xref: /titanic_50/usr/src/uts/common/fs/sockfs/socksyscalls.c (revision b58c9703c68c2d59709d0d83191ecab329860b31)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/t_lock.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/cred.h>
36 #include <sys/kmem.h>
37 #include <sys/sysmacros.h>
38 #include <sys/vfs.h>
39 #include <sys/vnode.h>
40 #include <sys/debug.h>
41 #include <sys/errno.h>
42 #include <sys/time.h>
43 #include <sys/file.h>
44 #include <sys/open.h>
45 #include <sys/user.h>
46 #include <sys/termios.h>
47 #include <sys/stream.h>
48 #include <sys/strsubr.h>
49 #include <sys/strsun.h>
50 #include <sys/esunddi.h>
51 #include <sys/flock.h>
52 #include <sys/modctl.h>
53 #include <sys/cmn_err.h>
54 #include <sys/vmsystm.h>
55 #include <sys/policy.h>
56 
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <netinet/in.h>
60 #include <sys/un.h>
61 #include <inet/nca/ncadoorhdr.h>
62 
63 #include <sys/isa_defs.h>
64 #include <sys/inttypes.h>
65 #include <sys/systm.h>
66 #include <sys/cpuvar.h>
67 #include <sys/atomic.h>
68 #include <sys/filio.h>
69 #include <sys/sendfile.h>
70 #include <sys/ddi.h>
71 #include <vm/seg.h>
72 #include <vm/seg_map.h>
73 #include <vm/seg_kpm.h>
74 #include <fs/sockfs/nl7c.h>
75 
76 #ifdef SOCK_TEST
77 int do_useracc = 1;		/* Controlled by setting SO_DEBUG to 4 */
78 #else
79 #define	do_useracc	1
80 #endif /* SOCK_TEST */
81 
82 extern int xnet_truncate_print;
83 
84 /*
85  * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c"
86  *	 as there isn't a formal definition of IOV_MAX ???
87  */
88 #define	MSG_MAXIOVLEN	16
89 
90 /*
91  * Kernel component of socket creation.
92  *
93  * The socket library determines which version number to use.
94  * First the library calls this with a NULL devpath. If this fails
95  * to find a transport (using solookup) the library will look in /etc/netconfig
96  * for the appropriate transport. If one is found it will pass in the
97  * devpath for the kernel to use.
98  */
99 int
100 so_socket(int domain, int type, int protocol, char *devpath, int version)
101 {
102 	vnode_t *accessvp;
103 	struct sonode *so;
104 	vnode_t *vp;
105 	struct file *fp;
106 	int fd;
107 	int error;
108 	boolean_t wildcard = B_FALSE;
109 	int saved_error = 0;
110 	int sdomain = domain;
111 
112 	dprint(1, ("so_socket(%d,%d,%d,%p,%d)\n",
113 		domain, type, protocol, devpath, version));
114 
115 	if (domain == AF_NCA) {
116 		/*
117 		 * The request is for an NCA socket so for NL7C use the
118 		 * INET domain instead and mark NL7C_AF_NCA below.
119 		 */
120 		domain = AF_INET;
121 		/*
122 		 * NL7C is not supported in non-global zones,
123 		 *  we enforce this restriction here.
124 		 */
125 		if (getzoneid() != GLOBAL_ZONEID) {
126 			return (set_errno(ENOTSUP));
127 		}
128 	}
129 
130 	accessvp = solookup(domain, type, protocol, devpath, &error);
131 	if (accessvp == NULL) {
132 		/*
133 		 * If there is either an EPROTONOSUPPORT or EPROTOTYPE error
134 		 * it makes sense doing the wildcard lookup since the
135 		 * protocol might not be in the table.
136 		 */
137 		if (devpath != NULL || protocol == 0 ||
138 		    !(error == EPROTONOSUPPORT || error == EPROTOTYPE))
139 			return (set_errno(error));
140 
141 		saved_error = error;
142 
143 		/*
144 		 * Try wildcard lookup. Never use devpath for wildcards.
145 		 */
146 		accessvp = solookup(domain, type, 0, NULL, &error);
147 		if (accessvp == NULL) {
148 			/*
149 			 * Can't find in kernel table - have library
150 			 * fall back to /etc/netconfig and tell us
151 			 * the devpath (The library will do this if it didn't
152 			 * already pass in a devpath).
