xref: /titanic_50/usr/src/uts/common/fs/ufs/ufs_vfsops.c (revision 82449e7221d020474308b3adc2edd1cd74a5927f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #include <sys/types.h>
40 #include <sys/t_lock.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bitmap.h>
44 #include <sys/sysmacros.h>
45 #include <sys/kmem.h>
46 #include <sys/signal.h>
47 #include <sys/user.h>
48 #include <sys/proc.h>
49 #include <sys/disp.h>
50 #include <sys/buf.h>
51 #include <sys/pathname.h>
52 #include <sys/vfs.h>
53 #include <sys/vfs_opreg.h>
54 #include <sys/vnode.h>
55 #include <sys/file.h>
56 #include <sys/atomic.h>
57 #include <sys/uio.h>
58 #include <sys/dkio.h>
59 #include <sys/cred.h>
60 #include <sys/conf.h>
61 #include <sys/dnlc.h>
62 #include <sys/kstat.h>
63 #include <sys/acl.h>
64 #include <sys/fs/ufs_fsdir.h>
65 #include <sys/fs/ufs_fs.h>
66 #include <sys/fs/ufs_inode.h>
67 #include <sys/fs/ufs_mount.h>
68 #include <sys/fs/ufs_acl.h>
69 #include <sys/fs/ufs_panic.h>
70 #include <sys/fs/ufs_bio.h>
71 #include <sys/fs/ufs_quota.h>
72 #include <sys/fs/ufs_log.h>
73 #undef NFS
74 #include <sys/statvfs.h>
75 #include <sys/mount.h>
76 #include <sys/mntent.h>
77 #include <sys/swap.h>
78 #include <sys/errno.h>
79 #include <sys/debug.h>
80 #include "fs/fs_subr.h"
81 #include <sys/cmn_err.h>
82 #include <sys/dnlc.h>
83 #include <sys/fssnap_if.h>
84 #include <sys/sunddi.h>
85 #include <sys/bootconf.h>
86 #include <sys/policy.h>
87 #include <sys/zone.h>
88 
89 /*
90  * This is the loadable module wrapper.
91  */
92 #include <sys/modctl.h>
93 
94 int			ufsfstype;
95 vfsops_t		*ufs_vfsops;
96 static int		ufsinit(int, char *);
97 static int		mountfs();
98 extern int		highbit();
99 extern struct instats	ins;
100 extern struct vnode *common_specvp(struct vnode *vp);
101 extern vfs_t		EIO_vfs;
102 
103 struct  dquot *dquot, *dquotNDQUOT;
104 
105 /*
106  * Cylinder group summary information handling tunable.
107  * This defines when these deltas get logged.
108  * If the number of cylinders in the file system is over the
109  * tunable then we log csum updates. Otherwise the updates are only
110  * done for performance on unmount. After a panic they can be
111  * quickly constructed during mounting. See ufs_construct_si()
112  * called from ufs_getsummaryinfo().
113  *
114  * This performance feature can of course be disabled by setting
115  * ufs_ncg_log to 0, and fully enabled by setting it to 0xffffffff.
116  */
117 #define	UFS_LOG_NCG_DEFAULT 10000
118 uint32_t ufs_ncg_log = UFS_LOG_NCG_DEFAULT;
119 
120 /*
121  * ufs_clean_root indicates whether the root fs went down cleanly
122  */
123 static int ufs_clean_root = 0;
124 
125 /*
126  * UFS Mount options table
127  */
128 static char *intr_cancel[] = { MNTOPT_NOINTR, NULL };
129 static char *nointr_cancel[] = { MNTOPT_INTR, NULL };
130 static char *forcedirectio_cancel[] = { MNTOPT_NOFORCEDIRECTIO, NULL };
131 static char *noforcedirectio_cancel[] = { MNTOPT_FORCEDIRECTIO, NULL };
132 static char *largefiles_cancel[] = { MNTOPT_NOLARGEFILES, NULL };
133 static char *nolargefiles_cancel[] = { MNTOPT_LARGEFILES, NULL };
134 static char *logging_cancel[] = { MNTOPT_NOLOGGING, NULL };
135 static char *nologging_cancel[] = { MNTOPT_LOGGING, NULL };
136 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
137 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
138 static char *quota_cancel[] = { MNTOPT_NOQUOTA, NULL };
139 static char *noquota_cancel[] = { MNTOPT_QUOTA, NULL };
140 static char *dfratime_cancel[] = { MNTOPT_NODFRATIME, NULL };
141 static char *nodfratime_cancel[] = { MNTOPT_DFRATIME, NULL };
142 
143 static mntopt_t mntopts[] = {
144 /*
145  *	option name		cancel option	default arg	flags
146  *		ufs arg flag
147  */
148 	{ MNTOPT_INTR,		intr_cancel,	NULL,		MO_DEFAULT,
149 		(void *)0 },
150 	{ MNTOPT_NOINTR,	nointr_cancel,	NULL,		0,
151 		(void *)UFSMNT_NOINTR },
152 	{ MNTOPT_SYNCDIR,	NULL,		NULL,		0,
153 		(void *)UFSMNT_SYNCDIR },
154 	{ MNTOPT_FORCEDIRECTIO,	forcedirectio_cancel, NULL,	0,
155 		(void *)UFSMNT_FORCEDIRECTIO },
156 	{ MNTOPT_NOFORCEDIRECTIO, noforcedirectio_cancel, NULL, 0,
157 		(void *)UFSMNT_NOFORCEDIRECTIO },
158 	{ MNTOPT_NOSETSEC,	NULL,		NULL,		0,
159 		(void *)UFSMNT_NOSETSEC },
160 	{ MNTOPT_LARGEFILES,	largefiles_cancel, NULL,	MO_DEFAULT,
161 		(void *)UFSMNT_LARGEFILES },
162 	{ MNTOPT_NOLARGEFILES,	nolargefiles_cancel, NULL,	0,
163 		(void *)0 },
164 	{ MNTOPT_LOGGING,	logging_cancel, NULL,		MO_TAG,
165 		(void *)UFSMNT_LOGGING },
166 	{ MNTOPT_NOLOGGING,	nologging_cancel, NULL,
167 		MO_NODISPLAY|MO_DEFAULT|MO_TAG, (void *)0 },
168 	{ MNTOPT_QUOTA,		quota_cancel, NULL,		MO_IGNORE,
169 		(void *)0 },
170 	{ MNTOPT_NOQUOTA,	noquota_cancel,	NULL,
171 		MO_NODISPLAY|MO_DEFAULT, (void *)0 },
172 	{ MNTOPT_GLOBAL,	NULL,		NULL,		0,
173 		(void *)0 },
174 	{ MNTOPT_XATTR,	xattr_cancel,		NULL,		MO_DEFAULT,
175 		(void *)0 },
176 	{ MNTOPT_NOXATTR,	noxattr_cancel,		NULL,		0,
177 		(void *)0 },
178 	{ MNTOPT_NOATIME,	NULL,		NULL,		0,
179 		(void *)UFSMNT_NOATIME },
180 	{ MNTOPT_DFRATIME,	dfratime_cancel, NULL,		0,
181 		(void *)0 },
182 	{ MNTOPT_NODFRATIME,	nodfratime_cancel, NULL,
183 		MO_NODISPLAY|MO_DEFAULT, (void *)UFSMNT_NODFRATIME },
184 	{ MNTOPT_ONERROR,	NULL,		UFSMNT_ONERROR_PANIC_STR,
185 		MO_DEFAULT|MO_HASVALUE,	(void *)0 },
186 };
187 
188 static mntopts_t ufs_mntopts = {
189 	sizeof (mntopts) / sizeof (mntopt_t),
190 	mntopts
191 };
192 
193 static vfsdef_t vfw = {
194 	VFSDEF_VERSION,
195 	"ufs",
196 	ufsinit,
197 	VSW_HASPROTO|VSW_CANREMOUNT|VSW_STATS|VSW_CANLOFI,
198 	&ufs_mntopts
199 };
200 
201 /*
202  * Module linkage information for the kernel.
203  */
204 extern struct mod_ops mod_fsops;
205 
206 static struct modlfs modlfs = {
207 	&mod_fsops, "filesystem for ufs", &vfw
208 };
209 
210 static struct modlinkage modlinkage = {
211 	MODREV_1, (void *)&modlfs, NULL
212 };
213 
214 /*
215  * An attempt has been made to make this module unloadable.  In order to
216  * test it, we need a system in which the root fs is NOT ufs.  THIS HAS NOT
217  * BEEN DONE
218  */
219 
220 extern kstat_t *ufs_inode_kstat;
221 extern uint_t ufs_lockfs_key;
222 extern void ufs_lockfs_tsd_destructor(void *);
223 extern uint_t bypass_snapshot_throttle_key;
224 
225 int
226 _init(void)
227 {
228 	/*
229 	 * Create an index into the per thread array so that any thread doing
230 	 * VOP will have a lockfs mark on it.
231 	 */
232 	tsd_create(&ufs_lockfs_key, ufs_lockfs_tsd_destructor);
233 	tsd_create(&bypass_snapshot_throttle_key, NULL);
234 	return (mod_install(&modlinkage));
235 }
236 
237 int
238 _fini(void)
239 {
240 	return (EBUSY);
241 }
242 
243 int
244 _info(struct modinfo *modinfop)
245 {
246 	return (mod_info(&modlinkage, modinfop));
247 }
248 
249 extern struct vnode *makespecvp(dev_t dev, vtype_t type);
250 
251 extern kmutex_t	ufs_scan_lock;
252 
253 static int mountfs(struct vfs *, enum whymountroot, struct vnode *, char *,
254 		struct cred *, int, void *, int);
255 
256 
257 static int
258 ufs_mount(struct vfs *vfsp, struct vnode *mvp, struct mounta *uap,
259 	struct cred *cr)
260 
261 {
262 	char *data = uap->dataptr;
263 	int datalen = uap->datalen;
264 	dev_t dev;
265 	struct vnode *lvp = NULL;
266 	struct vnode *svp = NULL;
267 	struct pathname dpn;
268 	int error;
269 	enum whymountroot why = ROOT_INIT;
270 	struct ufs_args args;
271 	int oflag, aflag;
272 	int fromspace = (uap->flags & MS_SYSSPACE) ?
273 	    UIO_SYSSPACE : UIO_USERSPACE;
274 
275 	if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
276 		return (error);
277 
278 	if (mvp->v_type != VDIR)
279 		return (ENOTDIR);
280 
281 	mutex_enter(&mvp->v_lock);
282 	if ((uap->flags & MS_REMOUNT) == 0 &&
283 	    (uap->flags & MS_OVERLAY) == 0 &&
284 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
285 		mutex_exit(&mvp->v_lock);
286 		return (EBUSY);
287 	}
288 	mutex_exit(&mvp->v_lock);
289 
290 	/*
291 	 * Get arguments
292 	 */
293 	bzero(&args, sizeof (args));
294 	if ((uap->flags & MS_DATA) && data != NULL && datalen != 0) {
295 		int copy_result = 0;
296 
297 		if (datalen > sizeof (args))
298 			return (EINVAL);
299 		if (uap->flags & MS_SYSSPACE)
300 			bcopy(data, &args, datalen);
301 		else
302 			copy_result = copyin(data, &args, datalen);
303 		if (copy_result)
304 			return (EFAULT);
305 		datalen = sizeof (struct ufs_args);
306 	} else {
307 		datalen = 0;
308 	}
309 
310 	if ((vfsp->vfs_flag & VFS_RDONLY) != 0 ||
311 	    (uap->flags & MS_RDONLY) != 0) {
312 		oflag = FREAD;
313 		aflag = VREAD;
314 	} else {
315 		oflag = FREAD | FWRITE;
316 		aflag = VREAD | VWRITE;
317 	}
318 
319 	/*
320 	 * Read in the mount point pathname
321 	 * (so we can record the directory the file system was last mounted on).
