xref: /titanic_50/usr/src/uts/common/fs/vfs.c (revision 108322fb1c3ed341aba9c80c9774df0ed9e35768)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 
41 #pragma ident	"%Z%%M%	%I%	%E% SMI"
42 
43 #include <sys/types.h>
44 #include <sys/t_lock.h>
45 #include <sys/param.h>
46 #include <sys/errno.h>
47 #include <sys/user.h>
48 #include <sys/fstyp.h>
49 #include <sys/kmem.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/mount.h>
53 #include <sys/vfs.h>
54 #include <sys/fem.h>
55 #include <sys/mntent.h>
56 #include <sys/stat.h>
57 #include <sys/statvfs.h>
58 #include <sys/statfs.h>
59 #include <sys/cred.h>
60 #include <sys/vnode.h>
61 #include <sys/rwstlock.h>
62 #include <sys/dnlc.h>
63 #include <sys/file.h>
64 #include <sys/time.h>
65 #include <sys/atomic.h>
66 #include <sys/cmn_err.h>
67 #include <sys/buf.h>
68 #include <sys/swap.h>
69 #include <sys/debug.h>
70 #include <sys/vnode.h>
71 #include <sys/modctl.h>
72 #include <sys/ddi.h>
73 #include <sys/pathname.h>
74 #include <sys/bootconf.h>
75 #include <sys/dumphdr.h>
76 #include <sys/dc_ki.h>
77 #include <sys/poll.h>
78 #include <sys/sunddi.h>
79 #include <sys/sysmacros.h>
80 #include <sys/zone.h>
81 #include <sys/policy.h>
82 #include <sys/ctfs.h>
83 #include <sys/objfs.h>
84 #include <sys/console.h>
85 #include <sys/reboot.h>
86 
87 #include <vm/page.h>
88 
89 #include <fs/fs_subr.h>
90 
91 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
92 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
93     const char *, int, int);
94 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
95 static void vfs_freemnttab(struct vfs *);
96 static void vfs_freeopt(mntopt_t *);
97 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
98 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
99 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
100 static void vfs_createopttbl_extend(mntopts_t *, const char *,
101     const mntopts_t *);
102 static char **vfs_copycancelopt_extend(char **const, int);
103 static void vfs_freecancelopt(char **);
104 static char *getrootfs(void);
105 static int getmacpath(dev_info_t *, void *);
106 
107 struct ipmnt {
108 	struct ipmnt	*mip_next;
109 	dev_t		mip_dev;
110 	struct vfs	*mip_vfsp;
111 };
112 
113 static kmutex_t		vfs_miplist_mutex;
114 static struct ipmnt	*vfs_miplist = NULL;
115 static struct ipmnt	*vfs_miplist_end = NULL;
116 
117 /*
118  * VFS global data.
119  */
120 vnode_t *rootdir;		/* pointer to root inode vnode. */
121 vnode_t *devicesdir;		/* pointer to inode of devices root */
122 
123 char *server_rootpath;		/* root path for diskless clients */
124 char *server_hostname;		/* hostname of diskless server */
125 
126 static struct vfs root;
127 static struct vfs devices;
128 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
129 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
130 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
131 				/* must be power of 2!	*/
132 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
133 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
134 char *vfs_dummyfstype = "\0";
135 struct pollhead vfs_pollhd;	/* for mnttab pollers */
136 
137 /*
138  * Table for generic options recognized in the VFS layer and acted
139  * on at this level before parsing file system specific options.
140  * The nosuid option is stronger than any of the devices and setuid
141  * options, so those are canceled when nosuid is seen.
142  *
143  * All options which are added here need to be added to the
144  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
145  */
146 /*
147  * VFS Mount options table
148  */
149 static char *ro_cancel[] = { MNTOPT_RW, NULL };
150 static char *rw_cancel[] = { MNTOPT_RO, NULL };
151 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
152 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
153     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
154 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
155 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
156 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
157 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
158 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
159 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
160 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
161 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
162 
163 static const mntopt_t mntopts[] = {
164 /*
165  *	option name		cancel options		default arg	flags
166  */
167 	{ MNTOPT_REMOUNT,	NULL,			NULL,
168 		MO_NODISPLAY, (void *)0 },
169 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
170 		(void *)0 },
171 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
172 		(void *)0 },
173 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
174 		(void *)0 },
175 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
176 		(void *)0 },
177 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
178 		(void *)0 },
179 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
180 		(void *)0 },
181 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
182 		(void *)0 },
183 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
184 		(void *)0 },
185 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
186 		(void *)0 },
187 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
188 		(void *)0 },
189 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
190 		(void *)0 },
191 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
192 		(void *)0 },
193 };
194 
195 const mntopts_t vfs_mntopts = {
196 	sizeof (mntopts) / sizeof (mntopt_t),
197 	(mntopt_t *)&mntopts[0]
198 };
199 
200 /*
201  * File system operation dispatch functions.
202  */
203 
204 int
205 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
206 {
207 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
208 }
209 
210 int
211 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
212 {
213 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
214 }
215 
216 int
217 fsop_root(vfs_t *vfsp, vnode_t **vpp)
218 {
219 	refstr_t *mntpt;
220 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
221 	/*
222 	 * Make sure this root has a path.  With lofs, it is possible to have
223 	 * a NULL mountpoint.
224 	 */
225 	if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
226 		mntpt = vfs_getmntpoint(vfsp);
227 		vn_setpath_str(*vpp, refstr_value(mntpt),
228 		    strlen(refstr_value(mntpt)));
229 		refstr_rele(mntpt);
230 	}
231 
232 	return (ret);
233 }
234 
235 int
236 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
237 {
238 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
239 }
240 
241 int
242 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
243 {
244 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
245 }
246 
247 int
248 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
249 {
250 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
251 }
252 
253 int
254 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
255 {
256 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
257 }
258 
259 void
260 fsop_freefs(vfs_t *vfsp)
261 {
262 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
263 }
264 
265 int
266 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
267 {
268 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
269 }
270 
271 int
272 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
273 {
274 	ASSERT((fstype >= 0) && (fstype < nfstype));
275 
276 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
277 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
278 	else
279 		return (ENOTSUP);
280 }
281 
282 /*
283  * File system initialization.  vfs_setfsops() must be called from a file
284  * system's init routine.
285  */
286 
287 static int
288 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
289     int *unused_ops)
290 {
291 	static const fs_operation_trans_def_t vfs_ops_table[] = {
292 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
293 			fs_nosys, fs_nosys,
294 
295 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
296 			fs_nosys, fs_nosys,
297 
298 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
299 			fs_nosys, fs_nosys,
300 
301 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
302 			fs_nosys, fs_nosys,
303 
304 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
305 			(fs_generic_func_p) fs_sync,
306 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
307 
308 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
309 			fs_nosys, fs_nosys,
310 
311 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
312 			fs_nosys, fs_nosys,
313 
314 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
315 			(fs_generic_func_p)fs_freevfs,
316 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
317 
318 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
319 			(fs_generic_func_p)fs_nosys,
320 			(fs_generic_func_p)fs_nosys,
321 
322 		NULL, 0, NULL, NULL
323 	};
324 
325 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
326 }
327 
328 int
329 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
330 {
331 	int error;
332 	int unused_ops;
333 
334 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
335 
336 	if ((fstype <= 0) || (fstype >= nfstype))
337 		return (EINVAL);
338 
339 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
340 		return (EINVAL);
341 
342 	/* Set up the operations vector. */
343 
344 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
345 
346 	if (error != 0)
347 		return (error);
348 
349 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
350 
351 	if (actual != NULL)
352 		*actual = &vfssw[fstype].vsw_vfsops;
353 
354 #if DEBUG
355 	if (unused_ops != 0)
356 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
357 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
358 #endif
359 
360 	return (0);
361 }
362 
363 int
364 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
365 {
366 	int error;
367 	int unused_ops;
368 
369 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
370 
371 	error = fs_copyfsops(template, *actual, &unused_ops);
372 	if (error != 0) {
373 		kmem_free(*actual, sizeof (vfsops_t));
374 		*actual = NULL;
375 		return (error);
376 	}
377 
378 	return (0);
379 }
380 
381 /*
382  * Free a vfsops structure created as a result of vfs_makefsops().
383  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
384  * vfs_freevfsops_by_type().
385  */
386 void
387 vfs_freevfsops(vfsops_t *vfsops)
388 {
389 	kmem_free(vfsops, sizeof (vfsops_t));
390 }
391 
392 /*
393  * Since the vfsops structure is part of the vfssw table and wasn't
394  * really allocated, we're not really freeing anything.  We keep
395  * the name for consistency with vfs_freevfsops().  We do, however,
396  * need to take care of a little bookkeeping.
397  * NOTE: For a vfsops structure created by vfs_setfsops(), use
398  * vfs_freevfsops_by_type().
399  */
400 int
401 vfs_freevfsops_by_type(int fstype)
402 {
403 
404 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
405 	if ((fstype <= 0) || (fstype >= nfstype))
406 		return (EINVAL);
407 
408 	WLOCK_VFSSW();
409 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
410 		WUNLOCK_VFSSW();
411 		return (EINVAL);
412 	}
413 
414 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
415 	WUNLOCK_VFSSW();
416 
417 	return (0);
418 }
419 
420 /* Support routines used to reference vfs_op */
421 
422 /* Set the operations vector for a vfs */
423 void
424 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
425 {
426 	vfsops_t	*op;
427 
428 	ASSERT(vfsp != NULL);
429 	ASSERT(vfsops != NULL);
430 
431 	op = vfsp->vfs_op;
432 	membar_consumer();
433 	if (vfsp->vfs_femhead == NULL &&
434 	    casptr(&vfsp->vfs_op, op, vfsops) == op) {
435 		return;
436 	}
437 	fsem_setvfsops(vfsp, vfsops);
438 }
439 
440 /* Retrieve the operations vector for a vfs */
441 vfsops_t *
442 vfs_getops(vfs_t *vfsp)
443 {
444 	vfsops_t	*op;
445 
446 	ASSERT(vfsp != NULL);
447 
448 	op = vfsp->vfs_op;
449 	membar_consumer();
450 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
451 		return (op);
452 	} else {
453 		return (fsem_getvfsops(vfsp));
454 	}
455 }
456 
457 /*
458  * Returns non-zero (1) if the vfsops matches that of the vfs.
459  * Returns zero (0) if not.
460  */
461 int
462 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
463 {
464 	return (vfs_getops(vfsp) == vfsops);
465 }
466 
467 /*
468  * Returns non-zero (1) if the file system has installed a non-default,
469  * non-error vfs_sync routine.  Returns zero (0) otherwise.
470  */
471 int
472 vfs_can_sync(vfs_t *vfsp)
473 {
474 	/* vfs_sync() routine is not the default/error function */
475 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
476 }
477 
478 /*
479  * Initialize a vfs structure.
480  */
481 void
482 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
483 {
484 	vfsp->vfs_count = 0;
485 	vfsp->vfs_next = vfsp;
486 	vfsp->vfs_prev = vfsp;
487 	vfsp->vfs_zone_next = vfsp;
488 	vfsp->vfs_zone_prev = vfsp;
489 	vfsp->vfs_flag = 0;
490 	vfsp->vfs_data = (data);
491 	vfsp->vfs_resource = NULL;
492 	vfsp->vfs_mntpt = NULL;
493 	vfsp->vfs_mntopts.mo_count = 0;
494 	vfsp->vfs_mntopts.mo_list = NULL;
495 	vfsp->vfs_femhead = NULL;
496 	vfsp->vfs_zone = NULL;
497 	vfs_setops((vfsp), (op));
498 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
499 }
500 
501 
502 /*
503  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
504  * fstatvfs, and sysfs moved to common/syscall.
505  */
506 
507 /*
508  * Update every mounted file system.  We call the vfs_sync operation of
509  * each file system type, passing it a NULL vfsp to indicate that all
510  * mounted file systems of that type should be updated.
511  */
512 void
513 vfs_sync(int flag)
514 {
515 	struct vfssw *vswp;
516 	RLOCK_VFSSW();
517 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
518 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
519 			vfs_refvfssw(vswp);
520 			RUNLOCK_VFSSW();
521 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
522 			    CRED());
523 			vfs_unrefvfssw(vswp);
524 			RLOCK_VFSSW();
525 		}
526 	}
527 	RUNLOCK_VFSSW();
528 }
529 
530 void
531 sync(void)
532 {
533 	vfs_sync(0);
534 }
535 
536 /*
537  * External routines.
538  */
539 
540 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
541 
542 /*
543  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
544  * but otherwise should be accessed only via vfs_list_lock() and
545  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
546  */
547 static krwlock_t vfslist;
548 
549 /*
550  * Mount devfs on /devices. This is done right after root is mounted
551  * to provide device access support for the system
552  */
553 static void
554 vfs_mountdevices(void)
555 {
556 	struct vfssw *vsw;
557 	struct vnode *mvp;
558 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
559 		NULL,
560 		NULL,
561 		MS_SYSSPACE,
562 		NULL,
563 		NULL,
564 		0,
565 		NULL,
566 		0
567 	};
568 
569 	/*
570 	 * _init devfs module to fill in the vfssw
571 	 */
572 	if (modload("fs", "devfs") == -1)
573 		cmn_err(CE_PANIC, "Cannot _init devfs module\n");
574 
575 	/*
576 	 * Hold vfs
577 	 */
578 	RLOCK_VFSSW();
579 	vsw = vfs_getvfsswbyname("devfs");
580 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
581 	VFS_HOLD(&devices);
582 
583 	/*
584 	 * Locate mount point
585 	 */
586 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
587 		cmn_err(CE_PANIC, "Cannot find /devices\n");
588 
589 	/*
590 	 * Perform the mount of /devices
591 	 */
592 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
593 		cmn_err(CE_PANIC, "Cannot mount /devices\n");
594 
595 	RUNLOCK_VFSSW();
596 
597 	/*
598 	 * Set appropriate members and add to vfs list for mnttab display
599 	 */
600 	vfs_setresource(&devices, "/devices");
601 	vfs_setmntpoint(&devices, "/devices");
602 
603 	/*
604 	 * Hold the root of /devices so it won't go away
605 	 */
606 	if (VFS_ROOT(&devices, &devicesdir))
607 		cmn_err(CE_PANIC, "vfs_mountdevices: not devices root");
608 	VN_HOLD(devicesdir);
609 
610 	if (vfs_lock(&devices) != 0) {
611 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
612 		return;
613 	}
614 
615 	if (vn_vfswlock(mvp) != 0) {
616 		vfs_unlock(&devices);
617 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
618 		return;
619 	}
620 
621 	vfs_add(mvp, &devices, 0);
622 	vn_vfsunlock(mvp);
623 	vfs_unlock(&devices);
624 }
625 
626 /*
627  * Mount required filesystem. This is done right after root is mounted.
