xref: /titanic_50/usr/src/uts/common/fs/ufs/ufs_thread.c (revision 921e7e07108d1e3f09fecb1805fa2c79bb584fed)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * Portions of this source code were derived from Berkeley 4.3 BSD
31  * under license from the Regents of the University of California.
32  */
33 
34 #pragma ident	"%Z%%M%	%I%	%E% SMI"
35 
36 #include <sys/types.h>
37 #include <sys/systm.h>
38 #include <sys/errno.h>
39 #include <sys/kmem.h>
40 #include <sys/buf.h>
41 #include <sys/vnode.h>
42 #include <sys/vfs.h>
43 #include <sys/user.h>
44 #include <sys/callb.h>
45 #include <sys/cpuvar.h>
46 #include <sys/fs/ufs_inode.h>
47 #include <sys/fs/ufs_log.h>
48 #include <sys/fs/ufs_trans.h>
49 #include <sys/fs/ufs_acl.h>
50 #include <sys/fs/ufs_bio.h>
51 #include <sys/fs/ufs_fsdir.h>
52 #include <sys/debug.h>
53 #include <sys/cmn_err.h>
54 #include <sys/sysmacros.h>
55 
56 extern pri_t 			minclsyspri;
57 extern int			hash2ints();
58 extern struct kmem_cache	*inode_cache;	/* cache of free inodes */
59 extern int			ufs_idle_waiters;
60 extern struct instats		ins;
61 
62 static void ufs_attr_purge(struct inode *);
63 
64 /*
65  * initialize a thread's queue struct
66  */
67 void
68 ufs_thread_init(struct ufs_q *uq, int lowat)
69 {
70 	bzero((caddr_t)uq, sizeof (*uq));
71 	cv_init(&uq->uq_cv, NULL, CV_DEFAULT, NULL);
72 	mutex_init(&uq->uq_mutex, NULL, MUTEX_DEFAULT, NULL);
73 	uq->uq_lowat = lowat;
74 	uq->uq_hiwat = 2 * lowat;
75 	uq->uq_threadp = NULL;
76 }
77 
78 /*
79  * start a thread for a queue (assumes success)
80  */
81 void
82 ufs_thread_start(struct ufs_q *uq, void (*func)(), struct vfs *vfsp)
83 {
84 	mutex_enter(&uq->uq_mutex);
85 	if (uq->uq_threadp == NULL) {
86 		uq->uq_threadp = thread_create(NULL, 0, func, vfsp, 0, &p0,
87 		    TS_RUN, minclsyspri);
88 		uq->uq_flags = 0;
89 	}
90 	mutex_exit(&uq->uq_mutex);
91 }
92 
93 /*
94  * wait for the thread to exit
95  */
96 void
97 ufs_thread_exit(struct ufs_q *uq)
98 {
99 	kt_did_t ufs_thread_did = 0;
100 
101 	mutex_enter(&uq->uq_mutex);
102 	uq->uq_flags &= ~(UQ_SUSPEND | UQ_SUSPENDED);
103 	if (uq->uq_threadp != NULL) {
104 		ufs_thread_did = uq->uq_threadp->t_did;
105 		uq->uq_flags |= (UQ_EXIT|UQ_WAIT);
106 		cv_broadcast(&uq->uq_cv);
107 	}
108 	mutex_exit(&uq->uq_mutex);
109 
110 	/*
111 	 * It's safe to call thread_join() with an already-gone
112 	 * t_did, but we have to obtain it before the kernel
113 	 * thread structure is freed. We do so above under the
114 	 * protection of the uq_mutex when we're sure the thread
115 	 * still exists and it's save to de-reference it.
116 	 * We also have to check if ufs_thread_did is != 0
117 	 * before calling thread_join() since thread 0 in the system
118 	 * gets a t_did of 0.
119 	 */
120 	if (ufs_thread_did)
121 		thread_join(ufs_thread_did);
122 }
123 
124 /*
125  * wait for a thread to suspend itself on the caller's behalf
126  *	the caller is responsible for continuing the thread
127  */
128 void
129 ufs_thread_suspend(struct ufs_q *uq)
130 {
131 	mutex_enter(&uq->uq_mutex);
132 	if (uq->uq_threadp != NULL) {
133 		/*
134 		 * wait while another thread is suspending this thread.
135 		 * no need to do a cv_broadcast(), as whoever suspended
136 		 * the thread must continue it at some point.
137 		 */
138 		while ((uq->uq_flags & UQ_SUSPEND) &&
139 		    (uq->uq_threadp != NULL)) {
140 			/*
141 			 * We can't use cv_signal() because if our
142 			 * signal doesn't happen to hit the desired
143 			 * thread but instead some other waiter like
144 			 * ourselves, we'll wait forever for a
145 			 * response.  Well, at least an indeterminate
146 			 * amount of time until we just happen to get
147 			 * lucky from whomever did get signalled doing
148 			 * a cv_signal() of their own.  This is an
149 			 * unfortunate performance lossage.
150 			 */
151 			uq->uq_flags |= UQ_WAIT;
152 			cv_wait(&uq->uq_cv, &uq->uq_mutex);
153 		}
154 
155 		/*
156 		 * wait for the thread to suspend itself
157 		 */
158 		uq->uq_flags |= UQ_SUSPEND;
159 		while (((uq->uq_flags & UQ_SUSPENDED) == 0) &&
160 		    (uq->uq_threadp != NULL)) {
161 			uq->uq_flags |= UQ_WAIT;
162 			cv_broadcast(&uq->uq_cv);
163 			cv_wait(&uq->uq_cv, &uq->uq_mutex);
164 		}
165 	}
166 	mutex_exit(&uq->uq_mutex);
167 }
168 
169 /*
170  * allow a thread to continue from a ufs_thread_suspend()
171  *	This thread must be the same as the thread that called
172  *	ufs_thread_suspend.