322 	 */
323 	if (error = pn_get(uap->dir, fromspace, &dpn))
324 		return (error);
325 
326 	/*
327 	 * Resolve path name of special file being mounted.
328 	 */
329 	if (error = lookupname(uap->spec, fromspace, FOLLOW, NULL, &svp)) {
330 		pn_free(&dpn);
331 		return (error);
332 	}
333 
334 	error = vfs_get_lofi(vfsp, &lvp);
335 
336 	if (error > 0) {
337 		VN_RELE(svp);
338 		pn_free(&dpn);
339 		return (error);
340 	} else if (error == 0) {
341 		dev = lvp->v_rdev;
342 
343 		if (getmajor(dev) >= devcnt) {
344 			error = ENXIO;
345 			goto out;
346 		}
347 	} else {
348 		dev = svp->v_rdev;
349 
350 		if (svp->v_type != VBLK) {
351 			VN_RELE(svp);
352 			pn_free(&dpn);
353 			return (ENOTBLK);
354 		}
355 
356 		if (getmajor(dev) >= devcnt) {
357 			error = ENXIO;
358 			goto out;
359 		}
360 
361 		/*
362 		 * In SunCluster, requests to a global device are
363 		 * satisfied by a local device. We substitute the global
364 		 * pxfs node with a local spec node here.
365 		 */
366 		if (IS_PXFSVP(svp)) {
367 			ASSERT(lvp == NULL);
368 			VN_RELE(svp);
369 			svp = makespecvp(dev, VBLK);
370 		}
371 
372 		if ((error = secpolicy_spec_open(cr, svp, oflag)) != 0) {
373 			VN_RELE(svp);
374 			pn_free(&dpn);
375 			return (error);
376 		}
377 	}
378 
379 	if (uap->flags & MS_REMOUNT)
380 		why = ROOT_REMOUNT;
381 
382 	/*
383 	 * Open device/file mounted on.  We need this to check whether
384 	 * the caller has sufficient rights to access the resource in
385 	 * question.  When bio is fixed for vnodes this can all be vnode
386 	 * operations.
387 	 */
388 	if ((error = VOP_ACCESS(svp, aflag, 0, cr, NULL)) != 0)
389 		goto out;
390 
391 	/*
392 	 * Ensure that this device isn't already mounted or in progress on a
393 	 * mount unless this is a REMOUNT request or we are told to suppress
394 	 * mount checks. Global mounts require special handling.
395 	 */
396 	if ((uap->flags & MS_NOCHECK) == 0) {
397 		if ((uap->flags & MS_GLOBAL) == 0 &&
398 		    vfs_devmounting(dev, vfsp)) {
399 			error = EBUSY;
400 			goto out;
401 		}
402 		if (vfs_devismounted(dev)) {
403 			if ((uap->flags & MS_REMOUNT) == 0) {
404 				error = EBUSY;
405 				goto out;
406 			}
407 		}
408 	}
409 
410 	/*
411 	 * If the device is a tape, mount it read only
412 	 */
413 	if (devopsp[getmajor(dev)]->devo_cb_ops->cb_flag & D_TAPE) {
414 		vfsp->vfs_flag |= VFS_RDONLY;
415 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
416 	}
417 	if (uap->flags & MS_RDONLY)
418 		vfsp->vfs_flag |= VFS_RDONLY;
419 
420 	/*
421 	 * Mount the filesystem, free the device vnode on error.
422 	 */
423 	error = mountfs(vfsp, why, lvp != NULL ? lvp : svp,
424 	    dpn.pn_path, cr, 0, &args, datalen);
425 
426 	if (error == 0) {
427 		vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS);
428 
429 		/*
430 		 * If lofi, drop our reference to the original file.
431 		 */
432 		if (lvp != NULL)
433 			VN_RELE(svp);
434 	}
435 
436 out:
437 	pn_free(&dpn);
438 
439 	if (error) {
440 		if (lvp != NULL)
441 			VN_RELE(lvp);
442 		if (svp != NULL)
443 			VN_RELE(svp);
444 	}
445 	return (error);
446 }
447 
448 /*
449  * Mount root file system.
450  * "why" is ROOT_INIT on initial call ROOT_REMOUNT if called to
451  * remount the root file system, and ROOT_UNMOUNT if called to
452  * unmount the root (e.g., as part of a system shutdown).
453  *
454  * XXX - this may be partially machine-dependent; it, along with the VFS_SWAPVP
455  * operation, goes along with auto-configuration.  A mechanism should be
456  * provided by which machine-INdependent code in the kernel can say "get me the
457  * right root file system" and "get me the right initial swap area", and have
458  * that done in what may well be a machine-dependent fashion.
459  * Unfortunately, it is also file-system-type dependent (NFS gets it via
460  * bootparams calls, UFS gets it from various and sundry machine-dependent
461  * mechanisms, as SPECFS does for swap).
462  */
463 static int
464 ufs_mountroot(struct vfs *vfsp, enum whymountroot why)
465 {
466 	struct fs *fsp;
467 	int error;
468 	static int ufsrootdone = 0;
469 	dev_t rootdev;
470 	struct vnode *vp;
471 	struct vnode *devvp = 0;
472 	int ovflags;
473 	int doclkset;
474 	ufsvfs_t *ufsvfsp;
475 
476 	if (why == ROOT_INIT) {
477 		if (ufsrootdone++)
478 			return (EBUSY);
479 		rootdev = getrootdev();
480 		if (rootdev == (dev_t)NODEV)
481 			return (ENODEV);
482 		vfsp->vfs_dev = rootdev;
483 		vfsp->vfs_flag |= VFS_RDONLY;
484 	} else if (why == ROOT_REMOUNT) {
485 		vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp;
486 		(void) dnlc_purge_vfsp(vfsp, 0);
487 		vp = common_specvp(vp);
488 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_INVAL,
489 		    CRED(), NULL);
490 		(void) bfinval(vfsp->vfs_dev, 0);
491 		fsp = getfs(vfsp);
492 
493 		ovflags = vfsp->vfs_flag;
494 		vfsp->vfs_flag &= ~VFS_RDONLY;
495 		vfsp->vfs_flag |= VFS_REMOUNT;
496 		rootdev = vfsp->vfs_dev;
497 	} else if (why == ROOT_UNMOUNT) {
498 		if (vfs_lock(vfsp) == 0) {
499 			(void) ufs_flush(vfsp);
500 			/*
501 			 * Mark the log as fully rolled
502 			 */
503 			ufsvfsp = (ufsvfs_t *)vfsp->vfs_data;
504 			fsp = ufsvfsp->vfs_fs;
505 			if (TRANS_ISTRANS(ufsvfsp) &&
506 			    !TRANS_ISERROR(ufsvfsp) &&
507 			    (fsp->fs_rolled == FS_NEED_ROLL)) {
508 				ml_unit_t *ul = ufsvfsp->vfs_log;
509 
510 				error = ufs_putsummaryinfo(ul->un_dev,
511 				    ufsvfsp, fsp);
512 				if (error == 0) {
513 					fsp->fs_rolled = FS_ALL_ROLLED;
514 					UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp);
515 				}
516 			}
517 			vfs_unlock(vfsp);
518 		} else {
519 			ufs_update(0);
520 		}
521 
522 		vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp;
523 		(void) VOP_CLOSE(vp, FREAD|FWRITE, 1,
524 		    (offset_t)0, CRED(), NULL);
525 		return (0);
526 	}
527 	error = vfs_lock(vfsp);
528 	if (error)
529 		return (error);
530 
531 	devvp = makespecvp(rootdev, VBLK);
532 
533 	/* If RO media, don't call clkset() (see below) */
534 	doclkset = 1;
535 	if (why == ROOT_INIT) {
536 		error = VOP_OPEN(&devvp, FREAD|FWRITE, CRED(), NULL);
537 		if (error == 0) {
538 			(void) VOP_CLOSE(devvp, FREAD|FWRITE, 1,
539 			    (offset_t)0, CRED(), NULL);
540 		} else {
541 			doclkset = 0;
542 		}
543 	}
544 
545 	error = mountfs(vfsp, why, devvp, "/", CRED(), 1, NULL, 0);
546 	/*
547 	 * XXX - assumes root device is not indirect, because we don't set
548 	 * rootvp.  Is rootvp used for anything?  If so, make another arg
549 	 * to mountfs.
550 	 */
551 	if (error) {
552 		vfs_unlock(vfsp);
553 		if (why == ROOT_REMOUNT)
554 			vfsp->vfs_flag = ovflags;
555 		if (rootvp) {
556 			VN_RELE(rootvp);
557 			rootvp = (struct vnode *)0;
558 		}
559 		VN_RELE(devvp);
560 		return (error);
561 	}
562 	if (why == ROOT_INIT)
563 		vfs_add((struct vnode *)0, vfsp,
564 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
565 	vfs_unlock(vfsp);
566 	fsp = getfs(vfsp);
567 	clkset(doclkset ? fsp->fs_time : -1);
568 	ufsvfsp = (ufsvfs_t *)vfsp->vfs_data;
569 	if (ufsvfsp->vfs_log) {
570 		vfs_setmntopt(vfsp, MNTOPT_LOGGING, NULL, 0);
571 	}
572 	return (0);
573 }
574 
575 static int
576 remountfs(struct vfs *vfsp, dev_t dev, void *raw_argsp, int args_len)
577 {
578 	struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
579 	struct ulockfs *ulp = &ufsvfsp->vfs_ulockfs;
580 	struct buf *bp = ufsvfsp->vfs_bufp;
581 	struct fs *fsp = (struct fs *)bp->b_un.b_addr;
582 	struct fs *fspt;
583 	struct buf *tpt = 0;
584 	int error = 0;
585 	int flags = 0;
586 
587 	if (args_len == sizeof (struct ufs_args) && raw_argsp)
588 		flags = ((struct ufs_args *)raw_argsp)->flags;
589 
590 	/* cannot remount to RDONLY */
591 	if (vfsp->vfs_flag & VFS_RDONLY)
592 		return (ENOTSUP);
593 
594 	/* whoops, wrong dev */
595 	if (vfsp->vfs_dev != dev)
596 		return (EINVAL);
597 
598 	/*
599 	 * synchronize w/ufs ioctls
600 	 */
601 	mutex_enter(&ulp->ul_lock);
602 	atomic_add_long(&ufs_quiesce_pend, 1);
603 
604 	/*
605 	 * reset options
606 	 */
607 	ufsvfsp->vfs_nointr  = flags & UFSMNT_NOINTR;
608 	ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR;
609 	ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC;
610 	ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME;
611 	if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime)
612 		ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME;
613 	else	/* dfratime, default behavior */
614 		ufsvfsp->vfs_dfritime |= UFS_DFRATIME;
615 	if (flags & UFSMNT_FORCEDIRECTIO)
616 		ufsvfsp->vfs_forcedirectio = 1;
617 	else	/* default is no direct I/O */
618 		ufsvfsp->vfs_forcedirectio = 0;
619 	ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
620 
621 	/*
622 	 * set largefiles flag in ufsvfs equal to the
623 	 * value passed in by the mount command. If
624 	 * it is "nolargefiles", and the flag is set
625 	 * in the superblock, the mount fails.