628  */
629 static void
630 vfs_mountfs(char *module, char *spec, char *path)
631 {
632 	struct vnode *mvp;
633 	struct mounta mounta;
634 	vfs_t *vfsp;
635 
636 	mounta.flags = MS_SYSSPACE | MS_DATA;
637 	mounta.fstype = module;
638 	mounta.spec = spec;
639 	mounta.dir = path;
640 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
641 		cmn_err(CE_WARN, "Cannot find %s\n", path);
642 		return;
643 	}
644 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
645 		cmn_err(CE_WARN, "Cannot mount %s\n", path);
646 	else
647 		VFS_RELE(vfsp);
648 	VN_RELE(mvp);
649 }
650 
651 /*
652  * vfs_mountroot is called by main() to mount the root filesystem.
653  */
654 void
655 vfs_mountroot(void)
656 {
657 	struct vnode	*rvp = NULL;
658 	char		*path;
659 	size_t		plen;
660 
661 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
662 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
663 
664 	/*
665 	 * Alloc the vfs hash bucket array and locks
666 	 */
667 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
668 
669 	/*
670 	 * Call machine-dependent routine "rootconf" to choose a root
671 	 * file system type.
672 	 */
673 	if (rootconf())
674 		cmn_err(CE_PANIC, "vfs_mountroot: cannot mount root");
675 	/*
676 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
677 	 * to point to it.  These are used by lookuppn() so that it
678 	 * knows where to start from ('/' or '.').
679 	 */
680 	vfs_setmntpoint(rootvfs, "/");
681 	if (VFS_ROOT(rootvfs, &rootdir))
682 		cmn_err(CE_PANIC, "vfs_mountroot: no root vnode");
683 	u.u_cdir = rootdir;
684 	VN_HOLD(u.u_cdir);
685 	u.u_rdir = NULL;
686 
687 	/*
688 	 * Setup the global zone's rootvp, now that it exists.
689 	 */
690 	global_zone->zone_rootvp = rootdir;
691 	VN_HOLD(global_zone->zone_rootvp);
692 
693 	/*
694 	 * Notify the module code that it can begin using the
695 	 * root filesystem instead of the boot program's services.
696 	 */
697 	modrootloaded = 1;
698 	/*
699 	 * Set up mnttab information for root
700 	 */
701 	vfs_setresource(rootvfs, rootfs.bo_name);
702 
703 	/*
704 	 * Notify cluster software that the root filesystem is available.
705 	 */
706 	clboot_mountroot();
707 
708 	/*
709 	 * Mount /devices, /system/contract, /etc/mnttab, /etc/svc/volatile,
710 	 * /system/object, and /proc.
711 	 */
712 	vfs_mountdevices();
713 
714 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
715 	vfs_mountfs("proc", "/proc", "/proc");
716 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
717 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
718 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
719 
720 #ifdef __sparc
721 	/*
722 	 * This bit of magic can go away when we convert sparc to
723 	 * the new boot architecture based on ramdisk.
724 	 *
725 	 * Booting off a mirrored root volume:
726 	 * At this point, we have booted and mounted root on a
727 	 * single component of the mirror.  Complete the boot
728 	 * by configuring SVM and converting the root to the
729 	 * dev_t of the mirrored root device.  This dev_t conversion
730 	 * only works because the underlying device doesn't change.
731 	 */
732 	if (root_is_svm) {
733 		if (svm_rootconf()) {
734 			cmn_err(CE_PANIC, "vfs_mountroot: cannot remount root");
735 		}
736 
737 		/*
738 		 * mnttab should reflect the new root device
739 		 */
740 		vfs_lock_wait(rootvfs);
741 		vfs_setresource(rootvfs, rootfs.bo_name);
742 		vfs_unlock(rootvfs);
743 	}
744 #endif /* __sparc */
745 
746 	/*
747 	 * Look up the root device via devfs so that a dv_node is
748 	 * created for it. The vnode is never VN_RELE()ed.
749 	 * We allocate more than MAXPATHLEN so that the
750 	 * buffer passed to i_ddi_prompath_to_devfspath() is
751 	 * exactly MAXPATHLEN (the function expects a buffer
752 	 * of that length).
753 	 */
754 	plen = strlen("/devices");
755 	path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
756 	(void) strcpy(path, "/devices");
757 
758 	if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
759 	    != DDI_SUCCESS ||
760 	    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
761 
762 		/* NUL terminate in case "path" has garbage */
763 		path[plen + MAXPATHLEN - 1] = '\0';
764 #ifdef	DEBUG
765 		cmn_err(CE_WARN, "!Cannot lookup root device: %s", path);
766 #endif
767 	}
768 	kmem_free(path, plen + MAXPATHLEN);
769 }
770 
771 /*
772  * Common mount code.  Called from the system call entry point, from autofs,
773  * and from pxfs.
774  *
775  * Takes the effective file system type, mount arguments, the mount point
776  * vnode, flags specifying whether the mount is a remount and whether it
777  * should be entered into the vfs list, and credentials.  Fills in its vfspp
778  * parameter with the mounted file system instance's vfs.
779  *
780  * Note that the effective file system type is specified as a string.  It may
781  * be null, in which case it's determined from the mount arguments, and may
782  * differ from the type specified in the mount arguments; this is a hook to
783  * allow interposition when instantiating file system instances.
784  *
785  * The caller is responsible for releasing its own hold on the mount point
786  * vp (this routine does its own hold when necessary).
787  * Also note that for remounts, the mount point vp should be the vnode for
788  * the root of the file system rather than the vnode that the file system
789  * is mounted on top of.
790  */
791 int
792 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
793 	struct vfs **vfspp)
794 {
795 	struct vfssw	*vswp;
796 	vfsops_t	*vfsops;
797 	struct vfs	*vfsp;
798 	struct vnode	*bvp;
799 	dev_t		bdev = 0;
800 	mntopts_t	mnt_mntopts;
801 	int		error = 0;
802 	int		copyout_error = 0;
803 	int		ovflags;
804 	char		*opts = uap->optptr;
805 	char		*inargs = opts;
806 	int		optlen = uap->optlen;
807 	int		remount;
808 	int		rdonly;
809 	int		nbmand = 0;
810 	int		delmip = 0;
811 	int		addmip = 0;
812 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
813 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
814 				UIO_SYSSPACE : UIO_USERSPACE;
815 	char		*resource = NULL, *mountpt = NULL;
816 	refstr_t	*oldresource, *oldmntpt;
817 	struct pathname	pn, rpn;
818 
819 	/*
820 	 * The v_flag value for the mount point vp is permanently set
821 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
822 	 * for mount point locking.
823 	 */
824 	mutex_enter(&vp->v_lock);
825 	vp->v_flag |= VVFSLOCK;
826 	mutex_exit(&vp->v_lock);
827 
828 	mnt_mntopts.mo_count = 0;
829 	/*
830 	 * Find the ops vector to use to invoke the file system-specific mount
831 	 * method.  If the fsname argument is non-NULL, use it directly.
832 	 * Otherwise, dig the file system type information out of the mount
833 	 * arguments.
834 	 *
835 	 * A side effect is to hold the vfssw entry.
836 	 *
837 	 * Mount arguments can be specified in several ways, which are
838 	 * distinguished by flag bit settings.  The preferred way is to set
839 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
840 	 * type supplied as a character string and the last two arguments
841 	 * being a pointer to a character buffer and the size of the buffer.
842 	 * On entry, the buffer holds a null terminated list of options; on
843 	 * return, the string is the list of options the file system
844 	 * recognized. If MS_DATA is set arguments five and six point to a
845 	 * block of binary data which the file system interprets.
846 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
847 	 * consistently with these conventions.  To handle them, we check to
848 	 * see whether the pointer to the file system name has a numeric value
849 	 * less than 256.  If so, we treat it as an index.
850 	 */
851 	if (fsname != NULL) {
852 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
853 			return (EINVAL);
854 		}
855 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
856 		size_t n;
857 		uint_t fstype;
858 		char name[FSTYPSZ];
859 
860 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
861 			RLOCK_VFSSW();
862 			if (fstype == 0 || fstype >= nfstype ||
863 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
864 				RUNLOCK_VFSSW();
865 				return (EINVAL);
866 			}
867 			(void) strcpy(name, vfssw[fstype].vsw_name);
868 			RUNLOCK_VFSSW();
869 			if ((vswp = vfs_getvfssw(name)) == NULL)
870 				return (EINVAL);
871 		} else {
872 			/*
873 			 * Handle either kernel or user address space.
874 			 */
875 			if (uap->flags & MS_SYSSPACE) {
876 				error = copystr(uap->fstype, name,
877 				    FSTYPSZ, &n);
878 			} else {
879 				error = copyinstr(uap->fstype, name,
880 				    FSTYPSZ, &n);
881 			}
882 			if (error) {
883 				if (error == ENAMETOOLONG)
884 					return (EINVAL);
885 				return (error);
886 			}
887 			if ((vswp = vfs_getvfssw(name)) == NULL)
888 				return (EINVAL);
889 		}
890 	} else {
891 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
892 			return (EINVAL);
893 	}
894 	if (!VFS_INSTALLED(vswp))
895 		return (EINVAL);
896 	vfsops = &vswp->vsw_vfsops;
897 
898 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
899 	/*
900 	 * Fetch mount options and parse them for generic vfs options
901 	 */
902 	if (uap->flags & MS_OPTIONSTR) {
903 		/*
904 		 * Limit the buffer size
905 		 */
906 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
907 			error = EINVAL;
908 			goto errout;
909 		}
910 		if ((uap->flags & MS_SYSSPACE) == 0) {
911 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
912 			inargs[0] = '\0';
913 			if (optlen) {
914 				error = copyinstr(opts, inargs, (size_t)optlen,
915 					NULL);
916 				if (error) {
917 					goto errout;
918 				}
919 			}
920 		}
921 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
922 	}
923 	/*
924 	 * Flag bits override the options string.
925 	 */
926 	if (uap->flags & MS_REMOUNT)
927 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
928 	if (uap->flags & MS_RDONLY)
929 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
930 	if (uap->flags & MS_NOSUID)
931 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
932 
933 	/*
934 	 * Check if this is a remount; must be set in the option string and
935 	 * the file system must support a remount option.
936 	 */
937 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
938 	    MNTOPT_REMOUNT, NULL)) {
939 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
940 			error = ENOTSUP;
941 			goto errout;
942 		}
943 		uap->flags |= MS_REMOUNT;
944 	}
945 
946 	/*
947 	 * uap->flags and vfs_optionisset() should agree.
948 	 */
949 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
950 		uap->flags |= MS_RDONLY;
951 	}
952 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
953 		uap->flags |= MS_NOSUID;
954 	}
955 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
956 	ASSERT(splice || !remount);
957 	/*
958 	 * If we are splicing the fs into the namespace,
959 	 * perform mount point checks.
960 	 *
961 	 * We want to resolve the path for the mount point to eliminate
962 	 * '.' and ".." and symlinks in mount points; we can't do the
963 	 * same for the resource string, since it would turn
964 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
965 	 * this before grabbing vn_vfswlock(), because otherwise we
966 	 * would deadlock with lookuppn().
967 	 */
968 	if (splice) {
969 		ASSERT(vp->v_count > 0);
970 
971 		/*
972 		 * Pick up mount point and device from appropriate space.
973 		 */
974 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
975 			resource = kmem_alloc(pn.pn_pathlen + 1,
976 			    KM_SLEEP);
977 			(void) strcpy(resource, pn.pn_path);
978 			pn_free(&pn);
979 		}
980 		/*
981 		 * Do a lookupname prior to taking the
982 		 * writelock. Mark this as completed if
983 		 * successful for later cleanup and addition to
984 		 * the mount in progress table.
985 		 */
986 		if ((uap->flags & MS_GLOBAL) == 0 &&
987 		    lookupname(uap->spec, fromspace,
988 			    FOLLOW, NULL, &bvp) == 0) {
989 			addmip = 1;
990 		}
991 
992 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
993 			pathname_t *pnp;
994 
995 			if (*pn.pn_path != '/') {
996 				error = EINVAL;
997 				pn_free(&pn);
998 				goto errout;
999 			}
1000 			pn_alloc(&rpn);
1001 			/*
1002 			 * Kludge to prevent autofs from deadlocking with
1003 			 * itself when it calls domount().
1004 			 *
1005 			 * If autofs is calling, it is because it is doing
1006 			 * (autofs) mounts in the process of an NFS mount.  A
1007 			 * lookuppn() here would cause us to block waiting for
1008 			 * said NFS mount to complete, which can't since this
1009 			 * is the thread that was supposed to doing it.
1010 			 */
1011 			if (fromspace == UIO_USERSPACE) {
1012 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1013 				    NULL)) == 0) {
1014 					pnp = &rpn;
1015 				} else {
1016 					/*
1017 					 * The file disappeared or otherwise
1018 					 * became inaccessible since we opened
1019 					 * it; might as well fail the mount
1020 					 * since the mount point is no longer
1021 					 * accessible.
1022 					 */
1023 					pn_free(&rpn);
1024 					pn_free(&pn);
1025 					goto errout;
1026 				}
1027 			} else {
1028 				pnp = &pn;
1029 			}
1030 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1031 			(void) strcpy(mountpt, pnp->pn_path);
1032 
1033 			/*
1034 			 * If the addition of the zone's rootpath
1035 			 * would push us over a total path length
1036 			 * of MAXPATHLEN, we fail the mount with
1037 			 * ENAMETOOLONG, which is what we would have
1038 			 * gotten if we were trying to perform the same
1039 			 * mount in the global zone.
1040 			 *
1041 			 * strlen() doesn't count the trailing
1042 			 * '\0', but zone_rootpathlen counts both a
1043 			 * trailing '/' and the terminating '\0'.
1044 			 */
1045 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1046 			    strlen(mountpt)) > MAXPATHLEN ||
1047 			    (resource != NULL &&
1048 			    (curproc->p_zone->zone_rootpathlen - 1 +
1049 			    strlen(resource)) > MAXPATHLEN)) {
1050 				error = ENAMETOOLONG;
1051 			}
1052 
1053 			pn_free(&rpn);
1054 			pn_free(&pn);
1055 		}
1056 
1057 		if (error)
1058 			goto errout;
1059 
1060 		/*
1061 		 * Prevent path name resolution from proceeding past
1062 		 * the mount point.
1063 		 */
1064 		if (vn_vfswlock(vp) != 0) {
1065 			error = EBUSY;
1066 			goto errout;
1067 		}
1068 
1069 		/*
1070 		 * Verify that it's legitimate to establish a mount on
1071 		 * the prospective mount point.
1072 		 */
1073 		if (vn_mountedvfs(vp) != NULL) {
1074 			/*
1075 			 * The mount point lock was obtained after some
1076 			 * other thread raced through and established a mount.
1077 			 */
1078 			vn_vfsunlock(vp);
1079 			error = EBUSY;
1080 			goto errout;
1081 		}
1082 		if (vp->v_flag & VNOMOUNT) {
1083 			vn_vfsunlock(vp);
1084 			error = EINVAL;
1085 			goto errout;
1086 		}
1087 	}
1088 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1089 		uap->dataptr = NULL;
1090 		uap->datalen = 0;
1091 	}
1092 
1093 	/*
1094 	 * If this is a remount, we don't want to create a new VFS.
