xref: /titanic_50/usr/src/uts/common/fs/vfs.c (revision 33d794d10eebfa2727ac1fc98fe0dd6c68f627dc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25  */
26 
27 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/t_lock.h>
42 #include <sys/param.h>
43 #include <sys/errno.h>
44 #include <sys/user.h>
45 #include <sys/fstyp.h>
46 #include <sys/kmem.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/mount.h>
50 #include <sys/vfs.h>
51 #include <sys/vfs_opreg.h>
52 #include <sys/fem.h>
53 #include <sys/mntent.h>
54 #include <sys/stat.h>
55 #include <sys/statvfs.h>
56 #include <sys/statfs.h>
57 #include <sys/cred.h>
58 #include <sys/vnode.h>
59 #include <sys/rwstlock.h>
60 #include <sys/dnlc.h>
61 #include <sys/file.h>
62 #include <sys/time.h>
63 #include <sys/atomic.h>
64 #include <sys/cmn_err.h>
65 #include <sys/buf.h>
66 #include <sys/swap.h>
67 #include <sys/debug.h>
68 #include <sys/vnode.h>
69 #include <sys/modctl.h>
70 #include <sys/ddi.h>
71 #include <sys/pathname.h>
72 #include <sys/bootconf.h>
73 #include <sys/dumphdr.h>
74 #include <sys/dc_ki.h>
75 #include <sys/poll.h>
76 #include <sys/sunddi.h>
77 #include <sys/sysmacros.h>
78 #include <sys/zone.h>
79 #include <sys/policy.h>
80 #include <sys/ctfs.h>
81 #include <sys/objfs.h>
82 #include <sys/console.h>
83 #include <sys/reboot.h>
84 #include <sys/attr.h>
85 #include <sys/zio.h>
86 #include <sys/spa.h>
87 #include <sys/lofi.h>
88 #include <sys/bootprops.h>
89 
90 #include <vm/page.h>
91 
92 #include <fs/fs_subr.h>
93 /* Private interfaces to create vopstats-related data structures */
94 extern void		initialize_vopstats(vopstats_t *);
95 extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
96 extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
97 
98 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
99 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
100     const char *, int, int);
101 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
102 static void vfs_freemnttab(struct vfs *);
103 static void vfs_freeopt(mntopt_t *);
104 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
105 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
106 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
107 static void vfs_createopttbl_extend(mntopts_t *, const char *,
108     const mntopts_t *);
109 static char **vfs_copycancelopt_extend(char **const, int);
110 static void vfs_freecancelopt(char **);
111 static void getrootfs(char **, char **);
112 static int getmacpath(dev_info_t *, void *);
113 static void vfs_mnttabvp_setup(void);
114 
115 struct ipmnt {
116 	struct ipmnt	*mip_next;
117 	dev_t		mip_dev;
118 	struct vfs	*mip_vfsp;
119 };
120 
121 static kmutex_t		vfs_miplist_mutex;
122 static struct ipmnt	*vfs_miplist = NULL;
123 static struct ipmnt	*vfs_miplist_end = NULL;
124 
125 static kmem_cache_t *vfs_cache;	/* Pointer to VFS kmem cache */
126 
127 /*
128  * VFS global data.
129  */
130 vnode_t *rootdir;		/* pointer to root inode vnode. */
131 vnode_t *devicesdir;		/* pointer to inode of devices root */
132 vnode_t	*devdir;		/* pointer to inode of dev root */
133 
134 char *server_rootpath;		/* root path for diskless clients */
135 char *server_hostname;		/* hostname of diskless server */
136 
137 static struct vfs root;
138 static struct vfs devices;
139 static struct vfs dev;
140 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
141 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
142 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
143 				/* must be power of 2!	*/
144 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
145 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
146 char *vfs_dummyfstype = "\0";
147 struct pollhead vfs_pollhd;	/* for mnttab pollers */
148 struct vnode *vfs_mntdummyvp;	/* to fake mnttab read/write for file events */
149 int	mntfstype;		/* will be set once mnt fs is mounted */
150 
151 /*
152  * Table for generic options recognized in the VFS layer and acted
153  * on at this level before parsing file system specific options.
154  * The nosuid option is stronger than any of the devices and setuid
155  * options, so those are canceled when nosuid is seen.
156  *
157  * All options which are added here need to be added to the
158  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
159  */
160 /*
161  * VFS Mount options table
162  */
163 static char *ro_cancel[] = { MNTOPT_RW, NULL };
164 static char *rw_cancel[] = { MNTOPT_RO, NULL };
165 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
166 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
167     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
168 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
169 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
170 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
171 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
172 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
173 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
174 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
175 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
176 
177 static const mntopt_t mntopts[] = {
178 /*
179  *	option name		cancel options		default arg	flags
180  */
181 	{ MNTOPT_REMOUNT,	NULL,			NULL,
182 		MO_NODISPLAY, (void *)0 },
183 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
184 		(void *)0 },
185 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
186 		(void *)0 },
187 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
188 		(void *)0 },
189 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
190 		(void *)0 },
191 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
192 		(void *)0 },
193 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
194 		(void *)0 },
195 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
196 		(void *)0 },
197 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
198 		(void *)0 },
199 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
200 		(void *)0 },
201 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
202 		(void *)0 },
203 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
204 		(void *)0 },
205 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
206 		(void *)0 },
207 };
208 
209 const mntopts_t vfs_mntopts = {
210 	sizeof (mntopts) / sizeof (mntopt_t),
211 	(mntopt_t *)&mntopts[0]
212 };
213 
214 /*
215  * File system operation dispatch functions.
216  */
217 
218 int
219 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
220 {
221 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
222 }
223 
224 int
225 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
226 {
227 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
228 }
229 
230 int
231 fsop_root(vfs_t *vfsp, vnode_t **vpp)
232 {
233 	refstr_t *mntpt;
234 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
235 	/*
236 	 * Make sure this root has a path.  With lofs, it is possible to have
237 	 * a NULL mountpoint.
238 	 */
239 	if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
240 		mntpt = vfs_getmntpoint(vfsp);
241 		vn_setpath_str(*vpp, refstr_value(mntpt),
242 		    strlen(refstr_value(mntpt)));
243 		refstr_rele(mntpt);
244 	}
245 
246 	return (ret);
247 }
248 
249 int
250 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
251 {
252 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
253 }
254 
255 int
256 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
257 {
258 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
259 }
260 
261 int
262 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
263 {
264 	/*
265 	 * In order to handle system attribute fids in a manner
266 	 * transparent to the underlying fs, we embed the fid for
267 	 * the sysattr parent object in the sysattr fid and tack on
268 	 * some extra bytes that only the sysattr layer knows about.
269 	 *
270 	 * This guarantees that sysattr fids are larger than other fids
271 	 * for this vfs. If the vfs supports the sysattr view interface
272 	 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
273 	 * collision with XATTR_FIDSZ.
274 	 */
275 	if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
276 	    fidp->fid_len == XATTR_FIDSZ)
277 		return (xattr_dir_vget(vfsp, vpp, fidp));
278 
279 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
280 }
281 
282 int
283 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
284 {
285 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
286 }
287 
288 void
289 fsop_freefs(vfs_t *vfsp)
290 {
291 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
292 }
293 
294 int
295 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
296 {
297 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
298 }
299 
300 int
301 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
302 {
303 	ASSERT((fstype >= 0) && (fstype < nfstype));
304 
305 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
306 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
307 	else
308 		return (ENOTSUP);
309 }
310 
311 /*
312  * File system initialization.  vfs_setfsops() must be called from a file
313  * system's init routine.
314  */
315 
316 static int
317 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
318     int *unused_ops)
319 {
320 	static const fs_operation_trans_def_t vfs_ops_table[] = {
321 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
322 			fs_nosys, fs_nosys,
323 
324 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
325 			fs_nosys, fs_nosys,
326 
327 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
328 			fs_nosys, fs_nosys,
329 
330 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
331 			fs_nosys, fs_nosys,
332 
333 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
334 			(fs_generic_func_p) fs_sync,
335 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
336 
337 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
338 			fs_nosys, fs_nosys,
339 
340 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
341 			fs_nosys, fs_nosys,
342 
343 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
344 			(fs_generic_func_p)fs_freevfs,
345 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
346 
347 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
348 			(fs_generic_func_p)fs_nosys,
349 			(fs_generic_func_p)fs_nosys,
350 
351 		NULL, 0, NULL, NULL
352 	};
353 
354 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
355 }
356 
357 void
358 zfs_boot_init() {
359 
360 	if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
361 		spa_boot_init();
362 }
363 
364 int
365 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
366 {
367 	int error;
368 	int unused_ops;
369 
370 	/*
371 	 * Verify that fstype refers to a valid fs.  Note that
372 	 * 0 is valid since it's used to set "stray" ops.
373 	 */
374 	if ((fstype < 0) || (fstype >= nfstype))
375 		return (EINVAL);
376 
377 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
378 		return (EINVAL);
379 
380 	/* Set up the operations vector. */
381 
382 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
383 
384 	if (error != 0)
385 		return (error);
386 
387 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
388 
389 	if (actual != NULL)
390 		*actual = &vfssw[fstype].vsw_vfsops;
391 
392 #if DEBUG
393 	if (unused_ops != 0)
394 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
395 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
396 #endif
397 
398 	return (0);
399 }
400 
401 int
402 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
403 {
404 	int error;
405 	int unused_ops;
406 
407 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
408 
409 	error = fs_copyfsops(template, *actual, &unused_ops);
410 	if (error != 0) {
411 		kmem_free(*actual, sizeof (vfsops_t));
412 		*actual = NULL;
413 		return (error);
414 	}
415 
416 	return (0);
417 }
418 
419 /*
420  * Free a vfsops structure created as a result of vfs_makefsops().
421  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
422  * vfs_freevfsops_by_type().
423  */
424 void
425 vfs_freevfsops(vfsops_t *vfsops)
426 {
427 	kmem_free(vfsops, sizeof (vfsops_t));
428 }
429 
430 /*
431  * Since the vfsops structure is part of the vfssw table and wasn't
432  * really allocated, we're not really freeing anything.  We keep
433  * the name for consistency with vfs_freevfsops().  We do, however,
434  * need to take care of a little bookkeeping.
435  * NOTE: For a vfsops structure created by vfs_setfsops(), use
436  * vfs_freevfsops_by_type().
437  */
438 int
439 vfs_freevfsops_by_type(int fstype)
440 {
441 
442 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
443 	if ((fstype <= 0) || (fstype >= nfstype))
444 		return (EINVAL);
445 
446 	WLOCK_VFSSW();
447 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
448 		WUNLOCK_VFSSW();
449 		return (EINVAL);
450 	}
451 
452 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
453 	WUNLOCK_VFSSW();
454 
455 	return (0);
456 }
457 
458 /* Support routines used to reference vfs_op */
459 
460 /* Set the operations vector for a vfs */
461 void
462 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
463 {
464 	vfsops_t	*op;
465 
466 	ASSERT(vfsp != NULL);
467 	ASSERT(vfsops != NULL);
468 
469 	op = vfsp->vfs_op;
470 	membar_consumer();
471 	if (vfsp->vfs_femhead == NULL &&
472 	    atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
473 		return;
474 	}
475 	fsem_setvfsops(vfsp, vfsops);
476 }
477 
478 /* Retrieve the operations vector for a vfs */
479 vfsops_t *
480 vfs_getops(vfs_t *vfsp)
481 {
482 	vfsops_t	*op;
483 
484 	ASSERT(vfsp != NULL);
485 
486 	op = vfsp->vfs_op;
487 	membar_consumer();
488 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
489 		return (op);
490 	} else {
491 		return (fsem_getvfsops(vfsp));
492 	}
493 }
494 
495 /*
496  * Returns non-zero (1) if the vfsops matches that of the vfs.
497  * Returns zero (0) if not.
498  */
499 int
500 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
501 {
502 	return (vfs_getops(vfsp) == vfsops);
503 }
504 
505 /*
506  * Returns non-zero (1) if the file system has installed a non-default,
507  * non-error vfs_sync routine.  Returns zero (0) otherwise.
508  */
509 int
510 vfs_can_sync(vfs_t *vfsp)
511 {
512 	/* vfs_sync() routine is not the default/error function */
513 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
514 }
515 
516 /*
517  * Initialize a vfs structure.
518  */
519 void
520 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
521 {
522 	/* Other initialization has been moved to vfs_alloc() */
523 	vfsp->vfs_count = 0;
524 	vfsp->vfs_next = vfsp;
525 	vfsp->vfs_prev = vfsp;
526 	vfsp->vfs_zone_next = vfsp;
527 	vfsp->vfs_zone_prev = vfsp;
528 	vfsp->vfs_lofi_minor = 0;
529 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
530 	vfsimpl_setup(vfsp);
531 	vfsp->vfs_data = (data);
532 	vfs_setops((vfsp), (op));
533 }
534 
535 /*
536  * Allocate and initialize the vfs implementation private data
537  * structure, vfs_impl_t.
538  */
539 void
540 vfsimpl_setup(vfs_t *vfsp)
541 {
542 	int i;
543 
544 	if (vfsp->vfs_implp != NULL) {
545 		return;
546 	}
547 
548 	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
549 	/* Note that these are #define'd in vfs.h */
550 	vfsp->vfs_vskap = NULL;
551 	vfsp->vfs_fstypevsp = NULL;
552 
553 	/* Set size of counted array, then zero the array */
554 	vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
555 	for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
556 		vfsp->vfs_featureset[i] = 0;
557 	}
558 }
559 
560 /*
561  * Release the vfs_impl_t structure, if it exists. Some unbundled
562  * filesystems may not use the newer version of vfs and thus
563  * would not contain this implementation private data structure.
564  */
565 void
566 vfsimpl_teardown(vfs_t *vfsp)
567 {
568 	vfs_impl_t	*vip = vfsp->vfs_implp;
569 
570 	if (vip == NULL)
571 		return;
572 
573 	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
574 	vfsp->vfs_implp = NULL;
575 }
576 
577 /*
578  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
579  * fstatvfs, and sysfs moved to common/syscall.
580  */
581 
582 /*
583  * Update every mounted file system.  We call the vfs_sync operation of
584  * each file system type, passing it a NULL vfsp to indicate that all
585  * mounted file systems of that type should be updated.
586  */
587 void
588 vfs_sync(int flag)
589 {
590 	struct vfssw *vswp;
591 	RLOCK_VFSSW();
592 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
593 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
594 			vfs_refvfssw(vswp);
595 			RUNLOCK_VFSSW();
596 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
597 			    CRED());
598 			vfs_unrefvfssw(vswp);
599 			RLOCK_VFSSW();
600 		}
601 	}
602 	RUNLOCK_VFSSW();
603 }
604 
605 void
606 sync(void)
607 {
608 	vfs_sync(0);
609 }
610 
611 /*
612  * External routines.
613  */
614 
615 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
616 
617 /*
618  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
619  * but otherwise should be accessed only via vfs_list_lock() and
620  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
621  */
622 static krwlock_t vfslist;
623 
624 /*
625  * Mount devfs on /devices. This is done right after root is mounted
626  * to provide device access support for the system
627  */
628 static void
629 vfs_mountdevices(void)
630 {
631 	struct vfssw *vsw;
632 	struct vnode *mvp;
633 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
634 		NULL,
635 		NULL,
636 		MS_SYSSPACE,
637 		NULL,
638 		NULL,
639 		0,
640 		NULL,
641 		0
642 	};
643 
644 	/*
645 	 * _init devfs module to fill in the vfssw
646 	 */
647 	if (modload("fs", "devfs") == -1)
648 		panic("Cannot _init devfs module");
649 
650 	/*
651 	 * Hold vfs
652 	 */
653 	RLOCK_VFSSW();
654 	vsw = vfs_getvfsswbyname("devfs");
655 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
656 	VFS_HOLD(&devices);
657 
658 	/*
659 	 * Locate mount point
660 	 */
661 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
662 		panic("Cannot find /devices");
663 
664 	/*
665 	 * Perform the mount of /devices
666 	 */
667 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
668 		panic("Cannot mount /devices");
669 
670 	RUNLOCK_VFSSW();
671 
672 	/*
673 	 * Set appropriate members and add to vfs list for mnttab display
674 	 */
675 	vfs_setresource(&devices, "/devices", 0);
676 	vfs_setmntpoint(&devices, "/devices", 0);
677 
678 	/*
679 	 * Hold the root of /devices so it won't go away
680 	 */
681 	if (VFS_ROOT(&devices, &devicesdir))
682 		panic("vfs_mountdevices: not devices root");
683 
684 	if (vfs_lock(&devices) != 0) {
685 		VN_RELE(devicesdir);
686 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
687 		return;
688 	}
689 
690 	if (vn_vfswlock(mvp) != 0) {
691 		vfs_unlock(&devices);
692 		VN_RELE(devicesdir);
693 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
694 		return;
695 	}
696 
697 	vfs_add(mvp, &devices, 0);
698 	vn_vfsunlock(mvp);
699 	vfs_unlock(&devices);
700 	VN_RELE(devicesdir);
701 }
702 
703 /*
704  * mount the first instance of /dev  to root and remain mounted
705  */
706 static void
707 vfs_mountdev1(void)
708 {
709 	struct vfssw *vsw;
710 	struct vnode *mvp;
711 	struct mounta mounta = {	/* fake mounta for sdev_mount() */
712 		NULL,
713 		NULL,
714 		MS_SYSSPACE | MS_OVERLAY,
715 		NULL,
716 		NULL,
717 		0,
718 		NULL,
719 		0
720 	};
721 
722 	/*
723 	 * _init dev module to fill in the vfssw
724 	 */
725 	if (modload("fs", "dev") == -1)
726 		cmn_err(CE_PANIC, "Cannot _init dev module\n");
727 
728 	/*
729 	 * Hold vfs
730 	 */
731 	RLOCK_VFSSW();
732 	vsw = vfs_getvfsswbyname("dev");
733 	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
734 	VFS_HOLD(&dev);
735 
736 	/*
737 	 * Locate mount point
738 	 */
739 	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
740 		cmn_err(CE_PANIC, "Cannot find /dev\n");
741 
742 	/*
743 	 * Perform the mount of /dev
744 	 */
745 	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
746 		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
747 
748 	RUNLOCK_VFSSW();
749 
750 	/*
751 	 * Set appropriate members and add to vfs list for mnttab display
752 	 */
753 	vfs_setresource(&dev, "/dev", 0);
754 	vfs_setmntpoint(&dev, "/dev", 0);
755 
756 	/*
757 	 * Hold the root of /dev so it won't go away
758 	 */
759 	if (VFS_ROOT(&dev, &devdir))
760 		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
761 
762 	if (vfs_lock(&dev) != 0) {
763 		VN_RELE(devdir);
764 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
765 		return;
766 	}
767 
768 	if (vn_vfswlock(mvp) != 0) {
769 		vfs_unlock(&dev);
770 		VN_RELE(devdir);
771 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
772 		return;
773 	}
774 
775 	vfs_add(mvp, &dev, 0);
776 	vn_vfsunlock(mvp);
777 	vfs_unlock(&dev);
778 	VN_RELE(devdir);
779 }
780 
781 /*
782  * Mount required filesystem. This is done right after root is mounted.
