  * Return the last mnttab modification time
2975  */
2976 void
2977 vfs_mnttab_modtime(timespec_t *ts)
2978 {
2979 	ASSERT(RW_LOCK_HELD(&vfslist));
2980 	*ts = vfs_mnttab_mtime;
2981 }
2982 
2983 /*
2984  * See if mnttab is changed
2985  */
2986 void
2987 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2988 {
2989 	int changed;
2990 
2991 	*phpp = (struct pollhead *)NULL;
2992 
2993 	/*
2994 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2995 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2996 	 * to not grab the vfs list lock because tv_sec is monotonically
2997 	 * increasing.
2998 	 */
2999 
3000 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
3001 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
3002 	if (!changed) {
3003 		*phpp = &vfs_pollhd;
3004 	}
3005 }
3006 
3007 /* Provide a unique and monotonically-increasing timestamp. */
3008 void
3009 vfs_mono_time(timespec_t *ts)
3010 {
3011 	static volatile hrtime_t hrt;		/* The saved time. */
3012 	hrtime_t	newhrt, oldhrt;		/* For effecting the CAS. */
3013 	timespec_t	newts;
3014 
3015 	/*
3016 	 * Try gethrestime() first, but be prepared to fabricate a sensible
3017 	 * answer at the first sign of any trouble.
3018 	 */
3019 	gethrestime(&newts);
3020 	newhrt = ts2hrt(&newts);
3021 	for (;;) {
3022 		oldhrt = hrt;
3023 		if (newhrt <= hrt)
3024 			newhrt = hrt + 1;
3025 		if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
3026 			break;
3027 	}
3028 	hrt2ts(newhrt, ts);
3029 }
3030 
3031 /*
3032  * Update the mnttab modification time and wake up any waiters for
3033  * mnttab changes
3034  */
3035 void
3036 vfs_mnttab_modtimeupd()
3037 {
3038 	hrtime_t oldhrt, newhrt;
3039 
3040 	ASSERT(RW_WRITE_HELD(&vfslist));
3041 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
3042 	gethrestime(&vfs_mnttab_mtime);
3043 	newhrt = ts2hrt(&vfs_mnttab_mtime);
3044 	if (oldhrt == (hrtime_t)0)
3045 		vfs_mnttab_ctime = vfs_mnttab_mtime;
3046 	/*
3047 	 * Attempt to provide unique mtime (like uniqtime but not).
3048 	 */
3049 	if (newhrt == oldhrt) {
3050 		newhrt++;
3051 		hrt2ts(newhrt, &vfs_mnttab_mtime);
3052 	}
3053 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3054 	vfs_mnttab_writeop();
3055 }
3056 
3057 int
3058 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3059 {
3060 	vnode_t *coveredvp;
3061 	int error;
3062 	extern void teardown_vopstats(vfs_t *);
3063 
3064 	/*
3065 	 * Get covered vnode. This will be NULL if the vfs is not linked
3066 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3067 	 */
3068 	coveredvp = vfsp->vfs_vnodecovered;
3069 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3070 
3071 	/*
3072 	 * Purge all dnlc entries for this vfs.
3073 	 */
3074 	(void) dnlc_purge_vfsp(vfsp, 0);
3075 
3076 	/* For forcible umount, skip VFS_SYNC() since it may hang */
3077 	if ((flag & MS_FORCE) == 0)
3078 		(void) VFS_SYNC(vfsp, 0, cr);
3079 
3080 	/*
3081 	 * Lock the vfs to maintain fs status quo during unmount.  This
3082 	 * has to be done after the sync because ufs_update tries to acquire
3083 	 * the vfs_reflock.
3084 	 */
3085 	vfs_lock_wait(vfsp);
3086 
3087 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3088 		vfs_unlock(vfsp);
3089 		if (coveredvp != NULL)
3090 			vn_vfsunlock(coveredvp);
3091 	} else if (coveredvp != NULL) {
3092 		teardown_vopstats(vfsp);
3093 		/*
3094 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3095 		 * when it frees vfsp so we do a VN_HOLD() so we can
3096 		 * continue to use coveredvp afterwards.
3097 		 */
3098 		VN_HOLD(coveredvp);
3099 		vfs_remove(vfsp);
3100 		vn_vfsunlock(coveredvp);
3101 		VN_RELE(coveredvp);
3102 	} else {
3103 		teardown_vopstats(vfsp);
3104 		/*
3105 		 * Release the reference to vfs that is not linked
3106 		 * into the name space.
3107 		 */
3108 		vfs_unlock(vfsp);
3109 		VFS_RELE(vfsp);
3110 	}
3111 	return (error);
3112 }
3113 
3114 
3115 /*
3116  * Vfs_unmountall() is called by uadmin() to unmount all
3117  * mounted file systems (except the root file system) during shutdown.
3118  * It follows the existing locking protocol when traversing the vfs list
3119  * to sync and unmount vfses. Even though there should be no
3120  * other thread running while the system is shutting down, it is prudent
3121  * to still follow the locking protocol.
3122  */
3123 void
3124 vfs_unmountall(void)
3125 {
3126 	struct vfs *vfsp;
3127 	struct vfs *prev_vfsp = NULL;
3128 	int error;
3129 
3130 	/*
3131 	 * Toss all dnlc entries now so that the per-vfs sync
3132 	 * and unmount operations don't have to slog through
3133 	 * a bunch of uninteresting vnodes over and over again.
3134 	 */
3135 	dnlc_purge();
3136 
3137 	vfs_list_lock();
3138 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3139 		prev_vfsp = vfsp->vfs_prev;
3140 
3141 		if (vfs_lock(vfsp) != 0)
3142 			continue;
3143 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
3144 		vfs_unlock(vfsp);
3145 		if (error)
3146 			continue;
3147 
3148 		vfs_list_unlock();
3149 
3150 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3151 		(void) dounmount(vfsp, 0, CRED());
3152 
3153 		/*
3154 		 * Since we dropped the vfslist lock above we must
3155 		 * verify that next_vfsp still exists, else start over.
3156 		 */
3157 		vfs_list_lock();
3158 		for (vfsp = rootvfs->vfs_prev;
3159 		    vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3160 			if (vfsp == prev_vfsp)
3161 				break;
3162 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
3163 			prev_vfsp = rootvfs->vfs_prev;
3164 	}
3165 	vfs_list_unlock();
3166 }
3167 
3168 /*
3169  * Called to add an entry to the end of the vfs mount in progress list
3170  */
3171 void
3172 vfs_addmip(dev_t dev, struct vfs *vfsp)
3173 {
3174 	struct ipmnt *mipp;
3175 
3176 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3177 	mipp->mip_next = NULL;
3178 	mipp->mip_dev = dev;
3179 	mipp->mip_vfsp = vfsp;
3180 	mutex_enter(&vfs_miplist_mutex);
3181 	if (vfs_miplist_end != NULL)
3182 		vfs_miplist_end->mip_next = mipp;
3183 	else
3184 		vfs_miplist = mipp;
3185 	vfs_miplist_end = mipp;
3186 	mutex_exit(&vfs_miplist_mutex);
3187 }
3188 
3189 /*
3190  * Called to remove an entry from the mount in progress list
3191  * Either because the mount completed or it failed.
3192  */
3193 void
3194 vfs_delmip(struct vfs *vfsp)
3195 {
3196 	struct ipmnt *mipp, *mipprev;
3197 
3198 	mutex_enter(&vfs_miplist_mutex);
3199 	mipprev = NULL;
3200 	for (mipp = vfs_miplist;
3201 	    mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3202 		mipprev = mipp;
3203 	}
3204 	if (mipp == NULL)
3205 		return; /* shouldn't happen */
3206 	if (mipp == vfs_miplist_end)
3207 		vfs_miplist_end = mipprev;
3208 	if (mipprev == NULL)
3209 		vfs_miplist = mipp->mip_next;
3210 	else
3211 		mipprev->mip_next = mipp->mip_next;
3212 	mutex_exit(&vfs_miplist_mutex);
3213 	kmem_free(mipp, sizeof (struct ipmnt));
3214 }
3215 
3216 /*
3217  * vfs_add is called by a specific filesystem's mount routine to add
3218  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3219  * The vfs should already have been locked by the caller.
