xref: /titanic_50/usr/src/uts/common/fs/ufs/ufs_vfsops.c (revision 577f4726f2ea5aeaa2cf3dd65aca52869834b137)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bitmap.h>
47 #include <sys/sysmacros.h>
48 #include <sys/kmem.h>
49 #include <sys/signal.h>
50 #include <sys/user.h>
51 #include <sys/proc.h>
52 #include <sys/disp.h>
53 #include <sys/buf.h>
54 #include <sys/pathname.h>
55 #include <sys/vfs.h>
56 #include <sys/vfs_opreg.h>
57 #include <sys/vnode.h>
58 #include <sys/file.h>
59 #include <sys/atomic.h>
60 #include <sys/uio.h>
61 #include <sys/dkio.h>
62 #include <sys/cred.h>
63 #include <sys/conf.h>
64 #include <sys/dnlc.h>
65 #include <sys/kstat.h>
66 #include <sys/acl.h>
67 #include <sys/fs/ufs_fsdir.h>
68 #include <sys/fs/ufs_fs.h>
69 #include <sys/fs/ufs_inode.h>
70 #include <sys/fs/ufs_mount.h>
71 #include <sys/fs/ufs_acl.h>
72 #include <sys/fs/ufs_panic.h>
73 #include <sys/fs/ufs_bio.h>
74 #include <sys/fs/ufs_quota.h>
75 #include <sys/fs/ufs_log.h>
76 #undef NFS
77 #include <sys/statvfs.h>
78 #include <sys/mount.h>
79 #include <sys/mntent.h>
80 #include <sys/swap.h>
81 #include <sys/errno.h>
82 #include <sys/debug.h>
83 #include "fs/fs_subr.h"
84 #include <sys/cmn_err.h>
85 #include <sys/dnlc.h>
86 #include <sys/fssnap_if.h>
87 #include <sys/sunddi.h>
88 #include <sys/bootconf.h>
89 #include <sys/policy.h>
90 #include <sys/zone.h>
91 
92 /*
93  * This is the loadable module wrapper.
94  */
95 #include <sys/modctl.h>
96 
97 int			ufsfstype;
98 vfsops_t		*ufs_vfsops;
99 static int		ufsinit(int, char *);
100 static int		mountfs();
101 extern int		highbit();
102 extern struct instats	ins;
103 extern struct vnode *common_specvp(struct vnode *vp);
104 extern vfs_t		EIO_vfs;
105 
106 struct  dquot *dquot, *dquotNDQUOT;
107 
108 /*
109  * Cylinder group summary information handling tunable.
110  * This defines when these deltas get logged.
111  * If the number of cylinders in the file system is over the
112  * tunable then we log csum updates. Otherwise the updates are only
113  * done for performance on unmount. After a panic they can be
114  * quickly constructed during mounting. See ufs_construct_si()
115  * called from ufs_getsummaryinfo().
116  *
117  * This performance feature can of course be disabled by setting
118  * ufs_ncg_log to 0, and fully enabled by setting it to 0xffffffff.
119  */
120 #define	UFS_LOG_NCG_DEFAULT 10000
121 uint32_t ufs_ncg_log = UFS_LOG_NCG_DEFAULT;
122 
123 /*
124  * ufs_clean_root indicates whether the root fs went down cleanly
125  */
126 static int ufs_clean_root = 0;
127 
128 /*
129  * UFS Mount options table
130  */
131 static char *intr_cancel[] = { MNTOPT_NOINTR, NULL };
132 static char *nointr_cancel[] = { MNTOPT_INTR, NULL };
133 static char *forcedirectio_cancel[] = { MNTOPT_NOFORCEDIRECTIO, NULL };
134 static char *noforcedirectio_cancel[] = { MNTOPT_FORCEDIRECTIO, NULL };
135 static char *largefiles_cancel[] = { MNTOPT_NOLARGEFILES, NULL };
136 static char *nolargefiles_cancel[] = { MNTOPT_LARGEFILES, NULL };
137 static char *logging_cancel[] = { MNTOPT_NOLOGGING, NULL };
138 static char *nologging_cancel[] = { MNTOPT_LOGGING, NULL };
139 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
140 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
141 static char *quota_cancel[] = { MNTOPT_NOQUOTA, NULL };
142 static char *noquota_cancel[] = { MNTOPT_QUOTA, NULL };
143 static char *dfratime_cancel[] = { MNTOPT_NODFRATIME, NULL };
144 static char *nodfratime_cancel[] = { MNTOPT_DFRATIME, NULL };
145 
146 static mntopt_t mntopts[] = {
147 /*
148  *	option name		cancel option	default arg	flags
149  *		ufs arg flag
150  */
151 	{ MNTOPT_INTR,		intr_cancel,	NULL,		MO_DEFAULT,
152 		(void *)0 },
153 	{ MNTOPT_NOINTR,	nointr_cancel,	NULL,		0,
154 		(void *)UFSMNT_NOINTR },
155 	{ MNTOPT_SYNCDIR,	NULL,		NULL,		0,
156 		(void *)UFSMNT_SYNCDIR },
157 	{ MNTOPT_FORCEDIRECTIO,	forcedirectio_cancel, NULL,	0,
158 		(void *)UFSMNT_FORCEDIRECTIO },
159 	{ MNTOPT_NOFORCEDIRECTIO, noforcedirectio_cancel, NULL, 0,
160 		(void *)UFSMNT_NOFORCEDIRECTIO },
161 	{ MNTOPT_NOSETSEC,	NULL,		NULL,		0,
162 		(void *)UFSMNT_NOSETSEC },
163 	{ MNTOPT_LARGEFILES,	largefiles_cancel, NULL,	MO_DEFAULT,
164 		(void *)UFSMNT_LARGEFILES },
165 	{ MNTOPT_NOLARGEFILES,	nolargefiles_cancel, NULL,	0,
166 		(void *)0 },
167 	{ MNTOPT_LOGGING,	logging_cancel, NULL,		MO_TAG,
168 		(void *)UFSMNT_LOGGING },
169 	{ MNTOPT_NOLOGGING,	nologging_cancel, NULL,
170 		MO_NODISPLAY|MO_DEFAULT|MO_TAG, (void *)0 },
171 	{ MNTOPT_QUOTA,		quota_cancel, NULL,		MO_IGNORE,
172 		(void *)0 },
173 	{ MNTOPT_NOQUOTA,	noquota_cancel,	NULL,
174 		MO_NODISPLAY|MO_DEFAULT, (void *)0 },
175 	{ MNTOPT_GLOBAL,	NULL,		NULL,		0,
176 		(void *)0 },
177 	{ MNTOPT_XATTR,	xattr_cancel,		NULL,		MO_DEFAULT,
178 		(void *)0 },
179 	{ MNTOPT_NOXATTR,	noxattr_cancel,		NULL,		0,
180 		(void *)0 },
181 	{ MNTOPT_NOATIME,	NULL,		NULL,		0,
182 		(void *)UFSMNT_NOATIME },
183 	{ MNTOPT_DFRATIME,	dfratime_cancel, NULL,		0,
184 		(void *)0 },
185 	{ MNTOPT_NODFRATIME,	nodfratime_cancel, NULL,
186 		MO_NODISPLAY|MO_DEFAULT, (void *)UFSMNT_NODFRATIME },
187 	{ MNTOPT_ONERROR,	NULL,		UFSMNT_ONERROR_PANIC_STR,
188 		MO_DEFAULT|MO_HASVALUE,	(void *)0 },
189 };
190 
191 static mntopts_t ufs_mntopts = {
192 	sizeof (mntopts) / sizeof (mntopt_t),
193 	mntopts
194 };
195 
196 static vfsdef_t vfw = {
197 	VFSDEF_VERSION,
198 	"ufs",
199 	ufsinit,
200 	VSW_HASPROTO|VSW_CANREMOUNT|VSW_STATS|VSW_CANLOFI,
201 	&ufs_mntopts
202 };
203 
204 /*
205  * Module linkage information for the kernel.
206  */
207 extern struct mod_ops mod_fsops;
208 
209 static struct modlfs modlfs = {
210 	&mod_fsops, "filesystem for ufs", &vfw
211 };
212 
213 static struct modlinkage modlinkage = {
214 	MODREV_1, (void *)&modlfs, NULL
215 };
216 
217 /*
218  * An attempt has been made to make this module unloadable.  In order to
219  * test it, we need a system in which the root fs is NOT ufs.  THIS HAS NOT
220  * BEEN DONE
221  */
222 
223 extern kstat_t *ufs_inode_kstat;
224 extern uint_t ufs_lockfs_key;
225 extern void ufs_lockfs_tsd_destructor(void *);
226 extern uint_t bypass_snapshot_throttle_key;
227 
228 int
229 _init(void)
230 {
231 	/*
232 	 * Create an index into the per thread array so that any thread doing
233 	 * VOP will have a lockfs mark on it.
234 	 */
235 	tsd_create(&ufs_lockfs_key, ufs_lockfs_tsd_destructor);
236 	tsd_create(&bypass_snapshot_throttle_key, NULL);
237 	return (mod_install(&modlinkage));
238 }
239 
240 int
241 _fini(void)
242 {
243 	return (EBUSY);
244 }
245 
246 int
247 _info(struct modinfo *modinfop)
248 {
249 	return (mod_info(&modlinkage, modinfop));
250 }
251 
252 extern struct vnode *makespecvp(dev_t dev, vtype_t type);
253 
254 extern kmutex_t	ufs_scan_lock;
255 
256 static int mountfs(struct vfs *, enum whymountroot, struct vnode *, char *,
257 		struct cred *, int, void *, int);
258 
259 
260 static int
261 ufs_mount(struct vfs *vfsp, struct vnode *mvp, struct mounta *uap,
262 	struct cred *cr)
263 
264 {
265 	char *data = uap->dataptr;
266 	int datalen = uap->datalen;
267 	dev_t dev;
268 	struct vnode *lvp = NULL;
269 	struct vnode *svp = NULL;
270 	struct pathname dpn;
271 	int error;
272 	enum whymountroot why = ROOT_INIT;
273 	struct ufs_args args;
274 	int oflag, aflag;
275 	int fromspace = (uap->flags & MS_SYSSPACE) ?
276 	    UIO_SYSSPACE : UIO_USERSPACE;
277 
278 	if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
279 		return (error);
280 
281 	if (mvp->v_type != VDIR)
282 		return (ENOTDIR);
283 
284 	mutex_enter(&mvp->v_lock);
285 	if ((uap->flags & MS_REMOUNT) == 0 &&
286 	    (uap->flags & MS_OVERLAY) == 0 &&
287 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
288 		mutex_exit(&mvp->v_lock);
289 		return (EBUSY);
290 	}
291 	mutex_exit(&mvp->v_lock);
292 
293 	/*
294 	 * Get arguments
295 	 */
296 	bzero(&args, sizeof (args));
297 	if ((uap->flags & MS_DATA) && data != NULL && datalen != 0) {
298 		int copy_result = 0;
299 
300 		if (datalen > sizeof (args))
301 			return (EINVAL);
302 		if (uap->flags & MS_SYSSPACE)
303 			bcopy(data, &args, datalen);
304 		else
305 			copy_result = copyin(data, &args, datalen);
306 		if (copy_result)
307 			return (EFAULT);
308 		datalen = sizeof (struct ufs_args);
309 	} else {
310 		datalen = 0;
311 	}
312 
313 	if ((vfsp->vfs_flag & VFS_RDONLY) != 0 ||
314 	    (uap->flags & MS_RDONLY) != 0) {
315 		oflag = FREAD;
316 		aflag = VREAD;
317 	} else {
318 		oflag = FREAD | FWRITE;
319 		aflag = VREAD | VWRITE;
320 	}
321 
322 	/*
323 	 * Read in the mount point pathname
324 	 * (so we can record the directory the file system was last mounted on).