783  */
784 static void
785 vfs_mountfs(char *module, char *spec, char *path)
786 {
787 	struct vnode *mvp;
788 	struct mounta mounta;
789 	vfs_t *vfsp;
790 
791 	mounta.flags = MS_SYSSPACE | MS_DATA;
792 	mounta.fstype = module;
793 	mounta.spec = spec;
794 	mounta.dir = path;
795 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
796 		cmn_err(CE_WARN, "Cannot find %s", path);
797 		return;
798 	}
799 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
800 		cmn_err(CE_WARN, "Cannot mount %s", path);
801 	else
802 		VFS_RELE(vfsp);
803 	VN_RELE(mvp);
804 }
805 
806 /*
807  * vfs_mountroot is called by main() to mount the root filesystem.
808  */
809 void
810 vfs_mountroot(void)
811 {
812 	struct vnode	*rvp = NULL;
813 	char		*path;
814 	size_t		plen;
815 	struct vfssw	*vswp;
816 	proc_t		*p;
817 
818 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
819 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
820 
821 	/*
822 	 * Alloc the vfs hash bucket array and locks
823 	 */
824 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
825 
826 	/*
827 	 * Call machine-dependent routine "rootconf" to choose a root
828 	 * file system type.
829 	 */
830 	if (rootconf())
831 		panic("vfs_mountroot: cannot mount root");
832 	/*
833 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
834 	 * to point to it.  These are used by lookuppn() so that it
835 	 * knows where to start from ('/' or '.').
836 	 */
837 	vfs_setmntpoint(rootvfs, "/", 0);
838 	if (VFS_ROOT(rootvfs, &rootdir))
839 		panic("vfs_mountroot: no root vnode");
840 
841 	/*
842 	 * At this point, the process tree consists of p0 and possibly some
843 	 * direct children of p0.  (i.e. there are no grandchildren)
844 	 *
845 	 * Walk through them all, setting their current directory.
846 	 */
847 	mutex_enter(&pidlock);
848 	for (p = practive; p != NULL; p = p->p_next) {
849 		ASSERT(p == &p0 || p->p_parent == &p0);
850 
851 		PTOU(p)->u_cdir = rootdir;
852 		VN_HOLD(PTOU(p)->u_cdir);
853 		PTOU(p)->u_rdir = NULL;
854 	}
855 	mutex_exit(&pidlock);
856 
857 	/*
858 	 * Setup the global zone's rootvp, now that it exists.
859 	 */
860 	global_zone->zone_rootvp = rootdir;
861 	VN_HOLD(global_zone->zone_rootvp);
862 
863 	/*
864 	 * Notify the module code that it can begin using the
865 	 * root filesystem instead of the boot program's services.
866 	 */
867 	modrootloaded = 1;
868 
869 	/*
870 	 * Special handling for a ZFS root file system.
871 	 */
872 	zfs_boot_init();
873 
874 	/*
875 	 * Set up mnttab information for root
876 	 */
877 	vfs_setresource(rootvfs, rootfs.bo_name, 0);
878 
879 	/*
880 	 * Notify cluster software that the root filesystem is available.
881 	 */
882 	clboot_mountroot();
883 
884 	/* Now that we're all done with the root FS, set up its vopstats */
885 	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
886 		/* Set flag for statistics collection */
887 		if (vswp->vsw_flag & VSW_STATS) {
888 			initialize_vopstats(&rootvfs->vfs_vopstats);
889 			rootvfs->vfs_flag |= VFS_STATS;
890 			rootvfs->vfs_fstypevsp =
891 			    get_fstype_vopstats(rootvfs, vswp);
892 			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
893 		}
894 		vfs_unrefvfssw(vswp);
895 	}
896 
897 	/*
898 	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
899 	 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
900 	 */
901 	vfs_mountdevices();
902 	vfs_mountdev1();
903 
904 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
905 	vfs_mountfs("proc", "/proc", "/proc");
906 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
907 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
908 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
909 
910 	if (getzoneid() == GLOBAL_ZONEID) {
911 		vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
912 	}
913 
914 #ifdef __sparc
915 	/*
916 	 * This bit of magic can go away when we convert sparc to
917 	 * the new boot architecture based on ramdisk.
918 	 *
919 	 * Booting off a mirrored root volume:
920 	 * At this point, we have booted and mounted root on a
921 	 * single component of the mirror.  Complete the boot
922 	 * by configuring SVM and converting the root to the
923 	 * dev_t of the mirrored root device.  This dev_t conversion
924 	 * only works because the underlying device doesn't change.
925 	 */
926 	if (root_is_svm) {
927 		if (svm_rootconf()) {
928 			panic("vfs_mountroot: cannot remount root");
929 		}
930 
931 		/*
932 		 * mnttab should reflect the new root device
933 		 */
934 		vfs_lock_wait(rootvfs);
935 		vfs_setresource(rootvfs, rootfs.bo_name, 0);
936 		vfs_unlock(rootvfs);
937 	}
938 #endif /* __sparc */
939 
940 	if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
941 		/*
942 		 * Look up the root device via devfs so that a dv_node is
943 		 * created for it. The vnode is never VN_RELE()ed.
944 		 * We allocate more than MAXPATHLEN so that the
945 		 * buffer passed to i_ddi_prompath_to_devfspath() is
946 		 * exactly MAXPATHLEN (the function expects a buffer
947 		 * of that length).
948 		 */
949 		plen = strlen("/devices");
950 		path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
951 		(void) strcpy(path, "/devices");
952 
953 		if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
954 		    != DDI_SUCCESS ||
955 		    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
956 
957 			/* NUL terminate in case "path" has garbage */
958 			path[plen + MAXPATHLEN - 1] = '\0';
959 #ifdef	DEBUG
960 			cmn_err(CE_WARN, "!Cannot lookup root device: %s",
961 			    path);
962 #endif
963 		}
964 		kmem_free(path, plen + MAXPATHLEN);
965 	}
966 
967 	vfs_mnttabvp_setup();
968 }
969 
970 /*
971  * Check to see if our "block device" is actually a file.  If so,
972  * automatically add a lofi device, and keep track of this fact.
973  */
974 static int
975 lofi_add(const char *fsname, struct vfs *vfsp,
976     mntopts_t *mntopts, struct mounta *uap)
977 {
978 	int fromspace = (uap->flags & MS_SYSSPACE) ?
979 	    UIO_SYSSPACE : UIO_USERSPACE;
980 	struct lofi_ioctl *li = NULL;
981 	struct vnode *vp = NULL;
982 	struct pathname	pn = { NULL };
983 	ldi_ident_t ldi_id;
984 	ldi_handle_t ldi_hdl;
985 	vfssw_t *vfssw;
986 	int minor;
987 	int err = 0;
988 
989 	if ((vfssw = vfs_getvfssw(fsname)) == NULL)
990 		return (0);
991 
992 	if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
993 		vfs_unrefvfssw(vfssw);
994 		return (0);
995 	}
996 
997 	vfs_unrefvfssw(vfssw);
998 	vfssw = NULL;
999 
1000 	if (pn_get(uap->spec, fromspace, &pn) != 0)
1001 		return (0);
1002 
1003 	if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1004 		goto out;
1005 
1006 	if (vp->v_type != VREG)
1007 		goto out;
1008 
1009 	/* OK, this is a lofi mount. */
1010 
1011 	if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1012 	    vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1013 	    vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1014 	    vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1015 		err = EINVAL;
1016 		goto out;
1017 	}
1018 
1019 	ldi_id = ldi_ident_from_anon();
1020 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1021 	(void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1022 
1023 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1024 	    &ldi_hdl, ldi_id);
1025 
1026 	if (err)
1027 		goto out2;
1028 
1029 	err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1030 	    FREAD | FWRITE | FKIOCTL, kcred, &minor);
1031 
1032 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1033 
1034 	if (!err)
1035 		vfsp->vfs_lofi_minor = minor;
1036 
1037 out2:
1038 	ldi_ident_release(ldi_id);
1039 out:
1040 	if (li != NULL)
1041 		kmem_free(li, sizeof (*li));
1042 	if (vp != NULL)
1043 		VN_RELE(vp);
1044 	pn_free(&pn);
1045 	return (err);
1046 }
1047 
1048 static void
1049 lofi_remove(struct vfs *vfsp)
1050 {
1051 	struct lofi_ioctl *li = NULL;
1052 	ldi_ident_t ldi_id;
1053 	ldi_handle_t ldi_hdl;
1054 	int err;
1055 
1056 	if (vfsp->vfs_lofi_minor == 0)
1057 		return;
1058 
1059 	ldi_id = ldi_ident_from_anon();
1060 
1061 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1062 	li->li_minor = vfsp->vfs_lofi_minor;
1063 	li->li_cleanup = B_TRUE;
1064 
1065 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1066 	    &ldi_hdl, ldi_id);
1067 
1068 	if (err)
1069 		goto out;
1070 
1071 	err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1072 	    FREAD | FWRITE | FKIOCTL, kcred, NULL);
1073 
1074 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1075 
1076 	if (!err)
1077 		vfsp->vfs_lofi_minor = 0;
1078 
1079 out:
1080 	ldi_ident_release(ldi_id);
1081 	if (li != NULL)
1082 		kmem_free(li, sizeof (*li));
1083 }
1084 
1085 /*
1086  * Common mount code.  Called from the system call entry point, from autofs,
1087  * nfsv4 trigger mounts, and from pxfs.
1088  *
1089  * Takes the effective file system type, mount arguments, the mount point
1090  * vnode, flags specifying whether the mount is a remount and whether it
1091  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1092  * parameter with the mounted file system instance's vfs.
1093  *
1094  * Note that the effective file system type is specified as a string.  It may
1095  * be null, in which case it's determined from the mount arguments, and may
1096  * differ from the type specified in the mount arguments; this is a hook to
1097  * allow interposition when instantiating file system instances.
1098  *
1099  * The caller is responsible for releasing its own hold on the mount point
1100  * vp (this routine does its own hold when necessary).
1101  * Also note that for remounts, the mount point vp should be the vnode for
1102  * the root of the file system rather than the vnode that the file system
1103  * is mounted on top of.
1104  */
1105 int
1106 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1107 	struct vfs **vfspp)
1108 {
1109 	struct vfssw	*vswp;
1110 	vfsops_t	*vfsops;
1111 	struct vfs	*vfsp;
1112 	struct vnode	*bvp;
1113 	dev_t		bdev = 0;
1114 	mntopts_t	mnt_mntopts;
1115 	int		error = 0;
1116 	int		copyout_error = 0;
1117 	int		ovflags;
1118 	char		*opts = uap->optptr;
1119 	char		*inargs = opts;
1120 	int		optlen = uap->optlen;
1121 	int		remount;
1122 	int		rdonly;
1123 	int		nbmand = 0;
1124 	int		delmip = 0;
1125 	int		addmip = 0;
1126 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
1127 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
1128 	    UIO_SYSSPACE : UIO_USERSPACE;
1129 	char		*resource = NULL, *mountpt = NULL;
1130 	refstr_t	*oldresource, *oldmntpt;
1131 	struct pathname	pn, rpn;
1132 	vsk_anchor_t	*vskap;
1133 	char fstname[FSTYPSZ];
1134 	zone_t		*zone;
1135 
1136 	/*
1137 	 * The v_flag value for the mount point vp is permanently set
1138 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1139 	 * for mount point locking.
1140 	 */
1141 	mutex_enter(&vp->v_lock);
1142 	vp->v_flag |= VVFSLOCK;
1143 	mutex_exit(&vp->v_lock);
1144 
1145 	mnt_mntopts.mo_count = 0;
1146 	/*
1147 	 * Find the ops vector to use to invoke the file system-specific mount
1148 	 * method.  If the fsname argument is non-NULL, use it directly.
1149 	 * Otherwise, dig the file system type information out of the mount
1150 	 * arguments.
1151 	 *
1152 	 * A side effect is to hold the vfssw entry.
1153 	 *
1154 	 * Mount arguments can be specified in several ways, which are
1155 	 * distinguished by flag bit settings.  The preferred way is to set
1156 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1157 	 * type supplied as a character string and the last two arguments
1158 	 * being a pointer to a character buffer and the size of the buffer.
1159 	 * On entry, the buffer holds a null terminated list of options; on
1160 	 * return, the string is the list of options the file system
1161 	 * recognized. If MS_DATA is set arguments five and six point to a
1162 	 * block of binary data which the file system interprets.
1163 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1164 	 * consistently with these conventions.  To handle them, we check to
1165 	 * see whether the pointer to the file system name has a numeric value
1166 	 * less than 256.  If so, we treat it as an index.
1167 	 */
1168 	if (fsname != NULL) {
1169 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1170 			return (EINVAL);
1171 		}
1172 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1173 		size_t n;
1174 		uint_t fstype;
1175 
1176 		fsname = fstname;
1177 
1178 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1179 			RLOCK_VFSSW();
1180 			if (fstype == 0 || fstype >= nfstype ||
1181 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1182 				RUNLOCK_VFSSW();
1183 				return (EINVAL);
1184 			}
1185 			(void) strcpy(fsname, vfssw[fstype].vsw_name);
1186 			RUNLOCK_VFSSW();
1187 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1188 				return (EINVAL);
1189 		} else {
1190 			/*
1191 			 * Handle either kernel or user address space.
1192 			 */
1193 			if (uap->flags & MS_SYSSPACE) {
1194 				error = copystr(uap->fstype, fsname,
1195 				    FSTYPSZ, &n);
1196 			} else {
1197 				error = copyinstr(uap->fstype, fsname,
1198 				    FSTYPSZ, &n);
1199 			}
1200 			if (error) {
1201 				if (error == ENAMETOOLONG)
1202 					return (EINVAL);
1203 				return (error);
1204 			}
1205 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1206 				return (EINVAL);
1207 		}
1208 	} else {
1209 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1210 			return (EINVAL);
1211 		fsname = vswp->vsw_name;
1212 	}
1213 	if (!VFS_INSTALLED(vswp))
1214 		return (EINVAL);
1215 
1216 	if ((error = secpolicy_fs_allowed_mount(fsname)) != 0)  {
1217 		vfs_unrefvfssw(vswp);
1218 		return (error);
1219 	}
1220 
1221 	vfsops = &vswp->vsw_vfsops;
1222 
1223 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1224 	/*
1225 	 * Fetch mount options and parse them for generic vfs options
1226 	 */
1227 	if (uap->flags & MS_OPTIONSTR) {
1228 		/*
1229 		 * Limit the buffer size
1230 		 */
1231 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1232 			error = EINVAL;
1233 			goto errout;
1234 		}
1235 		if ((uap->flags & MS_SYSSPACE) == 0) {
1236 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1237 			inargs[0] = '\0';
1238 			if (optlen) {
1239 				error = copyinstr(opts, inargs, (size_t)optlen,
1240 				    NULL);
1241 				if (error) {
1242 					goto errout;
1243 				}
1244 			}
1245 		}
1246 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1247 	}
1248 	/*
1249 	 * Flag bits override the options string.
1250 	 */
1251 	if (uap->flags & MS_REMOUNT)
1252 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1253 	if (uap->flags & MS_RDONLY)
1254 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1255 	if (uap->flags & MS_NOSUID)
1256 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1257 
1258 	/*
1259 	 * Check if this is a remount; must be set in the option string and
1260 	 * the file system must support a remount option.
1261 	 */
1262 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1263 	    MNTOPT_REMOUNT, NULL)) {
1264 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1265 			error = ENOTSUP;
1266 			goto errout;
1267 		}
1268 		uap->flags |= MS_REMOUNT;
1269 	}
1270 
1271 	/*
1272 	 * uap->flags and vfs_optionisset() should agree.
1273 	 */
1274 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1275 		uap->flags |= MS_RDONLY;
1276 	}
1277 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1278 		uap->flags |= MS_NOSUID;
1279 	}
1280 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1281 	ASSERT(splice || !remount);
1282 	/*
1283 	 * If we are splicing the fs into the namespace,
1284 	 * perform mount point checks.
1285 	 *
1286 	 * We want to resolve the path for the mount point to eliminate
1287 	 * '.' and ".." and symlinks in mount points; we can't do the
1288 	 * same for the resource string, since it would turn
1289 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1290 	 * this before grabbing vn_vfswlock(), because otherwise we
1291 	 * would deadlock with lookuppn().
1292 	 */
1293 	if (splice) {
1294 		ASSERT(vp->v_count > 0);
1295 
1296 		/*
1297 		 * Pick up mount point and device from appropriate space.
1298 		 */
1299 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1300 			resource = kmem_alloc(pn.pn_pathlen + 1,
1301 			    KM_SLEEP);
1302 			(void) strcpy(resource, pn.pn_path);
1303 			pn_free(&pn);
1304 		}
1305 		/*
1306 		 * Do a lookupname prior to taking the
1307 		 * writelock. Mark this as completed if
1308 		 * successful for later cleanup and addition to
1309 		 * the mount in progress table.
1310 		 */
1311 		if ((uap->flags & MS_GLOBAL) == 0 &&
1312 		    lookupname(uap->spec, fromspace,
1313 		    FOLLOW, NULL, &bvp) == 0) {
1314 			addmip = 1;
1315 		}
1316 
1317 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1318 			pathname_t *pnp;
1319 
1320 			if (*pn.pn_path != '/') {
1321 				error = EINVAL;
1322 				pn_free(&pn);
1323 				goto errout;
1324 			}
1325 			pn_alloc(&rpn);
1326 			/*
1327 			 * Kludge to prevent autofs from deadlocking with
1328 			 * itself when it calls domount().