3220  *
3221  * coveredvp is NULL if this is the root.
3222  */
3223 void
3224 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3225 {
3226 	int newflag;
3227 
3228 	ASSERT(vfs_lock_held(vfsp));
3229 	VFS_HOLD(vfsp);
3230 	newflag = vfsp->vfs_flag;
3231 	if (mflag & MS_RDONLY)
3232 		newflag |= VFS_RDONLY;
3233 	else
3234 		newflag &= ~VFS_RDONLY;
3235 	if (mflag & MS_NOSUID)
3236 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3237 	else
3238 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3239 	if (mflag & MS_NOMNTTAB)
3240 		newflag |= VFS_NOMNTTAB;
3241 	else
3242 		newflag &= ~VFS_NOMNTTAB;
3243 
3244 	if (coveredvp != NULL) {
3245 		ASSERT(vn_vfswlock_held(coveredvp));
3246 		coveredvp->v_vfsmountedhere = vfsp;
3247 		VN_HOLD(coveredvp);
3248 	}
3249 	vfsp->vfs_vnodecovered = coveredvp;
3250 	vfsp->vfs_flag = newflag;
3251 
3252 	vfs_list_add(vfsp);
3253 }
3254 
3255 /*
3256  * Remove a vfs from the vfs list, null out the pointer from the
3257  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3258  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3259  * reference to the vfs and to the covered vnode.
3260  *
3261  * Called from dounmount after it's confirmed with the file system
3262  * that the unmount is legal.
3263  */
3264 void
3265 vfs_remove(struct vfs *vfsp)
3266 {
3267 	vnode_t *vp;
3268 
3269 	ASSERT(vfs_lock_held(vfsp));
3270 
3271 	/*
3272 	 * Can't unmount root.  Should never happen because fs will
3273 	 * be busy.
3274 	 */
3275 	if (vfsp == rootvfs)
3276 		panic("vfs_remove: unmounting root");
3277 
3278 	vfs_list_remove(vfsp);
3279 
3280 	/*
3281 	 * Unhook from the file system name space.
3282 	 */
3283 	vp = vfsp->vfs_vnodecovered;
3284 	ASSERT(vn_vfswlock_held(vp));
3285 	vp->v_vfsmountedhere = NULL;
3286 	vfsp->vfs_vnodecovered = NULL;
3287 	VN_RELE(vp);
3288 
3289 	/*
3290 	 * Release lock and wakeup anybody waiting.
3291 	 */
3292 	vfs_unlock(vfsp);
3293 	VFS_RELE(vfsp);
3294 }
3295 
3296 /*
3297  * Lock a filesystem to prevent access to it while mounting,
3298  * unmounting and syncing.  Return EBUSY immediately if lock
3299  * can't be acquired.
3300  */
3301 int
3302 vfs_lock(vfs_t *vfsp)
3303 {
3304 	vn_vfslocks_entry_t *vpvfsentry;
3305 
3306 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3307 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3308 		return (0);
3309 
3310 	vn_vfslocks_rele(vpvfsentry);
3311 	return (EBUSY);
3312 }
3313 
3314 int
3315 vfs_rlock(vfs_t *vfsp)
3316 {
3317 	vn_vfslocks_entry_t *vpvfsentry;
3318 
3319 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3320 
3321 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3322 		return (0);
3323 
3324 	vn_vfslocks_rele(vpvfsentry);
3325 	return (EBUSY);
3326 }
3327 
3328 void
3329 vfs_lock_wait(vfs_t *vfsp)
3330 {
3331 	vn_vfslocks_entry_t *vpvfsentry;
3332 
3333 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3334 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3335 }
3336 
3337 void
3338 vfs_rlock_wait(vfs_t *vfsp)
3339 {
3340 	vn_vfslocks_entry_t *vpvfsentry;
3341 
3342 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3343 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3344 }
3345 
3346 /*
3347  * Unlock a locked filesystem.
3348  */
3349 void
3350 vfs_unlock(vfs_t *vfsp)
3351 {
3352 	vn_vfslocks_entry_t *vpvfsentry;
3353 
3354 	/*
3355 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3356 	 * And these changes should remain for the patch changes as it is.
3357 	 */
3358 	if (panicstr)
3359 		return;
3360 
3361 	/*
3362 	 * ve_refcount needs to be dropped twice here.
3363 	 * 1. To release refernce after a call to vfs_locks_getlock()
3364 	 * 2. To release the reference from the locking routines like
3365 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3366 	 */
3367 
3368 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3369 	vn_vfslocks_rele(vpvfsentry);
3370 
3371 	rwst_exit(&vpvfsentry->ve_lock);
3372 	vn_vfslocks_rele(vpvfsentry);
3373 }
3374 
3375 /*
3376  * Utility routine that allows a filesystem to construct its
3377  * fsid in "the usual way" - by munging some underlying dev_t and
3378  * the filesystem type number into the 64-bit fsid.  Note that
3379  * this implicitly relies on dev_t persistence to make filesystem
3380  * id's persistent.
3381  *
3382  * There's nothing to prevent an individual fs from constructing its
3383  * fsid in a different way, and indeed they should.
3384  *
3385  * Since we want fsids to be 32-bit quantities (so that they can be
3386  * exported identically by either 32-bit or 64-bit APIs, as well as
3387  * the fact that fsid's are "known" to NFS), we compress the device
3388  * number given down to 32-bits, and panic if that isn't possible.
3389  */
3390 void
3391 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3392 {
3393 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3394 		panic("device number too big for fsid!");
3395 	fsi->val[1] = val;
3396 }
3397 
3398 int
3399 vfs_lock_held(vfs_t *vfsp)
3400 {
3401 	int held;
3402 	vn_vfslocks_entry_t *vpvfsentry;
3403 
3404 	/*
3405 	 * vfs_lock_held will mimic sema_held behaviour
3406 	 * if panicstr is set. And these changes should remain
3407 	 * for the patch changes as it is.
3408 	 */
3409 	if (panicstr)
3410 		return (1);
3411 
3412 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3413 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3414 
3415 	vn_vfslocks_rele(vpvfsentry);
3416 	return (held);
3417 }
3418 
3419 struct _kthread *
3420 vfs_lock_owner(vfs_t *vfsp)
3421 {
3422 	struct _kthread *owner;
3423 	vn_vfslocks_entry_t *vpvfsentry;
3424 
3425 	/*
3426 	 * vfs_wlock_held will mimic sema_held behaviour
3427 	 * if panicstr is set. And these changes should remain
3428 	 * for the patch changes as it is.
3429 	 */
3430 	if (panicstr)
3431 		return (NULL);
3432 
3433 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3434 	owner = rwst_owner(&vpvfsentry->ve_lock);
3435 
3436 	vn_vfslocks_rele(vpvfsentry);
3437 	return (owner);
3438 }
3439 
3440 /*
3441  * vfs list locking.
3442  *
3443  * Rather than manipulate the vfslist lock directly, we abstract into lock
3444  * and unlock routines to allow the locking implementation to be changed for
3445  * clustering.
3446  *
3447  * Whenever the vfs list is modified through its hash links, the overall list
3448  * lock must be obtained before locking the relevant hash bucket.  But to see
3449  * whether a given vfs is on the list, it suffices to obtain the lock for the
3450  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3451  */
3452 
3453 void
3454 vfs_list_lock()
3455 {
3456 	rw_enter(&vfslist, RW_WRITER);
3457 }
3458 
3459 void
3460 vfs_list_read_lock()
3461 {
3462 	rw_enter(&vfslist, RW_READER);
3463 }
3464 
3465 void
3466 vfs_list_unlock()
3467 {
3468 	rw_exit(&vfslist);
3469 }
3470 
3471 /*
3472  * Low level worker routines for adding entries to and removing entries from
3473  * the vfs list.