626 	 */
627 	if (!(flags & UFSMNT_LARGEFILES)) {  /* "nolargefiles" */
628 		if (fsp->fs_flags & FSLARGEFILES) {
629 			error = EFBIG;
630 			goto remounterr;
631 		}
632 		ufsvfsp->vfs_lfflags &= ~UFS_LARGEFILES;
633 	} else	/* "largefiles" */
634 		ufsvfsp->vfs_lfflags |= UFS_LARGEFILES;
635 	/*
636 	 * read/write to read/write; all done
637 	 */
638 	if (fsp->fs_ronly == 0)
639 		goto remounterr;
640 
641 	/*
642 	 * fix-on-panic assumes RO->RW remount implies system-critical fs
643 	 * if it is shortly after boot; so, don't attempt to lock and fix
644 	 * (unless the user explicitly asked for another action on error)
645 	 * XXX UFSMNT_ONERROR_RDONLY rather than UFSMNT_ONERROR_PANIC
646 	 */
647 #define	BOOT_TIME_LIMIT	(180*hz)
648 	if (!(flags & UFSMNT_ONERROR_FLGMASK) &&
649 	    ddi_get_lbolt() < BOOT_TIME_LIMIT) {
650 		cmn_err(CE_WARN, "%s is required to be mounted onerror=%s",
651 		    ufsvfsp->vfs_fs->fs_fsmnt, UFSMNT_ONERROR_PANIC_STR);
652 		flags |= UFSMNT_ONERROR_PANIC;
653 	}
654 
655 	if ((error = ufsfx_mount(ufsvfsp, flags)) != 0)
656 		goto remounterr;
657 
658 	/*
659 	 * quiesce the file system
660 	 */
661 	error = ufs_quiesce(ulp);
662 	if (error)
663 		goto remounterr;
664 
665 	tpt = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, SBLOCK, SBSIZE);
666 	if (tpt->b_flags & B_ERROR) {
667 		error = EIO;
668 		goto remounterr;
669 	}
670 	fspt = (struct fs *)tpt->b_un.b_addr;
671 	if (((fspt->fs_magic != FS_MAGIC) &&
672 	    (fspt->fs_magic != MTB_UFS_MAGIC)) ||
673 	    (fspt->fs_magic == FS_MAGIC &&
674 	    (fspt->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
675 	    fspt->fs_version != UFS_VERSION_MIN)) ||
676 	    (fspt->fs_magic == MTB_UFS_MAGIC &&
677 	    (fspt->fs_version > MTB_UFS_VERSION_1 ||
678 	    fspt->fs_version < MTB_UFS_VERSION_MIN)) ||
679 	    fspt->fs_bsize > MAXBSIZE || fspt->fs_frag > MAXFRAG ||
680 	    fspt->fs_bsize < sizeof (struct fs) || fspt->fs_bsize < PAGESIZE) {
681 		tpt->b_flags |= B_STALE | B_AGE;
682 		error = EINVAL;
683 		goto remounterr;
684 	}
685 
686 	if (ufsvfsp->vfs_log && (ufsvfsp->vfs_log->un_flags & LDL_NOROLL)) {
687 		ufsvfsp->vfs_log->un_flags &= ~LDL_NOROLL;
688 		logmap_start_roll(ufsvfsp->vfs_log);
689 	}
690 
691 	if (TRANS_ISERROR(ufsvfsp))
692 		goto remounterr;
693 	TRANS_DOMATAMAP(ufsvfsp);
694 
695 	if ((fspt->fs_state + fspt->fs_time == FSOKAY) &&
696 	    fspt->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp)) {
697 		ufsvfsp->vfs_log = NULL;
698 		ufsvfsp->vfs_domatamap = 0;
699 		error = ENOSPC;
700 		goto remounterr;
701 	}
702 
703 	if (fspt->fs_state + fspt->fs_time == FSOKAY &&
704 	    (fspt->fs_clean == FSCLEAN ||
705 	    fspt->fs_clean == FSSTABLE ||
706 	    fspt->fs_clean == FSLOG)) {
707 
708 		/*
709 		 * Ensure that ufs_getsummaryinfo doesn't reconstruct
710 		 * the summary info.
711 		 */
712 		error = ufs_getsummaryinfo(vfsp->vfs_dev, ufsvfsp, fspt);
713 		if (error)
714 			goto remounterr;
715 
716 		/* preserve mount name */
717 		(void) strncpy(fspt->fs_fsmnt, fsp->fs_fsmnt, MAXMNTLEN);
718 		/* free the old cg space */
719 		kmem_free(fsp->fs_u.fs_csp, fsp->fs_cssize);
720 		/* switch in the new superblock */
721 		fspt->fs_rolled = FS_NEED_ROLL;
722 		bcopy(tpt->b_un.b_addr, bp->b_un.b_addr, fspt->fs_sbsize);
723 
724 		fsp->fs_clean = FSSTABLE;
725 	} /* superblock updated in memory */
726 	tpt->b_flags |= B_STALE | B_AGE;
727 	brelse(tpt);
728 	tpt = 0;
729 
730 	if (fsp->fs_clean != FSSTABLE) {
731 		error = ENOSPC;
732 		goto remounterr;
733 	}
734 
735 
736 	if (TRANS_ISTRANS(ufsvfsp)) {
737 		fsp->fs_clean = FSLOG;
738 		ufsvfsp->vfs_dio = 0;
739 	} else
740 		if (ufsvfsp->vfs_dio)
741 			fsp->fs_clean = FSSUSPEND;
742 
743 	TRANS_MATA_MOUNT(ufsvfsp);
744 
745 	fsp->fs_fmod = 0;
746 	fsp->fs_ronly = 0;
747 
748 	atomic_add_long(&ufs_quiesce_pend, -1);
749 	cv_broadcast(&ulp->ul_cv);
750 	mutex_exit(&ulp->ul_lock);
751 
752 	if (TRANS_ISTRANS(ufsvfsp)) {
753 
754 		/*
755 		 * start the delete thread
756 		 */
757 		ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp);
758 
759 		/*
760 		 * start the reclaim thread
761 		 */
762 		if (fsp->fs_reclaim & (FS_RECLAIM|FS_RECLAIMING)) {
763 			fsp->fs_reclaim &= ~FS_RECLAIM;
764 			fsp->fs_reclaim |=  FS_RECLAIMING;
765 			ufs_thread_start(&ufsvfsp->vfs_reclaim,
766 			    ufs_thread_reclaim, vfsp);
767 		}
768 	}
769 
770 	TRANS_SBWRITE(ufsvfsp, TOP_MOUNT);
771 
772 	return (0);
773 
774 remounterr:
775 	if (tpt)
776 		brelse(tpt);
777 	atomic_add_long(&ufs_quiesce_pend, -1);
778 	cv_broadcast(&ulp->ul_cv);
779 	mutex_exit(&ulp->ul_lock);
780 	return (error);
781 }
782 
783 /*
784  * If the device maxtransfer size is not available, we use ufs_maxmaxphys
785  * along with the system value for maxphys to determine the value for
786  * maxtransfer.
787  */
788 int ufs_maxmaxphys = (1024 * 1024);
789 
790 #include <sys/ddi.h>		/* for delay(9f) */
791 
792 int ufs_mount_error_delay = 20;	/* default to 20ms */
793 int ufs_mount_timeout = 60000;	/* default to 1 minute */
794 
795 static int
796 mountfs(struct vfs *vfsp, enum whymountroot why, struct vnode *devvp,
797 	char *path, cred_t *cr, int isroot, void *raw_argsp, int args_len)
798 {
799 	dev_t dev = devvp->v_rdev;
800 	struct fs *fsp;
801 	struct ufsvfs *ufsvfsp = 0;
802 	struct buf *bp = 0;
803 	struct buf *tp = 0;
804 	struct dk_cinfo ci;
805 	int error = 0;
806 	size_t len;
807 	int needclose = 0;
808 	int needtrans = 0;
809 	struct inode *rip;
810 	struct vnode *rvp = NULL;
811 	int flags = 0;
812 	kmutex_t *ihm;
813 	int elapsed;
814 	int status;
815 	extern	int	maxphys;
816 
817 	if (args_len == sizeof (struct ufs_args) && raw_argsp)
818 		flags = ((struct ufs_args *)raw_argsp)->flags;
819 
820 	ASSERT(vfs_lock_held(vfsp));
821 
822 	if (why == ROOT_INIT) {
823 		/*
824 		 * Open block device mounted on.
825 		 * When bio is fixed for vnodes this can all be vnode
826 		 * operations.
827 		 */
828 		error = VOP_OPEN(&devvp,
829 		    (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE,
830 		    cr, NULL);
831 		if (error)
832 			goto out;
833 		needclose = 1;
834 
835 		/*
836 		 * Refuse to go any further if this
837 		 * device is being used for swapping.
838 		 */
839 		if (IS_SWAPVP(devvp)) {
840 			error = EBUSY;
841 			goto out;
842 		}
843 	}
844 
845 	/*
846 	 * check for dev already mounted on
847 	 */
848 	if (vfsp->vfs_flag & VFS_REMOUNT) {
849 		error = remountfs(vfsp, dev, raw_argsp, args_len);
850 		if (error == 0)
851 			VN_RELE(devvp);
852 		return (error);
853 	}
854 
855 	ASSERT(devvp != 0);
856 
857 	/*
858 	 * Flush back any dirty pages on the block device to
859 	 * try and keep the buffer cache in sync with the page
860 	 * cache if someone is trying to use block devices when
861 	 * they really should be using the raw device.
862 	 */
863 	(void) VOP_PUTPAGE(common_specvp(devvp), (offset_t)0,
864 	    (size_t)0, B_INVAL, cr, NULL);
865 
866 	/*
867 	 * read in superblock
868 	 */
869 	ufsvfsp = kmem_zalloc(sizeof (struct ufsvfs), KM_SLEEP);
870 	tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE);
871 	if (tp->b_flags & B_ERROR)
872 		goto out;
873 	fsp = (struct fs *)tp->b_un.b_addr;
874 
875 	if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC)) {
876 		cmn_err(CE_NOTE,
877 		    "mount: not a UFS magic number (0x%x)", fsp->fs_magic);
878 		error = EINVAL;
879 		goto out;
880 	}
881 
882 	if ((fsp->fs_magic == FS_MAGIC) &&
883 	    (fsp->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
884 	    fsp->fs_version != UFS_VERSION_MIN)) {
885 		cmn_err(CE_NOTE,
886 		    "mount: unrecognized version of UFS on-disk format: %d",
887 		    fsp->fs_version);
888 		error = EINVAL;
889 		goto out;
890 	}
891 
892 	if ((fsp->fs_magic == MTB_UFS_MAGIC) &&
893 	    (fsp->fs_version > MTB_UFS_VERSION_1 ||
894 	    fsp->fs_version < MTB_UFS_VERSION_MIN)) {
895 		cmn_err(CE_NOTE,
896 		    "mount: unrecognized version of UFS on-disk format: %d",
897 		    fsp->fs_version);
898 		error = EINVAL;
899 		goto out;
900 	}
901 
902 #ifndef _LP64
903 	if (fsp->fs_magic == MTB_UFS_MAGIC) {
904 		/*
905 		 * Find the size of the device in sectors.  If the
906 		 * the size in sectors is greater than INT_MAX, it's
907 		 * a multi-terabyte file system, which can't be
908 		 * mounted by a 32-bit kernel.  We can't use the
909 		 * fsbtodb() macro in the next line because the macro
910 		 * casts the intermediate values to daddr_t, which is
911 		 * a 32-bit quantity in a 32-bit kernel.  Here we
912 		 * really do need the intermediate values to be held
913 		 * in 64-bit quantities because we're checking for
914 		 * overflow of a 32-bit field.