153 			 */
154 			if (saved_error != 0)
155 				error = saved_error;
156 			return (set_errno(error));
157 		}
158 		wildcard = B_TRUE;
159 	}
160 
161 	/* Check the device policy */
162 	if ((error = secpolicy_spec_open(CRED(),
163 	    accessvp, FREAD|FWRITE)) != 0) {
164 		return (set_errno(error));
165 	}
166 
167 	if (domain == AF_NCA) {
168 		so = sonca_create(accessvp, domain, type, protocol, version,
169 		    NULL, &error);
170 	} else if (protocol == IPPROTO_SCTP) {
171 		so = sosctp_create(accessvp, domain, type, protocol, version,
172 		    NULL, &error);
173 	} else {
174 		so = sotpi_create(accessvp, domain, type, protocol, version,
175 		    NULL, &error);
176 	}
177 	if (so == NULL) {
178 		return (set_errno(error));
179 	}
180 	if (sdomain == AF_NCA && domain == AF_INET) {
181 		so->so_nl7c_flags = NL7C_AF_NCA;
182 	}
183 	vp = SOTOV(so);
184 
185 	if (wildcard) {
186 		/*
187 		 * Issue SO_PROTOTYPE setsockopt.
188 		 */
189 		error = SOP_SETSOCKOPT(so, SOL_SOCKET, SO_PROTOTYPE,
190 				&protocol,
191 				(t_uscalar_t)sizeof (protocol));
192 		if (error) {
193 			(void) VOP_CLOSE(vp, 0, 1, 0, CRED());
194 			VN_RELE(vp);
195 			/*
196 			 * Setsockopt often fails with ENOPROTOOPT but socket()
197 			 * should fail with EPROTONOSUPPORT/EPROTOTYPE.
198 			 */
199 			if (saved_error != 0 && error == ENOPROTOOPT)
200 				error = saved_error;
201 			else
202 				error = EPROTONOSUPPORT;
203 			return (set_errno(error));
204 		}
205 	}
206 	if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) {
207 		(void) VOP_CLOSE(vp, 0, 1, 0, CRED());
208 		VN_RELE(vp);
209 		return (set_errno(error));
210 	}
211 
212 	/*
213 	 * Now fill in the entries that falloc reserved
214 	 */
215 	mutex_exit(&fp->f_tlock);
216 	setf(fd, fp);
217 
218 	return (fd);
219 }
220 
221 /*
222  * Map from a file descriptor to a socket node.
223  * Returns with the file descriptor held i.e. the caller has to
224  * use releasef when done with the file descriptor.
225  */
226 static struct sonode *
227 getsonode(int sock, int *errorp, file_t **fpp)
228 {
229 	file_t *fp;
230 	vnode_t *vp;
231 	struct sonode *so;
232 
233 	if ((fp = getf(sock)) == NULL) {
234 		*errorp = EBADF;
235 		eprintline(*errorp);
236 		return (NULL);
237 	}
238 	vp = fp->f_vnode;
239 	/* Check if it is a socket */
240 	if (vp->v_type != VSOCK) {
241 		releasef(sock);
242 		*errorp = ENOTSOCK;
243 		eprintline(*errorp);
244 		return (NULL);
245 	}
246 	/*
247 	 * Use the stream head to find the real socket vnode.
248 	 * This is needed when namefs sits above sockfs.
249 	 */
250 	if (vp->v_stream) {
251 		ASSERT(vp->v_stream->sd_vnode);
252 		vp = vp->v_stream->sd_vnode;
253 
254 		so = VTOSO(vp);
255 		if (so->so_version == SOV_STREAM) {
256 			releasef(sock);
257 			*errorp = ENOTSOCK;
258 			eprintsoline(so, *errorp);
259 			return (NULL);
260 		}
261 	} else {
262 		so = VTOSO(vp);
263 	}
264 	if (fpp)
265 		*fpp = fp;
266 	return (so);
267 }
268 
269 /*
270  * Allocate and copyin a sockaddr.
271  * Ensures NULL termination for AF_UNIX addresses by extending them
272  * with one NULL byte if need be. Verifies that the length is not
273  * excessive to prevent an application from consuming all of kernel
274  * memory. Returns NULL when an error occurred.
275  */
276 static struct sockaddr *
277 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp,
278 	    int *errorp)
279 {
280 	char	*faddr;
281 	size_t	namelen = (size_t)*namelenp;
282 
283 	ASSERT(namelen != 0);
284 	if (namelen > SO_MAXARGSIZE) {
285 		*errorp = EINVAL;
286 		eprintsoline(so, *errorp);
287 		return (NULL);
288 	}
289 
290 	faddr = (char *)kmem_alloc(namelen, KM_SLEEP);
291 	if (copyin(name, faddr, namelen)) {
292 		kmem_free(faddr, namelen);
293 		*errorp = EFAULT;
294 		eprintsoline(so, *errorp);
295 		return (NULL);
296 	}
297 
298 	/*
299 	 * Add space for NULL termination if needed.
300 	 * Do a quick check if the last byte is NUL.