1095 	 * Instead, we pass the existing one with a remount flag.
1096 	 */
1097 	if (remount) {
1098 		/*
1099 		 * Confirm that the mount point is the root vnode of the
1100 		 * file system that is being remounted.
1101 		 * This can happen if the user specifies a different
1102 		 * mount point directory pathname in the (re)mount command.
1103 		 *
1104 		 * Code below can only be reached if splice is true, so it's
1105 		 * safe to do vn_vfsunlock() here.
1106 		 */
1107 		if ((vp->v_flag & VROOT) == 0) {
1108 			vn_vfsunlock(vp);
1109 			error = ENOENT;
1110 			goto errout;
1111 		}
1112 		/*
1113 		 * Disallow making file systems read-only unless file system
1114 		 * explicitly allows it in its vfssw.  Ignore other flags.
1115 		 */
1116 		if (rdonly && vn_is_readonly(vp) == 0 &&
1117 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1118 			vn_vfsunlock(vp);
1119 			error = EINVAL;
1120 			goto errout;
1121 		}
1122 		/*
1123 		 * Changing the NBMAND setting on remounts is permitted
1124 		 * but logged since it can lead to unexpected behavior.
1125 		 * We also counsel against using it for / and /usr.
1126 		 */
1127 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1128 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1129 			cmn_err(CE_WARN, "domount: nbmand turned %s via "
1130 			    "remounting %s", nbmand ? "on" : "off",
1131 			    refstr_value(vp->v_vfsp->vfs_mntpt));
1132 		}
1133 		vfsp = vp->v_vfsp;
1134 		ovflags = vfsp->vfs_flag;
1135 		vfsp->vfs_flag |= VFS_REMOUNT;
1136 		vfsp->vfs_flag &= ~VFS_RDONLY;
1137 	} else {
1138 		vfsp = kmem_alloc(sizeof (vfs_t), KM_SLEEP);
1139 		VFS_INIT(vfsp, vfsops, NULL);
1140 	}
1141 
1142 	VFS_HOLD(vfsp);
1143 
1144 	/*
1145 	 * The vfs_reflock is not used anymore the code below explicitly
1146 	 * holds it preventing others accesing it directly.
1147 	 */
1148 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1149 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1150 		cmn_err(CE_WARN,
1151 		    "mount type %s couldn't get vfs_reflock\n", vswp->vsw_name);
1152 
1153 	/*
1154 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1155 	 * failures that happen as a side-effect of fsflush() and other mount
1156 	 * and unmount operations that might be going on simultaneously and
1157 	 * may have locked the vfs currently. To not return EBUSY immediately
1158 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1159 	 */
1160 	if (!remount) {
1161 		if (error = vfs_lock(vfsp)) {
1162 			vfsp->vfs_flag = ovflags;
1163 			if (splice)
1164 				vn_vfsunlock(vp);
1165 			kmem_free(vfsp, sizeof (struct vfs));
1166 			goto errout;
1167 		}
1168 	} else {
1169 		vfs_lock_wait(vfsp);
1170 	}
1171 
1172 	/*
1173 	 * Add device to mount in progress table, global mounts require special
1174 	 * handling. It is possible that we have already done the lookupname
1175 	 * on a spliced, non-global fs. If so, we don't want to do it again
1176 	 * since we cannot do a lookupname after taking the
1177 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1178 	 */
1179 	if (!addmip) {
1180 	    if ((uap->flags & MS_GLOBAL) == 0 &&
1181 		lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1182 			addmip = 1;
1183 		}
1184 	}
1185 
1186 	if (addmip) {
1187 		bdev = bvp->v_rdev;
1188 		VN_RELE(bvp);
1189 		vfs_addmip(bdev, vfsp);
1190 		addmip = 0;
1191 		delmip = 1;
1192 	}
1193 	/*
1194 	 * Invalidate cached entry for the mount point.
1195 	 */
1196 	if (splice)
1197 		dnlc_purge_vp(vp);
1198 
1199 	/*
1200 	 * If have an option string but the filesystem doesn't supply a
1201 	 * prototype options table, create a table with the global
1202 	 * options and sufficient room to accept all the options in the
1203 	 * string.  Then parse the passed in option string
1204 	 * accepting all the options in the string.  This gives us an
1205 	 * option table with all the proper cancel properties for the
1206 	 * global options.
1207 	 *
1208 	 * Filesystems that supply a prototype options table are handled
1209 	 * earlier in this function.
1210 	 */
1211 	if (uap->flags & MS_OPTIONSTR) {
1212 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1213 			mntopts_t tmp_mntopts;
1214 
1215 			tmp_mntopts.mo_count = 0;
1216 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1217 			    &mnt_mntopts);
1218 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1219 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1220 			vfs_freeopttbl(&tmp_mntopts);
1221 		}
1222 	}
1223 
1224 	/*
1225 	 * Serialize with zone creations.
1226 	 */
1227 	mount_in_progress();
1228 	/*
1229 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1230 	 * splice it into the file system name space.
1231 	 *
1232 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1233 	 * string if necessary (ie, mntfs), and also for a remount to
1234 	 * change the same (necessary when remounting '/' during boot).
1235 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1236 	 * should be, then hand off control to VFS_MOUNT() which can
1237 	 * override this.
1238 	 *
1239 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1240 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1241 	 * never set those fields to NULL. Several bits of code make
1242 	 * assumptions that the fields are always valid.
1243 	 */
1244 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1245 	if (remount) {
1246 		if ((oldresource = vfsp->vfs_resource) != NULL)
1247 			refstr_hold(oldresource);
1248 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1249 			refstr_hold(oldmntpt);
1250 	}
1251 	vfs_setresource(vfsp, resource);
1252 	vfs_setmntpoint(vfsp, mountpt);
1253 
1254 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1255 
1256 	if (uap->flags & MS_RDONLY)
1257 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1258 	if (uap->flags & MS_NOSUID)
1259 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1260 	if (uap->flags & MS_GLOBAL)
1261 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1262 
1263 	if (error) {
1264 		if (remount) {
1265 			/* put back pre-remount options */
1266 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1267 			vfs_setmntpoint(vfsp, refstr_value(oldmntpt));
1268 			if (oldmntpt)
1269 				refstr_rele(oldmntpt);
1270 			vfs_setresource(vfsp, refstr_value(oldresource));
1271 			if (oldresource)
1272 				refstr_rele(oldresource);
1273 			vfsp->vfs_flag = ovflags;
1274 			vfs_unlock(vfsp);
1275 			VFS_RELE(vfsp);
1276 		} else {
1277 			vfs_unlock(vfsp);
1278 			vfs_freemnttab(vfsp);
1279 			kmem_free(vfsp, sizeof (struct vfs));
1280 		}
1281 	} else {
1282 		/*
1283 		 * Set the mount time to now
1284 		 */
1285 		vfsp->vfs_mtime = ddi_get_time();
1286 		if (remount) {
1287 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1288 			if (oldresource)
1289 				refstr_rele(oldresource);
1290 			if (oldmntpt)
1291 				refstr_rele(oldmntpt);
1292 		} else if (splice) {
1293 			/*
1294 			 * Link vfsp into the name space at the mount
1295 			 * point. Vfs_add() is responsible for
1296 			 * holding the mount point which will be
1297 			 * released when vfs_remove() is called.
1298 			 */
1299 			vfs_add(vp, vfsp, uap->flags);
1300 		} else {
1301 			/*
1302 			 * Hold the reference to file system which is
1303 			 * not linked into the name space.
1304 			 */
1305 			vfsp->vfs_zone = NULL;
1306 			VFS_HOLD(vfsp);
1307 			vfsp->vfs_vnodecovered = NULL;
1308 		}
1309 		/*
1310 		 * Set flags for global options encountered
1311 		 */
1312 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1313 			vfsp->vfs_flag |= VFS_RDONLY;
1314 		else
1315 			vfsp->vfs_flag &= ~VFS_RDONLY;
1316 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1317 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1318 		} else {
1319 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1320 				vfsp->vfs_flag |= VFS_NODEVICES;
1321 			else
1322 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1323 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1324 				vfsp->vfs_flag |= VFS_NOSETUID;
1325 			else
1326 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1327 		}
1328 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1329 			vfsp->vfs_flag |= VFS_NBMAND;
1330 		else
1331 			vfsp->vfs_flag &= ~VFS_NBMAND;
1332 
1333 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1334 			vfsp->vfs_flag |= VFS_XATTR;
1335 		else
1336 			vfsp->vfs_flag &= ~VFS_XATTR;
1337 
1338 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1339 			vfsp->vfs_flag |= VFS_NOEXEC;
1340 		else
1341 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1342 
1343 		/*
1344 		 * Now construct the output option string of options
1345 		 * we recognized.
1346 		 */
1347 		if (uap->flags & MS_OPTIONSTR) {
1348 			vfs_list_read_lock();
1349 			copyout_error = vfs_buildoptionstr(
1350 				&vfsp->vfs_mntopts, inargs, optlen);
1351 			vfs_list_unlock();
1352 			if (copyout_error == 0 &&
1353 			    (uap->flags & MS_SYSSPACE) == 0) {
1354 				copyout_error = copyoutstr(inargs, opts,
1355 				    optlen, NULL);
1356 			}
1357 		}
1358 		vfs_unlock(vfsp);
1359 	}
1360 	mount_completed();
1361 	if (splice)
1362 		vn_vfsunlock(vp);
1363 
1364 	/*
1365 	 * Return vfsp to caller.
1366 	 */
1367 	if ((error == 0) && (copyout_error == 0)) {
1368 		*vfspp = vfsp;
1369 	}
1370 errout:
1371 	vfs_freeopttbl(&mnt_mntopts);
1372 	if (resource != NULL)
1373 		kmem_free(resource, strlen(resource) + 1);
1374 	if (mountpt != NULL)
1375 		kmem_free(mountpt, strlen(mountpt) + 1);
1376 	/*
1377 	 * It is possible we errored prior to adding to mount in progress
1378 	 * table. Must free vnode we acquired with successful lookupname.
1379 	 */
1380 	if (addmip)
1381 		VN_RELE(bvp);
1382 	if (delmip)
1383 		vfs_delmip(vfsp);
1384 	ASSERT(vswp != NULL);
1385 	vfs_unrefvfssw(vswp);
1386 	if (inargs != opts)
1387 		kmem_free(inargs, MAX_MNTOPT_STR);
1388 	if (copyout_error) {
1389 		VFS_RELE(vfsp);
1390 		error = copyout_error;
1391 	}
1392 	return (error);
1393 }
1394 
1395 static void
1396 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath)
1397 {
1398 	size_t len;
1399 	refstr_t *ref;
1400 	zone_t *zone = curproc->p_zone;
1401 	char *sp;
1402 	int have_list_lock = 0;
1403 
1404 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1405 
1406 	/*
1407 	 * New path must be less than MAXPATHLEN because mntfs
1408 	 * will only display up to MAXPATHLEN bytes. This is currently
1409 	 * safe, because domount() uses pn_get(), and other callers
1410 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1411 	 */
1412 
1413 	ASSERT(strlen(newpath) < MAXPATHLEN);
1414 
1415 	/* mntfs requires consistency while vfs list lock is held */
1416 
1417 	if (VFS_ON_LIST(vfsp)) {
1418 		have_list_lock = 1;
1419 		vfs_list_lock();
1420 	}
1421 
1422 	if (*refp != NULL)
1423 		refstr_rele(*refp);
1424 
1425 	/* Do we need to modify the path? */
1426 
1427 	if (zone == global_zone || *newpath != '/') {
1428 		ref = refstr_alloc(newpath);
1429 		goto out;
1430 	}
1431 
1432 	/*
1433 	 * Truncate the trailing '/' in the zoneroot, and merge
1434 	 * in the zone's rootpath with the "newpath" (resource
1435 	 * or mountpoint) passed in.
1436 	 *
1437 	 * The size of the required buffer is thus the size of
1438 	 * the buffer required for the passed-in newpath
1439 	 * (strlen(newpath) + 1), plus the size of the buffer
1440 	 * required to hold zone_rootpath (zone_rootpathlen)
1441 	 * minus one for one of the now-superfluous NUL
1442 	 * terminations, minus one for the trailing '/'.
1443 	 *
1444 	 * That gives us:
1445 	 *
1446 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1447 	 *
1448 	 * Which is what we have below.
1449 	 */
1450 
1451 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1452 	sp = kmem_alloc(len, KM_SLEEP);
1453 
1454 	/*
1455 	 * Copy everything including the trailing slash, which
1456 	 * we then overwrite with the NUL character.
1457 	 */
1458 
1459 	(void) strcpy(sp, zone->zone_rootpath);
1460 	sp[zone->zone_rootpathlen - 2] = '\0';
1461 	(void) strcat(sp, newpath);
1462 
1463 	ref = refstr_alloc(sp);
1464 	kmem_free(sp, len);
1465 out:
1466 	*refp = ref;
1467 
1468 	if (have_list_lock) {
1469 		vfs_mnttab_modtimeupd();
1470 		vfs_list_unlock();
1471 	}
1472 }
1473 
1474 /*
1475  * Record a mounted resource name in a vfs structure.
1476  * If vfsp is already mounted, caller must hold the vfs lock.
1477  */
1478 void
1479 vfs_setresource(struct vfs *vfsp, const char *resource)
1480 {
1481 	if (resource == NULL || resource[0] == '\0')
1482 		resource = VFS_NORESOURCE;
1483 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource);
1484 }
1485 
1486 /*
1487  * Record a mount point name in a vfs structure.
1488  * If vfsp is already mounted, caller must hold the vfs lock.
1489  */
1490 void
1491 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt)
1492 {
1493 	if (mntpt == NULL || mntpt[0] == '\0')
1494 		mntpt = VFS_NOMNTPT;
1495 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt);
1496 }
1497 
1498 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1499 
1500 refstr_t *
1501 vfs_getresource(const struct vfs *vfsp)
1502 {
1503 	refstr_t *resource;
1504 
1505 	vfs_list_read_lock();
1506 	resource = vfsp->vfs_resource;
1507 	refstr_hold(resource);
1508 	vfs_list_unlock();
1509 
1510 	return (resource);
1511 }
1512 
1513 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1514 
1515 refstr_t *
1516 vfs_getmntpoint(const struct vfs *vfsp)
1517 {
1518 	refstr_t *mntpt;
1519 
1520 	vfs_list_read_lock();
1521 	mntpt = vfsp->vfs_mntpt;
1522 	refstr_hold(mntpt);
1523 	vfs_list_unlock();
1524 
1525 	return (mntpt);
1526 }
1527 
1528 /*
1529  * Create an empty options table with enough empty slots to hold all
1530  * The options in the options string passed as an argument.
1531  * Potentially prepend another options table.
1532  *
1533  * Note: caller is responsible for locking the vfs list, if needed,
1534  *       to protect mops.