1329 			 *
1330 			 * If autofs is calling, it is because it is doing
1331 			 * (autofs) mounts in the process of an NFS mount.  A
1332 			 * lookuppn() here would cause us to block waiting for
1333 			 * said NFS mount to complete, which can't since this
1334 			 * is the thread that was supposed to doing it.
1335 			 */
1336 			if (fromspace == UIO_USERSPACE) {
1337 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1338 				    NULL)) == 0) {
1339 					pnp = &rpn;
1340 				} else {
1341 					/*
1342 					 * The file disappeared or otherwise
1343 					 * became inaccessible since we opened
1344 					 * it; might as well fail the mount
1345 					 * since the mount point is no longer
1346 					 * accessible.
1347 					 */
1348 					pn_free(&rpn);
1349 					pn_free(&pn);
1350 					goto errout;
1351 				}
1352 			} else {
1353 				pnp = &pn;
1354 			}
1355 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1356 			(void) strcpy(mountpt, pnp->pn_path);
1357 
1358 			/*
1359 			 * If the addition of the zone's rootpath
1360 			 * would push us over a total path length
1361 			 * of MAXPATHLEN, we fail the mount with
1362 			 * ENAMETOOLONG, which is what we would have
1363 			 * gotten if we were trying to perform the same
1364 			 * mount in the global zone.
1365 			 *
1366 			 * strlen() doesn't count the trailing
1367 			 * '\0', but zone_rootpathlen counts both a
1368 			 * trailing '/' and the terminating '\0'.
1369 			 */
1370 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1371 			    strlen(mountpt)) > MAXPATHLEN ||
1372 			    (resource != NULL &&
1373 			    (curproc->p_zone->zone_rootpathlen - 1 +
1374 			    strlen(resource)) > MAXPATHLEN)) {
1375 				error = ENAMETOOLONG;
1376 			}
1377 
1378 			pn_free(&rpn);
1379 			pn_free(&pn);
1380 		}
1381 
1382 		if (error)
1383 			goto errout;
1384 
1385 		/*
1386 		 * Prevent path name resolution from proceeding past
1387 		 * the mount point.
1388 		 */
1389 		if (vn_vfswlock(vp) != 0) {
1390 			error = EBUSY;
1391 			goto errout;
1392 		}
1393 
1394 		/*
1395 		 * Verify that it's legitimate to establish a mount on
1396 		 * the prospective mount point.
1397 		 */
1398 		if (vn_mountedvfs(vp) != NULL) {
1399 			/*
1400 			 * The mount point lock was obtained after some
1401 			 * other thread raced through and established a mount.
1402 			 */
1403 			vn_vfsunlock(vp);
1404 			error = EBUSY;
1405 			goto errout;
1406 		}
1407 		if (vp->v_flag & VNOMOUNT) {
1408 			vn_vfsunlock(vp);
1409 			error = EINVAL;
1410 			goto errout;
1411 		}
1412 	}
1413 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1414 		uap->dataptr = NULL;
1415 		uap->datalen = 0;
1416 	}
1417 
1418 	/*
1419 	 * If this is a remount, we don't want to create a new VFS.
1420 	 * Instead, we pass the existing one with a remount flag.
1421 	 */
1422 	if (remount) {
1423 		/*
1424 		 * Confirm that the mount point is the root vnode of the
1425 		 * file system that is being remounted.
1426 		 * This can happen if the user specifies a different
1427 		 * mount point directory pathname in the (re)mount command.
1428 		 *
1429 		 * Code below can only be reached if splice is true, so it's
1430 		 * safe to do vn_vfsunlock() here.
1431 		 */
1432 		if ((vp->v_flag & VROOT) == 0) {
1433 			vn_vfsunlock(vp);
1434 			error = ENOENT;
1435 			goto errout;
1436 		}
1437 		/*
1438 		 * Disallow making file systems read-only unless file system
1439 		 * explicitly allows it in its vfssw.  Ignore other flags.
1440 		 */
1441 		if (rdonly && vn_is_readonly(vp) == 0 &&
1442 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1443 			vn_vfsunlock(vp);
1444 			error = EINVAL;
1445 			goto errout;
1446 		}
1447 		/*
1448 		 * Disallow changing the NBMAND disposition of the file
1449 		 * system on remounts.
1450 		 */
1451 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1452 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1453 			vn_vfsunlock(vp);
1454 			error = EINVAL;
1455 			goto errout;
1456 		}
1457 		vfsp = vp->v_vfsp;
1458 		ovflags = vfsp->vfs_flag;
1459 		vfsp->vfs_flag |= VFS_REMOUNT;
1460 		vfsp->vfs_flag &= ~VFS_RDONLY;
1461 	} else {
1462 		vfsp = vfs_alloc(KM_SLEEP);
1463 		VFS_INIT(vfsp, vfsops, NULL);
1464 	}
1465 
1466 	VFS_HOLD(vfsp);
1467 
1468 	if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1469 		if (!remount) {
1470 			if (splice)
1471 				vn_vfsunlock(vp);
1472 			vfs_free(vfsp);
1473 		} else {
1474 			vn_vfsunlock(vp);
1475 			VFS_RELE(vfsp);
1476 		}
1477 		goto errout;
1478 	}
1479 
1480 	/*
1481 	 * PRIV_SYS_MOUNT doesn't mean you can become root.
1482 	 */
1483 	if (vfsp->vfs_lofi_minor != 0) {
1484 		uap->flags |= MS_NOSUID;
1485 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1486 	}
1487 
1488 	/*
1489 	 * The vfs_reflock is not used anymore the code below explicitly
1490 	 * holds it preventing others accesing it directly.
1491 	 */
1492 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1493 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1494 		cmn_err(CE_WARN,
1495 		    "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1496 
1497 	/*
1498 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1499 	 * failures that happen as a side-effect of fsflush() and other mount
1500 	 * and unmount operations that might be going on simultaneously and
1501 	 * may have locked the vfs currently. To not return EBUSY immediately
1502 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1503 	 */
1504 	if (!remount) {
1505 		if (error = vfs_lock(vfsp)) {
1506 			vfsp->vfs_flag = ovflags;
1507 
1508 			lofi_remove(vfsp);
1509 
1510 			if (splice)
1511 				vn_vfsunlock(vp);
1512 			vfs_free(vfsp);
1513 			goto errout;
1514 		}
1515 	} else {
1516 		vfs_lock_wait(vfsp);
1517 	}
1518 
1519 	/*
1520 	 * Add device to mount in progress table, global mounts require special
1521 	 * handling. It is possible that we have already done the lookupname
1522 	 * on a spliced, non-global fs. If so, we don't want to do it again
1523 	 * since we cannot do a lookupname after taking the
1524 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1525 	 */
1526 	if (!addmip) {
1527 		if ((uap->flags & MS_GLOBAL) == 0 &&
1528 		    lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1529 			addmip = 1;
1530 		}
1531 	}
1532 
1533 	if (addmip) {
1534 		vnode_t *lvp = NULL;
1535 
1536 		error = vfs_get_lofi(vfsp, &lvp);
1537 		if (error > 0) {
1538 			lofi_remove(vfsp);
1539 
1540 			if (splice)
1541 				vn_vfsunlock(vp);
1542 			vfs_unlock(vfsp);
1543 
1544 			if (remount) {
1545 				VFS_RELE(vfsp);
1546 			} else {
1547 				vfs_free(vfsp);
1548 			}
1549 
1550 			goto errout;
1551 		} else if (error == -1) {
1552 			bdev = bvp->v_rdev;
1553 			VN_RELE(bvp);
1554 		} else {
1555 			bdev = lvp->v_rdev;
1556 			VN_RELE(lvp);
1557 			VN_RELE(bvp);
1558 		}
1559 
1560 		vfs_addmip(bdev, vfsp);
1561 		addmip = 0;
1562 		delmip = 1;
1563 	}
1564 	/*
1565 	 * Invalidate cached entry for the mount point.
1566 	 */
1567 	if (splice)
1568 		dnlc_purge_vp(vp);
1569 
1570 	/*
1571 	 * If have an option string but the filesystem doesn't supply a
1572 	 * prototype options table, create a table with the global
1573 	 * options and sufficient room to accept all the options in the
1574 	 * string.  Then parse the passed in option string
1575 	 * accepting all the options in the string.  This gives us an
1576 	 * option table with all the proper cancel properties for the
1577 	 * global options.
1578 	 *
1579 	 * Filesystems that supply a prototype options table are handled
1580 	 * earlier in this function.
1581 	 */
1582 	if (uap->flags & MS_OPTIONSTR) {
1583 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1584 			mntopts_t tmp_mntopts;
1585 
1586 			tmp_mntopts.mo_count = 0;
1587 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1588 			    &mnt_mntopts);
1589 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1590 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1591 			vfs_freeopttbl(&tmp_mntopts);
1592 		}
1593 	}
1594 
1595 	/*
1596 	 * Serialize with zone state transitions.
1597 	 * See vfs_list_add; zone mounted into is:
1598 	 * 	zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1599 	 * not the zone doing the mount (curproc->p_zone), but if we're already
1600 	 * inside a NGZ, then we know what zone we are.
1601 	 */
1602 	if (INGLOBALZONE(curproc)) {
1603 		zone = zone_find_by_path(mountpt);
1604 		ASSERT(zone != NULL);
1605 	} else {
1606 		zone = curproc->p_zone;
1607 		/*
1608 		 * zone_find_by_path does a hold, so do one here too so that
1609 		 * we can do a zone_rele after mount_completed.
1610 		 */
1611 		zone_hold(zone);
1612 	}
1613 	mount_in_progress(zone);
1614 	/*
1615 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1616 	 * splice it into the file system name space.
1617 	 *
1618 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1619 	 * string if necessary (ie, mntfs), and also for a remount to
1620 	 * change the same (necessary when remounting '/' during boot).
1621 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1622 	 * should be, then hand off control to VFS_MOUNT() which can
1623 	 * override this.
1624 	 *
1625 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1626 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1627 	 * never set those fields to NULL. Several bits of code make
1628 	 * assumptions that the fields are always valid.
1629 	 */
1630 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1631 	if (remount) {
1632 		if ((oldresource = vfsp->vfs_resource) != NULL)
1633 			refstr_hold(oldresource);
1634 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1635 			refstr_hold(oldmntpt);
1636 	}
1637 	vfs_setresource(vfsp, resource, 0);
1638 	vfs_setmntpoint(vfsp, mountpt, 0);
1639 
1640 	/*
1641 	 * going to mount on this vnode, so notify.
1642 	 */
1643 	vnevent_mountedover(vp, NULL);
1644 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1645 
1646 	if (uap->flags & MS_RDONLY)
1647 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1648 	if (uap->flags & MS_NOSUID)
1649 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1650 	if (uap->flags & MS_GLOBAL)
1651 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1652 
1653 	if (error) {
1654 		lofi_remove(vfsp);
1655 
1656 		if (remount) {
1657 			/* put back pre-remount options */
1658 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1659 			vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1660 			    VFSSP_VERBATIM);
1661 			if (oldmntpt)
1662 				refstr_rele(oldmntpt);
1663 			vfs_setresource(vfsp, refstr_value(oldresource),
1664 			    VFSSP_VERBATIM);
1665 			if (oldresource)
1666 				refstr_rele(oldresource);
1667 			vfsp->vfs_flag = ovflags;
1668 			vfs_unlock(vfsp);
1669 			VFS_RELE(vfsp);
1670 		} else {
1671 			vfs_unlock(vfsp);
1672 			vfs_freemnttab(vfsp);
1673 			vfs_free(vfsp);
1674 		}
1675 	} else {
1676 		/*
1677 		 * Set the mount time to now
1678 		 */
1679 		vfsp->vfs_mtime = ddi_get_time();
1680 		if (remount) {
1681 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1682 			if (oldresource)
1683 				refstr_rele(oldresource);
1684 			if (oldmntpt)
1685 				refstr_rele(oldmntpt);
1686 		} else if (splice) {
1687 			/*
1688 			 * Link vfsp into the name space at the mount
1689 			 * point. Vfs_add() is responsible for
1690 			 * holding the mount point which will be
1691 			 * released when vfs_remove() is called.
1692 			 */
1693 			vfs_add(vp, vfsp, uap->flags);
1694 		} else {
1695 			/*
1696 			 * Hold the reference to file system which is
1697 			 * not linked into the name space.
1698 			 */
1699 			vfsp->vfs_zone = NULL;
1700 			VFS_HOLD(vfsp);
1701 			vfsp->vfs_vnodecovered = NULL;
1702 		}
1703 		/*
1704 		 * Set flags for global options encountered
1705 		 */
1706 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1707 			vfsp->vfs_flag |= VFS_RDONLY;
1708 		else
1709 			vfsp->vfs_flag &= ~VFS_RDONLY;
1710 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1711 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1712 		} else {
1713 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1714 				vfsp->vfs_flag |= VFS_NODEVICES;
1715 			else
1716 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1717 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1718 				vfsp->vfs_flag |= VFS_NOSETUID;
1719 			else
1720 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1721 		}
1722 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1723 			vfsp->vfs_flag |= VFS_NBMAND;
1724 		else
1725 			vfsp->vfs_flag &= ~VFS_NBMAND;
1726 
1727 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1728 			vfsp->vfs_flag |= VFS_XATTR;
1729 		else
1730 			vfsp->vfs_flag &= ~VFS_XATTR;
1731 
1732 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1733 			vfsp->vfs_flag |= VFS_NOEXEC;
1734 		else
1735 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1736 
1737 		/*
1738 		 * Now construct the output option string of options
1739 		 * we recognized.
1740 		 */
1741 		if (uap->flags & MS_OPTIONSTR) {
1742 			vfs_list_read_lock();
1743 			copyout_error = vfs_buildoptionstr(
1744 			    &vfsp->vfs_mntopts, inargs, optlen);
1745 			vfs_list_unlock();
1746 			if (copyout_error == 0 &&
1747 			    (uap->flags & MS_SYSSPACE) == 0) {
1748 				copyout_error = copyoutstr(inargs, opts,
1749 				    optlen, NULL);
1750 			}
1751 		}
1752 
1753 		/*
1754 		 * If this isn't a remount, set up the vopstats before
1755 		 * anyone can touch this. We only allow spliced file
1756 		 * systems (file systems which are in the namespace) to
1757 		 * have the VFS_STATS flag set.
1758 		 * NOTE: PxFS mounts the underlying file system with
1759 		 * MS_NOSPLICE set and copies those vfs_flags to its private
1760 		 * vfs structure. As a result, PxFS should never have
1761 		 * the VFS_STATS flag or else we might access the vfs
1762 		 * statistics-related fields prior to them being
1763 		 * properly initialized.
1764 		 */
1765 		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1766 			initialize_vopstats(&vfsp->vfs_vopstats);
1767 			/*
1768 			 * We need to set vfs_vskap to NULL because there's
1769 			 * a chance it won't be set below.  This is checked
1770 			 * in teardown_vopstats() so we can't have garbage.
1771 			 */
1772 			vfsp->vfs_vskap = NULL;
1773 			vfsp->vfs_flag |= VFS_STATS;
1774 			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1775 		}
1776 
1777 		if (vswp->vsw_flag & VSW_XID)
1778 			vfsp->vfs_flag |= VFS_XID;
1779 
1780 		vfs_unlock(vfsp);
1781 	}
1782 	mount_completed(zone);
1783 	zone_rele(zone);
1784 	if (splice)
1785 		vn_vfsunlock(vp);
1786 
1787 	if ((error == 0) && (copyout_error == 0)) {
1788 		if (!remount) {
1789 			/*
1790 			 * Don't call get_vskstat_anchor() while holding
1791 			 * locks since it allocates memory and calls
1792 			 * VFS_STATVFS().  For NFS, the latter can generate
1793 			 * an over-the-wire call.
1794 			 */
1795 			vskap = get_vskstat_anchor(vfsp);
1796 			/* Only take the lock if we have something to do */
1797 			if (vskap != NULL) {
1798 				vfs_lock_wait(vfsp);
1799 				if (vfsp->vfs_flag & VFS_STATS) {
1800 					vfsp->vfs_vskap = vskap;
1801 				}
1802 				vfs_unlock(vfsp);
1803 			}
1804 		}
1805 		/* Return vfsp to caller. */
1806 		*vfspp = vfsp;
1807 	}
1808 errout:
1809 	vfs_freeopttbl(&mnt_mntopts);
1810 	if (resource != NULL)
1811 		kmem_free(resource, strlen(resource) + 1);
1812 	if (mountpt != NULL)
1813 		kmem_free(mountpt, strlen(mountpt) + 1);
1814 	/*
1815 	 * It is possible we errored prior to adding to mount in progress
1816 	 * table. Must free vnode we acquired with successful lookupname.
1817 	 */
1818 	if (addmip)
1819 		VN_RELE(bvp);
1820 	if (delmip)
1821 		vfs_delmip(vfsp);
1822 	ASSERT(vswp != NULL);
1823 	vfs_unrefvfssw(vswp);
1824 	if (inargs != opts)
1825 		kmem_free(inargs, MAX_MNTOPT_STR);
1826 	if (copyout_error) {
1827 		lofi_remove(vfsp);
1828 		VFS_RELE(vfsp);
1829 		error = copyout_error;
1830 	}
1831 	return (error);
1832 }
1833 
1834 static void
1835 vfs_setpath(
1836     struct vfs *vfsp,		/* vfs being updated */
1837     refstr_t **refp,		/* Ref-count string to contain the new path */
1838     const char *newpath,	/* Path to add to refp (above) */
1839     uint32_t flag)		/* flag */
1840 {
1841 	size_t len;
1842 	refstr_t *ref;
1843 	zone_t *zone = curproc->p_zone;
1844 	char *sp;
1845 	int have_list_lock = 0;
1846 
1847 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1848 
1849 	/*
1850 	 * New path must be less than MAXPATHLEN because mntfs
1851 	 * will only display up to MAXPATHLEN bytes. This is currently
1852 	 * safe, because domount() uses pn_get(), and other callers
1853 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1854 	 */
1855 
1856 	ASSERT(strlen(newpath) < MAXPATHLEN);
1857 
1858 	/* mntfs requires consistency while vfs list lock is held */
1859 
1860 	if (VFS_ON_LIST(vfsp)) {
1861 		have_list_lock = 1;
1862 		vfs_list_lock();
1863 	}
1864 
1865 	if (*refp != NULL)
1866 		refstr_rele(*refp);
1867 
1868 	/*
1869 	 * If we are in a non-global zone then we prefix the supplied path,
1870 	 * newpath, with the zone's root path, with two exceptions. The first
1871 	 * is where we have been explicitly directed to avoid doing so; this
1872 	 * will be the case following a failed remount, where the path supplied
1873 	 * will be a saved version which must now be restored. The second
1874 	 * exception is where newpath is not a pathname but a descriptive name,
1875 	 * e.g. "procfs".