301 	 */
302 	if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') {
303 		/* Check if there is any NULL termination */
304 		size_t	i;
305 		int foundnull = 0;
306 
307 		for (i = sizeof (name->sa_family); i < namelen; i++) {
308 			if (faddr[i] == '\0') {
309 				foundnull = 1;
310 				break;
311 			}
312 		}
313 		if (!foundnull) {
314 			/* Add extra byte for NUL padding */
315 			char *nfaddr;
316 
317 			nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP);
318 			bcopy(faddr, nfaddr, namelen);
319 			kmem_free(faddr, namelen);
320 
321 			/* NUL terminate */
322 			nfaddr[namelen] = '\0';
323 			namelen++;
324 			ASSERT((socklen_t)namelen == namelen);
325 			*namelenp = (socklen_t)namelen;
326 			faddr = nfaddr;
327 		}
328 	}
329 	return ((struct sockaddr *)faddr);
330 }
331 
332 /*
333  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
334  */
335 static int
336 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp,
337 		void *kaddr, socklen_t klen)
338 {
339 	if (uaddr != NULL) {
340 		if (ulen > klen)
341 			ulen = klen;
342 
343 		if (ulen != 0) {
344 			if (copyout(kaddr, uaddr, ulen))
345 				return (EFAULT);
346 		}
347 	} else
348 		ulen = 0;
349 
350 	if (ulenp != NULL) {
351 		if (copyout(&ulen, ulenp, sizeof (ulen)))
352 			return (EFAULT);
353 	}
354 	return (0);
355 }
356 
357 /*
358  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
359  * If klen is greater than ulen it still uses the non-truncated
360  * klen to update ulenp.
361  */
362 static int
363 copyout_name(void *uaddr, socklen_t ulen, void *ulenp,
364 		void *kaddr, socklen_t klen)
365 {
366 	if (uaddr != NULL) {
367 		if (ulen >= klen)
368 			ulen = klen;
369 		else if (ulen != 0 && xnet_truncate_print) {
370 			printf("sockfs: truncating copyout of address using "
371 			    "XNET semantics for pid = %d. Lengths %d, %d\n",
372 			    curproc->p_pid, klen, ulen);
373 		}
374 
375 		if (ulen != 0) {
376 			if (copyout(kaddr, uaddr, ulen))
377 				return (EFAULT);
378 		} else
379 			klen = 0;
380 	} else
381 		klen = 0;
382 
383 	if (ulenp != NULL) {
384 		if (copyout(&klen, ulenp, sizeof (klen)))
385 			return (EFAULT);
386 	}
387 	return (0);
388 }
389 
390 /*
391  * The socketpair() code in libsocket creates two sockets (using
392  * the /etc/netconfig fallback if needed) before calling this routine
393  * to connect the two sockets together.
394  *
395  * For a SOCK_STREAM socketpair a listener is needed - in that case this
396  * routine will create a new file descriptor as part of accepting the
397  * connection. The library socketpair() will check if svs[2] has changed
398  * in which case it will close the changed fd.
399  *
400  * Note that this code could use the TPI feature of accepting the connection
401  * on the listening endpoint. However, that would require significant changes
402  * to soaccept.
403  */
404 int
405 so_socketpair(int sv[2])
406 {
407 	int svs[2];
408 	struct sonode *so1, *so2;
409 	int error;
410 	struct sockaddr_ux *name;
411 	size_t namelen;
412 
413 	dprint(1, ("so_socketpair(%p)\n", sv));
414 
415 	error = useracc(sv, sizeof (svs), B_WRITE);
416 	if (error && do_useracc)
417 		return (set_errno(EFAULT));
418 
419 	if (copyin(sv, svs, sizeof (svs)))
420 		return (set_errno(EFAULT));
421 
422 	if ((so1 = getsonode(svs[0], &error, NULL)) == NULL)
423 		return (set_errno(error));
424 
425 	if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) {
426 		releasef(svs[0]);
427 		return (set_errno(error));
428 	}
429 
430 	if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) {
431 		error = EOPNOTSUPP;
432 		goto done;
433 	}
434 
435 	/*
436 	 * The code below makes assumptions about the "sockfs" implementation.
437 	 * So make sure that the correct implementation is really used.
438 	 */
439 	ASSERT(so1->so_ops == &sotpi_sonodeops);
440 	ASSERT(so2->so_ops == &sotpi_sonodeops);
441 
442 	if (so1->so_type == SOCK_DGRAM) {
443 		/*
444 		 * Bind both sockets and connect them with each other.
445 		 * Need to allocate name/namelen for soconnect.
446 		 */
447 		error = SOP_BIND(so1, NULL, 0, _SOBIND_UNSPEC);
448 		if (error) {
449 			eprintsoline(so1, error);
450 			goto done;
451 		}
452 		error = SOP_BIND(so2, NULL, 0, _SOBIND_UNSPEC);
453 		if (error) {
454 			eprintsoline(so2, error);
455 			goto done;
456 		}
457 		namelen = sizeof (struct sockaddr_ux);
458 		name = kmem_alloc(namelen, KM_SLEEP);
459 		name->sou_family = AF_UNIX;
460 		name->sou_addr = so2->so_ux_laddr;
461 		error = SOP_CONNECT(so1,
462 				(struct sockaddr *)name,
463 				(socklen_t)namelen,
464 				0, _SOCONNECT_NOXLATE);
465 		if (error) {
466 			kmem_free(name, namelen);
467 			eprintsoline(so1, error);
468 			goto done;
469 		}
470 		name->sou_addr = so1->so_ux_laddr;
471 		error = SOP_CONNECT(so2,
472 				(struct sockaddr *)name,
473 				(socklen_t)namelen,
474 				0, _SOCONNECT_NOXLATE);
475 		kmem_free(name, namelen);
476 		if (error) {
477 			eprintsoline(so2, error);
478 			goto done;
479 		}
480 		releasef(svs[0]);
481 		releasef(svs[1]);
482 	} else {
483 		/*
484 		 * Bind both sockets, with so1 being a listener.
