xref: /titanic_50/usr/src/uts/common/fs/vfs.c (revision 24bb1048b1197ebc9afe761e4098573aeedfe8c9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
25  * Copyright 2017 RackTop Systems.
26  * Copyright 2016 Nexenta Systems, Inc.
27  */
28 
29 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
30 /*	  All Rights Reserved  	*/
31 
32 /*
33  * University Copyright- Copyright (c) 1982, 1986, 1988
34  * The Regents of the University of California
35  * All Rights Reserved
36  *
37  * University Acknowledgment- Portions of this document are derived from
38  * software developed by the University of California, Berkeley, and its
39  * contributors.
40  */
41 
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/errno.h>
46 #include <sys/user.h>
47 #include <sys/fstyp.h>
48 #include <sys/kmem.h>
49 #include <sys/systm.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/vfs.h>
53 #include <sys/vfs_opreg.h>
54 #include <sys/fem.h>
55 #include <sys/mntent.h>
56 #include <sys/stat.h>
57 #include <sys/statvfs.h>
58 #include <sys/statfs.h>
59 #include <sys/cred.h>
60 #include <sys/vnode.h>
61 #include <sys/rwstlock.h>
62 #include <sys/dnlc.h>
63 #include <sys/file.h>
64 #include <sys/time.h>
65 #include <sys/atomic.h>
66 #include <sys/cmn_err.h>
67 #include <sys/buf.h>
68 #include <sys/swap.h>
69 #include <sys/debug.h>
70 #include <sys/vnode.h>
71 #include <sys/modctl.h>
72 #include <sys/ddi.h>
73 #include <sys/pathname.h>
74 #include <sys/bootconf.h>
75 #include <sys/dumphdr.h>
76 #include <sys/dc_ki.h>
77 #include <sys/poll.h>
78 #include <sys/sunddi.h>
79 #include <sys/sysmacros.h>
80 #include <sys/zone.h>
81 #include <sys/policy.h>
82 #include <sys/ctfs.h>
83 #include <sys/objfs.h>
84 #include <sys/console.h>
85 #include <sys/reboot.h>
86 #include <sys/attr.h>
87 #include <sys/zio.h>
88 #include <sys/spa.h>
89 #include <sys/lofi.h>
90 #include <sys/bootprops.h>
91 #include <sys/avl.h>
92 
93 #include <vm/page.h>
94 
95 #include <fs/fs_subr.h>
96 /* Private interfaces to create vopstats-related data structures */
97 extern void		initialize_vopstats(vopstats_t *);
98 extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
99 extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
100 
101 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
102 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
103     const char *, int, int);
104 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
105 static void vfs_freemnttab(struct vfs *);
106 static void vfs_freeopt(mntopt_t *);
107 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
108 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
109 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
110 static void vfs_createopttbl_extend(mntopts_t *, const char *,
111     const mntopts_t *);
112 static char **vfs_copycancelopt_extend(char **const, int);
113 static void vfs_freecancelopt(char **);
114 static void getrootfs(char **, char **);
115 static int getmacpath(dev_info_t *, void *);
116 static void vfs_mnttabvp_setup(void);
117 
118 struct ipmnt {
119 	struct ipmnt	*mip_next;
120 	dev_t		mip_dev;
121 	struct vfs	*mip_vfsp;
122 };
123 
124 static kmutex_t		vfs_miplist_mutex;
125 static struct ipmnt	*vfs_miplist = NULL;
126 static struct ipmnt	*vfs_miplist_end = NULL;
127 
128 static kmem_cache_t *vfs_cache;	/* Pointer to VFS kmem cache */
129 
130 /*
131  * VFS global data.
132  */
133 vnode_t *rootdir;		/* pointer to root inode vnode. */
134 vnode_t *devicesdir;		/* pointer to inode of devices root */
135 vnode_t	*devdir;		/* pointer to inode of dev root */
136 
137 char *server_rootpath;		/* root path for diskless clients */
138 char *server_hostname;		/* hostname of diskless server */
139 
140 static struct vfs root;
141 static struct vfs devices;
142 static struct vfs dev;
143 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
144 avl_tree_t vfs_by_dev;		/* avl tree to index mounted VFSs by dev */
145 avl_tree_t vfs_by_mntpnt;	/* avl tree to index mounted VFSs by mntpnt */
146 uint64_t vfs_curr_mntix;	/* counter to provide a unique mntix for
147 				 * entries in the above avl trees.
148 				 * protected by vfslist lock */
149 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
150 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
151 				/* must be power of 2!	*/
152 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
153 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
154 char *vfs_dummyfstype = "\0";
155 struct pollhead vfs_pollhd;	/* for mnttab pollers */
156 struct vnode *vfs_mntdummyvp;	/* to fake mnttab read/write for file events */
157 int	mntfstype;		/* will be set once mnt fs is mounted */
158 
159 /*
160  * Table for generic options recognized in the VFS layer and acted
161  * on at this level before parsing file system specific options.
162  * The nosuid option is stronger than any of the devices and setuid
163  * options, so those are canceled when nosuid is seen.
164  *
165  * All options which are added here need to be added to the
166  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
167  */
168 /*
169  * VFS Mount options table
170  */
171 static char *ro_cancel[] = { MNTOPT_RW, NULL };
172 static char *rw_cancel[] = { MNTOPT_RO, NULL };
173 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
174 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
175     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
176 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
177 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
178 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
179 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
180 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
181 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
182 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
183 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
184 static char *follow_cancel[] = { MNTOPT_NOFOLLOW, NULL };
185 static char *nofollow_cancel[] = { MNTOPT_FOLLOW, NULL };
186 
187 static const mntopt_t mntopts[] = {
188 /*
189  *	option name		cancel options		default arg	flags
190  */
191 	{ MNTOPT_REMOUNT,	NULL,			NULL,
192 		MO_NODISPLAY, (void *)0 },
193 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
194 		(void *)0 },
195 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
196 		(void *)0 },
197 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
198 		(void *)0 },
199 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
200 		(void *)0 },
201 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
202 		(void *)0 },
203 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
204 		(void *)0 },
205 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
206 		(void *)0 },
207 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
208 		(void *)0 },
209 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
210 		(void *)0 },
211 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
212 		(void *)0 },
213 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
214 		(void *)0 },
215 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
216 		(void *)0 },
217 	{ MNTOPT_FOLLOW,	follow_cancel,		NULL,		0,
218 		(void *)0 },
219 	{ MNTOPT_NOFOLLOW,	nofollow_cancel,	NULL,		0,
220 		(void *)0 },
221 };
222 
223 const mntopts_t vfs_mntopts = {
224 	sizeof (mntopts) / sizeof (mntopt_t),
225 	(mntopt_t *)&mntopts[0]
226 };
227 
228 /*
229  * File system operation dispatch functions.
230  */
231 
232 int
233 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
234 {
235 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
236 }
237 
238 int
239 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
240 {
241 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
242 }
243 
244 int
245 fsop_root(vfs_t *vfsp, vnode_t **vpp)
246 {
247 	refstr_t *mntpt;
248 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
249 	/*
250 	 * Make sure this root has a path.  With lofs, it is possible to have
251 	 * a NULL mountpoint.
252 	 */
253 	if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
254 		mntpt = vfs_getmntpoint(vfsp);
255 		vn_setpath_str(*vpp, refstr_value(mntpt),
256 		    strlen(refstr_value(mntpt)));
257 		refstr_rele(mntpt);
258 	}
259 
260 	return (ret);
261 }
262 
263 int
264 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
265 {
266 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
267 }
268 
269 int
270 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
271 {
272 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
273 }
274 
275 int
276 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
277 {
278 	/*
279 	 * In order to handle system attribute fids in a manner
280 	 * transparent to the underlying fs, we embed the fid for
281 	 * the sysattr parent object in the sysattr fid and tack on
282 	 * some extra bytes that only the sysattr layer knows about.
283 	 *
284 	 * This guarantees that sysattr fids are larger than other fids
285 	 * for this vfs. If the vfs supports the sysattr view interface
286 	 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
287 	 * collision with XATTR_FIDSZ.
288 	 */
289 	if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
290 	    fidp->fid_len == XATTR_FIDSZ)
291 		return (xattr_dir_vget(vfsp, vpp, fidp));
292 
293 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
294 }
295 
296 int
297 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
298 {
299 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
300 }
301 
302 void
303 fsop_freefs(vfs_t *vfsp)
304 {
305 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
306 }
307 
308 int
309 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
310 {
311 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
312 }
313 
314 int
315 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
316 {
317 	ASSERT((fstype >= 0) && (fstype < nfstype));
318 
319 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
320 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
321 	else
322 		return (ENOTSUP);
323 }
324 
325 /*
326  * File system initialization.  vfs_setfsops() must be called from a file
327  * system's init routine.
328  */
329 
330 static int
331 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
332     int *unused_ops)
333 {
334 	static const fs_operation_trans_def_t vfs_ops_table[] = {
335 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
336 			fs_nosys, fs_nosys,
337 
338 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
339 			fs_nosys, fs_nosys,
340 
341 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
342 			fs_nosys, fs_nosys,
343 
344 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
345 			fs_nosys, fs_nosys,
346 
347 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
348 			(fs_generic_func_p) fs_sync,
349 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
350 
351 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
352 			fs_nosys, fs_nosys,
353 
354 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
355 			fs_nosys, fs_nosys,
356 
357 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
358 			(fs_generic_func_p)fs_freevfs,
359 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
360 
361 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
362 			(fs_generic_func_p)fs_nosys,
363 			(fs_generic_func_p)fs_nosys,
364 
365 		NULL, 0, NULL, NULL
366 	};
367 
368 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
369 }
370 
371 void
372 zfs_boot_init() {
373 
374 	if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
375 		spa_boot_init();
376 }
377 
378 int
379 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
380 {
381 	int error;
382 	int unused_ops;
383 
384 	/*
385 	 * Verify that fstype refers to a valid fs.  Note that
386 	 * 0 is valid since it's used to set "stray" ops.
387 	 */
388 	if ((fstype < 0) || (fstype >= nfstype))
389 		return (EINVAL);
390 
391 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
392 		return (EINVAL);
393 
394 	/* Set up the operations vector. */
395 
396 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
397 
398 	if (error != 0)
399 		return (error);
400 
401 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
402 
403 	if (actual != NULL)
404 		*actual = &vfssw[fstype].vsw_vfsops;
405 
406 #if DEBUG
407 	if (unused_ops != 0)
408 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
409 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
410 #endif
411 
412 	return (0);
413 }
414 
415 int
416 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
417 {
418 	int error;
419 	int unused_ops;
420 
421 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
422 
423 	error = fs_copyfsops(template, *actual, &unused_ops);
424 	if (error != 0) {
425 		kmem_free(*actual, sizeof (vfsops_t));
426 		*actual = NULL;
427 		return (error);
428 	}
429 
430 	return (0);
431 }
432 
433 /*
434  * Free a vfsops structure created as a result of vfs_makefsops().
435  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
436  * vfs_freevfsops_by_type().
437  */
438 void
439 vfs_freevfsops(vfsops_t *vfsops)
440 {
441 	kmem_free(vfsops, sizeof (vfsops_t));
442 }
443 
444 /*
445  * Since the vfsops structure is part of the vfssw table and wasn't
446  * really allocated, we're not really freeing anything.  We keep
447  * the name for consistency with vfs_freevfsops().  We do, however,
448  * need to take care of a little bookkeeping.
449  * NOTE: For a vfsops structure created by vfs_setfsops(), use
450  * vfs_freevfsops_by_type().
451  */
452 int
453 vfs_freevfsops_by_type(int fstype)
454 {
455 
456 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
457 	if ((fstype <= 0) || (fstype >= nfstype))
458 		return (EINVAL);
459 
460 	WLOCK_VFSSW();
461 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
462 		WUNLOCK_VFSSW();
463 		return (EINVAL);
464 	}
465 
466 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
467 	WUNLOCK_VFSSW();
468 
469 	return (0);
470 }
471 
472 /* Support routines used to reference vfs_op */
473 
474 /* Set the operations vector for a vfs */
475 void
476 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
477 {
478 	vfsops_t	*op;
479 
480 	ASSERT(vfsp != NULL);
481 	ASSERT(vfsops != NULL);
482 
483 	op = vfsp->vfs_op;
484 	membar_consumer();
485 	if (vfsp->vfs_femhead == NULL &&
486 	    atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
487 		return;
488 	}
489 	fsem_setvfsops(vfsp, vfsops);
490 }
491 
492 /* Retrieve the operations vector for a vfs */
493 vfsops_t *
494 vfs_getops(vfs_t *vfsp)
495 {
496 	vfsops_t	*op;
497 
498 	ASSERT(vfsp != NULL);
499 
500 	op = vfsp->vfs_op;
501 	membar_consumer();
502 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
503 		return (op);
504 	} else {
505 		return (fsem_getvfsops(vfsp));
506 	}
507 }
508 
509 /*
510  * Returns non-zero (1) if the vfsops matches that of the vfs.
511  * Returns zero (0) if not.
512  */
513 int
514 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
515 {
516 	return (vfs_getops(vfsp) == vfsops);
517 }
518 
519 /*
520  * Returns non-zero (1) if the file system has installed a non-default,
521  * non-error vfs_sync routine.  Returns zero (0) otherwise.
522  */
523 int
524 vfs_can_sync(vfs_t *vfsp)
525 {
526 	/* vfs_sync() routine is not the default/error function */
527 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
528 }
529 
530 /*
531  * Initialize a vfs structure.
532  */
533 void
534 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
535 {
536 	/* Other initialization has been moved to vfs_alloc() */
537 	vfsp->vfs_count = 0;
538 	vfsp->vfs_next = vfsp;
539 	vfsp->vfs_prev = vfsp;
540 	vfsp->vfs_zone_next = vfsp;
541 	vfsp->vfs_zone_prev = vfsp;
542 	vfsp->vfs_lofi_minor = 0;
543 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
544 	vfsimpl_setup(vfsp);
545 	vfsp->vfs_data = (data);
546 	vfs_setops((vfsp), (op));
547 }
548 
549 /*
550  * Allocate and initialize the vfs implementation private data
551  * structure, vfs_impl_t.
552  */
553 void
554 vfsimpl_setup(vfs_t *vfsp)
555 {
556 	int i;
557 
558 	if (vfsp->vfs_implp != NULL) {
559 		return;
560 	}
561 
562 	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
563 	/* Note that these are #define'd in vfs.h */
564 	vfsp->vfs_vskap = NULL;
565 	vfsp->vfs_fstypevsp = NULL;
566 
567 	/* Set size of counted array, then zero the array */
568 	vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
569 	for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
570 		vfsp->vfs_featureset[i] = 0;
571 	}
572 }
573 
574 /*
575  * Release the vfs_impl_t structure, if it exists. Some unbundled
576  * filesystems may not use the newer version of vfs and thus
577  * would not contain this implementation private data structure.
578  */
579 void
580 vfsimpl_teardown(vfs_t *vfsp)
581 {
582 	vfs_impl_t	*vip = vfsp->vfs_implp;
583 
584 	if (vip == NULL)
585 		return;
586 
587 	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
588 	vfsp->vfs_implp = NULL;
589 }
590 
591 /*
592  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
593  * fstatvfs, and sysfs moved to common/syscall.
594  */
595 
596 /*
597  * Update every mounted file system.  We call the vfs_sync operation of
598  * each file system type, passing it a NULL vfsp to indicate that all
599  * mounted file systems of that type should be updated.
600  */
601 void
602 vfs_sync(int flag)
603 {
604 	struct vfssw *vswp;
605 	RLOCK_VFSSW();
606 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
607 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
608 			vfs_refvfssw(vswp);
609 			RUNLOCK_VFSSW();
610 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
611 			    CRED());
612 			vfs_unrefvfssw(vswp);
613 			RLOCK_VFSSW();
614 		}
615 	}
616 	RUNLOCK_VFSSW();
617 }
618 
619 void
620 sync(void)
621 {
622 	vfs_sync(0);
623 }
624 
625 /*
626  * compare function for vfs_by_dev avl tree. compare dev first, then mntix
627  */
628 static int
629 vfs_cmp_dev(const void *aa, const void *bb)
630 {
631 	const vfs_t *a = aa;
632 	const vfs_t *b = bb;
633 
634 	if (a->vfs_dev < b->vfs_dev)
635 		return (-1);
636 	if (a->vfs_dev > b->vfs_dev)
637 		return (1);
638 	if (a->vfs_mntix < b->vfs_mntix)
639 		return (-1);
640 	if (a->vfs_mntix > b->vfs_mntix)
641 		return (1);
642 	return (0);
643 }
644 
645 /*
646  * compare function for vfs_by_mntpnt avl tree. compare mntpnt first, then mntix
647  */
648 static int
649 vfs_cmp_mntpnt(const void *aa, const void *bb)
650 {
651 	const vfs_t *a = aa;
652 	const vfs_t *b = bb;
653 	int ret;
654 
655 	ret = strcmp(refstr_value(a->vfs_mntpt), refstr_value(b->vfs_mntpt));
656 	if (ret < 0)
657 		return (-1);
658 	if (ret > 0)
659 		return (1);
660 	if (a->vfs_mntix < b->vfs_mntix)
661 		return (-1);
662 	if (a->vfs_mntix > b->vfs_mntix)
663 		return (1);
664 	return (0);
665 }
666 
667 /*
668  * External routines.