1535  */
1536 static void
1537 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1538     const mntopts_t *mtmpl)
1539 {
1540 	const char *s = opts;
1541 	uint_t count;
1542 
1543 	if (opts == NULL || *opts == '\0') {
1544 		count = 0;
1545 	} else {
1546 		count = 1;
1547 
1548 		/*
1549 		 * Count number of options in the string
1550 		 */
1551 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
1552 			count++;
1553 			s++;
1554 		}
1555 	}
1556 	vfs_copyopttbl_extend(mtmpl, mops, count);
1557 }
1558 
1559 /*
1560  * Create an empty options table with enough empty slots to hold all
1561  * The options in the options string passed as an argument.
1562  *
1563  * This function is *not* for general use by filesystems.
1564  *
1565  * Note: caller is responsible for locking the vfs list, if needed,
1566  *       to protect mops.
1567  */
1568 void
1569 vfs_createopttbl(mntopts_t *mops, const char *opts)
1570 {
1571 	vfs_createopttbl_extend(mops, opts, NULL);
1572 }
1573 
1574 
1575 /*
1576  * Swap two mount options tables
1577  */
1578 static void
1579 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
1580 {
1581 	uint_t tmpcnt;
1582 	mntopt_t *tmplist;
1583 
1584 	tmpcnt = optbl2->mo_count;
1585 	tmplist = optbl2->mo_list;
1586 	optbl2->mo_count = optbl1->mo_count;
1587 	optbl2->mo_list = optbl1->mo_list;
1588 	optbl1->mo_count = tmpcnt;
1589 	optbl1->mo_list = tmplist;
1590 }
1591 
1592 static void
1593 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
1594 {
1595 	vfs_list_lock();
1596 	vfs_swapopttbl_nolock(optbl1, optbl2);
1597 	vfs_mnttab_modtimeupd();
1598 	vfs_list_unlock();
1599 }
1600 
1601 static char **
1602 vfs_copycancelopt_extend(char **const moc, int extend)
1603 {
1604 	int i = 0;
1605 	int j;
1606 	char **result;
1607 
1608 	if (moc != NULL) {
1609 		for (; moc[i] != NULL; i++)
1610 			/* count number of options to cancel */;
1611 	}
1612 
1613 	if (i + extend == 0)
1614 		return (NULL);
1615 
1616 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
1617 
1618 	for (j = 0; j < i; j++) {
1619 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
1620 		(void) strcpy(result[j], moc[j]);
1621 	}
1622 	for (; j <= i + extend; j++)
1623 		result[j] = NULL;
1624 
1625 	return (result);
1626 }
1627 
1628 static void
1629 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
1630 {
1631 	char *sp, *dp;
1632 
1633 	d->mo_flags = s->mo_flags;
1634 	d->mo_data = s->mo_data;
1635 	sp = s->mo_name;
1636 	if (sp != NULL) {
1637 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
1638 		(void) strcpy(dp, sp);
1639 		d->mo_name = dp;
1640 	} else {
1641 		d->mo_name = NULL; /* should never happen */
1642 	}
1643 
1644 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
1645 
1646 	sp = s->mo_arg;
1647 	if (sp != NULL) {
1648 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
1649 		(void) strcpy(dp, sp);
1650 		d->mo_arg = dp;
1651 	} else {
1652 		d->mo_arg = NULL;
1653 	}
1654 }
1655 
1656 /*
1657  * Copy a mount options table, possibly allocating some spare
1658  * slots at the end.  It is permissible to copy_extend the NULL table.
1659  */
1660 static void
1661 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
1662 {
1663 	uint_t i, count;
1664 	mntopt_t *motbl;
1665 
1666 	/*
1667 	 * Clear out any existing stuff in the options table being initialized
1668 	 */
1669 	vfs_freeopttbl(dmo);
1670 	count = (smo == NULL) ? 0 : smo->mo_count;
1671 	if ((count + extra) == 0)	/* nothing to do */
1672 		return;
1673 	dmo->mo_count = count + extra;
1674 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
1675 	dmo->mo_list = motbl;
1676 	for (i = 0; i < count; i++) {
1677 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
1678 	}
1679 	for (i = count; i < count + extra; i++) {
1680 		motbl[i].mo_flags = MO_EMPTY;
1681 	}
1682 }
1683 
1684 /*
1685  * Copy a mount options table.
1686  *
1687  * This function is *not* for general use by filesystems.
1688  *
1689  * Note: caller is responsible for locking the vfs list, if needed,
1690  *       to protect smo and dmo.
1691  */
1692 void
1693 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
1694 {
1695 	vfs_copyopttbl_extend(smo, dmo, 0);
1696 }
1697 
1698 static char **
1699 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
1700 {
1701 	int c1 = 0;
1702 	int c2 = 0;
1703 	char **result;
1704 	char **sp1, **sp2, **dp;
1705 
1706 	/*
1707 	 * First we count both lists of cancel options.
1708 	 * If either is NULL or has no elements, we return a copy of
1709 	 * the other.
1710 	 */
1711 	if (mop1->mo_cancel != NULL) {
1712 		for (; mop1->mo_cancel[c1] != NULL; c1++)
1713 			/* count cancel options in mop1 */;
1714 	}
1715 
1716 	if (c1 == 0)
1717 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
1718 
1719 	if (mop2->mo_cancel != NULL) {
1720 		for (; mop2->mo_cancel[c2] != NULL; c2++)
1721 			/* count cancel options in mop2 */;
1722 	}
1723 
1724 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
1725 
1726 	if (c2 == 0)
1727 		return (result);
1728 
1729 	/*
1730 	 * When we get here, we've got two sets of cancel options;
1731 	 * we need to merge the two sets.  We know that the result
1732 	 * array has "c1+c2+1" entries and in the end we might shrink
1733 	 * it.
1734 	 * Result now has a copy of the c1 entries from mop1; we'll
1735 	 * now lookup all the entries of mop2 in mop1 and copy it if
1736 	 * it is unique.
1737 	 * This operation is O(n^2) but it's only called once per
1738 	 * filesystem per duplicate option.  This is a situation
1739 	 * which doesn't arise with the filesystems in ON and
1740 	 * n is generally 1.
1741 	 */
1742 
1743 	dp = &result[c1];
1744 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
1745 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
1746 			if (strcmp(*sp1, *sp2) == 0)
1747 				break;
1748 		}
1749 		if (*sp1 == NULL) {
1750 			/*
1751 			 * Option *sp2 not found in mop1, so copy it.
1752 			 * The calls to vfs_copycancelopt_extend()
1753 			 * guarantee that there's enough room.
1754 			 */
1755 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
1756 			(void) strcpy(*dp++, *sp2);
1757 		}
1758 	}
1759 	if (dp != &result[c1+c2]) {
1760 		size_t bytes = (dp - result + 1) * sizeof (char *);
1761 		char **nres = kmem_alloc(bytes, KM_SLEEP);
1762 
1763 		bcopy(result, nres, bytes);
1764 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
1765 		result = nres;
1766 	}
1767 	return (result);
1768 }
1769 
1770 /*
1771  * Merge two mount option tables (outer and inner) into one.  This is very
1772  * similar to "merging" global variables and automatic variables in C.
1773  *
1774  * This isn't (and doesn't have to be) fast.
1775  *
1776  * This function is *not* for general use by filesystems.
1777  *
1778  * Note: caller is responsible for locking the vfs list, if needed,
1779  *       to protect omo, imo & dmo.
1780  */
1781 void
1782 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
1783 {
1784 	uint_t i, count;
1785 	mntopt_t *mop, *motbl;
1786 	uint_t freeidx;
1787 
1788 	/*
1789 	 * First determine how much space we need to allocate.
1790 	 */
1791 	count = omo->mo_count;
1792 	for (i = 0; i < imo->mo_count; i++) {
1793 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
1794 			continue;
1795 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
1796 			count++;
1797 	}
1798 	ASSERT(count >= omo->mo_count &&
1799 	    count <= omo->mo_count + imo->mo_count);
1800 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
1801 	for (i = 0; i < omo->mo_count; i++)
1802 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
1803 	freeidx = omo->mo_count;
1804 	for (i = 0; i < imo->mo_count; i++) {
1805 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
1806 			continue;
1807 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
1808 			char **newcanp;
1809 			uint_t index = mop - omo->mo_list;
1810 
1811 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
1812 
1813 			vfs_freeopt(&motbl[index]);
1814 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
1815 
1816 			vfs_freecancelopt(motbl[index].mo_cancel);
1817 			motbl[index].mo_cancel = newcanp;
1818 		} else {
1819 			/*
1820 			 * If it's a new option, just copy it over to the first
1821 			 * free location.
1822 			 */
1823 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
1824 		}
1825 	}
1826 	dmo->mo_count = count;
1827 	dmo->mo_list = motbl;
1828 }
1829 
1830 /*
1831  * Functions to set and clear mount options in a mount options table.
1832  */
1833 
1834 /*
1835  * Clear a mount option, if it exists.
1836  *
1837  * The update_mnttab arg indicates whether mops is part of a vfs that is on
1838  * the vfs list.
1839  */
1840 static void
1841 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
1842 {
1843 	struct mntopt *mop;
1844 	uint_t i, count;
1845 
1846 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
1847 
1848 	count = mops->mo_count;
1849 	for (i = 0; i < count; i++) {
1850 		mop = &mops->mo_list[i];
1851 
1852 		if (mop->mo_flags & MO_EMPTY)
1853 			continue;
1854 		if (strcmp(opt, mop->mo_name))
1855 			continue;
1856 		mop->mo_flags &= ~MO_SET;
1857 		if (mop->mo_arg != NULL) {
1858 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
1859 		}
1860 		mop->mo_arg = NULL;
1861 		if (update_mnttab)
1862 			vfs_mnttab_modtimeupd();
1863 		break;
1864 	}
1865 }
1866 
1867 void
1868 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
1869 {
1870 	int gotlock = 0;
1871 
1872 	if (VFS_ON_LIST(vfsp)) {
1873 		gotlock = 1;
1874 		vfs_list_lock();
1875 	}
1876 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
1877 	if (gotlock)
1878 		vfs_list_unlock();
1879 }
1880 
1881 
1882 /*
1883  * Set a mount option on.  If it's not found in the table, it's silently
1884  * ignored.  If the option has MO_IGNORE set, it is still set unless the
1885  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
1886  * bits can be used to toggle the MO_NODISPLAY bit for the option.
1887  * If the VFS_CREATEOPT flag bit is set then the first option slot with
1888  * MO_EMPTY set is created as the option passed in.
1889  *
1890  * The update_mnttab arg indicates whether mops is part of a vfs that is on
1891  * the vfs list.
1892  */
1893 static void
1894 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
1895     const char *arg, int flags, int update_mnttab)
1896 {
1897 	mntopt_t *mop;
1898 	uint_t i, count;
1899 	char *sp;
1900 
1901 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
1902 
1903 	if (flags & VFS_CREATEOPT) {
1904 		if (vfs_hasopt(mops, opt) != NULL) {
1905 			flags &= ~VFS_CREATEOPT;
1906 		}
1907 	}
1908 	count = mops->mo_count;
1909 	for (i = 0; i < count; i++) {
1910 		mop = &mops->mo_list[i];
1911 
1912 		if (mop->mo_flags & MO_EMPTY) {
1913 			if ((flags & VFS_CREATEOPT) == 0)
1914 				continue;
1915 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
1916 			(void) strcpy(sp, opt);
1917 			mop->mo_name = sp;
1918 			if (arg != NULL)
1919 				mop->mo_flags = MO_HASVALUE;
1920 			else
1921 				mop->mo_flags = 0;
1922 		} else if (strcmp(opt, mop->mo_name)) {
1923 			continue;
1924 		}
1925 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
1926 			break;
1927 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
1928 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
1929 			(void) strcpy(sp, arg);
1930 		} else {
1931 			sp = NULL;
1932 		}
1933 		if (mop->mo_arg != NULL)
1934 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
1935 		mop->mo_arg = sp;
1936 		if (flags & VFS_DISPLAY)
1937 			mop->mo_flags &= ~MO_NODISPLAY;
1938 		if (flags & VFS_NODISPLAY)
1939 			mop->mo_flags |= MO_NODISPLAY;
1940 		mop->mo_flags |= MO_SET;
1941 		if (mop->mo_cancel != NULL) {
1942 			char **cp;
1943 
1944 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
1945 				vfs_clearmntopt_nolock(mops, *cp, 0);
1946 		}
1947 		if (update_mnttab)
1948 			vfs_mnttab_modtimeupd();
1949 		break;
1950 	}
1951 }
1952 
1953 void
1954 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
1955 {
1956 	int gotlock = 0;
1957 
1958 	if (VFS_ON_LIST(vfsp)) {
1959 		gotlock = 1;
1960 		vfs_list_lock();
1961 	}
1962 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
1963 	if (gotlock)
1964 		vfs_list_unlock();
1965 }
1966 
1967 
1968 /*
1969  * Add a "tag" option to a mounted file system's options list.
1970  *
1971  * Note: caller is responsible for locking the vfs list, if needed,
1972  *       to protect mops.
1973  */
1974 static mntopt_t *
1975 vfs_addtag(mntopts_t *mops, const char *tag)
1976 {
1977 	uint_t count;
1978 	mntopt_t *mop, *motbl;
1979 
1980 	count = mops->mo_count + 1;
1981 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
1982 	if (mops->mo_count) {
1983 		size_t len = (count - 1) * sizeof (mntopt_t);
1984 
1985 		bcopy(mops->mo_list, motbl, len);
1986 		kmem_free(mops->mo_list, len);
1987 	}
1988 	mops->mo_count = count;
1989 	mops->mo_list = motbl;
1990 	mop = &motbl[count - 1];
1991 	mop->mo_flags = MO_TAG;
1992 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
1993 	(void) strcpy(mop->mo_name, tag);
1994 	return (mop);
1995 }
1996 
1997 /*
1998  * Allow users to set arbitrary "tags" in a vfs's mount options.
1999  * Broader use within the kernel is discouraged.
2000  */
2001 int
2002 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2003     cred_t *cr)
2004 {
2005 	vfs_t *vfsp;
2006 	mntopts_t *mops;
2007 	mntopt_t *mop;
2008 	int found = 0;
2009 	dev_t dev = makedevice(major, minor);
2010 	int err = 0;
2011 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2012 
2013 	/*
2014 	 * Find the desired mounted file system
2015 	 */
2016 	vfs_list_lock();
2017 	vfsp = rootvfs;
2018 	do {
2019 		if (vfsp->vfs_dev == dev &&
2020 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2021 			found = 1;
2022 			break;
2023 		}
2024 		vfsp = vfsp->vfs_next;
2025 	} while (vfsp != rootvfs);
2026 
2027 	if (!found) {
2028 		err = EINVAL;
2029 		goto out;
2030 	}
2031 	err = secpolicy_fs_config(cr, vfsp);
2032 	if (err != 0)
2033 		goto out;
2034 
2035 	mops = &vfsp->vfs_mntopts;
2036 	/*
2037 	 * Add tag if it doesn't already exist
2038 	 */
2039 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2040 		int len;
2041 
2042 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2043 		len = strlen(buf);
2044 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2045 			err = ENAMETOOLONG;
2046 			goto out;
2047 		}
2048 		mop = vfs_addtag(mops, tag);
2049 	}
2050 	if ((mop->mo_flags & MO_TAG) == 0) {
2051 		err = EINVAL;
2052 		goto out;
2053 	}
2054 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2055 out:
2056 	vfs_list_unlock();
2057 	kmem_free(buf, MAX_MNTOPT_STR);
2058 	return (err);
2059 }
2060 
2061 /*
2062  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2063  * Broader use within the kernel is discouraged.