915 		 */
916 		if ((((diskaddr_t)(fsp->fs_size)) << fsp->fs_fsbtodb)
917 		    > INT_MAX) {
918 			cmn_err(CE_NOTE,
919 			    "mount: multi-terabyte UFS cannot be"
920 			    " mounted by a 32-bit kernel");
921 			error = EINVAL;
922 			goto out;
923 		}
924 
925 	}
926 #endif
927 
928 	if (fsp->fs_bsize > MAXBSIZE || fsp->fs_frag > MAXFRAG ||
929 	    fsp->fs_bsize < sizeof (struct fs) || fsp->fs_bsize < PAGESIZE) {
930 		error = EINVAL;	/* also needs translation */
931 		goto out;
932 	}
933 
934 	/*
935 	 * Allocate VFS private data.
936 	 */
937 	vfsp->vfs_bcount = 0;
938 	vfsp->vfs_data = (caddr_t)ufsvfsp;
939 	vfsp->vfs_fstype = ufsfstype;
940 	vfsp->vfs_dev = dev;
941 	vfsp->vfs_flag |= VFS_NOTRUNC;
942 	vfs_make_fsid(&vfsp->vfs_fsid, dev, ufsfstype);
943 	ufsvfsp->vfs_devvp = devvp;
944 
945 	/*
946 	 * Cross-link with vfs and add to instance list.
947 	 */
948 	ufsvfsp->vfs_vfs = vfsp;
949 	ufs_vfs_add(ufsvfsp);
950 
951 	ufsvfsp->vfs_dev = dev;
952 	ufsvfsp->vfs_bufp = tp;
953 
954 	ufsvfsp->vfs_dirsize = INODESIZE + (4 * ALLOCSIZE) + fsp->fs_fsize;
955 	ufsvfsp->vfs_minfrags =
956 	    (int)((int64_t)fsp->fs_dsize * fsp->fs_minfree / 100);
957 	/*
958 	 * if mount allows largefiles, indicate so in ufsvfs
959 	 */
960 	if (flags & UFSMNT_LARGEFILES)
961 		ufsvfsp->vfs_lfflags |= UFS_LARGEFILES;
962 	/*
963 	 * Initialize threads
964 	 */
965 	ufs_delete_init(ufsvfsp, 1);
966 	ufs_thread_init(&ufsvfsp->vfs_reclaim, 0);
967 
968 	/*
969 	 * Chicken and egg problem. The superblock may have deltas
970 	 * in the log.  So after the log is scanned we reread the
971 	 * superblock. We guarantee that the fields needed to
972 	 * scan the log will not be in the log.
973 	 */
974 	if (fsp->fs_logbno && fsp->fs_clean == FSLOG &&
975 	    (fsp->fs_state + fsp->fs_time == FSOKAY)) {
976 		error = lufs_snarf(ufsvfsp, fsp, (vfsp->vfs_flag & VFS_RDONLY));
977 		if (error) {
978 			/*
979 			 * Allow a ro mount to continue even if the
980 			 * log cannot be processed - yet.
981 			 */
982 			if (!(vfsp->vfs_flag & VFS_RDONLY)) {
983 				cmn_err(CE_WARN, "Error accessing ufs "
984 				    "log for %s; Please run fsck(1M)", path);
985 				goto out;
986 			}
987 		}
988 		tp->b_flags |= (B_AGE | B_STALE);
989 		brelse(tp);
990 		tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE);
991 		fsp = (struct fs *)tp->b_un.b_addr;
992 		ufsvfsp->vfs_bufp = tp;
993 		if (tp->b_flags & B_ERROR)
994 			goto out;
995 	}
996 
997 	/*
998 	 * Set logging mounted flag used by lockfs
999 	 */
1000 	ufsvfsp->vfs_validfs = UT_MOUNTED;
1001 
1002 	/*
1003 	 * Copy the super block into a buffer in its native size.
1004 	 * Use ngeteblk to allocate the buffer
1005 	 */
1006 	bp = ngeteblk(fsp->fs_bsize);
1007 	ufsvfsp->vfs_bufp = bp;
1008 	bp->b_edev = dev;
1009 	bp->b_dev = cmpdev(dev);
1010 	bp->b_blkno = SBLOCK;
1011 	bp->b_bcount = fsp->fs_sbsize;
1012 	bcopy(tp->b_un.b_addr, bp->b_un.b_addr, fsp->fs_sbsize);
1013 	tp->b_flags |= B_STALE | B_AGE;
1014 	brelse(tp);
1015 	tp = 0;
1016 
1017 	fsp = (struct fs *)bp->b_un.b_addr;
1018 	/*
1019 	 * Mount fails if superblock flag indicates presence of large
1020 	 * files and filesystem is attempted to be mounted 'nolargefiles'.
1021 	 * The exception is for a read only mount of root, which we
1022 	 * always want to succeed, so fsck can fix potential problems.
1023 	 * The assumption is that we will remount root at some point,
1024 	 * and the remount will enforce the mount option.
1025 	 */
1026 	if (!(isroot & (vfsp->vfs_flag & VFS_RDONLY)) &&
1027 	    (fsp->fs_flags & FSLARGEFILES) &&
1028 	    !(flags & UFSMNT_LARGEFILES)) {
1029 		error = EFBIG;
1030 		goto out;
1031 	}
1032 
1033 	if (vfsp->vfs_flag & VFS_RDONLY) {
1034 		fsp->fs_ronly = 1;
1035 		fsp->fs_fmod = 0;
1036 		if (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
1037 		    ((fsp->fs_clean == FSCLEAN) ||
1038 		    (fsp->fs_clean == FSSTABLE) ||
1039 		    (fsp->fs_clean == FSLOG))) {
1040 			if (isroot) {
1041 				if (fsp->fs_clean == FSLOG) {
1042 					if (fsp->fs_rolled == FS_ALL_ROLLED) {
1043 						ufs_clean_root = 1;
1044 					}
1045 				} else {
1046 					ufs_clean_root = 1;
1047 				}
1048 			}
1049 			fsp->fs_clean = FSSTABLE;
1050 		} else {
1051 			fsp->fs_clean = FSBAD;
1052 		}
1053 	} else {
1054 
1055 		fsp->fs_fmod = 0;
1056 		fsp->fs_ronly = 0;
1057 
1058 		TRANS_DOMATAMAP(ufsvfsp);
1059 
1060 		if ((TRANS_ISERROR(ufsvfsp)) ||
1061 		    (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
1062 		    fsp->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp))) {
1063 			ufsvfsp->vfs_log = NULL;
1064 			ufsvfsp->vfs_domatamap = 0;
1065 			error = ENOSPC;
1066 			goto out;
1067 		}
1068 
1069 		if (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
1070 		    (fsp->fs_clean == FSCLEAN ||
1071 		    fsp->fs_clean == FSSTABLE ||
1072 		    fsp->fs_clean == FSLOG))
1073 			fsp->fs_clean = FSSTABLE;
1074 		else {
1075 			if (isroot) {
1076 				/*
1077 				 * allow root partition to be mounted even
1078 				 * when fs_state is not ok
1079 				 * will be fixed later by a remount root
1080 				 */
1081 				fsp->fs_clean = FSBAD;
1082 				ufsvfsp->vfs_log = NULL;
1083 				ufsvfsp->vfs_domatamap = 0;
1084 			} else {
1085 				error = ENOSPC;
1086 				goto out;
1087 			}
1088 		}
1089 
1090 		if (fsp->fs_clean == FSSTABLE && TRANS_ISTRANS(ufsvfsp))
1091 			fsp->fs_clean = FSLOG;
1092 	}
1093 	TRANS_MATA_MOUNT(ufsvfsp);
1094 	needtrans = 1;
1095 
1096 	vfsp->vfs_bsize = fsp->fs_bsize;
1097 
1098 	/*
1099 	 * Read in summary info
1100 	 */
1101 	if (error = ufs_getsummaryinfo(dev, ufsvfsp, fsp))
1102 		goto out;
1103 
1104 	/*
1105 	 * lastwhinetime is set to zero rather than lbolt, so that after
1106 	 * mounting if the filesystem is found to be full, then immediately the
1107 	 * "file system message" will be logged.
1108 	 */
1109 	ufsvfsp->vfs_lastwhinetime = 0L;
1110 
1111 
1112 	mutex_init(&ufsvfsp->vfs_lock, NULL, MUTEX_DEFAULT, NULL);
1113 	(void) copystr(path, fsp->fs_fsmnt, sizeof (fsp->fs_fsmnt) - 1, &len);
1114 	bzero(fsp->fs_fsmnt + len, sizeof (fsp->fs_fsmnt) - len);
1115 
1116 	/*
1117 	 * Sanity checks for old file systems
1118 	 */
1119 	if (fsp->fs_postblformat == FS_42POSTBLFMT)
1120 		ufsvfsp->vfs_nrpos = 8;
1121 	else
1122 		ufsvfsp->vfs_nrpos = fsp->fs_nrpos;
1123 
1124 	/*
1125 	 * Initialize lockfs structure to support file system locking
1126 	 */
1127 	bzero(&ufsvfsp->vfs_ulockfs.ul_lockfs,
1128 	    sizeof (struct lockfs));
1129 	ufsvfsp->vfs_ulockfs.ul_fs_lock = ULOCKFS_ULOCK;
1130 	mutex_init(&ufsvfsp->vfs_ulockfs.ul_lock, NULL,
1131 	    MUTEX_DEFAULT, NULL);
1132 	cv_init(&ufsvfsp->vfs_ulockfs.ul_cv, NULL, CV_DEFAULT, NULL);
1133 
1134 	/*
1135 	 * We don't need to grab vfs_dqrwlock for this ufs_iget() call.
1136 	 * We are in the process of mounting the file system so there
1137 	 * is no need to grab the quota lock. If a quota applies to the
1138 	 * root inode, then it will be updated when quotas are enabled.
1139 	 *
1140 	 * However, we have an ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock))
1141 	 * in getinoquota() that we want to keep so grab it anyway.
1142 	 */
1143 	rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1144 
1145 	error = ufs_iget_alloced(vfsp, UFSROOTINO, &rip, cr);
1146 
1147 	rw_exit(&ufsvfsp->vfs_dqrwlock);
1148 
1149 	if (error)
1150 		goto out;
1151 
1152 	/*
1153 	 * make sure root inode is a directory.  Returning ENOTDIR might
1154 	 * be confused with the mount point not being a directory, so
1155 	 * we use EIO instead.
1156 	 */
1157 	if ((rip->i_mode & IFMT) != IFDIR) {
1158 		/*
1159 		 * Mark this inode as subject for cleanup
1160 		 * to avoid stray inodes in the cache.