1876 	 */
1877 	if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1878 		ref = refstr_alloc(newpath);
1879 		goto out;
1880 	}
1881 
1882 	/*
1883 	 * Truncate the trailing '/' in the zoneroot, and merge
1884 	 * in the zone's rootpath with the "newpath" (resource
1885 	 * or mountpoint) passed in.
1886 	 *
1887 	 * The size of the required buffer is thus the size of
1888 	 * the buffer required for the passed-in newpath
1889 	 * (strlen(newpath) + 1), plus the size of the buffer
1890 	 * required to hold zone_rootpath (zone_rootpathlen)
1891 	 * minus one for one of the now-superfluous NUL
1892 	 * terminations, minus one for the trailing '/'.
1893 	 *
1894 	 * That gives us:
1895 	 *
1896 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1897 	 *
1898 	 * Which is what we have below.
1899 	 */
1900 
1901 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1902 	sp = kmem_alloc(len, KM_SLEEP);
1903 
1904 	/*
1905 	 * Copy everything including the trailing slash, which
1906 	 * we then overwrite with the NUL character.
1907 	 */
1908 
1909 	(void) strcpy(sp, zone->zone_rootpath);
1910 	sp[zone->zone_rootpathlen - 2] = '\0';
1911 	(void) strcat(sp, newpath);
1912 
1913 	ref = refstr_alloc(sp);
1914 	kmem_free(sp, len);
1915 out:
1916 	*refp = ref;
1917 
1918 	if (have_list_lock) {
1919 		vfs_mnttab_modtimeupd();
1920 		vfs_list_unlock();
1921 	}
1922 }
1923 
1924 /*
1925  * Record a mounted resource name in a vfs structure.
1926  * If vfsp is already mounted, caller must hold the vfs lock.
1927  */
1928 void
1929 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1930 {
1931 	if (resource == NULL || resource[0] == '\0')
1932 		resource = VFS_NORESOURCE;
1933 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1934 }
1935 
1936 /*
1937  * Record a mount point name in a vfs structure.
1938  * If vfsp is already mounted, caller must hold the vfs lock.
1939  */
1940 void
1941 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1942 {
1943 	if (mntpt == NULL || mntpt[0] == '\0')
1944 		mntpt = VFS_NOMNTPT;
1945 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1946 }
1947 
1948 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1949 
1950 refstr_t *
1951 vfs_getresource(const struct vfs *vfsp)
1952 {
1953 	refstr_t *resource;
1954 
1955 	vfs_list_read_lock();
1956 	resource = vfsp->vfs_resource;
1957 	refstr_hold(resource);
1958 	vfs_list_unlock();
1959 
1960 	return (resource);
1961 }
1962 
1963 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1964 
1965 refstr_t *
1966 vfs_getmntpoint(const struct vfs *vfsp)
1967 {
1968 	refstr_t *mntpt;
1969 
1970 	vfs_list_read_lock();
1971 	mntpt = vfsp->vfs_mntpt;
1972 	refstr_hold(mntpt);
1973 	vfs_list_unlock();
1974 
1975 	return (mntpt);
1976 }
1977 
1978 /*
1979  * Create an empty options table with enough empty slots to hold all
1980  * The options in the options string passed as an argument.
1981  * Potentially prepend another options table.
1982  *
1983  * Note: caller is responsible for locking the vfs list, if needed,
1984  *       to protect mops.
1985  */
1986 static void
1987 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1988     const mntopts_t *mtmpl)
1989 {
1990 	const char *s = opts;
1991 	uint_t count;
1992 
1993 	if (opts == NULL || *opts == '\0') {
1994 		count = 0;
1995 	} else {
1996 		count = 1;
1997 
1998 		/*
1999 		 * Count number of options in the string
2000 		 */
2001 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2002 			count++;
2003 			s++;
2004 		}
2005 	}
2006 	vfs_copyopttbl_extend(mtmpl, mops, count);
2007 }
2008 
2009 /*
2010  * Create an empty options table with enough empty slots to hold all
2011  * The options in the options string passed as an argument.
2012  *
2013  * This function is *not* for general use by filesystems.
2014  *
2015  * Note: caller is responsible for locking the vfs list, if needed,
2016  *       to protect mops.
2017  */
2018 void
2019 vfs_createopttbl(mntopts_t *mops, const char *opts)
2020 {
2021 	vfs_createopttbl_extend(mops, opts, NULL);
2022 }
2023 
2024 
2025 /*
2026  * Swap two mount options tables
2027  */
2028 static void
2029 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2030 {
2031 	uint_t tmpcnt;
2032 	mntopt_t *tmplist;
2033 
2034 	tmpcnt = optbl2->mo_count;
2035 	tmplist = optbl2->mo_list;
2036 	optbl2->mo_count = optbl1->mo_count;
2037 	optbl2->mo_list = optbl1->mo_list;
2038 	optbl1->mo_count = tmpcnt;
2039 	optbl1->mo_list = tmplist;
2040 }
2041 
2042 static void
2043 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2044 {
2045 	vfs_list_lock();
2046 	vfs_swapopttbl_nolock(optbl1, optbl2);
2047 	vfs_mnttab_modtimeupd();
2048 	vfs_list_unlock();
2049 }
2050 
2051 static char **
2052 vfs_copycancelopt_extend(char **const moc, int extend)
2053 {
2054 	int i = 0;
2055 	int j;
2056 	char **result;
2057 
2058 	if (moc != NULL) {
2059 		for (; moc[i] != NULL; i++)
2060 			/* count number of options to cancel */;
2061 	}
2062 
2063 	if (i + extend == 0)
2064 		return (NULL);
2065 
2066 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2067 
2068 	for (j = 0; j < i; j++) {
2069 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2070 		(void) strcpy(result[j], moc[j]);
2071 	}
2072 	for (; j <= i + extend; j++)
2073 		result[j] = NULL;
2074 
2075 	return (result);
2076 }
2077 
2078 static void
2079 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2080 {
2081 	char *sp, *dp;
2082 
2083 	d->mo_flags = s->mo_flags;
2084 	d->mo_data = s->mo_data;
2085 	sp = s->mo_name;
2086 	if (sp != NULL) {
2087 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2088 		(void) strcpy(dp, sp);
2089 		d->mo_name = dp;
2090 	} else {
2091 		d->mo_name = NULL; /* should never happen */
2092 	}
2093 
2094 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2095 
2096 	sp = s->mo_arg;
2097 	if (sp != NULL) {
2098 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2099 		(void) strcpy(dp, sp);
2100 		d->mo_arg = dp;
2101 	} else {
2102 		d->mo_arg = NULL;
2103 	}
2104 }
2105 
2106 /*
2107  * Copy a mount options table, possibly allocating some spare
2108  * slots at the end.  It is permissible to copy_extend the NULL table.
2109  */
2110 static void
2111 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2112 {
2113 	uint_t i, count;
2114 	mntopt_t *motbl;
2115 
2116 	/*
2117 	 * Clear out any existing stuff in the options table being initialized
2118 	 */
2119 	vfs_freeopttbl(dmo);
2120 	count = (smo == NULL) ? 0 : smo->mo_count;
2121 	if ((count + extra) == 0)	/* nothing to do */
2122 		return;
2123 	dmo->mo_count = count + extra;
2124 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2125 	dmo->mo_list = motbl;
2126 	for (i = 0; i < count; i++) {
2127 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2128 	}
2129 	for (i = count; i < count + extra; i++) {
2130 		motbl[i].mo_flags = MO_EMPTY;
2131 	}
2132 }
2133 
2134 /*
2135  * Copy a mount options table.
2136  *
2137  * This function is *not* for general use by filesystems.
2138  *
2139  * Note: caller is responsible for locking the vfs list, if needed,
2140  *       to protect smo and dmo.
2141  */
2142 void
2143 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2144 {
2145 	vfs_copyopttbl_extend(smo, dmo, 0);
2146 }
2147 
2148 static char **
2149 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2150 {
2151 	int c1 = 0;
2152 	int c2 = 0;
2153 	char **result;
2154 	char **sp1, **sp2, **dp;
2155 
2156 	/*
2157 	 * First we count both lists of cancel options.
2158 	 * If either is NULL or has no elements, we return a copy of
2159 	 * the other.
2160 	 */
2161 	if (mop1->mo_cancel != NULL) {
2162 		for (; mop1->mo_cancel[c1] != NULL; c1++)
2163 			/* count cancel options in mop1 */;
2164 	}
2165 
2166 	if (c1 == 0)
2167 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2168 
2169 	if (mop2->mo_cancel != NULL) {
2170 		for (; mop2->mo_cancel[c2] != NULL; c2++)
2171 			/* count cancel options in mop2 */;
2172 	}
2173 
2174 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2175 
2176 	if (c2 == 0)
2177 		return (result);
2178 
2179 	/*
2180 	 * When we get here, we've got two sets of cancel options;
2181 	 * we need to merge the two sets.  We know that the result
2182 	 * array has "c1+c2+1" entries and in the end we might shrink
2183 	 * it.
2184 	 * Result now has a copy of the c1 entries from mop1; we'll
2185 	 * now lookup all the entries of mop2 in mop1 and copy it if
2186 	 * it is unique.
2187 	 * This operation is O(n^2) but it's only called once per
2188 	 * filesystem per duplicate option.  This is a situation
2189 	 * which doesn't arise with the filesystems in ON and
2190 	 * n is generally 1.
2191 	 */
2192 
2193 	dp = &result[c1];
2194 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2195 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2196 			if (strcmp(*sp1, *sp2) == 0)
2197 				break;
2198 		}
2199 		if (*sp1 == NULL) {
2200 			/*
2201 			 * Option *sp2 not found in mop1, so copy it.
2202 			 * The calls to vfs_copycancelopt_extend()
2203 			 * guarantee that there's enough room.
2204 			 */
2205 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2206 			(void) strcpy(*dp++, *sp2);
2207 		}
2208 	}
2209 	if (dp != &result[c1+c2]) {
2210 		size_t bytes = (dp - result + 1) * sizeof (char *);
2211 		char **nres = kmem_alloc(bytes, KM_SLEEP);
2212 
2213 		bcopy(result, nres, bytes);
2214 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2215 		result = nres;
2216 	}
2217 	return (result);
2218 }
2219 
2220 /*
2221  * Merge two mount option tables (outer and inner) into one.  This is very
2222  * similar to "merging" global variables and automatic variables in C.
2223  *
2224  * This isn't (and doesn't have to be) fast.
2225  *
2226  * This function is *not* for general use by filesystems.
2227  *
2228  * Note: caller is responsible for locking the vfs list, if needed,
2229  *       to protect omo, imo & dmo.
2230  */
2231 void
2232 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2233 {
2234 	uint_t i, count;
2235 	mntopt_t *mop, *motbl;
2236 	uint_t freeidx;
2237 
2238 	/*
2239 	 * First determine how much space we need to allocate.
2240 	 */
2241 	count = omo->mo_count;
2242 	for (i = 0; i < imo->mo_count; i++) {
2243 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2244 			continue;
2245 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2246 			count++;
2247 	}
2248 	ASSERT(count >= omo->mo_count &&
2249 	    count <= omo->mo_count + imo->mo_count);
2250 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2251 	for (i = 0; i < omo->mo_count; i++)
2252 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2253 	freeidx = omo->mo_count;
2254 	for (i = 0; i < imo->mo_count; i++) {
2255 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2256 			continue;
2257 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2258 			char **newcanp;
2259 			uint_t index = mop - omo->mo_list;
2260 
2261 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2262 
2263 			vfs_freeopt(&motbl[index]);
2264 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2265 
2266 			vfs_freecancelopt(motbl[index].mo_cancel);
2267 			motbl[index].mo_cancel = newcanp;
2268 		} else {
2269 			/*
2270 			 * If it's a new option, just copy it over to the first
2271 			 * free location.
2272 			 */
2273 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2274 		}
2275 	}
2276 	dmo->mo_count = count;
2277 	dmo->mo_list = motbl;
2278 }
2279 
2280 /*
2281  * Functions to set and clear mount options in a mount options table.
2282  */
2283 
2284 /*
2285  * Clear a mount option, if it exists.
2286  *
2287  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2288  * the vfs list.
2289  */
2290 static void
2291 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2292 {
2293 	struct mntopt *mop;
2294 	uint_t i, count;
2295 
2296 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2297 
2298 	count = mops->mo_count;
2299 	for (i = 0; i < count; i++) {
2300 		mop = &mops->mo_list[i];
2301 
2302 		if (mop->mo_flags & MO_EMPTY)
2303 			continue;
2304 		if (strcmp(opt, mop->mo_name))
2305 			continue;
2306 		mop->mo_flags &= ~MO_SET;
2307 		if (mop->mo_arg != NULL) {
2308 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2309 		}
2310 		mop->mo_arg = NULL;
2311 		if (update_mnttab)
2312 			vfs_mnttab_modtimeupd();
2313 		break;
2314 	}
2315 }
2316 
2317 void
2318 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2319 {
2320 	int gotlock = 0;
2321 
2322 	if (VFS_ON_LIST(vfsp)) {
2323 		gotlock = 1;
2324 		vfs_list_lock();
2325 	}
2326 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2327 	if (gotlock)
2328 		vfs_list_unlock();
2329 }
2330 
2331 
2332 /*
2333  * Set a mount option on.  If it's not found in the table, it's silently
2334  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2335  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2336  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2337  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2338  * MO_EMPTY set is created as the option passed in.
2339  *
2340  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2341  * the vfs list.
2342  */
2343 static void
2344 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2345     const char *arg, int flags, int update_mnttab)
2346 {
2347 	mntopt_t *mop;
2348 	uint_t i, count;
2349 	char *sp;
2350 
2351 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2352 
2353 	if (flags & VFS_CREATEOPT) {
2354 		if (vfs_hasopt(mops, opt) != NULL) {
2355 			flags &= ~VFS_CREATEOPT;
2356 		}
2357 	}
2358 	count = mops->mo_count;
2359 	for (i = 0; i < count; i++) {
2360 		mop = &mops->mo_list[i];
2361 
2362 		if (mop->mo_flags & MO_EMPTY) {
2363 			if ((flags & VFS_CREATEOPT) == 0)
2364 				continue;
2365 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2366 			(void) strcpy(sp, opt);
2367 			mop->mo_name = sp;
2368 			if (arg != NULL)
2369 				mop->mo_flags = MO_HASVALUE;
2370 			else
2371 				mop->mo_flags = 0;
2372 		} else if (strcmp(opt, mop->mo_name)) {
2373 			continue;
2374 		}
2375 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2376 			break;
2377 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2378 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2379 			(void) strcpy(sp, arg);
2380 		} else {
2381 			sp = NULL;
2382 		}
2383 		if (mop->mo_arg != NULL)
2384 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2385 		mop->mo_arg = sp;
2386 		if (flags & VFS_DISPLAY)
2387 			mop->mo_flags &= ~MO_NODISPLAY;
2388 		if (flags & VFS_NODISPLAY)
2389 			mop->mo_flags |= MO_NODISPLAY;
2390 		mop->mo_flags |= MO_SET;
2391 		if (mop->mo_cancel != NULL) {
2392 			char **cp;
2393 
2394 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2395 				vfs_clearmntopt_nolock(mops, *cp, 0);
2396 		}
2397 		if (update_mnttab)
2398 			vfs_mnttab_modtimeupd();
2399 		break;
2400 	}
2401 }
2402 
2403 void
2404 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2405 {
2406 	int gotlock = 0;
2407 
2408 	if (VFS_ON_LIST(vfsp)) {
2409 		gotlock = 1;
2410 		vfs_list_lock();
2411 	}
2412 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2413 	if (gotlock)
2414 		vfs_list_unlock();
2415 }
2416 
2417 
2418 /*
2419  * Add a "tag" option to a mounted file system's options list.
2420  *
2421  * Note: caller is responsible for locking the vfs list, if needed,
2422  *       to protect mops.
2423  */
2424 static mntopt_t *
2425 vfs_addtag(mntopts_t *mops, const char *tag)
2426 {
2427 	uint_t count;
2428 	mntopt_t *mop, *motbl;
2429 
2430 	count = mops->mo_count + 1;
2431 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2432 	if (mops->mo_count) {
2433 		size_t len = (count - 1) * sizeof (mntopt_t);
2434 
2435 		bcopy(mops->mo_list, motbl, len);
2436 		kmem_free(mops->mo_list, len);
2437 	}
2438 	mops->mo_count = count;
2439 	mops->mo_list = motbl;
2440 	mop = &motbl[count - 1];
2441 	mop->mo_flags = MO_TAG;
2442 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2443 	(void) strcpy(mop->mo_name, tag);
2444 	return (mop);
2445 }
2446 
2447 /*
2448  * Allow users to set arbitrary "tags" in a vfs's mount options.
2449  * Broader use within the kernel is discouraged.
2450  */
2451 int
2452 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2453     cred_t *cr)
2454 {
2455 	vfs_t *vfsp;
2456 	mntopts_t *mops;
2457 	mntopt_t *mop;
2458 	int found = 0;
2459 	dev_t dev = makedevice(major, minor);
2460 	int err = 0;
2461 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2462 
2463 	/*
2464 	 * Find the desired mounted file system
2465 	 */
2466 	vfs_list_lock();
2467 	vfsp = rootvfs;
2468 	do {
2469 		if (vfsp->vfs_dev == dev &&
2470 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2471 			found = 1;
2472 			break;
2473 		}
2474 		vfsp = vfsp->vfs_next;
2475 	} while (vfsp != rootvfs);
2476 
2477 	if (!found) {
2478 		err = EINVAL;
2479 		goto out;
2480 	}
2481 	err = secpolicy_fs_config(cr, vfsp);
2482 	if (err != 0)
2483 		goto out;
2484 
2485 	mops = &vfsp->vfs_mntopts;
2486 	/*
2487 	 * Add tag if it doesn't already exist
2488 	 */
2489 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2490 		int len;
2491 
2492 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2493 		len = strlen(buf);
2494 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2495 			err = ENAMETOOLONG;
2496 			goto out;
2497 		}
2498 		mop = vfs_addtag(mops, tag);
2499 	}
2500 	if ((mop->mo_flags & MO_TAG) == 0) {
2501 		err = EINVAL;
2502 		goto out;
2503 	}
2504 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2505 out:
2506 	vfs_list_unlock();
2507 	kmem_free(buf, MAX_MNTOPT_STR);
2508 	return (err);
2509 }
2510 
2511 /*
2512  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2513  * Broader use within the kernel is discouraged.