2064  */
2065 int
2066 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2067     cred_t *cr)
2068 {
2069 	vfs_t *vfsp;
2070 	mntopt_t *mop;
2071 	int found = 0;
2072 	dev_t dev = makedevice(major, minor);
2073 	int err = 0;
2074 
2075 	/*
2076 	 * Find the desired mounted file system
2077 	 */
2078 	vfs_list_lock();
2079 	vfsp = rootvfs;
2080 	do {
2081 		if (vfsp->vfs_dev == dev &&
2082 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2083 			found = 1;
2084 			break;
2085 		}
2086 		vfsp = vfsp->vfs_next;
2087 	} while (vfsp != rootvfs);
2088 
2089 	if (!found) {
2090 		err = EINVAL;
2091 		goto out;
2092 	}
2093 	err = secpolicy_fs_config(cr, vfsp);
2094 	if (err != 0)
2095 		goto out;
2096 
2097 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2098 		err = EINVAL;
2099 		goto out;
2100 	}
2101 	if ((mop->mo_flags & MO_TAG) == 0) {
2102 		err = EINVAL;
2103 		goto out;
2104 	}
2105 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2106 out:
2107 	vfs_list_unlock();
2108 	return (err);
2109 }
2110 
2111 /*
2112  * Function to parse an option string and fill in a mount options table.
2113  * Unknown options are silently ignored.  The input option string is modified
2114  * by replacing separators with nulls.  If the create flag is set, options
2115  * not found in the table are just added on the fly.  The table must have
2116  * an option slot marked MO_EMPTY to add an option on the fly.
2117  *
2118  * This function is *not* for general use by filesystems.
2119  *
2120  * Note: caller is responsible for locking the vfs list, if needed,
2121  *       to protect mops..
2122  */
2123 void
2124 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2125 {
2126 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2127 	int setflg = VFS_NOFORCEOPT;
2128 
2129 	if (osp == NULL)
2130 		return;
2131 	while (*s != '\0') {
2132 		p = strchr(s, ',');	/* find next option */
2133 		if (p == NULL) {
2134 			cp = NULL;
2135 			p = s + strlen(s);
2136 		} else {
2137 			cp = p;		/* save location of comma */
2138 			*p++ = '\0';	/* mark end and point to next option */
2139 		}
2140 		nextop = p;
2141 		p = strchr(s, '=');	/* look for value */
2142 		if (p == NULL) {
2143 			valp = NULL;	/* no value supplied */
2144 		} else {
2145 			ep = p;		/* save location of equals */
2146 			*p++ = '\0';	/* end option and point to value */
2147 			valp = p;
2148 		}
2149 		/*
2150 		 * set option into options table
2151 		 */
2152 		if (create)
2153 			setflg |= VFS_CREATEOPT;
2154 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2155 		if (cp != NULL)
2156 			*cp = ',';	/* restore the comma */
2157 		if (valp != NULL)
2158 			*ep = '=';	/* restore the equals */
2159 		s = nextop;
2160 	}
2161 }
2162 
2163 /*
2164  * Function to inquire if an option exists in a mount options table.
2165  * Returns a pointer to the option if it exists, else NULL.
2166  *
2167  * This function is *not* for general use by filesystems.
2168  *
2169  * Note: caller is responsible for locking the vfs list, if needed,
2170  *       to protect mops.
2171  */
2172 struct mntopt *
2173 vfs_hasopt(const mntopts_t *mops, const char *opt)
2174 {
2175 	struct mntopt *mop;
2176 	uint_t i, count;
2177 
2178 	count = mops->mo_count;
2179 	for (i = 0; i < count; i++) {
2180 		mop = &mops->mo_list[i];
2181 
2182 		if (mop->mo_flags & MO_EMPTY)
2183 			continue;
2184 		if (strcmp(opt, mop->mo_name) == 0)
2185 			return (mop);
2186 	}
2187 	return (NULL);
2188 }
2189 
2190 /*
2191  * Function to inquire if an option is set in a mount options table.
2192  * Returns non-zero if set and fills in the arg pointer with a pointer to
2193  * the argument string or NULL if there is no argument string.
2194  */
2195 static int
2196 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2197 {
2198 	struct mntopt *mop;
2199 	uint_t i, count;
2200 
2201 	count = mops->mo_count;
2202 	for (i = 0; i < count; i++) {
2203 		mop = &mops->mo_list[i];
2204 
2205 		if (mop->mo_flags & MO_EMPTY)
2206 			continue;
2207 		if (strcmp(opt, mop->mo_name))
2208 			continue;
2209 		if ((mop->mo_flags & MO_SET) == 0)
2210 			return (0);
2211 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2212 			*argp = mop->mo_arg;
2213 		return (1);
2214 	}
2215 	return (0);
2216 }
2217 
2218 
2219 int
2220 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2221 {
2222 	int ret;
2223 
2224 	vfs_list_read_lock();
2225 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2226 	vfs_list_unlock();
2227 	return (ret);
2228 }
2229 
2230 
2231 /*
2232  * Construct a comma separated string of the options set in the given
2233  * mount table, return the string in the given buffer.  Return non-zero if
2234  * the buffer would overflow.
2235  *
2236  * This function is *not* for general use by filesystems.
2237  *
2238  * Note: caller is responsible for locking the vfs list, if needed,
2239  *       to protect mp.
2240  */
2241 int
2242 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2243 {
2244 	char *cp;
2245 	uint_t i;
2246 
2247 	buf[0] = '\0';
2248 	cp = buf;
2249 	for (i = 0; i < mp->mo_count; i++) {
2250 		struct mntopt *mop;
2251 
2252 		mop = &mp->mo_list[i];
2253 		if (mop->mo_flags & MO_SET) {
2254 			int optlen, comma = 0;
2255 
2256 			if (buf[0] != '\0')
2257 				comma = 1;
2258 			optlen = strlen(mop->mo_name);
2259 			if (strlen(buf) + comma + optlen + 1 > len)
2260 				goto err;
2261 			if (comma)
2262 				*cp++ = ',';
2263 			(void) strcpy(cp, mop->mo_name);
2264 			cp += optlen;
2265 			/*
2266 			 * Append option value if there is one
2267 			 */
2268 			if (mop->mo_arg != NULL) {
2269 				int arglen;
2270 
2271 				arglen = strlen(mop->mo_arg);
2272 				if (strlen(buf) + arglen + 2 > len)
2273 					goto err;
2274 				*cp++ = '=';
2275 				(void) strcpy(cp, mop->mo_arg);
2276 				cp += arglen;
2277 			}
2278 		}
2279 	}
2280 	return (0);
2281 err:
2282 	return (EOVERFLOW);
2283 }
2284 
2285 static void
2286 vfs_freecancelopt(char **moc)
2287 {
2288 	if (moc != NULL) {
2289 		int ccnt = 0;
2290 		char **cp;
2291 
2292 		for (cp = moc; *cp != NULL; cp++) {
2293 			kmem_free(*cp, strlen(*cp) + 1);
2294 			ccnt++;
2295 		}
2296 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2297 	}
2298 }
2299 
2300 static void
2301 vfs_freeopt(mntopt_t *mop)
2302 {
2303 	if (mop->mo_name != NULL)
2304 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2305 
2306 	vfs_freecancelopt(mop->mo_cancel);
2307 
2308 	if (mop->mo_arg != NULL)
2309 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2310 }
2311 
2312 /*
2313  * Free a mount options table
2314  *
2315  * This function is *not* for general use by filesystems.
2316  *
2317  * Note: caller is responsible for locking the vfs list, if needed,
2318  *       to protect mp.
2319  */
2320 void
2321 vfs_freeopttbl(mntopts_t *mp)
2322 {
2323 	uint_t i, count;
2324 
2325 	count = mp->mo_count;
2326 	for (i = 0; i < count; i++) {
2327 		vfs_freeopt(&mp->mo_list[i]);
2328 	}
2329 	if (count) {
2330 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2331 		mp->mo_count = 0;
2332 		mp->mo_list = NULL;
2333 	}
2334 }
2335 
2336 /*
2337  * Free any mnttab information recorded in the vfs struct.
2338  * The vfs must not be on the vfs list.
2339  */
2340 static void
2341 vfs_freemnttab(struct vfs *vfsp)
2342 {
2343 	ASSERT(!VFS_ON_LIST(vfsp));
2344 
2345 	/*
2346 	 * Free device and mount point information
2347 	 */
2348 	if (vfsp->vfs_mntpt != NULL) {
2349 		refstr_rele(vfsp->vfs_mntpt);
2350 		vfsp->vfs_mntpt = NULL;
2351 	}
2352 	if (vfsp->vfs_resource != NULL) {
2353 		refstr_rele(vfsp->vfs_resource);
2354 		vfsp->vfs_resource = NULL;
2355 	}
2356 	/*
2357 	 * Now free mount options information
2358 	 */
2359 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2360 }
2361 
2362 /*
2363  * Return the last mnttab modification time
2364  */
2365 void
2366 vfs_mnttab_modtime(timespec_t *ts)
2367 {
2368 	ASSERT(RW_LOCK_HELD(&vfslist));
2369 	*ts = vfs_mnttab_mtime;
2370 }
2371 
2372 /*
2373  * See if mnttab is changed
2374  */
2375 void
2376 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2377 {
2378 	int changed;
2379 
2380 	*phpp = (struct pollhead *)NULL;
2381 
2382 	/*
2383 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2384 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2385 	 * to not grab the vfs list lock because tv_sec is monotonically
2386 	 * increasing.
2387 	 */
2388 
2389 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2390 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2391 	if (!changed) {
2392 		*phpp = &vfs_pollhd;
2393 	}
2394 }
2395 
2396 /*
2397  * Update the mnttab modification time and wake up any waiters for
2398  * mnttab changes
2399  */
2400 void
2401 vfs_mnttab_modtimeupd()
2402 {
2403 	hrtime_t oldhrt, newhrt;
2404 
2405 	ASSERT(RW_WRITE_HELD(&vfslist));
2406 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
2407 	gethrestime(&vfs_mnttab_mtime);
2408 	newhrt = ts2hrt(&vfs_mnttab_mtime);
2409 	if (oldhrt == (hrtime_t)0)
2410 		vfs_mnttab_ctime = vfs_mnttab_mtime;
2411 	/*
2412 	 * Attempt to provide unique mtime (like uniqtime but not).
2413 	 */
2414 	if (newhrt == oldhrt) {
2415 		newhrt++;
2416 		hrt2ts(newhrt, &vfs_mnttab_mtime);
2417 	}
2418 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
2419 }
2420 
2421 int
2422 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
2423 {
2424 	vnode_t *coveredvp;
2425 	int error;
2426 
2427 	/*
2428 	 * Get covered vnode. This will be NULL if the vfs is not linked
2429 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
2430 	 */
2431 	coveredvp = vfsp->vfs_vnodecovered;
2432 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
2433 
2434 	/*
2435 	 * Purge all dnlc entries for this vfs.
2436 	 */
2437 	(void) dnlc_purge_vfsp(vfsp, 0);
2438 
2439 	/* For forcible umount, skip VFS_SYNC() since it may hang */
2440 	if ((flag & MS_FORCE) == 0)
2441 		(void) VFS_SYNC(vfsp, 0, cr);
2442 
2443 	/*
2444 	 * Lock the vfs to maintain fs status quo during unmount.  This
2445 	 * has to be done after the sync because ufs_update tries to acquire
2446 	 * the vfs_reflock.
2447 	 */
2448 	vfs_lock_wait(vfsp);
2449 
2450 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
2451 		vfs_unlock(vfsp);
2452 		if (coveredvp != NULL)
2453 			vn_vfsunlock(coveredvp);
2454 	} else if (coveredvp != NULL) {
2455 		/*
2456 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
2457 		 * when it frees vfsp so we do a VN_HOLD() so we can
2458 		 * continue to use coveredvp afterwards.
2459 		 */
2460 		VN_HOLD(coveredvp);
2461 		vfs_remove(vfsp);
2462 		vn_vfsunlock(coveredvp);
2463 		VN_RELE(coveredvp);
2464 	} else {
2465 		/*
2466 		 * Release the reference to vfs that is not linked
2467 		 * into the name space.
2468 		 */
2469 		vfs_unlock(vfsp);
2470 		VFS_RELE(vfsp);
2471 	}
2472 	return (error);
2473 }
2474 
2475 
2476 /*
2477  * Vfs_unmountall() is called by uadmin() to unmount all
2478  * mounted file systems (except the root file system) during shutdown.
2479  * It follows the existing locking protocol when traversing the vfs list
2480  * to sync and unmount vfses. Even though there should be no
2481  * other thread running while the system is shutting down, it is prudent
2482  * to still follow the locking protocol.
2483  */
2484 void
2485 vfs_unmountall(void)
2486 {
2487 	struct vfs *vfsp;
2488 	struct vfs *prev_vfsp = NULL;
2489 	int error;
2490 
2491 	/*
2492 	 * Toss all dnlc entries now so that the per-vfs sync
2493 	 * and unmount operations don't have to slog through
2494 	 * a bunch of uninteresting vnodes over and over again.
2495 	 */
2496 	dnlc_purge();
2497 
2498 	vfs_list_lock();
2499 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
2500 		prev_vfsp = vfsp->vfs_prev;
2501 
2502 		if (vfs_lock(vfsp) != 0)
2503 			continue;
2504 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
2505 		vfs_unlock(vfsp);
2506 		if (error)
2507 			continue;
2508 
2509 		vfs_list_unlock();
2510 
2511 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
2512 		(void) dounmount(vfsp, 0, CRED());
2513 
2514 		/*
2515 		 * Since we dropped the vfslist lock above we must
2516 		 * verify that next_vfsp still exists, else start over.
2517 		 */
2518 		vfs_list_lock();
2519 		for (vfsp = rootvfs->vfs_prev;
2520 			vfsp != rootvfs; vfsp = vfsp->vfs_prev)
2521 			if (vfsp == prev_vfsp)
2522 				break;
2523 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
2524 			prev_vfsp = rootvfs->vfs_prev;
2525 	}
2526 	vfs_list_unlock();
2527 }
2528 
2529 /*
2530  * Called to add an entry to the end of the vfs mount in progress list
2531  */
2532 void
2533 vfs_addmip(dev_t dev, struct vfs *vfsp)
2534 {
2535 	struct ipmnt *mipp;
2536 
2537 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
2538 	mipp->mip_next = NULL;
2539 	mipp->mip_dev = dev;
2540 	mipp->mip_vfsp = vfsp;
2541 	mutex_enter(&vfs_miplist_mutex);
2542 	if (vfs_miplist_end != NULL)
2543 		vfs_miplist_end->mip_next = mipp;
2544 	else
2545 		vfs_miplist = mipp;
2546 	vfs_miplist_end = mipp;
2547 	mutex_exit(&vfs_miplist_mutex);
2548 }
2549 
2550 /*
2551  * Called to remove an entry from the mount in progress list
2552  * Either because the mount completed or it failed.