669  */
670 
671 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
672 
673 /*
674  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
675  * but otherwise should be accessed only via vfs_list_lock() and
676  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
677  */
678 static krwlock_t vfslist;
679 
680 /*
681  * Mount devfs on /devices. This is done right after root is mounted
682  * to provide device access support for the system
683  */
684 static void
685 vfs_mountdevices(void)
686 {
687 	struct vfssw *vsw;
688 	struct vnode *mvp;
689 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
690 		NULL,
691 		NULL,
692 		MS_SYSSPACE,
693 		NULL,
694 		NULL,
695 		0,
696 		NULL,
697 		0
698 	};
699 
700 	/*
701 	 * _init devfs module to fill in the vfssw
702 	 */
703 	if (modload("fs", "devfs") == -1)
704 		panic("Cannot _init devfs module");
705 
706 	/*
707 	 * Hold vfs
708 	 */
709 	RLOCK_VFSSW();
710 	vsw = vfs_getvfsswbyname("devfs");
711 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
712 	VFS_HOLD(&devices);
713 
714 	/*
715 	 * Locate mount point
716 	 */
717 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
718 		panic("Cannot find /devices");
719 
720 	/*
721 	 * Perform the mount of /devices
722 	 */
723 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
724 		panic("Cannot mount /devices");
725 
726 	RUNLOCK_VFSSW();
727 
728 	/*
729 	 * Set appropriate members and add to vfs list for mnttab display
730 	 */
731 	vfs_setresource(&devices, "/devices", 0);
732 	vfs_setmntpoint(&devices, "/devices", 0);
733 
734 	/*
735 	 * Hold the root of /devices so it won't go away
736 	 */
737 	if (VFS_ROOT(&devices, &devicesdir))
738 		panic("vfs_mountdevices: not devices root");
739 
740 	if (vfs_lock(&devices) != 0) {
741 		VN_RELE(devicesdir);
742 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
743 		return;
744 	}
745 
746 	if (vn_vfswlock(mvp) != 0) {
747 		vfs_unlock(&devices);
748 		VN_RELE(devicesdir);
749 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
750 		return;
751 	}
752 
753 	vfs_add(mvp, &devices, 0);
754 	vn_vfsunlock(mvp);
755 	vfs_unlock(&devices);
756 	VN_RELE(devicesdir);
757 }
758 
759 /*
760  * mount the first instance of /dev  to root and remain mounted
761  */
762 static void
763 vfs_mountdev1(void)
764 {
765 	struct vfssw *vsw;
766 	struct vnode *mvp;
767 	struct mounta mounta = {	/* fake mounta for sdev_mount() */
768 		NULL,
769 		NULL,
770 		MS_SYSSPACE | MS_OVERLAY,
771 		NULL,
772 		NULL,
773 		0,
774 		NULL,
775 		0
776 	};
777 
778 	/*
779 	 * _init dev module to fill in the vfssw
780 	 */
781 	if (modload("fs", "dev") == -1)
782 		cmn_err(CE_PANIC, "Cannot _init dev module\n");
783 
784 	/*
785 	 * Hold vfs
786 	 */
787 	RLOCK_VFSSW();
788 	vsw = vfs_getvfsswbyname("dev");
789 	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
790 	VFS_HOLD(&dev);
791 
792 	/*
793 	 * Locate mount point
794 	 */
795 	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
796 		cmn_err(CE_PANIC, "Cannot find /dev\n");
797 
798 	/*
799 	 * Perform the mount of /dev
800 	 */
801 	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
802 		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
803 
804 	RUNLOCK_VFSSW();
805 
806 	/*
807 	 * Set appropriate members and add to vfs list for mnttab display
808 	 */
809 	vfs_setresource(&dev, "/dev", 0);
810 	vfs_setmntpoint(&dev, "/dev", 0);
811 
812 	/*
813 	 * Hold the root of /dev so it won't go away
814 	 */
815 	if (VFS_ROOT(&dev, &devdir))
816 		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
817 
818 	if (vfs_lock(&dev) != 0) {
819 		VN_RELE(devdir);
820 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
821 		return;
822 	}
823 
824 	if (vn_vfswlock(mvp) != 0) {
825 		vfs_unlock(&dev);
826 		VN_RELE(devdir);
827 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
828 		return;
829 	}
830 
831 	vfs_add(mvp, &dev, 0);
832 	vn_vfsunlock(mvp);
833 	vfs_unlock(&dev);
834 	VN_RELE(devdir);
835 }
836 
837 /*
838  * Mount required filesystem. This is done right after root is mounted.
839  */
840 static void
841 vfs_mountfs(char *module, char *spec, char *path)
842 {
843 	struct vnode *mvp;
844 	struct mounta mounta;
845 	vfs_t *vfsp;
846 
847 	bzero(&mounta, sizeof (mounta));
848 	mounta.flags = MS_SYSSPACE | MS_DATA;
849 	mounta.fstype = module;
850 	mounta.spec = spec;
851 	mounta.dir = path;
852 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
853 		cmn_err(CE_WARN, "Cannot find %s", path);
854 		return;
855 	}
856 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
857 		cmn_err(CE_WARN, "Cannot mount %s", path);
858 	else
859 		VFS_RELE(vfsp);
860 	VN_RELE(mvp);
861 }
862 
863 /*
864  * vfs_mountroot is called by main() to mount the root filesystem.
865  */
866 void
867 vfs_mountroot(void)
868 {
869 	struct vnode	*rvp = NULL;
870 	char		*path;
871 	size_t		plen;
872 	struct vfssw	*vswp;
873 	proc_t		*p;
874 
875 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
876 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
877 
878 	/*
879 	 * Alloc the avl trees for quick indexing via dev and mountpoint
880 	 */
881 	avl_create(&vfs_by_dev, vfs_cmp_dev, sizeof(vfs_t),
882 	    offsetof(vfs_t, vfs_avldev));
883 	avl_create(&vfs_by_mntpnt, vfs_cmp_mntpnt, sizeof(vfs_t),
884 	    offsetof(vfs_t, vfs_avlmntpnt));
885 
886 	/*
887 	 * Alloc the vfs hash bucket array and locks
888 	 */
889 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
890 
891 	/*
892 	 * Call machine-dependent routine "rootconf" to choose a root
893 	 * file system type.
894 	 */
895 	if (rootconf())
896 		panic("vfs_mountroot: cannot mount root");
897 	/*
898 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
899 	 * to point to it.  These are used by lookuppn() so that it
900 	 * knows where to start from ('/' or '.').
901 	 */
902 	vfs_setmntpoint(rootvfs, "/", 0);
903 	if (VFS_ROOT(rootvfs, &rootdir))
904 		panic("vfs_mountroot: no root vnode");
905 
906 	/*
907 	 * At this point, the process tree consists of p0 and possibly some
908 	 * direct children of p0.  (i.e. there are no grandchildren)
909 	 *
910 	 * Walk through them all, setting their current directory.
911 	 */
912 	mutex_enter(&pidlock);
913 	for (p = practive; p != NULL; p = p->p_next) {
914 		ASSERT(p == &p0 || p->p_parent == &p0);
915 
916 		PTOU(p)->u_cdir = rootdir;
917 		VN_HOLD(PTOU(p)->u_cdir);
918 		PTOU(p)->u_rdir = NULL;
919 	}
920 	mutex_exit(&pidlock);
921 
922 	/*
923 	 * Setup the global zone's rootvp, now that it exists.
924 	 */
925 	global_zone->zone_rootvp = rootdir;
926 	VN_HOLD(global_zone->zone_rootvp);
927 
928 	/*
929 	 * Notify the module code that it can begin using the
930 	 * root filesystem instead of the boot program's services.
931 	 */
932 	modrootloaded = 1;
933 
934 	/*
935 	 * Special handling for a ZFS root file system.
936 	 */
937 	zfs_boot_init();
938 
939 	/*
940 	 * Set up mnttab information for root
941 	 */
942 	vfs_setresource(rootvfs, rootfs.bo_name, 0);
943 
944 	/*
945 	 * Notify cluster software that the root filesystem is available.
946 	 */
947 	clboot_mountroot();
948 
949 	/* Now that we're all done with the root FS, set up its vopstats */
950 	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
951 		/* Set flag for statistics collection */
952 		if (vswp->vsw_flag & VSW_STATS) {
953 			initialize_vopstats(&rootvfs->vfs_vopstats);
954 			rootvfs->vfs_flag |= VFS_STATS;
955 			rootvfs->vfs_fstypevsp =
956 			    get_fstype_vopstats(rootvfs, vswp);
957 			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
958 		}
959 		vfs_unrefvfssw(vswp);
960 	}
961 
962 	/*
963 	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
964 	 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
965 	 */
966 	vfs_mountdevices();
967 	vfs_mountdev1();
968 
969 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
970 	vfs_mountfs("proc", "/proc", "/proc");
971 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
972 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
973 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
974 	vfs_mountfs("bootfs", "bootfs", "/system/boot");
975 
976 	if (getzoneid() == GLOBAL_ZONEID) {
977 		vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
978 	}
979 
980 	if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
981 		/*
982 		 * Look up the root device via devfs so that a dv_node is
983 		 * created for it. The vnode is never VN_RELE()ed.
984 		 * We allocate more than MAXPATHLEN so that the
985 		 * buffer passed to i_ddi_prompath_to_devfspath() is
986 		 * exactly MAXPATHLEN (the function expects a buffer
987 		 * of that length).
988 		 */
989 		plen = strlen("/devices");
990 		path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
991 		(void) strcpy(path, "/devices");
992 
993 		if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
994 		    != DDI_SUCCESS ||
995 		    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
996 
997 			/* NUL terminate in case "path" has garbage */
998 			path[plen + MAXPATHLEN - 1] = '\0';
999 #ifdef	DEBUG
1000 			cmn_err(CE_WARN, "!Cannot lookup root device: %s",
1001 			    path);
1002 #endif
1003 		}
1004 		kmem_free(path, plen + MAXPATHLEN);
1005 	}
1006 
1007 	vfs_mnttabvp_setup();
1008 }
1009 
1010 /*
1011  * Check to see if our "block device" is actually a file.  If so,
1012  * automatically add a lofi device, and keep track of this fact.
1013  */
1014 static int
1015 lofi_add(const char *fsname, struct vfs *vfsp,
1016     mntopts_t *mntopts, struct mounta *uap)
1017 {
1018 	int fromspace = (uap->flags & MS_SYSSPACE) ?
1019 	    UIO_SYSSPACE : UIO_USERSPACE;
1020 	struct lofi_ioctl *li = NULL;
1021 	struct vnode *vp = NULL;
1022 	struct pathname	pn = { NULL };
1023 	ldi_ident_t ldi_id;
1024 	ldi_handle_t ldi_hdl;
1025 	vfssw_t *vfssw;
1026 	int minor;
1027 	int err = 0;
1028 
1029 	if ((vfssw = vfs_getvfssw(fsname)) == NULL)
1030 		return (0);
1031 
1032 	if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
1033 		vfs_unrefvfssw(vfssw);
1034 		return (0);
1035 	}
1036 
1037 	vfs_unrefvfssw(vfssw);
1038 	vfssw = NULL;
1039 
1040 	if (pn_get(uap->spec, fromspace, &pn) != 0)
1041 		return (0);
1042 
1043 	if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1044 		goto out;
1045 
1046 	if (vp->v_type != VREG)
1047 		goto out;
1048 
1049 	/* OK, this is a lofi mount. */
1050 
1051 	if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1052 	    vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1053 	    vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1054 	    vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1055 		err = EINVAL;
1056 		goto out;
1057 	}
1058 
1059 	ldi_id = ldi_ident_from_anon();
1060 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1061 	(void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1062 
1063 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1064 	    &ldi_hdl, ldi_id);
1065 
1066 	if (err)
1067 		goto out2;
1068 
1069 	err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1070 	    FREAD | FWRITE | FKIOCTL, kcred, &minor);
1071 
1072 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1073 
1074 	if (!err)
1075 		vfsp->vfs_lofi_minor = minor;
1076 
1077 out2:
1078 	ldi_ident_release(ldi_id);
1079 out:
1080 	if (li != NULL)
1081 		kmem_free(li, sizeof (*li));
1082 	if (vp != NULL)
1083 		VN_RELE(vp);
1084 	pn_free(&pn);
1085 	return (err);
1086 }
1087 
1088 static void
1089 lofi_remove(struct vfs *vfsp)
1090 {
1091 	struct lofi_ioctl *li = NULL;
1092 	ldi_ident_t ldi_id;
1093 	ldi_handle_t ldi_hdl;
1094 	int err;
1095 
1096 	if (vfsp->vfs_lofi_minor == 0)
1097 		return;
1098 
1099 	ldi_id = ldi_ident_from_anon();
1100 
1101 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1102 	li->li_minor = vfsp->vfs_lofi_minor;
1103 	li->li_cleanup = B_TRUE;
1104 
1105 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1106 	    &ldi_hdl, ldi_id);
1107 
1108 	if (err)
1109 		goto out;
1110 
1111 	err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1112 	    FREAD | FWRITE | FKIOCTL, kcred, NULL);
1113 
1114 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1115 
1116 	if (!err)
1117 		vfsp->vfs_lofi_minor = 0;
1118 
1119 out:
1120 	ldi_ident_release(ldi_id);
1121 	if (li != NULL)
1122 		kmem_free(li, sizeof (*li));
1123 }
1124 
1125 /*
1126  * Common mount code.  Called from the system call entry point, from autofs,
1127  * nfsv4 trigger mounts, and from pxfs.
1128  *
1129  * Takes the effective file system type, mount arguments, the mount point
1130  * vnode, flags specifying whether the mount is a remount and whether it
1131  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1132  * parameter with the mounted file system instance's vfs.
1133  *
1134  * Note that the effective file system type is specified as a string.  It may
1135  * be null, in which case it's determined from the mount arguments, and may
1136  * differ from the type specified in the mount arguments; this is a hook to
1137  * allow interposition when instantiating file system instances.
1138  *
1139  * The caller is responsible for releasing its own hold on the mount point
1140  * vp (this routine does its own hold when necessary).
1141  * Also note that for remounts, the mount point vp should be the vnode for
1142  * the root of the file system rather than the vnode that the file system
1143  * is mounted on top of.
1144  */
1145 int
1146 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1147 	struct vfs **vfspp)
1148 {
1149 	struct vfssw	*vswp;
1150 	vfsops_t	*vfsops;
1151 	struct vfs	*vfsp;
1152 	struct vnode	*bvp;
1153 	dev_t		bdev = 0;
1154 	mntopts_t	mnt_mntopts;
1155 	int		error = 0;
1156 	int		copyout_error = 0;
1157 	int		ovflags;
1158 	char		*opts = uap->optptr;
1159 	char		*inargs = opts;
1160 	int		optlen = uap->optlen;
1161 	int		remount;
1162 	int		rdonly;
1163 	int		nbmand = 0;
1164 	int		delmip = 0;
1165 	int		addmip = 0;
1166 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
1167 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
1168 	    UIO_SYSSPACE : UIO_USERSPACE;
1169 	char		*resource = NULL, *mountpt = NULL;
1170 	refstr_t	*oldresource, *oldmntpt;
1171 	struct pathname	pn, rpn;
1172 	vsk_anchor_t	*vskap;
1173 	char fstname[FSTYPSZ];
1174 	zone_t		*zone;
1175 
1176 	/*
1177 	 * The v_flag value for the mount point vp is permanently set
1178 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1179 	 * for mount point locking.
1180 	 */
1181 	mutex_enter(&vp->v_lock);
1182 	vp->v_flag |= VVFSLOCK;
1183 	mutex_exit(&vp->v_lock);
1184 
1185 	mnt_mntopts.mo_count = 0;
1186 	/*
1187 	 * Find the ops vector to use to invoke the file system-specific mount
1188 	 * method.  If the fsname argument is non-NULL, use it directly.
1189 	 * Otherwise, dig the file system type information out of the mount
1190 	 * arguments.
1191 	 *
1192 	 * A side effect is to hold the vfssw entry.
1193 	 *
1194 	 * Mount arguments can be specified in several ways, which are
1195 	 * distinguished by flag bit settings.  The preferred way is to set
1196 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1197 	 * type supplied as a character string and the last two arguments
1198 	 * being a pointer to a character buffer and the size of the buffer.
1199 	 * On entry, the buffer holds a null terminated list of options; on
1200 	 * return, the string is the list of options the file system
1201 	 * recognized. If MS_DATA is set arguments five and six point to a
1202 	 * block of binary data which the file system interprets.
1203 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1204 	 * consistently with these conventions.  To handle them, we check to
1205 	 * see whether the pointer to the file system name has a numeric value
1206 	 * less than 256.  If so, we treat it as an index.
1207 	 */
1208 	if (fsname != NULL) {
1209 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1210 			return (EINVAL);
1211 		}
1212 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1213 		size_t n;
1214 		uint_t fstype;
1215 
1216 		fsname = fstname;
1217 
1218 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1219 			RLOCK_VFSSW();
1220 			if (fstype == 0 || fstype >= nfstype ||
1221 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1222 				RUNLOCK_VFSSW();
1223 				return (EINVAL);
1224 			}
1225 			(void) strcpy(fsname, vfssw[fstype].vsw_name);
1226 			RUNLOCK_VFSSW();
1227 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1228 				return (EINVAL);
1229 		} else {
1230 			/*
1231 			 * Handle either kernel or user address space.
1232 			 */
1233 			if (uap->flags & MS_SYSSPACE) {
1234 				error = copystr(uap->fstype, fsname,
1235 				    FSTYPSZ, &n);
1236 			} else {
1237 				error = copyinstr(uap->fstype, fsname,
1238 				    FSTYPSZ, &n);
1239 			}
1240 			if (error) {
1241 				if (error == ENAMETOOLONG)
1242 					return (EINVAL);
1243 				return (error);
1244 			}
1245 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1246 				return (EINVAL);
1247 		}
1248 	} else {
1249 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1250 			return (EINVAL);
1251 		fsname = vswp->vsw_name;
1252 	}
1253 	if (!VFS_INSTALLED(vswp))
1254 		return (EINVAL);
1255 
1256 	if ((error = secpolicy_fs_allowed_mount(fsname)) != 0)  {
1257 		vfs_unrefvfssw(vswp);
1258 		return (error);
1259 	}
1260 
1261 	vfsops = &vswp->vsw_vfsops;
1262 
1263 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1264 	/*
1265 	 * Fetch mount options and parse them for generic vfs options
1266 	 */
1267 	if (uap->flags & MS_OPTIONSTR) {
1268 		/*
1269 		 * Limit the buffer size
1270 		 */
1271 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1272 			error = EINVAL;
1273 			goto errout;
1274 		}
1275 		if ((uap->flags & MS_SYSSPACE) == 0) {
1276 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1277 			inargs[0] = '\0';
1278 			if (optlen) {
1279 				error = copyinstr(opts, inargs, (size_t)optlen,
1280 				    NULL);
1281 				if (error) {
1282 					goto errout;
1283 				}
1284 			}
1285 		}
1286 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1287 	}
1288 	/*
1289 	 * Flag bits override the options string.
1290 	 */
1291 	if (uap->flags & MS_REMOUNT)
1292 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1293 	if (uap->flags & MS_RDONLY)
1294 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1295 	if (uap->flags & MS_NOSUID)
1296 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1297 
1298 	/*
1299 	 * Check if this is a remount; must be set in the option string and
1300 	 * the file system must support a remount option.
1301 	 */
1302 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1303 	    MNTOPT_REMOUNT, NULL)) {
1304 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1305 			error = ENOTSUP;
1306 			goto errout;
1307 		}
1308 		uap->flags |= MS_REMOUNT;
1309 	}
1310 
1311 	/*
1312 	 * uap->flags and vfs_optionisset() should agree.
1313 	 */
1314 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1315 		uap->flags |= MS_RDONLY;
1316 	}
1317 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1318 		uap->flags |= MS_NOSUID;
1319 	}
1320 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1321 	ASSERT(splice || !remount);
1322 	/*
1323 	 * If we are splicing the fs into the namespace,
1324 	 * perform mount point checks.
1325 	 *
1326 	 * We want to resolve the path for the mount point to eliminate
1327 	 * '.' and ".." and symlinks in mount points; we can't do the
1328 	 * same for the resource string, since it would turn
1329 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1330 	 * this before grabbing vn_vfswlock(), because otherwise we
1331 	 * would deadlock with lookuppn().