325 	 */
326 	if (error = pn_get(uap->dir, fromspace, &dpn))
327 		return (error);
328 
329 	/*
330 	 * Resolve path name of special file being mounted.
331 	 */
332 	if (error = lookupname(uap->spec, fromspace, FOLLOW, NULL, &svp)) {
333 		pn_free(&dpn);
334 		return (error);
335 	}
336 
337 	error = vfs_get_lofi(vfsp, &lvp);
338 
339 	if (error > 0) {
340 		VN_RELE(svp);
341 		pn_free(&dpn);
342 		return (error);
343 	} else if (error == 0) {
344 		dev = lvp->v_rdev;
345 
346 		if (getmajor(dev) >= devcnt) {
347 			error = ENXIO;
348 			goto out;
349 		}
350 	} else {
351 		dev = svp->v_rdev;
352 
353 		if (svp->v_type != VBLK) {
354 			VN_RELE(svp);
355 			pn_free(&dpn);
356 			return (ENOTBLK);
357 		}
358 
359 		if (getmajor(dev) >= devcnt) {
360 			error = ENXIO;
361 			goto out;
362 		}
363 
364 		/*
365 		 * In SunCluster, requests to a global device are
366 		 * satisfied by a local device. We substitute the global
367 		 * pxfs node with a local spec node here.
368 		 */
369 		if (IS_PXFSVP(svp)) {
370 			ASSERT(lvp == NULL);
371 			VN_RELE(svp);
372 			svp = makespecvp(dev, VBLK);
373 		}
374 
375 		if ((error = secpolicy_spec_open(cr, svp, oflag)) != 0) {
376 			VN_RELE(svp);
377 			pn_free(&dpn);
378 			return (error);
379 		}
380 	}
381 
382 	if (uap->flags & MS_REMOUNT)
383 		why = ROOT_REMOUNT;
384 
385 	/*
386 	 * Open device/file mounted on.  We need this to check whether
387 	 * the caller has sufficient rights to access the resource in
388 	 * question.  When bio is fixed for vnodes this can all be vnode
389 	 * operations.
390 	 */
391 	if ((error = VOP_ACCESS(svp, aflag, 0, cr, NULL)) != 0)
392 		goto out;
393 
394 	/*
395 	 * Ensure that this device isn't already mounted or in progress on a
396 	 * mount unless this is a REMOUNT request or we are told to suppress
397 	 * mount checks. Global mounts require special handling.
398 	 */
399 	if ((uap->flags & MS_NOCHECK) == 0) {
400 		if ((uap->flags & MS_GLOBAL) == 0 &&
401 		    vfs_devmounting(dev, vfsp)) {
402 			error = EBUSY;
403 			goto out;
404 		}
405 		if (vfs_devismounted(dev)) {
406 			if ((uap->flags & MS_REMOUNT) == 0) {
407 				error = EBUSY;
408 				goto out;
409 			}
410 		}
411 	}
412 
413 	/*
414 	 * If the device is a tape, mount it read only
415 	 */
416 	if (devopsp[getmajor(dev)]->devo_cb_ops->cb_flag & D_TAPE) {
417 		vfsp->vfs_flag |= VFS_RDONLY;
418 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
419 	}
420 	if (uap->flags & MS_RDONLY)
421 		vfsp->vfs_flag |= VFS_RDONLY;
422 
423 	/*
424 	 * Mount the filesystem, free the device vnode on error.
425 	 */
426 	error = mountfs(vfsp, why, lvp != NULL ? lvp : svp,
427 	    dpn.pn_path, cr, 0, &args, datalen);
428 
429 	if (error == 0) {
430 		vfs_set_feature(vfsp, VFSFT_XVATTR);
431 
432 		/*
433 		 * If lofi, drop our reference to the original file.
434 		 */
435 		if (lvp != NULL)
436 			VN_RELE(svp);
437 	}
438 
439 out:
440 	pn_free(&dpn);
441 
442 	if (error) {
443 		if (lvp != NULL)
444 			VN_RELE(lvp);
445 		if (svp != NULL)
446 			VN_RELE(svp);
447 	}
448 	return (error);
449 }
450 
451 /*
452  * Mount root file system.
453  * "why" is ROOT_INIT on initial call ROOT_REMOUNT if called to
454  * remount the root file system, and ROOT_UNMOUNT if called to
455  * unmount the root (e.g., as part of a system shutdown).
456  *
457  * XXX - this may be partially machine-dependent; it, along with the VFS_SWAPVP
458  * operation, goes along with auto-configuration.  A mechanism should be
459  * provided by which machine-INdependent code in the kernel can say "get me the
460  * right root file system" and "get me the right initial swap area", and have
461  * that done in what may well be a machine-dependent fashion.
462  * Unfortunately, it is also file-system-type dependent (NFS gets it via
463  * bootparams calls, UFS gets it from various and sundry machine-dependent
464  * mechanisms, as SPECFS does for swap).
465  */
466 static int
467 ufs_mountroot(struct vfs *vfsp, enum whymountroot why)
468 {
469 	struct fs *fsp;
470 	int error;
471 	static int ufsrootdone = 0;
472 	dev_t rootdev;
473 	struct vnode *vp;
474 	struct vnode *devvp = 0;
475 	int ovflags;
476 	int doclkset;
477 	ufsvfs_t *ufsvfsp;
478 
479 	if (why == ROOT_INIT) {
480 		if (ufsrootdone++)
481 			return (EBUSY);
482 		rootdev = getrootdev();
483 		if (rootdev == (dev_t)NODEV)
484 			return (ENODEV);
485 		vfsp->vfs_dev = rootdev;
486 		vfsp->vfs_flag |= VFS_RDONLY;
487 	} else if (why == ROOT_REMOUNT) {
488 		vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp;
489 		(void) dnlc_purge_vfsp(vfsp, 0);
490 		vp = common_specvp(vp);
491 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_INVAL,
492 		    CRED(), NULL);
493 		(void) bfinval(vfsp->vfs_dev, 0);
494 		fsp = getfs(vfsp);
495 
496 		ovflags = vfsp->vfs_flag;
497 		vfsp->vfs_flag &= ~VFS_RDONLY;
498 		vfsp->vfs_flag |= VFS_REMOUNT;
499 		rootdev = vfsp->vfs_dev;
500 	} else if (why == ROOT_UNMOUNT) {
501 		if (vfs_lock(vfsp) == 0) {
502 			(void) ufs_flush(vfsp);
503 			/*
504 			 * Mark the log as fully rolled
505 			 */
506 			ufsvfsp = (ufsvfs_t *)vfsp->vfs_data;
507 			fsp = ufsvfsp->vfs_fs;
508 			if (TRANS_ISTRANS(ufsvfsp) &&
509 			    !TRANS_ISERROR(ufsvfsp) &&
510 			    (fsp->fs_rolled == FS_NEED_ROLL)) {
511 				ml_unit_t *ul = ufsvfsp->vfs_log;
512 
513 				error = ufs_putsummaryinfo(ul->un_dev,
514 				    ufsvfsp, fsp);
515 				if (error == 0) {
516 					fsp->fs_rolled = FS_ALL_ROLLED;
517 					UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp);
518 				}
519 			}
520 			vfs_unlock(vfsp);
521 		} else {
522 			ufs_update(0);
523 		}
524 
525 		vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp;
526 		(void) VOP_CLOSE(vp, FREAD|FWRITE, 1,
527 		    (offset_t)0, CRED(), NULL);
528 		return (0);
529 	}
530 	error = vfs_lock(vfsp);
531 	if (error)
532 		return (error);
533 
534 	devvp = makespecvp(rootdev, VBLK);
535 
536 	/* If RO media, don't call clkset() (see below) */
537 	doclkset = 1;
538 	if (why == ROOT_INIT) {
539 		error = VOP_OPEN(&devvp, FREAD|FWRITE, CRED(), NULL);
540 		if (error == 0) {
541 			(void) VOP_CLOSE(devvp, FREAD|FWRITE, 1,
542 			    (offset_t)0, CRED(), NULL);
543 		} else {
544 			doclkset = 0;
545 		}
546 	}
547 
548 	error = mountfs(vfsp, why, devvp, "/", CRED(), 1, NULL, 0);
549 	/*
550 	 * XXX - assumes root device is not indirect, because we don't set
551 	 * rootvp.  Is rootvp used for anything?  If so, make another arg
552 	 * to mountfs.
553 	 */
554 	if (error) {
555 		vfs_unlock(vfsp);
556 		if (why == ROOT_REMOUNT)
557 			vfsp->vfs_flag = ovflags;
558 		if (rootvp) {
559 			VN_RELE(rootvp);
560 			rootvp = (struct vnode *)0;
561 		}
562 		VN_RELE(devvp);
563 		return (error);
564 	}
565 	if (why == ROOT_INIT)
566 		vfs_add((struct vnode *)0, vfsp,
567 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
568 	vfs_unlock(vfsp);
569 	fsp = getfs(vfsp);
570 	clkset(doclkset ? fsp->fs_time : -1);
571 	ufsvfsp = (ufsvfs_t *)vfsp->vfs_data;
572 	if (ufsvfsp->vfs_log) {
573 		vfs_setmntopt(vfsp, MNTOPT_LOGGING, NULL, 0);
574 	}
575 	return (0);
576 }
577 
578 static int
579 remountfs(struct vfs *vfsp, dev_t dev, void *raw_argsp, int args_len)
580 {
581 	struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
582 	struct ulockfs *ulp = &ufsvfsp->vfs_ulockfs;
583 	struct buf *bp = ufsvfsp->vfs_bufp;
584 	struct fs *fsp = (struct fs *)bp->b_un.b_addr;
585 	struct fs *fspt;
586 	struct buf *tpt = 0;
587 	int error = 0;
588 	int flags = 0;
589 
590 	if (args_len == sizeof (struct ufs_args) && raw_argsp)
591 		flags = ((struct ufs_args *)raw_argsp)->flags;
592 
593 	/* cannot remount to RDONLY */
594 	if (vfsp->vfs_flag & VFS_RDONLY)
595 		return (ENOTSUP);
596 
597 	/* whoops, wrong dev */
598 	if (vfsp->vfs_dev != dev)
599 		return (EINVAL);
600 
601 	/*
602 	 * synchronize w/ufs ioctls
603 	 */
604 	mutex_enter(&ulp->ul_lock);
605 	atomic_add_long(&ufs_quiesce_pend, 1);
606 
607 	/*
608 	 * reset options
609 	 */
610 	ufsvfsp->vfs_nointr  = flags & UFSMNT_NOINTR;
611 	ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR;
612 	ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC;
613 	ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME;
614 	if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime)
615 		ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME;
616 	else	/* dfratime, default behavior */
617 		ufsvfsp->vfs_dfritime |= UFS_DFRATIME;
618 	if (flags & UFSMNT_FORCEDIRECTIO)
619 		ufsvfsp->vfs_forcedirectio = 1;
620 	else	/* default is no direct I/O */
621 		ufsvfsp->vfs_forcedirectio = 0;
622 	ufsvfsp->vfs_iotstamp = lbolt;
623 
624 	/*
625 	 * set largefiles flag in ufsvfs equal to the
626 	 * value passed in by the mount command. If
627 	 * it is "nolargefiles", and the flag is set
628 	 * in the superblock, the mount fails.
