1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 41 #pragma ident "%Z%%M% %I% %E% SMI" 42 43 #include <sys/types.h> 44 #include <sys/t_lock.h> 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/bitmap.h> 48 #include <sys/sysmacros.h> 49 #include <sys/kmem.h> 50 #include <sys/signal.h> 51 #include <sys/user.h> 52 #include <sys/proc.h> 53 #include <sys/disp.h> 54 #include <sys/buf.h> 55 #include <sys/pathname.h> 56 #include <sys/vfs.h> 57 #include <sys/vnode.h> 58 #include <sys/file.h> 59 #include <sys/atomic.h> 60 #include <sys/uio.h> 61 #include <sys/dkio.h> 62 #include <sys/cred.h> 63 #include <sys/conf.h> 64 #include <sys/dnlc.h> 65 #include <sys/kstat.h> 66 #include <sys/acl.h> 67 #include <sys/fs/ufs_fsdir.h> 68 #include <sys/fs/ufs_fs.h> 69 #include <sys/fs/ufs_inode.h> 70 #include <sys/fs/ufs_mount.h> 71 #include <sys/fs/ufs_acl.h> 72 #include <sys/fs/ufs_panic.h> 73 #include <sys/fs/ufs_bio.h> 74 #include <sys/fs/ufs_quota.h> 75 #include <sys/fs/ufs_log.h> 76 #undef NFS 77 #include <sys/statvfs.h> 78 #include <sys/mount.h> 79 #include <sys/mntent.h> 80 #include <sys/swap.h> 81 #include <sys/errno.h> 82 #include <sys/debug.h> 83 #include "fs/fs_subr.h" 84 #include <sys/cmn_err.h> 85 #include <sys/dnlc.h> 86 #include <sys/fssnap_if.h> 87 #include <sys/sunddi.h> 88 #include <sys/bootconf.h> 89 #include <sys/policy.h> 90 #include <sys/zone.h> 91 92 /* 93 * This is the loadable module wrapper. 94 */ 95 #include <sys/modctl.h> 96 97 int ufsfstype; 98 vfsops_t *ufs_vfsops; 99 static int ufsinit(int, char *); 100 static int mountfs(); 101 extern int highbit(); 102 extern struct instats ins; 103 extern struct vnode *common_specvp(struct vnode *vp); 104 extern vfs_t EIO_vfs; 105 106 struct dquot *dquot, *dquotNDQUOT; 107 108 /* 109 * Cylinder group summary information handling tunable. 110 * This defines when these deltas get logged. 111 * If the number of cylinders in the file system is over the 112 * tunable then we log csum updates. Otherwise the updates are only 113 * done for performance on unmount. After a panic they can be 114 * quickly constructed during mounting. See ufs_construct_si() 115 * called from ufs_getsummaryinfo(). 116 * 117 * This performance feature can of course be disabled by setting 118 * ufs_ncg_log to 0, and fully enabled by setting it to 0xffffffff. 119 */ 120 #define UFS_LOG_NCG_DEFAULT 10000 121 uint32_t ufs_ncg_log = UFS_LOG_NCG_DEFAULT; 122 123 /* 124 * ufs_clean_root indicates whether the root fs went down cleanly 125 */ 126 static int ufs_clean_root = 0; 127 128 /* 129 * UFS Mount options table 130 */ 131 static char *intr_cancel[] = { MNTOPT_NOINTR, NULL }; 132 static char *nointr_cancel[] = { MNTOPT_INTR, NULL }; 133 static char *forcedirectio_cancel[] = { MNTOPT_NOFORCEDIRECTIO, NULL }; 134 static char *noforcedirectio_cancel[] = { MNTOPT_FORCEDIRECTIO, NULL }; 135 static char *largefiles_cancel[] = { MNTOPT_NOLARGEFILES, NULL }; 136 static char *nolargefiles_cancel[] = { MNTOPT_LARGEFILES, NULL }; 137 static char *logging_cancel[] = { MNTOPT_NOLOGGING, NULL }; 138 static char *nologging_cancel[] = { MNTOPT_LOGGING, NULL }; 139 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 140 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 141 static char *quota_cancel[] = { MNTOPT_NOQUOTA, NULL }; 142 static char *noquota_cancel[] = { MNTOPT_QUOTA, NULL }; 143 static char *dfratime_cancel[] = { MNTOPT_NODFRATIME, NULL }; 144 static char *nodfratime_cancel[] = { MNTOPT_DFRATIME, NULL }; 145 146 static mntopt_t mntopts[] = { 147 /* 148 * option name cancel option default arg flags 149 * ufs arg flag 150 */ 151 { MNTOPT_INTR, intr_cancel, NULL, MO_DEFAULT, 152 (void *)0 }, 153 { MNTOPT_NOINTR, nointr_cancel, NULL, 0, 154 (void *)UFSMNT_NOINTR }, 155 { MNTOPT_SYNCDIR, NULL, NULL, 0, 156 (void *)UFSMNT_SYNCDIR }, 157 { MNTOPT_FORCEDIRECTIO, forcedirectio_cancel, NULL, 0, 158 (void *)UFSMNT_FORCEDIRECTIO }, 159 { MNTOPT_NOFORCEDIRECTIO, noforcedirectio_cancel, NULL, 0, 160 (void *)UFSMNT_NOFORCEDIRECTIO }, 161 { MNTOPT_NOSETSEC, NULL, NULL, 0, 162 (void *)UFSMNT_NOSETSEC }, 163 { MNTOPT_LARGEFILES, largefiles_cancel, NULL, MO_DEFAULT, 164 (void *)UFSMNT_LARGEFILES }, 165 { MNTOPT_NOLARGEFILES, nolargefiles_cancel, NULL, 0, 166 (void *)0 }, 167 { MNTOPT_LOGGING, logging_cancel, NULL, MO_TAG, 168 (void *)UFSMNT_LOGGING }, 169 { MNTOPT_NOLOGGING, nologging_cancel, NULL, 170 MO_NODISPLAY|MO_DEFAULT|MO_TAG, (void *)0 }, 171 { MNTOPT_QUOTA, quota_cancel, NULL, MO_IGNORE, 172 (void *)0 }, 173 { MNTOPT_NOQUOTA, noquota_cancel, NULL, 174 MO_NODISPLAY|MO_DEFAULT, (void *)0 }, 175 { MNTOPT_GLOBAL, NULL, NULL, 0, 176 (void *)0 }, 177 { MNTOPT_XATTR, xattr_cancel, NULL, MO_DEFAULT, 178 (void *)0 }, 179 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, 180 (void *)0 }, 181 { MNTOPT_NOATIME, NULL, NULL, 0, 182 (void *)UFSMNT_NOATIME }, 183 { MNTOPT_DFRATIME, dfratime_cancel, NULL, 0, 184 (void *)0 }, 185 { MNTOPT_NODFRATIME, nodfratime_cancel, NULL, 186 MO_NODISPLAY|MO_DEFAULT, (void *)UFSMNT_NODFRATIME }, 187 { MNTOPT_ONERROR, NULL, UFSMNT_ONERROR_PANIC_STR, 188 MO_DEFAULT|MO_HASVALUE, (void *)0 }, 189 }; 190 191 static mntopts_t ufs_mntopts = { 192 sizeof (mntopts) / sizeof (mntopt_t), 193 mntopts 194 }; 195 196 static vfsdef_t vfw = { 197 VFSDEF_VERSION, 198 "ufs", 199 ufsinit, 200 VSW_HASPROTO|VSW_CANREMOUNT, 201 &ufs_mntopts 202 }; 203 204 /* 205 * Module linkage information for the kernel. 206 */ 207 extern struct mod_ops mod_fsops; 208 209 static struct modlfs modlfs = { 210 &mod_fsops, "filesystem for ufs", &vfw 211 }; 212 213 static struct modlinkage modlinkage = { 214 MODREV_1, (void *)&modlfs, NULL 215 }; 216 217 /* 218 * An attempt has been made to make this module unloadable. In order to 219 * test it, we need a system in which the root fs is NOT ufs. THIS HAS NOT 220 * BEEN DONE 221 */ 222 223 extern kstat_t *ufs_inode_kstat; 224 extern uint_t ufs_lockfs_key; 225 extern void ufs_lockfs_tsd_destructor(void *); 226 extern uint_t bypass_snapshot_throttle_key; 227 228 int 229 _init(void) 230 { 231 /* 232 * Create an index into the per thread array so that any thread doing 233 * VOP will have a lockfs mark on it. 234 */ 235 tsd_create(&ufs_lockfs_key, ufs_lockfs_tsd_destructor); 236 tsd_create(&bypass_snapshot_throttle_key, NULL); 237 return (mod_install(&modlinkage)); 238 } 239 240 int 241 _fini(void) 242 { 243 return (EBUSY); 244 } 245 246 int 247 _info(struct modinfo *modinfop) 248 { 249 return (mod_info(&modlinkage, modinfop)); 250 } 251 252 extern struct vnode *makespecvp(dev_t dev, vtype_t type); 253 254 extern kmutex_t ufs_scan_lock; 255 256 static int mountfs(struct vfs *, enum whymountroot, struct vnode *, char *, 257 struct cred *, int, void *, int); 258 259 260 static int 261 ufs_mount(struct vfs *vfsp, struct vnode *mvp, struct mounta *uap, 262 struct cred *cr) 263 264 { 265 char *data = uap->dataptr; 266 int datalen = uap->datalen; 267 dev_t dev; 268 struct vnode *bvp; 269 struct pathname dpn; 270 int error; 271 enum whymountroot why = ROOT_INIT; 272 struct ufs_args args; 273 int oflag, aflag; 274 int fromspace = (uap->flags & MS_SYSSPACE) ? 275 UIO_SYSSPACE : UIO_USERSPACE; 276 277 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) 278 return (error); 279 280 if (mvp->v_type != VDIR) 281 return (ENOTDIR); 282 283 mutex_enter(&mvp->v_lock); 284 if ((uap->flags & MS_REMOUNT) == 0 && 285 (uap->flags & MS_OVERLAY) == 0 && 286 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 287 mutex_exit(&mvp->v_lock); 288 return (EBUSY); 289 } 290 mutex_exit(&mvp->v_lock); 291 292 /* 293 * Get arguments 294 */ 295 bzero(&args, sizeof (args)); 296 if ((uap->flags & MS_DATA) && data != NULL && datalen != 0) { 297 int copy_result = 0; 298 299 if (datalen > sizeof (args)) 300 return (EINVAL); 301 if (uap->flags & MS_SYSSPACE) 302 bcopy(data, &args, datalen); 303 else 304 copy_result = copyin(data, &args, datalen); 305 if (copy_result) 306 return (EFAULT); 307 datalen = sizeof (struct ufs_args); 308 } else { 309 datalen = 0; 310 } 311 /* 312 * Read in the mount point pathname 313 * (so we can record the directory the file system was last mounted on). 