1332 	 */
1333 	if (splice) {
1334 		ASSERT(vp->v_count > 0);
1335 
1336 		/*
1337 		 * Pick up mount point and device from appropriate space.
1338 		 */
1339 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1340 			resource = kmem_alloc(pn.pn_pathlen + 1,
1341 			    KM_SLEEP);
1342 			(void) strcpy(resource, pn.pn_path);
1343 			pn_free(&pn);
1344 		}
1345 		/*
1346 		 * Do a lookupname prior to taking the
1347 		 * writelock. Mark this as completed if
1348 		 * successful for later cleanup and addition to
1349 		 * the mount in progress table.
1350 		 */
1351 		if ((uap->flags & MS_GLOBAL) == 0 &&
1352 		    lookupname(uap->spec, fromspace,
1353 		    FOLLOW, NULL, &bvp) == 0) {
1354 			addmip = 1;
1355 		}
1356 
1357 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1358 			pathname_t *pnp;
1359 
1360 			if (*pn.pn_path != '/') {
1361 				error = EINVAL;
1362 				pn_free(&pn);
1363 				goto errout;
1364 			}
1365 			pn_alloc(&rpn);
1366 			/*
1367 			 * Kludge to prevent autofs from deadlocking with
1368 			 * itself when it calls domount().
1369 			 *
1370 			 * If autofs is calling, it is because it is doing
1371 			 * (autofs) mounts in the process of an NFS mount.  A
1372 			 * lookuppn() here would cause us to block waiting for
1373 			 * said NFS mount to complete, which can't since this
1374 			 * is the thread that was supposed to doing it.
1375 			 */
1376 			if (fromspace == UIO_USERSPACE) {
1377 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1378 				    NULL)) == 0) {
1379 					pnp = &rpn;
1380 				} else {
1381 					/*
1382 					 * The file disappeared or otherwise
1383 					 * became inaccessible since we opened
1384 					 * it; might as well fail the mount
1385 					 * since the mount point is no longer
1386 					 * accessible.
1387 					 */
1388 					pn_free(&rpn);
1389 					pn_free(&pn);
1390 					goto errout;
1391 				}
1392 			} else {
1393 				pnp = &pn;
1394 			}
1395 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1396 			(void) strcpy(mountpt, pnp->pn_path);
1397 
1398 			/*
1399 			 * If the addition of the zone's rootpath
1400 			 * would push us over a total path length
1401 			 * of MAXPATHLEN, we fail the mount with
1402 			 * ENAMETOOLONG, which is what we would have
1403 			 * gotten if we were trying to perform the same
1404 			 * mount in the global zone.
1405 			 *
1406 			 * strlen() doesn't count the trailing
1407 			 * '\0', but zone_rootpathlen counts both a
1408 			 * trailing '/' and the terminating '\0'.
1409 			 */
1410 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1411 			    strlen(mountpt)) > MAXPATHLEN ||
1412 			    (resource != NULL &&
1413 			    (curproc->p_zone->zone_rootpathlen - 1 +
1414 			    strlen(resource)) > MAXPATHLEN)) {
1415 				error = ENAMETOOLONG;
1416 			}
1417 
1418 			pn_free(&rpn);
1419 			pn_free(&pn);
1420 		}
1421 
1422 		if (error)
1423 			goto errout;
1424 
1425 		/*
1426 		 * Prevent path name resolution from proceeding past
1427 		 * the mount point.
1428 		 */
1429 		if (vn_vfswlock(vp) != 0) {
1430 			error = EBUSY;
1431 			goto errout;
1432 		}
1433 
1434 		/*
1435 		 * Verify that it's legitimate to establish a mount on
1436 		 * the prospective mount point.
1437 		 */
1438 		if (vn_mountedvfs(vp) != NULL) {
1439 			/*
1440 			 * The mount point lock was obtained after some
1441 			 * other thread raced through and established a mount.
1442 			 */
1443 			vn_vfsunlock(vp);
1444 			error = EBUSY;
1445 			goto errout;
1446 		}
1447 		if (vp->v_flag & VNOMOUNT) {
1448 			vn_vfsunlock(vp);
1449 			error = EINVAL;
1450 			goto errout;
1451 		}
1452 	}
1453 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1454 		uap->dataptr = NULL;
1455 		uap->datalen = 0;
1456 	}
1457 
1458 	/*
1459 	 * If this is a remount, we don't want to create a new VFS.
1460 	 * Instead, we pass the existing one with a remount flag.
1461 	 */
1462 	if (remount) {
1463 		/*
1464 		 * Confirm that the mount point is the root vnode of the
1465 		 * file system that is being remounted.
1466 		 * This can happen if the user specifies a different
1467 		 * mount point directory pathname in the (re)mount command.
1468 		 *
1469 		 * Code below can only be reached if splice is true, so it's
1470 		 * safe to do vn_vfsunlock() here.
1471 		 */
1472 		if ((vp->v_flag & VROOT) == 0) {
1473 			vn_vfsunlock(vp);
1474 			error = ENOENT;
1475 			goto errout;
1476 		}
1477 		/*
1478 		 * Disallow making file systems read-only unless file system
1479 		 * explicitly allows it in its vfssw.  Ignore other flags.
1480 		 */
1481 		if (rdonly && vn_is_readonly(vp) == 0 &&
1482 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1483 			vn_vfsunlock(vp);
1484 			error = EINVAL;
1485 			goto errout;
1486 		}
1487 		/*
1488 		 * Disallow changing the NBMAND disposition of the file
1489 		 * system on remounts.
1490 		 */
1491 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1492 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1493 			vn_vfsunlock(vp);
1494 			error = EINVAL;
1495 			goto errout;
1496 		}
1497 		vfsp = vp->v_vfsp;
1498 		ovflags = vfsp->vfs_flag;
1499 		vfsp->vfs_flag |= VFS_REMOUNT;
1500 		vfsp->vfs_flag &= ~VFS_RDONLY;
1501 	} else {
1502 		vfsp = vfs_alloc(KM_SLEEP);
1503 		VFS_INIT(vfsp, vfsops, NULL);
1504 	}
1505 
1506 	VFS_HOLD(vfsp);
1507 
1508 	if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1509 		if (!remount) {
1510 			if (splice)
1511 				vn_vfsunlock(vp);
1512 			vfs_free(vfsp);
1513 		} else {
1514 			vn_vfsunlock(vp);
1515 			VFS_RELE(vfsp);
1516 		}
1517 		goto errout;
1518 	}
1519 
1520 	/*
1521 	 * PRIV_SYS_MOUNT doesn't mean you can become root.
1522 	 */
1523 	if (vfsp->vfs_lofi_minor != 0) {
1524 		uap->flags |= MS_NOSUID;
1525 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1526 	}
1527 
1528 	/*
1529 	 * The vfs_reflock is not used anymore the code below explicitly
1530 	 * holds it preventing others accesing it directly.
1531 	 */
1532 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1533 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1534 		cmn_err(CE_WARN,
1535 		    "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1536 
1537 	/*
1538 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1539 	 * failures that happen as a side-effect of fsflush() and other mount
1540 	 * and unmount operations that might be going on simultaneously and
1541 	 * may have locked the vfs currently. To not return EBUSY immediately
1542 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1543 	 */
1544 	if (!remount) {
1545 		if (error = vfs_lock(vfsp)) {
1546 			vfsp->vfs_flag = ovflags;
1547 
1548 			lofi_remove(vfsp);
1549 
1550 			if (splice)
1551 				vn_vfsunlock(vp);
1552 			vfs_free(vfsp);
1553 			goto errout;
1554 		}
1555 	} else {
1556 		vfs_lock_wait(vfsp);
1557 	}
1558 
1559 	/*
1560 	 * Add device to mount in progress table, global mounts require special
1561 	 * handling. It is possible that we have already done the lookupname
1562 	 * on a spliced, non-global fs. If so, we don't want to do it again
1563 	 * since we cannot do a lookupname after taking the
1564 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1565 	 */
1566 	if (!addmip) {
1567 		if ((uap->flags & MS_GLOBAL) == 0 &&
1568 		    lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1569 			addmip = 1;
1570 		}
1571 	}
1572 
1573 	if (addmip) {
1574 		vnode_t *lvp = NULL;
1575 
1576 		error = vfs_get_lofi(vfsp, &lvp);
1577 		if (error > 0) {
1578 			lofi_remove(vfsp);
1579 
1580 			if (splice)
1581 				vn_vfsunlock(vp);
1582 			vfs_unlock(vfsp);
1583 
1584 			if (remount) {
1585 				VFS_RELE(vfsp);
1586 			} else {
1587 				vfs_free(vfsp);
1588 			}
1589 
1590 			goto errout;
1591 		} else if (error == -1) {
1592 			bdev = bvp->v_rdev;
1593 			VN_RELE(bvp);
1594 		} else {
1595 			bdev = lvp->v_rdev;
1596 			VN_RELE(lvp);
1597 			VN_RELE(bvp);
1598 		}
1599 
1600 		vfs_addmip(bdev, vfsp);
1601 		addmip = 0;
1602 		delmip = 1;
1603 	}
1604 	/*
1605 	 * Invalidate cached entry for the mount point.
1606 	 */
1607 	if (splice)
1608 		dnlc_purge_vp(vp);
1609 
1610 	/*
1611 	 * If have an option string but the filesystem doesn't supply a
1612 	 * prototype options table, create a table with the global
1613 	 * options and sufficient room to accept all the options in the
1614 	 * string.  Then parse the passed in option string
1615 	 * accepting all the options in the string.  This gives us an
1616 	 * option table with all the proper cancel properties for the
1617 	 * global options.
1618 	 *
1619 	 * Filesystems that supply a prototype options table are handled
1620 	 * earlier in this function.
1621 	 */
1622 	if (uap->flags & MS_OPTIONSTR) {
1623 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1624 			mntopts_t tmp_mntopts;
1625 
1626 			tmp_mntopts.mo_count = 0;
1627 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1628 			    &mnt_mntopts);
1629 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1630 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1631 			vfs_freeopttbl(&tmp_mntopts);
1632 		}
1633 	}
1634 
1635 	/*
1636 	 * Serialize with zone state transitions.
1637 	 * See vfs_list_add; zone mounted into is:
1638 	 * 	zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1639 	 * not the zone doing the mount (curproc->p_zone), but if we're already
1640 	 * inside a NGZ, then we know what zone we are.
1641 	 */
1642 	if (INGLOBALZONE(curproc)) {
1643 		zone = zone_find_by_path(mountpt);
1644 		ASSERT(zone != NULL);
1645 	} else {
1646 		zone = curproc->p_zone;
1647 		/*
1648 		 * zone_find_by_path does a hold, so do one here too so that
1649 		 * we can do a zone_rele after mount_completed.
1650 		 */
1651 		zone_hold(zone);
1652 	}
1653 	mount_in_progress(zone);
1654 	/*
1655 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1656 	 * splice it into the file system name space.
1657 	 *
1658 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1659 	 * string if necessary (ie, mntfs), and also for a remount to
1660 	 * change the same (necessary when remounting '/' during boot).
1661 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1662 	 * should be, then hand off control to VFS_MOUNT() which can
1663 	 * override this.
1664 	 *
1665 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1666 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1667 	 * never set those fields to NULL. Several bits of code make
1668 	 * assumptions that the fields are always valid.
1669 	 */
1670 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1671 	if (remount) {
1672 		if ((oldresource = vfsp->vfs_resource) != NULL)
1673 			refstr_hold(oldresource);
1674 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1675 			refstr_hold(oldmntpt);
1676 	}
1677 	vfs_setresource(vfsp, resource, 0);
1678 	vfs_setmntpoint(vfsp, mountpt, 0);
1679 
1680 	/*
1681 	 * going to mount on this vnode, so notify.
1682 	 */
1683 	vnevent_mountedover(vp, NULL);
1684 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1685 
1686 	if (uap->flags & MS_RDONLY)
1687 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1688 	if (uap->flags & MS_NOSUID)
1689 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1690 	if (uap->flags & MS_GLOBAL)
1691 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1692 
1693 	if (error) {
1694 		lofi_remove(vfsp);
1695 
1696 		if (remount) {
1697 			/* put back pre-remount options */
1698 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1699 			vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1700 			    VFSSP_VERBATIM);
1701 			if (oldmntpt)
1702 				refstr_rele(oldmntpt);
1703 			vfs_setresource(vfsp, refstr_value(oldresource),
1704 			    VFSSP_VERBATIM);
1705 			if (oldresource)
1706 				refstr_rele(oldresource);
1707 			vfsp->vfs_flag = ovflags;
1708 			vfs_unlock(vfsp);
1709 			VFS_RELE(vfsp);
1710 		} else {
1711 			vfs_unlock(vfsp);
1712 			vfs_freemnttab(vfsp);
1713 			vfs_free(vfsp);
1714 		}
1715 	} else {
1716 		/*
1717 		 * Set the mount time to now
1718 		 */
1719 		vfsp->vfs_mtime = ddi_get_time();
1720 		if (remount) {
1721 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1722 			if (oldresource)
1723 				refstr_rele(oldresource);
1724 			if (oldmntpt)
1725 				refstr_rele(oldmntpt);
1726 		} else if (splice) {
1727 			/*
1728 			 * Link vfsp into the name space at the mount
1729 			 * point. Vfs_add() is responsible for
1730 			 * holding the mount point which will be
1731 			 * released when vfs_remove() is called.
1732 			 */
1733 			vfs_add(vp, vfsp, uap->flags);
1734 		} else {
1735 			/*
1736 			 * Hold the reference to file system which is
1737 			 * not linked into the name space.
1738 			 */
1739 			vfsp->vfs_zone = NULL;
1740 			VFS_HOLD(vfsp);
1741 			vfsp->vfs_vnodecovered = NULL;
1742 		}
1743 		/*
1744 		 * Set flags for global options encountered
1745 		 */
1746 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1747 			vfsp->vfs_flag |= VFS_RDONLY;
1748 		else
1749 			vfsp->vfs_flag &= ~VFS_RDONLY;
1750 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1751 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1752 		} else {
1753 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1754 				vfsp->vfs_flag |= VFS_NODEVICES;
1755 			else
1756 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1757 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1758 				vfsp->vfs_flag |= VFS_NOSETUID;
1759 			else
1760 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1761 		}
1762 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1763 			vfsp->vfs_flag |= VFS_NBMAND;
1764 		else
1765 			vfsp->vfs_flag &= ~VFS_NBMAND;
1766 
1767 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1768 			vfsp->vfs_flag |= VFS_XATTR;
1769 		else
1770 			vfsp->vfs_flag &= ~VFS_XATTR;
1771 
1772 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1773 			vfsp->vfs_flag |= VFS_NOEXEC;
1774 		else
1775 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1776 
1777 		if (vfs_optionisset(vfsp, MNTOPT_NOFOLLOW, NULL))
1778 			vfsp->vfs_flag |= VFS_NOFOLLOW;
1779 		else
1780 			vfsp->vfs_flag &= ~VFS_NOFOLLOW;
1781 
1782 		/*
1783 		 * Now construct the output option string of options
1784 		 * we recognized.
1785 		 */
1786 		if (uap->flags & MS_OPTIONSTR) {
1787 			vfs_list_read_lock();
1788 			copyout_error = vfs_buildoptionstr(
1789 			    &vfsp->vfs_mntopts, inargs, optlen);
1790 			vfs_list_unlock();
1791 			if (copyout_error == 0 &&
1792 			    (uap->flags & MS_SYSSPACE) == 0) {
1793 				copyout_error = copyoutstr(inargs, opts,
1794 				    optlen, NULL);
1795 			}
1796 		}
1797 
1798 		/*
1799 		 * If this isn't a remount, set up the vopstats before
1800 		 * anyone can touch this. We only allow spliced file
1801 		 * systems (file systems which are in the namespace) to
1802 		 * have the VFS_STATS flag set.
1803 		 * NOTE: PxFS mounts the underlying file system with
1804 		 * MS_NOSPLICE set and copies those vfs_flags to its private
1805 		 * vfs structure. As a result, PxFS should never have
1806 		 * the VFS_STATS flag or else we might access the vfs
1807 		 * statistics-related fields prior to them being
1808 		 * properly initialized.
1809 		 */
1810 		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1811 			initialize_vopstats(&vfsp->vfs_vopstats);
1812 			/*
1813 			 * We need to set vfs_vskap to NULL because there's
1814 			 * a chance it won't be set below.  This is checked
1815 			 * in teardown_vopstats() so we can't have garbage.
1816 			 */
1817 			vfsp->vfs_vskap = NULL;
1818 			vfsp->vfs_flag |= VFS_STATS;
1819 			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1820 		}
1821 
1822 		if (vswp->vsw_flag & VSW_XID)
1823 			vfsp->vfs_flag |= VFS_XID;
1824 
1825 		vfs_unlock(vfsp);
1826 	}
1827 	mount_completed(zone);
1828 	zone_rele(zone);
1829 	if (splice)
1830 		vn_vfsunlock(vp);
1831 
1832 	if ((error == 0) && (copyout_error == 0)) {
1833 		if (!remount) {
1834 			/*
1835 			 * Don't call get_vskstat_anchor() while holding
1836 			 * locks since it allocates memory and calls
1837 			 * VFS_STATVFS().  For NFS, the latter can generate
1838 			 * an over-the-wire call.
1839 			 */
1840 			vskap = get_vskstat_anchor(vfsp);
1841 			/* Only take the lock if we have something to do */
1842 			if (vskap != NULL) {
1843 				vfs_lock_wait(vfsp);
1844 				if (vfsp->vfs_flag & VFS_STATS) {
1845 					vfsp->vfs_vskap = vskap;
1846 				}
1847 				vfs_unlock(vfsp);
1848 			}
1849 		}
1850 		/* Return vfsp to caller. */
1851 		*vfspp = vfsp;
1852 	}
1853 errout:
1854 	vfs_freeopttbl(&mnt_mntopts);
1855 	if (resource != NULL)
1856 		kmem_free(resource, strlen(resource) + 1);
1857 	if (mountpt != NULL)
1858 		kmem_free(mountpt, strlen(mountpt) + 1);
1859 	/*
1860 	 * It is possible we errored prior to adding to mount in progress
1861 	 * table. Must free vnode we acquired with successful lookupname.