629 	 */
630 	if (!(flags & UFSMNT_LARGEFILES)) {  /* "nolargefiles" */
631 		if (fsp->fs_flags & FSLARGEFILES) {
632 			error = EFBIG;
633 			goto remounterr;
634 		}
635 		ufsvfsp->vfs_lfflags &= ~UFS_LARGEFILES;
636 	} else	/* "largefiles" */
637 		ufsvfsp->vfs_lfflags |= UFS_LARGEFILES;
638 	/*
639 	 * read/write to read/write; all done
640 	 */
641 	if (fsp->fs_ronly == 0)
642 		goto remounterr;
643 
644 	/*
645 	 * fix-on-panic assumes RO->RW remount implies system-critical fs
646 	 * if it is shortly after boot; so, don't attempt to lock and fix
647 	 * (unless the user explicitly asked for another action on error)
648 	 * XXX UFSMNT_ONERROR_RDONLY rather than UFSMNT_ONERROR_PANIC
649 	 */
650 #define	BOOT_TIME_LIMIT	(180*hz)
651 	if (!(flags & UFSMNT_ONERROR_FLGMASK) && lbolt < BOOT_TIME_LIMIT) {
652 		cmn_err(CE_WARN, "%s is required to be mounted onerror=%s",
653 		    ufsvfsp->vfs_fs->fs_fsmnt, UFSMNT_ONERROR_PANIC_STR);
654 		flags |= UFSMNT_ONERROR_PANIC;
655 	}
656 
657 	if ((error = ufsfx_mount(ufsvfsp, flags)) != 0)
658 		goto remounterr;
659 
660 	/*
661 	 * quiesce the file system
662 	 */
663 	error = ufs_quiesce(ulp);
664 	if (error)
665 		goto remounterr;
666 
667 	tpt = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, SBLOCK, SBSIZE);
668 	if (tpt->b_flags & B_ERROR) {
669 		error = EIO;
670 		goto remounterr;
671 	}
672 	fspt = (struct fs *)tpt->b_un.b_addr;
673 	if (((fspt->fs_magic != FS_MAGIC) &&
674 	    (fspt->fs_magic != MTB_UFS_MAGIC)) ||
675 	    (fspt->fs_magic == FS_MAGIC &&
676 	    (fspt->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
677 	    fspt->fs_version != UFS_VERSION_MIN)) ||
678 	    (fspt->fs_magic == MTB_UFS_MAGIC &&
679 	    (fspt->fs_version > MTB_UFS_VERSION_1 ||
680 	    fspt->fs_version < MTB_UFS_VERSION_MIN)) ||
681 	    fspt->fs_bsize > MAXBSIZE || fspt->fs_frag > MAXFRAG ||
682 	    fspt->fs_bsize < sizeof (struct fs) || fspt->fs_bsize < PAGESIZE) {
683 		tpt->b_flags |= B_STALE | B_AGE;
684 		error = EINVAL;
685 		goto remounterr;
686 	}
687 
688 	if (ufsvfsp->vfs_log && (ufsvfsp->vfs_log->un_flags & LDL_NOROLL)) {
689 		ufsvfsp->vfs_log->un_flags &= ~LDL_NOROLL;
690 		logmap_start_roll(ufsvfsp->vfs_log);
691 	}
692 
693 	if (TRANS_ISERROR(ufsvfsp))
694 		goto remounterr;
695 	TRANS_DOMATAMAP(ufsvfsp);
696 
697 	if ((fspt->fs_state + fspt->fs_time == FSOKAY) &&
698 	    fspt->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp)) {
699 		ufsvfsp->vfs_log = NULL;
700 		ufsvfsp->vfs_domatamap = 0;
701 		error = ENOSPC;
702 		goto remounterr;
703 	}
704 
705 	if (fspt->fs_state + fspt->fs_time == FSOKAY &&
706 	    (fspt->fs_clean == FSCLEAN ||
707 	    fspt->fs_clean == FSSTABLE ||
708 	    fspt->fs_clean == FSLOG)) {
709 
710 		/*
711 		 * Ensure that ufs_getsummaryinfo doesn't reconstruct
712 		 * the summary info.
713 		 */
714 		error = ufs_getsummaryinfo(vfsp->vfs_dev, ufsvfsp, fspt);
715 		if (error)
716 			goto remounterr;
717 
718 		/* preserve mount name */
719 		(void) strncpy(fspt->fs_fsmnt, fsp->fs_fsmnt, MAXMNTLEN);
720 		/* free the old cg space */
721 		kmem_free(fsp->fs_u.fs_csp, fsp->fs_cssize);
722 		/* switch in the new superblock */
723 		fspt->fs_rolled = FS_NEED_ROLL;
724 		bcopy(tpt->b_un.b_addr, bp->b_un.b_addr, fspt->fs_sbsize);
725 
726 		fsp->fs_clean = FSSTABLE;
727 	} /* superblock updated in memory */
728 	tpt->b_flags |= B_STALE | B_AGE;
729 	brelse(tpt);
730 	tpt = 0;
731 
732 	if (fsp->fs_clean != FSSTABLE) {
733 		error = ENOSPC;
734 		goto remounterr;
735 	}
736 
737 
738 	if (TRANS_ISTRANS(ufsvfsp)) {
739 		fsp->fs_clean = FSLOG;
740 		ufsvfsp->vfs_dio = 0;
741 	} else
742 		if (ufsvfsp->vfs_dio)
743 			fsp->fs_clean = FSSUSPEND;
744 
745 	TRANS_MATA_MOUNT(ufsvfsp);
746 
747 	fsp->fs_fmod = 0;
748 	fsp->fs_ronly = 0;
749 
750 	atomic_add_long(&ufs_quiesce_pend, -1);
751 	cv_broadcast(&ulp->ul_cv);
752 	mutex_exit(&ulp->ul_lock);
753 
754 	if (TRANS_ISTRANS(ufsvfsp)) {
755 
756 		/*
757 		 * start the delete thread
758 		 */
759 		ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp);
760 
761 		/*
762 		 * start the reclaim thread
763 		 */
764 		if (fsp->fs_reclaim & (FS_RECLAIM|FS_RECLAIMING)) {
765 			fsp->fs_reclaim &= ~FS_RECLAIM;
766 			fsp->fs_reclaim |=  FS_RECLAIMING;
767 			ufs_thread_start(&ufsvfsp->vfs_reclaim,
768 			    ufs_thread_reclaim, vfsp);
769 		}
770 	}
771 
772 	TRANS_SBWRITE(ufsvfsp, TOP_MOUNT);
773 
774 	return (0);
775 
776 remounterr:
777 	if (tpt)
778 		brelse(tpt);
779 	atomic_add_long(&ufs_quiesce_pend, -1);
780 	cv_broadcast(&ulp->ul_cv);
781 	mutex_exit(&ulp->ul_lock);
782 	return (error);
783 }
784 
785 /*
786  * If the device maxtransfer size is not available, we use ufs_maxmaxphys
787  * along with the system value for maxphys to determine the value for
788  * maxtransfer.
789  */
790 int ufs_maxmaxphys = (1024 * 1024);
791 
792 #include <sys/ddi.h>		/* for delay(9f) */
793 
794 int ufs_mount_error_delay = 20;	/* default to 20ms */
795 int ufs_mount_timeout = 60000;	/* default to 1 minute */
796 
797 static int
798 mountfs(struct vfs *vfsp, enum whymountroot why, struct vnode *devvp,
799 	char *path, cred_t *cr, int isroot, void *raw_argsp, int args_len)
800 {
801 	dev_t dev = devvp->v_rdev;
802 	struct fs *fsp;
803 	struct ufsvfs *ufsvfsp = 0;
804 	struct buf *bp = 0;
805 	struct buf *tp = 0;
806 	struct dk_cinfo ci;
807 	int error = 0;
808 	size_t len;
809 	int needclose = 0;
810 	int needtrans = 0;
811 	struct inode *rip;
812 	struct vnode *rvp = NULL;
813 	int flags = 0;
814 	kmutex_t *ihm;
815 	int elapsed;
816 	int status;
817 	extern	int	maxphys;
818 
819 	if (args_len == sizeof (struct ufs_args) && raw_argsp)
820 		flags = ((struct ufs_args *)raw_argsp)->flags;
821 
822 	ASSERT(vfs_lock_held(vfsp));
823 
824 	if (why == ROOT_INIT) {
825 		/*
826 		 * Open block device mounted on.
827 		 * When bio is fixed for vnodes this can all be vnode
828 		 * operations.
829 		 */
830 		error = VOP_OPEN(&devvp,
831 		    (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE,
832 		    cr, NULL);
833 		if (error)
834 			goto out;
835 		needclose = 1;
836 
837 		/*
838 		 * Refuse to go any further if this
839 		 * device is being used for swapping.
840 		 */
841 		if (IS_SWAPVP(devvp)) {
842 			error = EBUSY;
843 			goto out;
844 		}
845 	}
846 
847 	/*
848 	 * check for dev already mounted on
849 	 */
850 	if (vfsp->vfs_flag & VFS_REMOUNT) {
851 		error = remountfs(vfsp, dev, raw_argsp, args_len);
852 		if (error == 0)
853 			VN_RELE(devvp);
854 		return (error);
855 	}
856 
857 	ASSERT(devvp != 0);
858 
859 	/*
860 	 * Flush back any dirty pages on the block device to
861 	 * try and keep the buffer cache in sync with the page
862 	 * cache if someone is trying to use block devices when
863 	 * they really should be using the raw device.
864 	 */
865 	(void) VOP_PUTPAGE(common_specvp(devvp), (offset_t)0,
866 	    (size_t)0, B_INVAL, cr, NULL);
867 
868 	/*
869 	 * read in superblock
870 	 */
871 	ufsvfsp = kmem_zalloc(sizeof (struct ufsvfs), KM_SLEEP);
872 	tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE);
873 	if (tp->b_flags & B_ERROR)
874 		goto out;
875 	fsp = (struct fs *)tp->b_un.b_addr;
876 
877 	if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC)) {
878 		cmn_err(CE_NOTE,
879 		    "mount: not a UFS magic number (0x%x)", fsp->fs_magic);
880 		error = EINVAL;
881 		goto out;
882 	}
883 
884 	if ((fsp->fs_magic == FS_MAGIC) &&
885 	    (fsp->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
886 	    fsp->fs_version != UFS_VERSION_MIN)) {
887 		cmn_err(CE_NOTE,
888 		    "mount: unrecognized version of UFS on-disk format: %d",
889 		    fsp->fs_version);
890 		error = EINVAL;
891 		goto out;
892 	}
893 
894 	if ((fsp->fs_magic == MTB_UFS_MAGIC) &&
895 	    (fsp->fs_version > MTB_UFS_VERSION_1 ||
896 	    fsp->fs_version < MTB_UFS_VERSION_MIN)) {
897 		cmn_err(CE_NOTE,
898 		    "mount: unrecognized version of UFS on-disk format: %d",
899 		    fsp->fs_version);
900 		error = EINVAL;
901 		goto out;
902 	}
903 
904 #ifndef _LP64
905 	if (fsp->fs_magic == MTB_UFS_MAGIC) {
906 		/*
907 		 * Find the size of the device in sectors.  If the
908 		 * the size in sectors is greater than INT_MAX, it's
909 		 * a multi-terabyte file system, which can't be
910 		 * mounted by a 32-bit kernel.  We can't use the
911 		 * fsbtodb() macro in the next line because the macro
912 		 * casts the intermediate values to daddr_t, which is
913 		 * a 32-bit quantity in a 32-bit kernel.  Here we
914 		 * really do need the intermediate values to be held
915 		 * in 64-bit quantities because we're checking for
916 		 * overflow of a 32-bit field.