314 */ 315 if (error = pn_get(uap->dir, fromspace, &dpn)) 316 return (error); 317 318 /* 319 * Resolve path name of special file being mounted. 320 */ 321 if (error = lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp)) { 322 pn_free(&dpn); 323 return (error); 324 } 325 if (bvp->v_type != VBLK) { 326 VN_RELE(bvp); 327 pn_free(&dpn); 328 return (ENOTBLK); 329 } 330 dev = bvp->v_rdev; 331 if (getmajor(dev) >= devcnt) { 332 pn_free(&dpn); 333 VN_RELE(bvp); 334 return (ENXIO); 335 } 336 if (uap->flags & MS_REMOUNT) 337 why = ROOT_REMOUNT; 338 339 /* 340 * In SunCluster, requests to a global device are satisfied by 341 * a local device. We substitute the global pxfs node with a 342 * local spec node here. 343 */ 344 if (IS_PXFSVP(bvp)) { 345 VN_RELE(bvp); 346 bvp = makespecvp(dev, VBLK); 347 } 348 349 /* 350 * Open block device mounted on. We need this to 351 * check whether the caller has sufficient rights to 352 * access the device in question. 353 * When bio is fixed for vnodes this can all be vnode 354 * operations. 355 */ 356 if ((vfsp->vfs_flag & VFS_RDONLY) != 0 || 357 (uap->flags & MS_RDONLY) != 0) { 358 oflag = FREAD; 359 aflag = VREAD; 360 } else { 361 oflag = FREAD | FWRITE; 362 aflag = VREAD | VWRITE; 363 } 364 if ((error = VOP_ACCESS(bvp, aflag, 0, cr)) != 0 || 365 (error = secpolicy_spec_open(cr, bvp, oflag)) != 0) { 366 pn_free(&dpn); 367 VN_RELE(bvp); 368 return (error); 369 } 370 371 /* 372 * Ensure that this device isn't already mounted or in progress on a 373 * mount unless this is a REMOUNT request or we are told to suppress 374 * mount checks. Global mounts require special handling. 375 */ 376 if ((uap->flags & MS_NOCHECK) == 0) { 377 if ((uap->flags & MS_GLOBAL) == 0 && 378 vfs_devmounting(dev, vfsp)) { 379 pn_free(&dpn); 380 VN_RELE(bvp); 381 return (EBUSY); 382 } 383 if (vfs_devismounted(dev)) { 384 if ((uap->flags & MS_REMOUNT) == 0) { 385 pn_free(&dpn); 386 VN_RELE(bvp); 387 return (EBUSY); 388 } 389 } 390 } 391 392 /* 393 * If the device is a tape, mount it read only 394 */ 395 if (devopsp[getmajor(dev)]->devo_cb_ops->cb_flag & D_TAPE) { 396 vfsp->vfs_flag |= VFS_RDONLY; 397 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 398 } 399 if (uap->flags & MS_RDONLY) 400 vfsp->vfs_flag |= VFS_RDONLY; 401 402 /* 403 * Mount the filesystem, free the device vnode on error. 404 */ 405 error = mountfs(vfsp, why, bvp, dpn.pn_path, cr, 0, &args, datalen); 406 pn_free(&dpn); 407 if (error) { 408 VN_RELE(bvp); 409 } 410 return (error); 411 } 412 /* 413 * Mount root file system. 414 * "why" is ROOT_INIT on initial call ROOT_REMOUNT if called to 415 * remount the root file system, and ROOT_UNMOUNT if called to 416 * unmount the root (e.g., as part of a system shutdown). 417 * 418 * XXX - this may be partially machine-dependent; it, along with the VFS_SWAPVP 419 * operation, goes along with auto-configuration. A mechanism should be 420 * provided by which machine-INdependent code in the kernel can say "get me the 421 * right root file system" and "get me the right initial swap area", and have 422 * that done in what may well be a machine-dependent fashion. 423 * Unfortunately, it is also file-system-type dependent (NFS gets it via 424 * bootparams calls, UFS gets it from various and sundry machine-dependent 425 * mechanisms, as SPECFS does for swap). 426 */ 427 static int 428 ufs_mountroot(struct vfs *vfsp, enum whymountroot why) 429 { 430 struct fs *fsp; 431 int error; 432 static int ufsrootdone = 0; 433 dev_t rootdev; 434 struct vnode *vp; 435 struct vnode *devvp = 0; 436 int ovflags; 437 int doclkset; 438 ufsvfs_t *ufsvfsp; 439 440 if (why == ROOT_INIT) { 441 if (ufsrootdone++) 442 return (EBUSY); 443 rootdev = getrootdev(); 444 if (rootdev == (dev_t)NODEV) 445 return (ENODEV); 446 vfsp->vfs_dev = rootdev; 447 vfsp->vfs_flag |= VFS_RDONLY; 448 } else if (why == ROOT_REMOUNT) { 449 vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp; 450 (void) dnlc_purge_vfsp(vfsp, 0); 451 vp = common_specvp(vp); 452 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_INVAL, CRED()); 453 (void) bfinval(vfsp->vfs_dev, 0); 454 fsp = getfs(vfsp); 455 456 ovflags = vfsp->vfs_flag; 457 vfsp->vfs_flag &= ~VFS_RDONLY; 458 vfsp->vfs_flag |= VFS_REMOUNT; 459 rootdev = vfsp->vfs_dev; 460 } else if (why == ROOT_UNMOUNT) { 461 if (vfs_lock(vfsp) == 0) { 462 (void) ufs_flush(vfsp); 463 /* 464 * Mark the log as fully rolled 465 */ 466 ufsvfsp = (ufsvfs_t *)vfsp->vfs_data; 467 fsp = ufsvfsp->vfs_fs; 468 if (TRANS_ISTRANS(ufsvfsp) && 469 !TRANS_ISERROR(ufsvfsp) && 470 (fsp->fs_rolled == FS_NEED_ROLL)) { 471 ml_unit_t *ul = ufsvfsp->vfs_log; 472 473 error = ufs_putsummaryinfo(ul->un_dev, 474 ufsvfsp, fsp); 475 if (error == 0) { 476 fsp->fs_rolled = FS_ALL_ROLLED; 477 UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp); 478 } 479 } 480 vfs_unlock(vfsp); 481 } else { 482 ufs_update(0); 483 } 484 485 vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp; 486 (void) VOP_CLOSE(vp, FREAD|FWRITE, 1, 487 (offset_t)0, CRED()); 488 return (0); 489 } 490 error = vfs_lock(vfsp); 491 if (error) 492 return (error); 493 494 devvp = makespecvp(rootdev, VBLK); 495 496 /* If RO media, don't call clkset() (see below) */ 497 doclkset = 1; 498 if (why == ROOT_INIT) { 499 error = VOP_OPEN(&devvp, FREAD|FWRITE, CRED()); 500 if (error == 0) { 501 (void) VOP_CLOSE(devvp, FREAD|FWRITE, 1, 502 (offset_t)0, CRED()); 503 } else { 504 doclkset = 0; 505 } 506 } 507 508 error = mountfs(vfsp, why, devvp, "/", CRED(), 1, NULL, 0); 509 /* 510 * XXX - assumes root device is not indirect, because we don't set 511 * rootvp. Is rootvp used for anything? If so, make another arg 512 * to mountfs. 513 */ 514 if (error) { 515 vfs_unlock(vfsp); 516 if (why == ROOT_REMOUNT) 517 vfsp->vfs_flag = ovflags; 518 if (rootvp) { 519 VN_RELE(rootvp); 520 rootvp = (struct vnode *)0; 521 } 522 VN_RELE(devvp); 523 return (error); 524 } 525 if (why == ROOT_INIT) 526 vfs_add((struct vnode *)0, vfsp, 527 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 528 vfs_unlock(vfsp); 529 fsp = getfs(vfsp); 530 clkset(doclkset ? fsp->fs_time : -1); 531 ufsvfsp = (ufsvfs_t *)vfsp->vfs_data; 532 if (ufsvfsp->vfs_log) { 533 vfs_setmntopt(vfsp, MNTOPT_LOGGING, NULL, 0); 534 } 535 return (0); 536 } 537 538 static int 539 remountfs(struct vfs *vfsp, dev_t dev, void *raw_argsp, int args_len) 540 { 541 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 542 struct ulockfs *ulp = &ufsvfsp->vfs_ulockfs; 543 struct buf *bp = ufsvfsp->vfs_bufp; 544 struct fs *fsp = (struct fs *)bp->b_un.b_addr; 545 struct fs *fspt; 546 struct buf *tpt = 0; 547 int error = 0; 548 int flags = 0; 549 550 if (args_len == sizeof (struct ufs_args) && raw_argsp) 551 flags = ((struct ufs_args *)raw_argsp)->flags; 552 553 /* cannot remount to RDONLY */ 554 if (vfsp->vfs_flag & VFS_RDONLY) 555 return (EINVAL); 556 557 /* whoops, wrong dev */ 558 if (vfsp->vfs_dev != dev) 559 return (EINVAL); 560 561 /* 562 * synchronize w/ufs ioctls 563 */ 564 mutex_enter(&ulp->ul_lock); 565 atomic_add_long(&ufs_quiesce_pend, 1); 566 567 /* 568 * reset options 569 */ 570 ufsvfsp->vfs_nointr = flags & UFSMNT_NOINTR; 571 ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR; 572 ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC; 573 ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME; 574 if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime) 575 ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME; 576 else /* dfratime, default behavior */ 577 ufsvfsp->vfs_dfritime |= UFS_DFRATIME; 578 if (flags & UFSMNT_FORCEDIRECTIO) 579 ufsvfsp->vfs_forcedirectio = 1; 580 else /* default is no direct I/O */ 581 ufsvfsp->vfs_forcedirectio = 0; 582 ufsvfsp->vfs_iotstamp = lbolt; 583 584 /* 585 * set largefiles flag in ufsvfs equal to the 586 * value passed in by the mount command. If 587 * it is "nolargefiles", and the flag is set 588 * in the superblock, the mount fails. 