3474  */
3475 
3476 static void
3477 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3478 {
3479 	int vhno;
3480 	struct vfs **hp;
3481 	dev_t dev;
3482 
3483 	ASSERT(RW_WRITE_HELD(&vfslist));
3484 
3485 	dev = expldev(vfsp->vfs_fsid.val[0]);
3486 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3487 
3488 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3489 
3490 	/*
3491 	 * Link into the hash table, inserting it at the end, so that LOFS
3492 	 * with the same fsid as UFS (or other) file systems will not hide the
3493 	 * UFS.
3494 	 */
3495 	if (insert_at_head) {
3496 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3497 		rvfs_list[vhno].rvfs_head = vfsp;
3498 	} else {
3499 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3500 		    hp = &(*hp)->vfs_hash)
3501 			continue;
3502 		/*
3503 		 * hp now contains the address of the pointer to update
3504 		 * to effect the insertion.
3505 		 */
3506 		vfsp->vfs_hash = NULL;
3507 		*hp = vfsp;
3508 	}
3509 
3510 	rvfs_list[vhno].rvfs_len++;
3511 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3512 }
3513 
3514 
3515 static void
3516 vfs_hash_remove(struct vfs *vfsp)
3517 {
3518 	int vhno;
3519 	struct vfs *tvfsp;
3520 	dev_t dev;
3521 
3522 	ASSERT(RW_WRITE_HELD(&vfslist));
3523 
3524 	dev = expldev(vfsp->vfs_fsid.val[0]);
3525 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3526 
3527 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3528 
3529 	/*
3530 	 * Remove from hash.
3531 	 */
3532 	if (rvfs_list[vhno].rvfs_head == vfsp) {
3533 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3534 		rvfs_list[vhno].rvfs_len--;
3535 		goto foundit;
3536 	}
3537 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3538 	    tvfsp = tvfsp->vfs_hash) {
3539 		if (tvfsp->vfs_hash == vfsp) {
3540 			tvfsp->vfs_hash = vfsp->vfs_hash;
3541 			rvfs_list[vhno].rvfs_len--;
3542 			goto foundit;
3543 		}
3544 	}
3545 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3546 
3547 foundit:
3548 
3549 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3550 }
3551 
3552 
3553 void
3554 vfs_list_add(struct vfs *vfsp)
3555 {
3556 	zone_t *zone;
3557 
3558 	/*
3559 	 * Typically, the vfs_t will have been created on behalf of the file
3560 	 * system in vfs_init, where it will have been provided with a
3561 	 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3562 	 * by an unbundled file system. We therefore check for such an example
3563 	 * before stamping the vfs_t with its creation time for the benefit of
3564 	 * mntfs.
3565 	 */
3566 	if (vfsp->vfs_implp == NULL)
3567 		vfsimpl_setup(vfsp);
3568 	vfs_mono_time(&vfsp->vfs_hrctime);
3569 
3570 	/*
3571 	 * The zone that owns the mount is the one that performed the mount.
3572 	 * Note that this isn't necessarily the same as the zone mounted into.
3573 	 * The corresponding zone_rele_ref() will be done when the vfs_t
3574 	 * is being free'd.
3575 	 */
3576 	vfsp->vfs_zone = curproc->p_zone;
3577 	zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3578 	zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3579 	    ZONE_REF_VFS);
3580 
3581 	/*
3582 	 * Find the zone mounted into, and put this mount on its vfs list.
3583 	 */
3584 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3585 	ASSERT(zone != NULL);
3586 	/*
3587 	 * Special casing for the root vfs.  This structure is allocated
3588 	 * statically and hooked onto rootvfs at link time.  During the
3589 	 * vfs_mountroot call at system startup time, the root file system's
3590 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3591 	 * as argument.  The code below must detect and handle this special
3592 	 * case.  The only apparent justification for this special casing is
3593 	 * to ensure that the root file system appears at the head of the
3594 	 * list.
3595 	 *
3596 	 * XXX:	I'm assuming that it's ok to do normal list locking when
3597 	 *	adding the entry for the root file system (this used to be
3598 	 *	done with no locks held).
3599 	 */
3600 	vfs_list_lock();
3601 	/*
3602 	 * Link into the vfs list proper.
3603 	 */
3604 	if (vfsp == &root) {
3605 		/*
3606 		 * Assert: This vfs is already on the list as its first entry.
3607 		 * Thus, there's nothing to do.
3608 		 */
3609 		ASSERT(rootvfs == vfsp);
3610 		/*
3611 		 * Add it to the head of the global zone's vfslist.
3612 		 */
3613 		ASSERT(zone == global_zone);
3614 		ASSERT(zone->zone_vfslist == NULL);
3615 		zone->zone_vfslist = vfsp;
3616 	} else {
3617 		/*
3618 		 * Link to end of list using vfs_prev (as rootvfs is now a
3619 		 * doubly linked circular list) so list is in mount order for
3620 		 * mnttab use.
3621 		 */
3622 		rootvfs->vfs_prev->vfs_next = vfsp;
3623 		vfsp->vfs_prev = rootvfs->vfs_prev;
3624 		rootvfs->vfs_prev = vfsp;
3625 		vfsp->vfs_next = rootvfs;
3626 
3627 		/*
3628 		 * Do it again for the zone-private list (which may be NULL).
3629 		 */
3630 		if (zone->zone_vfslist == NULL) {
3631 			ASSERT(zone != global_zone);
3632 			zone->zone_vfslist = vfsp;
3633 		} else {
3634 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3635 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3636 			zone->zone_vfslist->vfs_zone_prev = vfsp;
3637 			vfsp->vfs_zone_next = zone->zone_vfslist;
3638 		}
3639 	}
3640 
3641 	/*
3642 	 * Link into the hash table, inserting it at the end, so that LOFS
3643 	 * with the same fsid as UFS (or other) file systems will not hide
3644 	 * the UFS.
3645 	 */
3646 	vfs_hash_add(vfsp, 0);
3647 
3648 	/*
3649 	 * Link into tree indexed by mntpoint, for vfs_mntpoint2vfsp
3650 	 * mntix discerns entries with the same key
3651 	 */
3652 	vfsp->vfs_mntix = ++vfs_curr_mntix;
3653 	avl_add(&vfs_by_dev, vfsp);
3654 
3655 	/*
3656 	 * Link into tree indexed by dev, for vfs_devismounted
3657 	 */
3658 	avl_add(&vfs_by_mntpnt, vfsp);
3659 
3660 	/*
3661 	 * update the mnttab modification time
3662 	 */
3663 	vfs_mnttab_modtimeupd();
3664 	vfs_list_unlock();
3665 	zone_rele(zone);
3666 }
3667 
3668 void
3669 vfs_list_remove(struct vfs *vfsp)
3670 {
3671 	zone_t *zone;
3672 
3673 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3674 	ASSERT(zone != NULL);
3675 	/*
3676 	 * Callers are responsible for preventing attempts to unmount the
3677 	 * root.
3678 	 */
3679 	ASSERT(vfsp != rootvfs);
3680 
3681 	vfs_list_lock();
3682 
3683 	/*
3684 	 * Remove from avl trees
3685 	 */
3686 	avl_remove(&vfs_by_mntpnt, vfsp);
3687 	avl_remove(&vfs_by_dev, vfsp);
3688 
3689 	/*
3690 	 * Remove from hash.
3691 	 */
3692 	vfs_hash_remove(vfsp);
3693 
3694 	/*
3695 	 * Remove from vfs list.
3696 	 */
3697 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3698 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3699 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3700 
3701 	/*
3702 	 * Remove from zone-specific vfs list.