917 		 */
918 		if ((((diskaddr_t)(fsp->fs_size)) << fsp->fs_fsbtodb)
919 		    > INT_MAX) {
920 			cmn_err(CE_NOTE,
921 			    "mount: multi-terabyte UFS cannot be"
922 			    " mounted by a 32-bit kernel");
923 			error = EINVAL;
924 			goto out;
925 		}
926 
927 	}
928 #endif
929 
930 	if (fsp->fs_bsize > MAXBSIZE || fsp->fs_frag > MAXFRAG ||
931 	    fsp->fs_bsize < sizeof (struct fs) || fsp->fs_bsize < PAGESIZE) {
932 		error = EINVAL;	/* also needs translation */
933 		goto out;
934 	}
935 
936 	/*
937 	 * Allocate VFS private data.
938 	 */
939 	vfsp->vfs_bcount = 0;
940 	vfsp->vfs_data = (caddr_t)ufsvfsp;
941 	vfsp->vfs_fstype = ufsfstype;
942 	vfsp->vfs_dev = dev;
943 	vfsp->vfs_flag |= VFS_NOTRUNC;
944 	vfs_make_fsid(&vfsp->vfs_fsid, dev, ufsfstype);
945 	ufsvfsp->vfs_devvp = devvp;
946 
947 	/*
948 	 * Cross-link with vfs and add to instance list.
949 	 */
950 	ufsvfsp->vfs_vfs = vfsp;
951 	ufs_vfs_add(ufsvfsp);
952 
953 	ufsvfsp->vfs_dev = dev;
954 	ufsvfsp->vfs_bufp = tp;
955 
956 	ufsvfsp->vfs_dirsize = INODESIZE + (4 * ALLOCSIZE) + fsp->fs_fsize;
957 	ufsvfsp->vfs_minfrags =
958 	    (int)((int64_t)fsp->fs_dsize * fsp->fs_minfree / 100);
959 	/*
960 	 * if mount allows largefiles, indicate so in ufsvfs
961 	 */
962 	if (flags & UFSMNT_LARGEFILES)
963 		ufsvfsp->vfs_lfflags |= UFS_LARGEFILES;
964 	/*
965 	 * Initialize threads
966 	 */
967 	ufs_delete_init(ufsvfsp, 1);
968 	ufs_thread_init(&ufsvfsp->vfs_reclaim, 0);
969 
970 	/*
971 	 * Chicken and egg problem. The superblock may have deltas
972 	 * in the log.  So after the log is scanned we reread the
973 	 * superblock. We guarantee that the fields needed to
974 	 * scan the log will not be in the log.
975 	 */
976 	if (fsp->fs_logbno && fsp->fs_clean == FSLOG &&
977 	    (fsp->fs_state + fsp->fs_time == FSOKAY)) {
978 		error = lufs_snarf(ufsvfsp, fsp, (vfsp->vfs_flag & VFS_RDONLY));
979 		if (error) {
980 			/*
981 			 * Allow a ro mount to continue even if the
982 			 * log cannot be processed - yet.
983 			 */
984 			if (!(vfsp->vfs_flag & VFS_RDONLY)) {
985 				cmn_err(CE_WARN, "Error accessing ufs "
986 				    "log for %s; Please run fsck(1M)", path);
987 				goto out;
988 			}
989 		}
990 		tp->b_flags |= (B_AGE | B_STALE);
991 		brelse(tp);
992 		tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE);
993 		fsp = (struct fs *)tp->b_un.b_addr;
994 		ufsvfsp->vfs_bufp = tp;
995 		if (tp->b_flags & B_ERROR)
996 			goto out;
997 	}
998 
999 	/*
1000 	 * Set logging mounted flag used by lockfs
1001 	 */
1002 	ufsvfsp->vfs_validfs = UT_MOUNTED;
1003 
1004 	/*
1005 	 * Copy the super block into a buffer in its native size.
1006 	 * Use ngeteblk to allocate the buffer
1007 	 */
1008 	bp = ngeteblk(fsp->fs_bsize);
1009 	ufsvfsp->vfs_bufp = bp;
1010 	bp->b_edev = dev;
1011 	bp->b_dev = cmpdev(dev);
1012 	bp->b_blkno = SBLOCK;
1013 	bp->b_bcount = fsp->fs_sbsize;
1014 	bcopy(tp->b_un.b_addr, bp->b_un.b_addr, fsp->fs_sbsize);
1015 	tp->b_flags |= B_STALE | B_AGE;
1016 	brelse(tp);
1017 	tp = 0;
1018 
1019 	fsp = (struct fs *)bp->b_un.b_addr;
1020 	/*
1021 	 * Mount fails if superblock flag indicates presence of large
1022 	 * files and filesystem is attempted to be mounted 'nolargefiles'.
1023 	 * The exception is for a read only mount of root, which we
1024 	 * always want to succeed, so fsck can fix potential problems.
1025 	 * The assumption is that we will remount root at some point,
1026 	 * and the remount will enforce the mount option.
1027 	 */
1028 	if (!(isroot & (vfsp->vfs_flag & VFS_RDONLY)) &&
1029 	    (fsp->fs_flags & FSLARGEFILES) &&
1030 	    !(flags & UFSMNT_LARGEFILES)) {
1031 		error = EFBIG;
1032 		goto out;
1033 	}
1034 
1035 	if (vfsp->vfs_flag & VFS_RDONLY) {
1036 		fsp->fs_ronly = 1;
1037 		fsp->fs_fmod = 0;
1038 		if (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
1039 		    ((fsp->fs_clean == FSCLEAN) ||
1040 		    (fsp->fs_clean == FSSTABLE) ||
1041 		    (fsp->fs_clean == FSLOG))) {
1042 			if (isroot) {
1043 				if (fsp->fs_clean == FSLOG) {
1044 					if (fsp->fs_rolled == FS_ALL_ROLLED) {
1045 						ufs_clean_root = 1;
1046 					}
1047 				} else {
1048 					ufs_clean_root = 1;
1049 				}
1050 			}
1051 			fsp->fs_clean = FSSTABLE;
1052 		} else {
1053 			fsp->fs_clean = FSBAD;
1054 		}
1055 	} else {
1056 
1057 		fsp->fs_fmod = 0;
1058 		fsp->fs_ronly = 0;
1059 
1060 		TRANS_DOMATAMAP(ufsvfsp);
1061 
1062 		if ((TRANS_ISERROR(ufsvfsp)) ||
1063 		    (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
1064 		    fsp->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp))) {
1065 			ufsvfsp->vfs_log = NULL;
1066 			ufsvfsp->vfs_domatamap = 0;
1067 			error = ENOSPC;
1068 			goto out;
1069 		}
1070 
1071 		if (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
1072 		    (fsp->fs_clean == FSCLEAN ||
1073 		    fsp->fs_clean == FSSTABLE ||
1074 		    fsp->fs_clean == FSLOG))
1075 			fsp->fs_clean = FSSTABLE;
1076 		else {
1077 			if (isroot) {
1078 				/*
1079 				 * allow root partition to be mounted even
1080 				 * when fs_state is not ok
1081 				 * will be fixed later by a remount root
1082 				 */
1083 				fsp->fs_clean = FSBAD;
1084 				ufsvfsp->vfs_log = NULL;
1085 				ufsvfsp->vfs_domatamap = 0;
1086 			} else {
1087 				error = ENOSPC;
1088 				goto out;
1089 			}
1090 		}
1091 
1092 		if (fsp->fs_clean == FSSTABLE && TRANS_ISTRANS(ufsvfsp))
1093 			fsp->fs_clean = FSLOG;
1094 	}
1095 	TRANS_MATA_MOUNT(ufsvfsp);
1096 	needtrans = 1;
1097 
1098 	vfsp->vfs_bsize = fsp->fs_bsize;
1099 
1100 	/*
1101 	 * Read in summary info
1102 	 */
1103 	if (error = ufs_getsummaryinfo(dev, ufsvfsp, fsp))
1104 		goto out;
1105 
1106 	/*
1107 	 * lastwhinetime is set to zero rather than lbolt, so that after
1108 	 * mounting if the filesystem is found to be full, then immediately the
1109 	 * "file system message" will be logged.
1110 	 */
1111 	ufsvfsp->vfs_lastwhinetime = 0L;
1112 
1113 
1114 	mutex_init(&ufsvfsp->vfs_lock, NULL, MUTEX_DEFAULT, NULL);
1115 	(void) copystr(path, fsp->fs_fsmnt, sizeof (fsp->fs_fsmnt) - 1, &len);
1116 	bzero(fsp->fs_fsmnt + len, sizeof (fsp->fs_fsmnt) - len);
1117 
1118 	/*
1119 	 * Sanity checks for old file systems
1120 	 */
1121 	if (fsp->fs_postblformat == FS_42POSTBLFMT)
1122 		ufsvfsp->vfs_nrpos = 8;
1123 	else
1124 		ufsvfsp->vfs_nrpos = fsp->fs_nrpos;
1125 
1126 	/*
1127 	 * Initialize lockfs structure to support file system locking
1128 	 */
1129 	bzero(&ufsvfsp->vfs_ulockfs.ul_lockfs,
1130 	    sizeof (struct lockfs));
1131 	ufsvfsp->vfs_ulockfs.ul_fs_lock = ULOCKFS_ULOCK;
1132 	mutex_init(&ufsvfsp->vfs_ulockfs.ul_lock, NULL,
1133 	    MUTEX_DEFAULT, NULL);
1134 	cv_init(&ufsvfsp->vfs_ulockfs.ul_cv, NULL, CV_DEFAULT, NULL);
1135 
1136 	/*
1137 	 * We don't need to grab vfs_dqrwlock for this ufs_iget() call.
1138 	 * We are in the process of mounting the file system so there
1139 	 * is no need to grab the quota lock. If a quota applies to the
1140 	 * root inode, then it will be updated when quotas are enabled.
1141 	 *
1142 	 * However, we have an ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock))
1143 	 * in getinoquota() that we want to keep so grab it anyway.
1144 	 */
1145 	rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1146 
1147 	error = ufs_iget_alloced(vfsp, UFSROOTINO, &rip, cr);
1148 
1149 	rw_exit(&ufsvfsp->vfs_dqrwlock);
1150 
1151 	if (error)
1152 		goto out;
1153 
1154 	/*
1155 	 * make sure root inode is a directory.  Returning ENOTDIR might
1156 	 * be confused with the mount point not being a directory, so
1157 	 * we use EIO instead.
1158 	 */
1159 	if ((rip->i_mode & IFMT) != IFDIR) {
1160 		/*
1161 		 * Mark this inode as subject for cleanup
1162 		 * to avoid stray inodes in the cache.