589 */ 590 if (!(flags & UFSMNT_LARGEFILES)) { /* "nolargefiles" */ 591 if (fsp->fs_flags & FSLARGEFILES) { 592 error = EFBIG; 593 goto remounterr; 594 } 595 ufsvfsp->vfs_lfflags &= ~UFS_LARGEFILES; 596 } else /* "largefiles" */ 597 ufsvfsp->vfs_lfflags |= UFS_LARGEFILES; 598 /* 599 * read/write to read/write; all done 600 */ 601 if (fsp->fs_ronly == 0) 602 goto remounterr; 603 604 /* 605 * fix-on-panic assumes RO->RW remount implies system-critical fs 606 * if it is shortly after boot; so, don't attempt to lock and fix 607 * (unless the user explicitly asked for another action on error) 608 * XXX UFSMNT_ONERROR_RDONLY rather than UFSMNT_ONERROR_PANIC 609 */ 610 #define BOOT_TIME_LIMIT (180*hz) 611 if (!(flags & UFSMNT_ONERROR_FLGMASK) && lbolt < BOOT_TIME_LIMIT) { 612 cmn_err(CE_WARN, "%s is required to be mounted onerror=%s", 613 ufsvfsp->vfs_fs->fs_fsmnt, UFSMNT_ONERROR_PANIC_STR); 614 flags |= UFSMNT_ONERROR_PANIC; 615 } 616 617 if ((error = ufsfx_mount(ufsvfsp, flags)) != 0) 618 goto remounterr; 619 620 /* 621 * Lock the file system and flush stuff from memory 622 */ 623 error = ufs_quiesce(ulp); 624 if (error) 625 goto remounterr; 626 627 /* 628 * We don't need to call the expensive ufs_flush when going from 629 * read only to read/write, except if the root fs didn't come 630 * down cleanly. 631 */ 632 if ((ufsvfsp->vfs_devvp == rootvp) && !ufs_clean_root) { 633 error = ufs_flush(vfsp); 634 if (error) { 635 goto remounterr; 636 } 637 } 638 639 tpt = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, SBLOCK, SBSIZE); 640 if (tpt->b_flags & B_ERROR) { 641 error = EIO; 642 goto remounterr; 643 } 644 fspt = (struct fs *)tpt->b_un.b_addr; 645 if (((fspt->fs_magic != FS_MAGIC) && 646 (fspt->fs_magic != MTB_UFS_MAGIC)) || 647 (fspt->fs_magic == FS_MAGIC && 648 (fspt->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 && 649 fspt->fs_version != UFS_VERSION_MIN)) || 650 (fspt->fs_magic == MTB_UFS_MAGIC && 651 (fspt->fs_version > MTB_UFS_VERSION_1 || 652 fspt->fs_version < MTB_UFS_VERSION_MIN)) || 653 fspt->fs_bsize > MAXBSIZE || fspt->fs_frag > MAXFRAG || 654 fspt->fs_bsize < sizeof (struct fs) || fspt->fs_bsize < PAGESIZE) { 655 tpt->b_flags |= B_STALE | B_AGE; 656 error = EINVAL; 657 goto remounterr; 658 } 659 660 if (ufsvfsp->vfs_log && (ufsvfsp->vfs_log->un_flags & LDL_NOROLL)) { 661 ufsvfsp->vfs_log->un_flags &= ~LDL_NOROLL; 662 logmap_start_roll(ufsvfsp->vfs_log); 663 } 664 665 if (TRANS_ISERROR(ufsvfsp)) 666 goto remounterr; 667 TRANS_DOMATAMAP(ufsvfsp); 668 669 if ((fspt->fs_state + fspt->fs_time == FSOKAY) && 670 fspt->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp)) { 671 ufsvfsp->vfs_log = NULL; 672 ufsvfsp->vfs_domatamap = 0; 673 error = ENOSPC; 674 goto remounterr; 675 } 676 677 if (fspt->fs_state + fspt->fs_time == FSOKAY && 678 (fspt->fs_clean == FSCLEAN || 679 fspt->fs_clean == FSSTABLE || 680 fspt->fs_clean == FSLOG)) { 681 682 /* 683 * Ensure that ufs_getsummaryinfo doesn't reconstruct 684 * the summary info. 685 */ 686 error = ufs_getsummaryinfo(vfsp->vfs_dev, ufsvfsp, fspt); 687 if (error) 688 goto remounterr; 689 690 /* preserve mount name */ 691 (void) strncpy(fspt->fs_fsmnt, fsp->fs_fsmnt, MAXMNTLEN); 692 /* free the old cg space */ 693 kmem_free(fsp->fs_u.fs_csp, fsp->fs_cssize); 694 /* switch in the new superblock */ 695 fspt->fs_rolled = FS_NEED_ROLL; 696 bcopy(tpt->b_un.b_addr, bp->b_un.b_addr, fspt->fs_sbsize); 697 698 fsp->fs_clean = FSSTABLE; 699 } /* superblock updated in memory */ 700 tpt->b_flags |= B_STALE | B_AGE; 701 brelse(tpt); 702 tpt = 0; 703 704 if (fsp->fs_clean != FSSTABLE) { 705 error = ENOSPC; 706 goto remounterr; 707 } 708 709 710 if (TRANS_ISTRANS(ufsvfsp)) { 711 fsp->fs_clean = FSLOG; 712 ufsvfsp->vfs_dio = 0; 713 } else 714 if (ufsvfsp->vfs_dio) 715 fsp->fs_clean = FSSUSPEND; 716 717 TRANS_MATA_MOUNT(ufsvfsp); 718 719 fsp->fs_fmod = 0; 720 fsp->fs_ronly = 0; 721 722 atomic_add_long(&ufs_quiesce_pend, -1); 723 cv_broadcast(&ulp->ul_cv); 724 mutex_exit(&ulp->ul_lock); 725 726 if (TRANS_ISTRANS(ufsvfsp)) { 727 728 /* 729 * start the delete thread 730 */ 731 ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp); 732 733 /* 734 * start the reclaim thread 735 */ 736 if (fsp->fs_reclaim & (FS_RECLAIM|FS_RECLAIMING)) { 737 fsp->fs_reclaim &= ~FS_RECLAIM; 738 fsp->fs_reclaim |= FS_RECLAIMING; 739 ufs_thread_start(&ufsvfsp->vfs_reclaim, 740 ufs_thread_reclaim, vfsp); 741 } 742 } 743 744 TRANS_SBWRITE(ufsvfsp, TOP_MOUNT); 745 746 return (0); 747 748 remounterr: 749 if (tpt) 750 brelse(tpt); 751 atomic_add_long(&ufs_quiesce_pend, -1); 752 cv_broadcast(&ulp->ul_cv); 753 mutex_exit(&ulp->ul_lock); 754 return (error); 755 } 756 757 /* 758 * If the device maxtransfer size is not available, we use ufs_maxmaxphys 759 * along with the system value for maxphys to determine the value for 760 * maxtransfer. 761 */ 762 int ufs_maxmaxphys = (1024 * 1024); 763 764 #include <sys/ddi.h> /* for delay(9f) */ 765 766 int ufs_mount_error_delay = 20; /* default to 20ms */ 767 int ufs_mount_timeout = 60; /* default to 1 minute */ 768 769 static int 770 mountfs(struct vfs *vfsp, enum whymountroot why, struct vnode *devvp, 771 char *path, cred_t *cr, int isroot, void *raw_argsp, int args_len) 772 { 773 dev_t dev = devvp->v_rdev; 774 struct fs *fsp; 775 struct ufsvfs *ufsvfsp = 0; 776 struct buf *bp = 0; 777 struct buf *tp = 0; 778 struct dk_cinfo ci; 779 int error = 0; 780 size_t len; 781 int needclose = 0; 782 int needtrans = 0; 783 struct inode *rip; 784 struct vnode *rvp = NULL; 785 int flags = 0; 786 kmutex_t *ihm; 787 int elapsed; 788 int status; 789 extern int maxphys; 790 791 if (args_len == sizeof (struct ufs_args) && raw_argsp) 792 flags = ((struct ufs_args *)raw_argsp)->flags; 793 794 ASSERT(vfs_lock_held(vfsp)); 795 796 if (why == ROOT_INIT) { 797 /* 798 * Open block device mounted on. 799 * When bio is fixed for vnodes this can all be vnode 800 * operations. 801 */ 802 error = VOP_OPEN(&devvp, 803 (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE, cr); 804 if (error) 805 goto out; 806 needclose = 1; 807 808 /* 809 * Refuse to go any further if this 810 * device is being used for swapping. 811 */ 812 if (IS_SWAPVP(devvp)) { 813 error = EBUSY; 814 goto out; 815 } 816 } 817 818 /* 819 * check for dev already mounted on 820 */ 821 if (vfsp->vfs_flag & VFS_REMOUNT) { 822 error = remountfs(vfsp, dev, raw_argsp, args_len); 823 if (error == 0) 824 VN_RELE(devvp); 825 return (error); 826 } 827 828 ASSERT(devvp != 0); 829 830 /* 831 * Flush back any dirty pages on the block device to 832 * try and keep the buffer cache in sync with the page 833 * cache if someone is trying to use block devices when 834 * they really should be using the raw device. 835 */ 836 (void) VOP_PUTPAGE(common_specvp(devvp), (offset_t)0, 837 (size_t)0, B_INVAL, cr); 838 839 /* 840 * read in superblock 841 */ 842 ufsvfsp = kmem_zalloc(sizeof (struct ufsvfs), KM_SLEEP); 843 tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE); 844 if (tp->b_flags & B_ERROR) 845 goto out; 846 fsp = (struct fs *)tp->b_un.b_addr; 847 848 if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC)) { 849 cmn_err(CE_NOTE, 850 "mount: not a UFS magic number (0x%x)", fsp->fs_magic); 851 error = EINVAL; 852 goto out; 853 } 854 855 if ((fsp->fs_magic == FS_MAGIC) && 856 (fsp->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 && 857 fsp->fs_version != UFS_VERSION_MIN)) { 858 cmn_err(CE_NOTE, 859 "mount: unrecognized version of UFS on-disk format: %d", 860 fsp->fs_version); 861 error = EINVAL; 862 goto out; 863 } 864 865 if ((fsp->fs_magic == MTB_UFS_MAGIC) && 866 (fsp->fs_version > MTB_UFS_VERSION_1 || 867 fsp->fs_version < MTB_UFS_VERSION_MIN)) { 868 cmn_err(CE_NOTE, 869 "mount: unrecognized version of UFS on-disk format: %d", 870 fsp->fs_version); 871 error = EINVAL; 872 goto out; 873 } 874 875 #ifndef _LP64 876 if (fsp->fs_magic == MTB_UFS_MAGIC) { 877 /* 878 * Find the size of the device in sectors. If the 879 * the size in sectors is greater than INT_MAX, it's 880 * a multi-terabyte file system, which can't be 881 * mounted by a 32-bit kernel. We can't use the 882 * fsbtodb() macro in the next line because the macro 883 * casts the intermediate values to daddr_t, which is 884 * a 32-bit quantity in a 32-bit kernel. Here we 885 * really do need the intermediate values to be held 886 * in 64-bit quantities because we're checking for 887 * overflow of a 32-bit field. 