173  */
174 void
175 ufs_thread_continue(struct ufs_q *uq)
176 {
177 	mutex_enter(&uq->uq_mutex);
178 	uq->uq_flags &= ~(UQ_SUSPEND | UQ_SUSPENDED);
179 	cv_broadcast(&uq->uq_cv);
180 	mutex_exit(&uq->uq_mutex);
181 }
182 
183 /*
184  * some common code for managing a threads execution
185  *	uq is locked at entry and return
186  *	may sleep
187  *	may exit
188  */
189 /*
190  * Kind of a hack passing in the callb_cpr_t * here.
191  * It should really be part of the ufs_q structure.
192  * I did not put it in there because we are already in beta
193  * and I was concerned that changing ufs_inode.h to include
194  * callb.h might break something.
195  */
196 int
197 ufs_thread_run(struct ufs_q *uq, callb_cpr_t *cprinfop)
198 {
199 again:
200 	ASSERT(uq->uq_ne >= 0);
201 
202 	if (uq->uq_flags & UQ_SUSPEND) {
203 		uq->uq_flags |= UQ_SUSPENDED;
204 	} else if (uq->uq_flags & UQ_EXIT) {
205 		/*
206 		 * exiting; empty the queue (may infinite loop)
207 		 */
208 		if (uq->uq_ne)
209 			return (uq->uq_ne);
210 		uq->uq_threadp = NULL;
211 		if (uq->uq_flags & UQ_WAIT) {
212 			cv_broadcast(&uq->uq_cv);
213 		}
214 		uq->uq_flags &= ~(UQ_EXIT | UQ_WAIT);
215 		CALLB_CPR_EXIT(cprinfop);
216 		thread_exit();
217 	} else if (uq->uq_ne >= uq->uq_lowat) {
218 		/*
219 		 * process a block of entries until below high water mark
220 		 */
221 		return (uq->uq_ne - (uq->uq_lowat >> 1));
222 	} else if (uq->uq_flags & UQ_FASTCLIENTS) {
223 		/*
224 		 * Let the fast acting clients through
225 		 */
226 		return (0);
227 	}
228 	if (uq->uq_flags & UQ_WAIT) {
229 		uq->uq_flags &= ~UQ_WAIT;
230 		cv_broadcast(&uq->uq_cv);
231 	}
232 	CALLB_CPR_SAFE_BEGIN(cprinfop);
233 	cv_wait(&uq->uq_cv, &uq->uq_mutex);
234 	CALLB_CPR_SAFE_END(cprinfop, &uq->uq_mutex);
235 	goto again;
236 }
237 
238 /*
239  * DELETE INODE
240  * The following routines implement the protocol for freeing the resources
241  * held by an idle and deleted inode.
242  */
243 void
244 ufs_delete(struct ufsvfs *ufsvfsp, struct inode *ip, int dolockfs)
245 {
246 	ushort_t	mode;
247 	struct vnode	*vp	= ITOV(ip);
248 	struct ulockfs	*ulp;
249 	int		trans_size;
250 	int		dorwlock = ((ip->i_mode & IFMT) == IFREG);
251 	int		issync;
252 	int		err;
253 	struct inode	*dp;
254 	struct ufs_q    *delq = &ufsvfsp->vfs_delete;
255 	struct ufs_delq_info *delq_info = &ufsvfsp->vfs_delete_info;
256 
257 	/*
258 	 * not on a trans device or not part of a transaction
259 	 */
260 	ASSERT(!TRANS_ISTRANS(ufsvfsp) ||
261 		((curthread->t_flag & T_DONTBLOCK) == 0));
262 
263 	/*
264 	 * Ignore if deletes are not allowed (wlock/hlock)
265 	 */
266 	if (ULOCKFS_IS_NOIDEL(ITOUL(ip))) {
267 		VN_RELE(vp);
268 		return;
269 	}
270 
271 	if ((vp->v_count > 1) || (ip->i_mode == 0)) {
272 		VN_RELE(vp);
273 		return;
274 	}
275 	/*
276 	 * If we are called as part of setting a fs lock, then only
277 	 * do part of the lockfs protocol.  In other words, don't hang.
278 	 */
279 	if (dolockfs) {
280 		if (ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_DELETE_MASK))
281 			return;
282 	} else {
283 		/*
284 		 * check for recursive VOP call
285 		 */
286 		if (curthread->t_flag & T_DONTBLOCK) {
287 			ulp = NULL;
288 		} else {
289 			ulp = &ufsvfsp->vfs_ulockfs;
290 			curthread->t_flag |= T_DONTBLOCK;
291 		}
292 	}
293 
294 	/*
295 	 * Hold rwlock to synchronize with (nfs) writes
296 	 */
297 	if (dorwlock)
298 		rw_enter(&ip->i_rwlock, RW_WRITER);
299 
300 	/*
301 	 * Delete the attribute directory.
302 	 */
303 	if (ip->i_oeftflag != 0) {
304 		TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE,
305 		    trans_size = (int)TOP_REMOVE_SIZE(ip));
306 		rw_enter(&ip->i_contents, RW_WRITER);
307 		err = ufs_iget(ip->i_vfs, ip->i_oeftflag,
308 		    &dp, CRED());
309 		if (err == 0) {
310 			rw_enter(&dp->i_rwlock, RW_WRITER);
311 			rw_enter(&dp->i_contents, RW_WRITER);
312 			dp->i_flag |= IUPD|ICHG;
313 			dp->i_seq++;
314 			TRANS_INODE(dp->i_ufsvfs, dp);
315 			dp->i_nlink -= 2;
316 			ufs_setreclaim(dp);
317 			/*
318 			 * Should get rid of any negative cache entries that
319 			 * might be lingering, as well as ``.'' and
320 			 * ``..''.  If we don't, the VN_RELE() below
321 			 * won't actually put dp on the delete queue
322 			 * and it'll hang out until someone forces it
323 			 * (lockfs -f, umount, ...).  The only reliable
324 			 * way of doing this at the moment is to call
325 			 * dnlc_purge_vp(ITOV(dp)), which is unacceptably
326 			 * slow, so we'll just note the problem in this
327 			 * comment for now.