485 		 * Connect so2 to so1 - nonblocking to avoid waiting for
486 		 * soaccept to complete.
487 		 * Accept a connection on so1. Pass out the new fd as sv[0].
488 		 * The library will detect the changed fd and close
489 		 * the original one.
490 		 */
491 		struct sonode *nso;
492 		struct vnode *nvp;
493 		struct file *nfp;
494 		int nfd;
495 
496 		/*
497 		 * We could simply call SOP_LISTEN() here (which would do the
498 		 * binding automatically) if the code didn't rely on passing
499 		 * _SOBIND_NOXLATE to the TPI implementation of SOP_BIND().
500 		 */
501 		error = SOP_BIND(so1, NULL, 0, _SOBIND_UNSPEC|_SOBIND_NOXLATE|
502 		    _SOBIND_LISTEN|_SOBIND_SOCKETPAIR);
503 		if (error) {
504 			eprintsoline(so1, error);
505 			goto done;
506 		}
507 		error = SOP_BIND(so2, NULL, 0, _SOBIND_UNSPEC);
508 		if (error) {
509 			eprintsoline(so2, error);
510 			goto done;
511 		}
512 
513 		namelen = sizeof (struct sockaddr_ux);
514 		name = kmem_alloc(namelen, KM_SLEEP);
515 		name->sou_family = AF_UNIX;
516 		name->sou_addr = so1->so_ux_laddr;
517 		error = SOP_CONNECT(so2,
518 				(struct sockaddr *)name,
519 				(socklen_t)namelen,
520 				FNONBLOCK, _SOCONNECT_NOXLATE);
521 		kmem_free(name, namelen);
522 		if (error) {
523 			if (error != EINPROGRESS) {
524 				eprintsoline(so2, error);
525 				goto done;
526 			}
527 		}
528 
529 		error = SOP_ACCEPT(so1, 0, &nso);
530 		if (error) {
531 			eprintsoline(so1, error);
532 			goto done;
533 		}
534 
535 		/* wait for so2 being SS_CONNECTED ignoring signals */
536 		mutex_enter(&so2->so_lock);
537 		error = sowaitconnected(so2, 0, 1);
538 		mutex_exit(&so2->so_lock);
539 		nvp = SOTOV(nso);
540 		if (error != 0) {
541 			(void) VOP_CLOSE(nvp, 0, 1, 0, CRED());
542 			VN_RELE(nvp);
543 			eprintsoline(so2, error);
544 			goto done;
545 		}
546 
547 		if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) {
548 			(void) VOP_CLOSE(nvp, 0, 1, 0, CRED());
549 			VN_RELE(nvp);
550 			eprintsoline(nso, error);
551 			goto done;
552 		}
553 		/*
554 		 * fill in the entries that falloc reserved
555 		 */
556 		mutex_exit(&nfp->f_tlock);
557 		setf(nfd, nfp);
558 
559 		releasef(svs[0]);
560 		releasef(svs[1]);
561 		svs[0] = nfd;
562 
563 		/*
564 		 * The socketpair library routine will close the original
565 		 * svs[0] when this code passes out a different file
566 		 * descriptor.
567 		 */
568 		if (copyout(svs, sv, sizeof (svs))) {
569 			(void) closeandsetf(nfd, NULL);
570 			eprintline(EFAULT);
571 			return (set_errno(EFAULT));
572 		}
573 	}
574 	return (0);
575 
576 done:
577 	releasef(svs[0]);
578 	releasef(svs[1]);
579 	return (set_errno(error));
580 }
581 
582 int
583 bind(int sock, struct sockaddr *name, socklen_t namelen, int version)
584 {
585 	struct sonode *so;
586 	int error;
587 
588 	dprint(1, ("bind(%d, %p, %d)\n",
589 		sock, name, namelen));
590 
591 	if ((so = getsonode(sock, &error, NULL)) == NULL)
592 		return (set_errno(error));
593 
594 	/* Allocate and copyin name */
595 	/*
596 	 * X/Open test does not expect EFAULT with NULL name and non-zero
597 	 * namelen.