1862 	 */
1863 	if (addmip)
1864 		VN_RELE(bvp);
1865 	if (delmip)
1866 		vfs_delmip(vfsp);
1867 	ASSERT(vswp != NULL);
1868 	vfs_unrefvfssw(vswp);
1869 	if (inargs != opts)
1870 		kmem_free(inargs, MAX_MNTOPT_STR);
1871 	if (copyout_error) {
1872 		lofi_remove(vfsp);
1873 		VFS_RELE(vfsp);
1874 		error = copyout_error;
1875 	}
1876 	return (error);
1877 }
1878 
1879 static void
1880 vfs_setpath(
1881     struct vfs *vfsp,		/* vfs being updated */
1882     refstr_t **refp,		/* Ref-count string to contain the new path */
1883     const char *newpath,	/* Path to add to refp (above) */
1884     uint32_t flag)		/* flag */
1885 {
1886 	size_t len;
1887 	refstr_t *ref;
1888 	zone_t *zone = curproc->p_zone;
1889 	char *sp;
1890 	int have_list_lock = 0;
1891 
1892 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1893 
1894 	/*
1895 	 * New path must be less than MAXPATHLEN because mntfs
1896 	 * will only display up to MAXPATHLEN bytes. This is currently
1897 	 * safe, because domount() uses pn_get(), and other callers
1898 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1899 	 */
1900 
1901 	ASSERT(strlen(newpath) < MAXPATHLEN);
1902 
1903 	/* mntfs requires consistency while vfs list lock is held */
1904 
1905 	if (VFS_ON_LIST(vfsp)) {
1906 		have_list_lock = 1;
1907 		vfs_list_lock();
1908 	}
1909 
1910 	if (*refp != NULL)
1911 		refstr_rele(*refp);
1912 
1913 	/*
1914 	 * If we are in a non-global zone then we prefix the supplied path,
1915 	 * newpath, with the zone's root path, with two exceptions. The first
1916 	 * is where we have been explicitly directed to avoid doing so; this
1917 	 * will be the case following a failed remount, where the path supplied
1918 	 * will be a saved version which must now be restored. The second
1919 	 * exception is where newpath is not a pathname but a descriptive name,
1920 	 * e.g. "procfs".
1921 	 */
1922 	if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1923 		ref = refstr_alloc(newpath);
1924 		goto out;
1925 	}
1926 
1927 	/*
1928 	 * Truncate the trailing '/' in the zoneroot, and merge
1929 	 * in the zone's rootpath with the "newpath" (resource
1930 	 * or mountpoint) passed in.
1931 	 *
1932 	 * The size of the required buffer is thus the size of
1933 	 * the buffer required for the passed-in newpath
1934 	 * (strlen(newpath) + 1), plus the size of the buffer
1935 	 * required to hold zone_rootpath (zone_rootpathlen)
1936 	 * minus one for one of the now-superfluous NUL
1937 	 * terminations, minus one for the trailing '/'.
1938 	 *
1939 	 * That gives us:
1940 	 *
1941 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1942 	 *
1943 	 * Which is what we have below.
1944 	 */
1945 
1946 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1947 	sp = kmem_alloc(len, KM_SLEEP);
1948 
1949 	/*
1950 	 * Copy everything including the trailing slash, which
1951 	 * we then overwrite with the NUL character.
1952 	 */
1953 
1954 	(void) strcpy(sp, zone->zone_rootpath);
1955 	sp[zone->zone_rootpathlen - 2] = '\0';
1956 	(void) strcat(sp, newpath);
1957 
1958 	ref = refstr_alloc(sp);
1959 	kmem_free(sp, len);
1960 out:
1961 	*refp = ref;
1962 
1963 	if (have_list_lock) {
1964 		vfs_mnttab_modtimeupd();
1965 		vfs_list_unlock();
1966 	}
1967 }
1968 
1969 /*
1970  * Record a mounted resource name in a vfs structure.
1971  * If vfsp is already mounted, caller must hold the vfs lock.
1972  */
1973 void
1974 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1975 {
1976 	if (resource == NULL || resource[0] == '\0')
1977 		resource = VFS_NORESOURCE;
1978 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1979 }
1980 
1981 /*
1982  * Record a mount point name in a vfs structure.
1983  * If vfsp is already mounted, caller must hold the vfs lock.
1984  */
1985 void
1986 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1987 {
1988 	if (mntpt == NULL || mntpt[0] == '\0')
1989 		mntpt = VFS_NOMNTPT;
1990 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1991 }
1992 
1993 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1994 
1995 refstr_t *
1996 vfs_getresource(const struct vfs *vfsp)
1997 {
1998 	refstr_t *resource;
1999 
2000 	vfs_list_read_lock();
2001 	resource = vfsp->vfs_resource;
2002 	refstr_hold(resource);
2003 	vfs_list_unlock();
2004 
2005 	return (resource);
2006 }
2007 
2008 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
2009 
2010 refstr_t *
2011 vfs_getmntpoint(const struct vfs *vfsp)
2012 {
2013 	refstr_t *mntpt;
2014 
2015 	vfs_list_read_lock();
2016 	mntpt = vfsp->vfs_mntpt;
2017 	refstr_hold(mntpt);
2018 	vfs_list_unlock();
2019 
2020 	return (mntpt);
2021 }
2022 
2023 /*
2024  * Create an empty options table with enough empty slots to hold all
2025  * The options in the options string passed as an argument.
2026  * Potentially prepend another options table.
2027  *
2028  * Note: caller is responsible for locking the vfs list, if needed,
2029  *       to protect mops.
2030  */
2031 static void
2032 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
2033     const mntopts_t *mtmpl)
2034 {
2035 	const char *s = opts;
2036 	uint_t count;
2037 
2038 	if (opts == NULL || *opts == '\0') {
2039 		count = 0;
2040 	} else {
2041 		count = 1;
2042 
2043 		/*
2044 		 * Count number of options in the string
2045 		 */
2046 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2047 			count++;
2048 			s++;
2049 		}
2050 	}
2051 	vfs_copyopttbl_extend(mtmpl, mops, count);
2052 }
2053 
2054 /*
2055  * Create an empty options table with enough empty slots to hold all
2056  * The options in the options string passed as an argument.
2057  *
2058  * This function is *not* for general use by filesystems.
2059  *
2060  * Note: caller is responsible for locking the vfs list, if needed,
2061  *       to protect mops.
2062  */
2063 void
2064 vfs_createopttbl(mntopts_t *mops, const char *opts)
2065 {
2066 	vfs_createopttbl_extend(mops, opts, NULL);
2067 }
2068 
2069 
2070 /*
2071  * Swap two mount options tables
2072  */
2073 static void
2074 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2075 {
2076 	uint_t tmpcnt;
2077 	mntopt_t *tmplist;
2078 
2079 	tmpcnt = optbl2->mo_count;
2080 	tmplist = optbl2->mo_list;
2081 	optbl2->mo_count = optbl1->mo_count;
2082 	optbl2->mo_list = optbl1->mo_list;
2083 	optbl1->mo_count = tmpcnt;
2084 	optbl1->mo_list = tmplist;
2085 }
2086 
2087 static void
2088 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2089 {
2090 	vfs_list_lock();
2091 	vfs_swapopttbl_nolock(optbl1, optbl2);
2092 	vfs_mnttab_modtimeupd();
2093 	vfs_list_unlock();
2094 }
2095 
2096 static char **
2097 vfs_copycancelopt_extend(char **const moc, int extend)
2098 {
2099 	int i = 0;
2100 	int j;
2101 	char **result;
2102 
2103 	if (moc != NULL) {
2104 		for (; moc[i] != NULL; i++)
2105 			/* count number of options to cancel */;
2106 	}
2107 
2108 	if (i + extend == 0)
2109 		return (NULL);
2110 
2111 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2112 
2113 	for (j = 0; j < i; j++) {
2114 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2115 		(void) strcpy(result[j], moc[j]);
2116 	}
2117 	for (; j <= i + extend; j++)
2118 		result[j] = NULL;
2119 
2120 	return (result);
2121 }
2122 
2123 static void
2124 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2125 {
2126 	char *sp, *dp;
2127 
2128 	d->mo_flags = s->mo_flags;
2129 	d->mo_data = s->mo_data;
2130 	sp = s->mo_name;
2131 	if (sp != NULL) {
2132 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2133 		(void) strcpy(dp, sp);
2134 		d->mo_name = dp;
2135 	} else {
2136 		d->mo_name = NULL; /* should never happen */
2137 	}
2138 
2139 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2140 
2141 	sp = s->mo_arg;
2142 	if (sp != NULL) {
2143 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2144 		(void) strcpy(dp, sp);
2145 		d->mo_arg = dp;
2146 	} else {
2147 		d->mo_arg = NULL;
2148 	}
2149 }
2150 
2151 /*
2152  * Copy a mount options table, possibly allocating some spare
2153  * slots at the end.  It is permissible to copy_extend the NULL table.
2154  */
2155 static void
2156 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2157 {
2158 	uint_t i, count;
2159 	mntopt_t *motbl;
2160 
2161 	/*
2162 	 * Clear out any existing stuff in the options table being initialized
2163 	 */
2164 	vfs_freeopttbl(dmo);
2165 	count = (smo == NULL) ? 0 : smo->mo_count;
2166 	if ((count + extra) == 0)	/* nothing to do */
2167 		return;
2168 	dmo->mo_count = count + extra;
2169 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2170 	dmo->mo_list = motbl;
2171 	for (i = 0; i < count; i++) {
2172 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2173 	}
2174 	for (i = count; i < count + extra; i++) {
2175 		motbl[i].mo_flags = MO_EMPTY;
2176 	}
2177 }
2178 
2179 /*
2180  * Copy a mount options table.
2181  *
2182  * This function is *not* for general use by filesystems.
2183  *
2184  * Note: caller is responsible for locking the vfs list, if needed,
2185  *       to protect smo and dmo.
2186  */
2187 void
2188 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2189 {
2190 	vfs_copyopttbl_extend(smo, dmo, 0);
2191 }
2192 
2193 static char **
2194 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2195 {
2196 	int c1 = 0;
2197 	int c2 = 0;
2198 	char **result;
2199 	char **sp1, **sp2, **dp;
2200 
2201 	/*
2202 	 * First we count both lists of cancel options.
2203 	 * If either is NULL or has no elements, we return a copy of
2204 	 * the other.
2205 	 */
2206 	if (mop1->mo_cancel != NULL) {
2207 		for (; mop1->mo_cancel[c1] != NULL; c1++)
2208 			/* count cancel options in mop1 */;
2209 	}
2210 
2211 	if (c1 == 0)
2212 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2213 
2214 	if (mop2->mo_cancel != NULL) {
2215 		for (; mop2->mo_cancel[c2] != NULL; c2++)
2216 			/* count cancel options in mop2 */;
2217 	}
2218 
2219 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2220 
2221 	if (c2 == 0)
2222 		return (result);
2223 
2224 	/*
2225 	 * When we get here, we've got two sets of cancel options;
2226 	 * we need to merge the two sets.  We know that the result
2227 	 * array has "c1+c2+1" entries and in the end we might shrink
2228 	 * it.
2229 	 * Result now has a copy of the c1 entries from mop1; we'll
2230 	 * now lookup all the entries of mop2 in mop1 and copy it if
2231 	 * it is unique.
2232 	 * This operation is O(n^2) but it's only called once per
2233 	 * filesystem per duplicate option.  This is a situation
2234 	 * which doesn't arise with the filesystems in ON and
2235 	 * n is generally 1.
2236 	 */
2237 
2238 	dp = &result[c1];
2239 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2240 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2241 			if (strcmp(*sp1, *sp2) == 0)
2242 				break;
2243 		}
2244 		if (*sp1 == NULL) {
2245 			/*
2246 			 * Option *sp2 not found in mop1, so copy it.
2247 			 * The calls to vfs_copycancelopt_extend()
2248 			 * guarantee that there's enough room.
2249 			 */
2250 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2251 			(void) strcpy(*dp++, *sp2);
2252 		}
2253 	}
2254 	if (dp != &result[c1+c2]) {
2255 		size_t bytes = (dp - result + 1) * sizeof (char *);
2256 		char **nres = kmem_alloc(bytes, KM_SLEEP);
2257 
2258 		bcopy(result, nres, bytes);
2259 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2260 		result = nres;
2261 	}
2262 	return (result);
2263 }
2264 
2265 /*
2266  * Merge two mount option tables (outer and inner) into one.  This is very
2267  * similar to "merging" global variables and automatic variables in C.
2268  *
2269  * This isn't (and doesn't have to be) fast.
2270  *
2271  * This function is *not* for general use by filesystems.
2272  *
2273  * Note: caller is responsible for locking the vfs list, if needed,
2274  *       to protect omo, imo & dmo.
2275  */
2276 void
2277 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2278 {
2279 	uint_t i, count;
2280 	mntopt_t *mop, *motbl;
2281 	uint_t freeidx;
2282 
2283 	/*
2284 	 * First determine how much space we need to allocate.
2285 	 */
2286 	count = omo->mo_count;
2287 	for (i = 0; i < imo->mo_count; i++) {
2288 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2289 			continue;
2290 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2291 			count++;
2292 	}
2293 	ASSERT(count >= omo->mo_count &&
2294 	    count <= omo->mo_count + imo->mo_count);
2295 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2296 	for (i = 0; i < omo->mo_count; i++)
2297 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2298 	freeidx = omo->mo_count;
2299 	for (i = 0; i < imo->mo_count; i++) {
2300 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2301 			continue;
2302 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2303 			char **newcanp;
2304 			uint_t index = mop - omo->mo_list;
2305 
2306 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2307 
2308 			vfs_freeopt(&motbl[index]);
2309 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2310 
2311 			vfs_freecancelopt(motbl[index].mo_cancel);
2312 			motbl[index].mo_cancel = newcanp;
2313 		} else {
2314 			/*
2315 			 * If it's a new option, just copy it over to the first
2316 			 * free location.
2317 			 */
2318 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2319 		}
2320 	}
2321 	dmo->mo_count = count;
2322 	dmo->mo_list = motbl;
2323 }
2324 
2325 /*
2326  * Functions to set and clear mount options in a mount options table.
2327  */
2328 
2329 /*
2330  * Clear a mount option, if it exists.
2331  *
2332  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2333  * the vfs list.
2334  */
2335 static void
2336 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2337 {
2338 	struct mntopt *mop;
2339 	uint_t i, count;
2340 
2341 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2342 
2343 	count = mops->mo_count;
2344 	for (i = 0; i < count; i++) {
2345 		mop = &mops->mo_list[i];
2346 
2347 		if (mop->mo_flags & MO_EMPTY)
2348 			continue;
2349 		if (strcmp(opt, mop->mo_name))
2350 			continue;
2351 		mop->mo_flags &= ~MO_SET;
2352 		if (mop->mo_arg != NULL) {
2353 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2354 		}
2355 		mop->mo_arg = NULL;
2356 		if (update_mnttab)
2357 			vfs_mnttab_modtimeupd();
2358 		break;
2359 	}
2360 }
2361 
2362 void
2363 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2364 {
2365 	int gotlock = 0;
2366 
2367 	if (VFS_ON_LIST(vfsp)) {
2368 		gotlock = 1;
2369 		vfs_list_lock();
2370 	}
2371 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2372 	if (gotlock)
2373 		vfs_list_unlock();
2374 }
2375 
2376 
2377 /*
2378  * Set a mount option on.  If it's not found in the table, it's silently
2379  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2380  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2381  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2382  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2383  * MO_EMPTY set is created as the option passed in.
2384  *
2385  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2386  * the vfs list.
2387  */
2388 static void
2389 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2390     const char *arg, int flags, int update_mnttab)
2391 {
2392 	mntopt_t *mop;
2393 	uint_t i, count;
2394 	char *sp;
2395 
2396 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2397 
2398 	if (flags & VFS_CREATEOPT) {
2399 		if (vfs_hasopt(mops, opt) != NULL) {
2400 			flags &= ~VFS_CREATEOPT;
2401 		}
2402 	}
2403 	count = mops->mo_count;
2404 	for (i = 0; i < count; i++) {
2405 		mop = &mops->mo_list[i];
2406 
2407 		if (mop->mo_flags & MO_EMPTY) {
2408 			if ((flags & VFS_CREATEOPT) == 0)
2409 				continue;
2410 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2411 			(void) strcpy(sp, opt);
2412 			mop->mo_name = sp;
2413 			if (arg != NULL)
2414 				mop->mo_flags = MO_HASVALUE;
2415 			else
2416 				mop->mo_flags = 0;
2417 		} else if (strcmp(opt, mop->mo_name)) {
2418 			continue;
2419 		}
2420 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2421 			break;
2422 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2423 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2424 			(void) strcpy(sp, arg);
2425 		} else {
2426 			sp = NULL;
2427 		}
2428 		if (mop->mo_arg != NULL)
2429 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2430 		mop->mo_arg = sp;
2431 		if (flags & VFS_DISPLAY)
2432 			mop->mo_flags &= ~MO_NODISPLAY;
2433 		if (flags & VFS_NODISPLAY)
2434 			mop->mo_flags |= MO_NODISPLAY;
2435 		mop->mo_flags |= MO_SET;
2436 		if (mop->mo_cancel != NULL) {
2437 			char **cp;
2438 
2439 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2440 				vfs_clearmntopt_nolock(mops, *cp, 0);
2441 		}
2442 		if (update_mnttab)
2443 			vfs_mnttab_modtimeupd();
2444 		break;
2445 	}
2446 }
2447 
2448 void
2449 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2450 {
2451 	int gotlock = 0;
2452 
2453 	if (VFS_ON_LIST(vfsp)) {
2454 		gotlock = 1;
2455 		vfs_list_lock();
2456 	}
2457 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2458 	if (gotlock)
2459 		vfs_list_unlock();
2460 }
2461 
2462 
2463 /*
2464  * Add a "tag" option to a mounted file system's options list.
2465  *
2466  * Note: caller is responsible for locking the vfs list, if needed,
2467  *       to protect mops.
2468  */
2469 static mntopt_t *
2470 vfs_addtag(mntopts_t *mops, const char *tag)
2471 {
2472 	uint_t count;
2473 	mntopt_t *mop, *motbl;
2474 
2475 	count = mops->mo_count + 1;
2476 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2477 	if (mops->mo_count) {
2478 		size_t len = (count - 1) * sizeof (mntopt_t);
2479 
2480 		bcopy(mops->mo_list, motbl, len);
2481 		kmem_free(mops->mo_list, len);
2482 	}
2483 	mops->mo_count = count;
2484 	mops->mo_list = motbl;
2485 	mop = &motbl[count - 1];
2486 	mop->mo_flags = MO_TAG;
2487 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2488 	(void) strcpy(mop->mo_name, tag);
2489 	return (mop);
2490 }
2491 
2492 /*
2493  * Allow users to set arbitrary "tags" in a vfs's mount options.
2494  * Broader use within the kernel is discouraged.