2514  */
2515 int
2516 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2517     cred_t *cr)
2518 {
2519 	vfs_t *vfsp;
2520 	mntopt_t *mop;
2521 	int found = 0;
2522 	dev_t dev = makedevice(major, minor);
2523 	int err = 0;
2524 
2525 	/*
2526 	 * Find the desired mounted file system
2527 	 */
2528 	vfs_list_lock();
2529 	vfsp = rootvfs;
2530 	do {
2531 		if (vfsp->vfs_dev == dev &&
2532 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2533 			found = 1;
2534 			break;
2535 		}
2536 		vfsp = vfsp->vfs_next;
2537 	} while (vfsp != rootvfs);
2538 
2539 	if (!found) {
2540 		err = EINVAL;
2541 		goto out;
2542 	}
2543 	err = secpolicy_fs_config(cr, vfsp);
2544 	if (err != 0)
2545 		goto out;
2546 
2547 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2548 		err = EINVAL;
2549 		goto out;
2550 	}
2551 	if ((mop->mo_flags & MO_TAG) == 0) {
2552 		err = EINVAL;
2553 		goto out;
2554 	}
2555 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2556 out:
2557 	vfs_list_unlock();
2558 	return (err);
2559 }
2560 
2561 /*
2562  * Function to parse an option string and fill in a mount options table.
2563  * Unknown options are silently ignored.  The input option string is modified
2564  * by replacing separators with nulls.  If the create flag is set, options
2565  * not found in the table are just added on the fly.  The table must have
2566  * an option slot marked MO_EMPTY to add an option on the fly.
2567  *
2568  * This function is *not* for general use by filesystems.
2569  *
2570  * Note: caller is responsible for locking the vfs list, if needed,
2571  *       to protect mops..
2572  */
2573 void
2574 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2575 {
2576 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2577 	int setflg = VFS_NOFORCEOPT;
2578 
2579 	if (osp == NULL)
2580 		return;
2581 	while (*s != '\0') {
2582 		p = strchr(s, ',');	/* find next option */
2583 		if (p == NULL) {
2584 			cp = NULL;
2585 			p = s + strlen(s);
2586 		} else {
2587 			cp = p;		/* save location of comma */
2588 			*p++ = '\0';	/* mark end and point to next option */
2589 		}
2590 		nextop = p;
2591 		p = strchr(s, '=');	/* look for value */
2592 		if (p == NULL) {
2593 			valp = NULL;	/* no value supplied */
2594 		} else {
2595 			ep = p;		/* save location of equals */
2596 			*p++ = '\0';	/* end option and point to value */
2597 			valp = p;
2598 		}
2599 		/*
2600 		 * set option into options table
2601 		 */
2602 		if (create)
2603 			setflg |= VFS_CREATEOPT;
2604 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2605 		if (cp != NULL)
2606 			*cp = ',';	/* restore the comma */
2607 		if (valp != NULL)
2608 			*ep = '=';	/* restore the equals */
2609 		s = nextop;
2610 	}
2611 }
2612 
2613 /*
2614  * Function to inquire if an option exists in a mount options table.
2615  * Returns a pointer to the option if it exists, else NULL.
2616  *
2617  * This function is *not* for general use by filesystems.
2618  *
2619  * Note: caller is responsible for locking the vfs list, if needed,
2620  *       to protect mops.
2621  */
2622 struct mntopt *
2623 vfs_hasopt(const mntopts_t *mops, const char *opt)
2624 {
2625 	struct mntopt *mop;
2626 	uint_t i, count;
2627 
2628 	count = mops->mo_count;
2629 	for (i = 0; i < count; i++) {
2630 		mop = &mops->mo_list[i];
2631 
2632 		if (mop->mo_flags & MO_EMPTY)
2633 			continue;
2634 		if (strcmp(opt, mop->mo_name) == 0)
2635 			return (mop);
2636 	}
2637 	return (NULL);
2638 }
2639 
2640 /*
2641  * Function to inquire if an option is set in a mount options table.
2642  * Returns non-zero if set and fills in the arg pointer with a pointer to
2643  * the argument string or NULL if there is no argument string.
2644  */
2645 static int
2646 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2647 {
2648 	struct mntopt *mop;
2649 	uint_t i, count;
2650 
2651 	count = mops->mo_count;
2652 	for (i = 0; i < count; i++) {
2653 		mop = &mops->mo_list[i];
2654 
2655 		if (mop->mo_flags & MO_EMPTY)
2656 			continue;
2657 		if (strcmp(opt, mop->mo_name))
2658 			continue;
2659 		if ((mop->mo_flags & MO_SET) == 0)
2660 			return (0);
2661 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2662 			*argp = mop->mo_arg;
2663 		return (1);
2664 	}
2665 	return (0);
2666 }
2667 
2668 
2669 int
2670 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2671 {
2672 	int ret;
2673 
2674 	vfs_list_read_lock();
2675 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2676 	vfs_list_unlock();
2677 	return (ret);
2678 }
2679 
2680 
2681 /*
2682  * Construct a comma separated string of the options set in the given
2683  * mount table, return the string in the given buffer.  Return non-zero if
2684  * the buffer would overflow.
2685  *
2686  * This function is *not* for general use by filesystems.
2687  *
2688  * Note: caller is responsible for locking the vfs list, if needed,
2689  *       to protect mp.
2690  */
2691 int
2692 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2693 {
2694 	char *cp;
2695 	uint_t i;
2696 
2697 	buf[0] = '\0';
2698 	cp = buf;
2699 	for (i = 0; i < mp->mo_count; i++) {
2700 		struct mntopt *mop;
2701 
2702 		mop = &mp->mo_list[i];
2703 		if (mop->mo_flags & MO_SET) {
2704 			int optlen, comma = 0;
2705 
2706 			if (buf[0] != '\0')
2707 				comma = 1;
2708 			optlen = strlen(mop->mo_name);
2709 			if (strlen(buf) + comma + optlen + 1 > len)
2710 				goto err;
2711 			if (comma)
2712 				*cp++ = ',';
2713 			(void) strcpy(cp, mop->mo_name);
2714 			cp += optlen;
2715 			/*
2716 			 * Append option value if there is one
2717 			 */
2718 			if (mop->mo_arg != NULL) {
2719 				int arglen;
2720 
2721 				arglen = strlen(mop->mo_arg);
2722 				if (strlen(buf) + arglen + 2 > len)
2723 					goto err;
2724 				*cp++ = '=';
2725 				(void) strcpy(cp, mop->mo_arg);
2726 				cp += arglen;
2727 			}
2728 		}
2729 	}
2730 	return (0);
2731 err:
2732 	return (EOVERFLOW);
2733 }
2734 
2735 static void
2736 vfs_freecancelopt(char **moc)
2737 {
2738 	if (moc != NULL) {
2739 		int ccnt = 0;
2740 		char **cp;
2741 
2742 		for (cp = moc; *cp != NULL; cp++) {
2743 			kmem_free(*cp, strlen(*cp) + 1);
2744 			ccnt++;
2745 		}
2746 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2747 	}
2748 }
2749 
2750 static void
2751 vfs_freeopt(mntopt_t *mop)
2752 {
2753 	if (mop->mo_name != NULL)
2754 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2755 
2756 	vfs_freecancelopt(mop->mo_cancel);
2757 
2758 	if (mop->mo_arg != NULL)
2759 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2760 }
2761 
2762 /*
2763  * Free a mount options table
2764  *
2765  * This function is *not* for general use by filesystems.
2766  *
2767  * Note: caller is responsible for locking the vfs list, if needed,
2768  *       to protect mp.
2769  */
2770 void
2771 vfs_freeopttbl(mntopts_t *mp)
2772 {
2773 	uint_t i, count;
2774 
2775 	count = mp->mo_count;
2776 	for (i = 0; i < count; i++) {
2777 		vfs_freeopt(&mp->mo_list[i]);
2778 	}
2779 	if (count) {
2780 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2781 		mp->mo_count = 0;
2782 		mp->mo_list = NULL;
2783 	}
2784 }
2785 
2786 
2787 /* ARGSUSED */
2788 static int
2789 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2790 	caller_context_t *ct)
2791 {
2792 	return (0);
2793 }
2794 
2795 /* ARGSUSED */
2796 static int
2797 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2798 	caller_context_t *ct)
2799 {
2800 	return (0);
2801 }
2802 
2803 /*
2804  * The dummy vnode is currently used only by file events notification
2805  * module which is just interested in the timestamps.
2806  */
2807 /* ARGSUSED */
2808 static int
2809 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2810     caller_context_t *ct)
2811 {
2812 	bzero(vap, sizeof (vattr_t));
2813 	vap->va_type = VREG;
2814 	vap->va_nlink = 1;
2815 	vap->va_ctime = vfs_mnttab_ctime;
2816 	/*
2817 	 * it is ok to just copy mtime as the time will be monotonically
2818 	 * increasing.
2819 	 */
2820 	vap->va_mtime = vfs_mnttab_mtime;
2821 	vap->va_atime = vap->va_mtime;
2822 	return (0);
2823 }
2824 
2825 static void
2826 vfs_mnttabvp_setup(void)
2827 {
2828 	vnode_t *tvp;
2829 	vnodeops_t *vfs_mntdummyvnops;
2830 	const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2831 		VOPNAME_READ, 		{ .vop_read = vfs_mntdummyread },
2832 		VOPNAME_WRITE, 		{ .vop_write = vfs_mntdummywrite },
2833 		VOPNAME_GETATTR,	{ .vop_getattr = vfs_mntdummygetattr },
2834 		VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
2835 		NULL,			NULL
2836 	};
2837 
2838 	if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2839 	    &vfs_mntdummyvnops) != 0) {
2840 		cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2841 		/* Shouldn't happen, but not bad enough to panic */
2842 		return;
2843 	}
2844 
2845 	/*
2846 	 * A global dummy vnode is allocated to represent mntfs files.
2847 	 * The mntfs file (/etc/mnttab) can be monitored for file events
2848 	 * and receive an event when mnttab changes. Dummy VOP calls
2849 	 * will be made on this vnode. The file events notification module
2850 	 * intercepts this vnode and delivers relevant events.
2851 	 */
2852 	tvp = vn_alloc(KM_SLEEP);
2853 	tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2854 	vn_setops(tvp, vfs_mntdummyvnops);
2855 	tvp->v_type = VREG;
2856 	/*
2857 	 * The mnt dummy ops do not reference v_data.
2858 	 * No other module intercepting this vnode should either.
2859 	 * Just set it to point to itself.
2860 	 */
2861 	tvp->v_data = (caddr_t)tvp;
2862 	tvp->v_vfsp = rootvfs;
2863 	vfs_mntdummyvp = tvp;
2864 }
2865 
2866 /*
2867  * performs fake read/write ops
2868  */
2869 static void
2870 vfs_mnttab_rwop(int rw)
2871 {
2872 	struct uio	uio;
2873 	struct iovec	iov;
2874 	char	buf[1];
2875 
2876 	if (vfs_mntdummyvp == NULL)
2877 		return;
2878 
2879 	bzero(&uio, sizeof (uio));
2880 	bzero(&iov, sizeof (iov));
2881 	iov.iov_base = buf;
2882 	iov.iov_len = 0;
2883 	uio.uio_iov = &iov;
2884 	uio.uio_iovcnt = 1;
2885 	uio.uio_loffset = 0;
2886 	uio.uio_segflg = UIO_SYSSPACE;
2887 	uio.uio_resid = 0;
2888 	if (rw) {
2889 		(void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2890 	} else {
2891 		(void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2892 	}
2893 }
2894 
2895 /*
2896  * Generate a write operation.
2897  */
2898 void
2899 vfs_mnttab_writeop(void)
2900 {
2901 	vfs_mnttab_rwop(1);
2902 }
2903 
2904 /*
2905  * Generate a read operation.
2906  */
2907 void
2908 vfs_mnttab_readop(void)
2909 {
2910 	vfs_mnttab_rwop(0);
2911 }
2912 
2913 /*
2914  * Free any mnttab information recorded in the vfs struct.
2915  * The vfs must not be on the vfs list.
2916  */
2917 static void
2918 vfs_freemnttab(struct vfs *vfsp)
2919 {
2920 	ASSERT(!VFS_ON_LIST(vfsp));
2921 
2922 	/*
2923 	 * Free device and mount point information
2924 	 */
2925 	if (vfsp->vfs_mntpt != NULL) {
2926 		refstr_rele(vfsp->vfs_mntpt);
2927 		vfsp->vfs_mntpt = NULL;
2928 	}
2929 	if (vfsp->vfs_resource != NULL) {
2930 		refstr_rele(vfsp->vfs_resource);
2931 		vfsp->vfs_resource = NULL;
2932 	}
2933 	/*
2934 	 * Now free mount options information
2935 	 */
2936 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2937 }
2938 
2939 /*
2940  * Return the last mnttab modification time
2941  */
2942 void
2943 vfs_mnttab_modtime(timespec_t *ts)
2944 {
2945 	ASSERT(RW_LOCK_HELD(&vfslist));
2946 	*ts = vfs_mnttab_mtime;
2947 }
2948 
2949 /*
2950  * See if mnttab is changed
2951  */
2952 void
2953 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2954 {
2955 	int changed;
2956 
2957 	*phpp = (struct pollhead *)NULL;
2958 
2959 	/*
2960 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2961 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2962 	 * to not grab the vfs list lock because tv_sec is monotonically
2963 	 * increasing.
2964 	 */
2965 
2966 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2967 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2968 	if (!changed) {
2969 		*phpp = &vfs_pollhd;
2970 	}
2971 }
2972 
2973 /* Provide a unique and monotonically-increasing timestamp. */
2974 void
2975 vfs_mono_time(timespec_t *ts)
2976 {
2977 	static volatile hrtime_t hrt;		/* The saved time. */
2978 	hrtime_t	newhrt, oldhrt;		/* For effecting the CAS. */
2979 	timespec_t	newts;
2980 
2981 	/*
2982 	 * Try gethrestime() first, but be prepared to fabricate a sensible
2983 	 * answer at the first sign of any trouble.
2984 	 */
2985 	gethrestime(&newts);
2986 	newhrt = ts2hrt(&newts);
2987 	for (;;) {
2988 		oldhrt = hrt;
2989 		if (newhrt <= hrt)
2990 			newhrt = hrt + 1;
2991 		if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
2992 			break;
2993 	}
2994 	hrt2ts(newhrt, ts);
2995 }
2996 
2997 /*
2998  * Update the mnttab modification time and wake up any waiters for
2999  * mnttab changes
3000  */
3001 void
3002 vfs_mnttab_modtimeupd()
3003 {
3004 	hrtime_t oldhrt, newhrt;
3005 
3006 	ASSERT(RW_WRITE_HELD(&vfslist));
3007 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
3008 	gethrestime(&vfs_mnttab_mtime);
3009 	newhrt = ts2hrt(&vfs_mnttab_mtime);
3010 	if (oldhrt == (hrtime_t)0)
3011 		vfs_mnttab_ctime = vfs_mnttab_mtime;
3012 	/*
3013 	 * Attempt to provide unique mtime (like uniqtime but not).
3014 	 */
3015 	if (newhrt == oldhrt) {
3016 		newhrt++;
3017 		hrt2ts(newhrt, &vfs_mnttab_mtime);
3018 	}
3019 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3020 	vfs_mnttab_writeop();
3021 }
3022 
3023 int
3024 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3025 {
3026 	vnode_t *coveredvp;
3027 	int error;
3028 	extern void teardown_vopstats(vfs_t *);
3029 
3030 	/*
3031 	 * Get covered vnode. This will be NULL if the vfs is not linked
3032 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3033 	 */
3034 	coveredvp = vfsp->vfs_vnodecovered;
3035 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3036 
3037 	/*
3038 	 * Purge all dnlc entries for this vfs.
3039 	 */
3040 	(void) dnlc_purge_vfsp(vfsp, 0);
3041 
3042 	/* For forcible umount, skip VFS_SYNC() since it may hang */
3043 	if ((flag & MS_FORCE) == 0)
3044 		(void) VFS_SYNC(vfsp, 0, cr);
3045 
3046 	/*
3047 	 * Lock the vfs to maintain fs status quo during unmount.  This
3048 	 * has to be done after the sync because ufs_update tries to acquire
3049 	 * the vfs_reflock.
3050 	 */
3051 	vfs_lock_wait(vfsp);
3052 
3053 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3054 		vfs_unlock(vfsp);
3055 		if (coveredvp != NULL)
3056 			vn_vfsunlock(coveredvp);
3057 	} else if (coveredvp != NULL) {
3058 		teardown_vopstats(vfsp);
3059 		/*
3060 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3061 		 * when it frees vfsp so we do a VN_HOLD() so we can
3062 		 * continue to use coveredvp afterwards.
3063 		 */
3064 		VN_HOLD(coveredvp);
3065 		vfs_remove(vfsp);
3066 		vn_vfsunlock(coveredvp);
3067 		VN_RELE(coveredvp);
3068 	} else {
3069 		teardown_vopstats(vfsp);
3070 		/*
3071 		 * Release the reference to vfs that is not linked
3072 		 * into the name space.
3073 		 */
3074 		vfs_unlock(vfsp);
3075 		VFS_RELE(vfsp);
3076 	}
3077 	return (error);
3078 }
3079 
3080 
3081 /*
3082  * Vfs_unmountall() is called by uadmin() to unmount all
3083  * mounted file systems (except the root file system) during shutdown.
3084  * It follows the existing locking protocol when traversing the vfs list
3085  * to sync and unmount vfses. Even though there should be no
3086  * other thread running while the system is shutting down, it is prudent
3087  * to still follow the locking protocol.