598 	 */
599 	if (name != NULL && namelen != 0) {
600 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
601 		name = copyin_name(so, name, &namelen, &error);
602 		if (name == NULL) {
603 			releasef(sock);
604 			return (set_errno(error));
605 		}
606 	} else {
607 		name = NULL;
608 		namelen = 0;
609 	}
610 
611 	switch (version) {
612 	default:
613 		error = SOP_BIND(so, name, namelen, 0);
614 		break;
615 	case SOV_XPG4_2:
616 		error = SOP_BIND(so, name, namelen, _SOBIND_XPG4_2);
617 		break;
618 	case SOV_SOCKBSD:
619 		error = SOP_BIND(so, name, namelen, _SOBIND_SOCKBSD);
620 		break;
621 	}
622 done:
623 	releasef(sock);
624 	if (name != NULL)
625 		kmem_free(name, (size_t)namelen);
626 
627 	if (error)
628 		return (set_errno(error));
629 	return (0);
630 }
631 
632 /* ARGSUSED2 */
633 int
634 listen(int sock, int backlog, int version)
635 {
636 	struct sonode *so;
637 	int error;
638 
639 	dprint(1, ("listen(%d, %d)\n",
640 		sock, backlog));
641 
642 	if ((so = getsonode(sock, &error, NULL)) == NULL)
643 		return (set_errno(error));
644 
645 	error = SOP_LISTEN(so, backlog);
646 
647 	releasef(sock);
648 	if (error)
649 		return (set_errno(error));
650 	return (0);
651 }
652 
653 /*ARGSUSED3*/
654 int
655 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
656 {
657 	struct sonode *so;
658 	file_t *fp;
659 	int error;
660 	socklen_t namelen;
661 	struct sonode *nso;
662 	struct vnode *nvp;
663 	struct file *nfp;
664 	int nfd;
665 
666 	dprint(1, ("accept(%d, %p, %p)\n",
667 		sock, name, namelenp));
668 
669 	if ((so = getsonode(sock, &error, &fp)) == NULL)
670 		return (set_errno(error));
671 
672 	if (name != NULL) {
673 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
674 		if (copyin(namelenp, &namelen, sizeof (namelen))) {
675 			releasef(sock);
676 			return (set_errno(EFAULT));
677 		}
678 		if (namelen != 0) {
679 			error = useracc(name, (size_t)namelen, B_WRITE);
680 			if (error && do_useracc) {
681 				releasef(sock);
682 				return (set_errno(EFAULT));
683 			}
684 		} else
685 			name = NULL;
686 	} else {
687 		namelen = 0;
688 	}
689 
690 	/*
691 	 * Allocate the user fd before SOP_ACCEPT() in order to
692 	 * catch EMFILE errors before calling SOP_ACCEPT().
693 	 */
694 	if ((nfd = ufalloc(0)) == -1) {
695 		eprintsoline(so, EMFILE);
696 		releasef(sock);
697 		return (set_errno(EMFILE));
698 	}
699 	error = SOP_ACCEPT(so, fp->f_flag, &nso);
700 	releasef(sock);
701 	if (error) {
702 		setf(nfd, NULL);
703 		return (set_errno(error));
704 	}
705 
706 	nvp = SOTOV(nso);
707 
708 	/*
709 	 * so_faddr_sa can not go away even though we are not holding so_lock.
710 	 * However, in theory its content could change from underneath us.
711 	 * But this is not possible in practice since it can only
712 	 * change due to either some socket system call
713 	 * or due to a T_CONN_CON being received from the stream head.
714 	 * Since the falloc/setf have not yet been done no thread
715 	 * can do any system call on nso and T_CONN_CON can not arrive
716 	 * on a socket that is already connected.
717 	 * Thus there is no reason to hold so_lock here.
718 	 *
719 	 * SOP_ACCEPT() is required to have set the valid bit for the faddr,
720 	 * but it could be instantly cleared by a disconnect from the transport.
721 	 * For that reason we ignore it here.
722 	 */
723 	ASSERT(MUTEX_NOT_HELD(&nso->so_lock));
724 	error = copyout_name(name, namelen, namelenp,
725 	    nso->so_faddr_sa, (socklen_t)nso->so_faddr_len);
726 	if (error) {
727 		setf(nfd, NULL);
728 		(void) VOP_CLOSE(nvp, 0, 1, 0, CRED());
729 		VN_RELE(nvp);
730 		return (set_errno(error));
731 	}
732 	if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) {
733 		setf(nfd, NULL);
734 		(void) VOP_CLOSE(nvp, 0, 1, 0, CRED());
735 		VN_RELE(nvp);
736 		eprintsoline(so, error);
737 		return (set_errno(error));
738 	}
739 	/*
740 	 * fill in the entries that falloc reserved
741 	 */
742 	nfp->f_vnode = nvp;
743 	mutex_exit(&nfp->f_tlock);
744 	setf(nfd, nfp);
745 
746 	/*
747 	 * Copy FNDELAY and FNONBLOCK from listener to acceptor
748 	 */
749 	if (so->so_state & (SS_NDELAY|SS_NONBLOCK)) {
750 		uint_t oflag = nfp->f_flag;
751 		int arg = 0;
752 
753 		if (so->so_state & SS_NONBLOCK)
754 			arg |= FNONBLOCK;
755 		else if (so->so_state & SS_NDELAY)
756 			arg |= FNDELAY;
757 
758 		/*
759 		 * This code is a simplification of the F_SETFL code in fcntl()
760 		 * Ignore any errors from VOP_SETFL.