3703 	 */
3704 	if (zone->zone_vfslist == vfsp)
3705 		zone->zone_vfslist = vfsp->vfs_zone_next;
3706 
3707 	if (vfsp->vfs_zone_next == vfsp) {
3708 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3709 		ASSERT(zone->zone_vfslist == vfsp);
3710 		zone->zone_vfslist = NULL;
3711 	}
3712 
3713 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3714 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3715 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3716 
3717 	/*
3718 	 * update the mnttab modification time
3719 	 */
3720 	vfs_mnttab_modtimeupd();
3721 	vfs_list_unlock();
3722 	zone_rele(zone);
3723 }
3724 
3725 struct vfs *
3726 getvfs(fsid_t *fsid)
3727 {
3728 	struct vfs *vfsp;
3729 	int val0 = fsid->val[0];
3730 	int val1 = fsid->val[1];
3731 	dev_t dev = expldev(val0);
3732 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3733 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3734 
3735 	mutex_enter(hmp);
3736 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3737 		if (vfsp->vfs_fsid.val[0] == val0 &&
3738 		    vfsp->vfs_fsid.val[1] == val1) {
3739 			VFS_HOLD(vfsp);
3740 			mutex_exit(hmp);
3741 			return (vfsp);
3742 		}
3743 	}
3744 	mutex_exit(hmp);
3745 	return (NULL);
3746 }
3747 
3748 /*
3749  * Search the vfs mount in progress list for a specified device/vfs entry.
3750  * Returns 0 if the first entry in the list that the device matches has the
3751  * given vfs pointer as well.  If the device matches but a different vfs
3752  * pointer is encountered in the list before the given vfs pointer then
3753  * a 1 is returned.
3754  */
3755 
3756 int
3757 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3758 {
3759 	int retval = 0;
3760 	struct ipmnt *mipp;
3761 
3762 	mutex_enter(&vfs_miplist_mutex);
3763 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3764 		if (mipp->mip_dev == dev) {
3765 			if (mipp->mip_vfsp != vfsp)
3766 				retval = 1;
3767 			break;
3768 		}
3769 	}
3770 	mutex_exit(&vfs_miplist_mutex);
3771 	return (retval);
3772 }
3773 
3774 /*
3775  * Search the vfs list for a specified device.  Returns 1, if entry is found
3776  * or 0 if no suitable entry is found.
3777  */
3778 
3779 int
3780 vfs_devismounted(dev_t dev)
3781 {
3782 	struct vfs *vfsp;
3783 	int found = 0;
3784 	struct vfs search;
3785 	avl_index_t index;
3786 
3787 	search.vfs_dev = dev;
3788 	search.vfs_mntix = 0;
3789 
3790 	vfs_list_read_lock();
3791 
3792 	/*
3793 	 * there might be several entries with the same dev in the tree,
3794 	 * only discerned by mntix. To find the first, we start with a mntix
3795 	 * of 0. The search will fail. The following avl_nearest will give
3796 	 * us the actual first entry.
3797 	 */
3798 	VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3799 	vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3800 
3801 	if (vfsp != NULL && vfsp->vfs_dev == dev)
3802 		found = 1;
3803 
3804 	vfs_list_unlock();
3805 	return (found);
3806 }
3807 
3808 /*
3809  * Search the vfs list for a specified device.  Returns a pointer to it
3810  * or NULL if no suitable entry is found. The caller of this routine
3811  * is responsible for releasing the returned vfs pointer.
3812  */
3813 struct vfs *
3814 vfs_dev2vfsp(dev_t dev)
3815 {
3816 	struct vfs *vfsp;
3817 	int found;
3818 	struct vfs search;
3819 	avl_index_t index;
3820 
3821 	search.vfs_dev = dev;
3822 	search.vfs_mntix = 0;
3823 
3824 	vfs_list_read_lock();
3825 
3826 	/*
3827 	 * there might be several entries with the same dev in the tree,
3828 	 * only discerned by mntix. To find the first, we start with a mntix
3829 	 * of 0. The search will fail. The following avl_nearest will give
3830 	 * us the actual first entry.
3831 	 */
3832 	VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3833 	vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3834 
3835 	found = 0;
3836 	while (vfsp != NULL && vfsp->vfs_dev == dev) {
3837 		/*
3838 		 * The following could be made more efficient by making
3839 		 * the entire loop use vfs_zone_next if the call is from
3840 		 * a zone.  The only callers, however, ustat(2) and
3841 		 * umount2(2), don't seem to justify the added
3842 		 * complexity at present.
3843 		 */
3844 		if (ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3845 		    curproc->p_zone)) {
3846 			VFS_HOLD(vfsp);
3847 			found = 1;
3848 			break;
3849 		}
3850 		vfsp = AVL_NEXT(&vfs_by_dev, vfsp);
3851 	}
3852 	vfs_list_unlock();
3853 	return (found ? vfsp : NULL);
3854 }
3855 
3856 /*
3857  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3858  * or NULL if no suitable entry is found. The caller of this routine
3859  * is responsible for releasing the returned vfs pointer.
3860  *
3861  * Note that if multiple mntpoints match, the last one matching is
3862  * returned in an attempt to return the "top" mount when overlay
3863  * mounts are covering the same mount point.  This is accomplished by starting
3864  * at the end of the list and working our way backwards, stopping at the first
3865  * matching mount.
3866  */
3867 struct vfs *
3868 vfs_mntpoint2vfsp(const char *mp)
3869 {
3870 	struct vfs *vfsp;
3871 	struct vfs *retvfsp = NULL;
3872 	zone_t *zone = curproc->p_zone;
3873 	struct vfs *list;
3874 
3875 	vfs_list_read_lock();
3876 	if (getzoneid() == GLOBAL_ZONEID) {
3877 		/*
3878 		 * The global zone may see filesystems in any zone.
3879 		 */
3880 		struct vfs search;
3881 		search.vfs_mntpt = refstr_alloc(mp);
3882 		search.vfs_mntix = UINT64_MAX;
3883 		avl_index_t index;
3884 
3885 		/*
3886 		 * there might be several entries with the same mntpnt in the
3887 		 * tree, only discerned by mntix. To find the last, we start
3888 		 * with a mntix of UINT64_MAX. The search will fail. The
3889 		 * following avl_nearest will give  us the actual last entry
3890 		 * matching the mntpnt.
3891 		 */
3892 		VERIFY(avl_find(&vfs_by_mntpnt, &search, &index) == 0);
3893 		vfsp = avl_nearest(&vfs_by_mntpnt, index, AVL_BEFORE);
3894 
3895 		refstr_rele(search.vfs_mntpt);
3896 
3897 		if (vfsp != NULL &&
3898 		    strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0)
3899 			retvfsp = vfsp;
3900 	} else if ((list = zone->zone_vfslist) != NULL) {
3901 		const char *mntpt;
3902 
3903 		vfsp = list->vfs_zone_prev;
3904 		do {
3905 			mntpt = refstr_value(vfsp->vfs_mntpt);
3906 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3907 			if (strcmp(mntpt, mp) == 0) {
3908 				retvfsp = vfsp;
3909 				break;
3910 			}
3911 			vfsp = vfsp->vfs_zone_prev;
3912 		} while (vfsp != list->vfs_zone_prev);
3913 	}
3914 	if (retvfsp)
3915 		VFS_HOLD(retvfsp);
3916 	vfs_list_unlock();
3917 	return (retvfsp);
3918 }
3919 
3920 /*
3921  * Search the vfs list for a specified vfsops.
3922  * if vfs entry is found then return 1, else 0.