1163 		 */
1164 		rvp = ITOV(rip);
1165 		error = EIO;
1166 		goto out;
1167 	}
1168 
1169 	rvp = ITOV(rip);
1170 	mutex_enter(&rvp->v_lock);
1171 	rvp->v_flag |= VROOT;
1172 	mutex_exit(&rvp->v_lock);
1173 	ufsvfsp->vfs_root = rvp;
1174 	/* The buffer for the root inode does not contain a valid b_vp */
1175 	(void) bfinval(dev, 0);
1176 
1177 	/* options */
1178 	ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC;
1179 	ufsvfsp->vfs_nointr  = flags & UFSMNT_NOINTR;
1180 	ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR;
1181 	ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME;
1182 	if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime)
1183 		ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME;
1184 	else	/* dfratime, default behavior */
1185 		ufsvfsp->vfs_dfritime |= UFS_DFRATIME;
1186 	if (flags & UFSMNT_FORCEDIRECTIO)
1187 		ufsvfsp->vfs_forcedirectio = 1;
1188 	else if (flags & UFSMNT_NOFORCEDIRECTIO)
1189 		ufsvfsp->vfs_forcedirectio = 0;
1190 	ufsvfsp->vfs_iotstamp = lbolt;
1191 
1192 	ufsvfsp->vfs_nindiroffset = fsp->fs_nindir - 1;
1193 	ufsvfsp->vfs_nindirshift = highbit(ufsvfsp->vfs_nindiroffset);
1194 	ufsvfsp->vfs_ioclustsz = fsp->fs_bsize * fsp->fs_maxcontig;
1195 
1196 	if (cdev_ioctl(dev, DKIOCINFO, (intptr_t)&ci,
1197 	    FKIOCTL|FNATIVE|FREAD, CRED(), &status) == 0) {
1198 		ufsvfsp->vfs_iotransz = ci.dki_maxtransfer * DEV_BSIZE;
1199 	} else {
1200 		ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys);
1201 	}
1202 
1203 	if (ufsvfsp->vfs_iotransz <= 0) {
1204 		ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys);
1205 	}
1206 
1207 	/*
1208 	 * When logging, used to reserve log space for writes and truncs
1209 	 */
1210 	ufsvfsp->vfs_avgbfree = fsp->fs_cstotal.cs_nbfree / fsp->fs_ncg;
1211 
1212 	/*
1213 	 * Determine whether to log cylinder group summary info.
1214 	 */
1215 	ufsvfsp->vfs_nolog_si = (fsp->fs_ncg < ufs_ncg_log);
1216 
1217 	if (TRANS_ISTRANS(ufsvfsp)) {
1218 		/*
1219 		 * start the delete thread
1220 		 */
1221 		ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp);
1222 
1223 		/*
1224 		 * start reclaim thread if the filesystem was not mounted
1225 		 * read only.
1226 		 */
1227 		if (!fsp->fs_ronly && (fsp->fs_reclaim &
1228 		    (FS_RECLAIM|FS_RECLAIMING))) {
1229 			fsp->fs_reclaim &= ~FS_RECLAIM;
1230 			fsp->fs_reclaim |=  FS_RECLAIMING;
1231 			ufs_thread_start(&ufsvfsp->vfs_reclaim,
1232 			    ufs_thread_reclaim, vfsp);
1233 		}
1234 
1235 		/* Mark the fs as unrolled */
1236 		fsp->fs_rolled = FS_NEED_ROLL;
1237 	} else if (!fsp->fs_ronly && (fsp->fs_reclaim &
1238 	    (FS_RECLAIM|FS_RECLAIMING))) {
1239 		/*
1240 		 * If a file system that is mounted nologging, after
1241 		 * having previously been mounted logging, becomes
1242 		 * unmounted whilst the reclaim thread is in the throes
1243 		 * of reclaiming open/deleted inodes, a subsequent mount
1244 		 * of such a file system with logging disabled could lead
1245 		 * to inodes becoming lost.  So, start reclaim now, even
1246 		 * though logging was disabled for the previous mount, to
1247 		 * tidy things up.
1248 		 */
1249 		fsp->fs_reclaim &= ~FS_RECLAIM;
1250 		fsp->fs_reclaim |=  FS_RECLAIMING;
1251 		ufs_thread_start(&ufsvfsp->vfs_reclaim,
1252 		    ufs_thread_reclaim, vfsp);
1253 	}
1254 
1255 	if (!fsp->fs_ronly) {
1256 		TRANS_SBWRITE(ufsvfsp, TOP_MOUNT);
1257 		if (error = geterror(ufsvfsp->vfs_bufp))
1258 			goto out;
1259 	}
1260 
1261 	/* fix-on-panic initialization */
1262 	if (isroot && !(flags & UFSMNT_ONERROR_FLGMASK))
1263 		flags |= UFSMNT_ONERROR_PANIC;	/* XXX ..._RDONLY */
1264 
1265 	if ((error = ufsfx_mount(ufsvfsp, flags)) != 0)
1266 		goto out;
1267 
1268 	if (why == ROOT_INIT && isroot)
1269 		rootvp = devvp;
1270 
1271 	return (0);
1272 out:
1273 	if (error == 0)
1274 		error = EIO;
1275 	if (rvp) {
1276 		/* the following sequence is similar to ufs_unmount() */
1277 
1278 		/*
1279 		 * There's a problem that ufs_iget() puts inodes into
1280 		 * the inode cache before it returns them.  If someone
1281 		 * traverses that cache and gets a reference to our
1282 		 * inode, there's a chance they'll still be using it
1283 		 * after we've destroyed it.  This is a hard race to
1284 		 * hit, but it's happened (putting in a medium delay
1285 		 * here, and a large delay in ufs_scan_inodes() for
1286 		 * inodes on the device we're bailing out on, makes
1287 		 * the race easy to demonstrate).  The symptom is some
1288 		 * other part of UFS faulting on bad inode contents,
1289 		 * or when grabbing one of the locks inside the inode,
1290 		 * etc.  The usual victim is ufs_scan_inodes() or
1291 		 * someone called by it.
1292 		 */
1293 
1294 		/*
1295 		 * First, isolate it so that no new references can be
1296 		 * gotten via the inode cache.
1297 		 */
1298 		ihm = &ih_lock[INOHASH(UFSROOTINO)];
1299 		mutex_enter(ihm);
1300 		remque(rip);
1301 		mutex_exit(ihm);
1302 
1303 		/*
1304 		 * Now wait for all outstanding references except our
1305 		 * own to drain.  This could, in theory, take forever,
1306 		 * so don't wait *too* long.  If we time out, mark
1307 		 * it stale and leak it, so we don't hit the problem
1308 		 * described above.
1309 		 *
1310 		 * Note that v_count is an int, which means we can read
1311 		 * it in one operation.  Thus, there's no need to lock
1312 		 * around our tests.
1313 		 */
1314 		elapsed = 0;
1315 		while ((rvp->v_count > 1) && (elapsed < ufs_mount_timeout)) {
1316 			delay(ufs_mount_error_delay * drv_usectohz(1000));
1317 			elapsed += ufs_mount_error_delay;
1318 		}
1319 
1320 		if (rvp->v_count > 1) {
1321 			mutex_enter(&rip->i_tlock);
1322 			rip->i_flag |= ISTALE;
1323 			mutex_exit(&rip->i_tlock);
1324 			cmn_err(CE_WARN,
1325 			    "Timed out while cleaning up after "
1326 			    "failed mount of %s", path);
1327 		} else {
1328 
1329 			/*
1330 			 * Now we're the only one with a handle left, so tear
1331 			 * it down the rest of the way.
1332 			 */
1333 			if (ufs_rmidle(rip))
1334 				VN_RELE(rvp);
1335 			ufs_si_del(rip);
1336 			rip->i_ufsvfs = NULL;
1337 			rvp->v_vfsp = NULL;
1338 			rvp->v_type = VBAD;
1339 			VN_RELE(rvp);
1340 		}
1341 	}
1342 	if (needtrans) {
1343 		TRANS_MATA_UMOUNT(ufsvfsp);
1344 	}
1345 	if (ufsvfsp) {
1346 		ufs_vfs_remove(ufsvfsp);
1347 		ufs_thread_exit(&ufsvfsp->vfs_delete);
1348 		ufs_thread_exit(&ufsvfsp->vfs_reclaim);
1349 		mutex_destroy(&ufsvfsp->vfs_lock);
1350 		if (ufsvfsp->vfs_log) {
1351 			lufs_unsnarf(ufsvfsp);
1352 		}
1353 		kmem_free(ufsvfsp, sizeof (struct ufsvfs));
1354 	}
1355 	if (bp) {
1356 		bp->b_flags |= (B_STALE|B_AGE);
1357 		brelse(bp);
1358 	}
1359 	if (tp) {
1360 		tp->b_flags |= (B_STALE|B_AGE);
1361 		brelse(tp);
1362 	}
1363 	if (needclose) {
1364 		(void) VOP_CLOSE(devvp, (vfsp->vfs_flag & VFS_RDONLY) ?
1365 		    FREAD : FREAD|FWRITE, 1, (offset_t)0, cr, NULL);
1366 		bflush(dev);
1367 		(void) bfinval(dev, 1);
1368 	}
1369 	return (error);
1370 }
1371 
1372 /*
1373  * vfs operations
1374  */
1375 static int
1376 ufs_unmount(struct vfs *vfsp, int fflag, struct cred *cr)
1377 {
1378 	dev_t 		dev		= vfsp->vfs_dev;
1379 	struct ufsvfs	*ufsvfsp	= (struct ufsvfs *)vfsp->vfs_data;
1380 	struct fs	*fs		= ufsvfsp->vfs_fs;
1381 	struct ulockfs	*ulp		= &ufsvfsp->vfs_ulockfs;
1382 	struct vnode 	*bvp, *vp;
1383 	struct buf	*bp;
1384 	struct inode	*ip, *inext, *rip;
1385 	union ihead	*ih;
1386 	int 		error, flag, i;
1387 	struct lockfs	lockfs;
1388 	int		poll_events = POLLPRI;
1389 	extern struct pollhead ufs_pollhd;
1390 	refstr_t	*mountpoint;
1391 
1392 	ASSERT(vfs_lock_held(vfsp));
1393 
1394 	if (secpolicy_fs_unmount(cr, vfsp) != 0)
1395 		return (EPERM);
1396 	/*
1397 	 * Forced unmount is now supported through the
1398 	 * lockfs protocol.
1399 	 */
1400 	if (fflag & MS_FORCE) {
1401 		/*
1402 		 * Mark the filesystem as being unmounted now in
1403 		 * case of a forcible umount before we take any
1404 		 * locks inside UFS to prevent racing with a VFS_VGET()
1405 		 * request. Throw these VFS_VGET() requests away for
1406 		 * the duration of the forcible umount so they won't
1407 		 * use stale or even freed data later on when we're done.
1408 		 * It may happen that the VFS has had a additional hold
1409 		 * placed on it by someone other than UFS and thus will
1410 		 * not get freed immediately once we're done with the
1411 		 * umount by dounmount() - use VFS_UNMOUNTED to inform
1412 		 * users of this still-alive VFS that its corresponding
1413 		 * filesystem being gone so they can detect that and error
1414 		 * out.
1415 		 */
1416 		vfsp->vfs_flag |= VFS_UNMOUNTED;
1417 
1418 		ufs_thread_suspend(&ufsvfsp->vfs_delete);
1419 		mutex_enter(&ulp->ul_lock);
1420 		/*
1421 		 * If file system is already hard locked,
1422 		 * unmount the file system, otherwise
1423 		 * hard lock it before unmounting.
1424 		 */
1425 		if (!ULOCKFS_IS_HLOCK(ulp)) {
1426 			atomic_add_long(&ufs_quiesce_pend, 1);
1427 			lockfs.lf_lock = LOCKFS_HLOCK;
1428 			lockfs.lf_flags = 0;
1429 			lockfs.lf_key = ulp->ul_lockfs.lf_key + 1;
1430 			lockfs.lf_comlen = 0;
1431 			lockfs.lf_comment = NULL;
1432 			ufs_freeze(ulp, &lockfs);
1433 			ULOCKFS_SET_BUSY(ulp);
1434 			LOCKFS_SET_BUSY(&ulp->ul_lockfs);
1435 			(void) ufs_quiesce(ulp);
1436 			(void) ufs_flush(vfsp);
1437 			(void) ufs_thaw(vfsp, ufsvfsp, ulp);
1438 			atomic_add_long(&ufs_quiesce_pend, -1);
1439 			ULOCKFS_CLR_BUSY(ulp);
1440 			LOCKFS_CLR_BUSY(&ulp->ul_lockfs);
1441 			poll_events |= POLLERR;
1442 			pollwakeup(&ufs_pollhd, poll_events);
1443 		}
1444 		ufs_thread_continue(&ufsvfsp->vfs_delete);
1445 		mutex_exit(&ulp->ul_lock);
1446 	}
1447 
1448 	/* let all types of writes go through */
1449 	ufsvfsp->vfs_iotstamp = lbolt;
1450 
1451 	/* coordinate with global hlock thread */
1452 	if (TRANS_ISTRANS(ufsvfsp) && (ufsvfsp->vfs_validfs == UT_HLOCKING)) {
1453 		/*
1454 		 * last possibility for a forced umount to fail hence clear
1455 		 * VFS_UNMOUNTED if appropriate.