761 		 */
762 		if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred)) != 0) {
763 			eprintsoline(so, error);
764 			error = 0;
765 		} else {
766 			mutex_enter(&nfp->f_tlock);
767 			nfp->f_flag &= ~FMASK | (FREAD|FWRITE);
768 			nfp->f_flag |= arg;
769 			mutex_exit(&nfp->f_tlock);
770 		}
771 	}
772 	return (nfd);
773 }
774 
775 int
776 connect(int sock, struct sockaddr *name, socklen_t namelen, int version)
777 {
778 	struct sonode *so;
779 	file_t *fp;
780 	int error;
781 
782 	dprint(1, ("connect(%d, %p, %d)\n",
783 		sock, name, namelen));
784 
785 	if ((so = getsonode(sock, &error, &fp)) == NULL)
786 		return (set_errno(error));
787 
788 	/* Allocate and copyin name */
789 	if (namelen != 0) {
790 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
791 		name = copyin_name(so, name, &namelen, &error);
792 		if (name == NULL) {
793 			releasef(sock);
794 			return (set_errno(error));
795 		}
796 	} else
797 		name = NULL;
798 
799 	error = SOP_CONNECT(so, name, namelen, fp->f_flag,
800 	    (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2);
801 	releasef(sock);
802 	if (name)
803 		kmem_free(name, (size_t)namelen);
804 	if (error)
805 		return (set_errno(error));
806 	return (0);
807 }
808 
809 /*ARGSUSED2*/
810 int
811 shutdown(int sock, int how, int version)
812 {
813 	struct sonode *so;
814 	int error;
815 
816 	dprint(1, ("shutdown(%d, %d)\n",
817 		sock, how));
818 
819 	if ((so = getsonode(sock, &error, NULL)) == NULL)
820 		return (set_errno(error));
821 
822 	error = SOP_SHUTDOWN(so, how);
823 
824 	releasef(sock);
825 	if (error)
826 		return (set_errno(error));
827 	return (0);
828 }
829 
830 /*
831  * Common receive routine.
832  */
833 static ssize_t
834 recvit(int sock,
835 	struct nmsghdr *msg,
836 	struct uio *uiop,
837 	int flags,
838 	socklen_t *namelenp,
839 	socklen_t *controllenp,
840 	int *flagsp)
841 {
842 	struct sonode *so;
843 	file_t *fp;
844 	void *name;
845 	socklen_t namelen;
846 	void *control;
847 	socklen_t controllen;
848 	ssize_t len;
849 	int error;
850 
851 	if ((so = getsonode(sock, &error, &fp)) == NULL)
852 		return (set_errno(error));
853 
854 	len = uiop->uio_resid;
855 	uiop->uio_fmode = fp->f_flag;
856 	uiop->uio_extflg = UIO_COPY_CACHED;
857 
858 	name = msg->msg_name;
859 	namelen = msg->msg_namelen;
860 	control = msg->msg_control;
861 	controllen = msg->msg_controllen;
862 
863 	msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL |
864 	    MSG_DONTWAIT | MSG_XPG4_2);
865 
866 	error = SOP_RECVMSG(so, msg, uiop);
867 	if (error) {
868 		releasef(sock);
869 		return (set_errno(error));
870 	}
871 	lwp_stat_update(LWP_STAT_MSGRCV, 1);
872 	so_update_attrs(so, SOACC);
873 	releasef(sock);
874 
875 	error = copyout_name(name, namelen, namelenp,
876 	    msg->msg_name, msg->msg_namelen);
877 	if (error)
878 		goto err;
879 
880 	if (flagsp != NULL) {
881 		/*
882 		 * Clear internal flag.
883 		 */
884 		msg->msg_flags &= ~MSG_XPG4_2;
885 
886 		/*
887 		 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only
888 		 * when controllen is zero and there is control data to
889 		 * copy out.
890 		 */
891 		if (controllen != 0 &&
892 		    (msg->msg_controllen > controllen || control == NULL)) {
893 			dprint(1, ("recvit: CTRUNC %d %d %p\n",
894 			    msg->msg_controllen, controllen, control));
895 
896 			msg->msg_flags |= MSG_CTRUNC;
897 		}
898 		if (copyout(&msg->msg_flags, flagsp,
899 		    sizeof (msg->msg_flags))) {
900 			error = EFAULT;
901 			goto err;
902 		}
903 	}
904 	/*
905 	 * Note: This MUST be done last. There can be no "goto err" after this
906 	 * point since it could make so_closefds run twice on some part
907 	 * of the file descriptor array.