328 			 */
329 			dnlc_remove(ITOV(dp), ".");
330 			dnlc_remove(ITOV(dp), "..");
331 			ITIMES_NOLOCK(dp);
332 			if (!TRANS_ISTRANS(ufsvfsp)) {
333 				ufs_iupdat(dp, I_SYNC);
334 			}
335 			rw_exit(&dp->i_contents);
336 			rw_exit(&dp->i_rwlock);
337 			VN_RELE(ITOV(dp));
338 		}
339 		/*
340 		 * Clear out attribute pointer
341 		 */
342 		ip->i_oeftflag = 0;
343 		rw_exit(&ip->i_contents);
344 		TRANS_END_CSYNC(ufsvfsp, err, issync,
345 		    TOP_REMOVE, trans_size);
346 		dnlc_remove(ITOV(ip), XATTR_DIR_NAME);
347 	}
348 
349 	if ((ip->i_mode & IFMT) == IFATTRDIR) {
350 		ufs_attr_purge(ip);
351 	}
352 
353 	(void) TRANS_ITRUNC(ip, (u_offset_t)0, I_FREE | I_ACCT, CRED());
354 
355 	/*
356 	 * the inode's space has been freed; now free the inode
357 	 */
358 	if (ulp) {
359 		trans_size = TOP_IFREE_SIZE(ip);
360 		TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IFREE, trans_size);
361 	}
362 	rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
363 	rw_enter(&ip->i_contents, RW_WRITER);
364 	TRANS_INODE(ufsvfsp, ip);
365 	mode = ip->i_mode;
366 	ip->i_mode = 0;
367 	ip->i_rdev = 0;
368 	ip->i_ordev = 0;
369 	ip->i_flag |= IMOD;
370 	if (ip->i_ufs_acl) {
371 		(void) ufs_si_free(ip->i_ufs_acl, vp->v_vfsp, CRED());
372 		ip->i_ufs_acl = NULL;
373 		ip->i_shadow = 0;
374 	}
375 
376 	/*
377 	 * This inode is torn down but still retains it's identity
378 	 * (inode number).  It could get recycled soon so it's best
379 	 * to clean up the vnode just in case.
380 	 */
381 	mutex_enter(&vp->v_lock);
382 	vn_recycle(vp);
383 	mutex_exit(&vp->v_lock);
384 
385 	/*
386 	 * free the inode
387 	 */
388 	ufs_ifree(ip, ip->i_number, mode);
389 	/*
390 	 * release quota resources; can't fail
391 	 */
392 	(void) chkiq((struct ufsvfs *)vp->v_vfsp->vfs_data,
393 		/* change */ -1, ip, (uid_t)ip->i_uid, 0, CRED(),
394 		(char **)NULL, (size_t *)NULL);
395 	dqrele(ip->i_dquot);
396 	ip->i_dquot = NULL;
397 	ip->i_flag &= ~(IDEL | IDIRECTIO);
398 	ip->i_cflags = 0;
399 	if (!TRANS_ISTRANS(ufsvfsp)) {
400 		ufs_iupdat(ip, I_SYNC);
401 	} else {
402 		mutex_enter(&delq->uq_mutex);
403 		delq_info->delq_unreclaimed_files--;
404 		mutex_exit(&delq->uq_mutex);
405 	}
406 	rw_exit(&ip->i_contents);
407 	rw_exit(&ufsvfsp->vfs_dqrwlock);
408 	if (dorwlock)
409 		rw_exit(&ip->i_rwlock);
410 	VN_RELE(vp);
411 
412 	/*
413 	 * End of transaction
414 	 */
415 	if (ulp) {
416 		TRANS_END_ASYNC(ufsvfsp, TOP_IFREE, trans_size);
417 		if (dolockfs)
418 			ufs_lockfs_end(ulp);
419 		else
420 			curthread->t_flag &= ~T_DONTBLOCK;
421 	}
422 }
423 
424 /*
425  * Create the delete thread and init the delq_info for this fs
426  */
427 void
428 ufs_delete_init(struct ufsvfs *ufsvfsp, int lowat)
429 {
430 	struct ufs_delq_info *delq_info = &ufsvfsp->vfs_delete_info;
431 
432 	ufs_thread_init(&ufsvfsp->vfs_delete, lowat);
433 	(void) memset((void *)delq_info, 0, sizeof (*delq_info));
434 	cv_init(&delq_info->delq_fast_cv, NULL, CV_DEFAULT, NULL);
435 }
436 
437 /*
438  * thread that frees up deleted inodes
439  */
440 void
441 ufs_thread_delete(struct vfs *vfsp)
442 {
443 	struct ufsvfs	*ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
444 	struct ufs_q	*uq = &ufsvfsp->vfs_delete;
445 	struct ufs_delq_info *delq_info = &ufsvfsp->vfs_delete_info;
446 	struct inode	*ip;
447 	long		ne;
448 	callb_cpr_t	cprinfo;
449 
450 	CALLB_CPR_INIT(&cprinfo, &uq->uq_mutex, callb_generic_cpr,
451 	    "ufsdelete");
452 
453 	mutex_enter(&uq->uq_mutex);
454 again:
455 	/*
456 	 * Sleep until there is work to do.  Only do one entry at
457 	 * a time, to reduce the wait time for checking for a suspend
458 	 * or fast-client request.  The ?: is for pedantic portability.
459 	 */
460 	ne = ufs_thread_run(uq, &cprinfo) ? 1 : 0;
461 
462 	/*
463 	 * process an entry, if there are any
464 	 */
465 	if (ne && (ip = uq->uq_ihead)) {
466 		/*
467 		 * process first entry on queue.  Assumed conditions are:
468 		 *	ip is held (v_count >= 1)
469 		 *	ip is referenced (i_flag & IREF)
470 		 *	ip is free (i_nlink <= 0)
471 		 */
472 		if ((uq->uq_ihead = ip->i_freef) == ip)
473 			uq->uq_ihead = NULL;
474 		ip->i_freef->i_freeb = ip->i_freeb;
475 		ip->i_freeb->i_freef = ip->i_freef;
476 		ip->i_freef = ip;
477 		ip->i_freeb = ip;
478 		uq->uq_ne--;
479 		mutex_exit(&uq->uq_mutex);
480 		ufs_delete(ufsvfsp, ip, 1);
481 		mutex_enter(&uq->uq_mutex);
482 	}
483 
484 	/*
485 	 * If there are any fast clients, let all of them through.