3923  */
3924 int
3925 vfs_opsinuse(vfsops_t *ops)
3926 {
3927 	struct vfs *vfsp;
3928 	int found;
3929 
3930 	vfs_list_read_lock();
3931 	vfsp = rootvfs;
3932 	found = 0;
3933 	do {
3934 		if (vfs_getops(vfsp) == ops) {
3935 			found = 1;
3936 			break;
3937 		}
3938 		vfsp = vfsp->vfs_next;
3939 	} while (vfsp != rootvfs);
3940 	vfs_list_unlock();
3941 	return (found);
3942 }
3943 
3944 /*
3945  * Allocate an entry in vfssw for a file system type
3946  */
3947 struct vfssw *
3948 allocate_vfssw(const char *type)
3949 {
3950 	struct vfssw *vswp;
3951 
3952 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3953 		/*
3954 		 * The vfssw table uses the empty string to identify an
3955 		 * available entry; we cannot add any type which has
3956 		 * a leading NUL. The string length is limited to
3957 		 * the size of the st_fstype array in struct stat.
3958 		 */
3959 		return (NULL);
3960 	}
3961 
3962 	ASSERT(VFSSW_WRITE_LOCKED());
3963 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3964 		if (!ALLOCATED_VFSSW(vswp)) {
3965 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3966 			(void) strcpy(vswp->vsw_name, type);
3967 			ASSERT(vswp->vsw_count == 0);
3968 			vswp->vsw_count = 1;
3969 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3970 			return (vswp);
3971 		}
3972 	return (NULL);
3973 }
3974 
3975 /*
3976  * Impose additional layer of translation between vfstype names
3977  * and module names in the filesystem.
3978  */
3979 static const char *
3980 vfs_to_modname(const char *vfstype)
3981 {
3982 	if (strcmp(vfstype, "proc") == 0) {
3983 		vfstype = "procfs";
3984 	} else if (strcmp(vfstype, "fd") == 0) {
3985 		vfstype = "fdfs";
3986 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3987 		vfstype = "nfs";
3988 	}
3989 
3990 	return (vfstype);
3991 }
3992 
3993 /*
3994  * Find a vfssw entry given a file system type name.
3995  * Try to autoload the filesystem if it's not found.
3996  * If it's installed, return the vfssw locked to prevent unloading.
3997  */
3998 struct vfssw *
3999 vfs_getvfssw(const char *type)
4000 {
4001 	struct vfssw *vswp;
4002 	const char *modname;
4003 
4004 	RLOCK_VFSSW();
4005 	vswp = vfs_getvfsswbyname(type);
4006 	modname = vfs_to_modname(type);
4007 
4008 	if (rootdir == NULL) {
4009 		/*
4010 		 * If we haven't yet loaded the root file system, then our
4011 		 * _init won't be called until later. Allocate vfssw entry,
4012 		 * because mod_installfs won't be called.
4013 		 */
4014 		if (vswp == NULL) {
4015 			RUNLOCK_VFSSW();
4016 			WLOCK_VFSSW();
4017 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
4018 				if ((vswp = allocate_vfssw(type)) == NULL) {
4019 					WUNLOCK_VFSSW();
4020 					return (NULL);
4021 				}
4022 			}
4023 			WUNLOCK_VFSSW();
4024 			RLOCK_VFSSW();
4025 		}
4026 		if (!VFS_INSTALLED(vswp)) {
4027 			RUNLOCK_VFSSW();
4028 			(void) modloadonly("fs", modname);
4029 		} else
4030 			RUNLOCK_VFSSW();
4031 		return (vswp);
4032 	}
4033 
4034 	/*
4035 	 * Try to load the filesystem.  Before calling modload(), we drop
4036 	 * our lock on the VFS switch table, and pick it up after the
4037 	 * module is loaded.  However, there is a potential race:  the
4038 	 * module could be unloaded after the call to modload() completes
4039 	 * but before we pick up the lock and drive on.  Therefore,
4040 	 * we keep reloading the module until we've loaded the module
4041 	 * _and_ we have the lock on the VFS switch table.
4042 	 */
4043 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
4044 		RUNLOCK_VFSSW();
4045 		if (modload("fs", modname) == -1)
4046 			return (NULL);
4047 		RLOCK_VFSSW();
4048 		if (vswp == NULL)
4049 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
4050 				break;
4051 	}
4052 	RUNLOCK_VFSSW();
4053 
4054 	return (vswp);
4055 }
4056 
4057 /*
4058  * Find a vfssw entry given a file system type name.
4059  */
4060 struct vfssw *
4061 vfs_getvfsswbyname(const char *type)
4062 {
4063 	struct vfssw *vswp;
4064 
4065 	ASSERT(VFSSW_LOCKED());
4066 	if (type == NULL || *type == '\0')
4067 		return (NULL);
4068 
4069 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4070 		if (strcmp(type, vswp->vsw_name) == 0) {
4071 			vfs_refvfssw(vswp);
4072 			return (vswp);
4073 		}
4074 	}
4075 
4076 	return (NULL);
4077 }
4078 
4079 /*
4080  * Find a vfssw entry given a set of vfsops.
4081  */
4082 struct vfssw *
4083 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
4084 {
4085 	struct vfssw *vswp;
4086 
4087 	RLOCK_VFSSW();
4088 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4089 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4090 			vfs_refvfssw(vswp);
4091 			RUNLOCK_VFSSW();
4092 			return (vswp);
4093 		}
4094 	}
4095 	RUNLOCK_VFSSW();
4096 
4097 	return (NULL);
4098 }
4099 
4100 /*
4101  * Reference a vfssw entry.
4102  */
4103 void
4104 vfs_refvfssw(struct vfssw *vswp)
4105 {
4106 
4107 	mutex_enter(&vswp->vsw_lock);
4108 	vswp->vsw_count++;
4109 	mutex_exit(&vswp->vsw_lock);
4110 }
4111 
4112 /*
4113  * Unreference a vfssw entry.
4114  */
4115 void
4116 vfs_unrefvfssw(struct vfssw *vswp)
4117 {
4118 
4119 	mutex_enter(&vswp->vsw_lock);
4120 	vswp->vsw_count--;
4121 	mutex_exit(&vswp->vsw_lock);
4122 }
4123 
4124 int sync_timeout = 30;		/* timeout for syncing a page during panic */
4125 int sync_timeleft;		/* portion of sync_timeout remaining */
4126 
4127 static int sync_retries = 20;	/* number of retries when not making progress */
4128 static int sync_triesleft;	/* portion of sync_retries remaining */
4129 
4130 static pgcnt_t old_pgcnt, new_pgcnt;
4131 static int new_bufcnt, old_bufcnt;
4132 
4133 /*
4134  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4135  * complete.  We wait by counting the number of dirty pages and buffers,
4136  * pushing them out using bio_busy() and page_busy(), and then counting again.
4137  * This routine is used during both the uadmin A_SHUTDOWN code as well as
4138  * the SYNC phase of the panic code (see comments in panic.c).  It should only
4139  * be used after some higher-level mechanism has quiesced the system so that
4140  * new writes are not being initiated while we are waiting for completion.
4141  *
4142  * To ensure finite running time, our algorithm uses two timeout mechanisms:
4143  * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4144  * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4145  * Together these ensure that syncing completes if our i/o paths are stuck.
4146  * The counters are declared above so they can be found easily in the debugger.
4147  *
4148  * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4149  * vfs_syncprogress() subroutine whenever we make progress through the lists of
4150  * pages and buffers.  It is decremented and expired by the deadman() cyclic.
4151  * When vfs_syncall() decides it is done, we disable the deadman() counter by
4152  * setting sync_timeleft to zero.  This timer guards against vfs_syncall()
4153  * deadlocking or hanging inside of a broken filesystem or driver routine.
4154  *
4155  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4156  * sync_retries consecutive calls to bio_busy() and page_busy() without
4157  * decreasing either the number of dirty buffers or dirty pages below the
4158  * lowest count we have seen so far, we give up and return from vfs_syncall().
4159  *
4160  * Each loop iteration ends with a call to delay() one second to allow time for
4161  * i/o completion and to permit the user time to read our progress messages.