1456 		 */
1457 		if (fflag & MS_FORCE)
1458 			vfsp->vfs_flag &= ~VFS_UNMOUNTED;
1459 		return (EAGAIN);
1460 	}
1461 
1462 	ufsvfsp->vfs_validfs = UT_UNMOUNTED;
1463 
1464 	/* kill the reclaim thread */
1465 	ufs_thread_exit(&ufsvfsp->vfs_reclaim);
1466 
1467 	/* suspend the delete thread */
1468 	ufs_thread_suspend(&ufsvfsp->vfs_delete);
1469 
1470 	/*
1471 	 * drain the delete and idle queues
1472 	 */
1473 	ufs_delete_drain(vfsp, -1, 1);
1474 	ufs_idle_drain(vfsp);
1475 
1476 	/*
1477 	 * use the lockfs protocol to prevent new ops from starting
1478 	 * a forcible umount can not fail beyond this point as
1479 	 * we hard-locked the filesystem and drained all current consumers
1480 	 * before.
1481 	 */
1482 	mutex_enter(&ulp->ul_lock);
1483 
1484 	/*
1485 	 * if the file system is busy; return EBUSY
1486 	 */
1487 	if (ulp->ul_vnops_cnt || ulp->ul_falloc_cnt || ULOCKFS_IS_SLOCK(ulp)) {
1488 		error = EBUSY;
1489 		goto out;
1490 	}
1491 
1492 	/*
1493 	 * if this is not a forced unmount (!hard/error locked), then
1494 	 * get rid of every inode except the root and quota inodes
1495 	 * also, commit any outstanding transactions
1496 	 */
1497 	if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp))
1498 		if (error = ufs_flush(vfsp))
1499 			goto out;
1500 
1501 	/*
1502 	 * ignore inodes in the cache if fs is hard locked or error locked
1503 	 */
1504 	rip = VTOI(ufsvfsp->vfs_root);
1505 	if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp)) {
1506 		/*
1507 		 * Otherwise, only the quota and root inodes are in the cache.
1508 		 *
1509 		 * Avoid racing with ufs_update() and ufs_sync().
1510 		 */
1511 		mutex_enter(&ufs_scan_lock);
1512 
1513 		for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
1514 			mutex_enter(&ih_lock[i]);
1515 			for (ip = ih->ih_chain[0];
1516 			    ip != (struct inode *)ih;
1517 			    ip = ip->i_forw) {
1518 				if (ip->i_ufsvfs != ufsvfsp)
1519 					continue;
1520 				if (ip == ufsvfsp->vfs_qinod)
1521 					continue;
1522 				if (ip == rip && ITOV(ip)->v_count == 1)
1523 					continue;
1524 				mutex_exit(&ih_lock[i]);
1525 				mutex_exit(&ufs_scan_lock);
1526 				error = EBUSY;
1527 				goto out;
1528 			}
1529 			mutex_exit(&ih_lock[i]);
1530 		}
1531 		mutex_exit(&ufs_scan_lock);
1532 	}
1533 
1534 	/*
1535 	 * if a snapshot exists and this is a forced unmount, then delete
1536 	 * the snapshot.  Otherwise return EBUSY.  This will insure the
1537 	 * snapshot always belongs to a valid file system.
1538 	 */
1539 	if (ufsvfsp->vfs_snapshot) {
1540 		if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) {
1541 			(void) fssnap_delete(&ufsvfsp->vfs_snapshot);
1542 		} else {
1543 			error = EBUSY;
1544 			goto out;
1545 		}
1546 	}
1547 
1548 	/*
1549 	 * Close the quota file and invalidate anything left in the quota
1550 	 * cache for this file system.  Pass kcred to allow all quota
1551 	 * manipulations.
1552 	 */
1553 	(void) closedq(ufsvfsp, kcred);
1554 	invalidatedq(ufsvfsp);
1555 	/*
1556 	 * drain the delete and idle queues
1557 	 */
1558 	ufs_delete_drain(vfsp, -1, 0);
1559 	ufs_idle_drain(vfsp);
1560 
1561 	/*
1562 	 * discard the inodes for this fs (including root, shadow, and quota)
1563 	 */
1564 	for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
1565 		mutex_enter(&ih_lock[i]);
1566 		for (inext = 0, ip = ih->ih_chain[0];
1567 		    ip != (struct inode *)ih;
1568 		    ip = inext) {
1569 			inext = ip->i_forw;
1570 			if (ip->i_ufsvfs != ufsvfsp)
1571 				continue;
1572 
1573 			/*
1574 			 * We've found the inode in the cache and as we
1575 			 * hold the hash mutex the inode can not
1576 			 * disappear from underneath us.
1577 			 * We also know it must have at least a vnode
1578 			 * reference count of 1.
1579 			 * We perform an additional VN_HOLD so the VN_RELE
1580 			 * in case we take the inode off the idle queue
1581 			 * can not be the last one.
1582 			 * It is safe to grab the writer contents lock here
1583 			 * to prevent a race with ufs_iinactive() putting
1584 			 * inodes into the idle queue while we operate on
1585 			 * this inode.
1586 			 */
1587 			rw_enter(&ip->i_contents, RW_WRITER);
1588 
1589 			vp = ITOV(ip);
1590 			VN_HOLD(vp)
1591 			remque(ip);
1592 			if (ufs_rmidle(ip))
1593 				VN_RELE(vp);
1594 			ufs_si_del(ip);
1595 			/*
1596 			 * rip->i_ufsvfsp is needed by bflush()
1597 			 */
1598 			if (ip != rip)
1599 				ip->i_ufsvfs = NULL;
1600 			/*
1601 			 * Set vnode's vfsops to dummy ops, which return
1602 			 * EIO. This is needed to forced unmounts to work
1603 			 * with lofs/nfs properly.
1604 			 */
1605 			if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp))
1606 				vp->v_vfsp = &EIO_vfs;
1607 			else
1608 				vp->v_vfsp = NULL;
1609 			vp->v_type = VBAD;
1610 
1611 			rw_exit(&ip->i_contents);
1612 
1613 			VN_RELE(vp);
1614 		}
1615 		mutex_exit(&ih_lock[i]);
1616 	}
1617 	ufs_si_cache_flush(dev);
1618 
1619 	/*
1620 	 * kill the delete thread and drain the idle queue
1621 	 */
1622 	ufs_thread_exit(&ufsvfsp->vfs_delete);
1623 	ufs_idle_drain(vfsp);
1624 
1625 	bp = ufsvfsp->vfs_bufp;
1626 	bvp = ufsvfsp->vfs_devvp;
1627 	flag = !fs->fs_ronly;
1628 	if (flag) {
1629 		bflush(dev);
1630 		if (fs->fs_clean != FSBAD) {
1631 			if (fs->fs_clean == FSSTABLE)
1632 				fs->fs_clean = FSCLEAN;
1633 			fs->fs_reclaim &= ~FS_RECLAIM;
1634 		}
1635 		if (TRANS_ISTRANS(ufsvfsp) &&
1636 		    !TRANS_ISERROR(ufsvfsp) &&
1637 		    !ULOCKFS_IS_HLOCK(ulp) &&
1638 		    (fs->fs_rolled == FS_NEED_ROLL)) {
1639 			/*
1640 			 * ufs_flush() above has flushed the last Moby.
1641 			 * This is needed to ensure the following superblock
1642 			 * update really is the last metadata update
1643 			 */
1644 			error = ufs_putsummaryinfo(dev, ufsvfsp, fs);
1645 			if (error == 0) {
1646 				fs->fs_rolled = FS_ALL_ROLLED;
1647 			}
1648 		}
1649 		TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UNMOUNT);
1650 		/*
1651 		 * push this last transaction
1652 		 */
1653 		curthread->t_flag |= T_DONTBLOCK;
1654 		TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UNMOUNT, TOP_COMMIT_SIZE,
1655 		    error);
1656 		if (!error)
1657 			TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UNMOUNT,
1658 			    TOP_COMMIT_SIZE);
1659 		curthread->t_flag &= ~T_DONTBLOCK;
1660 	}
1661 
1662 	TRANS_MATA_UMOUNT(ufsvfsp);
1663 	lufs_unsnarf(ufsvfsp);		/* Release the in-memory structs */
1664 	ufsfx_unmount(ufsvfsp);		/* fix-on-panic bookkeeping */
1665 	kmem_free(fs->fs_u.fs_csp, fs->fs_cssize);
1666 
1667 	bp->b_flags |= B_STALE|B_AGE;
1668 	ufsvfsp->vfs_bufp = NULL;	/* don't point at freed buf */
1669 	brelse(bp);			/* free the superblock buf */
1670 
1671 	(void) VOP_PUTPAGE(common_specvp(bvp), (offset_t)0, (size_t)0,
1672 	    B_INVAL, cr, NULL);
1673 	(void) VOP_CLOSE(bvp, flag, 1, (offset_t)0, cr, NULL);
1674 	bflush(dev);
1675 	(void) bfinval(dev, 1);
1676 	VN_RELE(bvp);
1677 
1678 	/*
1679 	 * It is now safe to NULL out the ufsvfs pointer and discard
1680 	 * the root inode.
1681 	 */
1682 	rip->i_ufsvfs = NULL;
1683 	VN_RELE(ITOV(rip));
1684 
1685 	/* free up lockfs comment structure, if any */
1686 	if (ulp->ul_lockfs.lf_comlen && ulp->ul_lockfs.lf_comment)
1687 		kmem_free(ulp->ul_lockfs.lf_comment, ulp->ul_lockfs.lf_comlen);
1688 
1689 	/*
1690 	 * Remove from instance list.
1691 	 */
1692 	ufs_vfs_remove(ufsvfsp);
1693 
1694 	/*
1695 	 * For a forcible unmount, threads may be asleep in
1696 	 * ufs_lockfs_begin/ufs_check_lockfs.  These threads will need
1697 	 * the ufsvfs structure so we don't free it, yet.  ufs_update
1698 	 * will free it up after awhile.
1699 	 */
1700 	if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) {
1701 		extern kmutex_t		ufsvfs_mutex;
1702 		extern struct ufsvfs	*ufsvfslist;
1703 
1704 		mutex_enter(&ufsvfs_mutex);
1705 		ufsvfsp->vfs_dontblock = 1;
1706 		ufsvfsp->vfs_next = ufsvfslist;
1707 		ufsvfslist = ufsvfsp;
1708 		mutex_exit(&ufsvfs_mutex);
1709 		/* wakeup any suspended threads */
1710 		cv_broadcast(&ulp->ul_cv);
1711 		mutex_exit(&ulp->ul_lock);
1712 	} else {
1713 		mutex_destroy(&ufsvfsp->vfs_lock);
1714 		kmem_free(ufsvfsp, sizeof (struct ufsvfs));
1715 	}
1716 
1717 	/*
1718 	 * Now mark the filesystem as unmounted since we're done with it.