486 	 * Mainly intended for statvfs(), which doesn't need to do
487 	 * anything except look at the number of bytes/inodes that
488 	 * are in the queue.
489 	 */
490 	if (uq->uq_flags & UQ_FASTCLIENTS) {
491 		uq->uq_flags &= ~UQ_FASTCLIENTS;
492 		/*
493 		 * Give clients a chance.  The lock exit/entry
494 		 * allows waiting statvfs threads through.
495 		 */
496 		cv_broadcast(&delq_info->delq_fast_cv);
497 		mutex_exit(&uq->uq_mutex);
498 		mutex_enter(&uq->uq_mutex);
499 	}
500 	goto again;
501 }
502 
503 /*
504  * drain ne entries off the delete queue.  As new queue entries may
505  * be added while we're working, ne is interpreted as follows:
506  *
507  * ne > 0   => remove up to ne entries
508  * ne == 0  => remove all entries currently on the queue
509  * ne == -1 => remove entries until the queue is empty
510  */
511 void
512 ufs_delete_drain(struct vfs *vfsp, int ne, int dolockfs)
513 {
514 	struct ufsvfs	*ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
515 	struct ufs_q	*uq;
516 	struct inode	*ip;
517 	int		drain_cnt = 0;
518 	int		done;
519 
520 	/*
521 	 * if forcibly unmounted; ignore
522 	 */
523 	if (ufsvfsp == NULL)
524 		return;
525 
526 	uq = &ufsvfsp->vfs_delete;
527 	mutex_enter(&uq->uq_mutex);
528 	if (ne == 0)
529 		drain_cnt = uq->uq_ne;
530 	else if (ne > 0)
531 		drain_cnt = ne;
532 
533 	/*
534 	 * process up to ne entries
535 	 */
536 
537 	done = 0;
538 	while (!done && (ip = uq->uq_ihead)) {
539 		if (ne != -1)
540 			drain_cnt--;
541 		if (ne != -1 && drain_cnt == 0)
542 			done = 1;
543 		if ((uq->uq_ihead = ip->i_freef) == ip)
544 			uq->uq_ihead = NULL;
545 		ip->i_freef->i_freeb = ip->i_freeb;
546 		ip->i_freeb->i_freef = ip->i_freef;
547 		ip->i_freef = ip;
548 		ip->i_freeb = ip;
549 		uq->uq_ne--;
550 		mutex_exit(&uq->uq_mutex);
551 		ufs_delete(ufsvfsp, ip, dolockfs);
552 		mutex_enter(&uq->uq_mutex);
553 	}
554 	mutex_exit(&uq->uq_mutex);
555 }
556 
557 void
558 ufs_sync_with_thread(struct ufs_q *uq)
559 {
560 	mutex_enter(&uq->uq_mutex);
561 	uq->uq_flags |= UQ_WAIT;
562 	/*
563 	 * Someone other than the thread we're interested in might
564 	 * send a signal, so make sure the thread's given an
565 	 * acknowledgement.
566 	 */
567 	while ((uq->uq_threadp != NULL) && (uq->uq_flags & UQ_WAIT)) {
568 		cv_broadcast(&uq->uq_cv);
569 		cv_wait(&uq->uq_cv, &uq->uq_mutex);
570 	}
571 	mutex_exit(&uq->uq_mutex);
572 }
573 
574 /*
575  * Get rid of everything that's currently in the delete queue,
576  * plus whatever the delete thread is working on at the moment.
577  *
578  * This ability is required for providing true POSIX semantics
579  * regarding close(2), unlink(2), etc, even when logging is enabled.
580  * The standard requires that the released space be immediately
581  * observable (statvfs(2)) and allocatable (e.g., write(2)).
582  */
583 void
584 ufs_delete_drain_wait(struct ufsvfs *ufsvfsp, int dolockfs)
585 {
586 	struct ufs_q *uq = &ufsvfsp->vfs_delete;
587 	int	error;
588 
589 	(void) ufs_delete_drain(ufsvfsp->vfs_vfs, 0, dolockfs);
590 	ufs_sync_with_thread(uq);
591 
592 	/*
593 	 * Commit any outstanding transactions to make sure
594 	 * any canceled freed blocks are available for allocation.
595 	 */
596 	curthread->t_flag |= T_DONTBLOCK;
597 	TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UPDATE, TOP_COMMIT_SIZE, error);
598 	if (!error) {
599 		TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UPDATE,
600 			TOP_COMMIT_SIZE);
601 	}
602 	curthread->t_flag &= ~T_DONTBLOCK;
603 }
604 
605 /*
606  * Adjust the resource usage in a struct statvfs based on
607  * what's in the delete queue.
608  *
609  * We do not consider the impact of ACLs or extended attributes
610  * that may be deleted as a side-effect of deleting a file.
611  * Those are metadata, and their sizes aren't reflected in the
612  * sizes returned by stat(), so this is not a problem.
613  */
614 void
615 ufs_delete_adjust_stats(struct ufsvfs *ufsvfsp, struct statvfs64 *sp)
616 {
617 	struct ufs_q *uq = &ufsvfsp->vfs_delete;
618 	struct ufs_delq_info *delq_info = &ufsvfsp->vfs_delete_info;
619 
620 	/*
621 	 * We'll get signalled when it's our turn.  However, if there's
622 	 * nothing going on, there's no point in waking up the delete
623 	 * thread and waiting for it to tell us to continue.
624 	 */
625 	mutex_enter(&uq->uq_mutex);
626 
627 	if ((uq->uq_flags & UQ_FASTCLIENTS) || (uq->uq_ne != 0)) {
628 		uq->uq_flags |= UQ_FASTCLIENTS;
629 		cv_broadcast(&uq->uq_cv);
630 		cv_wait(&delq_info->delq_fast_cv, &uq->uq_mutex);
631 	}
632 
633 	/*
634 	 * The blocks accounted for in the delete queue info are
635 	 * counted in DEV_BSIZE chunks, but ufs_statvfs counts in
636 	 * filesystem fragments, so a conversion is required here.