4162  */
4163 void
4164 vfs_syncall(void)
4165 {
4166 	if (rootdir == NULL && !modrootloaded)
4167 		return; /* panic during boot - no filesystems yet */
4168 
4169 	printf("syncing file systems...");
4170 	vfs_syncprogress();
4171 	sync();
4172 
4173 	vfs_syncprogress();
4174 	sync_triesleft = sync_retries;
4175 
4176 	old_bufcnt = new_bufcnt = INT_MAX;
4177 	old_pgcnt = new_pgcnt = ULONG_MAX;
4178 
4179 	while (sync_triesleft > 0) {
4180 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4181 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4182 
4183 		new_bufcnt = bio_busy(B_TRUE);
4184 		new_pgcnt = page_busy(B_TRUE);
4185 		vfs_syncprogress();
4186 
4187 		if (new_bufcnt == 0 && new_pgcnt == 0)
4188 			break;
4189 
4190 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4191 			sync_triesleft = sync_retries;
4192 		else
4193 			sync_triesleft--;
4194 
4195 		if (new_bufcnt)
4196 			printf(" [%d]", new_bufcnt);
4197 		if (new_pgcnt)
4198 			printf(" %lu", new_pgcnt);
4199 
4200 		delay(hz);
4201 	}
4202 
4203 	if (new_bufcnt != 0 || new_pgcnt != 0)
4204 		printf(" done (not all i/o completed)\n");
4205 	else
4206 		printf(" done\n");
4207 
4208 	sync_timeleft = 0;
4209 	delay(hz);
4210 }
4211 
4212 /*
4213  * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4214  * sync_timeout to indicate that we are making progress and the deadman()
4215  * omnipresent cyclic should not yet time us out.  Note that it is safe to
4216  * store to sync_timeleft here since the deadman() is firing at high-level
4217  * on top of us.  If we are racing with the deadman(), either the deadman()
4218  * will decrement the old value and then we will reset it, or we will
4219  * reset it and then the deadman() will immediately decrement it.  In either
4220  * case, correct behavior results.
4221  */
4222 void
4223 vfs_syncprogress(void)
4224 {
4225 	if (panicstr)
4226 		sync_timeleft = sync_timeout;
4227 }
4228 
4229 /*
4230  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4231  * flags at all.
4232  */
4233 uint_t
4234 vf_to_stf(uint_t vf)
4235 {
4236 	uint_t stf = 0;
4237 
4238 	if (vf & VFS_RDONLY)
4239 		stf |= ST_RDONLY;
4240 	if (vf & VFS_NOSETUID)
4241 		stf |= ST_NOSUID;
4242 	if (vf & VFS_NOTRUNC)
4243 		stf |= ST_NOTRUNC;
4244 
4245 	return (stf);
4246 }
4247 
4248 /*
4249  * Entries for (illegal) fstype 0.
4250  */
4251 /* ARGSUSED */
4252 int
4253 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4254 {
4255 	cmn_err(CE_PANIC, "stray vfs operation");
4256 	return (0);
4257 }
4258 
4259 /*
4260  * Entries for (illegal) fstype 0.
4261  */
4262 int
4263 vfsstray(void)
4264 {
4265 	cmn_err(CE_PANIC, "stray vfs operation");
4266 	return (0);
4267 }
4268 
4269 /*
4270  * Support for dealing with forced UFS unmount and its interaction with
4271  * LOFS. Could be used by any filesystem.
4272  * See bug 1203132.
4273  */
4274 int
4275 vfs_EIO(void)
4276 {
4277 	return (EIO);
4278 }
4279 
4280 /*
4281  * We've gotta define the op for sync separately, since the compiler gets
4282  * confused if we mix and match ANSI and normal style prototypes when
4283  * a "short" argument is present and spits out a warning.
4284  */
4285 /*ARGSUSED*/
4286 int
4287 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4288 {
4289 	return (EIO);
4290 }
4291 
4292 vfs_t EIO_vfs;
4293 vfsops_t *EIO_vfsops;
4294 
4295 /*
4296  * Called from startup() to initialize all loaded vfs's
4297  */
4298 void
4299 vfsinit(void)
4300 {
4301 	struct vfssw *vswp;
4302 	int error;
4303 	extern int vopstats_enabled;
4304 	extern void vopstats_startup();
4305 
4306 	static const fs_operation_def_t EIO_vfsops_template[] = {
4307 		VFSNAME_MOUNT,		{ .error = vfs_EIO },
4308 		VFSNAME_UNMOUNT,	{ .error = vfs_EIO },
4309 		VFSNAME_ROOT,		{ .error = vfs_EIO },
4310 		VFSNAME_STATVFS,	{ .error = vfs_EIO },
4311 		VFSNAME_SYNC, 		{ .vfs_sync = vfs_EIO_sync },
4312 		VFSNAME_VGET,		{ .error = vfs_EIO },
4313 		VFSNAME_MOUNTROOT,	{ .error = vfs_EIO },
4314 		VFSNAME_FREEVFS,	{ .error = vfs_EIO },
4315 		VFSNAME_VNSTATE,	{ .error = vfs_EIO },
4316 		NULL, NULL
4317 	};
4318 
4319 	static const fs_operation_def_t stray_vfsops_template[] = {
4320 		VFSNAME_MOUNT,		{ .error = vfsstray },
4321 		VFSNAME_UNMOUNT,	{ .error = vfsstray },
4322 		VFSNAME_ROOT,		{ .error = vfsstray },
4323 		VFSNAME_STATVFS,	{ .error = vfsstray },
4324 		VFSNAME_SYNC, 		{ .vfs_sync = vfsstray_sync },
4325 		VFSNAME_VGET,		{ .error = vfsstray },
4326 		VFSNAME_MOUNTROOT,	{ .error = vfsstray },
4327 		VFSNAME_FREEVFS,	{ .error = vfsstray },
4328 		VFSNAME_VNSTATE,	{ .error = vfsstray },
4329 		NULL, NULL
4330 	};
4331 
4332 	/* Create vfs cache */
4333 	vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4334 	    sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4335 
4336 	/* Initialize the vnode cache (file systems may use it during init). */
4337 	vn_create_cache();
4338 
4339 	/* Setup event monitor framework */
4340 	fem_init();
4341 
4342 	/* Initialize the dummy stray file system type. */
4343 	error = vfs_setfsops(0, stray_vfsops_template, NULL);
4344 
4345 	/* Initialize the dummy EIO file system. */
4346 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4347 	if (error != 0) {
4348 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4349 		/* Shouldn't happen, but not bad enough to panic */
4350 	}
4351 
4352 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4353 
4354 	/*
4355 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4356 	 * on this vfs can immediately notice it's invalid.
4357 	 */
4358 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4359 
4360 	/*
4361 	 * Call the init routines of non-loadable filesystems only.
4362 	 * Filesystems which are loaded as separate modules will be
4363 	 * initialized by the module loading code instead.
4364 	 */
4365 
4366 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4367 		RLOCK_VFSSW();
4368 		if (vswp->vsw_init != NULL)
4369 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4370 		RUNLOCK_VFSSW();
4371 	}
4372 
4373 	vopstats_startup();
4374 
4375 	if (vopstats_enabled) {
4376 		/* EIO_vfs can collect stats, but we don't retrieve them */
4377 		initialize_vopstats(&EIO_vfs.vfs_vopstats);
4378 		EIO_vfs.vfs_fstypevsp = NULL;
4379 		EIO_vfs.vfs_vskap = NULL;
4380 		EIO_vfs.vfs_flag |= VFS_STATS;
4381 	}
4382 
4383 	xattr_init();
4384 
4385 	reparse_point_init();
4386 }
4387 
4388 vfs_t *
4389 vfs_alloc(int kmflag)
4390 {
4391 	vfs_t *vfsp;
4392 
4393 	vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4394 
4395 	/*
4396 	 * Do the simplest initialization here.