888 */ 889 if ((((diskaddr_t)(fsp->fs_size)) << fsp->fs_fsbtodb) 890 > INT_MAX) { 891 cmn_err(CE_NOTE, 892 "mount: multi-terabyte UFS cannot be" 893 " mounted by a 32-bit kernel"); 894 error = EINVAL; 895 goto out; 896 } 897 898 } 899 #endif 900 901 if (fsp->fs_bsize > MAXBSIZE || fsp->fs_frag > MAXFRAG || 902 fsp->fs_bsize < sizeof (struct fs) || fsp->fs_bsize < PAGESIZE) { 903 error = EINVAL; /* also needs translation */ 904 goto out; 905 } 906 907 /* 908 * Allocate VFS private data. 909 */ 910 vfsp->vfs_bcount = 0; 911 vfsp->vfs_data = (caddr_t)ufsvfsp; 912 vfsp->vfs_fstype = ufsfstype; 913 vfsp->vfs_dev = dev; 914 vfsp->vfs_flag |= VFS_NOTRUNC; 915 vfs_make_fsid(&vfsp->vfs_fsid, dev, ufsfstype); 916 ufsvfsp->vfs_devvp = devvp; 917 918 /* 919 * Cross-link with vfs and add to instance list. 920 */ 921 ufsvfsp->vfs_vfs = vfsp; 922 ufs_vfs_add(ufsvfsp); 923 924 ufsvfsp->vfs_dev = dev; 925 ufsvfsp->vfs_bufp = tp; 926 927 ufsvfsp->vfs_dirsize = INODESIZE + (4 * ALLOCSIZE) + fsp->fs_fsize; 928 ufsvfsp->vfs_minfrags = (int)((int64_t)fsp->fs_dsize * 929 fsp->fs_minfree / 100); 930 /* 931 * if mount allows largefiles, indicate so in ufsvfs 932 */ 933 if (flags & UFSMNT_LARGEFILES) 934 ufsvfsp->vfs_lfflags |= UFS_LARGEFILES; 935 /* 936 * Initialize threads 937 */ 938 ufs_delete_init(ufsvfsp, 1); 939 ufs_thread_init(&ufsvfsp->vfs_reclaim, 0); 940 941 /* 942 * Chicken and egg problem. The superblock may have deltas 943 * in the log. So after the log is scanned we reread the 944 * superblock. We guarantee that the fields needed to 945 * scan the log will not be in the log. 946 */ 947 if (fsp->fs_logbno && fsp->fs_clean == FSLOG && 948 (fsp->fs_state + fsp->fs_time == FSOKAY)) { 949 error = lufs_snarf(ufsvfsp, fsp, (vfsp->vfs_flag & VFS_RDONLY)); 950 if (error) { 951 /* 952 * Allow a ro mount to continue even if the 953 * log cannot be processed - yet. 954 */ 955 if (!(vfsp->vfs_flag & VFS_RDONLY)) { 956 cmn_err(CE_WARN, "Error accessing ufs " 957 "log for %s; Please run fsck(1M)", 958 path); 959 goto out; 960 } 961 } 962 tp->b_flags |= (B_AGE | B_STALE); 963 brelse(tp); 964 tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE); 965 fsp = (struct fs *)tp->b_un.b_addr; 966 ufsvfsp->vfs_bufp = tp; 967 if (tp->b_flags & B_ERROR) 968 goto out; 969 } 970 971 /* 972 * Set logging mounted flag used by lockfs 973 */ 974 ufsvfsp->vfs_validfs = UT_MOUNTED; 975 976 /* 977 * Copy the super block into a buffer in its native size. 978 * Use ngeteblk to allocate the buffer 979 */ 980 bp = ngeteblk(fsp->fs_bsize); 981 ufsvfsp->vfs_bufp = bp; 982 bp->b_edev = dev; 983 bp->b_dev = cmpdev(dev); 984 bp->b_blkno = SBLOCK; 985 bp->b_bcount = fsp->fs_sbsize; 986 bcopy(tp->b_un.b_addr, bp->b_un.b_addr, fsp->fs_sbsize); 987 tp->b_flags |= B_STALE | B_AGE; 988 brelse(tp); 989 tp = 0; 990 991 fsp = (struct fs *)bp->b_un.b_addr; 992 /* 993 * Mount fails if superblock flag indicates presence of large 994 * files and filesystem is attempted to be mounted 'nolargefiles'. 995 * The exception is for a read only mount of root, which we 996 * always want to succeed, so fsck can fix potential problems. 997 * The assumption is that we will remount root at some point, 998 * and the remount will enforce the mount option. 999 */ 1000 if (!(isroot & (vfsp->vfs_flag & VFS_RDONLY)) && 1001 (fsp->fs_flags & FSLARGEFILES) && 1002 !(flags & UFSMNT_LARGEFILES)) { 1003 error = EFBIG; 1004 goto out; 1005 } 1006 1007 if (vfsp->vfs_flag & VFS_RDONLY) { 1008 fsp->fs_ronly = 1; 1009 fsp->fs_fmod = 0; 1010 if (((fsp->fs_state + fsp->fs_time) == FSOKAY) && 1011 ((fsp->fs_clean == FSCLEAN) || 1012 (fsp->fs_clean == FSSTABLE) || 1013 (fsp->fs_clean == FSLOG))) { 1014 if (isroot) { 1015 if (fsp->fs_clean == FSLOG) { 1016 if (fsp->fs_rolled == FS_ALL_ROLLED) { 1017 ufs_clean_root = 1; 1018 } 1019 } else { 1020 ufs_clean_root = 1; 1021 } 1022 } 1023 fsp->fs_clean = FSSTABLE; 1024 } else { 1025 fsp->fs_clean = FSBAD; 1026 } 1027 } else { 1028 1029 fsp->fs_fmod = 0; 1030 fsp->fs_ronly = 0; 1031 1032 TRANS_DOMATAMAP(ufsvfsp); 1033 1034 if ((TRANS_ISERROR(ufsvfsp)) || 1035 (((fsp->fs_state + fsp->fs_time) == FSOKAY) && 1036 fsp->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp))) { 1037 ufsvfsp->vfs_log = NULL; 1038 ufsvfsp->vfs_domatamap = 0; 1039 error = ENOSPC; 1040 goto out; 1041 } 1042 1043 if (((fsp->fs_state + fsp->fs_time) == FSOKAY) && 1044 (fsp->fs_clean == FSCLEAN || 1045 fsp->fs_clean == FSSTABLE || 1046 fsp->fs_clean == FSLOG)) 1047 fsp->fs_clean = FSSTABLE; 1048 else { 1049 if (isroot) { 1050 /* 1051 * allow root partition to be mounted even 1052 * when fs_state is not ok 1053 * will be fixed later by a remount root 1054 */ 1055 fsp->fs_clean = FSBAD; 1056 ufsvfsp->vfs_log = NULL; 1057 ufsvfsp->vfs_domatamap = 0; 1058 } else { 1059 error = ENOSPC; 1060 goto out; 1061 } 1062 } 1063 1064 if (fsp->fs_clean == FSSTABLE && TRANS_ISTRANS(ufsvfsp)) 1065 fsp->fs_clean = FSLOG; 1066 } 1067 TRANS_MATA_MOUNT(ufsvfsp); 1068 needtrans = 1; 1069 1070 vfsp->vfs_bsize = fsp->fs_bsize; 1071 1072 /* 1073 * Read in summary info 1074 */ 1075 if (error = ufs_getsummaryinfo(dev, ufsvfsp, fsp)) 1076 goto out; 1077 1078 /* 1079 * lastwhinetime is set to zero rather than lbolt, so that after 1080 * mounting if the filesystem is found to be full, then immediately the 1081 * "file system message" will be logged. 1082 */ 1083 ufsvfsp->vfs_lastwhinetime = 0L; 1084 1085 1086 mutex_init(&ufsvfsp->vfs_lock, NULL, MUTEX_DEFAULT, NULL); 1087 (void) copystr(path, fsp->fs_fsmnt, sizeof (fsp->fs_fsmnt) - 1, &len); 1088 bzero(fsp->fs_fsmnt + len, sizeof (fsp->fs_fsmnt) - len); 1089 1090 /* 1091 * Sanity checks for old file systems 1092 */ 1093 if (fsp->fs_postblformat == FS_42POSTBLFMT) 1094 ufsvfsp->vfs_nrpos = 8; 1095 else 1096 ufsvfsp->vfs_nrpos = fsp->fs_nrpos; 1097 1098 /* 1099 * Initialize lockfs structure to support file system locking 1100 */ 1101 bzero(&ufsvfsp->vfs_ulockfs.ul_lockfs, 1102 sizeof (struct lockfs)); 1103 ufsvfsp->vfs_ulockfs.ul_fs_lock = ULOCKFS_ULOCK; 1104 mutex_init(&ufsvfsp->vfs_ulockfs.ul_lock, NULL, 1105 MUTEX_DEFAULT, NULL); 1106 cv_init(&ufsvfsp->vfs_ulockfs.ul_cv, NULL, CV_DEFAULT, NULL); 1107 1108 /* 1109 * We don't need to grab vfs_dqrwlock for this ufs_iget() call. 1110 * We are in the process of mounting the file system so there 1111 * is no need to grab the quota lock. If a quota applies to the 1112 * root inode, then it will be updated when quotas are enabled. 1113 * 1114 * However, we have an ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock)) 1115 * in getinoquota() that we want to keep so grab it anyway. 1116 */ 1117 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1118 1119 error = ufs_iget_alloced(vfsp, UFSROOTINO, &rip, cr); 1120 1121 rw_exit(&ufsvfsp->vfs_dqrwlock); 1122 1123 if (error) 1124 goto out; 1125 1126 /* 1127 * make sure root inode is a directory. Returning ENOTDIR might 1128 * be confused with the mount point not being a directory, so 1129 * we use EIO instead. 1130 */ 1131 if ((rip->i_mode & IFMT) != IFDIR) { 1132 /* 1133 * Mark this inode as subject for cleanup 1134 * to avoid stray inodes in the cache. 