1161 		 */
1162 		rvp = ITOV(rip);
1163 		error = EIO;
1164 		goto out;
1165 	}
1166 
1167 	rvp = ITOV(rip);
1168 	mutex_enter(&rvp->v_lock);
1169 	rvp->v_flag |= VROOT;
1170 	mutex_exit(&rvp->v_lock);
1171 	ufsvfsp->vfs_root = rvp;
1172 	/* The buffer for the root inode does not contain a valid b_vp */
1173 	(void) bfinval(dev, 0);
1174 
1175 	/* options */
1176 	ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC;
1177 	ufsvfsp->vfs_nointr  = flags & UFSMNT_NOINTR;
1178 	ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR;
1179 	ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME;
1180 	if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime)
1181 		ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME;
1182 	else	/* dfratime, default behavior */
1183 		ufsvfsp->vfs_dfritime |= UFS_DFRATIME;
1184 	if (flags & UFSMNT_FORCEDIRECTIO)
1185 		ufsvfsp->vfs_forcedirectio = 1;
1186 	else if (flags & UFSMNT_NOFORCEDIRECTIO)
1187 		ufsvfsp->vfs_forcedirectio = 0;
1188 	ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
1189 
1190 	ufsvfsp->vfs_nindiroffset = fsp->fs_nindir - 1;
1191 	ufsvfsp->vfs_nindirshift = highbit(ufsvfsp->vfs_nindiroffset);
1192 	ufsvfsp->vfs_ioclustsz = fsp->fs_bsize * fsp->fs_maxcontig;
1193 
1194 	if (cdev_ioctl(dev, DKIOCINFO, (intptr_t)&ci,
1195 	    FKIOCTL|FNATIVE|FREAD, CRED(), &status) == 0) {
1196 		ufsvfsp->vfs_iotransz = ci.dki_maxtransfer * DEV_BSIZE;
1197 	} else {
1198 		ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys);
1199 	}
1200 
1201 	if (ufsvfsp->vfs_iotransz <= 0) {
1202 		ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys);
1203 	}
1204 
1205 	/*
1206 	 * When logging, used to reserve log space for writes and truncs
1207 	 */
1208 	ufsvfsp->vfs_avgbfree = fsp->fs_cstotal.cs_nbfree / fsp->fs_ncg;
1209 
1210 	/*
1211 	 * Determine whether to log cylinder group summary info.
1212 	 */
1213 	ufsvfsp->vfs_nolog_si = (fsp->fs_ncg < ufs_ncg_log);
1214 
1215 	if (TRANS_ISTRANS(ufsvfsp)) {
1216 		/*
1217 		 * start the delete thread
1218 		 */
1219 		ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp);
1220 
1221 		/*
1222 		 * start reclaim thread if the filesystem was not mounted
1223 		 * read only.
1224 		 */
1225 		if (!fsp->fs_ronly && (fsp->fs_reclaim &
1226 		    (FS_RECLAIM|FS_RECLAIMING))) {
1227 			fsp->fs_reclaim &= ~FS_RECLAIM;
1228 			fsp->fs_reclaim |=  FS_RECLAIMING;
1229 			ufs_thread_start(&ufsvfsp->vfs_reclaim,
1230 			    ufs_thread_reclaim, vfsp);
1231 		}
1232 
1233 		/* Mark the fs as unrolled */
1234 		fsp->fs_rolled = FS_NEED_ROLL;
1235 	} else if (!fsp->fs_ronly && (fsp->fs_reclaim &
1236 	    (FS_RECLAIM|FS_RECLAIMING))) {
1237 		/*
1238 		 * If a file system that is mounted nologging, after
1239 		 * having previously been mounted logging, becomes
1240 		 * unmounted whilst the reclaim thread is in the throes
1241 		 * of reclaiming open/deleted inodes, a subsequent mount
1242 		 * of such a file system with logging disabled could lead
1243 		 * to inodes becoming lost.  So, start reclaim now, even
1244 		 * though logging was disabled for the previous mount, to
1245 		 * tidy things up.
1246 		 */
1247 		fsp->fs_reclaim &= ~FS_RECLAIM;
1248 		fsp->fs_reclaim |=  FS_RECLAIMING;
1249 		ufs_thread_start(&ufsvfsp->vfs_reclaim,
1250 		    ufs_thread_reclaim, vfsp);
1251 	}
1252 
1253 	if (!fsp->fs_ronly) {
1254 		TRANS_SBWRITE(ufsvfsp, TOP_MOUNT);
1255 		if (error = geterror(ufsvfsp->vfs_bufp))
1256 			goto out;
1257 	}
1258 
1259 	/* fix-on-panic initialization */
1260 	if (isroot && !(flags & UFSMNT_ONERROR_FLGMASK))
1261 		flags |= UFSMNT_ONERROR_PANIC;	/* XXX ..._RDONLY */
1262 
1263 	if ((error = ufsfx_mount(ufsvfsp, flags)) != 0)
1264 		goto out;
1265 
1266 	if (why == ROOT_INIT && isroot)
1267 		rootvp = devvp;
1268 
1269 	return (0);
1270 out:
1271 	if (error == 0)
1272 		error = EIO;
1273 	if (rvp) {
1274 		/* the following sequence is similar to ufs_unmount() */
1275 
1276 		/*
1277 		 * There's a problem that ufs_iget() puts inodes into
1278 		 * the inode cache before it returns them.  If someone
1279 		 * traverses that cache and gets a reference to our
1280 		 * inode, there's a chance they'll still be using it
1281 		 * after we've destroyed it.  This is a hard race to
1282 		 * hit, but it's happened (putting in a medium delay
1283 		 * here, and a large delay in ufs_scan_inodes() for
1284 		 * inodes on the device we're bailing out on, makes
1285 		 * the race easy to demonstrate).  The symptom is some
1286 		 * other part of UFS faulting on bad inode contents,
1287 		 * or when grabbing one of the locks inside the inode,
1288 		 * etc.  The usual victim is ufs_scan_inodes() or
1289 		 * someone called by it.
1290 		 */
1291 
1292 		/*
1293 		 * First, isolate it so that no new references can be
1294 		 * gotten via the inode cache.
1295 		 */
1296 		ihm = &ih_lock[INOHASH(UFSROOTINO)];
1297 		mutex_enter(ihm);
1298 		remque(rip);
1299 		mutex_exit(ihm);
1300 
1301 		/*
1302 		 * Now wait for all outstanding references except our
1303 		 * own to drain.  This could, in theory, take forever,
1304 		 * so don't wait *too* long.  If we time out, mark
1305 		 * it stale and leak it, so we don't hit the problem
1306 		 * described above.
1307 		 *
1308 		 * Note that v_count is an int, which means we can read
1309 		 * it in one operation.  Thus, there's no need to lock
1310 		 * around our tests.
1311 		 */
1312 		elapsed = 0;
1313 		while ((rvp->v_count > 1) && (elapsed < ufs_mount_timeout)) {
1314 			delay(ufs_mount_error_delay * drv_usectohz(1000));
1315 			elapsed += ufs_mount_error_delay;
1316 		}
1317 
1318 		if (rvp->v_count > 1) {
1319 			mutex_enter(&rip->i_tlock);
1320 			rip->i_flag |= ISTALE;
1321 			mutex_exit(&rip->i_tlock);
1322 			cmn_err(CE_WARN,
1323 			    "Timed out while cleaning up after "
1324 			    "failed mount of %s", path);
1325 		} else {
1326 
1327 			/*
1328 			 * Now we're the only one with a handle left, so tear
1329 			 * it down the rest of the way.
1330 			 */
1331 			if (ufs_rmidle(rip))
1332 				VN_RELE(rvp);
1333 			ufs_si_del(rip);
1334 			rip->i_ufsvfs = NULL;
1335 			rvp->v_vfsp = NULL;
1336 			rvp->v_type = VBAD;
1337 			VN_RELE(rvp);
1338 		}
1339 	}
1340 	if (needtrans) {
1341 		TRANS_MATA_UMOUNT(ufsvfsp);
1342 	}
1343 	if (ufsvfsp) {
1344 		ufs_vfs_remove(ufsvfsp);
1345 		ufs_thread_exit(&ufsvfsp->vfs_delete);
1346 		ufs_thread_exit(&ufsvfsp->vfs_reclaim);
1347 		mutex_destroy(&ufsvfsp->vfs_lock);
1348 		if (ufsvfsp->vfs_log) {
1349 			lufs_unsnarf(ufsvfsp);
1350 		}
1351 		kmem_free(ufsvfsp, sizeof (struct ufsvfs));
1352 	}
1353 	if (bp) {
1354 		bp->b_flags |= (B_STALE|B_AGE);
1355 		brelse(bp);
1356 	}
1357 	if (tp) {
1358 		tp->b_flags |= (B_STALE|B_AGE);
1359 		brelse(tp);
1360 	}
1361 	if (needclose) {
1362 		(void) VOP_CLOSE(devvp, (vfsp->vfs_flag & VFS_RDONLY) ?
1363 		    FREAD : FREAD|FWRITE, 1, (offset_t)0, cr, NULL);
1364 		bflush(dev);
1365 		(void) bfinval(dev, 1);
1366 	}
1367 	return (error);
1368 }
1369 
1370 /*
1371  * vfs operations
1372  */
1373 static int
1374 ufs_unmount(struct vfs *vfsp, int fflag, struct cred *cr)
1375 {
1376 	dev_t 		dev		= vfsp->vfs_dev;
1377 	struct ufsvfs	*ufsvfsp	= (struct ufsvfs *)vfsp->vfs_data;
1378 	struct fs	*fs		= ufsvfsp->vfs_fs;
1379 	struct ulockfs	*ulp		= &ufsvfsp->vfs_ulockfs;
1380 	struct vnode 	*bvp, *vp;
1381 	struct buf	*bp;
1382 	struct inode	*ip, *inext, *rip;
1383 	union ihead	*ih;
1384 	int 		error, flag, i;
1385 	struct lockfs	lockfs;
1386 	int		poll_events = POLLPRI;
1387 	extern struct pollhead ufs_pollhd;
1388 	refstr_t	*mountpoint;
1389 
1390 	ASSERT(vfs_lock_held(vfsp));
1391 
1392 	if (secpolicy_fs_unmount(cr, vfsp) != 0)
1393 		return (EPERM);
1394 	/*
1395 	 * Forced unmount is now supported through the
1396 	 * lockfs protocol.
1397 	 */
1398 	if (fflag & MS_FORCE) {
1399 		/*
1400 		 * Mark the filesystem as being unmounted now in
1401 		 * case of a forcible umount before we take any
1402 		 * locks inside UFS to prevent racing with a VFS_VGET()
1403 		 * request. Throw these VFS_VGET() requests away for
1404 		 * the duration of the forcible umount so they won't
1405 		 * use stale or even freed data later on when we're done.
1406 		 * It may happen that the VFS has had a additional hold
1407 		 * placed on it by someone other than UFS and thus will
1408 		 * not get freed immediately once we're done with the
1409 		 * umount by dounmount() - use VFS_UNMOUNTED to inform
1410 		 * users of this still-alive VFS that its corresponding
1411 		 * filesystem being gone so they can detect that and error
1412 		 * out.
1413 		 */
1414 		vfsp->vfs_flag |= VFS_UNMOUNTED;
1415 
1416 		ufs_thread_suspend(&ufsvfsp->vfs_delete);
1417 		mutex_enter(&ulp->ul_lock);
1418 		/*
1419 		 * If file system is already hard locked,
1420 		 * unmount the file system, otherwise
1421 		 * hard lock it before unmounting.
1422 		 */
1423 		if (!ULOCKFS_IS_HLOCK(ulp)) {
1424 			atomic_add_long(&ufs_quiesce_pend, 1);
1425 			lockfs.lf_lock = LOCKFS_HLOCK;
1426 			lockfs.lf_flags = 0;
1427 			lockfs.lf_key = ulp->ul_lockfs.lf_key + 1;
1428 			lockfs.lf_comlen = 0;
1429 			lockfs.lf_comment = NULL;
1430 			ufs_freeze(ulp, &lockfs);
1431 			ULOCKFS_SET_BUSY(ulp);
1432 			LOCKFS_SET_BUSY(&ulp->ul_lockfs);
1433 			(void) ufs_quiesce(ulp);
1434 			(void) ufs_flush(vfsp);
1435 			(void) ufs_thaw(vfsp, ufsvfsp, ulp);
1436 			atomic_add_long(&ufs_quiesce_pend, -1);
1437 			ULOCKFS_CLR_BUSY(ulp);
1438 			LOCKFS_CLR_BUSY(&ulp->ul_lockfs);
1439 			poll_events |= POLLERR;
1440 			pollwakeup(&ufs_pollhd, poll_events);
1441 		}
1442 		ufs_thread_continue(&ufsvfsp->vfs_delete);
1443 		mutex_exit(&ulp->ul_lock);
1444 	}
1445 
1446 	/* let all types of writes go through */
1447 	ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
1448 
1449 	/* coordinate with global hlock thread */
1450 	if (TRANS_ISTRANS(ufsvfsp) && (ufsvfsp->vfs_validfs == UT_HLOCKING)) {
1451 		/*
1452 		 * last possibility for a forced umount to fail hence clear
1453 		 * VFS_UNMOUNTED if appropriate.