908 	 */
909 	if (controllen != 0) {
910 		if (!(flags & MSG_XPG4_2)) {
911 			/*
912 			 * Good old msg_accrights can only return a multiple
913 			 * of 4 bytes.
914 			 */
915 			controllen &= ~((int)sizeof (uint32_t) - 1);
916 		}
917 		error = copyout_arg(control, controllen, controllenp,
918 		    msg->msg_control, msg->msg_controllen);
919 		if (error)
920 			goto err;
921 
922 		if (msg->msg_controllen > controllen || control == NULL) {
923 			if (control == NULL)
924 				controllen = 0;
925 			so_closefds(msg->msg_control, msg->msg_controllen,
926 			    !(flags & MSG_XPG4_2), controllen);
927 		}
928 	}
929 	if (msg->msg_namelen != 0)
930 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
931 	if (msg->msg_controllen != 0)
932 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
933 	return (len - uiop->uio_resid);
934 
935 err:
936 	/*
937 	 * If we fail and the control part contains file descriptors
938 	 * we have to close the fd's.
939 	 */
940 	if (msg->msg_controllen != 0)
941 		so_closefds(msg->msg_control, msg->msg_controllen,
942 		    !(flags & MSG_XPG4_2), 0);
943 	if (msg->msg_namelen != 0)
944 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
945 	if (msg->msg_controllen != 0)
946 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
947 	return (set_errno(error));
948 }
949 
950 /*
951  * Native system call
952  */
953 ssize_t
954 recv(int sock, void *buffer, size_t len, int flags)
955 {
956 	struct nmsghdr lmsg;
957 	struct uio auio;
958 	struct iovec aiov[1];
959 
960 	dprint(1, ("recv(%d, %p, %ld, %d)\n",
961 		sock, buffer, len, flags));
962 
963 	if ((ssize_t)len < 0) {
964 		return (set_errno(EINVAL));
965 	}
966 
967 	aiov[0].iov_base = buffer;
968 	aiov[0].iov_len = len;
969 	auio.uio_loffset = 0;
970 	auio.uio_iov = aiov;
971 	auio.uio_iovcnt = 1;
972 	auio.uio_resid = len;
973 	auio.uio_segflg = UIO_USERSPACE;
974 	auio.uio_limit = 0;
975 
976 	lmsg.msg_namelen = 0;
977 	lmsg.msg_controllen = 0;
978 	lmsg.msg_flags = 0;
979 	return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL));
980 }
981 
982 ssize_t
983 recvfrom(int sock, void *buffer, size_t len, int flags,
984 	struct sockaddr *name, socklen_t *namelenp)
985 {
986 	struct nmsghdr lmsg;
987 	struct uio auio;
988 	struct iovec aiov[1];
989 
990 	dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n",
991 		sock, buffer, len, flags, name, namelenp));
992 
993 	if ((ssize_t)len < 0) {
994 		return (set_errno(EINVAL));
995 	}
996 
997 	aiov[0].iov_base = buffer;
998 	aiov[0].iov_len = len;
999 	auio.uio_loffset = 0;
1000 	auio.uio_iov = aiov;
1001 	auio.uio_iovcnt = 1;
1002 	auio.uio_resid = len;
1003 	auio.uio_segflg = UIO_USERSPACE;
1004 	auio.uio_limit = 0;
1005 
1006 	lmsg.msg_name = (char *)name;
1007 	if (namelenp != NULL) {
1008 		if (copyin(namelenp, &lmsg.msg_namelen,
1009 		    sizeof (lmsg.msg_namelen)))
1010 			return (set_errno(EFAULT));
1011 	} else {
1012 		lmsg.msg_namelen = 0;
1013 	}
1014 	lmsg.msg_controllen = 0;
1015 	lmsg.msg_flags = 0;
1016 
1017 	return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL));
1018 }
1019 
1020 /*
1021  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1022  * struct omsghdr or struct nmsghdr.
1023  */
1024 ssize_t
1025 recvmsg(int sock, struct nmsghdr *msg, int flags)
1026 {
1027 	STRUCT_DECL(nmsghdr, u_lmsg);
1028 	STRUCT_HANDLE(nmsghdr, umsgptr);
1029 	struct nmsghdr lmsg;
1030 	struct uio auio;
1031 	struct iovec aiov[MSG_MAXIOVLEN];
1032 	int iovcnt;
1033 	ssize_t len;
1034 	int i;
1035 	int *flagsp;
1036 	model_t	model;
1037 
1038 	dprint(1, ("recvmsg(%d, %p, %d)\n",
1039 		sock, msg, flags));
1040 
1041 	model = get_udatamodel();
1042 	STRUCT_INIT(u_lmsg, model);
1043 	STRUCT_SET_HANDLE(umsgptr, model, msg);
1044 
1045 	if (flags & MSG_XPG4_2) {
1046 		if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg)))
1047 			return (set_errno(EFAULT));
1048 		flagsp = STRUCT_FADDR(umsgptr, msg_flags);
1049 	} else {
1050 		/*
1051 		 * Assumes that nmsghdr and omsghdr are identically shaped
1052 		 * except for the added msg_flags field.