637 	 */
638 	sp->f_bfree += dbtofsb(ufsvfsp->vfs_fs,
639 	    delq_info->delq_unreclaimed_blocks);
640 	sp->f_ffree += delq_info->delq_unreclaimed_files;
641 	mutex_exit(&uq->uq_mutex);
642 }
643 
644 /*
645  * IDLE INODE
646  * The following routines implement the protocol for maintaining an
647  * LRU list of idle inodes and for moving the idle inodes to the
648  * reuse list when the number of allocated inodes exceeds the user
649  * tunable high-water mark (ufs_ninode).
650  */
651 
652 /*
653  * clean an idle inode and move it to the reuse list
654  */
655 static void
656 ufs_idle_free(struct inode *ip)
657 {
658 	int			pages;
659 	int			hno;
660 	kmutex_t		*ihm;
661 	struct ufsvfs		*ufsvfsp	= ip->i_ufsvfs;
662 	struct vnode		*vp		= ITOV(ip);
663 
664 	/*
665 	 * inode is held
666 	 */
667 
668 	/*
669 	 * remember `pages' for stats below
670 	 */
671 	pages = (ip->i_mode && vn_has_cached_data(vp) && vp->v_type != VCHR);
672 
673 	/*
674 	 * start the dirty pages to disk and then invalidate them
675 	 * unless the inode is invalid (ISTALE)
676 	 */
677 	if ((ip->i_flag & ISTALE) == 0) {
678 		(void) TRANS_SYNCIP(ip, B_ASYNC, I_ASYNC, TOP_SYNCIP_FREE);
679 		(void) TRANS_SYNCIP(ip,
680 				    (TRANS_ISERROR(ufsvfsp)) ?
681 				    B_INVAL | B_FORCE : B_INVAL,
682 				    I_ASYNC, TOP_SYNCIP_FREE);
683 	}
684 
685 	/*
686 	 * wait for any current ufs_iget to finish and block future ufs_igets
687 	 */
688 	ASSERT(ip->i_number != 0);
689 	hno = INOHASH(ip->i_number);
690 	ihm = &ih_lock[hno];
691 	mutex_enter(ihm);
692 
693 	/*
694 	 * It must be guaranteed that v_count >= 2, otherwise
695 	 * something must be wrong with this vnode already.
696 	 * That is why we use v_count-- instead of VN_RELE().
697 	 * Acquire the vnode lock in case another thread is in
698 	 * VN_RELE().
699 	 */
700 	mutex_enter(&vp->v_lock);
701 
702 	if (vp->v_count < 2)
703 		cmn_err(CE_PANIC,
704 			"ufs_idle_free: vnode ref count is less than 2");
705 
706 	vp->v_count--;
707 	if ((vp->v_type != VCHR && vn_has_cached_data(vp)) ||
708 		vp->v_count != 1 ||
709 		ip->i_flag & (IMOD|IMODACC|IACC|ICHG|IUPD|IATTCHG)) {
710 			/*
711 			 * Another thread has referenced this inode while
712 			 * we are trying to free it. Call VN_RELE() to
713 			 * release our reference.
714 			 */
715 			mutex_exit(&vp->v_lock);
716 			mutex_exit(ihm);
717 			VN_RELE(vp);
718 	} else {
719 		/*
720 		 * The inode is currently unreferenced and can not
721 		 * acquire further references because it has no pages
722 		 * and the hash is locked.  Inodes acquire references
723 		 * via the hash list or via their pages.
724 		 */
725 
726 		mutex_exit(&vp->v_lock);
727 
728 		/*
729 		 * remove it from the cache
730 		 */
731 		remque(ip);
732 		mutex_exit(ihm);
733 		/*
734 		 * Stale inodes have no valid ufsvfs
735 		 */
736 		if ((ip->i_flag & ISTALE) == 0 && ip->i_dquot) {
737 			TRANS_DQRELE(ufsvfsp, ip->i_dquot);
738 			ip->i_dquot = NULL;
739 		}
740 		ufs_si_del(ip);
741 		if (pages) {
742 			CPU_STATS_ADDQ(CPU, sys, ufsipage, 1);
743 		} else {
744 			CPU_STATS_ADDQ(CPU, sys, ufsinopage, 1);
745 		}
746 		ASSERT((vp->v_type == VCHR) || !vn_has_cached_data(vp));
747 		ufs_free_inode(ip);
748 	}
749 }
750 
751 /*
752  * this thread processes the global idle queue
753  */
754 iqhead_t *ufs_junk_iq;
755 iqhead_t *ufs_useful_iq;
756 int ufs_njunk_iq = 0;
757 int ufs_nuseful_iq = 0;
758 int ufs_niqhash;
759 int ufs_iqhashmask;
760 struct ufs_q	ufs_idle_q;
761 
762 void
763 ufs_thread_idle(void)
764 {
765 	callb_cpr_t cprinfo;
766 	int i;
767 	int ne;
768 
769 	ufs_niqhash = (ufs_idle_q.uq_lowat >> 1) / IQHASHQLEN;
770 	ufs_niqhash = 1 << highbit(ufs_niqhash); /* round up to power of 2 */
771 	ufs_iqhashmask = ufs_niqhash - 1;
772 	ufs_junk_iq = kmem_alloc(ufs_niqhash * sizeof (*ufs_junk_iq),
773 	    KM_SLEEP);
774 	ufs_useful_iq = kmem_alloc(ufs_niqhash * sizeof (*ufs_useful_iq),
775 	    KM_SLEEP);
776 
777 	/* Initialize hash queue headers */
778 	for (i = 0; i < ufs_niqhash; i++) {
779 		ufs_junk_iq[i].i_freef = (inode_t *)&ufs_junk_iq[i];
780 		ufs_junk_iq[i].i_freeb = (inode_t *)&ufs_junk_iq[i];
781 		ufs_useful_iq[i].i_freef = (inode_t *)&ufs_useful_iq[i];
782 		ufs_useful_iq[i].i_freeb = (inode_t *)&ufs_useful_iq[i];
783 	}
784 
785 	CALLB_CPR_INIT(&cprinfo, &ufs_idle_q.uq_mutex, callb_generic_cpr,
786 	    "ufsidle");
787 again:
788 	/*
789 	 * Whenever the idle thread is awakened, it repeatedly gives
790 	 * back half of the idle queue until the idle queue falls
791 	 * below lowat.