3088  */
3089 void
3090 vfs_unmountall(void)
3091 {
3092 	struct vfs *vfsp;
3093 	struct vfs *prev_vfsp = NULL;
3094 	int error;
3095 
3096 	/*
3097 	 * Toss all dnlc entries now so that the per-vfs sync
3098 	 * and unmount operations don't have to slog through
3099 	 * a bunch of uninteresting vnodes over and over again.
3100 	 */
3101 	dnlc_purge();
3102 
3103 	vfs_list_lock();
3104 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3105 		prev_vfsp = vfsp->vfs_prev;
3106 
3107 		if (vfs_lock(vfsp) != 0)
3108 			continue;
3109 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
3110 		vfs_unlock(vfsp);
3111 		if (error)
3112 			continue;
3113 
3114 		vfs_list_unlock();
3115 
3116 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3117 		(void) dounmount(vfsp, 0, CRED());
3118 
3119 		/*
3120 		 * Since we dropped the vfslist lock above we must
3121 		 * verify that next_vfsp still exists, else start over.
3122 		 */
3123 		vfs_list_lock();
3124 		for (vfsp = rootvfs->vfs_prev;
3125 		    vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3126 			if (vfsp == prev_vfsp)
3127 				break;
3128 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
3129 			prev_vfsp = rootvfs->vfs_prev;
3130 	}
3131 	vfs_list_unlock();
3132 }
3133 
3134 /*
3135  * Called to add an entry to the end of the vfs mount in progress list
3136  */
3137 void
3138 vfs_addmip(dev_t dev, struct vfs *vfsp)
3139 {
3140 	struct ipmnt *mipp;
3141 
3142 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3143 	mipp->mip_next = NULL;
3144 	mipp->mip_dev = dev;
3145 	mipp->mip_vfsp = vfsp;
3146 	mutex_enter(&vfs_miplist_mutex);
3147 	if (vfs_miplist_end != NULL)
3148 		vfs_miplist_end->mip_next = mipp;
3149 	else
3150 		vfs_miplist = mipp;
3151 	vfs_miplist_end = mipp;
3152 	mutex_exit(&vfs_miplist_mutex);
3153 }
3154 
3155 /*
3156  * Called to remove an entry from the mount in progress list
3157  * Either because the mount completed or it failed.
3158  */
3159 void
3160 vfs_delmip(struct vfs *vfsp)
3161 {
3162 	struct ipmnt *mipp, *mipprev;
3163 
3164 	mutex_enter(&vfs_miplist_mutex);
3165 	mipprev = NULL;
3166 	for (mipp = vfs_miplist;
3167 	    mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3168 		mipprev = mipp;
3169 	}
3170 	if (mipp == NULL)
3171 		return; /* shouldn't happen */
3172 	if (mipp == vfs_miplist_end)
3173 		vfs_miplist_end = mipprev;
3174 	if (mipprev == NULL)
3175 		vfs_miplist = mipp->mip_next;
3176 	else
3177 		mipprev->mip_next = mipp->mip_next;
3178 	mutex_exit(&vfs_miplist_mutex);
3179 	kmem_free(mipp, sizeof (struct ipmnt));
3180 }
3181 
3182 /*
3183  * vfs_add is called by a specific filesystem's mount routine to add
3184  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3185  * The vfs should already have been locked by the caller.
3186  *
3187  * coveredvp is NULL if this is the root.
3188  */
3189 void
3190 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3191 {
3192 	int newflag;
3193 
3194 	ASSERT(vfs_lock_held(vfsp));
3195 	VFS_HOLD(vfsp);
3196 	newflag = vfsp->vfs_flag;
3197 	if (mflag & MS_RDONLY)
3198 		newflag |= VFS_RDONLY;
3199 	else
3200 		newflag &= ~VFS_RDONLY;
3201 	if (mflag & MS_NOSUID)
3202 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3203 	else
3204 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3205 	if (mflag & MS_NOMNTTAB)
3206 		newflag |= VFS_NOMNTTAB;
3207 	else
3208 		newflag &= ~VFS_NOMNTTAB;
3209 
3210 	if (coveredvp != NULL) {
3211 		ASSERT(vn_vfswlock_held(coveredvp));
3212 		coveredvp->v_vfsmountedhere = vfsp;
3213 		VN_HOLD(coveredvp);
3214 	}
3215 	vfsp->vfs_vnodecovered = coveredvp;
3216 	vfsp->vfs_flag = newflag;
3217 
3218 	vfs_list_add(vfsp);
3219 }
3220 
3221 /*
3222  * Remove a vfs from the vfs list, null out the pointer from the
3223  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3224  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3225  * reference to the vfs and to the covered vnode.
3226  *
3227  * Called from dounmount after it's confirmed with the file system
3228  * that the unmount is legal.
3229  */
3230 void
3231 vfs_remove(struct vfs *vfsp)
3232 {
3233 	vnode_t *vp;
3234 
3235 	ASSERT(vfs_lock_held(vfsp));
3236 
3237 	/*
3238 	 * Can't unmount root.  Should never happen because fs will
3239 	 * be busy.
3240 	 */
3241 	if (vfsp == rootvfs)
3242 		panic("vfs_remove: unmounting root");
3243 
3244 	vfs_list_remove(vfsp);
3245 
3246 	/*
3247 	 * Unhook from the file system name space.
3248 	 */
3249 	vp = vfsp->vfs_vnodecovered;
3250 	ASSERT(vn_vfswlock_held(vp));
3251 	vp->v_vfsmountedhere = NULL;
3252 	vfsp->vfs_vnodecovered = NULL;
3253 	VN_RELE(vp);
3254 
3255 	/*
3256 	 * Release lock and wakeup anybody waiting.
3257 	 */
3258 	vfs_unlock(vfsp);
3259 	VFS_RELE(vfsp);
3260 }
3261 
3262 /*
3263  * Lock a filesystem to prevent access to it while mounting,
3264  * unmounting and syncing.  Return EBUSY immediately if lock
3265  * can't be acquired.
3266  */
3267 int
3268 vfs_lock(vfs_t *vfsp)
3269 {
3270 	vn_vfslocks_entry_t *vpvfsentry;
3271 
3272 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3273 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3274 		return (0);
3275 
3276 	vn_vfslocks_rele(vpvfsentry);
3277 	return (EBUSY);
3278 }
3279 
3280 int
3281 vfs_rlock(vfs_t *vfsp)
3282 {
3283 	vn_vfslocks_entry_t *vpvfsentry;
3284 
3285 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3286 
3287 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3288 		return (0);
3289 
3290 	vn_vfslocks_rele(vpvfsentry);
3291 	return (EBUSY);
3292 }
3293 
3294 void
3295 vfs_lock_wait(vfs_t *vfsp)
3296 {
3297 	vn_vfslocks_entry_t *vpvfsentry;
3298 
3299 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3300 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3301 }
3302 
3303 void
3304 vfs_rlock_wait(vfs_t *vfsp)
3305 {
3306 	vn_vfslocks_entry_t *vpvfsentry;
3307 
3308 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3309 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3310 }
3311 
3312 /*
3313  * Unlock a locked filesystem.
3314  */
3315 void
3316 vfs_unlock(vfs_t *vfsp)
3317 {
3318 	vn_vfslocks_entry_t *vpvfsentry;
3319 
3320 	/*
3321 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3322 	 * And these changes should remain for the patch changes as it is.
3323 	 */
3324 	if (panicstr)
3325 		return;
3326 
3327 	/*
3328 	 * ve_refcount needs to be dropped twice here.
3329 	 * 1. To release refernce after a call to vfs_locks_getlock()
3330 	 * 2. To release the reference from the locking routines like
3331 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3332 	 */
3333 
3334 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3335 	vn_vfslocks_rele(vpvfsentry);
3336 
3337 	rwst_exit(&vpvfsentry->ve_lock);
3338 	vn_vfslocks_rele(vpvfsentry);
3339 }
3340 
3341 /*
3342  * Utility routine that allows a filesystem to construct its
3343  * fsid in "the usual way" - by munging some underlying dev_t and
3344  * the filesystem type number into the 64-bit fsid.  Note that
3345  * this implicitly relies on dev_t persistence to make filesystem
3346  * id's persistent.
3347  *
3348  * There's nothing to prevent an individual fs from constructing its
3349  * fsid in a different way, and indeed they should.
3350  *
3351  * Since we want fsids to be 32-bit quantities (so that they can be
3352  * exported identically by either 32-bit or 64-bit APIs, as well as
3353  * the fact that fsid's are "known" to NFS), we compress the device
3354  * number given down to 32-bits, and panic if that isn't possible.
3355  */
3356 void
3357 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3358 {
3359 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3360 		panic("device number too big for fsid!");
3361 	fsi->val[1] = val;
3362 }
3363 
3364 int
3365 vfs_lock_held(vfs_t *vfsp)
3366 {
3367 	int held;
3368 	vn_vfslocks_entry_t *vpvfsentry;
3369 
3370 	/*
3371 	 * vfs_lock_held will mimic sema_held behaviour
3372 	 * if panicstr is set. And these changes should remain
3373 	 * for the patch changes as it is.
3374 	 */
3375 	if (panicstr)
3376 		return (1);
3377 
3378 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3379 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3380 
3381 	vn_vfslocks_rele(vpvfsentry);
3382 	return (held);
3383 }
3384 
3385 struct _kthread *
3386 vfs_lock_owner(vfs_t *vfsp)
3387 {
3388 	struct _kthread *owner;
3389 	vn_vfslocks_entry_t *vpvfsentry;
3390 
3391 	/*
3392 	 * vfs_wlock_held will mimic sema_held behaviour
3393 	 * if panicstr is set. And these changes should remain
3394 	 * for the patch changes as it is.
3395 	 */
3396 	if (panicstr)
3397 		return (NULL);
3398 
3399 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3400 	owner = rwst_owner(&vpvfsentry->ve_lock);
3401 
3402 	vn_vfslocks_rele(vpvfsentry);
3403 	return (owner);
3404 }
3405 
3406 /*
3407  * vfs list locking.
3408  *
3409  * Rather than manipulate the vfslist lock directly, we abstract into lock
3410  * and unlock routines to allow the locking implementation to be changed for
3411  * clustering.
3412  *
3413  * Whenever the vfs list is modified through its hash links, the overall list
3414  * lock must be obtained before locking the relevant hash bucket.  But to see
3415  * whether a given vfs is on the list, it suffices to obtain the lock for the
3416  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3417  */
3418 
3419 void
3420 vfs_list_lock()
3421 {
3422 	rw_enter(&vfslist, RW_WRITER);
3423 }
3424 
3425 void
3426 vfs_list_read_lock()
3427 {
3428 	rw_enter(&vfslist, RW_READER);
3429 }
3430 
3431 void
3432 vfs_list_unlock()
3433 {
3434 	rw_exit(&vfslist);
3435 }
3436 
3437 /*
3438  * Low level worker routines for adding entries to and removing entries from
3439  * the vfs list.
3440  */
3441 
3442 static void
3443 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3444 {
3445 	int vhno;
3446 	struct vfs **hp;
3447 	dev_t dev;
3448 
3449 	ASSERT(RW_WRITE_HELD(&vfslist));
3450 
3451 	dev = expldev(vfsp->vfs_fsid.val[0]);
3452 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3453 
3454 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3455 
3456 	/*
3457 	 * Link into the hash table, inserting it at the end, so that LOFS
3458 	 * with the same fsid as UFS (or other) file systems will not hide the
3459 	 * UFS.
3460 	 */
3461 	if (insert_at_head) {
3462 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3463 		rvfs_list[vhno].rvfs_head = vfsp;
3464 	} else {
3465 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3466 		    hp = &(*hp)->vfs_hash)
3467 			continue;
3468 		/*
3469 		 * hp now contains the address of the pointer to update
3470 		 * to effect the insertion.
3471 		 */
3472 		vfsp->vfs_hash = NULL;
3473 		*hp = vfsp;
3474 	}
3475 
3476 	rvfs_list[vhno].rvfs_len++;
3477 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3478 }
3479 
3480 
3481 static void
3482 vfs_hash_remove(struct vfs *vfsp)
3483 {
3484 	int vhno;
3485 	struct vfs *tvfsp;
3486 	dev_t dev;
3487 
3488 	ASSERT(RW_WRITE_HELD(&vfslist));
3489 
3490 	dev = expldev(vfsp->vfs_fsid.val[0]);
3491 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3492 
3493 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3494 
3495 	/*
3496 	 * Remove from hash.
3497 	 */
3498 	if (rvfs_list[vhno].rvfs_head == vfsp) {
3499 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3500 		rvfs_list[vhno].rvfs_len--;
3501 		goto foundit;
3502 	}
3503 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3504 	    tvfsp = tvfsp->vfs_hash) {
3505 		if (tvfsp->vfs_hash == vfsp) {
3506 			tvfsp->vfs_hash = vfsp->vfs_hash;
3507 			rvfs_list[vhno].rvfs_len--;
3508 			goto foundit;
3509 		}
3510 	}
3511 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3512 
3513 foundit:
3514 
3515 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3516 }
3517 
3518 
3519 void
3520 vfs_list_add(struct vfs *vfsp)
3521 {
3522 	zone_t *zone;
3523 
3524 	/*
3525 	 * Typically, the vfs_t will have been created on behalf of the file
3526 	 * system in vfs_init, where it will have been provided with a
3527 	 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3528 	 * by an unbundled file system. We therefore check for such an example
3529 	 * before stamping the vfs_t with its creation time for the benefit of
3530 	 * mntfs.
3531 	 */
3532 	if (vfsp->vfs_implp == NULL)
3533 		vfsimpl_setup(vfsp);
3534 	vfs_mono_time(&vfsp->vfs_hrctime);
3535 
3536 	/*
3537 	 * The zone that owns the mount is the one that performed the mount.
3538 	 * Note that this isn't necessarily the same as the zone mounted into.
3539 	 * The corresponding zone_rele_ref() will be done when the vfs_t
3540 	 * is being free'd.
3541 	 */
3542 	vfsp->vfs_zone = curproc->p_zone;
3543 	zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3544 	zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3545 	    ZONE_REF_VFS);
3546 
3547 	/*
3548 	 * Find the zone mounted into, and put this mount on its vfs list.
3549 	 */
3550 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3551 	ASSERT(zone != NULL);
3552 	/*
3553 	 * Special casing for the root vfs.  This structure is allocated
3554 	 * statically and hooked onto rootvfs at link time.  During the
3555 	 * vfs_mountroot call at system startup time, the root file system's
3556 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3557 	 * as argument.  The code below must detect and handle this special
3558 	 * case.  The only apparent justification for this special casing is
3559 	 * to ensure that the root file system appears at the head of the
3560 	 * list.
3561 	 *
3562 	 * XXX:	I'm assuming that it's ok to do normal list locking when
3563 	 *	adding the entry for the root file system (this used to be
3564 	 *	done with no locks held).
3565 	 */
3566 	vfs_list_lock();
3567 	/*
3568 	 * Link into the vfs list proper.
3569 	 */
3570 	if (vfsp == &root) {
3571 		/*
3572 		 * Assert: This vfs is already on the list as its first entry.
3573 		 * Thus, there's nothing to do.
3574 		 */
3575 		ASSERT(rootvfs == vfsp);
3576 		/*
3577 		 * Add it to the head of the global zone's vfslist.
3578 		 */
3579 		ASSERT(zone == global_zone);
3580 		ASSERT(zone->zone_vfslist == NULL);
3581 		zone->zone_vfslist = vfsp;
3582 	} else {
3583 		/*
3584 		 * Link to end of list using vfs_prev (as rootvfs is now a
3585 		 * doubly linked circular list) so list is in mount order for
3586 		 * mnttab use.
3587 		 */
3588 		rootvfs->vfs_prev->vfs_next = vfsp;
3589 		vfsp->vfs_prev = rootvfs->vfs_prev;
3590 		rootvfs->vfs_prev = vfsp;
3591 		vfsp->vfs_next = rootvfs;
3592 
3593 		/*
3594 		 * Do it again for the zone-private list (which may be NULL).
3595 		 */
3596 		if (zone->zone_vfslist == NULL) {
3597 			ASSERT(zone != global_zone);
3598 			zone->zone_vfslist = vfsp;
3599 		} else {
3600 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3601 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3602 			zone->zone_vfslist->vfs_zone_prev = vfsp;
3603 			vfsp->vfs_zone_next = zone->zone_vfslist;
3604 		}
3605 	}
3606 
3607 	/*
3608 	 * Link into the hash table, inserting it at the end, so that LOFS
3609 	 * with the same fsid as UFS (or other) file systems will not hide
3610 	 * the UFS.
3611 	 */
3612 	vfs_hash_add(vfsp, 0);
3613 
3614 	/*
3615 	 * update the mnttab modification time
3616 	 */
3617 	vfs_mnttab_modtimeupd();
3618 	vfs_list_unlock();
3619 	zone_rele(zone);
3620 }
3621 
3622 void
3623 vfs_list_remove(struct vfs *vfsp)
3624 {
3625 	zone_t *zone;
3626 
3627 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3628 	ASSERT(zone != NULL);
3629 	/*
3630 	 * Callers are responsible for preventing attempts to unmount the
3631 	 * root.
3632 	 */
3633 	ASSERT(vfsp != rootvfs);
3634 
3635 	vfs_list_lock();
3636 
3637 	/*
3638 	 * Remove from hash.
3639 	 */
3640 	vfs_hash_remove(vfsp);
3641 
3642 	/*
3643 	 * Remove from vfs list.
3644 	 */
3645 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3646 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3647 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3648 
3649 	/*
3650 	 * Remove from zone-specific vfs list.
3651 	 */
3652 	if (zone->zone_vfslist == vfsp)
3653 		zone->zone_vfslist = vfsp->vfs_zone_next;
3654 
3655 	if (vfsp->vfs_zone_next == vfsp) {
3656 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3657 		ASSERT(zone->zone_vfslist == vfsp);
3658 		zone->zone_vfslist = NULL;
3659 	}
3660 
3661 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3662 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3663 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3664 
3665 	/*
3666 	 * update the mnttab modification time
3667 	 */
3668 	vfs_mnttab_modtimeupd();
3669 	vfs_list_unlock();
3670 	zone_rele(zone);
3671 }
3672 
3673 struct vfs *
3674 getvfs(fsid_t *fsid)
3675 {
3676 	struct vfs *vfsp;
3677 	int val0 = fsid->val[0];
3678 	int val1 = fsid->val[1];
3679 	dev_t dev = expldev(val0);
3680 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3681 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3682 
3683 	mutex_enter(hmp);
3684 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3685 		if (vfsp->vfs_fsid.val[0] == val0 &&
3686 		    vfsp->vfs_fsid.val[1] == val1) {
3687 			VFS_HOLD(vfsp);
3688 			mutex_exit(hmp);
3689 			return (vfsp);
3690 		}
3691 	}
3692 	mutex_exit(hmp);
3693 	return (NULL);
3694 }
3695 
3696 /*
3697  * Search the vfs mount in progress list for a specified device/vfs entry.