1135 */ 1136 rvp = ITOV(rip); 1137 error = EIO; 1138 goto out; 1139 } 1140 1141 rvp = ITOV(rip); 1142 mutex_enter(&rvp->v_lock); 1143 rvp->v_flag |= VROOT; 1144 mutex_exit(&rvp->v_lock); 1145 ufsvfsp->vfs_root = rvp; 1146 /* The buffer for the root inode does not contain a valid b_vp */ 1147 (void) bfinval(dev, 0); 1148 1149 /* options */ 1150 ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC; 1151 ufsvfsp->vfs_nointr = flags & UFSMNT_NOINTR; 1152 ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR; 1153 ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME; 1154 if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime) 1155 ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME; 1156 else /* dfratime, default behavior */ 1157 ufsvfsp->vfs_dfritime |= UFS_DFRATIME; 1158 if (flags & UFSMNT_FORCEDIRECTIO) 1159 ufsvfsp->vfs_forcedirectio = 1; 1160 else if (flags & UFSMNT_NOFORCEDIRECTIO) 1161 ufsvfsp->vfs_forcedirectio = 0; 1162 ufsvfsp->vfs_iotstamp = lbolt; 1163 1164 ufsvfsp->vfs_nindiroffset = fsp->fs_nindir - 1; 1165 ufsvfsp->vfs_nindirshift = highbit(ufsvfsp->vfs_nindiroffset); 1166 ufsvfsp->vfs_ioclustsz = fsp->fs_bsize * fsp->fs_maxcontig; 1167 1168 if (cdev_ioctl(dev, DKIOCINFO, (intptr_t)&ci, 1169 FKIOCTL|FNATIVE|FREAD, CRED(), &status) == 0) { 1170 ufsvfsp->vfs_iotransz = ci.dki_maxtransfer * DEV_BSIZE; 1171 } else { 1172 ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys); 1173 } 1174 1175 if (ufsvfsp->vfs_iotransz <= 0) { 1176 ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys); 1177 } 1178 1179 /* 1180 * When logging, used to reserve log space for writes and truncs 1181 */ 1182 ufsvfsp->vfs_avgbfree = fsp->fs_cstotal.cs_nbfree / fsp->fs_ncg; 1183 1184 /* 1185 * Determine whether to log cylinder group summary info. 1186 */ 1187 ufsvfsp->vfs_nolog_si = (fsp->fs_ncg < ufs_ncg_log); 1188 1189 if (TRANS_ISTRANS(ufsvfsp)) { 1190 /* 1191 * start the delete thread 1192 */ 1193 ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp); 1194 1195 /* 1196 * start reclaim thread if the filesystem was not mounted 1197 * read only. 1198 */ 1199 if (!fsp->fs_ronly && (fsp->fs_reclaim & 1200 (FS_RECLAIM|FS_RECLAIMING))) { 1201 fsp->fs_reclaim &= ~FS_RECLAIM; 1202 fsp->fs_reclaim |= FS_RECLAIMING; 1203 ufs_thread_start(&ufsvfsp->vfs_reclaim, 1204 ufs_thread_reclaim, vfsp); 1205 } 1206 1207 /* Mark the fs as unrolled */ 1208 fsp->fs_rolled = FS_NEED_ROLL; 1209 } else if (!fsp->fs_ronly && (fsp->fs_reclaim & 1210 (FS_RECLAIM|FS_RECLAIMING))) { 1211 /* 1212 * If a file system that is mounted nologging, after 1213 * having previously been mounted logging, becomes 1214 * unmounted whilst the reclaim thread is in the throes 1215 * of reclaiming open/deleted inodes, a subsequent mount 1216 * of such a file system with logging disabled could lead 1217 * to inodes becoming lost. So, start reclaim now, even 1218 * though logging was disabled for the previous mount, to 1219 * tidy things up. 1220 */ 1221 fsp->fs_reclaim &= ~FS_RECLAIM; 1222 fsp->fs_reclaim |= FS_RECLAIMING; 1223 ufs_thread_start(&ufsvfsp->vfs_reclaim, 1224 ufs_thread_reclaim, vfsp); 1225 } 1226 1227 if (!fsp->fs_ronly) { 1228 TRANS_SBWRITE(ufsvfsp, TOP_MOUNT); 1229 if (error = geterror(ufsvfsp->vfs_bufp)) 1230 goto out; 1231 } 1232 1233 /* fix-on-panic initialization */ 1234 if (isroot && !(flags & UFSMNT_ONERROR_FLGMASK)) 1235 flags |= UFSMNT_ONERROR_PANIC; /* XXX ..._RDONLY */ 1236 1237 if ((error = ufsfx_mount(ufsvfsp, flags)) != 0) 1238 goto out; 1239 1240 if (why == ROOT_INIT && isroot) 1241 rootvp = devvp; 1242 1243 return (0); 1244 out: 1245 if (error == 0) 1246 error = EIO; 1247 if (rvp) { 1248 /* the following sequence is similar to ufs_unmount() */ 1249 1250 /* 1251 * There's a problem that ufs_iget() puts inodes into 1252 * the inode cache before it returns them. If someone 1253 * traverses that cache and gets a reference to our 1254 * inode, there's a chance they'll still be using it 1255 * after we've destroyed it. This is a hard race to 1256 * hit, but it's happened (putting in a medium delay 1257 * here, and a large delay in ufs_scan_inodes() for 1258 * inodes on the device we're bailing out on, makes 1259 * the race easy to demonstrate). The symptom is some 1260 * other part of UFS faulting on bad inode contents, 1261 * or when grabbing one of the locks inside the inode, 1262 * etc. The usual victim is ufs_scan_inodes() or 1263 * someone called by it. 1264 */ 1265 1266 /* 1267 * First, isolate it so that no new references can be 1268 * gotten via the inode cache. 1269 */ 1270 ihm = &ih_lock[INOHASH(UFSROOTINO)]; 1271 mutex_enter(ihm); 1272 remque(rip); 1273 mutex_exit(ihm); 1274 1275 /* 1276 * Now wait for all outstanding references except our 1277 * own to drain. This could, in theory, take forever, 1278 * so don't wait *too* long. If we time out, mark 1279 * it stale and leak it, so we don't hit the problem 1280 * described above. 1281 * 1282 * Note that v_count is an int, which means we can read 1283 * it in one operation. Thus, there's no need to lock 1284 * around our tests. 1285 */ 1286 elapsed = 0; 1287 while ((rvp->v_count > 1) && (elapsed < ufs_mount_timeout)) { 1288 delay(ufs_mount_error_delay * drv_usectohz(1000)); 1289 elapsed += ufs_mount_error_delay; 1290 } 1291 1292 if (rvp->v_count > 1) { 1293 mutex_enter(&rip->i_tlock); 1294 rip->i_flag |= ISTALE; 1295 mutex_exit(&rip->i_tlock); 1296 cmn_err(CE_WARN, 1297 "Timed out while cleaning up after failed mount of %s", 1298 path); 1299 } else { 1300 1301 /* 1302 * Now we're the only one with a handle left, so tear 1303 * it down the rest of the way. 1304 */ 1305 if (ufs_rmidle(rip)) 1306 VN_RELE(rvp); 1307 ufs_si_del(rip); 1308 rip->i_ufsvfs = NULL; 1309 rvp->v_vfsp = NULL; 1310 rvp->v_type = VBAD; 1311 VN_RELE(rvp); 1312 } 1313 } 1314 if (needtrans) { 1315 TRANS_MATA_UMOUNT(ufsvfsp); 1316 } 1317 if (ufsvfsp) { 1318 ufs_vfs_remove(ufsvfsp); 1319 ufs_thread_exit(&ufsvfsp->vfs_delete); 1320 ufs_thread_exit(&ufsvfsp->vfs_reclaim); 1321 mutex_destroy(&ufsvfsp->vfs_lock); 1322 if (ufsvfsp->vfs_log) { 1323 lufs_unsnarf(ufsvfsp); 1324 } 1325 kmem_free(ufsvfsp, sizeof (struct ufsvfs)); 1326 } 1327 if (bp) { 1328 bp->b_flags |= (B_STALE|B_AGE); 1329 brelse(bp); 1330 } 1331 if (tp) { 1332 tp->b_flags |= (B_STALE|B_AGE); 1333 brelse(tp); 1334 } 1335 if (needclose) { 1336 (void) VOP_CLOSE(devvp, (vfsp->vfs_flag & VFS_RDONLY) ? 1337 FREAD : FREAD|FWRITE, 1, (offset_t)0, cr); 1338 bflush(dev); 1339 (void) bfinval(dev, 1); 1340 } 1341 return (error); 1342 } 1343 1344 /* 1345 * vfs operations 1346 */ 1347 static int 1348 ufs_unmount(struct vfs *vfsp, int fflag, struct cred *cr) 1349 { 1350 dev_t dev = vfsp->vfs_dev; 1351 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1352 struct fs *fs = ufsvfsp->vfs_fs; 1353 struct ulockfs *ulp = &ufsvfsp->vfs_ulockfs; 1354 struct vnode *bvp, *vp; 1355 struct buf *bp; 1356 struct inode *ip, *inext, *rip; 1357 union ihead *ih; 1358 int error, flag, i; 1359 struct lockfs lockfs; 1360 int poll_events = POLLPRI; 1361 extern struct pollhead ufs_pollhd; 1362 refstr_t *mountpoint; 1363 1364 ASSERT(vfs_lock_held(vfsp)); 1365 1366 if (secpolicy_fs_unmount(cr, vfsp) != 0) 1367 return (EPERM); 1368 /* 1369 * Forced unmount is now supported through the 1370 * lockfs protocol. 1371 */ 1372 if (fflag & MS_FORCE) { 1373 /* 1374 * Mark the filesystem as being unmounted now in 1375 * case of a forcible umount before we take any 1376 * locks inside UFS to prevent racing with a VFS_VGET() 1377 * request. Throw these VFS_VGET() requests away for 1378 * the duration of the forcible umount so they won't 1379 * use stale or even freed data later on when we're done. 1380 * It may happen that the VFS has had a additional hold 1381 * placed on it by someone other than UFS and thus will 1382 * not get freed immediately once we're done with the 1383 * umount by dounmount() - use VFS_UNMOUNTED to inform 1384 * users of this still-alive VFS that its corresponding 1385 * filesystem being gone so they can detect that and error 1386 * out. 1387 */ 1388 vfsp->vfs_flag |= VFS_UNMOUNTED; 1389 1390 ufs_thread_suspend(&ufsvfsp->vfs_delete); 1391 mutex_enter(&ulp->ul_lock); 1392 /* 1393 * If file system is already hard locked, 1394 * unmount the file system, otherwise 1395 * hard lock it before unmounting. 