2553  */
2554 void
2555 vfs_delmip(struct vfs *vfsp)
2556 {
2557 	struct ipmnt *mipp, *mipprev;
2558 
2559 	mutex_enter(&vfs_miplist_mutex);
2560 	mipprev = NULL;
2561 	for (mipp = vfs_miplist;
2562 		mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
2563 		mipprev = mipp;
2564 	}
2565 	if (mipp == NULL)
2566 		return; /* shouldn't happen */
2567 	if (mipp == vfs_miplist_end)
2568 		vfs_miplist_end = mipprev;
2569 	if (mipprev == NULL)
2570 		vfs_miplist = mipp->mip_next;
2571 	else
2572 		mipprev->mip_next = mipp->mip_next;
2573 	mutex_exit(&vfs_miplist_mutex);
2574 	kmem_free(mipp, sizeof (struct ipmnt));
2575 }
2576 
2577 /*
2578  * vfs_add is called by a specific filesystem's mount routine to add
2579  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
2580  * The vfs should already have been locked by the caller.
2581  *
2582  * coveredvp is NULL if this is the root.
2583  */
2584 void
2585 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
2586 {
2587 	int newflag;
2588 
2589 	ASSERT(vfs_lock_held(vfsp));
2590 	VFS_HOLD(vfsp);
2591 	newflag = vfsp->vfs_flag;
2592 	if (mflag & MS_RDONLY)
2593 		newflag |= VFS_RDONLY;
2594 	else
2595 		newflag &= ~VFS_RDONLY;
2596 	if (mflag & MS_NOSUID)
2597 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
2598 	else
2599 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
2600 	if (mflag & MS_NOMNTTAB)
2601 		newflag |= VFS_NOMNTTAB;
2602 	else
2603 		newflag &= ~VFS_NOMNTTAB;
2604 
2605 	if (coveredvp != NULL) {
2606 		ASSERT(vn_vfswlock_held(coveredvp));
2607 		coveredvp->v_vfsmountedhere = vfsp;
2608 		VN_HOLD(coveredvp);
2609 	}
2610 	vfsp->vfs_vnodecovered = coveredvp;
2611 	vfsp->vfs_flag = newflag;
2612 
2613 	vfs_list_add(vfsp);
2614 }
2615 
2616 /*
2617  * Remove a vfs from the vfs list, null out the pointer from the
2618  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
2619  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
2620  * reference to the vfs and to the covered vnode.
2621  *
2622  * Called from dounmount after it's confirmed with the file system
2623  * that the unmount is legal.
2624  */
2625 void
2626 vfs_remove(struct vfs *vfsp)
2627 {
2628 	vnode_t *vp;
2629 
2630 	ASSERT(vfs_lock_held(vfsp));
2631 
2632 	/*
2633 	 * Can't unmount root.  Should never happen because fs will
2634 	 * be busy.
2635 	 */
2636 	if (vfsp == rootvfs)
2637 		cmn_err(CE_PANIC, "vfs_remove: unmounting root");
2638 
2639 	vfs_list_remove(vfsp);
2640 
2641 	/*
2642 	 * Unhook from the file system name space.
2643 	 */
2644 	vp = vfsp->vfs_vnodecovered;
2645 	ASSERT(vn_vfswlock_held(vp));
2646 	vp->v_vfsmountedhere = NULL;
2647 	vfsp->vfs_vnodecovered = NULL;
2648 	VN_RELE(vp);
2649 
2650 	/*
2651 	 * Release lock and wakeup anybody waiting.
2652 	 */
2653 	vfs_unlock(vfsp);
2654 	VFS_RELE(vfsp);
2655 }
2656 
2657 /*
2658  * Lock a filesystem to prevent access to it while mounting,
2659  * unmounting and syncing.  Return EBUSY immediately if lock
2660  * can't be acquired.
2661  */
2662 int
2663 vfs_lock(vfs_t *vfsp)
2664 {
2665 	vn_vfslocks_entry_t *vpvfsentry;
2666 
2667 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2668 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
2669 		return (0);
2670 
2671 	vn_vfslocks_rele(vpvfsentry);
2672 	return (EBUSY);
2673 }
2674 
2675 int
2676 vfs_rlock(vfs_t *vfsp)
2677 {
2678 	vn_vfslocks_entry_t *vpvfsentry;
2679 
2680 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2681 
2682 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
2683 		return (0);
2684 
2685 	vn_vfslocks_rele(vpvfsentry);
2686 	return (EBUSY);
2687 }
2688 
2689 void
2690 vfs_lock_wait(vfs_t *vfsp)
2691 {
2692 	vn_vfslocks_entry_t *vpvfsentry;
2693 
2694 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2695 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
2696 }
2697 
2698 void
2699 vfs_rlock_wait(vfs_t *vfsp)
2700 {
2701 	vn_vfslocks_entry_t *vpvfsentry;
2702 
2703 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2704 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
2705 }
2706 
2707 /*
2708  * Unlock a locked filesystem.
2709  */
2710 void
2711 vfs_unlock(vfs_t *vfsp)
2712 {
2713 	vn_vfslocks_entry_t *vpvfsentry;
2714 
2715 	/*
2716 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
2717 	 * And these changes should remain for the patch changes as it is.
2718 	 */
2719 	if (panicstr)
2720 		return;
2721 
2722 	/*
2723 	 * ve_refcount needs to be dropped twice here.
2724 	 * 1. To release refernce after a call to vfs_locks_getlock()
2725 	 * 2. To release the reference from the locking routines like
2726 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
2727 	 */
2728 
2729 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2730 	vn_vfslocks_rele(vpvfsentry);
2731 
2732 	rwst_exit(&vpvfsentry->ve_lock);
2733 	vn_vfslocks_rele(vpvfsentry);
2734 }
2735 
2736 /*
2737  * Utility routine that allows a filesystem to construct its
2738  * fsid in "the usual way" - by munging some underlying dev_t and
2739  * the filesystem type number into the 64-bit fsid.  Note that
2740  * this implicitly relies on dev_t persistence to make filesystem
2741  * id's persistent.
2742  *
2743  * There's nothing to prevent an individual fs from constructing its
2744  * fsid in a different way, and indeed they should.
2745  *
2746  * Since we want fsids to be 32-bit quantities (so that they can be
2747  * exported identically by either 32-bit or 64-bit APIs, as well as
2748  * the fact that fsid's are "known" to NFS), we compress the device
2749  * number given down to 32-bits, and panic if that isn't possible.
2750  */
2751 void
2752 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
2753 {
2754 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
2755 		panic("device number too big for fsid!");
2756 	fsi->val[1] = val;
2757 }
2758 
2759 int
2760 vfs_lock_held(vfs_t *vfsp)
2761 {
2762 	int held;
2763 	vn_vfslocks_entry_t *vpvfsentry;
2764 
2765 	/*
2766 	 * vfs_lock_held will mimic sema_held behaviour
2767 	 * if panicstr is set. And these changes should remain
2768 	 * for the patch changes as it is.
2769 	 */
2770 	if (panicstr)
2771 		return (1);
2772 
2773 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2774 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
2775 
2776 	vn_vfslocks_rele(vpvfsentry);
2777 	return (held);
2778 }
2779 
2780 struct _kthread *
2781 vfs_lock_owner(vfs_t *vfsp)
2782 {
2783 	struct _kthread *owner;
2784 	vn_vfslocks_entry_t *vpvfsentry;
2785 
2786 	/*
2787 	 * vfs_wlock_held will mimic sema_held behaviour
2788 	 * if panicstr is set. And these changes should remain
2789 	 * for the patch changes as it is.
2790 	 */
2791 	if (panicstr)
2792 		return (NULL);
2793 
2794 	vpvfsentry = vn_vfslocks_getlock(vfsp);
2795 	owner = rwst_owner(&vpvfsentry->ve_lock);
2796 
2797 	vn_vfslocks_rele(vpvfsentry);
2798 	return (owner);
2799 }
2800 
2801 /*
2802  * vfs list locking.
2803  *
2804  * Rather than manipulate the vfslist lock directly, we abstract into lock
2805  * and unlock routines to allow the locking implementation to be changed for
2806  * clustering.
2807  *
2808  * Whenever the vfs list is modified through its hash links, the overall list
2809  * lock must be obtained before locking the relevant hash bucket.  But to see
2810  * whether a given vfs is on the list, it suffices to obtain the lock for the
2811  * hash bucket without getting the overall list lock.  (See getvfs() below.)
2812  */
2813 
2814 void
2815 vfs_list_lock()
2816 {
2817 	rw_enter(&vfslist, RW_WRITER);
2818 }
2819 
2820 void
2821 vfs_list_read_lock()
2822 {
2823 	rw_enter(&vfslist, RW_READER);
2824 }
2825 
2826 void
2827 vfs_list_unlock()
2828 {
2829 	rw_exit(&vfslist);
2830 }
2831 
2832 /*
2833  * Low level worker routines for adding entries to and removing entries from
2834  * the vfs list.
2835  */
2836 
2837 static void
2838 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
2839 {
2840 	int vhno;
2841 	struct vfs **hp;
2842 	dev_t dev;
2843 
2844 	ASSERT(RW_WRITE_HELD(&vfslist));
2845 
2846 	dev = expldev(vfsp->vfs_fsid.val[0]);
2847 	vhno = VFSHASH(getmajor(dev), getminor(dev));
2848 
2849 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
2850 
2851 	/*
2852 	 * Link into the hash table, inserting it at the end, so that LOFS
2853 	 * with the same fsid as UFS (or other) file systems will not hide the
2854 	 * UFS.
2855 	 */
2856 	if (insert_at_head) {
2857 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
2858 		rvfs_list[vhno].rvfs_head = vfsp;
2859 	} else {
2860 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
2861 		    hp = &(*hp)->vfs_hash)
2862 			continue;
2863 		/*
2864 		 * hp now contains the address of the pointer to update
2865 		 * to effect the insertion.
2866 		 */
2867 		vfsp->vfs_hash = NULL;
2868 		*hp = vfsp;
2869 	}
2870 
2871 	rvfs_list[vhno].rvfs_len++;
2872 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
2873 }
2874 
2875 
2876 static void
2877 vfs_hash_remove(struct vfs *vfsp)
2878 {
2879 	int vhno;
2880 	struct vfs *tvfsp;
2881 	dev_t dev;
2882 
2883 	ASSERT(RW_WRITE_HELD(&vfslist));
2884 
2885 	dev = expldev(vfsp->vfs_fsid.val[0]);
2886 	vhno = VFSHASH(getmajor(dev), getminor(dev));
2887 
2888 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
2889 
2890 	/*
2891 	 * Remove from hash.
2892 	 */
2893 	if (rvfs_list[vhno].rvfs_head == vfsp) {
2894 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
2895 		rvfs_list[vhno].rvfs_len--;
2896 		goto foundit;
2897 	}
2898 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
2899 	    tvfsp = tvfsp->vfs_hash) {
2900 		if (tvfsp->vfs_hash == vfsp) {
2901 			tvfsp->vfs_hash = vfsp->vfs_hash;
2902 			rvfs_list[vhno].rvfs_len--;
2903 			goto foundit;
2904 		}
2905 	}
2906 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
2907 
2908 foundit:
2909 
2910 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
2911 }
2912 
2913 
2914 void
2915 vfs_list_add(struct vfs *vfsp)
2916 {
2917 	zone_t *zone;
2918 
2919 	/*
2920 	 * The zone that owns the mount is the one that performed the mount.
2921 	 * Note that this isn't necessarily the same as the zone mounted into.
2922 	 * The corresponding zone_rele() will be done when the vfs_t is
2923 	 * being free'd.
2924 	 */
2925 	vfsp->vfs_zone = curproc->p_zone;
2926 	zone_hold(vfsp->vfs_zone);
2927 
2928 	/*
2929 	 * Find the zone mounted into, and put this mount on its vfs list.
2930 	 */
2931 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
2932 	ASSERT(zone != NULL);
2933 	/*
2934 	 * Special casing for the root vfs.  This structure is allocated
2935 	 * statically and hooked onto rootvfs at link time.  During the
2936 	 * vfs_mountroot call at system startup time, the root file system's
2937 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
2938 	 * as argument.  The code below must detect and handle this special
2939 	 * case.  The only apparent justification for this special casing is
2940 	 * to ensure that the root file system appears at the head of the
2941 	 * list.
2942 	 *
2943 	 * XXX:	I'm assuming that it's ok to do normal list locking when
2944 	 *	adding the entry for the root file system (this used to be
2945 	 *	done with no locks held).
2946 	 */
2947 	vfs_list_lock();
2948 	/*
2949 	 * Link into the vfs list proper.
2950 	 */
2951 	if (vfsp == &root) {
2952 		/*
2953 		 * Assert: This vfs is already on the list as its first entry.
2954 		 * Thus, there's nothing to do.
2955 		 */
2956 		ASSERT(rootvfs == vfsp);
2957 		/*
2958 		 * Add it to the head of the global zone's vfslist.
2959 		 */
2960 		ASSERT(zone == global_zone);
2961 		ASSERT(zone->zone_vfslist == NULL);
2962 		zone->zone_vfslist = vfsp;
2963 	} else {
2964 		/*
2965 		 * Link to end of list using vfs_prev (as rootvfs is now a
2966 		 * doubly linked circular list) so list is in mount order for
2967 		 * mnttab use.
2968 		 */
2969 		rootvfs->vfs_prev->vfs_next = vfsp;
2970 		vfsp->vfs_prev = rootvfs->vfs_prev;
2971 		rootvfs->vfs_prev = vfsp;
2972 		vfsp->vfs_next = rootvfs;
2973 
2974 		/*
2975 		 * Do it again for the zone-private list (which may be NULL).
2976 		 */
2977 		if (zone->zone_vfslist == NULL) {
2978 			ASSERT(zone != global_zone);
2979 			zone->zone_vfslist = vfsp;
2980 		} else {
2981 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
2982 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
2983 			zone->zone_vfslist->vfs_zone_prev = vfsp;
2984 			vfsp->vfs_zone_next = zone->zone_vfslist;
2985 		}
2986 	}
2987 
2988 	/*
2989 	 * Link into the hash table, inserting it at the end, so that LOFS
2990 	 * with the same fsid as UFS (or other) file systems will not hide
2991 	 * the UFS.