2495  */
2496 int
2497 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2498     cred_t *cr)
2499 {
2500 	vfs_t *vfsp;
2501 	mntopts_t *mops;
2502 	mntopt_t *mop;
2503 	int found = 0;
2504 	dev_t dev = makedevice(major, minor);
2505 	int err = 0;
2506 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2507 
2508 	/*
2509 	 * Find the desired mounted file system
2510 	 */
2511 	vfs_list_lock();
2512 	vfsp = rootvfs;
2513 	do {
2514 		if (vfsp->vfs_dev == dev &&
2515 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2516 			found = 1;
2517 			break;
2518 		}
2519 		vfsp = vfsp->vfs_next;
2520 	} while (vfsp != rootvfs);
2521 
2522 	if (!found) {
2523 		err = EINVAL;
2524 		goto out;
2525 	}
2526 	err = secpolicy_fs_config(cr, vfsp);
2527 	if (err != 0)
2528 		goto out;
2529 
2530 	mops = &vfsp->vfs_mntopts;
2531 	/*
2532 	 * Add tag if it doesn't already exist
2533 	 */
2534 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2535 		int len;
2536 
2537 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2538 		len = strlen(buf);
2539 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2540 			err = ENAMETOOLONG;
2541 			goto out;
2542 		}
2543 		mop = vfs_addtag(mops, tag);
2544 	}
2545 	if ((mop->mo_flags & MO_TAG) == 0) {
2546 		err = EINVAL;
2547 		goto out;
2548 	}
2549 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2550 out:
2551 	vfs_list_unlock();
2552 	kmem_free(buf, MAX_MNTOPT_STR);
2553 	return (err);
2554 }
2555 
2556 /*
2557  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2558  * Broader use within the kernel is discouraged.
2559  */
2560 int
2561 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2562     cred_t *cr)
2563 {
2564 	vfs_t *vfsp;
2565 	mntopt_t *mop;
2566 	int found = 0;
2567 	dev_t dev = makedevice(major, minor);
2568 	int err = 0;
2569 
2570 	/*
2571 	 * Find the desired mounted file system
2572 	 */
2573 	vfs_list_lock();
2574 	vfsp = rootvfs;
2575 	do {
2576 		if (vfsp->vfs_dev == dev &&
2577 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2578 			found = 1;
2579 			break;
2580 		}
2581 		vfsp = vfsp->vfs_next;
2582 	} while (vfsp != rootvfs);
2583 
2584 	if (!found) {
2585 		err = EINVAL;
2586 		goto out;
2587 	}
2588 	err = secpolicy_fs_config(cr, vfsp);
2589 	if (err != 0)
2590 		goto out;
2591 
2592 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2593 		err = EINVAL;
2594 		goto out;
2595 	}
2596 	if ((mop->mo_flags & MO_TAG) == 0) {
2597 		err = EINVAL;
2598 		goto out;
2599 	}
2600 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2601 out:
2602 	vfs_list_unlock();
2603 	return (err);
2604 }
2605 
2606 /*
2607  * Function to parse an option string and fill in a mount options table.
2608  * Unknown options are silently ignored.  The input option string is modified
2609  * by replacing separators with nulls.  If the create flag is set, options
2610  * not found in the table are just added on the fly.  The table must have
2611  * an option slot marked MO_EMPTY to add an option on the fly.
2612  *
2613  * This function is *not* for general use by filesystems.
2614  *
2615  * Note: caller is responsible for locking the vfs list, if needed,
2616  *       to protect mops..
2617  */
2618 void
2619 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2620 {
2621 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2622 	int setflg = VFS_NOFORCEOPT;
2623 
2624 	if (osp == NULL)
2625 		return;
2626 	while (*s != '\0') {
2627 		p = strchr(s, ',');	/* find next option */
2628 		if (p == NULL) {
2629 			cp = NULL;
2630 			p = s + strlen(s);
2631 		} else {
2632 			cp = p;		/* save location of comma */
2633 			*p++ = '\0';	/* mark end and point to next option */
2634 		}
2635 		nextop = p;
2636 		p = strchr(s, '=');	/* look for value */
2637 		if (p == NULL) {
2638 			valp = NULL;	/* no value supplied */
2639 		} else {
2640 			ep = p;		/* save location of equals */
2641 			*p++ = '\0';	/* end option and point to value */
2642 			valp = p;
2643 		}
2644 		/*
2645 		 * set option into options table
2646 		 */
2647 		if (create)
2648 			setflg |= VFS_CREATEOPT;
2649 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2650 		if (cp != NULL)
2651 			*cp = ',';	/* restore the comma */
2652 		if (valp != NULL)
2653 			*ep = '=';	/* restore the equals */
2654 		s = nextop;
2655 	}
2656 }
2657 
2658 /*
2659  * Function to inquire if an option exists in a mount options table.
2660  * Returns a pointer to the option if it exists, else NULL.
2661  *
2662  * This function is *not* for general use by filesystems.
2663  *
2664  * Note: caller is responsible for locking the vfs list, if needed,
2665  *       to protect mops.
2666  */
2667 struct mntopt *
2668 vfs_hasopt(const mntopts_t *mops, const char *opt)
2669 {
2670 	struct mntopt *mop;
2671 	uint_t i, count;
2672 
2673 	count = mops->mo_count;
2674 	for (i = 0; i < count; i++) {
2675 		mop = &mops->mo_list[i];
2676 
2677 		if (mop->mo_flags & MO_EMPTY)
2678 			continue;
2679 		if (strcmp(opt, mop->mo_name) == 0)
2680 			return (mop);
2681 	}
2682 	return (NULL);
2683 }
2684 
2685 /*
2686  * Function to inquire if an option is set in a mount options table.
2687  * Returns non-zero if set and fills in the arg pointer with a pointer to
2688  * the argument string or NULL if there is no argument string.
2689  */
2690 static int
2691 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2692 {
2693 	struct mntopt *mop;
2694 	uint_t i, count;
2695 
2696 	count = mops->mo_count;
2697 	for (i = 0; i < count; i++) {
2698 		mop = &mops->mo_list[i];
2699 
2700 		if (mop->mo_flags & MO_EMPTY)
2701 			continue;
2702 		if (strcmp(opt, mop->mo_name))
2703 			continue;
2704 		if ((mop->mo_flags & MO_SET) == 0)
2705 			return (0);
2706 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2707 			*argp = mop->mo_arg;
2708 		return (1);
2709 	}
2710 	return (0);
2711 }
2712 
2713 
2714 int
2715 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2716 {
2717 	int ret;
2718 
2719 	vfs_list_read_lock();
2720 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2721 	vfs_list_unlock();
2722 	return (ret);
2723 }
2724 
2725 
2726 /*
2727  * Construct a comma separated string of the options set in the given
2728  * mount table, return the string in the given buffer.  Return non-zero if
2729  * the buffer would overflow.
2730  *
2731  * This function is *not* for general use by filesystems.
2732  *
2733  * Note: caller is responsible for locking the vfs list, if needed,
2734  *       to protect mp.
2735  */
2736 int
2737 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2738 {
2739 	char *cp;
2740 	uint_t i;
2741 
2742 	buf[0] = '\0';
2743 	cp = buf;
2744 	for (i = 0; i < mp->mo_count; i++) {
2745 		struct mntopt *mop;
2746 
2747 		mop = &mp->mo_list[i];
2748 		if (mop->mo_flags & MO_SET) {
2749 			int optlen, comma = 0;
2750 
2751 			if (buf[0] != '\0')
2752 				comma = 1;
2753 			optlen = strlen(mop->mo_name);
2754 			if (strlen(buf) + comma + optlen + 1 > len)
2755 				goto err;
2756 			if (comma)
2757 				*cp++ = ',';
2758 			(void) strcpy(cp, mop->mo_name);
2759 			cp += optlen;
2760 			/*
2761 			 * Append option value if there is one
2762 			 */
2763 			if (mop->mo_arg != NULL) {
2764 				int arglen;
2765 
2766 				arglen = strlen(mop->mo_arg);
2767 				if (strlen(buf) + arglen + 2 > len)
2768 					goto err;
2769 				*cp++ = '=';
2770 				(void) strcpy(cp, mop->mo_arg);
2771 				cp += arglen;
2772 			}
2773 		}
2774 	}
2775 	return (0);
2776 err:
2777 	return (EOVERFLOW);
2778 }
2779 
2780 static void
2781 vfs_freecancelopt(char **moc)
2782 {
2783 	if (moc != NULL) {
2784 		int ccnt = 0;
2785 		char **cp;
2786 
2787 		for (cp = moc; *cp != NULL; cp++) {
2788 			kmem_free(*cp, strlen(*cp) + 1);
2789 			ccnt++;
2790 		}
2791 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2792 	}
2793 }
2794 
2795 static void
2796 vfs_freeopt(mntopt_t *mop)
2797 {
2798 	if (mop->mo_name != NULL)
2799 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2800 
2801 	vfs_freecancelopt(mop->mo_cancel);
2802 
2803 	if (mop->mo_arg != NULL)
2804 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2805 }
2806 
2807 /*
2808  * Free a mount options table
2809  *
2810  * This function is *not* for general use by filesystems.
2811  *
2812  * Note: caller is responsible for locking the vfs list, if needed,
2813  *       to protect mp.
2814  */
2815 void
2816 vfs_freeopttbl(mntopts_t *mp)
2817 {
2818 	uint_t i, count;
2819 
2820 	count = mp->mo_count;
2821 	for (i = 0; i < count; i++) {
2822 		vfs_freeopt(&mp->mo_list[i]);
2823 	}
2824 	if (count) {
2825 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2826 		mp->mo_count = 0;
2827 		mp->mo_list = NULL;
2828 	}
2829 }
2830 
2831 
2832 /* ARGSUSED */
2833 static int
2834 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2835 	caller_context_t *ct)
2836 {
2837 	return (0);
2838 }
2839 
2840 /* ARGSUSED */
2841 static int
2842 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2843 	caller_context_t *ct)
2844 {
2845 	return (0);
2846 }
2847 
2848 /*
2849  * The dummy vnode is currently used only by file events notification
2850  * module which is just interested in the timestamps.
2851  */
2852 /* ARGSUSED */
2853 static int
2854 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2855     caller_context_t *ct)
2856 {
2857 	bzero(vap, sizeof (vattr_t));
2858 	vap->va_type = VREG;
2859 	vap->va_nlink = 1;
2860 	vap->va_ctime = vfs_mnttab_ctime;
2861 	/*
2862 	 * it is ok to just copy mtime as the time will be monotonically
2863 	 * increasing.
2864 	 */
2865 	vap->va_mtime = vfs_mnttab_mtime;
2866 	vap->va_atime = vap->va_mtime;
2867 	return (0);
2868 }
2869 
2870 static void
2871 vfs_mnttabvp_setup(void)
2872 {
2873 	vnode_t *tvp;
2874 	vnodeops_t *vfs_mntdummyvnops;
2875 	const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2876 		VOPNAME_READ, 		{ .vop_read = vfs_mntdummyread },
2877 		VOPNAME_WRITE, 		{ .vop_write = vfs_mntdummywrite },
2878 		VOPNAME_GETATTR,	{ .vop_getattr = vfs_mntdummygetattr },
2879 		VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
2880 		NULL,			NULL
2881 	};
2882 
2883 	if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2884 	    &vfs_mntdummyvnops) != 0) {
2885 		cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2886 		/* Shouldn't happen, but not bad enough to panic */
2887 		return;
2888 	}
2889 
2890 	/*
2891 	 * A global dummy vnode is allocated to represent mntfs files.
2892 	 * The mntfs file (/etc/mnttab) can be monitored for file events
2893 	 * and receive an event when mnttab changes. Dummy VOP calls
2894 	 * will be made on this vnode. The file events notification module
2895 	 * intercepts this vnode and delivers relevant events.
2896 	 */
2897 	tvp = vn_alloc(KM_SLEEP);
2898 	tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2899 	vn_setops(tvp, vfs_mntdummyvnops);
2900 	tvp->v_type = VREG;
2901 	/*
2902 	 * The mnt dummy ops do not reference v_data.
2903 	 * No other module intercepting this vnode should either.
2904 	 * Just set it to point to itself.
2905 	 */
2906 	tvp->v_data = (caddr_t)tvp;
2907 	tvp->v_vfsp = rootvfs;
2908 	vfs_mntdummyvp = tvp;
2909 }
2910 
2911 /*
2912  * performs fake read/write ops
2913  */
2914 static void
2915 vfs_mnttab_rwop(int rw)
2916 {
2917 	struct uio	uio;
2918 	struct iovec	iov;
2919 	char	buf[1];
2920 
2921 	if (vfs_mntdummyvp == NULL)
2922 		return;
2923 
2924 	bzero(&uio, sizeof (uio));
2925 	bzero(&iov, sizeof (iov));
2926 	iov.iov_base = buf;
2927 	iov.iov_len = 0;
2928 	uio.uio_iov = &iov;
2929 	uio.uio_iovcnt = 1;
2930 	uio.uio_loffset = 0;
2931 	uio.uio_segflg = UIO_SYSSPACE;
2932 	uio.uio_resid = 0;
2933 	if (rw) {
2934 		(void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2935 	} else {
2936 		(void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2937 	}
2938 }
2939 
2940 /*
2941  * Generate a write operation.
2942  */
2943 void
2944 vfs_mnttab_writeop(void)
2945 {
2946 	vfs_mnttab_rwop(1);
2947 }
2948 
2949 /*
2950  * Generate a read operation.
2951  */
2952 void
2953 vfs_mnttab_readop(void)
2954 {
2955 	vfs_mnttab_rwop(0);
2956 }
2957 
2958 /*
2959  * Free any mnttab information recorded in the vfs struct.
2960  * The vfs must not be on the vfs list.
2961  */
2962 static void
2963 vfs_freemnttab(struct vfs *vfsp)
2964 {
2965 	ASSERT(!VFS_ON_LIST(vfsp));
2966 
2967 	/*
2968 	 * Free device and mount point information
2969 	 */
2970 	if (vfsp->vfs_mntpt != NULL) {
2971 		refstr_rele(vfsp->vfs_mntpt);
2972 		vfsp->vfs_mntpt = NULL;
2973 	}
2974 	if (vfsp->vfs_resource != NULL) {
2975 		refstr_rele(vfsp->vfs_resource);
2976 		vfsp->vfs_resource = NULL;
2977 	}
2978 	/*
2979 	 * Now free mount options information
2980 	 */
2981 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2982 }
2983 
2984 /*
2985  * Return the last mnttab modification time
2986  */
2987 void
2988 vfs_mnttab_modtime(timespec_t *ts)
2989 {
2990 	ASSERT(RW_LOCK_HELD(&vfslist));
2991 	*ts = vfs_mnttab_mtime;
2992 }
2993 
2994 /*
2995  * See if mnttab is changed
2996  */
2997 void
2998 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2999 {
3000 	int changed;
3001 
3002 	*phpp = (struct pollhead *)NULL;
3003 
3004 	/*
3005 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
3006 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
3007 	 * to not grab the vfs list lock because tv_sec is monotonically
3008 	 * increasing.
3009 	 */
3010 
3011 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
3012 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
3013 	if (!changed) {
3014 		*phpp = &vfs_pollhd;
3015 	}
3016 }
3017 
3018 /* Provide a unique and monotonically-increasing timestamp. */
3019 void
3020 vfs_mono_time(timespec_t *ts)
3021 {
3022 	static volatile hrtime_t hrt;		/* The saved time. */
3023 	hrtime_t	newhrt, oldhrt;		/* For effecting the CAS. */
3024 	timespec_t	newts;
3025 
3026 	/*
3027 	 * Try gethrestime() first, but be prepared to fabricate a sensible
3028 	 * answer at the first sign of any trouble.
3029 	 */
3030 	gethrestime(&newts);
3031 	newhrt = ts2hrt(&newts);
3032 	for (;;) {
3033 		oldhrt = hrt;
3034 		if (newhrt <= hrt)
3035 			newhrt = hrt + 1;
3036 		if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
3037 			break;
3038 	}
3039 	hrt2ts(newhrt, ts);
3040 }
3041 
3042 /*
3043  * Update the mnttab modification time and wake up any waiters for
3044  * mnttab changes
3045  */
3046 void
3047 vfs_mnttab_modtimeupd()
3048 {
3049 	hrtime_t oldhrt, newhrt;
3050 
3051 	ASSERT(RW_WRITE_HELD(&vfslist));
3052 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
3053 	gethrestime(&vfs_mnttab_mtime);
3054 	newhrt = ts2hrt(&vfs_mnttab_mtime);
3055 	if (oldhrt == (hrtime_t)0)
3056 		vfs_mnttab_ctime = vfs_mnttab_mtime;
3057 	/*
3058 	 * Attempt to provide unique mtime (like uniqtime but not).
3059 	 */
3060 	if (newhrt == oldhrt) {
3061 		newhrt++;
3062 		hrt2ts(newhrt, &vfs_mnttab_mtime);
3063 	}
3064 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3065 	vfs_mnttab_writeop();
3066 }
3067 
3068 int
3069 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3070 {
3071 	vnode_t *coveredvp;
3072 	int error;
3073 	extern void teardown_vopstats(vfs_t *);
3074 
3075 	/*
3076 	 * Get covered vnode. This will be NULL if the vfs is not linked
3077 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3078 	 */
3079 	coveredvp = vfsp->vfs_vnodecovered;
3080 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3081 
3082 	/*
3083 	 * Purge all dnlc entries for this vfs.
3084 	 */
3085 	(void) dnlc_purge_vfsp(vfsp, 0);
3086 
3087 	/* For forcible umount, skip VFS_SYNC() since it may hang */
3088 	if ((flag & MS_FORCE) == 0)
3089 		(void) VFS_SYNC(vfsp, 0, cr);
3090 
3091 	/*
3092 	 * Lock the vfs to maintain fs status quo during unmount.  This
3093 	 * has to be done after the sync because ufs_update tries to acquire
3094 	 * the vfs_reflock.
3095 	 */
3096 	vfs_lock_wait(vfsp);
3097 
3098 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3099 		vfs_unlock(vfsp);
3100 		if (coveredvp != NULL)
3101 			vn_vfsunlock(coveredvp);
3102 	} else if (coveredvp != NULL) {
3103 		teardown_vopstats(vfsp);
3104 		/*
3105 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3106 		 * when it frees vfsp so we do a VN_HOLD() so we can
3107 		 * continue to use coveredvp afterwards.
3108 		 */
3109 		VN_HOLD(coveredvp);
3110 		vfs_remove(vfsp);
3111 		vn_vfsunlock(coveredvp);
3112 		VN_RELE(coveredvp);
3113 	} else {
3114 		teardown_vopstats(vfsp);
3115 		/*
3116 		 * Release the reference to vfs that is not linked
3117 		 * into the name space.
3118 		 */
3119 		vfs_unlock(vfsp);
3120 		VFS_RELE(vfsp);
3121 	}
3122 	return (error);
3123 }
3124 
3125 
3126 /*
3127  * Vfs_unmountall() is called by uadmin() to unmount all
3128  * mounted file systems (except the root file system) during shutdown.
3129  * It follows the existing locking protocol when traversing the vfs list
3130  * to sync and unmount vfses. Even though there should be no
3131  * other thread running while the system is shutting down, it is prudent
3132  * to still follow the locking protocol.
3133  */
3134 void
3135 vfs_unmountall(void)
3136 {
3137 	struct vfs *vfsp;
3138 	struct vfs *prev_vfsp = NULL;
3139 	int error;
3140 
3141 	/*
3142 	 * Toss all dnlc entries now so that the per-vfs sync
3143 	 * and unmount operations don't have to slog through
3144 	 * a bunch of uninteresting vnodes over and over again.