4397 	 * Everything else gets done in vfs_init()
4398 	 */
4399 	bzero(vfsp, sizeof (vfs_t));
4400 	return (vfsp);
4401 }
4402 
4403 void
4404 vfs_free(vfs_t *vfsp)
4405 {
4406 	/*
4407 	 * One would be tempted to assert that "vfsp->vfs_count == 0".
4408 	 * The problem is that this gets called out of domount() with
4409 	 * a partially initialized vfs and a vfs_count of 1.  This is
4410 	 * also called from vfs_rele() with a vfs_count of 0.  We can't
4411 	 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4412 	 * returned.  This is because VFS_MOUNT() fully initializes the
4413 	 * vfs structure and its associated data.  VFS_RELE() will call
4414 	 * VFS_FREEVFS() which may panic the system if the data structures
4415 	 * aren't fully initialized from a successful VFS_MOUNT()).
4416 	 */
4417 
4418 	/* If FEM was in use, make sure everything gets cleaned up */
4419 	if (vfsp->vfs_femhead) {
4420 		ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4421 		mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4422 		kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4423 		vfsp->vfs_femhead = NULL;
4424 	}
4425 
4426 	if (vfsp->vfs_implp)
4427 		vfsimpl_teardown(vfsp);
4428 	sema_destroy(&vfsp->vfs_reflock);
4429 	kmem_cache_free(vfs_cache, vfsp);
4430 }
4431 
4432 /*
4433  * Increments the vfs reference count by one atomically.
4434  */
4435 void
4436 vfs_hold(vfs_t *vfsp)
4437 {
4438 	atomic_inc_32(&vfsp->vfs_count);
4439 	ASSERT(vfsp->vfs_count != 0);
4440 }
4441 
4442 /*
4443  * Decrements the vfs reference count by one atomically. When
4444  * vfs reference count becomes zero, it calls the file system
4445  * specific vfs_freevfs() to free up the resources.
4446  */
4447 void
4448 vfs_rele(vfs_t *vfsp)
4449 {
4450 	ASSERT(vfsp->vfs_count != 0);
4451 	if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4452 		VFS_FREEVFS(vfsp);
4453 		lofi_remove(vfsp);
4454 		if (vfsp->vfs_zone)
4455 			zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4456 			    ZONE_REF_VFS);
4457 		vfs_freemnttab(vfsp);
4458 		vfs_free(vfsp);
4459 	}
4460 }
4461 
4462 /*
4463  * Generic operations vector support.
4464  *
4465  * This is used to build operations vectors for both the vfs and vnode.
4466  * It's normally called only when a file system is loaded.
4467  *
4468  * There are many possible algorithms for this, including the following:
4469  *
4470  *   (1) scan the list of known operations; for each, see if the file system
4471  *       includes an entry for it, and fill it in as appropriate.
4472  *
4473  *   (2) set up defaults for all known operations.  scan the list of ops
4474  *       supplied by the file system; for each which is both supplied and
4475  *       known, fill it in.
4476  *
4477  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4478  *       in entries as we go.
4479  *
4480  * we choose (1) for simplicity, and because performance isn't critical here.
4481  * note that (2) could be sped up using a precomputed hash table on known ops.
4482  * (3) could be faster than either, but only if the lists were very large or
4483  * supplied in sorted order.
4484  *
4485  */
4486 
4487 int
4488 fs_build_vector(void *vector, int *unused_ops,
4489     const fs_operation_trans_def_t *translation,
4490     const fs_operation_def_t *operations)
4491 {
4492 	int i, num_trans, num_ops, used;
4493 
4494 	/*
4495 	 * Count the number of translations and the number of supplied
4496 	 * operations.
4497 	 */
4498 
4499 	{
4500 		const fs_operation_trans_def_t *p;
4501 
4502 		for (num_trans = 0, p = translation;
4503 		    p->name != NULL;
4504 		    num_trans++, p++)
4505 			;
4506 	}
4507 
4508 	{
4509 		const fs_operation_def_t *p;
4510 
4511 		for (num_ops = 0, p = operations;
4512 		    p->name != NULL;
4513 		    num_ops++, p++)
4514 			;
4515 	}
4516 
4517 	/* Walk through each operation known to our caller.  There will be */
4518 	/* one entry in the supplied "translation table" for each. */
4519 
4520 	used = 0;
4521 
4522 	for (i = 0; i < num_trans; i++) {
4523 		int j, found;
4524 		char *curname;
4525 		fs_generic_func_p result;
4526 		fs_generic_func_p *location;
4527 
4528 		curname = translation[i].name;
4529 
4530 		/* Look for a matching operation in the list supplied by the */
4531 		/* file system. */
4532 
4533 		found = 0;
4534 
4535 		for (j = 0; j < num_ops; j++) {
4536 			if (strcmp(operations[j].name, curname) == 0) {
4537 				used++;
4538 				found = 1;
4539 				break;
4540 			}
4541 		}
4542 
4543 		/*
4544 		 * If the file system is using a "placeholder" for default
4545 		 * or error functions, grab the appropriate function out of
4546 		 * the translation table.  If the file system didn't supply
4547 		 * this operation at all, use the default function.
4548 		 */
4549 
4550 		if (found) {
4551 			result = operations[j].func.fs_generic;
4552 			if (result == fs_default) {
4553 				result = translation[i].defaultFunc;
4554 			} else if (result == fs_error) {
4555 				result = translation[i].errorFunc;
4556 			} else if (result == NULL) {
4557 				/* Null values are PROHIBITED */
4558 				return (EINVAL);
4559 			}
4560 		} else {
4561 			result = translation[i].defaultFunc;
4562 		}
4563 
4564 		/* Now store the function into the operations vector. */
4565 
4566 		location = (fs_generic_func_p *)
4567 		    (((char *)vector) + translation[i].offset);
4568 
4569 		*location = result;
4570 	}
4571 
4572 	*unused_ops = num_ops - used;
4573 
4574 	return (0);
4575 }
4576 
4577 /* Placeholder functions, should never be called. */
4578 
4579 int
4580 fs_error(void)
4581 {
4582 	cmn_err(CE_PANIC, "fs_error called");
4583 	return (0);
4584 }
4585 
4586 int
4587 fs_default(void)
4588 {
4589 	cmn_err(CE_PANIC, "fs_default called");
4590 	return (0);
4591 }
4592 
4593 #ifdef __sparc
4594 
4595 /*
4596  * Part of the implementation of booting off a mirrored root
4597  * involves a change of dev_t for the root device.  To
4598  * accomplish this, first remove the existing hash table
4599  * entry for the root device, convert to the new dev_t,
4600  * then re-insert in the hash table at the head of the list.
4601  */
4602 void
4603 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4604 {
4605 	vfs_list_lock();
4606 
4607 	vfs_hash_remove(vfsp);
4608 
4609 	vfsp->vfs_dev = ndev;
4610 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4611 
4612 	vfs_hash_add(vfsp, 1);
4613 
4614 	vfs_list_unlock();
4615 }
4616 
4617 #else /* x86 NEWBOOT */
4618 
4619 #if defined(__x86)
4620 extern int hvmboot_rootconf();
4621 #endif /* __x86 */
4622 
4623 extern ib_boot_prop_t *iscsiboot_prop;
4624 
4625 int
4626 rootconf()
4627 {
4628 	int error;
4629 	struct vfssw *vsw;
4630 	extern void pm_init();
4631 	char *fstyp, *fsmod;
4632 	int ret = -1;
4633 
4634 	getrootfs(&fstyp, &fsmod);
4635 
4636 #if defined(__x86)
4637 	/*
4638 	 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4639 	 * which lives in /platform/i86hvm, and hence is only available when
4640 	 * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4641 	 * is not available then the modstub for this function will return 0.
4642 	 * If the hvm_bootstrap misc module is available it will be loaded
4643 	 * and hvmboot_rootconf() will be invoked.