792 	 */
793 	mutex_enter(&ufs_idle_q.uq_mutex);
794 	if (ufs_idle_q.uq_ne < ufs_idle_q.uq_lowat) {
795 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
796 		cv_wait(&ufs_idle_q.uq_cv, &ufs_idle_q.uq_mutex);
797 		CALLB_CPR_SAFE_END(&cprinfo, &ufs_idle_q.uq_mutex);
798 	}
799 	mutex_exit(&ufs_idle_q.uq_mutex);
800 
801 	/*
802 	 * Give back 1/2 of the idle queue
803 	 */
804 	ne = ufs_idle_q.uq_ne >> 1;
805 	ins.in_tidles.value.ul += ne;
806 	ufs_idle_some(ne);
807 	goto again;
808 }
809 
810 /*
811  * Reclaim callback for ufs inode cache.
812  * Invoked by the kernel memory allocator when memory gets tight.
813  */
814 /*ARGSUSED*/
815 void
816 ufs_inode_cache_reclaim(void *cdrarg)
817 {
818 	/*
819 	 * If we are low on memory and the idle queue is over its
820 	 * halfway mark, then free 50% of the idle q
821 	 *
822 	 * We don't free all of the idle inodes because the inodes
823 	 * for popular NFS files may have been kicked from the dnlc.
824 	 * The inodes for these files will end up on the idle queue
825 	 * after every NFS access.
826 	 *
827 	 * If we repeatedly push them from the idle queue then
828 	 * NFS users may be unhappy as an extra buf cache operation
829 	 * is incurred for every NFS operation to these files.
830 	 *
831 	 * It's not common, but I have seen it happen.
832 	 *
833 	 */
834 	if (ufs_idle_q.uq_ne < (ufs_idle_q.uq_lowat >> 1))
835 		return;
836 	mutex_enter(&ufs_idle_q.uq_mutex);
837 	cv_broadcast(&ufs_idle_q.uq_cv);
838 	mutex_exit(&ufs_idle_q.uq_mutex);
839 }
840 
841 /*
842  * Free up some idle inodes
843  */
844 void
845 ufs_idle_some(int ne)
846 {
847 	int i;
848 	struct inode *ip;
849 	struct vnode *vp;
850 	static int junk_rotor = 0;
851 	static int useful_rotor = 0;
852 
853 	for (i = 0; i < ne; ++i) {
854 		mutex_enter(&ufs_idle_q.uq_mutex);
855 
856 		if (ufs_njunk_iq) {
857 			while (ufs_junk_iq[junk_rotor].i_freef ==
858 			    (inode_t *)&ufs_junk_iq[junk_rotor]) {
859 				junk_rotor = IQNEXT(junk_rotor);
860 			}
861 			ip = ufs_junk_iq[junk_rotor].i_freef;
862 			ASSERT(ip->i_flag & IJUNKIQ);
863 		} else if (ufs_nuseful_iq) {
864 			while (ufs_useful_iq[useful_rotor].i_freef ==
865 			    (inode_t *)&ufs_useful_iq[useful_rotor]) {
866 				useful_rotor = IQNEXT(useful_rotor);
867 			}
868 			ip = ufs_useful_iq[useful_rotor].i_freef;
869 			ASSERT(!(ip->i_flag & IJUNKIQ));
870 		} else {
871 			mutex_exit(&ufs_idle_q.uq_mutex);
872 			return;
873 		}
874 
875 		/*
876 		 * emulate ufs_iget
877 		 */
878 		vp = ITOV(ip);
879 		VN_HOLD(vp);
880 		mutex_exit(&ufs_idle_q.uq_mutex);
881 		rw_enter(&ip->i_contents, RW_WRITER);
882 		/*
883 		 * VN_RELE should not be called if
884 		 * ufs_rmidle returns true, as it will
885 		 * effectively be done in ufs_idle_free.
886 		 */
887 		if (ufs_rmidle(ip)) {
888 			rw_exit(&ip->i_contents);
889 			ufs_idle_free(ip);
890 		} else {
891 			rw_exit(&ip->i_contents);
892 			VN_RELE(vp);
893 		}
894 	}
895 }
896 
897 /*
898  * drain entries for vfsp from the idle queue
899  * vfsp == NULL means drain the entire thing
900  */
901 void
902 ufs_idle_drain(struct vfs *vfsp)
903 {
904 	struct inode	*ip, *nip;
905 	struct inode	*ianchor = NULL;
906 	int		i;
907 
908 	mutex_enter(&ufs_idle_q.uq_mutex);
909 	if (ufs_njunk_iq) {
910 		/* for each hash q */
911 		for (i = 0; i < ufs_niqhash; i++) {
912 			/* search down the hash q */
913 			for (ip = ufs_junk_iq[i].i_freef;
914 			    ip != (inode_t *)&ufs_junk_iq[i];
915 			    ip = ip->i_freef) {
916 				if (ip->i_vfs == vfsp || vfsp == NULL) {
917 					/* found a matching entry */
918 					VN_HOLD(ITOV(ip));
919 					mutex_exit(&ufs_idle_q.uq_mutex);
920 					rw_enter(&ip->i_contents, RW_WRITER);
921 					/*
922 					 * See comments in ufs_idle_some()
923 					 * as we will call ufs_idle_free()
924 					 * after scanning both queues.