1719 	 */
1720 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1721 
1722 	return (0);
1723 out:
1724 	/* open the fs to new ops */
1725 	cv_broadcast(&ulp->ul_cv);
1726 	mutex_exit(&ulp->ul_lock);
1727 
1728 	if (TRANS_ISTRANS(ufsvfsp)) {
1729 		/* allow the delete thread to continue */
1730 		ufs_thread_continue(&ufsvfsp->vfs_delete);
1731 		/* restart the reclaim thread */
1732 		ufs_thread_start(&ufsvfsp->vfs_reclaim, ufs_thread_reclaim,
1733 		    vfsp);
1734 		/* coordinate with global hlock thread */
1735 		ufsvfsp->vfs_validfs = UT_MOUNTED;
1736 		/* check for trans errors during umount */
1737 		ufs_trans_onerror();
1738 
1739 		/*
1740 		 * if we have a separate /usr it will never unmount
1741 		 * when halting. In order to not re-read all the
1742 		 * cylinder group summary info on mounting after
1743 		 * reboot the logging of summary info is re-enabled
1744 		 * and the super block written out.
1745 		 */
1746 		mountpoint = vfs_getmntpoint(vfsp);
1747 		if ((fs->fs_si == FS_SI_OK) &&
1748 		    (strcmp("/usr", refstr_value(mountpoint)) == 0)) {
1749 			ufsvfsp->vfs_nolog_si = 0;
1750 			UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp);
1751 		}
1752 		refstr_rele(mountpoint);
1753 	}
1754 
1755 	return (error);
1756 }
1757 
1758 static int
1759 ufs_root(struct vfs *vfsp, struct vnode **vpp)
1760 {
1761 	struct ufsvfs *ufsvfsp;
1762 	struct vnode *vp;
1763 
1764 	if (!vfsp)
1765 		return (EIO);
1766 
1767 	ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1768 	if (!ufsvfsp || !ufsvfsp->vfs_root)
1769 		return (EIO);	/* forced unmount */
1770 
1771 	vp = ufsvfsp->vfs_root;
1772 	VN_HOLD(vp);
1773 	*vpp = vp;
1774 	return (0);
1775 }
1776 
1777 /*
1778  * Get file system statistics.
1779  */
1780 static int
1781 ufs_statvfs(struct vfs *vfsp, struct statvfs64 *sp)
1782 {
1783 	struct fs *fsp;
1784 	struct ufsvfs *ufsvfsp;
1785 	int blk, i;
1786 	long max_avail, used;
1787 	dev32_t d32;
1788 
1789 	if (vfsp->vfs_flag & VFS_UNMOUNTED)
1790 		return (EIO);
1791 
1792 	ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1793 	fsp = ufsvfsp->vfs_fs;
1794 	if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC))
1795 		return (EINVAL);
1796 	if (fsp->fs_magic == FS_MAGIC &&
1797 	    (fsp->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
1798 	    fsp->fs_version != UFS_VERSION_MIN))
1799 		return (EINVAL);
1800 	if (fsp->fs_magic == MTB_UFS_MAGIC &&
1801 	    (fsp->fs_version > MTB_UFS_VERSION_1 ||
1802 	    fsp->fs_version < MTB_UFS_VERSION_MIN))
1803 		return (EINVAL);
1804 
1805 	/*
1806 	 * get the basic numbers
1807 	 */
1808 	(void) bzero(sp, sizeof (*sp));
1809 
1810 	sp->f_bsize = fsp->fs_bsize;
1811 	sp->f_frsize = fsp->fs_fsize;
1812 	sp->f_blocks = (fsblkcnt64_t)fsp->fs_dsize;
1813 	sp->f_bfree = (fsblkcnt64_t)fsp->fs_cstotal.cs_nbfree * fsp->fs_frag +
1814 	    fsp->fs_cstotal.cs_nffree;
1815 
1816 	sp->f_files = (fsfilcnt64_t)fsp->fs_ncg * fsp->fs_ipg;
1817 	sp->f_ffree = (fsfilcnt64_t)fsp->fs_cstotal.cs_nifree;
1818 
1819 	/*
1820 	 * Adjust the numbers based on things waiting to be deleted.
1821 	 * modifies f_bfree and f_ffree.  Afterwards, everything we
1822 	 * come up with will be self-consistent.  By definition, this
1823 	 * is a point-in-time snapshot, so the fact that the delete
1824 	 * thread's probably already invalidated the results is not a
1825 	 * problem.  Note that if the delete thread is ever extended to
1826 	 * non-logging ufs, this adjustment must always be made.
1827 	 */
1828 	if (TRANS_ISTRANS(ufsvfsp))
1829 		ufs_delete_adjust_stats(ufsvfsp, sp);
1830 
1831 	/*
1832 	 * avail = MAX(max_avail - used, 0)
1833 	 */
1834 	max_avail = fsp->fs_dsize - ufsvfsp->vfs_minfrags;
1835 
1836 	used = (fsp->fs_dsize - sp->f_bfree);
1837 
1838 	if (max_avail > used)
1839 		sp->f_bavail = (fsblkcnt64_t)max_avail - used;
1840 	else
1841 		sp->f_bavail = (fsblkcnt64_t)0;
1842 
1843 	sp->f_favail = sp->f_ffree;
1844 	(void) cmpldev(&d32, vfsp->vfs_dev);
1845 	sp->f_fsid = d32;
1846 	(void) strcpy(sp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1847 	sp->f_flag = vf_to_stf(vfsp->vfs_flag);
1848 
1849 	/* keep coordinated with ufs_l_pathconf() */
1850 	sp->f_namemax = MAXNAMLEN;
1851 
1852 	if (fsp->fs_cpc == 0) {
1853 		bzero(sp->f_fstr, 14);
1854 		return (0);
1855 	}
1856 	blk = fsp->fs_spc * fsp->fs_cpc / NSPF(fsp);
1857 	for (i = 0; i < blk; i += fsp->fs_frag) /* CSTYLED */
1858 		/* void */;
1859 	i -= fsp->fs_frag;
1860 	blk = i / fsp->fs_frag;
1861 	bcopy(&(fs_rotbl(fsp)[blk]), sp->f_fstr, 14);
1862 	return (0);
1863 }
1864 
1865 /*
1866  * Flush any pending I/O to file system vfsp.
1867  * The ufs_update() routine will only flush *all* ufs files.
1868  * If vfsp is non-NULL, only sync this ufs (in preparation
1869  * for a umount).
1870  */
1871 /*ARGSUSED*/
1872 static int
1873 ufs_sync(struct vfs *vfsp, short flag, struct cred *cr)
1874 {
1875 	struct ufsvfs *ufsvfsp;
1876 	struct fs *fs;
1877 	int cheap = flag & SYNC_ATTR;
1878 	int error;
1879 
1880 	/*
1881 	 * SYNC_CLOSE means we're rebooting.  Toss everything
1882 	 * on the idle queue so we don't have to slog through
1883 	 * a bunch of uninteresting inodes over and over again.
1884 	 */
1885 	if (flag & SYNC_CLOSE)
1886 		ufs_idle_drain(NULL);
1887 
1888 	if (vfsp == NULL) {
1889 		ufs_update(flag);
1890 		return (0);
1891 	}
1892 
1893 	/* Flush a single ufs */
1894 	if (!vfs_matchops(vfsp, ufs_vfsops) || vfs_lock(vfsp) != 0)
1895 		return (0);
1896 
1897 	ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1898 	if (!ufsvfsp)
1899 		return (EIO);
1900 	fs = ufsvfsp->vfs_fs;
1901 	mutex_enter(&ufsvfsp->vfs_lock);
1902 
1903 	if (ufsvfsp->vfs_dio &&
1904 	    fs->fs_ronly == 0 &&
1905 	    fs->fs_clean != FSBAD &&
1906 	    fs->fs_clean != FSLOG) {
1907 		/* turn off fast-io on unmount, so no fsck needed (4029401) */
1908 		ufsvfsp->vfs_dio = 0;
1909 		fs->fs_clean = FSACTIVE;
1910 		fs->fs_fmod = 1;
1911 	}
1912 
1913 	/* Write back modified superblock */
1914 	if (fs->fs_fmod == 0) {
1915 		mutex_exit(&ufsvfsp->vfs_lock);
1916 	} else {
1917 		if (fs->fs_ronly != 0) {
1918 			mutex_exit(&ufsvfsp->vfs_lock);
1919 			vfs_unlock(vfsp);
1920 			return (ufs_fault(ufsvfsp->vfs_root,
1921 			    "fs = %s update: ro fs mod\n", fs->fs_fsmnt));
1922 		}
1923 		fs->fs_fmod = 0;
1924 		mutex_exit(&ufsvfsp->vfs_lock);
1925 
1926 		TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UPDATE);
1927 	}
1928 	vfs_unlock(vfsp);
1929 
1930 	/*
1931 	 * Avoid racing with ufs_update() and ufs_unmount().
1932 	 *
1933 	 */
1934 	mutex_enter(&ufs_scan_lock);
1935 
1936 	(void) ufs_scan_inodes(1, ufs_sync_inode,
1937 	    (void *)(uintptr_t)cheap, ufsvfsp);
1938 
1939 	mutex_exit(&ufs_scan_lock);
1940 
1941 	bflush((dev_t)vfsp->vfs_dev);
1942 
1943 	/*
1944 	 * commit any outstanding async transactions
1945 	 */
1946 	curthread->t_flag |= T_DONTBLOCK;
1947 	TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UPDATE, TOP_COMMIT_SIZE, error);
1948 	if (!error) {
1949 		TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UPDATE,
1950 		    TOP_COMMIT_SIZE);
1951 	}
1952 	curthread->t_flag &= ~T_DONTBLOCK;
1953 
1954 	return (0);
1955 }
1956 
1957 
1958 void
1959 sbupdate(struct vfs *vfsp)
1960 {
1961 	struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1962 	struct fs *fs = ufsvfsp->vfs_fs;
1963 	struct buf *bp;
1964 	int blks;
1965 	caddr_t space;
1966 	int i;
1967 	size_t size;
1968 
1969 	/*
1970 	 * for ulockfs processing, limit the superblock writes
1971 	 */
1972 	if ((ufsvfsp->vfs_ulockfs.ul_sbowner) &&
1973 	    (curthread != ufsvfsp->vfs_ulockfs.ul_sbowner)) {
1974 		/* process later */
1975 		fs->fs_fmod = 1;
1976 		return;
1977 	}
1978 	ULOCKFS_SET_MOD((&ufsvfsp->vfs_ulockfs));
1979 
1980 	if (TRANS_ISTRANS(ufsvfsp)) {
1981 		mutex_enter(&ufsvfsp->vfs_lock);
1982 		ufs_sbwrite(ufsvfsp);
1983 		mutex_exit(&ufsvfsp->vfs_lock);
1984 		return;
1985 	}
1986 
1987 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
1988 	space = (caddr_t)fs->fs_u.fs_csp;
1989 	for (i = 0; i < blks; i += fs->fs_frag) {
1990 		size = fs->fs_bsize;
1991 		if (i + fs->fs_frag > blks)
1992 			size = (blks - i) * fs->fs_fsize;
1993 		bp = UFS_GETBLK(ufsvfsp, ufsvfsp->vfs_dev,
1994 		    (daddr_t)(fsbtodb(fs, fs->fs_csaddr + i)),
1995 		    fs->fs_bsize);
1996 		bcopy(space, bp->b_un.b_addr, size);
1997 		space += size;
1998 		bp->b_bcount = size;
1999 		UFS_BRWRITE(ufsvfsp, bp);
2000 	}
2001 	mutex_enter(&ufsvfsp->vfs_lock);
2002 	ufs_sbwrite(ufsvfsp);
2003 	mutex_exit(&ufsvfsp->vfs_lock);
2004 }
2005 
2006 int ufs_vget_idle_count = 2;	/* Number of inodes to idle each time */
2007 static int
2008 ufs_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp)
2009 {
2010 	int error = 0;
2011 	struct ufid *ufid;
2012 	struct inode *ip;
2013 	struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
2014 	struct ulockfs *ulp;
2015 
2016 	/*
2017 	 * Check for unmounted filesystem.