1396 */ 1397 if (!ULOCKFS_IS_HLOCK(ulp)) { 1398 atomic_add_long(&ufs_quiesce_pend, 1); 1399 lockfs.lf_lock = LOCKFS_HLOCK; 1400 lockfs.lf_flags = 0; 1401 lockfs.lf_key = ulp->ul_lockfs.lf_key + 1; 1402 lockfs.lf_comlen = 0; 1403 lockfs.lf_comment = NULL; 1404 ufs_freeze(ulp, &lockfs); 1405 ULOCKFS_SET_BUSY(ulp); 1406 LOCKFS_SET_BUSY(&ulp->ul_lockfs); 1407 (void) ufs_quiesce(ulp); 1408 (void) ufs_flush(vfsp); 1409 (void) ufs_thaw(vfsp, ufsvfsp, ulp); 1410 atomic_add_long(&ufs_quiesce_pend, -1); 1411 ULOCKFS_CLR_BUSY(ulp); 1412 LOCKFS_CLR_BUSY(&ulp->ul_lockfs); 1413 poll_events |= POLLERR; 1414 pollwakeup(&ufs_pollhd, poll_events); 1415 } 1416 ufs_thread_continue(&ufsvfsp->vfs_delete); 1417 mutex_exit(&ulp->ul_lock); 1418 } 1419 1420 /* let all types of writes go through */ 1421 ufsvfsp->vfs_iotstamp = lbolt; 1422 1423 /* coordinate with global hlock thread */ 1424 if (TRANS_ISTRANS(ufsvfsp) && (ufsvfsp->vfs_validfs == UT_HLOCKING)) { 1425 /* 1426 * last possibility for a forced umount to fail hence clear 1427 * VFS_UNMOUNTED if appropriate. 1428 */ 1429 if (fflag & MS_FORCE) 1430 vfsp->vfs_flag &= ~VFS_UNMOUNTED; 1431 return (EAGAIN); 1432 } 1433 1434 ufsvfsp->vfs_validfs = UT_UNMOUNTED; 1435 1436 /* kill the reclaim thread */ 1437 ufs_thread_exit(&ufsvfsp->vfs_reclaim); 1438 1439 /* suspend the delete thread */ 1440 ufs_thread_suspend(&ufsvfsp->vfs_delete); 1441 1442 /* 1443 * drain the delete and idle queues 1444 */ 1445 ufs_delete_drain(vfsp, -1, 1); 1446 ufs_idle_drain(vfsp); 1447 1448 /* 1449 * use the lockfs protocol to prevent new ops from starting 1450 * a forcible umount can not fail beyond this point as 1451 * we hard-locked the filesystem and drained all current consumers 1452 * before. 1453 */ 1454 mutex_enter(&ulp->ul_lock); 1455 1456 /* 1457 * if the file system is busy; return EBUSY 1458 */ 1459 if (ulp->ul_vnops_cnt || ULOCKFS_IS_SLOCK(ulp)) { 1460 error = EBUSY; 1461 goto out; 1462 } 1463 1464 /* 1465 * if this is not a forced unmount (!hard/error locked), then 1466 * get rid of every inode except the root and quota inodes 1467 * also, commit any outstanding transactions 1468 */ 1469 if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp)) 1470 if (error = ufs_flush(vfsp)) 1471 goto out; 1472 1473 /* 1474 * ignore inodes in the cache if fs is hard locked or error locked 1475 */ 1476 rip = VTOI(ufsvfsp->vfs_root); 1477 if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp)) { 1478 /* 1479 * Otherwise, only the quota and root inodes are in the cache. 1480 * 1481 * Avoid racing with ufs_update() and ufs_sync(). 1482 */ 1483 mutex_enter(&ufs_scan_lock); 1484 1485 for (i = 0, ih = ihead; i < inohsz; i++, ih++) { 1486 mutex_enter(&ih_lock[i]); 1487 for (ip = ih->ih_chain[0]; 1488 ip != (struct inode *)ih; 1489 ip = ip->i_forw) { 1490 if (ip->i_ufsvfs != ufsvfsp) 1491 continue; 1492 if (ip == ufsvfsp->vfs_qinod) 1493 continue; 1494 if (ip == rip && ITOV(ip)->v_count == 1) 1495 continue; 1496 mutex_exit(&ih_lock[i]); 1497 mutex_exit(&ufs_scan_lock); 1498 error = EBUSY; 1499 goto out; 1500 } 1501 mutex_exit(&ih_lock[i]); 1502 } 1503 mutex_exit(&ufs_scan_lock); 1504 } 1505 1506 /* 1507 * if a snapshot exists and this is a forced unmount, then delete 1508 * the snapshot. Otherwise return EBUSY. This will insure the 1509 * snapshot always belongs to a valid file system. 1510 */ 1511 if (ufsvfsp->vfs_snapshot) { 1512 if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) { 1513 (void) fssnap_delete(&ufsvfsp->vfs_snapshot); 1514 } else { 1515 error = EBUSY; 1516 goto out; 1517 } 1518 } 1519 1520 /* 1521 * Close the quota file and invalidate anything left in the quota 1522 * cache for this file system. Pass kcred to allow all quota 1523 * manipulations. 1524 */ 1525 (void) closedq(ufsvfsp, kcred); 1526 invalidatedq(ufsvfsp); 1527 /* 1528 * drain the delete and idle queues 1529 */ 1530 ufs_delete_drain(vfsp, -1, 0); 1531 ufs_idle_drain(vfsp); 1532 1533 /* 1534 * discard the inodes for this fs (including root, shadow, and quota) 1535 */ 1536 for (i = 0, ih = ihead; i < inohsz; i++, ih++) { 1537 mutex_enter(&ih_lock[i]); 1538 for (inext = 0, ip = ih->ih_chain[0]; 1539 ip != (struct inode *)ih; 1540 ip = inext) { 1541 inext = ip->i_forw; 1542 if (ip->i_ufsvfs != ufsvfsp) 1543 continue; 1544 vp = ITOV(ip); 1545 VN_HOLD(vp) 1546 remque(ip); 1547 if (ufs_rmidle(ip)) 1548 VN_RELE(vp); 1549 ufs_si_del(ip); 1550 /* 1551 * rip->i_ufsvfsp is needed by bflush() 1552 */ 1553 if (ip != rip) 1554 ip->i_ufsvfs = NULL; 1555 /* 1556 * Set vnode's vfsops to dummy ops, which return 1557 * EIO. This is needed to forced unmounts to work 1558 * with lofs/nfs properly. 1559 */ 1560 if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) 1561 vp->v_vfsp = &EIO_vfs; 1562 else 1563 vp->v_vfsp = NULL; 1564 vp->v_type = VBAD; 1565 VN_RELE(vp); 1566 } 1567 mutex_exit(&ih_lock[i]); 1568 } 1569 ufs_si_cache_flush(dev); 1570 1571 /* 1572 * kill the delete thread and drain the idle queue 1573 */ 1574 ufs_thread_exit(&ufsvfsp->vfs_delete); 1575 ufs_idle_drain(vfsp); 1576 1577 bp = ufsvfsp->vfs_bufp; 1578 bvp = ufsvfsp->vfs_devvp; 1579 flag = !fs->fs_ronly; 1580 if (flag) { 1581 bflush(dev); 1582 if (fs->fs_clean != FSBAD) { 1583 if (fs->fs_clean == FSSTABLE) 1584 fs->fs_clean = FSCLEAN; 1585 fs->fs_reclaim &= ~FS_RECLAIM; 1586 } 1587 if (TRANS_ISTRANS(ufsvfsp) && 1588 !TRANS_ISERROR(ufsvfsp) && 1589 !ULOCKFS_IS_HLOCK(ulp) && 1590 (fs->fs_rolled == FS_NEED_ROLL)) { 1591 /* 1592 * ufs_flush() above has flushed the last Moby. 1593 * This is needed to ensure the following superblock 1594 * update really is the last metadata update 1595 */ 1596 error = ufs_putsummaryinfo(dev, ufsvfsp, fs); 1597 if (error == 0) { 1598 fs->fs_rolled = FS_ALL_ROLLED; 1599 } 1600 } 1601 TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UNMOUNT); 1602 /* 1603 * push this last transaction 1604 */ 1605 curthread->t_flag |= T_DONTBLOCK; 1606 TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UNMOUNT, TOP_COMMIT_SIZE, 1607 error); 1608 if (!error) 1609 TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UNMOUNT, 1610 TOP_COMMIT_SIZE); 1611 curthread->t_flag &= ~T_DONTBLOCK; 1612 } 1613 1614 TRANS_MATA_UMOUNT(ufsvfsp); 1615 lufs_unsnarf(ufsvfsp); /* Release the in-memory structs */ 1616 ufsfx_unmount(ufsvfsp); /* fix-on-panic bookkeeping */ 1617 kmem_free(fs->fs_u.fs_csp, fs->fs_cssize); 1618 1619 bp->b_flags |= B_STALE|B_AGE; 1620 ufsvfsp->vfs_bufp = NULL; /* don't point at freed buf */ 1621 brelse(bp); /* free the superblock buf */ 1622 1623 (void) VOP_PUTPAGE(common_specvp(bvp), (offset_t)0, (size_t)0, 1624 B_INVAL, cr); 1625 (void) VOP_CLOSE(bvp, flag, 1, (offset_t)0, cr); 1626 bflush(dev); 1627 (void) bfinval(dev, 1); 1628 VN_RELE(bvp); 1629 1630 /* 1631 * It is now safe to NULL out the ufsvfs pointer and discard 1632 * the root inode. 1633 */ 1634 rip->i_ufsvfs = NULL; 1635 VN_RELE(ITOV(rip)); 1636 1637 /* free up lockfs comment structure, if any */ 1638 if (ulp->ul_lockfs.lf_comlen && ulp->ul_lockfs.lf_comment) 1639 kmem_free(ulp->ul_lockfs.lf_comment, ulp->ul_lockfs.lf_comlen); 1640 1641 /* 1642 * Remove from instance list. 1643 */ 1644 ufs_vfs_remove(ufsvfsp); 1645 1646 /* 1647 * For a forcible unmount, threads may be asleep in 1648 * ufs_lockfs_begin/ufs_check_lockfs. These threads will need 1649 * the ufsvfs structure so we don't free it, yet. ufs_update 1650 * will free it up after awhile. 