4644 	 */
4645 	if (error = hvmboot_rootconf())
4646 		return (error);
4647 #endif /* __x86 */
4648 
4649 	if (error = clboot_rootconf())
4650 		return (error);
4651 
4652 	if (modload("fs", fsmod) == -1)
4653 		panic("Cannot _init %s module", fsmod);
4654 
4655 	RLOCK_VFSSW();
4656 	vsw = vfs_getvfsswbyname(fstyp);
4657 	RUNLOCK_VFSSW();
4658 	if (vsw == NULL) {
4659 		cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4660 		return (ENXIO);
4661 	}
4662 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4663 	VFS_HOLD(rootvfs);
4664 
4665 	/* always mount readonly first */
4666 	rootvfs->vfs_flag |= VFS_RDONLY;
4667 
4668 	pm_init();
4669 
4670 	if (netboot && iscsiboot_prop) {
4671 		cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4672 		    " shouldn't happen in the same time");
4673 		return (EINVAL);
4674 	}
4675 
4676 	if (netboot || iscsiboot_prop) {
4677 		ret = strplumb();
4678 		if (ret != 0) {
4679 			cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4680 			return (EFAULT);
4681 		}
4682 	}
4683 
4684 	if ((ret == 0) && iscsiboot_prop) {
4685 		ret = modload("drv", "iscsi");
4686 		/* -1 indicates fail */
4687 		if (ret == -1) {
4688 			cmn_err(CE_WARN, "Failed to load iscsi module");
4689 			iscsi_boot_prop_free();
4690 			return (EINVAL);
4691 		} else {
4692 			if (!i_ddi_attach_pseudo_node("iscsi")) {
4693 				cmn_err(CE_WARN,
4694 				    "Failed to attach iscsi driver");
4695 				iscsi_boot_prop_free();
4696 				return (ENODEV);
4697 			}
4698 		}
4699 	}
4700 
4701 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4702 	vfs_unrefvfssw(vsw);
4703 	rootdev = rootvfs->vfs_dev;
4704 
4705 	if (error)
4706 		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4707 		    rootfs.bo_name, fstyp);
4708 	else
4709 		cmn_err(CE_CONT, "?root on %s fstype %s\n",
4710 		    rootfs.bo_name, fstyp);
4711 	return (error);
4712 }
4713 
4714 /*
4715  * XXX this is called by nfs only and should probably be removed
4716  * If booted with ASKNAME, prompt on the console for a filesystem
4717  * name and return it.
4718  */
4719 void
4720 getfsname(char *askfor, char *name, size_t namelen)
4721 {
4722 	if (boothowto & RB_ASKNAME) {
4723 		printf("%s name: ", askfor);
4724 		console_gets(name, namelen);
4725 	}
4726 }
4727 
4728 /*
4729  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4730  * property.
4731  *
4732  * Filesystem types starting with the prefix "nfs" are diskless clients;
4733  * init the root filename name (rootfs.bo_name), too.
4734  *
4735  * If we are booting via NFS we currently have these options:
4736  *	nfs -	dynamically choose NFS V2, V3, or V4 (default)
4737  *	nfs2 -	force NFS V2
4738  *	nfs3 -	force NFS V3
4739  *	nfs4 -	force NFS V4
4740  * Because we need to maintain backward compatibility with the naming
4741  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4742  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4743  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4744  * This is only for root filesystems, all other uses will expect
4745  * that "nfs" == NFS V2.
4746  */
4747 static void
4748 getrootfs(char **fstypp, char **fsmodp)
4749 {
4750 	extern char *strplumb_get_netdev_path(void);
4751 	char *propstr = NULL;
4752 
4753 	/*
4754 	 * Check fstype property; for diskless it should be one of "nfs",
4755 	 * "nfs2", "nfs3" or "nfs4".
4756 	 */
4757 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4758 	    DDI_PROP_DONTPASS, "fstype", &propstr)
4759 	    == DDI_SUCCESS) {
4760 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4761 		ddi_prop_free(propstr);
4762 
4763 	/*
4764 	 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4765 	 * assume the type of this root filesystem is 'zfs'.
4766 	 */
4767 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4768 	    DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4769 	    == DDI_SUCCESS) {
4770 		(void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4771 		ddi_prop_free(propstr);
4772 	}
4773 
4774 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4775 		*fstypp = *fsmodp = rootfs.bo_fstype;
4776 		return;
4777 	}
4778 
4779 	++netboot;
4780 
4781 	if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4782 		(void) strcpy(rootfs.bo_fstype, "nfs");
4783 	else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4784 		(void) strcpy(rootfs.bo_fstype, "nfsdyn");
4785 
4786 	/*
4787 	 * check if path to network interface is specified in bootpath
4788 	 * or by a hypervisor domain configuration file.
4789 	 * XXPV - enable strlumb_get_netdev_path()
4790 	 */
4791 	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4792 	    "xpv-nfsroot")) {
4793 		(void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4794 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4795 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4796 	    == DDI_SUCCESS) {
4797 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4798 		ddi_prop_free(propstr);
4799 	} else {
4800 		/* attempt to determine netdev_path via boot_mac address */
4801 		netdev_path = strplumb_get_netdev_path();
4802 		if (netdev_path == NULL)
4803 			panic("cannot find boot network interface");
4804 		(void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4805 	}
4806 	*fstypp = rootfs.bo_fstype;
4807 	*fsmodp = "nfs";
4808 }
4809 #endif
4810 
4811 /*
4812  * VFS feature routines
4813  */
4814 
4815 #define	VFTINDEX(feature)	(((feature) >> 32) & 0xFFFFFFFF)
4816 #define	VFTBITS(feature)	((feature) & 0xFFFFFFFFLL)
4817 
4818 /* Register a feature in the vfs */
4819 void
4820 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4821 {
4822 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4823 	if (vfsp->vfs_implp == NULL)
4824 		return;
4825 
4826 	vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4827 }
4828 
4829 void
4830 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4831 {
4832 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4833 	if (vfsp->vfs_implp == NULL)
4834 		return;
4835 	vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4836 }
4837 
4838 /*
4839  * Query a vfs for a feature.
4840  * Returns 1 if feature is present, 0 if not
4841  */
4842 int
4843 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4844 {
4845 	int	ret = 0;
4846 
4847 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4848 	if (vfsp->vfs_implp == NULL)
4849 		return (ret);
4850 
4851 	if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4852 		ret = 1;
4853 
4854 	return (ret);
4855 }
4856 
4857 /*
4858  * Propagate feature set from one vfs to another
4859  */
4860 void
4861 vfs_propagate_features(vfs_t *from, vfs_t *to)
4862 {
4863 	int i;
4864 
4865 	if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4866 		return;
4867 
4868 	for (i = 1; i <= to->vfs_featureset[0]; i++) {
4869 		to->vfs_featureset[i] = from->vfs_featureset[i];
4870 	}
4871 }
4872 
4873 #define	LOFINODE_PATH "/dev/lofi/%d"
4874 
4875 /*
4876  * Return the vnode for the lofi node if there's a lofi mount in place.
4877  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4878  * failure.
4879  */
4880 int
4881 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4882 {
4883 	char *path = NULL;
4884 	int strsize;
4885 	int err;
4886 
4887 	if (vfsp->vfs_lofi_minor == 0) {
4888 		*vpp = NULL;
4889 		return (-1);
4890 	}
4891 
4892 	strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4893 	path = kmem_alloc(strsize + 1, KM_SLEEP);
4894 	(void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4895 
4896 	/*
4897 	 * We may be inside a zone, so we need to use the /dev path, but
4898 	 * it's created asynchronously, so we wait here.
4899 	 */
4900 	for (;;) {
4901 		err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4902 
4903 		if (err != ENOENT)
4904 			break;
4905 
4906 		if ((err = delay_sig(hz / 8)) == EINTR)
4907 			break;
4908 	}
4909 
4910 	if (err)
4911 		*vpp = NULL;
4912 
4913 	kmem_free(path, strsize + 1);
4914 	return (err);
4915 }
4916