3145 	 */
3146 	dnlc_purge();
3147 
3148 	vfs_list_lock();
3149 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3150 		prev_vfsp = vfsp->vfs_prev;
3151 
3152 		if (vfs_lock(vfsp) != 0)
3153 			continue;
3154 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
3155 		vfs_unlock(vfsp);
3156 		if (error)
3157 			continue;
3158 
3159 		vfs_list_unlock();
3160 
3161 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3162 		(void) dounmount(vfsp, 0, CRED());
3163 
3164 		/*
3165 		 * Since we dropped the vfslist lock above we must
3166 		 * verify that next_vfsp still exists, else start over.
3167 		 */
3168 		vfs_list_lock();
3169 		for (vfsp = rootvfs->vfs_prev;
3170 		    vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3171 			if (vfsp == prev_vfsp)
3172 				break;
3173 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
3174 			prev_vfsp = rootvfs->vfs_prev;
3175 	}
3176 	vfs_list_unlock();
3177 }
3178 
3179 /*
3180  * Called to add an entry to the end of the vfs mount in progress list
3181  */
3182 void
3183 vfs_addmip(dev_t dev, struct vfs *vfsp)
3184 {
3185 	struct ipmnt *mipp;
3186 
3187 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3188 	mipp->mip_next = NULL;
3189 	mipp->mip_dev = dev;
3190 	mipp->mip_vfsp = vfsp;
3191 	mutex_enter(&vfs_miplist_mutex);
3192 	if (vfs_miplist_end != NULL)
3193 		vfs_miplist_end->mip_next = mipp;
3194 	else
3195 		vfs_miplist = mipp;
3196 	vfs_miplist_end = mipp;
3197 	mutex_exit(&vfs_miplist_mutex);
3198 }
3199 
3200 /*
3201  * Called to remove an entry from the mount in progress list
3202  * Either because the mount completed or it failed.
3203  */
3204 void
3205 vfs_delmip(struct vfs *vfsp)
3206 {
3207 	struct ipmnt *mipp, *mipprev;
3208 
3209 	mutex_enter(&vfs_miplist_mutex);
3210 	mipprev = NULL;
3211 	for (mipp = vfs_miplist;
3212 	    mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3213 		mipprev = mipp;
3214 	}
3215 	if (mipp == NULL)
3216 		return; /* shouldn't happen */
3217 	if (mipp == vfs_miplist_end)
3218 		vfs_miplist_end = mipprev;
3219 	if (mipprev == NULL)
3220 		vfs_miplist = mipp->mip_next;
3221 	else
3222 		mipprev->mip_next = mipp->mip_next;
3223 	mutex_exit(&vfs_miplist_mutex);
3224 	kmem_free(mipp, sizeof (struct ipmnt));
3225 }
3226 
3227 /*
3228  * vfs_add is called by a specific filesystem's mount routine to add
3229  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3230  * The vfs should already have been locked by the caller.
3231  *
3232  * coveredvp is NULL if this is the root.
3233  */
3234 void
3235 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3236 {
3237 	int newflag;
3238 
3239 	ASSERT(vfs_lock_held(vfsp));
3240 	VFS_HOLD(vfsp);
3241 	newflag = vfsp->vfs_flag;
3242 	if (mflag & MS_RDONLY)
3243 		newflag |= VFS_RDONLY;
3244 	else
3245 		newflag &= ~VFS_RDONLY;
3246 	if (mflag & MS_NOSUID)
3247 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3248 	else
3249 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3250 	if (mflag & MS_NOMNTTAB)
3251 		newflag |= VFS_NOMNTTAB;
3252 	else
3253 		newflag &= ~VFS_NOMNTTAB;
3254 
3255 	if (coveredvp != NULL) {
3256 		ASSERT(vn_vfswlock_held(coveredvp));
3257 		coveredvp->v_vfsmountedhere = vfsp;
3258 		VN_HOLD(coveredvp);
3259 	}
3260 	vfsp->vfs_vnodecovered = coveredvp;
3261 	vfsp->vfs_flag = newflag;
3262 
3263 	vfs_list_add(vfsp);
3264 }
3265 
3266 /*
3267  * Remove a vfs from the vfs list, null out the pointer from the
3268  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3269  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3270  * reference to the vfs and to the covered vnode.
3271  *
3272  * Called from dounmount after it's confirmed with the file system
3273  * that the unmount is legal.
3274  */
3275 void
3276 vfs_remove(struct vfs *vfsp)
3277 {
3278 	vnode_t *vp;
3279 
3280 	ASSERT(vfs_lock_held(vfsp));
3281 
3282 	/*
3283 	 * Can't unmount root.  Should never happen because fs will
3284 	 * be busy.
3285 	 */
3286 	if (vfsp == rootvfs)
3287 		panic("vfs_remove: unmounting root");
3288 
3289 	vfs_list_remove(vfsp);
3290 
3291 	/*
3292 	 * Unhook from the file system name space.
3293 	 */
3294 	vp = vfsp->vfs_vnodecovered;
3295 	ASSERT(vn_vfswlock_held(vp));
3296 	vp->v_vfsmountedhere = NULL;
3297 	vfsp->vfs_vnodecovered = NULL;
3298 	VN_RELE(vp);
3299 
3300 	/*
3301 	 * Release lock and wakeup anybody waiting.
3302 	 */
3303 	vfs_unlock(vfsp);
3304 	VFS_RELE(vfsp);
3305 }
3306 
3307 /*
3308  * Lock a filesystem to prevent access to it while mounting,
3309  * unmounting and syncing.  Return EBUSY immediately if lock
3310  * can't be acquired.
3311  */
3312 int
3313 vfs_lock(vfs_t *vfsp)
3314 {
3315 	vn_vfslocks_entry_t *vpvfsentry;
3316 
3317 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3318 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3319 		return (0);
3320 
3321 	vn_vfslocks_rele(vpvfsentry);
3322 	return (EBUSY);
3323 }
3324 
3325 int
3326 vfs_rlock(vfs_t *vfsp)
3327 {
3328 	vn_vfslocks_entry_t *vpvfsentry;
3329 
3330 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3331 
3332 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3333 		return (0);
3334 
3335 	vn_vfslocks_rele(vpvfsentry);
3336 	return (EBUSY);
3337 }
3338 
3339 void
3340 vfs_lock_wait(vfs_t *vfsp)
3341 {
3342 	vn_vfslocks_entry_t *vpvfsentry;
3343 
3344 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3345 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3346 }
3347 
3348 void
3349 vfs_rlock_wait(vfs_t *vfsp)
3350 {
3351 	vn_vfslocks_entry_t *vpvfsentry;
3352 
3353 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3354 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3355 }
3356 
3357 /*
3358  * Unlock a locked filesystem.
3359  */
3360 void
3361 vfs_unlock(vfs_t *vfsp)
3362 {
3363 	vn_vfslocks_entry_t *vpvfsentry;
3364 
3365 	/*
3366 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3367 	 * And these changes should remain for the patch changes as it is.
3368 	 */
3369 	if (panicstr)
3370 		return;
3371 
3372 	/*
3373 	 * ve_refcount needs to be dropped twice here.
3374 	 * 1. To release refernce after a call to vfs_locks_getlock()
3375 	 * 2. To release the reference from the locking routines like
3376 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3377 	 */
3378 
3379 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3380 	vn_vfslocks_rele(vpvfsentry);
3381 
3382 	rwst_exit(&vpvfsentry->ve_lock);
3383 	vn_vfslocks_rele(vpvfsentry);
3384 }
3385 
3386 /*
3387  * Utility routine that allows a filesystem to construct its
3388  * fsid in "the usual way" - by munging some underlying dev_t and
3389  * the filesystem type number into the 64-bit fsid.  Note that
3390  * this implicitly relies on dev_t persistence to make filesystem
3391  * id's persistent.
3392  *
3393  * There's nothing to prevent an individual fs from constructing its
3394  * fsid in a different way, and indeed they should.
3395  *
3396  * Since we want fsids to be 32-bit quantities (so that they can be
3397  * exported identically by either 32-bit or 64-bit APIs, as well as
3398  * the fact that fsid's are "known" to NFS), we compress the device
3399  * number given down to 32-bits, and panic if that isn't possible.
3400  */
3401 void
3402 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3403 {
3404 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3405 		panic("device number too big for fsid!");
3406 	fsi->val[1] = val;
3407 }
3408 
3409 int
3410 vfs_lock_held(vfs_t *vfsp)
3411 {
3412 	int held;
3413 	vn_vfslocks_entry_t *vpvfsentry;
3414 
3415 	/*
3416 	 * vfs_lock_held will mimic sema_held behaviour
3417 	 * if panicstr is set. And these changes should remain
3418 	 * for the patch changes as it is.
3419 	 */
3420 	if (panicstr)
3421 		return (1);
3422 
3423 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3424 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3425 
3426 	vn_vfslocks_rele(vpvfsentry);
3427 	return (held);
3428 }
3429 
3430 struct _kthread *
3431 vfs_lock_owner(vfs_t *vfsp)
3432 {
3433 	struct _kthread *owner;
3434 	vn_vfslocks_entry_t *vpvfsentry;
3435 
3436 	/*
3437 	 * vfs_wlock_held will mimic sema_held behaviour
3438 	 * if panicstr is set. And these changes should remain
3439 	 * for the patch changes as it is.
3440 	 */
3441 	if (panicstr)
3442 		return (NULL);
3443 
3444 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3445 	owner = rwst_owner(&vpvfsentry->ve_lock);
3446 
3447 	vn_vfslocks_rele(vpvfsentry);
3448 	return (owner);
3449 }
3450 
3451 /*
3452  * vfs list locking.
3453  *
3454  * Rather than manipulate the vfslist lock directly, we abstract into lock
3455  * and unlock routines to allow the locking implementation to be changed for
3456  * clustering.
3457  *
3458  * Whenever the vfs list is modified through its hash links, the overall list
3459  * lock must be obtained before locking the relevant hash bucket.  But to see
3460  * whether a given vfs is on the list, it suffices to obtain the lock for the
3461  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3462  */
3463 
3464 void
3465 vfs_list_lock()
3466 {
3467 	rw_enter(&vfslist, RW_WRITER);
3468 }
3469 
3470 void
3471 vfs_list_read_lock()
3472 {
3473 	rw_enter(&vfslist, RW_READER);
3474 }
3475 
3476 void
3477 vfs_list_unlock()
3478 {
3479 	rw_exit(&vfslist);
3480 }
3481 
3482 /*
3483  * Low level worker routines for adding entries to and removing entries from
3484  * the vfs list.
3485  */
3486 
3487 static void
3488 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3489 {
3490 	int vhno;
3491 	struct vfs **hp;
3492 	dev_t dev;
3493 
3494 	ASSERT(RW_WRITE_HELD(&vfslist));
3495 
3496 	dev = expldev(vfsp->vfs_fsid.val[0]);
3497 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3498 
3499 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3500 
3501 	/*
3502 	 * Link into the hash table, inserting it at the end, so that LOFS
3503 	 * with the same fsid as UFS (or other) file systems will not hide the
3504 	 * UFS.
3505 	 */
3506 	if (insert_at_head) {
3507 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3508 		rvfs_list[vhno].rvfs_head = vfsp;
3509 	} else {
3510 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3511 		    hp = &(*hp)->vfs_hash)
3512 			continue;
3513 		/*
3514 		 * hp now contains the address of the pointer to update
3515 		 * to effect the insertion.
3516 		 */
3517 		vfsp->vfs_hash = NULL;
3518 		*hp = vfsp;
3519 	}
3520 
3521 	rvfs_list[vhno].rvfs_len++;
3522 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3523 }
3524 
3525 
3526 static void
3527 vfs_hash_remove(struct vfs *vfsp)
3528 {
3529 	int vhno;
3530 	struct vfs *tvfsp;
3531 	dev_t dev;
3532 
3533 	ASSERT(RW_WRITE_HELD(&vfslist));
3534 
3535 	dev = expldev(vfsp->vfs_fsid.val[0]);
3536 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3537 
3538 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3539 
3540 	/*
3541 	 * Remove from hash.
3542 	 */
3543 	if (rvfs_list[vhno].rvfs_head == vfsp) {
3544 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3545 		rvfs_list[vhno].rvfs_len--;
3546 		goto foundit;
3547 	}
3548 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3549 	    tvfsp = tvfsp->vfs_hash) {
3550 		if (tvfsp->vfs_hash == vfsp) {
3551 			tvfsp->vfs_hash = vfsp->vfs_hash;
3552 			rvfs_list[vhno].rvfs_len--;
3553 			goto foundit;
3554 		}
3555 	}
3556 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3557 
3558 foundit:
3559 
3560 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3561 }
3562 
3563 
3564 void
3565 vfs_list_add(struct vfs *vfsp)
3566 {
3567 	zone_t *zone;
3568 
3569 	/*
3570 	 * Typically, the vfs_t will have been created on behalf of the file
3571 	 * system in vfs_init, where it will have been provided with a
3572 	 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3573 	 * by an unbundled file system. We therefore check for such an example
3574 	 * before stamping the vfs_t with its creation time for the benefit of
3575 	 * mntfs.
3576 	 */
3577 	if (vfsp->vfs_implp == NULL)
3578 		vfsimpl_setup(vfsp);
3579 	vfs_mono_time(&vfsp->vfs_hrctime);
3580 
3581 	/*
3582 	 * The zone that owns the mount is the one that performed the mount.
3583 	 * Note that this isn't necessarily the same as the zone mounted into.
3584 	 * The corresponding zone_rele_ref() will be done when the vfs_t
3585 	 * is being free'd.
3586 	 */
3587 	vfsp->vfs_zone = curproc->p_zone;
3588 	zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3589 	zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3590 	    ZONE_REF_VFS);
3591 
3592 	/*
3593 	 * Find the zone mounted into, and put this mount on its vfs list.
3594 	 */
3595 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3596 	ASSERT(zone != NULL);
3597 	/*
3598 	 * Special casing for the root vfs.  This structure is allocated
3599 	 * statically and hooked onto rootvfs at link time.  During the
3600 	 * vfs_mountroot call at system startup time, the root file system's
3601 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3602 	 * as argument.  The code below must detect and handle this special
3603 	 * case.  The only apparent justification for this special casing is
3604 	 * to ensure that the root file system appears at the head of the
3605 	 * list.
3606 	 *
3607 	 * XXX:	I'm assuming that it's ok to do normal list locking when
3608 	 *	adding the entry for the root file system (this used to be
3609 	 *	done with no locks held).
3610 	 */
3611 	vfs_list_lock();
3612 	/*
3613 	 * Link into the vfs list proper.
3614 	 */
3615 	if (vfsp == &root) {
3616 		/*
3617 		 * Assert: This vfs is already on the list as its first entry.
3618 		 * Thus, there's nothing to do.
3619 		 */
3620 		ASSERT(rootvfs == vfsp);
3621 		/*
3622 		 * Add it to the head of the global zone's vfslist.
3623 		 */
3624 		ASSERT(zone == global_zone);
3625 		ASSERT(zone->zone_vfslist == NULL);
3626 		zone->zone_vfslist = vfsp;
3627 	} else {
3628 		/*
3629 		 * Link to end of list using vfs_prev (as rootvfs is now a
3630 		 * doubly linked circular list) so list is in mount order for
3631 		 * mnttab use.
3632 		 */
3633 		rootvfs->vfs_prev->vfs_next = vfsp;
3634 		vfsp->vfs_prev = rootvfs->vfs_prev;
3635 		rootvfs->vfs_prev = vfsp;
3636 		vfsp->vfs_next = rootvfs;
3637 
3638 		/*
3639 		 * Do it again for the zone-private list (which may be NULL).
3640 		 */
3641 		if (zone->zone_vfslist == NULL) {
3642 			ASSERT(zone != global_zone);
3643 			zone->zone_vfslist = vfsp;
3644 		} else {
3645 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3646 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3647 			zone->zone_vfslist->vfs_zone_prev = vfsp;
3648 			vfsp->vfs_zone_next = zone->zone_vfslist;
3649 		}
3650 	}
3651 
3652 	/*
3653 	 * Link into the hash table, inserting it at the end, so that LOFS
3654 	 * with the same fsid as UFS (or other) file systems will not hide
3655 	 * the UFS.
3656 	 */
3657 	vfs_hash_add(vfsp, 0);
3658 
3659 	/*
3660 	 * Link into tree indexed by mntpoint, for vfs_mntpoint2vfsp
3661 	 * mntix discerns entries with the same key
3662 	 */
3663 	vfsp->vfs_mntix = ++vfs_curr_mntix;
3664 	avl_add(&vfs_by_dev, vfsp);
3665 
3666 	/*
3667 	 * Link into tree indexed by dev, for vfs_devismounted
3668 	 */
3669 	avl_add(&vfs_by_mntpnt, vfsp);
3670 
3671 	/*
3672 	 * update the mnttab modification time
3673 	 */
3674 	vfs_mnttab_modtimeupd();
3675 	vfs_list_unlock();
3676 	zone_rele(zone);
3677 }
3678 
3679 void
3680 vfs_list_remove(struct vfs *vfsp)
3681 {
3682 	zone_t *zone;
3683 
3684 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3685 	ASSERT(zone != NULL);
3686 	/*
3687 	 * Callers are responsible for preventing attempts to unmount the
3688 	 * root.
3689 	 */
3690 	ASSERT(vfsp != rootvfs);
3691 
3692 	vfs_list_lock();
3693 
3694 	/*
3695 	 * Remove from avl trees
3696 	 */
3697 	avl_remove(&vfs_by_mntpnt, vfsp);
3698 	avl_remove(&vfs_by_dev, vfsp);
3699 
3700 	/*
3701 	 * Remove from hash.
3702 	 */
3703 	vfs_hash_remove(vfsp);
3704 
3705 	/*
3706 	 * Remove from vfs list.
3707 	 */
3708 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3709 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3710 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3711 
3712 	/*
3713 	 * Remove from zone-specific vfs list.
3714 	 */
3715 	if (zone->zone_vfslist == vfsp)
3716 		zone->zone_vfslist = vfsp->vfs_zone_next;
3717 
3718 	if (vfsp->vfs_zone_next == vfsp) {
3719 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3720 		ASSERT(zone->zone_vfslist == vfsp);
3721 		zone->zone_vfslist = NULL;
3722 	}
3723 
3724 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3725 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3726 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3727 
3728 	/*
3729 	 * update the mnttab modification time
3730 	 */
3731 	vfs_mnttab_modtimeupd();
3732 	vfs_list_unlock();
3733 	zone_rele(zone);
3734 }
3735 
3736 struct vfs *
3737 getvfs(fsid_t *fsid)
3738 {
3739 	struct vfs *vfsp;
3740 	int val0 = fsid->val[0];
3741 	int val1 = fsid->val[1];
3742 	dev_t dev = expldev(val0);
3743 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3744 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3745 
3746 	mutex_enter(hmp);
3747 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3748 		if (vfsp->vfs_fsid.val[0] == val0 &&
3749 		    vfsp->vfs_fsid.val[1] == val1) {
3750 			VFS_HOLD(vfsp);
3751 			mutex_exit(hmp);
3752 			return (vfsp);
3753 		}
3754 	}
3755 	mutex_exit(hmp);
3756 	return (NULL);
3757 }
3758 
3759 /*
3760  * Search the vfs mount in progress list for a specified device/vfs entry.