3698  * Returns 0 if the first entry in the list that the device matches has the
3699  * given vfs pointer as well.  If the device matches but a different vfs
3700  * pointer is encountered in the list before the given vfs pointer then
3701  * a 1 is returned.
3702  */
3703 
3704 int
3705 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3706 {
3707 	int retval = 0;
3708 	struct ipmnt *mipp;
3709 
3710 	mutex_enter(&vfs_miplist_mutex);
3711 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3712 		if (mipp->mip_dev == dev) {
3713 			if (mipp->mip_vfsp != vfsp)
3714 				retval = 1;
3715 			break;
3716 		}
3717 	}
3718 	mutex_exit(&vfs_miplist_mutex);
3719 	return (retval);
3720 }
3721 
3722 /*
3723  * Search the vfs list for a specified device.  Returns 1, if entry is found
3724  * or 0 if no suitable entry is found.
3725  */
3726 
3727 int
3728 vfs_devismounted(dev_t dev)
3729 {
3730 	struct vfs *vfsp;
3731 	int found;
3732 
3733 	vfs_list_read_lock();
3734 	vfsp = rootvfs;
3735 	found = 0;
3736 	do {
3737 		if (vfsp->vfs_dev == dev) {
3738 			found = 1;
3739 			break;
3740 		}
3741 		vfsp = vfsp->vfs_next;
3742 	} while (vfsp != rootvfs);
3743 
3744 	vfs_list_unlock();
3745 	return (found);
3746 }
3747 
3748 /*
3749  * Search the vfs list for a specified device.  Returns a pointer to it
3750  * or NULL if no suitable entry is found. The caller of this routine
3751  * is responsible for releasing the returned vfs pointer.
3752  */
3753 struct vfs *
3754 vfs_dev2vfsp(dev_t dev)
3755 {
3756 	struct vfs *vfsp;
3757 	int found;
3758 
3759 	vfs_list_read_lock();
3760 	vfsp = rootvfs;
3761 	found = 0;
3762 	do {
3763 		/*
3764 		 * The following could be made more efficient by making
3765 		 * the entire loop use vfs_zone_next if the call is from
3766 		 * a zone.  The only callers, however, ustat(2) and
3767 		 * umount2(2), don't seem to justify the added
3768 		 * complexity at present.
3769 		 */
3770 		if (vfsp->vfs_dev == dev &&
3771 		    ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3772 		    curproc->p_zone)) {
3773 			VFS_HOLD(vfsp);
3774 			found = 1;
3775 			break;
3776 		}
3777 		vfsp = vfsp->vfs_next;
3778 	} while (vfsp != rootvfs);
3779 	vfs_list_unlock();
3780 	return (found ? vfsp: NULL);
3781 }
3782 
3783 /*
3784  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3785  * or NULL if no suitable entry is found. The caller of this routine
3786  * is responsible for releasing the returned vfs pointer.
3787  *
3788  * Note that if multiple mntpoints match, the last one matching is
3789  * returned in an attempt to return the "top" mount when overlay
3790  * mounts are covering the same mount point.  This is accomplished by starting
3791  * at the end of the list and working our way backwards, stopping at the first
3792  * matching mount.
3793  */
3794 struct vfs *
3795 vfs_mntpoint2vfsp(const char *mp)
3796 {
3797 	struct vfs *vfsp;
3798 	struct vfs *retvfsp = NULL;
3799 	zone_t *zone = curproc->p_zone;
3800 	struct vfs *list;
3801 
3802 	vfs_list_read_lock();
3803 	if (getzoneid() == GLOBAL_ZONEID) {
3804 		/*
3805 		 * The global zone may see filesystems in any zone.
3806 		 */
3807 		vfsp = rootvfs->vfs_prev;
3808 		do {
3809 			if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3810 				retvfsp = vfsp;
3811 				break;
3812 			}
3813 			vfsp = vfsp->vfs_prev;
3814 		} while (vfsp != rootvfs->vfs_prev);
3815 	} else if ((list = zone->zone_vfslist) != NULL) {
3816 		const char *mntpt;
3817 
3818 		vfsp = list->vfs_zone_prev;
3819 		do {
3820 			mntpt = refstr_value(vfsp->vfs_mntpt);
3821 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3822 			if (strcmp(mntpt, mp) == 0) {
3823 				retvfsp = vfsp;
3824 				break;
3825 			}
3826 			vfsp = vfsp->vfs_zone_prev;
3827 		} while (vfsp != list->vfs_zone_prev);
3828 	}
3829 	if (retvfsp)
3830 		VFS_HOLD(retvfsp);
3831 	vfs_list_unlock();
3832 	return (retvfsp);
3833 }
3834 
3835 /*
3836  * Search the vfs list for a specified vfsops.
3837  * if vfs entry is found then return 1, else 0.
3838  */
3839 int
3840 vfs_opsinuse(vfsops_t *ops)
3841 {
3842 	struct vfs *vfsp;
3843 	int found;
3844 
3845 	vfs_list_read_lock();
3846 	vfsp = rootvfs;
3847 	found = 0;
3848 	do {
3849 		if (vfs_getops(vfsp) == ops) {
3850 			found = 1;
3851 			break;
3852 		}
3853 		vfsp = vfsp->vfs_next;
3854 	} while (vfsp != rootvfs);
3855 	vfs_list_unlock();
3856 	return (found);
3857 }
3858 
3859 /*
3860  * Allocate an entry in vfssw for a file system type
3861  */
3862 struct vfssw *
3863 allocate_vfssw(const char *type)
3864 {
3865 	struct vfssw *vswp;
3866 
3867 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3868 		/*
3869 		 * The vfssw table uses the empty string to identify an
3870 		 * available entry; we cannot add any type which has
3871 		 * a leading NUL. The string length is limited to
3872 		 * the size of the st_fstype array in struct stat.
3873 		 */
3874 		return (NULL);
3875 	}
3876 
3877 	ASSERT(VFSSW_WRITE_LOCKED());
3878 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3879 		if (!ALLOCATED_VFSSW(vswp)) {
3880 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3881 			(void) strcpy(vswp->vsw_name, type);
3882 			ASSERT(vswp->vsw_count == 0);
3883 			vswp->vsw_count = 1;
3884 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3885 			return (vswp);
3886 		}
3887 	return (NULL);
3888 }
3889 
3890 /*
3891  * Impose additional layer of translation between vfstype names
3892  * and module names in the filesystem.
3893  */
3894 static const char *
3895 vfs_to_modname(const char *vfstype)
3896 {
3897 	if (strcmp(vfstype, "proc") == 0) {
3898 		vfstype = "procfs";
3899 	} else if (strcmp(vfstype, "fd") == 0) {
3900 		vfstype = "fdfs";
3901 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3902 		vfstype = "nfs";
3903 	}
3904 
3905 	return (vfstype);
3906 }
3907 
3908 /*
3909  * Find a vfssw entry given a file system type name.
3910  * Try to autoload the filesystem if it's not found.
3911  * If it's installed, return the vfssw locked to prevent unloading.
3912  */
3913 struct vfssw *
3914 vfs_getvfssw(const char *type)
3915 {
3916 	struct vfssw *vswp;
3917 	const char *modname;
3918 
3919 	RLOCK_VFSSW();
3920 	vswp = vfs_getvfsswbyname(type);
3921 	modname = vfs_to_modname(type);
3922 
3923 	if (rootdir == NULL) {
3924 		/*
3925 		 * If we haven't yet loaded the root file system, then our
3926 		 * _init won't be called until later. Allocate vfssw entry,
3927 		 * because mod_installfs won't be called.
3928 		 */
3929 		if (vswp == NULL) {
3930 			RUNLOCK_VFSSW();
3931 			WLOCK_VFSSW();
3932 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3933 				if ((vswp = allocate_vfssw(type)) == NULL) {
3934 					WUNLOCK_VFSSW();
3935 					return (NULL);
3936 				}
3937 			}
3938 			WUNLOCK_VFSSW();
3939 			RLOCK_VFSSW();
3940 		}
3941 		if (!VFS_INSTALLED(vswp)) {
3942 			RUNLOCK_VFSSW();
3943 			(void) modloadonly("fs", modname);
3944 		} else
3945 			RUNLOCK_VFSSW();
3946 		return (vswp);
3947 	}
3948 
3949 	/*
3950 	 * Try to load the filesystem.  Before calling modload(), we drop
3951 	 * our lock on the VFS switch table, and pick it up after the
3952 	 * module is loaded.  However, there is a potential race:  the
3953 	 * module could be unloaded after the call to modload() completes
3954 	 * but before we pick up the lock and drive on.  Therefore,
3955 	 * we keep reloading the module until we've loaded the module
3956 	 * _and_ we have the lock on the VFS switch table.
3957 	 */
3958 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3959 		RUNLOCK_VFSSW();
3960 		if (modload("fs", modname) == -1)
3961 			return (NULL);
3962 		RLOCK_VFSSW();
3963 		if (vswp == NULL)
3964 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3965 				break;
3966 	}
3967 	RUNLOCK_VFSSW();
3968 
3969 	return (vswp);
3970 }
3971 
3972 /*
3973  * Find a vfssw entry given a file system type name.
3974  */
3975 struct vfssw *
3976 vfs_getvfsswbyname(const char *type)
3977 {
3978 	struct vfssw *vswp;
3979 
3980 	ASSERT(VFSSW_LOCKED());
3981 	if (type == NULL || *type == '\0')
3982 		return (NULL);
3983 
3984 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3985 		if (strcmp(type, vswp->vsw_name) == 0) {
3986 			vfs_refvfssw(vswp);
3987 			return (vswp);
3988 		}
3989 	}
3990 
3991 	return (NULL);
3992 }
3993 
3994 /*
3995  * Find a vfssw entry given a set of vfsops.
3996  */
3997 struct vfssw *
3998 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
3999 {
4000 	struct vfssw *vswp;
4001 
4002 	RLOCK_VFSSW();
4003 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4004 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4005 			vfs_refvfssw(vswp);
4006 			RUNLOCK_VFSSW();
4007 			return (vswp);
4008 		}
4009 	}
4010 	RUNLOCK_VFSSW();
4011 
4012 	return (NULL);
4013 }
4014 
4015 /*
4016  * Reference a vfssw entry.
4017  */
4018 void
4019 vfs_refvfssw(struct vfssw *vswp)
4020 {
4021 
4022 	mutex_enter(&vswp->vsw_lock);
4023 	vswp->vsw_count++;
4024 	mutex_exit(&vswp->vsw_lock);
4025 }
4026 
4027 /*
4028  * Unreference a vfssw entry.
4029  */
4030 void
4031 vfs_unrefvfssw(struct vfssw *vswp)
4032 {
4033 
4034 	mutex_enter(&vswp->vsw_lock);
4035 	vswp->vsw_count--;
4036 	mutex_exit(&vswp->vsw_lock);
4037 }
4038 
4039 int sync_timeout = 30;		/* timeout for syncing a page during panic */
4040 int sync_timeleft;		/* portion of sync_timeout remaining */
4041 
4042 static int sync_retries = 20;	/* number of retries when not making progress */
4043 static int sync_triesleft;	/* portion of sync_retries remaining */
4044 
4045 static pgcnt_t old_pgcnt, new_pgcnt;
4046 static int new_bufcnt, old_bufcnt;
4047 
4048 /*
4049  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4050  * complete.  We wait by counting the number of dirty pages and buffers,
4051  * pushing them out using bio_busy() and page_busy(), and then counting again.
4052  * This routine is used during both the uadmin A_SHUTDOWN code as well as
4053  * the SYNC phase of the panic code (see comments in panic.c).  It should only
4054  * be used after some higher-level mechanism has quiesced the system so that
4055  * new writes are not being initiated while we are waiting for completion.
4056  *
4057  * To ensure finite running time, our algorithm uses two timeout mechanisms:
4058  * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4059  * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4060  * Together these ensure that syncing completes if our i/o paths are stuck.
4061  * The counters are declared above so they can be found easily in the debugger.
4062  *
4063  * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4064  * vfs_syncprogress() subroutine whenever we make progress through the lists of
4065  * pages and buffers.  It is decremented and expired by the deadman() cyclic.
4066  * When vfs_syncall() decides it is done, we disable the deadman() counter by
4067  * setting sync_timeleft to zero.  This timer guards against vfs_syncall()
4068  * deadlocking or hanging inside of a broken filesystem or driver routine.
4069  *
4070  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4071  * sync_retries consecutive calls to bio_busy() and page_busy() without
4072  * decreasing either the number of dirty buffers or dirty pages below the
4073  * lowest count we have seen so far, we give up and return from vfs_syncall().
4074  *
4075  * Each loop iteration ends with a call to delay() one second to allow time for
4076  * i/o completion and to permit the user time to read our progress messages.
4077  */
4078 void
4079 vfs_syncall(void)
4080 {
4081 	if (rootdir == NULL && !modrootloaded)
4082 		return; /* panic during boot - no filesystems yet */
4083 
4084 	printf("syncing file systems...");
4085 	vfs_syncprogress();
4086 	sync();
4087 
4088 	vfs_syncprogress();
4089 	sync_triesleft = sync_retries;
4090 
4091 	old_bufcnt = new_bufcnt = INT_MAX;
4092 	old_pgcnt = new_pgcnt = ULONG_MAX;
4093 
4094 	while (sync_triesleft > 0) {
4095 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4096 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4097 
4098 		new_bufcnt = bio_busy(B_TRUE);
4099 		new_pgcnt = page_busy(B_TRUE);
4100 		vfs_syncprogress();
4101 
4102 		if (new_bufcnt == 0 && new_pgcnt == 0)
4103 			break;
4104 
4105 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4106 			sync_triesleft = sync_retries;
4107 		else
4108 			sync_triesleft--;
4109 
4110 		if (new_bufcnt)
4111 			printf(" [%d]", new_bufcnt);
4112 		if (new_pgcnt)
4113 			printf(" %lu", new_pgcnt);
4114 
4115 		delay(hz);
4116 	}
4117 
4118 	if (new_bufcnt != 0 || new_pgcnt != 0)
4119 		printf(" done (not all i/o completed)\n");
4120 	else
4121 		printf(" done\n");
4122 
4123 	sync_timeleft = 0;
4124 	delay(hz);
4125 }
4126 
4127 /*
4128  * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4129  * sync_timeout to indicate that we are making progress and the deadman()
4130  * omnipresent cyclic should not yet time us out.  Note that it is safe to
4131  * store to sync_timeleft here since the deadman() is firing at high-level
4132  * on top of us.  If we are racing with the deadman(), either the deadman()
4133  * will decrement the old value and then we will reset it, or we will
4134  * reset it and then the deadman() will immediately decrement it.  In either
4135  * case, correct behavior results.
4136  */
4137 void
4138 vfs_syncprogress(void)
4139 {
4140 	if (panicstr)
4141 		sync_timeleft = sync_timeout;
4142 }
4143 
4144 /*
4145  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4146  * flags at all.
4147  */
4148 uint_t
4149 vf_to_stf(uint_t vf)
4150 {
4151 	uint_t stf = 0;
4152 
4153 	if (vf & VFS_RDONLY)
4154 		stf |= ST_RDONLY;
4155 	if (vf & VFS_NOSETUID)
4156 		stf |= ST_NOSUID;
4157 	if (vf & VFS_NOTRUNC)
4158 		stf |= ST_NOTRUNC;
4159 
4160 	return (stf);
4161 }
4162 
4163 /*
4164  * Entries for (illegal) fstype 0.
4165  */
4166 /* ARGSUSED */
4167 int
4168 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4169 {
4170 	cmn_err(CE_PANIC, "stray vfs operation");
4171 	return (0);
4172 }
4173 
4174 /*
4175  * Entries for (illegal) fstype 0.
4176  */
4177 int
4178 vfsstray(void)
4179 {
4180 	cmn_err(CE_PANIC, "stray vfs operation");
4181 	return (0);
4182 }
4183 
4184 /*
4185  * Support for dealing with forced UFS unmount and its interaction with
4186  * LOFS. Could be used by any filesystem.
4187  * See bug 1203132.
4188  */
4189 int
4190 vfs_EIO(void)
4191 {
4192 	return (EIO);
4193 }
4194 
4195 /*
4196  * We've gotta define the op for sync separately, since the compiler gets
4197  * confused if we mix and match ANSI and normal style prototypes when
4198  * a "short" argument is present and spits out a warning.