1454 		 */
1455 		if (fflag & MS_FORCE)
1456 			vfsp->vfs_flag &= ~VFS_UNMOUNTED;
1457 		return (EAGAIN);
1458 	}
1459 
1460 	ufsvfsp->vfs_validfs = UT_UNMOUNTED;
1461 
1462 	/* kill the reclaim thread */
1463 	ufs_thread_exit(&ufsvfsp->vfs_reclaim);
1464 
1465 	/* suspend the delete thread */
1466 	ufs_thread_suspend(&ufsvfsp->vfs_delete);
1467 
1468 	/*
1469 	 * drain the delete and idle queues
1470 	 */
1471 	ufs_delete_drain(vfsp, -1, 1);
1472 	ufs_idle_drain(vfsp);
1473 
1474 	/*
1475 	 * use the lockfs protocol to prevent new ops from starting
1476 	 * a forcible umount can not fail beyond this point as
1477 	 * we hard-locked the filesystem and drained all current consumers
1478 	 * before.
1479 	 */
1480 	mutex_enter(&ulp->ul_lock);
1481 
1482 	/*
1483 	 * if the file system is busy; return EBUSY
1484 	 */
1485 	if (ulp->ul_vnops_cnt || ulp->ul_falloc_cnt || ULOCKFS_IS_SLOCK(ulp)) {
1486 		error = EBUSY;
1487 		goto out;
1488 	}
1489 
1490 	/*
1491 	 * if this is not a forced unmount (!hard/error locked), then
1492 	 * get rid of every inode except the root and quota inodes
1493 	 * also, commit any outstanding transactions
1494 	 */
1495 	if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp))
1496 		if (error = ufs_flush(vfsp))
1497 			goto out;
1498 
1499 	/*
1500 	 * ignore inodes in the cache if fs is hard locked or error locked
1501 	 */
1502 	rip = VTOI(ufsvfsp->vfs_root);
1503 	if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp)) {
1504 		/*
1505 		 * Otherwise, only the quota and root inodes are in the cache.
1506 		 *
1507 		 * Avoid racing with ufs_update() and ufs_sync().
1508 		 */
1509 		mutex_enter(&ufs_scan_lock);
1510 
1511 		for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
1512 			mutex_enter(&ih_lock[i]);
1513 			for (ip = ih->ih_chain[0];
1514 			    ip != (struct inode *)ih;
1515 			    ip = ip->i_forw) {
1516 				if (ip->i_ufsvfs != ufsvfsp)
1517 					continue;
1518 				if (ip == ufsvfsp->vfs_qinod)
1519 					continue;
1520 				if (ip == rip && ITOV(ip)->v_count == 1)
1521 					continue;
1522 				mutex_exit(&ih_lock[i]);
1523 				mutex_exit(&ufs_scan_lock);
1524 				error = EBUSY;
1525 				goto out;
1526 			}
1527 			mutex_exit(&ih_lock[i]);
1528 		}
1529 		mutex_exit(&ufs_scan_lock);
1530 	}
1531 
1532 	/*
1533 	 * if a snapshot exists and this is a forced unmount, then delete
1534 	 * the snapshot.  Otherwise return EBUSY.  This will insure the
1535 	 * snapshot always belongs to a valid file system.
1536 	 */
1537 	if (ufsvfsp->vfs_snapshot) {
1538 		if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) {
1539 			(void) fssnap_delete(&ufsvfsp->vfs_snapshot);
1540 		} else {
1541 			error = EBUSY;
1542 			goto out;
1543 		}
1544 	}
1545 
1546 	/*
1547 	 * Close the quota file and invalidate anything left in the quota
1548 	 * cache for this file system.  Pass kcred to allow all quota
1549 	 * manipulations.
1550 	 */
1551 	(void) closedq(ufsvfsp, kcred);
1552 	invalidatedq(ufsvfsp);
1553 	/*
1554 	 * drain the delete and idle queues
1555 	 */
1556 	ufs_delete_drain(vfsp, -1, 0);
1557 	ufs_idle_drain(vfsp);
1558 
1559 	/*
1560 	 * discard the inodes for this fs (including root, shadow, and quota)
1561 	 */
1562 	for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
1563 		mutex_enter(&ih_lock[i]);
1564 		for (inext = 0, ip = ih->ih_chain[0];
1565 		    ip != (struct inode *)ih;
1566 		    ip = inext) {
1567 			inext = ip->i_forw;
1568 			if (ip->i_ufsvfs != ufsvfsp)
1569 				continue;
1570 
1571 			/*
1572 			 * We've found the inode in the cache and as we
1573 			 * hold the hash mutex the inode can not
1574 			 * disappear from underneath us.
1575 			 * We also know it must have at least a vnode
1576 			 * reference count of 1.
1577 			 * We perform an additional VN_HOLD so the VN_RELE
1578 			 * in case we take the inode off the idle queue
1579 			 * can not be the last one.
1580 			 * It is safe to grab the writer contents lock here
1581 			 * to prevent a race with ufs_iinactive() putting
1582 			 * inodes into the idle queue while we operate on
1583 			 * this inode.
1584 			 */
1585 			rw_enter(&ip->i_contents, RW_WRITER);
1586 
1587 			vp = ITOV(ip);
1588 			VN_HOLD(vp)
1589 			remque(ip);
1590 			if (ufs_rmidle(ip))
1591 				VN_RELE(vp);
1592 			ufs_si_del(ip);
1593 			/*
1594 			 * rip->i_ufsvfsp is needed by bflush()
1595 			 */
1596 			if (ip != rip)
1597 				ip->i_ufsvfs = NULL;
1598 			/*
1599 			 * Set vnode's vfsops to dummy ops, which return
1600 			 * EIO. This is needed to forced unmounts to work
1601 			 * with lofs/nfs properly.
1602 			 */
1603 			if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp))
1604 				vp->v_vfsp = &EIO_vfs;
1605 			else
1606 				vp->v_vfsp = NULL;
1607 			vp->v_type = VBAD;
1608 
1609 			rw_exit(&ip->i_contents);
1610 
1611 			VN_RELE(vp);
1612 		}
1613 		mutex_exit(&ih_lock[i]);
1614 	}
1615 	ufs_si_cache_flush(dev);
1616 
1617 	/*
1618 	 * kill the delete thread and drain the idle queue
1619 	 */
1620 	ufs_thread_exit(&ufsvfsp->vfs_delete);
1621 	ufs_idle_drain(vfsp);
1622 
1623 	bp = ufsvfsp->vfs_bufp;
1624 	bvp = ufsvfsp->vfs_devvp;
1625 	flag = !fs->fs_ronly;
1626 	if (flag) {
1627 		bflush(dev);
1628 		if (fs->fs_clean != FSBAD) {
1629 			if (fs->fs_clean == FSSTABLE)
1630 				fs->fs_clean = FSCLEAN;
1631 			fs->fs_reclaim &= ~FS_RECLAIM;
1632 		}
1633 		if (TRANS_ISTRANS(ufsvfsp) &&
1634 		    !TRANS_ISERROR(ufsvfsp) &&
1635 		    !ULOCKFS_IS_HLOCK(ulp) &&
1636 		    (fs->fs_rolled == FS_NEED_ROLL)) {
1637 			/*
1638 			 * ufs_flush() above has flushed the last Moby.
1639 			 * This is needed to ensure the following superblock
1640 			 * update really is the last metadata update
1641 			 */
1642 			error = ufs_putsummaryinfo(dev, ufsvfsp, fs);
1643 			if (error == 0) {
1644 				fs->fs_rolled = FS_ALL_ROLLED;
1645 			}
1646 		}
1647 		TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UNMOUNT);
1648 		/*
1649 		 * push this last transaction
1650 		 */
1651 		curthread->t_flag |= T_DONTBLOCK;
1652 		TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UNMOUNT, TOP_COMMIT_SIZE,
1653 		    error);
1654 		if (!error)
1655 			TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UNMOUNT,
1656 			    TOP_COMMIT_SIZE);
1657 		curthread->t_flag &= ~T_DONTBLOCK;
1658 	}
1659 
1660 	TRANS_MATA_UMOUNT(ufsvfsp);
1661 	lufs_unsnarf(ufsvfsp);		/* Release the in-memory structs */
1662 	ufsfx_unmount(ufsvfsp);		/* fix-on-panic bookkeeping */
1663 	kmem_free(fs->fs_u.fs_csp, fs->fs_cssize);
1664 
1665 	bp->b_flags |= B_STALE|B_AGE;
1666 	ufsvfsp->vfs_bufp = NULL;	/* don't point at freed buf */
1667 	brelse(bp);			/* free the superblock buf */
1668 
1669 	(void) VOP_PUTPAGE(common_specvp(bvp), (offset_t)0, (size_t)0,
1670 	    B_INVAL, cr, NULL);
1671 	(void) VOP_CLOSE(bvp, flag, 1, (offset_t)0, cr, NULL);
1672 	bflush(dev);
1673 	(void) bfinval(dev, 1);
1674 	VN_RELE(bvp);
1675 
1676 	/*
1677 	 * It is now safe to NULL out the ufsvfs pointer and discard
1678 	 * the root inode.
1679 	 */
1680 	rip->i_ufsvfs = NULL;
1681 	VN_RELE(ITOV(rip));
1682 
1683 	/* free up lockfs comment structure, if any */
1684 	if (ulp->ul_lockfs.lf_comlen && ulp->ul_lockfs.lf_comment)
1685 		kmem_free(ulp->ul_lockfs.lf_comment, ulp->ul_lockfs.lf_comlen);
1686 
1687 	/*
1688 	 * Remove from instance list.
1689 	 */
1690 	ufs_vfs_remove(ufsvfsp);
1691 
1692 	/*
1693 	 * For a forcible unmount, threads may be asleep in
1694 	 * ufs_lockfs_begin/ufs_check_lockfs.  These threads will need
1695 	 * the ufsvfs structure so we don't free it, yet.  ufs_update
1696 	 * will free it up after awhile.
1697 	 */
1698 	if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) {
1699 		extern kmutex_t		ufsvfs_mutex;
1700 		extern struct ufsvfs	*ufsvfslist;
1701 
1702 		mutex_enter(&ufsvfs_mutex);
1703 		ufsvfsp->vfs_dontblock = 1;
1704 		ufsvfsp->vfs_next = ufsvfslist;
1705 		ufsvfslist = ufsvfsp;
1706 		mutex_exit(&ufsvfs_mutex);
1707 		/* wakeup any suspended threads */
1708 		cv_broadcast(&ulp->ul_cv);
1709 		mutex_exit(&ulp->ul_lock);
1710 	} else {
1711 		mutex_destroy(&ufsvfsp->vfs_lock);
1712 		kmem_free(ufsvfsp, sizeof (struct ufsvfs));
1713 	}
1714 
1715 	/*
1716 	 * Now mark the filesystem as unmounted since we're done with it.