3761  * Returns 0 if the first entry in the list that the device matches has the
3762  * given vfs pointer as well.  If the device matches but a different vfs
3763  * pointer is encountered in the list before the given vfs pointer then
3764  * a 1 is returned.
3765  */
3766 
3767 int
3768 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3769 {
3770 	int retval = 0;
3771 	struct ipmnt *mipp;
3772 
3773 	mutex_enter(&vfs_miplist_mutex);
3774 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3775 		if (mipp->mip_dev == dev) {
3776 			if (mipp->mip_vfsp != vfsp)
3777 				retval = 1;
3778 			break;
3779 		}
3780 	}
3781 	mutex_exit(&vfs_miplist_mutex);
3782 	return (retval);
3783 }
3784 
3785 /*
3786  * Search the vfs list for a specified device.  Returns 1, if entry is found
3787  * or 0 if no suitable entry is found.
3788  */
3789 
3790 int
3791 vfs_devismounted(dev_t dev)
3792 {
3793 	struct vfs *vfsp;
3794 	int found = 0;
3795 	struct vfs search;
3796 	avl_index_t index;
3797 
3798 	search.vfs_dev = dev;
3799 	search.vfs_mntix = 0;
3800 
3801 	vfs_list_read_lock();
3802 
3803 	/*
3804 	 * there might be several entries with the same dev in the tree,
3805 	 * only discerned by mntix. To find the first, we start with a mntix
3806 	 * of 0. The search will fail. The following avl_nearest will give
3807 	 * us the actual first entry.
3808 	 */
3809 	VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3810 	vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3811 
3812 	if (vfsp != NULL && vfsp->vfs_dev == dev)
3813 		found = 1;
3814 
3815 	vfs_list_unlock();
3816 	return (found);
3817 }
3818 
3819 /*
3820  * Search the vfs list for a specified device.  Returns a pointer to it
3821  * or NULL if no suitable entry is found. The caller of this routine
3822  * is responsible for releasing the returned vfs pointer.
3823  */
3824 struct vfs *
3825 vfs_dev2vfsp(dev_t dev)
3826 {
3827 	struct vfs *vfsp;
3828 	int found;
3829 	struct vfs search;
3830 	avl_index_t index;
3831 
3832 	search.vfs_dev = dev;
3833 	search.vfs_mntix = 0;
3834 
3835 	vfs_list_read_lock();
3836 
3837 	/*
3838 	 * there might be several entries with the same dev in the tree,
3839 	 * only discerned by mntix. To find the first, we start with a mntix
3840 	 * of 0. The search will fail. The following avl_nearest will give
3841 	 * us the actual first entry.
3842 	 */
3843 	VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3844 	vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3845 
3846 	found = 0;
3847 	while (vfsp != NULL && vfsp->vfs_dev == dev) {
3848 		/*
3849 		 * The following could be made more efficient by making
3850 		 * the entire loop use vfs_zone_next if the call is from
3851 		 * a zone.  The only callers, however, ustat(2) and
3852 		 * umount2(2), don't seem to justify the added
3853 		 * complexity at present.
3854 		 */
3855 		if (ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3856 		    curproc->p_zone)) {
3857 			VFS_HOLD(vfsp);
3858 			found = 1;
3859 			break;
3860 		}
3861 		vfsp = AVL_NEXT(&vfs_by_dev, vfsp);
3862 	}
3863 	vfs_list_unlock();
3864 	return (found ? vfsp : NULL);
3865 }
3866 
3867 /*
3868  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3869  * or NULL if no suitable entry is found. The caller of this routine
3870  * is responsible for releasing the returned vfs pointer.
3871  *
3872  * Note that if multiple mntpoints match, the last one matching is
3873  * returned in an attempt to return the "top" mount when overlay
3874  * mounts are covering the same mount point.  This is accomplished by starting
3875  * at the end of the list and working our way backwards, stopping at the first
3876  * matching mount.
3877  */
3878 struct vfs *
3879 vfs_mntpoint2vfsp(const char *mp)
3880 {
3881 	struct vfs *vfsp;
3882 	struct vfs *retvfsp = NULL;
3883 	zone_t *zone = curproc->p_zone;
3884 	struct vfs *list;
3885 
3886 	vfs_list_read_lock();
3887 	if (getzoneid() == GLOBAL_ZONEID) {
3888 		/*
3889 		 * The global zone may see filesystems in any zone.
3890 		 */
3891 		struct vfs search;
3892 		search.vfs_mntpt = refstr_alloc(mp);
3893 		search.vfs_mntix = UINT64_MAX;
3894 		avl_index_t index;
3895 
3896 		/*
3897 		 * there might be several entries with the same mntpnt in the
3898 		 * tree, only discerned by mntix. To find the last, we start
3899 		 * with a mntix of UINT64_MAX. The search will fail. The
3900 		 * following avl_nearest will give  us the actual last entry
3901 		 * matching the mntpnt.
3902 		 */
3903 		VERIFY(avl_find(&vfs_by_mntpnt, &search, &index) == 0);
3904 		vfsp = avl_nearest(&vfs_by_mntpnt, index, AVL_BEFORE);
3905 
3906 		refstr_rele(search.vfs_mntpt);
3907 
3908 		if (vfsp != NULL &&
3909 		    strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0)
3910 			retvfsp = vfsp;
3911 	} else if ((list = zone->zone_vfslist) != NULL) {
3912 		const char *mntpt;
3913 
3914 		vfsp = list->vfs_zone_prev;
3915 		do {
3916 			mntpt = refstr_value(vfsp->vfs_mntpt);
3917 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3918 			if (strcmp(mntpt, mp) == 0) {
3919 				retvfsp = vfsp;
3920 				break;
3921 			}
3922 			vfsp = vfsp->vfs_zone_prev;
3923 		} while (vfsp != list->vfs_zone_prev);
3924 	}
3925 	if (retvfsp)
3926 		VFS_HOLD(retvfsp);
3927 	vfs_list_unlock();
3928 	return (retvfsp);
3929 }
3930 
3931 /*
3932  * Search the vfs list for a specified vfsops.
3933  * if vfs entry is found then return 1, else 0.
3934  */
3935 int
3936 vfs_opsinuse(vfsops_t *ops)
3937 {
3938 	struct vfs *vfsp;
3939 	int found;
3940 
3941 	vfs_list_read_lock();
3942 	vfsp = rootvfs;
3943 	found = 0;
3944 	do {
3945 		if (vfs_getops(vfsp) == ops) {
3946 			found = 1;
3947 			break;
3948 		}
3949 		vfsp = vfsp->vfs_next;
3950 	} while (vfsp != rootvfs);
3951 	vfs_list_unlock();
3952 	return (found);
3953 }
3954 
3955 /*
3956  * Allocate an entry in vfssw for a file system type
3957  */
3958 struct vfssw *
3959 allocate_vfssw(const char *type)
3960 {
3961 	struct vfssw *vswp;
3962 
3963 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3964 		/*
3965 		 * The vfssw table uses the empty string to identify an
3966 		 * available entry; we cannot add any type which has
3967 		 * a leading NUL. The string length is limited to
3968 		 * the size of the st_fstype array in struct stat.
3969 		 */
3970 		return (NULL);
3971 	}
3972 
3973 	ASSERT(VFSSW_WRITE_LOCKED());
3974 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3975 		if (!ALLOCATED_VFSSW(vswp)) {
3976 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3977 			(void) strcpy(vswp->vsw_name, type);
3978 			ASSERT(vswp->vsw_count == 0);
3979 			vswp->vsw_count = 1;
3980 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3981 			return (vswp);
3982 		}
3983 	return (NULL);
3984 }
3985 
3986 /*
3987  * Impose additional layer of translation between vfstype names
3988  * and module names in the filesystem.
3989  */
3990 static const char *
3991 vfs_to_modname(const char *vfstype)
3992 {
3993 	if (strcmp(vfstype, "proc") == 0) {
3994 		vfstype = "procfs";
3995 	} else if (strcmp(vfstype, "fd") == 0) {
3996 		vfstype = "fdfs";
3997 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3998 		vfstype = "nfs";
3999 	}
4000 
4001 	return (vfstype);
4002 }
4003 
4004 /*
4005  * Find a vfssw entry given a file system type name.
4006  * Try to autoload the filesystem if it's not found.
4007  * If it's installed, return the vfssw locked to prevent unloading.
4008  */
4009 struct vfssw *
4010 vfs_getvfssw(const char *type)
4011 {
4012 	struct vfssw *vswp;
4013 	const char *modname;
4014 
4015 	RLOCK_VFSSW();
4016 	vswp = vfs_getvfsswbyname(type);
4017 	modname = vfs_to_modname(type);
4018 
4019 	if (rootdir == NULL) {
4020 		/*
4021 		 * If we haven't yet loaded the root file system, then our
4022 		 * _init won't be called until later. Allocate vfssw entry,
4023 		 * because mod_installfs won't be called.
4024 		 */
4025 		if (vswp == NULL) {
4026 			RUNLOCK_VFSSW();
4027 			WLOCK_VFSSW();
4028 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
4029 				if ((vswp = allocate_vfssw(type)) == NULL) {
4030 					WUNLOCK_VFSSW();
4031 					return (NULL);
4032 				}
4033 			}
4034 			WUNLOCK_VFSSW();
4035 			RLOCK_VFSSW();
4036 		}
4037 		if (!VFS_INSTALLED(vswp)) {
4038 			RUNLOCK_VFSSW();
4039 			(void) modloadonly("fs", modname);
4040 		} else
4041 			RUNLOCK_VFSSW();
4042 		return (vswp);
4043 	}
4044 
4045 	/*
4046 	 * Try to load the filesystem.  Before calling modload(), we drop
4047 	 * our lock on the VFS switch table, and pick it up after the
4048 	 * module is loaded.  However, there is a potential race:  the
4049 	 * module could be unloaded after the call to modload() completes
4050 	 * but before we pick up the lock and drive on.  Therefore,
4051 	 * we keep reloading the module until we've loaded the module
4052 	 * _and_ we have the lock on the VFS switch table.
4053 	 */
4054 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
4055 		RUNLOCK_VFSSW();
4056 		if (modload("fs", modname) == -1)
4057 			return (NULL);
4058 		RLOCK_VFSSW();
4059 		if (vswp == NULL)
4060 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
4061 				break;
4062 	}
4063 	RUNLOCK_VFSSW();
4064 
4065 	return (vswp);
4066 }
4067 
4068 /*
4069  * Find a vfssw entry given a file system type name.
4070  */
4071 struct vfssw *
4072 vfs_getvfsswbyname(const char *type)
4073 {
4074 	struct vfssw *vswp;
4075 
4076 	ASSERT(VFSSW_LOCKED());
4077 	if (type == NULL || *type == '\0')
4078 		return (NULL);
4079 
4080 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4081 		if (strcmp(type, vswp->vsw_name) == 0) {
4082 			vfs_refvfssw(vswp);
4083 			return (vswp);
4084 		}
4085 	}
4086 
4087 	return (NULL);
4088 }
4089 
4090 /*
4091  * Find a vfssw entry given a set of vfsops.
4092  */
4093 struct vfssw *
4094 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
4095 {
4096 	struct vfssw *vswp;
4097 
4098 	RLOCK_VFSSW();
4099 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4100 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4101 			vfs_refvfssw(vswp);
4102 			RUNLOCK_VFSSW();
4103 			return (vswp);
4104 		}
4105 	}
4106 	RUNLOCK_VFSSW();
4107 
4108 	return (NULL);
4109 }
4110 
4111 /*
4112  * Reference a vfssw entry.
4113  */
4114 void
4115 vfs_refvfssw(struct vfssw *vswp)
4116 {
4117 
4118 	mutex_enter(&vswp->vsw_lock);
4119 	vswp->vsw_count++;
4120 	mutex_exit(&vswp->vsw_lock);
4121 }
4122 
4123 /*
4124  * Unreference a vfssw entry.
4125  */
4126 void
4127 vfs_unrefvfssw(struct vfssw *vswp)
4128 {
4129 
4130 	mutex_enter(&vswp->vsw_lock);
4131 	vswp->vsw_count--;
4132 	mutex_exit(&vswp->vsw_lock);
4133 }
4134 
4135 int sync_timeout = 30;		/* timeout for syncing a page during panic */
4136 int sync_timeleft;		/* portion of sync_timeout remaining */
4137 
4138 static int sync_retries = 20;	/* number of retries when not making progress */
4139 static int sync_triesleft;	/* portion of sync_retries remaining */
4140 
4141 static pgcnt_t old_pgcnt, new_pgcnt;
4142 static int new_bufcnt, old_bufcnt;
4143 
4144 /*
4145  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4146  * complete.  We wait by counting the number of dirty pages and buffers,
4147  * pushing them out using bio_busy() and page_busy(), and then counting again.
4148  * This routine is used during both the uadmin A_SHUTDOWN code as well as
4149  * the SYNC phase of the panic code (see comments in panic.c).  It should only
4150  * be used after some higher-level mechanism has quiesced the system so that
4151  * new writes are not being initiated while we are waiting for completion.
4152  *
4153  * To ensure finite running time, our algorithm uses two timeout mechanisms:
4154  * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4155  * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4156  * Together these ensure that syncing completes if our i/o paths are stuck.
4157  * The counters are declared above so they can be found easily in the debugger.
4158  *
4159  * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4160  * vfs_syncprogress() subroutine whenever we make progress through the lists of
4161  * pages and buffers.  It is decremented and expired by the deadman() cyclic.
4162  * When vfs_syncall() decides it is done, we disable the deadman() counter by
4163  * setting sync_timeleft to zero.  This timer guards against vfs_syncall()
4164  * deadlocking or hanging inside of a broken filesystem or driver routine.
4165  *
4166  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4167  * sync_retries consecutive calls to bio_busy() and page_busy() without
4168  * decreasing either the number of dirty buffers or dirty pages below the
4169  * lowest count we have seen so far, we give up and return from vfs_syncall().
4170  *
4171  * Each loop iteration ends with a call to delay() one second to allow time for
4172  * i/o completion and to permit the user time to read our progress messages.
4173  */
4174 void
4175 vfs_syncall(void)
4176 {
4177 	if (rootdir == NULL && !modrootloaded)
4178 		return; /* panic during boot - no filesystems yet */
4179 
4180 	printf("syncing file systems...");
4181 	vfs_syncprogress();
4182 	sync();
4183 
4184 	vfs_syncprogress();
4185 	sync_triesleft = sync_retries;
4186 
4187 	old_bufcnt = new_bufcnt = INT_MAX;
4188 	old_pgcnt = new_pgcnt = ULONG_MAX;
4189 
4190 	while (sync_triesleft > 0) {
4191 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4192 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4193 
4194 		new_bufcnt = bio_busy(B_TRUE);
4195 		new_pgcnt = page_busy(B_TRUE);
4196 		vfs_syncprogress();
4197 
4198 		if (new_bufcnt == 0 && new_pgcnt == 0)
4199 			break;
4200 
4201 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4202 			sync_triesleft = sync_retries;
4203 		else
4204 			sync_triesleft--;
4205 
4206 		if (new_bufcnt)
4207 			printf(" [%d]", new_bufcnt);
4208 		if (new_pgcnt)
4209 			printf(" %lu", new_pgcnt);
4210 
4211 		delay(hz);
4212 	}
4213 
4214 	if (new_bufcnt != 0 || new_pgcnt != 0)
4215 		printf(" done (not all i/o completed)\n");
4216 	else
4217 		printf(" done\n");
4218 
4219 	sync_timeleft = 0;
4220 	delay(hz);
4221 }
4222 
4223 /*
4224  * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4225  * sync_timeout to indicate that we are making progress and the deadman()
4226  * omnipresent cyclic should not yet time us out.  Note that it is safe to
4227  * store to sync_timeleft here since the deadman() is firing at high-level
4228  * on top of us.  If we are racing with the deadman(), either the deadman()
4229  * will decrement the old value and then we will reset it, or we will
4230  * reset it and then the deadman() will immediately decrement it.  In either
4231  * case, correct behavior results.
4232  */
4233 void
4234 vfs_syncprogress(void)
4235 {
4236 	if (panicstr)
4237 		sync_timeleft = sync_timeout;
4238 }
4239 
4240 /*
4241  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4242  * flags at all.
4243  */
4244 uint_t
4245 vf_to_stf(uint_t vf)
4246 {
4247 	uint_t stf = 0;
4248 
4249 	if (vf & VFS_RDONLY)
4250 		stf |= ST_RDONLY;
4251 	if (vf & VFS_NOSETUID)
4252 		stf |= ST_NOSUID;
4253 	if (vf & VFS_NOTRUNC)
4254 		stf |= ST_NOTRUNC;
4255 
4256 	return (stf);
4257 }
4258 
4259 /*
4260  * Entries for (illegal) fstype 0.
4261  */
4262 /* ARGSUSED */
4263 int
4264 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4265 {
4266 	cmn_err(CE_PANIC, "stray vfs operation");
4267 	return (0);
4268 }
4269 
4270 /*
4271  * Entries for (illegal) fstype 0.
4272  */
4273 int
4274 vfsstray(void)
4275 {
4276 	cmn_err(CE_PANIC, "stray vfs operation");
4277 	return (0);
4278 }
4279 
4280 /*
4281  * Support for dealing with forced UFS unmount and its interaction with
4282  * LOFS. Could be used by any filesystem.
4283  * See bug 1203132.
4284  */
4285 int
4286 vfs_EIO(void)
4287 {
4288 	return (EIO);
4289 }
4290 
4291 /*
4292  * We've gotta define the op for sync separately, since the compiler gets
4293  * confused if we mix and match ANSI and normal style prototypes when
4294  * a "short" argument is present and spits out a warning.