4199  */
4200 /*ARGSUSED*/
4201 int
4202 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4203 {
4204 	return (EIO);
4205 }
4206 
4207 vfs_t EIO_vfs;
4208 vfsops_t *EIO_vfsops;
4209 
4210 /*
4211  * Called from startup() to initialize all loaded vfs's
4212  */
4213 void
4214 vfsinit(void)
4215 {
4216 	struct vfssw *vswp;
4217 	int error;
4218 	extern int vopstats_enabled;
4219 	extern void vopstats_startup();
4220 
4221 	static const fs_operation_def_t EIO_vfsops_template[] = {
4222 		VFSNAME_MOUNT,		{ .error = vfs_EIO },
4223 		VFSNAME_UNMOUNT,	{ .error = vfs_EIO },
4224 		VFSNAME_ROOT,		{ .error = vfs_EIO },
4225 		VFSNAME_STATVFS,	{ .error = vfs_EIO },
4226 		VFSNAME_SYNC, 		{ .vfs_sync = vfs_EIO_sync },
4227 		VFSNAME_VGET,		{ .error = vfs_EIO },
4228 		VFSNAME_MOUNTROOT,	{ .error = vfs_EIO },
4229 		VFSNAME_FREEVFS,	{ .error = vfs_EIO },
4230 		VFSNAME_VNSTATE,	{ .error = vfs_EIO },
4231 		NULL, NULL
4232 	};
4233 
4234 	static const fs_operation_def_t stray_vfsops_template[] = {
4235 		VFSNAME_MOUNT,		{ .error = vfsstray },
4236 		VFSNAME_UNMOUNT,	{ .error = vfsstray },
4237 		VFSNAME_ROOT,		{ .error = vfsstray },
4238 		VFSNAME_STATVFS,	{ .error = vfsstray },
4239 		VFSNAME_SYNC, 		{ .vfs_sync = vfsstray_sync },
4240 		VFSNAME_VGET,		{ .error = vfsstray },
4241 		VFSNAME_MOUNTROOT,	{ .error = vfsstray },
4242 		VFSNAME_FREEVFS,	{ .error = vfsstray },
4243 		VFSNAME_VNSTATE,	{ .error = vfsstray },
4244 		NULL, NULL
4245 	};
4246 
4247 	/* Create vfs cache */
4248 	vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4249 	    sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4250 
4251 	/* Initialize the vnode cache (file systems may use it during init). */
4252 	vn_create_cache();
4253 
4254 	/* Setup event monitor framework */
4255 	fem_init();
4256 
4257 	/* Initialize the dummy stray file system type. */
4258 	error = vfs_setfsops(0, stray_vfsops_template, NULL);
4259 
4260 	/* Initialize the dummy EIO file system. */
4261 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4262 	if (error != 0) {
4263 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4264 		/* Shouldn't happen, but not bad enough to panic */
4265 	}
4266 
4267 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4268 
4269 	/*
4270 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4271 	 * on this vfs can immediately notice it's invalid.
4272 	 */
4273 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4274 
4275 	/*
4276 	 * Call the init routines of non-loadable filesystems only.
4277 	 * Filesystems which are loaded as separate modules will be
4278 	 * initialized by the module loading code instead.
4279 	 */
4280 
4281 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4282 		RLOCK_VFSSW();
4283 		if (vswp->vsw_init != NULL)
4284 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4285 		RUNLOCK_VFSSW();
4286 	}
4287 
4288 	vopstats_startup();
4289 
4290 	if (vopstats_enabled) {
4291 		/* EIO_vfs can collect stats, but we don't retrieve them */
4292 		initialize_vopstats(&EIO_vfs.vfs_vopstats);
4293 		EIO_vfs.vfs_fstypevsp = NULL;
4294 		EIO_vfs.vfs_vskap = NULL;
4295 		EIO_vfs.vfs_flag |= VFS_STATS;
4296 	}
4297 
4298 	xattr_init();
4299 
4300 	reparse_point_init();
4301 }
4302 
4303 vfs_t *
4304 vfs_alloc(int kmflag)
4305 {
4306 	vfs_t *vfsp;
4307 
4308 	vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4309 
4310 	/*
4311 	 * Do the simplest initialization here.
4312 	 * Everything else gets done in vfs_init()
4313 	 */
4314 	bzero(vfsp, sizeof (vfs_t));
4315 	return (vfsp);
4316 }
4317 
4318 void
4319 vfs_free(vfs_t *vfsp)
4320 {
4321 	/*
4322 	 * One would be tempted to assert that "vfsp->vfs_count == 0".
4323 	 * The problem is that this gets called out of domount() with
4324 	 * a partially initialized vfs and a vfs_count of 1.  This is
4325 	 * also called from vfs_rele() with a vfs_count of 0.  We can't
4326 	 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4327 	 * returned.  This is because VFS_MOUNT() fully initializes the
4328 	 * vfs structure and its associated data.  VFS_RELE() will call
4329 	 * VFS_FREEVFS() which may panic the system if the data structures
4330 	 * aren't fully initialized from a successful VFS_MOUNT()).
4331 	 */
4332 
4333 	/* If FEM was in use, make sure everything gets cleaned up */
4334 	if (vfsp->vfs_femhead) {
4335 		ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4336 		mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4337 		kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4338 		vfsp->vfs_femhead = NULL;
4339 	}
4340 
4341 	if (vfsp->vfs_implp)
4342 		vfsimpl_teardown(vfsp);
4343 	sema_destroy(&vfsp->vfs_reflock);
4344 	kmem_cache_free(vfs_cache, vfsp);
4345 }
4346 
4347 /*
4348  * Increments the vfs reference count by one atomically.
4349  */
4350 void
4351 vfs_hold(vfs_t *vfsp)
4352 {
4353 	atomic_inc_32(&vfsp->vfs_count);
4354 	ASSERT(vfsp->vfs_count != 0);
4355 }
4356 
4357 /*
4358  * Decrements the vfs reference count by one atomically. When
4359  * vfs reference count becomes zero, it calls the file system
4360  * specific vfs_freevfs() to free up the resources.
4361  */
4362 void
4363 vfs_rele(vfs_t *vfsp)
4364 {
4365 	ASSERT(vfsp->vfs_count != 0);
4366 	if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4367 		VFS_FREEVFS(vfsp);
4368 		lofi_remove(vfsp);
4369 		if (vfsp->vfs_zone)
4370 			zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4371 			    ZONE_REF_VFS);
4372 		vfs_freemnttab(vfsp);
4373 		vfs_free(vfsp);
4374 	}
4375 }
4376 
4377 /*
4378  * Generic operations vector support.
4379  *
4380  * This is used to build operations vectors for both the vfs and vnode.
4381  * It's normally called only when a file system is loaded.
4382  *
4383  * There are many possible algorithms for this, including the following:
4384  *
4385  *   (1) scan the list of known operations; for each, see if the file system
4386  *       includes an entry for it, and fill it in as appropriate.
4387  *
4388  *   (2) set up defaults for all known operations.  scan the list of ops
4389  *       supplied by the file system; for each which is both supplied and
4390  *       known, fill it in.
4391  *
4392  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4393  *       in entries as we go.
4394  *
4395  * we choose (1) for simplicity, and because performance isn't critical here.
4396  * note that (2) could be sped up using a precomputed hash table on known ops.
4397  * (3) could be faster than either, but only if the lists were very large or
4398  * supplied in sorted order.
4399  *
4400  */
4401 
4402 int
4403 fs_build_vector(void *vector, int *unused_ops,
4404     const fs_operation_trans_def_t *translation,
4405     const fs_operation_def_t *operations)
4406 {
4407 	int i, num_trans, num_ops, used;
4408 
4409 	/*
4410 	 * Count the number of translations and the number of supplied
4411 	 * operations.
4412 	 */
4413 
4414 	{
4415 		const fs_operation_trans_def_t *p;
4416 
4417 		for (num_trans = 0, p = translation;
4418 		    p->name != NULL;
4419 		    num_trans++, p++)
4420 			;
4421 	}
4422 
4423 	{
4424 		const fs_operation_def_t *p;
4425 
4426 		for (num_ops = 0, p = operations;
4427 		    p->name != NULL;
4428 		    num_ops++, p++)
4429 			;
4430 	}
4431 
4432 	/* Walk through each operation known to our caller.  There will be */
4433 	/* one entry in the supplied "translation table" for each. */
4434 
4435 	used = 0;
4436 
4437 	for (i = 0; i < num_trans; i++) {
4438 		int j, found;
4439 		char *curname;
4440 		fs_generic_func_p result;
4441 		fs_generic_func_p *location;
4442 
4443 		curname = translation[i].name;
4444 
4445 		/* Look for a matching operation in the list supplied by the */
4446 		/* file system. */
4447 
4448 		found = 0;
4449 
4450 		for (j = 0; j < num_ops; j++) {
4451 			if (strcmp(operations[j].name, curname) == 0) {
4452 				used++;
4453 				found = 1;
4454 				break;
4455 			}
4456 		}
4457 
4458 		/*
4459 		 * If the file system is using a "placeholder" for default
4460 		 * or error functions, grab the appropriate function out of
4461 		 * the translation table.  If the file system didn't supply
4462 		 * this operation at all, use the default function.
4463 		 */
4464 
4465 		if (found) {
4466 			result = operations[j].func.fs_generic;
4467 			if (result == fs_default) {
4468 				result = translation[i].defaultFunc;
4469 			} else if (result == fs_error) {
4470 				result = translation[i].errorFunc;
4471 			} else if (result == NULL) {
4472 				/* Null values are PROHIBITED */
4473 				return (EINVAL);
4474 			}
4475 		} else {
4476 			result = translation[i].defaultFunc;
4477 		}
4478 
4479 		/* Now store the function into the operations vector. */
4480 
4481 		location = (fs_generic_func_p *)
4482 		    (((char *)vector) + translation[i].offset);
4483 
4484 		*location = result;
4485 	}
4486 
4487 	*unused_ops = num_ops - used;
4488 
4489 	return (0);
4490 }
4491 
4492 /* Placeholder functions, should never be called. */
4493 
4494 int
4495 fs_error(void)
4496 {
4497 	cmn_err(CE_PANIC, "fs_error called");
4498 	return (0);
4499 }
4500 
4501 int
4502 fs_default(void)
4503 {
4504 	cmn_err(CE_PANIC, "fs_default called");
4505 	return (0);
4506 }
4507 
4508 #ifdef __sparc
4509 
4510 /*
4511  * Part of the implementation of booting off a mirrored root
4512  * involves a change of dev_t for the root device.  To
4513  * accomplish this, first remove the existing hash table
4514  * entry for the root device, convert to the new dev_t,
4515  * then re-insert in the hash table at the head of the list.
4516  */
4517 void
4518 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4519 {
4520 	vfs_list_lock();
4521 
4522 	vfs_hash_remove(vfsp);
4523 
4524 	vfsp->vfs_dev = ndev;
4525 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4526 
4527 	vfs_hash_add(vfsp, 1);
4528 
4529 	vfs_list_unlock();
4530 }
4531 
4532 #else /* x86 NEWBOOT */
4533 
4534 #if defined(__x86)
4535 extern int hvmboot_rootconf();
4536 #endif /* __x86 */
4537 
4538 extern ib_boot_prop_t *iscsiboot_prop;
4539 
4540 int
4541 rootconf()
4542 {
4543 	int error;
4544 	struct vfssw *vsw;
4545 	extern void pm_init();
4546 	char *fstyp, *fsmod;
4547 	int ret = -1;
4548 
4549 	getrootfs(&fstyp, &fsmod);
4550 
4551 #if defined(__x86)
4552 	/*
4553 	 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4554 	 * which lives in /platform/i86hvm, and hence is only available when
4555 	 * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4556 	 * is not available then the modstub for this function will return 0.
4557 	 * If the hvm_bootstrap misc module is available it will be loaded
4558 	 * and hvmboot_rootconf() will be invoked.
4559 	 */
4560 	if (error = hvmboot_rootconf())
4561 		return (error);
4562 #endif /* __x86 */
4563 
4564 	if (error = clboot_rootconf())
4565 		return (error);
4566 
4567 	if (modload("fs", fsmod) == -1)
4568 		panic("Cannot _init %s module", fsmod);
4569 
4570 	RLOCK_VFSSW();
4571 	vsw = vfs_getvfsswbyname(fstyp);
4572 	RUNLOCK_VFSSW();
4573 	if (vsw == NULL) {
4574 		cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4575 		return (ENXIO);
4576 	}
4577 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4578 	VFS_HOLD(rootvfs);
4579 
4580 	/* always mount readonly first */
4581 	rootvfs->vfs_flag |= VFS_RDONLY;
4582 
4583 	pm_init();
4584 
4585 	if (netboot && iscsiboot_prop) {
4586 		cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4587 		    " shouldn't happen in the same time");
4588 		return (EINVAL);
4589 	}
4590 
4591 	if (netboot || iscsiboot_prop) {
4592 		ret = strplumb();
4593 		if (ret != 0) {
4594 			cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4595 			return (EFAULT);
4596 		}
4597 	}
4598 
4599 	if ((ret == 0) && iscsiboot_prop) {
4600 		ret = modload("drv", "iscsi");
4601 		/* -1 indicates fail */
4602 		if (ret == -1) {
4603 			cmn_err(CE_WARN, "Failed to load iscsi module");
4604 			iscsi_boot_prop_free();
4605 			return (EINVAL);
4606 		} else {
4607 			if (!i_ddi_attach_pseudo_node("iscsi")) {
4608 				cmn_err(CE_WARN,
4609 				    "Failed to attach iscsi driver");
4610 				iscsi_boot_prop_free();
4611 				return (ENODEV);
4612 			}
4613 		}
4614 	}
4615 
4616 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4617 	vfs_unrefvfssw(vsw);
4618 	rootdev = rootvfs->vfs_dev;
4619 
4620 	if (error)
4621 		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4622 		    rootfs.bo_name, fstyp);
4623 	else
4624 		cmn_err(CE_CONT, "?root on %s fstype %s\n",
4625 		    rootfs.bo_name, fstyp);
4626 	return (error);
4627 }
4628 
4629 /*
4630  * XXX this is called by nfs only and should probably be removed
4631  * If booted with ASKNAME, prompt on the console for a filesystem
4632  * name and return it.
4633  */
4634 void
4635 getfsname(char *askfor, char *name, size_t namelen)
4636 {
4637 	if (boothowto & RB_ASKNAME) {
4638 		printf("%s name: ", askfor);
4639 		console_gets(name, namelen);
4640 	}
4641 }
4642 
4643 /*
4644  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4645  * property.
4646  *
4647  * Filesystem types starting with the prefix "nfs" are diskless clients;
4648  * init the root filename name (rootfs.bo_name), too.
4649  *
4650  * If we are booting via NFS we currently have these options:
4651  *	nfs -	dynamically choose NFS V2, V3, or V4 (default)
4652  *	nfs2 -	force NFS V2
4653  *	nfs3 -	force NFS V3
4654  *	nfs4 -	force NFS V4
4655  * Because we need to maintain backward compatibility with the naming
4656  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4657  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4658  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4659  * This is only for root filesystems, all other uses will expect
4660  * that "nfs" == NFS V2.
4661  */
4662 static void
4663 getrootfs(char **fstypp, char **fsmodp)
4664 {
4665 	extern char *strplumb_get_netdev_path(void);
4666 	char *propstr = NULL;
4667 
4668 	/*
4669 	 * Check fstype property; for diskless it should be one of "nfs",
4670 	 * "nfs2", "nfs3" or "nfs4".
4671 	 */
4672 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4673 	    DDI_PROP_DONTPASS, "fstype", &propstr)
4674 	    == DDI_SUCCESS) {
4675 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4676 		ddi_prop_free(propstr);
4677 
4678 	/*
4679 	 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4680 	 * assume the type of this root filesystem is 'zfs'.
4681 	 */
4682 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4683 	    DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4684 	    == DDI_SUCCESS) {
4685 		(void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4686 		ddi_prop_free(propstr);
4687 	}
4688 
4689 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4690 		*fstypp = *fsmodp = rootfs.bo_fstype;
4691 		return;
4692 	}
4693 
4694 	++netboot;
4695 
4696 	if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4697 		(void) strcpy(rootfs.bo_fstype, "nfs");
4698 	else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4699 		(void) strcpy(rootfs.bo_fstype, "nfsdyn");
4700 
4701 	/*
4702 	 * check if path to network interface is specified in bootpath
4703 	 * or by a hypervisor domain configuration file.
4704 	 * XXPV - enable strlumb_get_netdev_path()
4705 	 */
4706 	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4707 	    "xpv-nfsroot")) {
4708 		(void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4709 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4710 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4711 	    == DDI_SUCCESS) {
4712 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4713 		ddi_prop_free(propstr);
4714 	} else {
4715 		/* attempt to determine netdev_path via boot_mac address */
4716 		netdev_path = strplumb_get_netdev_path();
4717 		if (netdev_path == NULL)
4718 			panic("cannot find boot network interface");
4719 		(void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4720 	}
4721 	*fstypp = rootfs.bo_fstype;
4722 	*fsmodp = "nfs";
4723 }
4724 #endif
4725 
4726 /*
4727  * VFS feature routines
4728  */
4729 
4730 #define	VFTINDEX(feature)	(((feature) >> 32) & 0xFFFFFFFF)
4731 #define	VFTBITS(feature)	((feature) & 0xFFFFFFFFLL)
4732 
4733 /* Register a feature in the vfs */
4734 void
4735 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4736 {
4737 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4738 	if (vfsp->vfs_implp == NULL)
4739 		return;
4740 
4741 	vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4742 }
4743 
4744 void
4745 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4746 {
4747 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4748 	if (vfsp->vfs_implp == NULL)
4749 		return;
4750 	vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4751 }
4752 
4753 /*
4754  * Query a vfs for a feature.
4755  * Returns 1 if feature is present, 0 if not
4756  */
4757 int
4758 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4759 {
4760 	int	ret = 0;
4761 
4762 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4763 	if (vfsp->vfs_implp == NULL)
4764 		return (ret);
4765 
4766 	if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4767 		ret = 1;
4768 
4769 	return (ret);
4770 }
4771 
4772 /*
4773  * Propagate feature set from one vfs to another
4774  */
4775 void
4776 vfs_propagate_features(vfs_t *from, vfs_t *to)
4777 {
4778 	int i;
4779 
4780 	if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4781 		return;
4782 
4783 	for (i = 1; i <= to->vfs_featureset[0]; i++) {
4784 		to->vfs_featureset[i] = from->vfs_featureset[i];
4785 	}
4786 }
4787 
4788 #define	LOFINODE_PATH "/dev/lofi/%d"
4789 
4790 /*
4791  * Return the vnode for the lofi node if there's a lofi mount in place.
4792  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4793  * failure.
4794  */
4795 int
4796 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4797 {
4798 	char *path = NULL;
4799 	int strsize;
4800 	int err;
4801 
4802 	if (vfsp->vfs_lofi_minor == 0) {
4803 		*vpp = NULL;
4804 		return (-1);
4805 	}
4806 
4807 	strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4808 	path = kmem_alloc(strsize + 1, KM_SLEEP);
4809 	(void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4810 
4811 	/*
4812 	 * We may be inside a zone, so we need to use the /dev path, but
4813 	 * it's created asynchronously, so we wait here.
4814 	 */
4815 	for (;;) {
4816 		err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4817 
4818 		if (err != ENOENT)
4819 			break;
4820 
4821 		if ((err = delay_sig(hz / 8)) == EINTR)
4822 			break;
4823 	}
4824 
4825 	if (err)
4826 		*vpp = NULL;
4827 
4828 	kmem_free(path, strsize + 1);
4829 	return (err);
4830 }
4831