1717 	 */
1718 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1719 
1720 	return (0);
1721 out:
1722 	/* open the fs to new ops */
1723 	cv_broadcast(&ulp->ul_cv);
1724 	mutex_exit(&ulp->ul_lock);
1725 
1726 	if (TRANS_ISTRANS(ufsvfsp)) {
1727 		/* allow the delete thread to continue */
1728 		ufs_thread_continue(&ufsvfsp->vfs_delete);
1729 		/* restart the reclaim thread */
1730 		ufs_thread_start(&ufsvfsp->vfs_reclaim, ufs_thread_reclaim,
1731 		    vfsp);
1732 		/* coordinate with global hlock thread */
1733 		ufsvfsp->vfs_validfs = UT_MOUNTED;
1734 		/* check for trans errors during umount */
1735 		ufs_trans_onerror();
1736 
1737 		/*
1738 		 * if we have a separate /usr it will never unmount
1739 		 * when halting. In order to not re-read all the
1740 		 * cylinder group summary info on mounting after
1741 		 * reboot the logging of summary info is re-enabled
1742 		 * and the super block written out.
1743 		 */
1744 		mountpoint = vfs_getmntpoint(vfsp);
1745 		if ((fs->fs_si == FS_SI_OK) &&
1746 		    (strcmp("/usr", refstr_value(mountpoint)) == 0)) {
1747 			ufsvfsp->vfs_nolog_si = 0;
1748 			UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp);
1749 		}
1750 		refstr_rele(mountpoint);
1751 	}
1752 
1753 	return (error);
1754 }
1755 
1756 static int
1757 ufs_root(struct vfs *vfsp, struct vnode **vpp)
1758 {
1759 	struct ufsvfs *ufsvfsp;
1760 	struct vnode *vp;
1761 
1762 	if (!vfsp)
1763 		return (EIO);
1764 
1765 	ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1766 	if (!ufsvfsp || !ufsvfsp->vfs_root)
1767 		return (EIO);	/* forced unmount */
1768 
1769 	vp = ufsvfsp->vfs_root;
1770 	VN_HOLD(vp);
1771 	*vpp = vp;
1772 	return (0);
1773 }
1774 
1775 /*
1776  * Get file system statistics.
1777  */
1778 static int
1779 ufs_statvfs(struct vfs *vfsp, struct statvfs64 *sp)
1780 {
1781 	struct fs *fsp;
1782 	struct ufsvfs *ufsvfsp;
1783 	int blk, i;
1784 	long max_avail, used;
1785 	dev32_t d32;
1786 
1787 	if (vfsp->vfs_flag & VFS_UNMOUNTED)
1788 		return (EIO);
1789 
1790 	ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1791 	fsp = ufsvfsp->vfs_fs;
1792 	if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC))
1793 		return (EINVAL);
1794 	if (fsp->fs_magic == FS_MAGIC &&
1795 	    (fsp->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
1796 	    fsp->fs_version != UFS_VERSION_MIN))
1797 		return (EINVAL);
1798 	if (fsp->fs_magic == MTB_UFS_MAGIC &&
1799 	    (fsp->fs_version > MTB_UFS_VERSION_1 ||
1800 	    fsp->fs_version < MTB_UFS_VERSION_MIN))
1801 		return (EINVAL);
1802 
1803 	/*
1804 	 * get the basic numbers
1805 	 */
1806 	(void) bzero(sp, sizeof (*sp));
1807 
1808 	sp->f_bsize = fsp->fs_bsize;
1809 	sp->f_frsize = fsp->fs_fsize;
1810 	sp->f_blocks = (fsblkcnt64_t)fsp->fs_dsize;
1811 	sp->f_bfree = (fsblkcnt64_t)fsp->fs_cstotal.cs_nbfree * fsp->fs_frag +
1812 	    fsp->fs_cstotal.cs_nffree;
1813 
1814 	sp->f_files = (fsfilcnt64_t)fsp->fs_ncg * fsp->fs_ipg;
1815 	sp->f_ffree = (fsfilcnt64_t)fsp->fs_cstotal.cs_nifree;
1816 
1817 	/*
1818 	 * Adjust the numbers based on things waiting to be deleted.
1819 	 * modifies f_bfree and f_ffree.  Afterwards, everything we
1820 	 * come up with will be self-consistent.  By definition, this
1821 	 * is a point-in-time snapshot, so the fact that the delete
1822 	 * thread's probably already invalidated the results is not a
1823 	 * problem.  Note that if the delete thread is ever extended to
1824 	 * non-logging ufs, this adjustment must always be made.
1825 	 */
1826 	if (TRANS_ISTRANS(ufsvfsp))
1827 		ufs_delete_adjust_stats(ufsvfsp, sp);
1828 
1829 	/*
1830 	 * avail = MAX(max_avail - used, 0)
1831 	 */
1832 	max_avail = fsp->fs_dsize - ufsvfsp->vfs_minfrags;
1833 
1834 	used = (fsp->fs_dsize - sp->f_bfree);
1835 
1836 	if (max_avail > used)
1837 		sp->f_bavail = (fsblkcnt64_t)max_avail - used;
1838 	else
1839 		sp->f_bavail = (fsblkcnt64_t)0;
1840 
1841 	sp->f_favail = sp->f_ffree;
1842 	(void) cmpldev(&d32, vfsp->vfs_dev);
1843 	sp->f_fsid = d32;
1844 	(void) strcpy(sp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1845 	sp->f_flag = vf_to_stf(vfsp->vfs_flag);
1846 
1847 	/* keep coordinated with ufs_l_pathconf() */
1848 	sp->f_namemax = MAXNAMLEN;
1849 
1850 	if (fsp->fs_cpc == 0) {
1851 		bzero(sp->f_fstr, 14);
1852 		return (0);
1853 	}
1854 	blk = fsp->fs_spc * fsp->fs_cpc / NSPF(fsp);
1855 	for (i = 0; i < blk; i += fsp->fs_frag) /* CSTYLED */
1856 		/* void */;
1857 	i -= fsp->fs_frag;
1858 	blk = i / fsp->fs_frag;
1859 	bcopy(&(fs_rotbl(fsp)[blk]), sp->f_fstr, 14);
1860 	return (0);
1861 }
1862 
1863 /*
1864  * Flush any pending I/O to file system vfsp.
1865  * The ufs_update() routine will only flush *all* ufs files.
1866  * If vfsp is non-NULL, only sync this ufs (in preparation
1867  * for a umount).
1868  */
1869 /*ARGSUSED*/
1870 static int
1871 ufs_sync(struct vfs *vfsp, short flag, struct cred *cr)
1872 {
1873 	struct ufsvfs *ufsvfsp;
1874 	struct fs *fs;
1875 	int cheap = flag & SYNC_ATTR;
1876 	int error;
1877 
1878 	/*
1879 	 * SYNC_CLOSE means we're rebooting.  Toss everything
1880 	 * on the idle queue so we don't have to slog through
1881 	 * a bunch of uninteresting inodes over and over again.
1882 	 */
1883 	if (flag & SYNC_CLOSE)
1884 		ufs_idle_drain(NULL);
1885 
1886 	if (vfsp == NULL) {
1887 		ufs_update(flag);
1888 		return (0);
1889 	}
1890 
1891 	/* Flush a single ufs */
1892 	if (!vfs_matchops(vfsp, ufs_vfsops) || vfs_lock(vfsp) != 0)
1893 		return (0);
1894 
1895 	ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1896 	if (!ufsvfsp)
1897 		return (EIO);
1898 	fs = ufsvfsp->vfs_fs;
1899 	mutex_enter(&ufsvfsp->vfs_lock);
1900 
1901 	if (ufsvfsp->vfs_dio &&
1902 	    fs->fs_ronly == 0 &&
1903 	    fs->fs_clean != FSBAD &&
1904 	    fs->fs_clean != FSLOG) {
1905 		/* turn off fast-io on unmount, so no fsck needed (4029401) */
1906 		ufsvfsp->vfs_dio = 0;
1907 		fs->fs_clean = FSACTIVE;
1908 		fs->fs_fmod = 1;
1909 	}
1910 
1911 	/* Write back modified superblock */
1912 	if (fs->fs_fmod == 0) {
1913 		mutex_exit(&ufsvfsp->vfs_lock);
1914 	} else {
1915 		if (fs->fs_ronly != 0) {
1916 			mutex_exit(&ufsvfsp->vfs_lock);
1917 			vfs_unlock(vfsp);
1918 			return (ufs_fault(ufsvfsp->vfs_root,
1919 			    "fs = %s update: ro fs mod\n", fs->fs_fsmnt));
1920 		}
1921 		fs->fs_fmod = 0;
1922 		mutex_exit(&ufsvfsp->vfs_lock);
1923 
1924 		TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UPDATE);
1925 	}
1926 	vfs_unlock(vfsp);
1927 
1928 	/*
1929 	 * Avoid racing with ufs_update() and ufs_unmount().
1930 	 *
1931 	 */
1932 	mutex_enter(&ufs_scan_lock);
1933 
1934 	(void) ufs_scan_inodes(1, ufs_sync_inode,
1935 	    (void *)(uintptr_t)cheap, ufsvfsp);
1936 
1937 	mutex_exit(&ufs_scan_lock);
1938 
1939 	bflush((dev_t)vfsp->vfs_dev);
1940 
1941 	/*
1942 	 * commit any outstanding async transactions
1943 	 */
1944 	curthread->t_flag |= T_DONTBLOCK;
1945 	TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UPDATE, TOP_COMMIT_SIZE, error);
1946 	if (!error) {
1947 		TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UPDATE,
1948 		    TOP_COMMIT_SIZE);
1949 	}
1950 	curthread->t_flag &= ~T_DONTBLOCK;
1951 
1952 	return (0);
1953 }
1954 
1955 
1956 void
1957 sbupdate(struct vfs *vfsp)
1958 {
1959 	struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1960 	struct fs *fs = ufsvfsp->vfs_fs;
1961 	struct buf *bp;
1962 	int blks;
1963 	caddr_t space;
1964 	int i;
1965 	size_t size;
1966 
1967 	/*
1968 	 * for ulockfs processing, limit the superblock writes
1969 	 */
1970 	if ((ufsvfsp->vfs_ulockfs.ul_sbowner) &&
1971 	    (curthread != ufsvfsp->vfs_ulockfs.ul_sbowner)) {
1972 		/* process later */
1973 		fs->fs_fmod = 1;
1974 		return;
1975 	}
1976 	ULOCKFS_SET_MOD((&ufsvfsp->vfs_ulockfs));
1977 
1978 	if (TRANS_ISTRANS(ufsvfsp)) {
1979 		mutex_enter(&ufsvfsp->vfs_lock);
1980 		ufs_sbwrite(ufsvfsp);
1981 		mutex_exit(&ufsvfsp->vfs_lock);
1982 		return;
1983 	}
1984 
1985 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
1986 	space = (caddr_t)fs->fs_u.fs_csp;
1987 	for (i = 0; i < blks; i += fs->fs_frag) {
1988 		size = fs->fs_bsize;
1989 		if (i + fs->fs_frag > blks)
1990 			size = (blks - i) * fs->fs_fsize;
1991 		bp = UFS_GETBLK(ufsvfsp, ufsvfsp->vfs_dev,
1992 		    (daddr_t)(fsbtodb(fs, fs->fs_csaddr + i)),
1993 		    fs->fs_bsize);
1994 		bcopy(space, bp->b_un.b_addr, size);
1995 		space += size;
1996 		bp->b_bcount = size;
1997 		UFS_BRWRITE(ufsvfsp, bp);
1998 	}
1999 	mutex_enter(&ufsvfsp->vfs_lock);
2000 	ufs_sbwrite(ufsvfsp);
2001 	mutex_exit(&ufsvfsp->vfs_lock);
2002 }
2003 
2004 int ufs_vget_idle_count = 2;	/* Number of inodes to idle each time */
2005 static int
2006 ufs_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp)
2007 {
2008 	int error = 0;
2009 	struct ufid *ufid;
2010 	struct inode *ip;
2011 	struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
2012 	struct ulockfs *ulp;
2013 
2014 	/*
2015 	 * Check for unmounted filesystem.