1651 */ 1652 if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) { 1653 extern kmutex_t ufsvfs_mutex; 1654 extern struct ufsvfs *ufsvfslist; 1655 1656 mutex_enter(&ufsvfs_mutex); 1657 ufsvfsp->vfs_dontblock = 1; 1658 ufsvfsp->vfs_next = ufsvfslist; 1659 ufsvfslist = ufsvfsp; 1660 mutex_exit(&ufsvfs_mutex); 1661 /* wakeup any suspended threads */ 1662 cv_broadcast(&ulp->ul_cv); 1663 mutex_exit(&ulp->ul_lock); 1664 } else { 1665 mutex_destroy(&ufsvfsp->vfs_lock); 1666 kmem_free(ufsvfsp, sizeof (struct ufsvfs)); 1667 } 1668 1669 /* 1670 * Now mark the filesystem as unmounted since we're done with it. 1671 */ 1672 vfsp->vfs_flag |= VFS_UNMOUNTED; 1673 1674 return (0); 1675 out: 1676 /* open the fs to new ops */ 1677 cv_broadcast(&ulp->ul_cv); 1678 mutex_exit(&ulp->ul_lock); 1679 1680 if (TRANS_ISTRANS(ufsvfsp)) { 1681 /* allow the delete thread to continue */ 1682 ufs_thread_continue(&ufsvfsp->vfs_delete); 1683 /* restart the reclaim thread */ 1684 ufs_thread_start(&ufsvfsp->vfs_reclaim, ufs_thread_reclaim, 1685 vfsp); 1686 /* coordinate with global hlock thread */ 1687 ufsvfsp->vfs_validfs = UT_MOUNTED; 1688 /* check for trans errors during umount */ 1689 ufs_trans_onerror(); 1690 1691 /* 1692 * if we have a seperate /usr it will never unmount 1693 * when halting. In order to not re-read all the 1694 * cylinder group summary info on mounting after 1695 * reboot the logging of summary info is re-enabled 1696 * and the super block written out. 1697 */ 1698 mountpoint = vfs_getmntpoint(vfsp); 1699 if ((fs->fs_si == FS_SI_OK) && 1700 (strcmp("/usr", refstr_value(mountpoint)) == 0)) { 1701 ufsvfsp->vfs_nolog_si = 0; 1702 UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp); 1703 } 1704 refstr_rele(mountpoint); 1705 } 1706 1707 return (error); 1708 } 1709 1710 static int 1711 ufs_root(struct vfs *vfsp, struct vnode **vpp) 1712 { 1713 struct ufsvfs *ufsvfsp; 1714 struct vnode *vp; 1715 1716 if (!vfsp) 1717 return (EIO); 1718 1719 ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1720 if (!ufsvfsp || !ufsvfsp->vfs_root) 1721 return (EIO); /* forced unmount */ 1722 1723 vp = ufsvfsp->vfs_root; 1724 VN_HOLD(vp); 1725 *vpp = vp; 1726 return (0); 1727 } 1728 1729 /* 1730 * Get file system statistics. 1731 */ 1732 static int 1733 ufs_statvfs(struct vfs *vfsp, struct statvfs64 *sp) 1734 { 1735 struct fs *fsp; 1736 struct ufsvfs *ufsvfsp; 1737 int blk, i; 1738 long max_avail, used; 1739 dev32_t d32; 1740 1741 if (vfsp->vfs_flag & VFS_UNMOUNTED) 1742 return (EIO); 1743 1744 ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1745 fsp = ufsvfsp->vfs_fs; 1746 if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC)) 1747 return (EINVAL); 1748 if (fsp->fs_magic == FS_MAGIC && 1749 (fsp->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 && 1750 fsp->fs_version != UFS_VERSION_MIN)) 1751 return (EINVAL); 1752 if (fsp->fs_magic == MTB_UFS_MAGIC && 1753 (fsp->fs_version > MTB_UFS_VERSION_1 || 1754 fsp->fs_version < MTB_UFS_VERSION_MIN)) 1755 return (EINVAL); 1756 1757 /* 1758 * get the basic numbers 1759 */ 1760 (void) bzero(sp, sizeof (*sp)); 1761 1762 sp->f_bsize = fsp->fs_bsize; 1763 sp->f_frsize = fsp->fs_fsize; 1764 sp->f_blocks = (fsblkcnt64_t)fsp->fs_dsize; 1765 sp->f_bfree = (fsblkcnt64_t)fsp->fs_cstotal.cs_nbfree * fsp->fs_frag + 1766 fsp->fs_cstotal.cs_nffree; 1767 1768 sp->f_files = (fsfilcnt64_t)fsp->fs_ncg * fsp->fs_ipg; 1769 sp->f_ffree = (fsfilcnt64_t)fsp->fs_cstotal.cs_nifree; 1770 1771 /* 1772 * Adjust the numbers based on things waiting to be deleted. 1773 * modifies f_bfree and f_ffree. Afterwards, everything we 1774 * come up with will be self-consistent. By definition, this 1775 * is a point-in-time snapshot, so the fact that the delete 1776 * thread's probably already invalidated the results is not a 1777 * problem. Note that if the delete thread is ever extended to 1778 * non-logging ufs, this adjustment must always be made. 1779 */ 1780 if (TRANS_ISTRANS(ufsvfsp)) 1781 ufs_delete_adjust_stats(ufsvfsp, sp); 1782 1783 /* 1784 * avail = MAX(max_avail - used, 0) 1785 */ 1786 max_avail = fsp->fs_dsize - ufsvfsp->vfs_minfrags; 1787 1788 used = (fsp->fs_dsize - sp->f_bfree); 1789 1790 if (max_avail > used) 1791 sp->f_bavail = (fsblkcnt64_t)max_avail - used; 1792 else 1793 sp->f_bavail = (fsblkcnt64_t)0; 1794 1795 sp->f_favail = sp->f_ffree; 1796 (void) cmpldev(&d32, vfsp->vfs_dev); 1797 sp->f_fsid = d32; 1798 (void) strcpy(sp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1799 sp->f_flag = vf_to_stf(vfsp->vfs_flag); 1800 1801 /* keep coordinated with ufs_l_pathconf() */ 1802 sp->f_namemax = MAXNAMLEN; 1803 1804 if (fsp->fs_cpc == 0) { 1805 bzero(sp->f_fstr, 14); 1806 return (0); 1807 } 1808 blk = fsp->fs_spc * fsp->fs_cpc / NSPF(fsp); 1809 for (i = 0; i < blk; i += fsp->fs_frag) /* CSTYLED */ 1810 /* void */; 1811 i -= fsp->fs_frag; 1812 blk = i / fsp->fs_frag; 1813 bcopy(&(fs_rotbl(fsp)[blk]), sp->f_fstr, 14); 1814 return (0); 1815 } 1816 1817 /* 1818 * Flush any pending I/O to file system vfsp. 1819 * The ufs_update() routine will only flush *all* ufs files. 1820 * If vfsp is non-NULL, only sync this ufs (in preparation 1821 * for a umount). 1822 */ 1823 /*ARGSUSED*/ 1824 static int 1825 ufs_sync(struct vfs *vfsp, short flag, struct cred *cr) 1826 { 1827 struct ufsvfs *ufsvfsp; 1828 struct fs *fs; 1829 int cheap = flag & SYNC_ATTR; 1830 int error; 1831 1832 /* 1833 * SYNC_CLOSE means we're rebooting. Toss everything 1834 * on the idle queue so we don't have to slog through 1835 * a bunch of uninteresting inodes over and over again. 1836 */ 1837 if (flag & SYNC_CLOSE) 1838 ufs_idle_drain(NULL); 1839 1840 if (vfsp == NULL) { 1841 ufs_update(flag); 1842 return (0); 1843 } 1844 1845 /* Flush a single ufs */ 1846 if (!vfs_matchops(vfsp, ufs_vfsops) || vfs_lock(vfsp) != 0) 1847 return (0); 1848 1849 ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1850 if (!ufsvfsp) 1851 return (EIO); 1852 fs = ufsvfsp->vfs_fs; 1853 mutex_enter(&ufsvfsp->vfs_lock); 1854 1855 if (ufsvfsp->vfs_dio && 1856 fs->fs_ronly == 0 && 1857 fs->fs_clean != FSBAD && 1858 fs->fs_clean != FSLOG) { 1859 /* turn off fast-io on unmount, so no fsck needed (4029401) */ 1860 ufsvfsp->vfs_dio = 0; 1861 fs->fs_clean = FSACTIVE; 1862 fs->fs_fmod = 1; 1863 } 1864 1865 /* Write back modified superblock */ 1866 if (fs->fs_fmod == 0) { 1867 mutex_exit(&ufsvfsp->vfs_lock); 1868 } else { 1869 if (fs->fs_ronly != 0) { 1870 mutex_exit(&ufsvfsp->vfs_lock); 1871 vfs_unlock(vfsp); 1872 return (ufs_fault(ufsvfsp->vfs_root, 1873 "fs = %s update: ro fs mod\n", 1874 fs->fs_fsmnt)); 1875 } 1876 fs->fs_fmod = 0; 1877 mutex_exit(&ufsvfsp->vfs_lock); 1878 1879 TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UPDATE); 1880 } 1881 vfs_unlock(vfsp); 1882 1883 /* 1884 * Avoid racing with ufs_update() and ufs_unmount(). 1885 * 1886 */ 1887 mutex_enter(&ufs_scan_lock); 1888 1889 (void) ufs_scan_inodes(1, ufs_sync_inode, 1890 (void *)(uintptr_t)cheap, ufsvfsp); 1891 1892 mutex_exit(&ufs_scan_lock); 1893 1894 bflush((dev_t)vfsp->vfs_dev); 1895 1896 /* 1897 * commit any outstanding async transactions 1898 */ 1899 curthread->t_flag |= T_DONTBLOCK; 1900 TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UPDATE, TOP_COMMIT_SIZE, error); 1901 if (!error) { 1902 TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UPDATE, 1903 TOP_COMMIT_SIZE); 1904 } 1905 curthread->t_flag &= ~T_DONTBLOCK; 1906 1907 return (0); 1908 } 1909 1910 1911 void 1912 sbupdate(struct vfs *vfsp) 1913 { 1914 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1915 struct fs *fs = ufsvfsp->vfs_fs; 1916 struct buf *bp; 1917 int blks; 1918 caddr_t space; 1919 int i; 1920 size_t size; 1921 1922 /* 1923 * for ulockfs processing, limit the superblock writes 1924 */ 1925 if ((ufsvfsp->vfs_ulockfs.ul_sbowner) && 1926 (curthread != ufsvfsp->vfs_ulockfs.ul_sbowner)) { 1927 /* process later */ 1928 fs->fs_fmod = 1; 1929 return; 1930 } 1931 ULOCKFS_SET_MOD((&ufsvfsp->vfs_ulockfs)); 1932 1933 if (TRANS_ISTRANS(ufsvfsp)) { 1934 mutex_enter(&ufsvfsp->vfs_lock); 1935 ufs_sbwrite(ufsvfsp); 1936 mutex_exit(&ufsvfsp->vfs_lock); 1937 return; 1938 } 1939 1940 blks = howmany(fs->fs_cssize, fs->fs_fsize); 1941 space = (caddr_t)fs->fs_u.fs_csp; 1942 for (i = 0; i < blks; i += fs->fs_frag) { 1943 size = fs->fs_bsize; 1944 if (i + fs->fs_frag > blks) 1945 size = (blks - i) * fs->fs_fsize; 1946 bp = UFS_GETBLK(ufsvfsp, ufsvfsp->vfs_dev, 1947 (daddr_t)(fsbtodb(fs, fs->fs_csaddr + i)), 1948 fs->fs_bsize); 1949 bcopy(space, bp->b_un.b_addr, size); 1950 space += size; 1951 bp->b_bcount = size; 1952 UFS_BRWRITE(ufsvfsp, bp); 1953 } 1954 mutex_enter(&ufsvfsp->vfs_lock); 1955 ufs_sbwrite(ufsvfsp); 1956 mutex_exit(&ufsvfsp->vfs_lock); 1957 } 1958 1959 int ufs_vget_idle_count = 2; /* Number of inodes to idle each time */ 1960 static int 1961 ufs_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp) 1962 { 1963 int error = 0; 1964 struct ufid *ufid; 1965 struct inode *ip; 1966 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1967 struct ulockfs *ulp; 1968 1969 /* 1970 * Check for unmounted filesystem. 