925 					 */
926 					if (ufs_rmidle(ip)) {
927 						rw_exit(&ip->i_contents);
928 						ip->i_freef = ianchor;
929 						ianchor = ip;
930 					} else {
931 						rw_exit(&ip->i_contents);
932 						VN_RELE(ITOV(ip));
933 					}
934 					/* restart this hash q */
935 					ip = (inode_t *)&ufs_junk_iq[i];
936 					mutex_enter(&ufs_idle_q.uq_mutex);
937 				}
938 			}
939 		}
940 	}
941 	if (ufs_nuseful_iq) {
942 		/* for each hash q */
943 		for (i = 0; i < ufs_niqhash; i++) {
944 			/* search down the hash q */
945 			for (ip = ufs_useful_iq[i].i_freef;
946 			    ip != (inode_t *)&ufs_useful_iq[i];
947 			    ip = ip->i_freef) {
948 				if (ip->i_vfs == vfsp || vfsp == NULL) {
949 					/* found a matching entry */
950 					VN_HOLD(ITOV(ip));
951 					mutex_exit(&ufs_idle_q.uq_mutex);
952 					rw_enter(&ip->i_contents, RW_WRITER);
953 					/*
954 					 * See comments in ufs_idle_some()
955 					 * as we will call ufs_idle_free()
956 					 * after scanning both queues.
957 					 */
958 					if (ufs_rmidle(ip)) {
959 						rw_exit(&ip->i_contents);
960 						ip->i_freef = ianchor;
961 						ianchor = ip;
962 					} else {
963 						rw_exit(&ip->i_contents);
964 						VN_RELE(ITOV(ip));
965 					}
966 					/* restart this hash q */
967 					ip = (inode_t *)&ufs_useful_iq[i];
968 					mutex_enter(&ufs_idle_q.uq_mutex);
969 				}
970 			}
971 		}
972 	}
973 
974 	mutex_exit(&ufs_idle_q.uq_mutex);
975 	/* no more matching entries, release those we have found (if any) */
976 	for (ip = ianchor; ip; ip = nip) {
977 		nip = ip->i_freef;
978 		ip->i_freef = ip;
979 		ufs_idle_free(ip);
980 	}
981 }
982 
983 /*
984  * RECLAIM DELETED INODES
985  * The following thread scans the file system once looking for deleted files
986  */
987 void
988 ufs_thread_reclaim(struct vfs *vfsp)
989 {
990 	struct ufsvfs		*ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
991 	struct ufs_q		*uq	= &ufsvfsp->vfs_reclaim;
992 	struct fs		*fs	= ufsvfsp->vfs_fs;
993 	struct buf		*bp	= 0;
994 	int			err	= 0;
995 	daddr_t			bno;
996 	ino_t			ino;
997 	struct dinode		*dp;
998 	struct inode		*ip;
999 	callb_cpr_t		cprinfo;
1000 
1001 	CALLB_CPR_INIT(&cprinfo, &uq->uq_mutex, callb_generic_cpr,
1002 	    "ufsreclaim");
1003 
1004 	/*
1005 	 * mount decided that we don't need a reclaim thread
1006 	 */
1007 	if ((fs->fs_reclaim & FS_RECLAIMING) == 0)
1008 		err++;
1009 
1010 	/*
1011 	 * don't reclaim if readonly
1012 	 */
1013 	if (fs->fs_ronly)
1014 		err++;
1015 
1016 	for (ino = 0; ino < (fs->fs_ncg * fs->fs_ipg) && !err; ++ino) {
1017 
1018 		/*
1019 		 * Check whether we are the target of another
1020 		 * thread having called ufs_thread_exit() or
1021 		 * ufs_thread_suspend().
1022 		 */
1023 		mutex_enter(&uq->uq_mutex);
1024 again:
1025 		if (uq->uq_flags & UQ_EXIT) {
1026 			err++;
1027 			mutex_exit(&uq->uq_mutex);
1028 			break;
1029 		} else if (uq->uq_flags & UQ_SUSPEND) {
1030 			uq->uq_flags |= UQ_SUSPENDED;
1031 			/*
1032 			 * Release the buf before we cv_wait()
1033 			 * otherwise we may deadlock with the
1034 			 * thread that called ufs_thread_suspend().
1035 			 */
1036 			if (bp) {
1037 				brelse(bp);
1038 				bp = 0;
1039 			}
1040 			if (uq->uq_flags & UQ_WAIT) {
1041 				uq->uq_flags &= ~UQ_WAIT;
1042 				cv_broadcast(&uq->uq_cv);
1043 			}
1044 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
1045 			cv_wait(&uq->uq_cv, &uq->uq_mutex);
1046 			CALLB_CPR_SAFE_END(&cprinfo, &uq->uq_mutex);
1047 			goto again;
1048 		}
1049 		mutex_exit(&uq->uq_mutex);
1050 
1051 		/*
1052 		 * if we don't already have the buf; get it
1053 		 */
1054 		bno = fsbtodb(fs, itod(fs, ino));
1055 		if ((bp == 0) || (bp->b_blkno != bno)) {
1056 			if (bp)
1057 				brelse(bp);
1058 			bp = UFS_BREAD(ufsvfsp,
1059 					ufsvfsp->vfs_dev, bno, fs->fs_bsize);
1060 			bp->b_flags |= B_AGE;
1061 		}
1062 		if (bp->b_flags & B_ERROR) {
1063 			err++;
1064 			continue;
1065 		}
1066 		/*
1067 		 * nlink <= 0 and mode != 0 means deleted
1068 		 */
1069 		dp = (struct dinode *)bp->b_un.b_addr + itoo(fs, ino);
1070 		if ((dp->di_nlink <= 0) && (dp->di_mode != 0)) {
1071 			/*
1072 			 * can't hold the buf (deadlock)
1073 			 */
1074 			brelse(bp);
1075 			bp = 0;
1076 			rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1077 			/*
1078 			 * iget/iput sequence will put inode on ifree
1079 			 * thread queue if it is idle.  This is a nop