2016 	 */
2017 	if (vfsp->vfs_flag & VFS_UNMOUNTED) {
2018 		error = EIO;
2019 		goto errout;
2020 	}
2021 
2022 	/*
2023 	 * Keep the idle queue from getting too long by
2024 	 * idling an inode before attempting to allocate another.
2025 	 *    This operation must be performed before entering
2026 	 *    lockfs or a transaction.
2027 	 */
2028 	if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
2029 		if ((curthread->t_flag & T_DONTBLOCK) == 0) {
2030 			ins.in_vidles.value.ul += ufs_vget_idle_count;
2031 			ufs_idle_some(ufs_vget_idle_count);
2032 		}
2033 
2034 	ufid = (struct ufid *)fidp;
2035 
2036 	if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_VGET_MASK))
2037 		goto errout;
2038 
2039 	rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2040 
2041 	error = ufs_iget(vfsp, ufid->ufid_ino, &ip, CRED());
2042 
2043 	rw_exit(&ufsvfsp->vfs_dqrwlock);
2044 
2045 	ufs_lockfs_end(ulp);
2046 
2047 	if (error)
2048 		goto errout;
2049 
2050 	/*
2051 	 * Check if the inode has been deleted or freed or is in transient state
2052 	 * since the last VFS_VGET() request for it, release it and don't return
2053 	 * it to the caller, presumably NFS, as it's no longer valid.
2054 	 */
2055 	if (ip->i_gen != ufid->ufid_gen || ip->i_mode == 0 ||
2056 	    (ip->i_nlink <= 0)) {
2057 		VN_RELE(ITOV(ip));
2058 		error = EINVAL;
2059 		goto errout;
2060 	}
2061 
2062 	*vpp = ITOV(ip);
2063 	return (0);
2064 
2065 errout:
2066 	*vpp = NULL;
2067 	return (error);
2068 }
2069 
2070 static int
2071 ufsinit(int fstype, char *name)
2072 {
2073 	static const fs_operation_def_t ufs_vfsops_template[] = {
2074 		VFSNAME_MOUNT,		{ .vfs_mount = ufs_mount },
2075 		VFSNAME_UNMOUNT,	{ .vfs_unmount = ufs_unmount },
2076 		VFSNAME_ROOT,		{ .vfs_root = ufs_root },
2077 		VFSNAME_STATVFS,	{ .vfs_statvfs = ufs_statvfs },
2078 		VFSNAME_SYNC,		{ .vfs_sync = ufs_sync },
2079 		VFSNAME_VGET,		{ .vfs_vget = ufs_vget },
2080 		VFSNAME_MOUNTROOT,	{ .vfs_mountroot = ufs_mountroot },
2081 		NULL,			NULL
2082 	};
2083 	int error;
2084 
2085 	ufsfstype = fstype;
2086 
2087 	error = vfs_setfsops(fstype, ufs_vfsops_template, &ufs_vfsops);
2088 	if (error != 0) {
2089 		cmn_err(CE_WARN, "ufsinit: bad vfs ops template");
2090 		return (error);
2091 	}
2092 
2093 	error = vn_make_ops(name, ufs_vnodeops_template, &ufs_vnodeops);
2094 	if (error != 0) {
2095 		(void) vfs_freevfsops_by_type(fstype);
2096 		cmn_err(CE_WARN, "ufsinit: bad vnode ops template");
2097 		return (error);
2098 	}
2099 
2100 	ufs_iinit();
2101 	return (0);
2102 }
2103 
2104 #ifdef __sparc
2105 
2106 /*
2107  * Mounting a mirrored SVM volume is only supported on ufs,
2108  * this is special-case boot code to support that configuration.
2109  * At this point, we have booted and mounted root on a
2110  * single component of the mirror.  Complete the boot
2111  * by configuring SVM and converting the root to the
2112  * dev_t of the mirrored root device.  This dev_t conversion
2113  * only works because the underlying device doesn't change.
2114  */
2115 int
2116 ufs_remountroot(struct vfs *vfsp)
2117 {
2118 	struct ufsvfs *ufsvfsp;
2119 	struct ulockfs *ulp;
2120 	dev_t new_rootdev;
2121 	dev_t old_rootdev;
2122 	struct vnode *old_rootvp;
2123 	struct vnode *new_rootvp;
2124 	int error, sberror = 0;
2125 	struct inode	*ip;
2126 	union ihead	*ih;
2127 	struct buf	*bp;
2128 	int i;
2129 
2130 	old_rootdev = rootdev;
2131 	old_rootvp = rootvp;
2132 
2133 	new_rootdev = getrootdev();
2134 	if (new_rootdev == (dev_t)NODEV) {
2135 		return (ENODEV);
2136 	}
2137 
2138 	new_rootvp = makespecvp(new_rootdev, VBLK);
2139 
2140 	error = VOP_OPEN(&new_rootvp,
2141 	    (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE, CRED(), NULL);
2142 	if (error) {
2143 		cmn_err(CE_CONT,
2144 		    "Cannot open mirrored root device, error %d\n", error);
2145 		return (error);
2146 	}
2147 
2148 	if (vfs_lock(vfsp) != 0) {
2149 		return (EBUSY);
2150 	}
2151 
2152 	ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
2153 	ulp = &ufsvfsp->vfs_ulockfs;
2154 
2155 	mutex_enter(&ulp->ul_lock);
2156 	atomic_add_long(&ufs_quiesce_pend, 1);
2157 
2158 	(void) ufs_quiesce(ulp);
2159 	(void) ufs_flush(vfsp);
2160 
2161 	/*
2162 	 * Convert root vfs to new dev_t, including vfs hash
2163 	 * table and fs id.
2164 	 */
2165 	vfs_root_redev(vfsp, new_rootdev, ufsfstype);
2166 
2167 	ufsvfsp->vfs_devvp = new_rootvp;
2168 	ufsvfsp->vfs_dev = new_rootdev;
2169 
2170 	bp = ufsvfsp->vfs_bufp;
2171 	bp->b_edev = new_rootdev;
2172 	bp->b_dev = cmpdev(new_rootdev);
2173 
2174 	/*
2175 	 * The buffer for the root inode does not contain a valid b_vp
2176 	 */
2177 	(void) bfinval(new_rootdev, 0);
2178 
2179 	/*
2180 	 * Here we hand-craft inodes with old root device
2181 	 * references to refer to the new device instead.
2182 	 */
2183 	mutex_enter(&ufs_scan_lock);
2184 
2185 	for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
2186 		mutex_enter(&ih_lock[i]);
2187 		for (ip = ih->ih_chain[0];
2188 		    ip != (struct inode *)ih;
2189 		    ip = ip->i_forw) {
2190 			if (ip->i_ufsvfs != ufsvfsp)
2191 				continue;
2192 			if (ip == ufsvfsp->vfs_qinod)
2193 				continue;
2194 			if (ip->i_dev == old_rootdev) {
2195 				ip->i_dev = new_rootdev;
2196 			}
2197 
2198 			if (ip->i_devvp == old_rootvp) {
2199 				ip->i_devvp = new_rootvp;
2200 			}
2201 		}
2202 		mutex_exit(&ih_lock[i]);
2203 	}
2204 
2205 	mutex_exit(&ufs_scan_lock);
2206 
2207 	/*
2208 	 * Make Sure logging structures are using the new device
2209 	 * if logging is enabled.  Also start any logging thread that
2210 	 * needs to write to the device and couldn't earlier.
2211 	 */
2212 	if (ufsvfsp->vfs_log) {
2213 		buf_t		*bp, *tbp;
2214 		ml_unit_t	*ul = ufsvfsp->vfs_log;
2215 		struct fs	*fsp = ufsvfsp->vfs_fs;
2216 
2217 		/*
2218 		 * Update the main logging structure.
2219 		 */
2220 		ul->un_dev = new_rootdev;
2221 
2222 		/*
2223 		 * Get a new bp for the on disk structures.
2224 		 */
2225 		bp = ul->un_bp;
2226 		tbp = ngeteblk(dbtob(LS_SECTORS));
2227 		tbp->b_edev = new_rootdev;
2228 		tbp->b_dev = cmpdev(new_rootdev);
2229 		tbp->b_blkno = bp->b_blkno;
2230 		bcopy(bp->b_un.b_addr, tbp->b_un.b_addr, DEV_BSIZE);
2231 		bcopy(bp->b_un.b_addr, tbp->b_un.b_addr + DEV_BSIZE, DEV_BSIZE);
2232 		bp->b_flags |= (B_STALE | B_AGE);
2233 		brelse(bp);
2234 		ul->un_bp = tbp;
2235 
2236 		/*
2237 		 * Allocate new circular buffers.
2238 		 */
2239 		alloc_rdbuf(&ul->un_rdbuf, MAPBLOCKSIZE, MAPBLOCKSIZE);
2240 		alloc_wrbuf(&ul->un_wrbuf, ldl_bufsize(ul));
2241 
2242 		/*
2243 		 * Clear the noroll bit which indicates that logging
2244 		 * can't roll the log yet and start the logmap roll thread
2245 		 * unless the filesystem is still read-only in which case
2246 		 * remountfs() will do it when going to read-write.
2247 		 */
2248 		ASSERT(ul->un_flags & LDL_NOROLL);
2249 
2250 		if (!fsp->fs_ronly) {
2251 			ul->un_flags &= ~LDL_NOROLL;
2252 			logmap_start_roll(ul);
2253 		}
2254 
2255 		/*
2256 		 * Start the reclaim thread if needed.
2257 		 */
2258 		if (!fsp->fs_ronly && (fsp->fs_reclaim &
2259 		    (FS_RECLAIM|FS_RECLAIMING))) {
2260 			fsp->fs_reclaim &= ~FS_RECLAIM;
2261 			fsp->fs_reclaim |= FS_RECLAIMING;
2262 			ufs_thread_start(&ufsvfsp->vfs_reclaim,
2263 			    ufs_thread_reclaim, vfsp);
2264 			TRANS_SBWRITE(ufsvfsp, TOP_SBUPDATE_UPDATE);
2265 			if (sberror = geterror(ufsvfsp->vfs_bufp)) {
2266 				refstr_t	*mntpt;
2267 				mntpt = vfs_getmntpoint(vfsp);
2268 				cmn_err(CE_WARN,
2269 				    "Remountroot failed to update Reclaim"
2270 				    "state for filesystem %s "
2271 				    "Error writing SuperBlock %d",
2272 				    refstr_value(mntpt), error);
2273 				refstr_rele(mntpt);
2274 			}
2275 		}
2276 	}
2277 
2278 	rootdev = new_rootdev;
2279 	rootvp = new_rootvp;
2280 
2281 	atomic_add_long(&ufs_quiesce_pend, -1);
2282 	cv_broadcast(&ulp->ul_cv);
2283 	mutex_exit(&ulp->ul_lock);
2284 
2285 	vfs_unlock(vfsp);
2286 
2287 	error = VOP_CLOSE(old_rootvp, FREAD, 1, (offset_t)0, CRED(), NULL);
2288 	if (error) {
2289 		cmn_err(CE_CONT,
2290 		    "close of root device component failed, error %d\n",
2291 		    error);
2292 	}
2293 	VN_RELE(old_rootvp);
2294 
2295 	return (sberror ? sberror : error);
2296 }
2297 
2298 #endif	/* __sparc */
2299