1971 */ 1972 if (vfsp->vfs_flag & VFS_UNMOUNTED) { 1973 error = EIO; 1974 goto errout; 1975 } 1976 1977 /* 1978 * Keep the idle queue from getting too long by 1979 * idling an inode before attempting to allocate another. 1980 * This operation must be performed before entering 1981 * lockfs or a transaction. 1982 */ 1983 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat) 1984 if ((curthread->t_flag & T_DONTBLOCK) == 0) { 1985 ins.in_vidles.value.ul += ufs_vget_idle_count; 1986 ufs_idle_some(ufs_vget_idle_count); 1987 } 1988 1989 ufid = (struct ufid *)fidp; 1990 1991 if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_VGET_MASK)) 1992 goto errout; 1993 1994 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1995 1996 error = ufs_iget(vfsp, ufid->ufid_ino, &ip, CRED()); 1997 1998 rw_exit(&ufsvfsp->vfs_dqrwlock); 1999 2000 ufs_lockfs_end(ulp); 2001 2002 if (error) 2003 goto errout; 2004 2005 /* 2006 * Check if the inode has been deleted or freed or is in transient state 2007 * since the last VFS_VGET() request for it, release it and don't return 2008 * it to the caller, presumably NFS, as it's no longer valid. 2009 */ 2010 if (ip->i_gen != ufid->ufid_gen || ip->i_mode == 0 || 2011 (ip->i_flag & IDEL)) { 2012 VN_RELE(ITOV(ip)); 2013 error = EINVAL; 2014 goto errout; 2015 } 2016 2017 *vpp = ITOV(ip); 2018 return (0); 2019 2020 errout: 2021 *vpp = NULL; 2022 return (error); 2023 } 2024 2025 static int 2026 ufsinit(int fstype, char *name) 2027 { 2028 static const fs_operation_def_t ufs_vfsops_template[] = { 2029 VFSNAME_MOUNT, ufs_mount, 2030 VFSNAME_UNMOUNT, ufs_unmount, 2031 VFSNAME_ROOT, ufs_root, 2032 VFSNAME_STATVFS, ufs_statvfs, 2033 VFSNAME_SYNC, (fs_generic_func_p) ufs_sync, 2034 VFSNAME_VGET, ufs_vget, 2035 VFSNAME_MOUNTROOT, ufs_mountroot, 2036 NULL, NULL 2037 }; 2038 int error; 2039 2040 ufsfstype = fstype; 2041 2042 error = vfs_setfsops(fstype, ufs_vfsops_template, &ufs_vfsops); 2043 if (error != 0) { 2044 cmn_err(CE_WARN, "ufsinit: bad vfs ops template"); 2045 return (error); 2046 } 2047 2048 error = vn_make_ops(name, ufs_vnodeops_template, &ufs_vnodeops); 2049 if (error != 0) { 2050 (void) vfs_freevfsops_by_type(fstype); 2051 cmn_err(CE_WARN, "ufsinit: bad vnode ops template"); 2052 return (error); 2053 } 2054 2055 ufs_iinit(); 2056 return (0); 2057 } 2058 2059 #ifdef __sparc 2060 2061 /* 2062 * Mounting a mirrored SVM volume is only supported on ufs, 2063 * this is special-case boot code to support that configuration. 2064 * At this point, we have booted and mounted root on a 2065 * single component of the mirror. Complete the boot 2066 * by configuring SVM and converting the root to the 2067 * dev_t of the mirrored root device. This dev_t conversion 2068 * only works because the underlying device doesn't change. 2069 */ 2070 int 2071 ufs_remountroot(struct vfs *vfsp) 2072 { 2073 struct ufsvfs *ufsvfsp; 2074 struct ulockfs *ulp; 2075 dev_t new_rootdev; 2076 dev_t old_rootdev; 2077 struct vnode *old_rootvp; 2078 struct vnode *new_rootvp; 2079 int error, sberror = 0; 2080 struct inode *ip; 2081 union ihead *ih; 2082 struct buf *bp; 2083 int i; 2084 2085 old_rootdev = rootdev; 2086 old_rootvp = rootvp; 2087 2088 new_rootdev = getrootdev(); 2089 if (new_rootdev == (dev_t)NODEV) { 2090 return (ENODEV); 2091 } 2092 2093 new_rootvp = makespecvp(new_rootdev, VBLK); 2094 2095 error = VOP_OPEN(&new_rootvp, 2096 (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE, CRED()); 2097 if (error) { 2098 cmn_err(CE_CONT, 2099 "Cannot open mirrored root device, error %d\n", error); 2100 return (error); 2101 } 2102 2103 if (vfs_lock(vfsp) != 0) { 2104 return (EBUSY); 2105 } 2106 2107 ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 2108 ulp = &ufsvfsp->vfs_ulockfs; 2109 2110 mutex_enter(&ulp->ul_lock); 2111 atomic_add_long(&ufs_quiesce_pend, 1); 2112 2113 (void) ufs_quiesce(ulp); 2114 (void) ufs_flush(vfsp); 2115 2116 /* 2117 * Convert root vfs to new dev_t, including vfs hash 2118 * table and fs id. 2119 */ 2120 vfs_root_redev(vfsp, new_rootdev, ufsfstype); 2121 2122 ufsvfsp->vfs_devvp = new_rootvp; 2123 ufsvfsp->vfs_dev = new_rootdev; 2124 2125 bp = ufsvfsp->vfs_bufp; 2126 bp->b_edev = new_rootdev; 2127 bp->b_dev = cmpdev(new_rootdev); 2128 2129 /* 2130 * The buffer for the root inode does not contain a valid b_vp 2131 */ 2132 (void) bfinval(new_rootdev, 0); 2133 2134 /* 2135 * Here we hand-craft inodes with old root device 2136 * references to refer to the new device instead. 2137 */ 2138 mutex_enter(&ufs_scan_lock); 2139 2140 for (i = 0, ih = ihead; i < inohsz; i++, ih++) { 2141 mutex_enter(&ih_lock[i]); 2142 for (ip = ih->ih_chain[0]; 2143 ip != (struct inode *)ih; 2144 ip = ip->i_forw) { 2145 if (ip->i_ufsvfs != ufsvfsp) 2146 continue; 2147 if (ip == ufsvfsp->vfs_qinod) 2148 continue; 2149 if (ip->i_dev == old_rootdev) { 2150 ip->i_dev = new_rootdev; 2151 } 2152 2153 if (ip->i_devvp == old_rootvp) { 2154 ip->i_devvp = new_rootvp; 2155 } 2156 } 2157 mutex_exit(&ih_lock[i]); 2158 } 2159 2160 mutex_exit(&ufs_scan_lock); 2161 2162 /* 2163 * Make Sure logging structures are using the new device 2164 * if logging is enabled. Also start any logging thread that 2165 * needs to write to the device and couldn't earlier. 2166 */ 2167 if (ufsvfsp->vfs_log) { 2168 buf_t *bp, *tbp; 2169 ml_unit_t *ul = ufsvfsp->vfs_log; 2170 struct fs *fsp = ufsvfsp->vfs_fs; 2171 2172 /* 2173 * Update the main logging structure. 2174 */ 2175 ul->un_dev = new_rootdev; 2176 2177 /* 2178 * Get a new bp for the on disk structures. 2179 */ 2180 bp = ul->un_bp; 2181 tbp = ngeteblk(dbtob(LS_SECTORS)); 2182 tbp->b_edev = new_rootdev; 2183 tbp->b_dev = cmpdev(new_rootdev); 2184 tbp->b_blkno = bp->b_blkno; 2185 bcopy(bp->b_un.b_addr, tbp->b_un.b_addr, DEV_BSIZE); 2186 bcopy(bp->b_un.b_addr, tbp->b_un.b_addr + DEV_BSIZE, DEV_BSIZE); 2187 bp->b_flags |= (B_STALE | B_AGE); 2188 brelse(bp); 2189 ul->un_bp = tbp; 2190 2191 /* 2192 * Allocate new circular buffers. 2193 */ 2194 alloc_rdbuf(&ul->un_rdbuf, MAPBLOCKSIZE, MAPBLOCKSIZE); 2195 alloc_wrbuf(&ul->un_wrbuf, ldl_bufsize(ul)); 2196 2197 /* 2198 * Clear the noroll bit which indicates that logging 2199 * can't roll the log yet. 2200 */ 2201 ASSERT(ul->un_flags & LDL_NOROLL); 2202 ul->un_flags &= ~LDL_NOROLL; 2203 2204 /* 2205 * Start the logmap roll thread. 2206 */ 2207 logmap_start_roll(ul); 2208 2209 /* 2210 * Start the reclaim thread if needed. 2211 */ 2212 if (!fsp->fs_ronly && (fsp->fs_reclaim & 2213 (FS_RECLAIM|FS_RECLAIMING))) { 2214 fsp->fs_reclaim &= ~FS_RECLAIM; 2215 fsp->fs_reclaim |= FS_RECLAIMING; 2216 ufs_thread_start(&ufsvfsp->vfs_reclaim, 2217 ufs_thread_reclaim, vfsp); 2218 TRANS_SBWRITE(ufsvfsp, TOP_SBUPDATE_UPDATE); 2219 if (sberror = geterror(ufsvfsp->vfs_bufp)) { 2220 refstr_t *mntpt; 2221 mntpt = vfs_getmntpoint(vfsp); 2222 cmn_err(CE_WARN, 2223 "Remountroot failed to update Reclaim" 2224 "state for filesystem %s " 2225 "Error writing SuperBlock %d", 2226 refstr_value(mntpt), error); 2227 refstr_rele(mntpt); 2228 } 2229 } 2230 } 2231 2232 rootdev = new_rootdev; 2233 rootvp = new_rootvp; 2234 2235 atomic_add_long(&ufs_quiesce_pend, -1); 2236 cv_broadcast(&ulp->ul_cv); 2237 mutex_exit(&ulp->ul_lock); 2238 2239 vfs_unlock(vfsp); 2240 2241 error = VOP_CLOSE(old_rootvp, FREAD, 1, (offset_t)0, CRED()); 2242 if (error) { 2243 cmn_err(CE_CONT, 2244 "close of root device component failed, error %d\n", 2245 error); 2246 } 2247 VN_RELE(old_rootvp); 2248 2249 return (sberror ? sberror : error); 2250 } 2251 2252 #endif /* __sparc */ 2253