1080 			 * for busy (open, deleted) inodes
1081 			 */
1082 			if (ufs_iget(vfsp, ino, &ip, CRED()))
1083 				err++;
1084 			else
1085 				VN_RELE(ITOV(ip));
1086 			rw_exit(&ufsvfsp->vfs_dqrwlock);
1087 		}
1088 	}
1089 
1090 	if (bp)
1091 		brelse(bp);
1092 	if (!err) {
1093 		/*
1094 		 * reset the reclaiming-bit
1095 		 */
1096 		mutex_enter(&ufsvfsp->vfs_lock);
1097 		fs->fs_reclaim &= ~FS_RECLAIMING;
1098 		mutex_exit(&ufsvfsp->vfs_lock);
1099 		TRANS_SBWRITE(ufsvfsp, TOP_SBWRITE_RECLAIM);
1100 	}
1101 
1102 	/*
1103 	 * exit the reclaim thread
1104 	 */
1105 	mutex_enter(&uq->uq_mutex);
1106 	uq->uq_threadp = NULL;
1107 	uq->uq_flags &= ~UQ_WAIT;
1108 	cv_broadcast(&uq->uq_cv);
1109 	CALLB_CPR_EXIT(&cprinfo);
1110 	thread_exit();
1111 }
1112 /*
1113  * HLOCK FILE SYSTEM
1114  *	hlock the file system's whose logs have device errors
1115  */
1116 struct ufs_q	ufs_hlock;
1117 /*ARGSUSED*/
1118 void
1119 ufs_thread_hlock(void *ignore)
1120 {
1121 	int		retry;
1122 	callb_cpr_t	cprinfo;
1123 
1124 	CALLB_CPR_INIT(&cprinfo, &ufs_hlock.uq_mutex, callb_generic_cpr,
1125 	    "ufshlock");
1126 
1127 	for (;;) {
1128 		/*
1129 		 * sleep until there is work to do
1130 		 */
1131 		mutex_enter(&ufs_hlock.uq_mutex);
1132 		(void) ufs_thread_run(&ufs_hlock, &cprinfo);
1133 		ufs_hlock.uq_ne = 0;
1134 		mutex_exit(&ufs_hlock.uq_mutex);
1135 		/*
1136 		 * hlock the error'ed fs's
1137 		 *	retry after a bit if another app is doing lockfs stuff
1138 		 */
1139 		do {
1140 			retry = ufs_trans_hlock();
1141 			if (retry) {
1142 				mutex_enter(&ufs_hlock.uq_mutex);
1143 				CALLB_CPR_SAFE_BEGIN(&cprinfo);
1144 				(void) cv_timedwait(&ufs_hlock.uq_cv,
1145 							&ufs_hlock.uq_mutex,
1146 							lbolt + hz);
1147 				CALLB_CPR_SAFE_END(&cprinfo,
1148 				    &ufs_hlock.uq_mutex);
1149 				mutex_exit(&ufs_hlock.uq_mutex);
1150 			}
1151 		} while (retry);
1152 	}
1153 }
1154 
1155 static void
1156 ufs_attr_purge(struct inode *dp)
1157 {
1158 	int	err;
1159 	int	error;
1160 	off_t 	dirsize;			/* size of the directory */
1161 	off_t 	offset;	/* offset in the directory */
1162 	int entryoffsetinblk;		/* offset of ep in fbp's buffer */
1163 	struct inode *tp;
1164 	struct fbuf *fbp;	/* pointer to directory block */
1165 	struct direct *ep;	/* directory entry */
1166 	int trans_size;
1167 	int issync;
1168 	struct ufsvfs	*ufsvfsp = dp->i_ufsvfs;
1169 
1170 	rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1171 
1172 	fbp = NULL;
1173 	dirsize = roundup(dp->i_size, DIRBLKSIZ);
1174 	offset = 0;
1175 	entryoffsetinblk = 0;
1176 
1177 	/*
1178 	 * Purge directory cache
1179 	 */
1180 
1181 	dnlc_dir_purge(&dp->i_danchor);
1182 
1183 	while (offset < dirsize) {
1184 		/*
1185 		 * If offset is on a block boundary,
1186 		 * read the next directory block.
1187 		 * Release previous if it exists.
1188 		 */
1189 		if (blkoff(dp->i_fs, offset) == 0) {
1190 			if (fbp != NULL) {
1191 				fbrelse(fbp, S_OTHER);
1192 			}
1193 
1194 			err = blkatoff(dp, offset, (char **)0, &fbp);
1195 			if (err) {
1196 				goto out;
1197 			}
1198 			entryoffsetinblk = 0;
1199 		}
1200 		ep = (struct direct *)(fbp->fb_addr + entryoffsetinblk);
1201 		if (ep->d_ino == 0 || (ep->d_name[0] == '.' &&
1202 		    ep->d_name[1] == '\0') ||
1203 		    (ep->d_name[0] == '.' && ep->d_name[1] == '.' &&
1204 		    ep->d_name[2] == '\0')) {
1205 
1206 			entryoffsetinblk += ep->d_reclen;
1207 
1208 		} else {
1209 
1210 			if ((err = ufs_iget(dp->i_vfs, ep->d_ino,
1211 			    &tp, CRED())) != 0) {
1212 				goto out;
1213 			}
1214 
1215 			TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE,
1216 			    trans_size = (int)TOP_REMOVE_SIZE(tp));
1217 
1218 			/*
1219 			 * Delete inode.
1220 			 */
1221 
1222 			dnlc_remove(ITOV(dp), ep->d_name);
1223 
1224 			rw_enter(&tp->i_contents, RW_WRITER);
1225 			tp->i_flag |= ICHG;
1226 			tp->i_seq++;
1227 			TRANS_INODE(tp->i_ufsvfs, tp);
1228 			tp->i_nlink--;
1229 			ufs_setreclaim(tp);
1230 			ITIMES_NOLOCK(tp);
1231 			rw_exit(&tp->i_contents);
1232 
1233 			VN_RELE(ITOV(tp));
1234 			entryoffsetinblk += ep->d_reclen;
1235 			TRANS_END_CSYNC(ufsvfsp, error,
1236 			    issync, TOP_REMOVE, trans_size);
1237 
1238 		}
1239 		offset += ep->d_reclen;
1240 	}
1241 
1242 	if (fbp) {
1243 		fbrelse(fbp, S_OTHER);
1244 	}
1245 
1246 out:
1247 	rw_exit(&ufsvfsp->vfs_dqrwlock);
1248 }
1249