2018 	 */
2019 	if (vfsp->vfs_flag & VFS_UNMOUNTED) {
2020 		error = EIO;
2021 		goto errout;
2022 	}
2023 
2024 	/*
2025 	 * Keep the idle queue from getting too long by
2026 	 * idling an inode before attempting to allocate another.
2027 	 *    This operation must be performed before entering
2028 	 *    lockfs or a transaction.
2029 	 */
2030 	if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
2031 		if ((curthread->t_flag & T_DONTBLOCK) == 0) {
2032 			ins.in_vidles.value.ul += ufs_vget_idle_count;
2033 			ufs_idle_some(ufs_vget_idle_count);
2034 		}
2035 
2036 	ufid = (struct ufid *)fidp;
2037 
2038 	if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_VGET_MASK))
2039 		goto errout;
2040 
2041 	rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2042 
2043 	error = ufs_iget(vfsp, ufid->ufid_ino, &ip, CRED());
2044 
2045 	rw_exit(&ufsvfsp->vfs_dqrwlock);
2046 
2047 	ufs_lockfs_end(ulp);
2048 
2049 	if (error)
2050 		goto errout;
2051 
2052 	/*
2053 	 * Check if the inode has been deleted or freed or is in transient state
2054 	 * since the last VFS_VGET() request for it, release it and don't return
2055 	 * it to the caller, presumably NFS, as it's no longer valid.
2056 	 */
2057 	if (ip->i_gen != ufid->ufid_gen || ip->i_mode == 0 ||
2058 	    (ip->i_flag & IDEL)) {
2059 		VN_RELE(ITOV(ip));
2060 		error = EINVAL;
2061 		goto errout;
2062 	}
2063 
2064 	*vpp = ITOV(ip);
2065 	return (0);
2066 
2067 errout:
2068 	*vpp = NULL;
2069 	return (error);
2070 }
2071 
2072 static int
2073 ufsinit(int fstype, char *name)
2074 {
2075 	static const fs_operation_def_t ufs_vfsops_template[] = {
2076 		VFSNAME_MOUNT,		{ .vfs_mount = ufs_mount },
2077 		VFSNAME_UNMOUNT,	{ .vfs_unmount = ufs_unmount },
2078 		VFSNAME_ROOT,		{ .vfs_root = ufs_root },
2079 		VFSNAME_STATVFS,	{ .vfs_statvfs = ufs_statvfs },
2080 		VFSNAME_SYNC,		{ .vfs_sync = ufs_sync },
2081 		VFSNAME_VGET,		{ .vfs_vget = ufs_vget },
2082 		VFSNAME_MOUNTROOT,	{ .vfs_mountroot = ufs_mountroot },
2083 		NULL,			NULL
2084 	};
2085 	int error;
2086 
2087 	ufsfstype = fstype;
2088 
2089 	error = vfs_setfsops(fstype, ufs_vfsops_template, &ufs_vfsops);
2090 	if (error != 0) {
2091 		cmn_err(CE_WARN, "ufsinit: bad vfs ops template");
2092 		return (error);
2093 	}
2094 
2095 	error = vn_make_ops(name, ufs_vnodeops_template, &ufs_vnodeops);
2096 	if (error != 0) {
2097 		(void) vfs_freevfsops_by_type(fstype);
2098 		cmn_err(CE_WARN, "ufsinit: bad vnode ops template");
2099 		return (error);
2100 	}
2101 
2102 	ufs_iinit();
2103 	return (0);
2104 }
2105 
2106 #ifdef __sparc
2107 
2108 /*
2109  * Mounting a mirrored SVM volume is only supported on ufs,
2110  * this is special-case boot code to support that configuration.
2111  * At this point, we have booted and mounted root on a
2112  * single component of the mirror.  Complete the boot
2113  * by configuring SVM and converting the root to the
2114  * dev_t of the mirrored root device.  This dev_t conversion
2115  * only works because the underlying device doesn't change.
2116  */
2117 int
2118 ufs_remountroot(struct vfs *vfsp)
2119 {
2120 	struct ufsvfs *ufsvfsp;
2121 	struct ulockfs *ulp;
2122 	dev_t new_rootdev;
2123 	dev_t old_rootdev;
2124 	struct vnode *old_rootvp;
2125 	struct vnode *new_rootvp;
2126 	int error, sberror = 0;
2127 	struct inode	*ip;
2128 	union ihead	*ih;
2129 	struct buf	*bp;
2130 	int i;
2131 
2132 	old_rootdev = rootdev;
2133 	old_rootvp = rootvp;
2134 
2135 	new_rootdev = getrootdev();
2136 	if (new_rootdev == (dev_t)NODEV) {
2137 		return (ENODEV);
2138 	}
2139 
2140 	new_rootvp = makespecvp(new_rootdev, VBLK);
2141 
2142 	error = VOP_OPEN(&new_rootvp,
2143 	    (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE, CRED(), NULL);
2144 	if (error) {
2145 		cmn_err(CE_CONT,
2146 		    "Cannot open mirrored root device, error %d\n", error);
2147 		return (error);
2148 	}
2149 
2150 	if (vfs_lock(vfsp) != 0) {
2151 		return (EBUSY);
2152 	}
2153 
2154 	ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
2155 	ulp = &ufsvfsp->vfs_ulockfs;
2156 
2157 	mutex_enter(&ulp->ul_lock);
2158 	atomic_add_long(&ufs_quiesce_pend, 1);
2159 
2160 	(void) ufs_quiesce(ulp);
2161 	(void) ufs_flush(vfsp);
2162 
2163 	/*
2164 	 * Convert root vfs to new dev_t, including vfs hash
2165 	 * table and fs id.
2166 	 */
2167 	vfs_root_redev(vfsp, new_rootdev, ufsfstype);
2168 
2169 	ufsvfsp->vfs_devvp = new_rootvp;
2170 	ufsvfsp->vfs_dev = new_rootdev;
2171 
2172 	bp = ufsvfsp->vfs_bufp;
2173 	bp->b_edev = new_rootdev;
2174 	bp->b_dev = cmpdev(new_rootdev);
2175 
2176 	/*
2177 	 * The buffer for the root inode does not contain a valid b_vp
2178 	 */
2179 	(void) bfinval(new_rootdev, 0);
2180 
2181 	/*
2182 	 * Here we hand-craft inodes with old root device
2183 	 * references to refer to the new device instead.
2184 	 */
2185 	mutex_enter(&ufs_scan_lock);
2186 
2187 	for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
2188 		mutex_enter(&ih_lock[i]);
2189 		for (ip = ih->ih_chain[0];
2190 		    ip != (struct inode *)ih;
2191 		    ip = ip->i_forw) {
2192 			if (ip->i_ufsvfs != ufsvfsp)
2193 				continue;
2194 			if (ip == ufsvfsp->vfs_qinod)
2195 				continue;
2196 			if (ip->i_dev == old_rootdev) {
2197 				ip->i_dev = new_rootdev;
2198 			}
2199 
2200 			if (ip->i_devvp == old_rootvp) {
2201 				ip->i_devvp = new_rootvp;
2202 			}
2203 		}
2204 		mutex_exit(&ih_lock[i]);
2205 	}
2206 
2207 	mutex_exit(&ufs_scan_lock);
2208 
2209 	/*
2210 	 * Make Sure logging structures are using the new device
2211 	 * if logging is enabled.  Also start any logging thread that
2212 	 * needs to write to the device and couldn't earlier.
2213 	 */
2214 	if (ufsvfsp->vfs_log) {
2215 		buf_t		*bp, *tbp;
2216 		ml_unit_t	*ul = ufsvfsp->vfs_log;
2217 		struct fs	*fsp = ufsvfsp->vfs_fs;
2218 
2219 		/*
2220 		 * Update the main logging structure.
2221 		 */
2222 		ul->un_dev = new_rootdev;
2223 
2224 		/*
2225 		 * Get a new bp for the on disk structures.
2226 		 */
2227 		bp = ul->un_bp;
2228 		tbp = ngeteblk(dbtob(LS_SECTORS));
2229 		tbp->b_edev = new_rootdev;
2230 		tbp->b_dev = cmpdev(new_rootdev);
2231 		tbp->b_blkno = bp->b_blkno;
2232 		bcopy(bp->b_un.b_addr, tbp->b_un.b_addr, DEV_BSIZE);
2233 		bcopy(bp->b_un.b_addr, tbp->b_un.b_addr + DEV_BSIZE, DEV_BSIZE);
2234 		bp->b_flags |= (B_STALE | B_AGE);
2235 		brelse(bp);
2236 		ul->un_bp = tbp;
2237 
2238 		/*
2239 		 * Allocate new circular buffers.
2240 		 */
2241 		alloc_rdbuf(&ul->un_rdbuf, MAPBLOCKSIZE, MAPBLOCKSIZE);
2242 		alloc_wrbuf(&ul->un_wrbuf, ldl_bufsize(ul));
2243 
2244 		/*
2245 		 * Clear the noroll bit which indicates that logging
2246 		 * can't roll the log yet and start the logmap roll thread
2247 		 * unless the filesystem is still read-only in which case
2248 		 * remountfs() will do it when going to read-write.
2249 		 */
2250 		ASSERT(ul->un_flags & LDL_NOROLL);
2251 
2252 		if (!fsp->fs_ronly) {
2253 			ul->un_flags &= ~LDL_NOROLL;
2254 			logmap_start_roll(ul);
2255 		}
2256 
2257 		/*
2258 		 * Start the reclaim thread if needed.
2259 		 */
2260 		if (!fsp->fs_ronly && (fsp->fs_reclaim &
2261 		    (FS_RECLAIM|FS_RECLAIMING))) {
2262 			fsp->fs_reclaim &= ~FS_RECLAIM;
2263 			fsp->fs_reclaim |= FS_RECLAIMING;
2264 			ufs_thread_start(&ufsvfsp->vfs_reclaim,
2265 			    ufs_thread_reclaim, vfsp);
2266 			TRANS_SBWRITE(ufsvfsp, TOP_SBUPDATE_UPDATE);
2267 			if (sberror = geterror(ufsvfsp->vfs_bufp)) {
2268 				refstr_t	*mntpt;
2269 				mntpt = vfs_getmntpoint(vfsp);
2270 				cmn_err(CE_WARN,
2271 				    "Remountroot failed to update Reclaim"
2272 				    "state for filesystem %s "
2273 				    "Error writing SuperBlock %d",
2274 				    refstr_value(mntpt), error);
2275 				refstr_rele(mntpt);
2276 			}
2277 		}
2278 	}
2279 
2280 	rootdev = new_rootdev;
2281 	rootvp = new_rootvp;
2282 
2283 	atomic_add_long(&ufs_quiesce_pend, -1);
2284 	cv_broadcast(&ulp->ul_cv);
2285 	mutex_exit(&ulp->ul_lock);
2286 
2287 	vfs_unlock(vfsp);
2288 
2289 	error = VOP_CLOSE(old_rootvp, FREAD, 1, (offset_t)0, CRED(), NULL);
2290 	if (error) {
2291 		cmn_err(CE_CONT,
2292 		    "close of root device component failed, error %d\n",
2293 		    error);
2294 	}
2295 	VN_RELE(old_rootvp);
2296 
2297 	return (sberror ? sberror : error);
2298 }
2299 
2300 #endif	/* __sparc */
2301