2992 	 */
2993 	vfs_hash_add(vfsp, 0);
2994 
2995 	/*
2996 	 * update the mnttab modification time
2997 	 */
2998 	vfs_mnttab_modtimeupd();
2999 	vfs_list_unlock();
3000 	zone_rele(zone);
3001 }
3002 
3003 void
3004 vfs_list_remove(struct vfs *vfsp)
3005 {
3006 	zone_t *zone;
3007 
3008 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3009 	ASSERT(zone != NULL);
3010 	/*
3011 	 * Callers are responsible for preventing attempts to unmount the
3012 	 * root.
3013 	 */
3014 	ASSERT(vfsp != rootvfs);
3015 
3016 	vfs_list_lock();
3017 
3018 	/*
3019 	 * Remove from hash.
3020 	 */
3021 	vfs_hash_remove(vfsp);
3022 
3023 	/*
3024 	 * Remove from vfs list.
3025 	 */
3026 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3027 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3028 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3029 
3030 	/*
3031 	 * Remove from zone-specific vfs list.
3032 	 */
3033 	if (zone->zone_vfslist == vfsp)
3034 		zone->zone_vfslist = vfsp->vfs_zone_next;
3035 
3036 	if (vfsp->vfs_zone_next == vfsp) {
3037 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3038 		ASSERT(zone->zone_vfslist == vfsp);
3039 		zone->zone_vfslist = NULL;
3040 	}
3041 
3042 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3043 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3044 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3045 
3046 	/*
3047 	 * update the mnttab modification time
3048 	 */
3049 	vfs_mnttab_modtimeupd();
3050 	vfs_list_unlock();
3051 	zone_rele(zone);
3052 }
3053 
3054 struct vfs *
3055 getvfs(fsid_t *fsid)
3056 {
3057 	struct vfs *vfsp;
3058 	int val0 = fsid->val[0];
3059 	int val1 = fsid->val[1];
3060 	dev_t dev = expldev(val0);
3061 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3062 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3063 
3064 	mutex_enter(hmp);
3065 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3066 		if (vfsp->vfs_fsid.val[0] == val0 &&
3067 		    vfsp->vfs_fsid.val[1] == val1) {
3068 			VFS_HOLD(vfsp);
3069 			mutex_exit(hmp);
3070 			return (vfsp);
3071 		}
3072 	}
3073 	mutex_exit(hmp);
3074 	return (NULL);
3075 }
3076 
3077 /*
3078  * Search the vfs mount in progress list for a specified device/vfs entry.
3079  * Returns 0 if the first entry in the list that the device matches has the
3080  * given vfs pointer as well.  If the device matches but a different vfs
3081  * pointer is encountered in the list before the given vfs pointer then
3082  * a 1 is returned.
3083  */
3084 
3085 int
3086 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3087 {
3088 	int retval = 0;
3089 	struct ipmnt *mipp;
3090 
3091 	mutex_enter(&vfs_miplist_mutex);
3092 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3093 		if (mipp->mip_dev == dev) {
3094 			if (mipp->mip_vfsp != vfsp)
3095 				retval = 1;
3096 			break;
3097 		}
3098 	}
3099 	mutex_exit(&vfs_miplist_mutex);
3100 	return (retval);
3101 }
3102 
3103 /*
3104  * Search the vfs list for a specified device.  Returns 1, if entry is found
3105  * or 0 if no suitable entry is found.
3106  */
3107 
3108 int
3109 vfs_devismounted(dev_t dev)
3110 {
3111 	struct vfs *vfsp;
3112 	int found;
3113 
3114 	vfs_list_read_lock();
3115 	vfsp = rootvfs;
3116 	found = 0;
3117 	do {
3118 		if (vfsp->vfs_dev == dev) {
3119 			found = 1;
3120 			break;
3121 		}
3122 		vfsp = vfsp->vfs_next;
3123 	} while (vfsp != rootvfs);
3124 
3125 	vfs_list_unlock();
3126 	return (found);
3127 }
3128 
3129 /*
3130  * Search the vfs list for a specified device.  Returns a pointer to it
3131  * or NULL if no suitable entry is found. The caller of this routine
3132  * is responsible for releasing the returned vfs pointer.
3133  */
3134 struct vfs *
3135 vfs_dev2vfsp(dev_t dev)
3136 {
3137 	struct vfs *vfsp;
3138 	int found;
3139 
3140 	vfs_list_read_lock();
3141 	vfsp = rootvfs;
3142 	found = 0;
3143 	do {
3144 		/*
3145 		 * The following could be made more efficient by making
3146 		 * the entire loop use vfs_zone_next if the call is from
3147 		 * a zone.  The only callers, however, ustat(2) and
3148 		 * umount2(2), don't seem to justify the added
3149 		 * complexity at present.
3150 		 */
3151 		if (vfsp->vfs_dev == dev &&
3152 		    ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3153 		    curproc->p_zone)) {
3154 			VFS_HOLD(vfsp);
3155 			found = 1;
3156 			break;
3157 		}
3158 		vfsp = vfsp->vfs_next;
3159 	} while (vfsp != rootvfs);
3160 	vfs_list_unlock();
3161 	return (found ? vfsp: NULL);
3162 }
3163 
3164 /*
3165  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3166  * or NULL if no suitable entry is found. The caller of this routine
3167  * is responsible for releasing the returned vfs pointer.
3168  *
3169  * Note that if multiple mntpoints match, the last one matching is
3170  * returned in an attempt to return the "top" mount when overlay
3171  * mounts are covering the same mount point.  This is accomplished by starting
3172  * at the end of the list and working our way backwards, stopping at the first
3173  * matching mount.
3174  */
3175 struct vfs *
3176 vfs_mntpoint2vfsp(const char *mp)
3177 {
3178 	struct vfs *vfsp;
3179 	struct vfs *retvfsp = NULL;
3180 	zone_t *zone = curproc->p_zone;
3181 	struct vfs *list;
3182 
3183 	vfs_list_read_lock();
3184 	if (getzoneid() == GLOBAL_ZONEID) {
3185 		/*
3186 		 * The global zone may see filesystems in any zone.
3187 		 */
3188 		vfsp = rootvfs->vfs_prev;
3189 		do {
3190 			if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3191 				retvfsp = vfsp;
3192 				break;
3193 			}
3194 			vfsp = vfsp->vfs_prev;
3195 		} while (vfsp != rootvfs->vfs_prev);
3196 	} else if ((list = zone->zone_vfslist) != NULL) {
3197 		const char *mntpt;
3198 
3199 		vfsp = list->vfs_zone_prev;
3200 		do {
3201 			mntpt = refstr_value(vfsp->vfs_mntpt);
3202 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3203 			if (strcmp(mntpt, mp) == 0) {
3204 				retvfsp = vfsp;
3205 				break;
3206 			}
3207 			vfsp = vfsp->vfs_zone_prev;
3208 		} while (vfsp != list->vfs_zone_prev);
3209 	}
3210 	if (retvfsp)
3211 		VFS_HOLD(retvfsp);
3212 	vfs_list_unlock();
3213 	return (retvfsp);
3214 }
3215 
3216 /*
3217  * Search the vfs list for a specified vfsops.
3218  * if vfs entry is found then return 1, else 0.
3219  */
3220 int
3221 vfs_opsinuse(vfsops_t *ops)
3222 {
3223 	struct vfs *vfsp;
3224 	int found;
3225 
3226 	vfs_list_read_lock();
3227 	vfsp = rootvfs;
3228 	found = 0;
3229 	do {
3230 		if (vfs_getops(vfsp) == ops) {
3231 			found = 1;
3232 			break;
3233 		}
3234 		vfsp = vfsp->vfs_next;
3235 	} while (vfsp != rootvfs);
3236 	vfs_list_unlock();
3237 	return (found);
3238 }
3239 
3240 /*
3241  * Allocate an entry in vfssw for a file system type
3242  */
3243 struct vfssw *
3244 allocate_vfssw(char *type)
3245 {
3246 	struct vfssw *vswp;
3247 
3248 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3249 		/*
3250 		 * The vfssw table uses the empty string to identify an
3251 		 * available entry; we cannot add any type which has
3252 		 * a leading NUL. The string length is limited to
3253 		 * the size of the st_fstype array in struct stat.
3254 		 */
3255 		return (NULL);
3256 	}
3257 
3258 	ASSERT(VFSSW_WRITE_LOCKED());
3259 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3260 		if (!ALLOCATED_VFSSW(vswp)) {
3261 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3262 			(void) strcpy(vswp->vsw_name, type);
3263 			ASSERT(vswp->vsw_count == 0);
3264 			vswp->vsw_count = 1;
3265 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3266 			return (vswp);
3267 		}
3268 	return (NULL);
3269 }
3270 
3271 /*
3272  * Impose additional layer of translation between vfstype names
3273  * and module names in the filesystem.
3274  */
3275 static char *
3276 vfs_to_modname(char *vfstype)
3277 {
3278 	if (strcmp(vfstype, "proc") == 0) {
3279 		vfstype = "procfs";
3280 	} else if (strcmp(vfstype, "fd") == 0) {
3281 		vfstype = "fdfs";
3282 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3283 		vfstype = "nfs";
3284 	}
3285 
3286 	return (vfstype);
3287 }
3288 
3289 /*
3290  * Find a vfssw entry given a file system type name.
3291  * Try to autoload the filesystem if it's not found.
3292  * If it's installed, return the vfssw locked to prevent unloading.
3293  */
3294 struct vfssw *
3295 vfs_getvfssw(char *type)
3296 {
3297 	struct vfssw *vswp;
3298 	char	*modname;
3299 
3300 	RLOCK_VFSSW();
3301 	vswp = vfs_getvfsswbyname(type);
3302 	modname = vfs_to_modname(type);
3303 
3304 	if (rootdir == NULL) {
3305 		/*
3306 		 * If we haven't yet loaded the root file system, then our
3307 		 * _init won't be called until later. Allocate vfssw entry,
3308 		 * because mod_installfs won't be called.
3309 		 */
3310 		if (vswp == NULL) {
3311 			RUNLOCK_VFSSW();
3312 			WLOCK_VFSSW();
3313 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3314 				if ((vswp = allocate_vfssw(type)) == NULL) {
3315 					WUNLOCK_VFSSW();
3316 					return (NULL);
3317 				}
3318 			}
3319 			WUNLOCK_VFSSW();
3320 			RLOCK_VFSSW();
3321 		}
3322 		if (!VFS_INSTALLED(vswp)) {
3323 			RUNLOCK_VFSSW();
3324 			(void) modloadonly("fs", modname);
3325 		} else
3326 			RUNLOCK_VFSSW();
3327 		return (vswp);
3328 	}
3329 
3330 	/*
3331 	 * Try to load the filesystem.  Before calling modload(), we drop
3332 	 * our lock on the VFS switch table, and pick it up after the
3333 	 * module is loaded.  However, there is a potential race:  the
3334 	 * module could be unloaded after the call to modload() completes
3335 	 * but before we pick up the lock and drive on.  Therefore,
3336 	 * we keep reloading the module until we've loaded the module
3337 	 * _and_ we have the lock on the VFS switch table.
3338 	 */
3339 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3340 		RUNLOCK_VFSSW();
3341 		if (modload("fs", modname) == -1)
3342 			return (NULL);
3343 		RLOCK_VFSSW();
3344 		if (vswp == NULL)
3345 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3346 				break;
3347 	}
3348 	RUNLOCK_VFSSW();
3349 
3350 	return (vswp);
3351 }
3352 
3353 /*
3354  * Find a vfssw entry given a file system type name.
3355  */
3356 struct vfssw *
3357 vfs_getvfsswbyname(char *type)
3358 {
3359 	struct vfssw *vswp;
3360 
3361 	ASSERT(VFSSW_LOCKED());
3362 	if (type == NULL || *type == '\0')
3363 		return (NULL);
3364 
3365 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3366 		if (strcmp(type, vswp->vsw_name) == 0) {
3367 			vfs_refvfssw(vswp);
3368 			return (vswp);
3369 		}
3370 	}
3371 
3372 	return (NULL);
3373 }
3374 
3375 /*
3376  * Find a vfssw entry given a set of vfsops.
3377  */
3378 struct vfssw *
3379 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
3380 {
3381 	struct vfssw *vswp;
3382 
3383 	RLOCK_VFSSW();
3384 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3385 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
3386 			vfs_refvfssw(vswp);
3387 			RUNLOCK_VFSSW();
3388 			return (vswp);
3389 		}
3390 	}
3391 	RUNLOCK_VFSSW();
3392 
3393 	return (NULL);
3394 }
3395 
3396 /*
3397  * Reference a vfssw entry.
3398  */
3399 void
3400 vfs_refvfssw(struct vfssw *vswp)
3401 {
3402 
3403 	mutex_enter(&vswp->vsw_lock);
3404 	vswp->vsw_count++;
3405 	mutex_exit(&vswp->vsw_lock);
3406 }
3407 
3408 /*
3409  * Unreference a vfssw entry.
3410  */
3411 void
3412 vfs_unrefvfssw(struct vfssw *vswp)
3413 {
3414 
3415 	mutex_enter(&vswp->vsw_lock);
3416 	vswp->vsw_count--;
3417 	mutex_exit(&vswp->vsw_lock);
3418 }
3419 
3420 int sync_timeout = 30;		/* timeout for syncing a page during panic */
3421 int sync_timeleft;		/* portion of sync_timeout remaining */
3422 
3423 static int sync_retries = 20;	/* number of retries when not making progress */
3424 static int sync_triesleft;	/* portion of sync_retries remaining */
3425 
3426 static pgcnt_t old_pgcnt, new_pgcnt;
3427 static int new_bufcnt, old_bufcnt;
3428 
3429 /*
3430  * Sync all of the mounted filesystems, and then wait for the actual i/o to
3431  * complete.  We wait by counting the number of dirty pages and buffers,
3432  * pushing them out using bio_busy() and page_busy(), and then counting again.
3433  * This routine is used during both the uadmin A_SHUTDOWN code as well as
3434  * the SYNC phase of the panic code (see comments in panic.c).  It should only
3435  * be used after some higher-level mechanism has quiesced the system so that
3436  * new writes are not being initiated while we are waiting for completion.
3437  *
3438  * To ensure finite running time, our algorithm uses two timeout mechanisms:
3439  * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
3440  * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
3441  * Together these ensure that syncing completes if our i/o paths are stuck.
3442  * The counters are declared above so they can be found easily in the debugger.
3443  *
3444  * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
3445  * vfs_syncprogress() subroutine whenever we make progress through the lists of
3446  * pages and buffers.  It is decremented and expired by the deadman() cyclic.
3447  * When vfs_syncall() decides it is done, we disable the deadman() counter by
3448  * setting sync_timeleft to zero.  This timer guards against vfs_syncall()
3449  * deadlocking or hanging inside of a broken filesystem or driver routine.
3450  *
3451  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
3452  * sync_retries consecutive calls to bio_busy() and page_busy() without
3453  * decreasing either the number of dirty buffers or dirty pages below the
3454  * lowest count we have seen so far, we give up and return from vfs_syncall().
3455  *
3456  * Each loop iteration ends with a call to delay() one second to allow time for
3457  * i/o completion and to permit the user time to read our progress messages.