4295  */
4296 /*ARGSUSED*/
4297 int
4298 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4299 {
4300 	return (EIO);
4301 }
4302 
4303 vfs_t EIO_vfs;
4304 vfsops_t *EIO_vfsops;
4305 
4306 /*
4307  * Called from startup() to initialize all loaded vfs's
4308  */
4309 void
4310 vfsinit(void)
4311 {
4312 	struct vfssw *vswp;
4313 	int error;
4314 	extern int vopstats_enabled;
4315 	extern void vopstats_startup();
4316 
4317 	static const fs_operation_def_t EIO_vfsops_template[] = {
4318 		VFSNAME_MOUNT,		{ .error = vfs_EIO },
4319 		VFSNAME_UNMOUNT,	{ .error = vfs_EIO },
4320 		VFSNAME_ROOT,		{ .error = vfs_EIO },
4321 		VFSNAME_STATVFS,	{ .error = vfs_EIO },
4322 		VFSNAME_SYNC, 		{ .vfs_sync = vfs_EIO_sync },
4323 		VFSNAME_VGET,		{ .error = vfs_EIO },
4324 		VFSNAME_MOUNTROOT,	{ .error = vfs_EIO },
4325 		VFSNAME_FREEVFS,	{ .error = vfs_EIO },
4326 		VFSNAME_VNSTATE,	{ .error = vfs_EIO },
4327 		NULL, NULL
4328 	};
4329 
4330 	static const fs_operation_def_t stray_vfsops_template[] = {
4331 		VFSNAME_MOUNT,		{ .error = vfsstray },
4332 		VFSNAME_UNMOUNT,	{ .error = vfsstray },
4333 		VFSNAME_ROOT,		{ .error = vfsstray },
4334 		VFSNAME_STATVFS,	{ .error = vfsstray },
4335 		VFSNAME_SYNC, 		{ .vfs_sync = vfsstray_sync },
4336 		VFSNAME_VGET,		{ .error = vfsstray },
4337 		VFSNAME_MOUNTROOT,	{ .error = vfsstray },
4338 		VFSNAME_FREEVFS,	{ .error = vfsstray },
4339 		VFSNAME_VNSTATE,	{ .error = vfsstray },
4340 		NULL, NULL
4341 	};
4342 
4343 	/* Create vfs cache */
4344 	vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4345 	    sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4346 
4347 	/* Initialize the vnode cache (file systems may use it during init). */
4348 	vn_create_cache();
4349 
4350 	/* Setup event monitor framework */
4351 	fem_init();
4352 
4353 	/* Initialize the dummy stray file system type. */
4354 	error = vfs_setfsops(0, stray_vfsops_template, NULL);
4355 
4356 	/* Initialize the dummy EIO file system. */
4357 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4358 	if (error != 0) {
4359 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4360 		/* Shouldn't happen, but not bad enough to panic */
4361 	}
4362 
4363 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4364 
4365 	/*
4366 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4367 	 * on this vfs can immediately notice it's invalid.
4368 	 */
4369 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4370 
4371 	/*
4372 	 * Call the init routines of non-loadable filesystems only.
4373 	 * Filesystems which are loaded as separate modules will be
4374 	 * initialized by the module loading code instead.
4375 	 */
4376 
4377 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4378 		RLOCK_VFSSW();
4379 		if (vswp->vsw_init != NULL)
4380 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4381 		RUNLOCK_VFSSW();
4382 	}
4383 
4384 	vopstats_startup();
4385 
4386 	if (vopstats_enabled) {
4387 		/* EIO_vfs can collect stats, but we don't retrieve them */
4388 		initialize_vopstats(&EIO_vfs.vfs_vopstats);
4389 		EIO_vfs.vfs_fstypevsp = NULL;
4390 		EIO_vfs.vfs_vskap = NULL;
4391 		EIO_vfs.vfs_flag |= VFS_STATS;
4392 	}
4393 
4394 	xattr_init();
4395 
4396 	reparse_point_init();
4397 }
4398 
4399 vfs_t *
4400 vfs_alloc(int kmflag)
4401 {
4402 	vfs_t *vfsp;
4403 
4404 	vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4405 
4406 	/*
4407 	 * Do the simplest initialization here.
4408 	 * Everything else gets done in vfs_init()
4409 	 */
4410 	bzero(vfsp, sizeof (vfs_t));
4411 	return (vfsp);
4412 }
4413 
4414 void
4415 vfs_free(vfs_t *vfsp)
4416 {
4417 	/*
4418 	 * One would be tempted to assert that "vfsp->vfs_count == 0".
4419 	 * The problem is that this gets called out of domount() with
4420 	 * a partially initialized vfs and a vfs_count of 1.  This is
4421 	 * also called from vfs_rele() with a vfs_count of 0.  We can't
4422 	 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4423 	 * returned.  This is because VFS_MOUNT() fully initializes the
4424 	 * vfs structure and its associated data.  VFS_RELE() will call
4425 	 * VFS_FREEVFS() which may panic the system if the data structures
4426 	 * aren't fully initialized from a successful VFS_MOUNT()).
4427 	 */
4428 
4429 	/* If FEM was in use, make sure everything gets cleaned up */
4430 	if (vfsp->vfs_femhead) {
4431 		ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4432 		mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4433 		kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4434 		vfsp->vfs_femhead = NULL;
4435 	}
4436 
4437 	if (vfsp->vfs_implp)
4438 		vfsimpl_teardown(vfsp);
4439 	sema_destroy(&vfsp->vfs_reflock);
4440 	kmem_cache_free(vfs_cache, vfsp);
4441 }
4442 
4443 /*
4444  * Increments the vfs reference count by one atomically.
4445  */
4446 void
4447 vfs_hold(vfs_t *vfsp)
4448 {
4449 	atomic_inc_32(&vfsp->vfs_count);
4450 	ASSERT(vfsp->vfs_count != 0);
4451 }
4452 
4453 /*
4454  * Decrements the vfs reference count by one atomically. When
4455  * vfs reference count becomes zero, it calls the file system
4456  * specific vfs_freevfs() to free up the resources.
4457  */
4458 void
4459 vfs_rele(vfs_t *vfsp)
4460 {
4461 	ASSERT(vfsp->vfs_count != 0);
4462 	if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4463 		VFS_FREEVFS(vfsp);
4464 		lofi_remove(vfsp);
4465 		if (vfsp->vfs_zone)
4466 			zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4467 			    ZONE_REF_VFS);
4468 		vfs_freemnttab(vfsp);
4469 		vfs_free(vfsp);
4470 	}
4471 }
4472 
4473 /*
4474  * Generic operations vector support.
4475  *
4476  * This is used to build operations vectors for both the vfs and vnode.
4477  * It's normally called only when a file system is loaded.
4478  *
4479  * There are many possible algorithms for this, including the following:
4480  *
4481  *   (1) scan the list of known operations; for each, see if the file system
4482  *       includes an entry for it, and fill it in as appropriate.
4483  *
4484  *   (2) set up defaults for all known operations.  scan the list of ops
4485  *       supplied by the file system; for each which is both supplied and
4486  *       known, fill it in.
4487  *
4488  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4489  *       in entries as we go.
4490  *
4491  * we choose (1) for simplicity, and because performance isn't critical here.
4492  * note that (2) could be sped up using a precomputed hash table on known ops.
4493  * (3) could be faster than either, but only if the lists were very large or
4494  * supplied in sorted order.
4495  *
4496  */
4497 
4498 int
4499 fs_build_vector(void *vector, int *unused_ops,
4500     const fs_operation_trans_def_t *translation,
4501     const fs_operation_def_t *operations)
4502 {
4503 	int i, num_trans, num_ops, used;
4504 
4505 	/*
4506 	 * Count the number of translations and the number of supplied
4507 	 * operations.
4508 	 */
4509 
4510 	{
4511 		const fs_operation_trans_def_t *p;
4512 
4513 		for (num_trans = 0, p = translation;
4514 		    p->name != NULL;
4515 		    num_trans++, p++)
4516 			;
4517 	}
4518 
4519 	{
4520 		const fs_operation_def_t *p;
4521 
4522 		for (num_ops = 0, p = operations;
4523 		    p->name != NULL;
4524 		    num_ops++, p++)
4525 			;
4526 	}
4527 
4528 	/* Walk through each operation known to our caller.  There will be */
4529 	/* one entry in the supplied "translation table" for each. */
4530 
4531 	used = 0;
4532 
4533 	for (i = 0; i < num_trans; i++) {
4534 		int j, found;
4535 		char *curname;
4536 		fs_generic_func_p result;
4537 		fs_generic_func_p *location;
4538 
4539 		curname = translation[i].name;
4540 
4541 		/* Look for a matching operation in the list supplied by the */
4542 		/* file system. */
4543 
4544 		found = 0;
4545 
4546 		for (j = 0; j < num_ops; j++) {
4547 			if (strcmp(operations[j].name, curname) == 0) {
4548 				used++;
4549 				found = 1;
4550 				break;
4551 			}
4552 		}
4553 
4554 		/*
4555 		 * If the file system is using a "placeholder" for default
4556 		 * or error functions, grab the appropriate function out of
4557 		 * the translation table.  If the file system didn't supply
4558 		 * this operation at all, use the default function.
4559 		 */
4560 
4561 		if (found) {
4562 			result = operations[j].func.fs_generic;
4563 			if (result == fs_default) {
4564 				result = translation[i].defaultFunc;
4565 			} else if (result == fs_error) {
4566 				result = translation[i].errorFunc;
4567 			} else if (result == NULL) {
4568 				/* Null values are PROHIBITED */
4569 				return (EINVAL);
4570 			}
4571 		} else {
4572 			result = translation[i].defaultFunc;
4573 		}
4574 
4575 		/* Now store the function into the operations vector. */
4576 
4577 		location = (fs_generic_func_p *)
4578 		    (((char *)vector) + translation[i].offset);
4579 
4580 		*location = result;
4581 	}
4582 
4583 	*unused_ops = num_ops - used;
4584 
4585 	return (0);
4586 }
4587 
4588 /* Placeholder functions, should never be called. */
4589 
4590 int
4591 fs_error(void)
4592 {
4593 	cmn_err(CE_PANIC, "fs_error called");
4594 	return (0);
4595 }
4596 
4597 int
4598 fs_default(void)
4599 {
4600 	cmn_err(CE_PANIC, "fs_default called");
4601 	return (0);
4602 }
4603 
4604 #ifdef __sparc
4605 
4606 /*
4607  * Part of the implementation of booting off a mirrored root
4608  * involves a change of dev_t for the root device.  To
4609  * accomplish this, first remove the existing hash table
4610  * entry for the root device, convert to the new dev_t,
4611  * then re-insert in the hash table at the head of the list.
4612  */
4613 void
4614 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4615 {
4616 	vfs_list_lock();
4617 
4618 	vfs_hash_remove(vfsp);
4619 
4620 	vfsp->vfs_dev = ndev;
4621 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4622 
4623 	vfs_hash_add(vfsp, 1);
4624 
4625 	vfs_list_unlock();
4626 }
4627 
4628 #else /* x86 NEWBOOT */
4629 
4630 #if defined(__x86)
4631 extern int hvmboot_rootconf();
4632 #endif /* __x86 */
4633 
4634 extern ib_boot_prop_t *iscsiboot_prop;
4635 
4636 int
4637 rootconf()
4638 {
4639 	int error;
4640 	struct vfssw *vsw;
4641 	extern void pm_init();
4642 	char *fstyp, *fsmod;
4643 	int ret = -1;
4644 
4645 	getrootfs(&fstyp, &fsmod);
4646 
4647 #if defined(__x86)
4648 	/*
4649 	 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4650 	 * which lives in /platform/i86hvm, and hence is only available when
4651 	 * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4652 	 * is not available then the modstub for this function will return 0.
4653 	 * If the hvm_bootstrap misc module is available it will be loaded
4654 	 * and hvmboot_rootconf() will be invoked.
4655 	 */
4656 	if (error = hvmboot_rootconf())
4657 		return (error);
4658 #endif /* __x86 */
4659 
4660 	if (error = clboot_rootconf())
4661 		return (error);
4662 
4663 	if (modload("fs", fsmod) == -1)
4664 		panic("Cannot _init %s module", fsmod);
4665 
4666 	RLOCK_VFSSW();
4667 	vsw = vfs_getvfsswbyname(fstyp);
4668 	RUNLOCK_VFSSW();
4669 	if (vsw == NULL) {
4670 		cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4671 		return (ENXIO);
4672 	}
4673 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4674 	VFS_HOLD(rootvfs);
4675 
4676 	/* always mount readonly first */
4677 	rootvfs->vfs_flag |= VFS_RDONLY;
4678 
4679 	pm_init();
4680 
4681 	if (netboot && iscsiboot_prop) {
4682 		cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4683 		    " shouldn't happen in the same time");
4684 		return (EINVAL);
4685 	}
4686 
4687 	if (netboot || iscsiboot_prop) {
4688 		ret = strplumb();
4689 		if (ret != 0) {
4690 			cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4691 			return (EFAULT);
4692 		}
4693 	}
4694 
4695 	if ((ret == 0) && iscsiboot_prop) {
4696 		ret = modload("drv", "iscsi");
4697 		/* -1 indicates fail */
4698 		if (ret == -1) {
4699 			cmn_err(CE_WARN, "Failed to load iscsi module");
4700 			iscsi_boot_prop_free();
4701 			return (EINVAL);
4702 		} else {
4703 			if (!i_ddi_attach_pseudo_node("iscsi")) {
4704 				cmn_err(CE_WARN,
4705 				    "Failed to attach iscsi driver");
4706 				iscsi_boot_prop_free();
4707 				return (ENODEV);
4708 			}
4709 		}
4710 	}
4711 
4712 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4713 	vfs_unrefvfssw(vsw);
4714 	rootdev = rootvfs->vfs_dev;
4715 
4716 	if (error)
4717 		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4718 		    rootfs.bo_name, fstyp);
4719 	else
4720 		cmn_err(CE_CONT, "?root on %s fstype %s\n",
4721 		    rootfs.bo_name, fstyp);
4722 	return (error);
4723 }
4724 
4725 /*
4726  * XXX this is called by nfs only and should probably be removed
4727  * If booted with ASKNAME, prompt on the console for a filesystem
4728  * name and return it.
4729  */
4730 void
4731 getfsname(char *askfor, char *name, size_t namelen)
4732 {
4733 	if (boothowto & RB_ASKNAME) {
4734 		printf("%s name: ", askfor);
4735 		console_gets(name, namelen);
4736 	}
4737 }
4738 
4739 /*
4740  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4741  * property.
4742  *
4743  * Filesystem types starting with the prefix "nfs" are diskless clients;
4744  * init the root filename name (rootfs.bo_name), too.
4745  *
4746  * If we are booting via NFS we currently have these options:
4747  *	nfs -	dynamically choose NFS V2, V3, or V4 (default)
4748  *	nfs2 -	force NFS V2
4749  *	nfs3 -	force NFS V3
4750  *	nfs4 -	force NFS V4
4751  * Because we need to maintain backward compatibility with the naming
4752  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4753  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4754  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4755  * This is only for root filesystems, all other uses will expect
4756  * that "nfs" == NFS V2.
4757  */
4758 static void
4759 getrootfs(char **fstypp, char **fsmodp)
4760 {
4761 	extern char *strplumb_get_netdev_path(void);
4762 	char *propstr = NULL;
4763 
4764 	/*
4765 	 * Check fstype property; for diskless it should be one of "nfs",
4766 	 * "nfs2", "nfs3" or "nfs4".
4767 	 */
4768 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4769 	    DDI_PROP_DONTPASS, "fstype", &propstr)
4770 	    == DDI_SUCCESS) {
4771 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4772 		ddi_prop_free(propstr);
4773 
4774 	/*
4775 	 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4776 	 * assume the type of this root filesystem is 'zfs'.
4777 	 */
4778 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4779 	    DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4780 	    == DDI_SUCCESS) {
4781 		(void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4782 		ddi_prop_free(propstr);
4783 	}
4784 
4785 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4786 		*fstypp = *fsmodp = rootfs.bo_fstype;
4787 		return;
4788 	}
4789 
4790 	++netboot;
4791 
4792 	if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4793 		(void) strcpy(rootfs.bo_fstype, "nfs");
4794 	else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4795 		(void) strcpy(rootfs.bo_fstype, "nfsdyn");
4796 
4797 	/*
4798 	 * check if path to network interface is specified in bootpath
4799 	 * or by a hypervisor domain configuration file.
4800 	 * XXPV - enable strlumb_get_netdev_path()
4801 	 */
4802 	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4803 	    "xpv-nfsroot")) {
4804 		(void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4805 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4806 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4807 	    == DDI_SUCCESS) {
4808 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4809 		ddi_prop_free(propstr);
4810 	} else {
4811 		/* attempt to determine netdev_path via boot_mac address */
4812 		netdev_path = strplumb_get_netdev_path();
4813 		if (netdev_path == NULL)
4814 			panic("cannot find boot network interface");
4815 		(void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4816 	}
4817 	*fstypp = rootfs.bo_fstype;
4818 	*fsmodp = "nfs";
4819 }
4820 #endif
4821 
4822 /*
4823  * VFS feature routines
4824  */
4825 
4826 #define	VFTINDEX(feature)	(((feature) >> 32) & 0xFFFFFFFF)
4827 #define	VFTBITS(feature)	((feature) & 0xFFFFFFFFLL)
4828 
4829 /* Register a feature in the vfs */
4830 void
4831 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4832 {
4833 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4834 	if (vfsp->vfs_implp == NULL)
4835 		return;
4836 
4837 	vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4838 }
4839 
4840 void
4841 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4842 {
4843 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4844 	if (vfsp->vfs_implp == NULL)
4845 		return;
4846 	vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4847 }
4848 
4849 /*
4850  * Query a vfs for a feature.
4851  * Returns 1 if feature is present, 0 if not
4852  */
4853 int
4854 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4855 {
4856 	int	ret = 0;
4857 
4858 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4859 	if (vfsp->vfs_implp == NULL)
4860 		return (ret);
4861 
4862 	if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4863 		ret = 1;
4864 
4865 	return (ret);
4866 }
4867 
4868 /*
4869  * Propagate feature set from one vfs to another
4870  */
4871 void
4872 vfs_propagate_features(vfs_t *from, vfs_t *to)
4873 {
4874 	int i;
4875 
4876 	if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4877 		return;
4878 
4879 	for (i = 1; i <= to->vfs_featureset[0]; i++) {
4880 		to->vfs_featureset[i] = from->vfs_featureset[i];
4881 	}
4882 }
4883 
4884 #define	LOFINODE_PATH "/dev/lofi/%d"
4885 
4886 /*
4887  * Return the vnode for the lofi node if there's a lofi mount in place.
4888  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4889  * failure.
4890  */
4891 int
4892 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4893 {
4894 	char *path = NULL;
4895 	int strsize;
4896 	int err;
4897 
4898 	if (vfsp->vfs_lofi_minor == 0) {
4899 		*vpp = NULL;
4900 		return (-1);
4901 	}
4902 
4903 	strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4904 	path = kmem_alloc(strsize + 1, KM_SLEEP);
4905 	(void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4906 
4907 	/*
4908 	 * We may be inside a zone, so we need to use the /dev path, but
4909 	 * it's created asynchronously, so we wait here.
4910 	 */
4911 	for (;;) {
4912 		err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4913 
4914 		if (err != ENOENT)
4915 			break;
4916 
4917 		if ((err = delay_sig(hz / 8)) == EINTR)
4918 			break;
4919 	}
4920 
4921 	if (err)
4922 		*vpp = NULL;
4923 
4924 	kmem_free(path, strsize + 1);
4925 	return (err);
4926 }
4927