3458  */
3459 void
3460 vfs_syncall(void)
3461 {
3462 	if (rootdir == NULL && !modrootloaded)
3463 		return; /* panic during boot - no filesystems yet */
3464 
3465 	printf("syncing file systems...");
3466 	vfs_syncprogress();
3467 	sync();
3468 
3469 	vfs_syncprogress();
3470 	sync_triesleft = sync_retries;
3471 
3472 	old_bufcnt = new_bufcnt = INT_MAX;
3473 	old_pgcnt = new_pgcnt = ULONG_MAX;
3474 
3475 	while (sync_triesleft > 0) {
3476 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
3477 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
3478 
3479 		new_bufcnt = bio_busy(B_TRUE);
3480 		new_pgcnt = page_busy(B_TRUE);
3481 		vfs_syncprogress();
3482 
3483 		if (new_bufcnt == 0 && new_pgcnt == 0)
3484 			break;
3485 
3486 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
3487 			sync_triesleft = sync_retries;
3488 		else
3489 			sync_triesleft--;
3490 
3491 		if (new_bufcnt)
3492 			printf(" [%d]", new_bufcnt);
3493 		if (new_pgcnt)
3494 			printf(" %lu", new_pgcnt);
3495 
3496 		delay(hz);
3497 	}
3498 
3499 	if (new_bufcnt != 0 || new_pgcnt != 0)
3500 		printf(" done (not all i/o completed)\n");
3501 	else
3502 		printf(" done\n");
3503 
3504 	sync_timeleft = 0;
3505 	delay(hz);
3506 }
3507 
3508 /*
3509  * If we are in the middle of the sync phase of panic, reset sync_timeleft to
3510  * sync_timeout to indicate that we are making progress and the deadman()
3511  * omnipresent cyclic should not yet time us out.  Note that it is safe to
3512  * store to sync_timeleft here since the deadman() is firing at high-level
3513  * on top of us.  If we are racing with the deadman(), either the deadman()
3514  * will decrement the old value and then we will reset it, or we will
3515  * reset it and then the deadman() will immediately decrement it.  In either
3516  * case, correct behavior results.
3517  */
3518 void
3519 vfs_syncprogress(void)
3520 {
3521 	if (panicstr)
3522 		sync_timeleft = sync_timeout;
3523 }
3524 
3525 /*
3526  * Map VFS flags to statvfs flags.  These shouldn't really be separate
3527  * flags at all.
3528  */
3529 uint_t
3530 vf_to_stf(uint_t vf)
3531 {
3532 	uint_t stf = 0;
3533 
3534 	if (vf & VFS_RDONLY)
3535 		stf |= ST_RDONLY;
3536 	if (vf & VFS_NOSETUID)
3537 		stf |= ST_NOSUID;
3538 	if (vf & VFS_NOTRUNC)
3539 		stf |= ST_NOTRUNC;
3540 
3541 	return (stf);
3542 }
3543 
3544 /*
3545  * Use old-style function prototype for vfsstray() so
3546  * that we can use it anywhere in the vfsops structure.
3547  */
3548 int vfsstray();
3549 
3550 /*
3551  * Entries for (illegal) fstype 0.
3552  */
3553 /* ARGSUSED */
3554 int
3555 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
3556 {
3557 	cmn_err(CE_PANIC, "stray vfs operation");
3558 	return (0);
3559 }
3560 
3561 vfsops_t vfs_strayops = {
3562 	vfsstray,
3563 	vfsstray,
3564 	vfsstray,
3565 	vfsstray,
3566 	vfsstray_sync,
3567 	vfsstray,
3568 	vfsstray,
3569 	vfsstray
3570 };
3571 
3572 /*
3573  * Entries for (illegal) fstype 0.
3574  */
3575 int
3576 vfsstray(void)
3577 {
3578 	cmn_err(CE_PANIC, "stray vfs operation");
3579 	return (0);
3580 }
3581 
3582 /*
3583  * Support for dealing with forced UFS unmount and its interaction with
3584  * LOFS. Could be used by any filesystem.
3585  * See bug 1203132.
3586  */
3587 int
3588 vfs_EIO(void)
3589 {
3590 	return (EIO);
3591 }
3592 
3593 /*
3594  * We've gotta define the op for sync separately, since the compiler gets
3595  * confused if we mix and match ANSI and normal style prototypes when
3596  * a "short" argument is present and spits out a warning.
3597  */
3598 /*ARGSUSED*/
3599 int
3600 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
3601 {
3602 	return (EIO);
3603 }
3604 
3605 vfs_t EIO_vfs;
3606 vfsops_t *EIO_vfsops;
3607 
3608 /*
3609  * Called from startup() to initialize all loaded vfs's
3610  */
3611 void
3612 vfsinit(void)
3613 {
3614 	struct vfssw *vswp;
3615 	int error;
3616 
3617 	static const fs_operation_def_t EIO_vfsops_template[] = {
3618 		VFSNAME_MOUNT,		vfs_EIO,
3619 		VFSNAME_UNMOUNT,	vfs_EIO,
3620 		VFSNAME_ROOT,		vfs_EIO,
3621 		VFSNAME_STATVFS,	vfs_EIO,
3622 		VFSNAME_SYNC, (fs_generic_func_p) vfs_EIO_sync,
3623 		VFSNAME_VGET,		vfs_EIO,
3624 		VFSNAME_MOUNTROOT,	vfs_EIO,
3625 		VFSNAME_FREEVFS,	vfs_EIO,
3626 		VFSNAME_VNSTATE,	vfs_EIO,
3627 		NULL, NULL
3628 	};
3629 
3630 
3631 	/* Initialize the vnode cache (file systems may use it during init). */
3632 
3633 	vn_create_cache();
3634 
3635 	/* Setup event monitor framework */
3636 
3637 	fem_init();
3638 
3639 	/* Initialize the dummy stray file system type. */
3640 
3641 	vfssw[0].vsw_vfsops = vfs_strayops;
3642 
3643 	/* Initialize the dummy EIO file system. */
3644 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
3645 	if (error != 0) {
3646 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
3647 		/* Shouldn't happen, but not bad enough to panic */
3648 	}
3649 
3650 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
3651 
3652 	/*
3653 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
3654 	 * on this vfs can immediately notice it's invalid.
3655 	 */
3656 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
3657 
3658 	/*
3659 	 * Call the init routines of non-loadable filesystems only.
3660 	 * Filesystems which are loaded as separate modules will be
3661 	 * initialized by the module loading code instead.
3662 	 */
3663 
3664 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3665 		RLOCK_VFSSW();
3666 		if (vswp->vsw_init != NULL)
3667 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
3668 		RUNLOCK_VFSSW();
3669 	}
3670 }
3671 
3672 /*
3673  * Increments the vfs reference count by one atomically.
3674  */
3675 void
3676 vfs_hold(vfs_t *vfsp)
3677 {
3678 	atomic_add_32(&vfsp->vfs_count, 1);
3679 	ASSERT(vfsp->vfs_count != 0);
3680 }
3681 
3682 /*
3683  * Decrements the vfs reference count by one atomically. When
3684  * vfs reference count becomes zero, it calls the file system
3685  * specific vfs_freevfs() to free up the resources.
3686  */
3687 void
3688 vfs_rele(vfs_t *vfsp)
3689 {
3690 	ASSERT(vfsp->vfs_count != 0);
3691 	if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) {
3692 		VFS_FREEVFS(vfsp);
3693 		if (vfsp->vfs_zone)
3694 			zone_rele(vfsp->vfs_zone);
3695 		vfs_freemnttab(vfsp);
3696 		sema_destroy(&vfsp->vfs_reflock);
3697 		kmem_free(vfsp, sizeof (*vfsp));
3698 	}
3699 }
3700 
3701 /*
3702  * Generic operations vector support.
3703  *
3704  * This is used to build operations vectors for both the vfs and vnode.
3705  * It's normally called only when a file system is loaded.
3706  *
3707  * There are many possible algorithms for this, including the following:
3708  *
3709  *   (1) scan the list of known operations; for each, see if the file system
3710  *       includes an entry for it, and fill it in as appropriate.
3711  *
3712  *   (2) set up defaults for all known operations.  scan the list of ops
3713  *       supplied by the file system; for each which is both supplied and
3714  *       known, fill it in.
3715  *
3716  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
3717  *       in entries as we go.
3718  *
3719  * we choose (1) for simplicity, and because performance isn't critical here.
3720  * note that (2) could be sped up using a precomputed hash table on known ops.
3721  * (3) could be faster than either, but only if the lists were very large or
3722  * supplied in sorted order.
3723  *
3724  */
3725 
3726 int
3727 fs_build_vector(void *vector, int *unused_ops,
3728     const fs_operation_trans_def_t *translation,
3729     const fs_operation_def_t *operations)
3730 {
3731 	int i, num_trans, num_ops, used;
3732 
3733 	/* Count the number of translations and the number of supplied */
3734 	/* operations. */
3735 
3736 	{
3737 		const fs_operation_trans_def_t *p;
3738 
3739 		for (num_trans = 0, p = translation;
3740 		    p->name != NULL;
3741 		    num_trans++, p++)
3742 			;
3743 	}
3744 
3745 	{
3746 		const fs_operation_def_t *p;
3747 
3748 		for (num_ops = 0, p = operations;
3749 		    p->name != NULL;
3750 		    num_ops++, p++)
3751 			;
3752 	}
3753 
3754 	/* Walk through each operation known to our caller.  There will be */
3755 	/* one entry in the supplied "translation table" for each. */
3756 
3757 	used = 0;
3758 
3759 	for (i = 0; i < num_trans; i++) {
3760 		int j, found;
3761 		char *curname;
3762 		fs_generic_func_p result;
3763 		fs_generic_func_p *location;
3764 
3765 		curname = translation[i].name;
3766 
3767 		/* Look for a matching operation in the list supplied by the */
3768 		/* file system. */
3769 
3770 		found = 0;
3771 
3772 		for (j = 0; j < num_ops; j++) {
3773 			if (strcmp(operations[j].name, curname) == 0) {
3774 				used++;
3775 				found = 1;
3776 				break;
3777 			}
3778 		}
3779 
3780 		/* If the file system is using a "placeholder" for default */
3781 		/* or error functions, grab the appropriate function out of */
3782 		/* the translation table.  If the file system didn't supply */
3783 		/* this operation at all, use the default function. */
3784 
3785 		if (found) {
3786 			result = operations[j].func;
3787 			if (result == fs_default) {
3788 				result = translation[i].defaultFunc;
3789 			} else if (result == fs_error) {
3790 				result = translation[i].errorFunc;
3791 			} else if (result == NULL) {
3792 				/* Null values are PROHIBITED */
3793 				return (EINVAL);
3794 			}
3795 		} else {
3796 			result = translation[i].defaultFunc;
3797 		}
3798 
3799 		/* Now store the function into the operations vector. */
3800 
3801 		location = (fs_generic_func_p *)
3802 		    (((char *)vector) + translation[i].offset);
3803 
3804 		*location = result;
3805 	}
3806 
3807 	*unused_ops = num_ops - used;
3808 
3809 	return (0);
3810 }
3811 
3812 /* Placeholder functions, should never be called. */
3813 
3814 int
3815 fs_error(void)
3816 {
3817 	cmn_err(CE_PANIC, "fs_error called");
3818 	return (0);
3819 }
3820 
3821 int
3822 fs_default(void)
3823 {
3824 	cmn_err(CE_PANIC, "fs_default called");
3825 	return (0);
3826 }
3827 
3828 #ifdef __sparc
3829 
3830 /*
3831  * Part of the implementation of booting off a mirrored root
3832  * involves a change of dev_t for the root device.  To
3833  * accomplish this, first remove the existing hash table
3834  * entry for the root device, convert to the new dev_t,
3835  * then re-insert in the hash table at the head of the list.
3836  */
3837 void
3838 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
3839 {
3840 	vfs_list_lock();
3841 
3842 	vfs_hash_remove(vfsp);
3843 
3844 	vfsp->vfs_dev = ndev;
3845 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
3846 
3847 	vfs_hash_add(vfsp, 1);
3848 
3849 	vfs_list_unlock();
3850 }
3851 
3852 #else /* x86 NEWBOOT */
3853 
3854 int
3855 rootconf()
3856 {
3857 	int error;
3858 	struct vfssw *vsw;
3859 	extern void pm_init();
3860 	char *fstyp;
3861 
3862 	fstyp = getrootfs();
3863 
3864 	if (error = clboot_rootconf())
3865 		return (error);
3866 
3867 	if (modload("fs", fstyp) == -1)
3868 		cmn_err(CE_PANIC, "Cannot _init %s module\n", fstyp);
3869 
3870 	RLOCK_VFSSW();
3871 	vsw = vfs_getvfsswbyname(fstyp);
3872 	RUNLOCK_VFSSW();
3873 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
3874 	VFS_HOLD(rootvfs);
3875 
3876 	/* always mount readonly first */
3877 	rootvfs->vfs_flag |= VFS_RDONLY;
3878 
3879 	pm_init();
3880 
3881 	if (netboot)
3882 		(void) strplumb();
3883 
3884 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
3885 	vfs_unrefvfssw(vsw);
3886 	rootdev = rootvfs->vfs_dev;
3887 
3888 	if (error)
3889 		cmn_err(CE_PANIC, "cannot mount root path %s", svm_bootpath);
3890 	return (error);
3891 }
3892 
3893 /*
3894  * XXX this is called by nfs only and should probably be removed
3895  * If booted with ASKNAME, prompt on the console for a filesystem
3896  * name and return it.
3897  */
3898 void
3899 getfsname(char *askfor, char *name, size_t namelen)
3900 {
3901 	if (boothowto & RB_ASKNAME) {
3902 		printf("%s name: ", askfor);
3903 		console_gets(name, namelen);
3904 	}
3905 }
3906 
3907 /*
3908  * If server_path exists, then we are booting a diskless
3909  * client. Otherwise, we default to ufs. Zfs should perhaps be
3910  * another property.
3911  */
3912 static char *
3913 getrootfs(void)
3914 {
3915 	extern char *strplumb_get_netdev_path(void);
3916 	char *propstr = NULL;
3917 
3918 	/* check fstype property; it should be nfsdyn for diskless */
3919 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
3920 	    DDI_PROP_DONTPASS, "fstype", &propstr)
3921 	    == DDI_SUCCESS) {
3922 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
3923 		ddi_prop_free(propstr);
3924 	}
3925 
3926 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0)
3927 		return (rootfs.bo_fstype);
3928 
3929 	++netboot;
3930 	/* check if path to network interface is specified in bootpath */
3931 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
3932 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
3933 	    == DDI_SUCCESS) {
3934 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
3935 		ddi_prop_free(propstr);
3936 	} else {
3937 		/* attempt to determine netdev_path via boot_mac address */
3938 		netdev_path = strplumb_get_netdev_path();
3939 		if (netdev_path == NULL)
3940 			cmn_err(CE_PANIC,
3941 			    "Cannot find boot network interface\n");
3942 		(void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
3943 	}
3944 	return ("nfs");
3945 }
3946 #endif
3947