1053 		 */
1054 		if (copyin(msg, STRUCT_BUF(u_lmsg),
1055 		    SIZEOF_STRUCT(omsghdr, model)))
1056 			return (set_errno(EFAULT));
1057 		STRUCT_FSET(u_lmsg, msg_flags, 0);
1058 		flagsp = NULL;
1059 	}
1060 
1061 	/*
1062 	 * Code below us will kmem_alloc memory and hang it
1063 	 * off msg_control and msg_name fields. This forces
1064 	 * us to copy the structure to its native form.
1065 	 */
1066 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1067 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1068 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1069 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1070 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1071 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1072 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1073 
1074 	iovcnt = lmsg.msg_iovlen;
1075 
1076 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1077 		return (set_errno(EMSGSIZE));
1078 	}
1079 
1080 #ifdef _SYSCALL32_IMPL
1081 	/*
1082 	 * 32-bit callers need to have their iovec expanded, while ensuring
1083 	 * that they can't move more than 2Gbytes of data in a single call.
1084 	 */
1085 	if (model == DATAMODEL_ILP32) {
1086 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1087 		ssize32_t count32;
1088 
1089 		if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1090 		    iovcnt * sizeof (struct iovec32)))
1091 			return (set_errno(EFAULT));
1092 
1093 		count32 = 0;
1094 		for (i = 0; i < iovcnt; i++) {
1095 			ssize32_t iovlen32;
1096 
1097 			iovlen32 = aiov32[i].iov_len;
1098 			count32 += iovlen32;
1099 			if (iovlen32 < 0 || count32 < 0)
1100 				return (set_errno(EINVAL));
1101 			aiov[i].iov_len = iovlen32;
1102 			aiov[i].iov_base =
1103 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1104 		}
1105 	} else
1106 #endif /* _SYSCALL32_IMPL */
1107 	if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) {
1108 		return (set_errno(EFAULT));
1109 	}
1110 	len = 0;
1111 	for (i = 0; i < iovcnt; i++) {
1112 		ssize_t iovlen = aiov[i].iov_len;
1113 		len += iovlen;
1114 		if (iovlen < 0 || len < 0) {
1115 			return (set_errno(EINVAL));
1116 		}
1117 	}
1118 	auio.uio_loffset = 0;
1119 	auio.uio_iov = aiov;
1120 	auio.uio_iovcnt = iovcnt;
1121 	auio.uio_resid = len;
1122 	auio.uio_segflg = UIO_USERSPACE;
1123 	auio.uio_limit = 0;
1124 
1125 	if (lmsg.msg_control != NULL &&
1126 	    (do_useracc == 0 ||
1127 	    useracc(lmsg.msg_control, lmsg.msg_controllen,
1128 			B_WRITE) != 0)) {
1129 		return (set_errno(EFAULT));
1130 	}
1131 
1132 	return (recvit(sock, &lmsg, &auio, flags,
1133 		STRUCT_FADDR(umsgptr, msg_namelen),
1134 		STRUCT_FADDR(umsgptr, msg_controllen), flagsp));
1135 }
1136 
1137 /*
1138  * Common send function.
1139  */
1140 static ssize_t
1141 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags)
1142 {
1143 	struct sonode *so;
1144 	file_t *fp;
1145 	void *name;
1146 	socklen_t namelen;
1147 	void *control;
1148 	socklen_t controllen;
1149 	ssize_t len;
1150 	int error;
1151 
1152 	if ((so = getsonode(sock, &error, &fp)) == NULL)
1153 		return (set_errno(error));
1154 
1155 	uiop->uio_fmode = fp->f_flag;
1156 
1157 	if (so->so_family == AF_UNIX)
1158 		uiop->uio_extflg = UIO_COPY_CACHED;
1159 	else
1160 		uiop->uio_extflg = UIO_COPY_DEFAULT;
1161 
1162 	/* Allocate and copyin name and control */
1163 	name = msg->msg_name;
1164 	namelen = msg->msg_namelen;
1165 	if (name != NULL && namelen != 0) {
1166 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1167 		name = copyin_name(so,
1168 				(struct sockaddr *)name,
1169 				&namelen, &error);
1170 		if (name == NULL)
1171 			goto done3;
1172 		/* copyin_name null terminates addresses for AF_UNIX */
1173 		msg->msg_namelen = namelen;
1174 		msg->msg_name = name;
1175 	} else {
1176 		msg->msg_name = name = NULL;
1177 		msg->msg_namelen = namelen = 0;
1178 	}
1179 
1180 	control = msg->msg_control;
1181 	controllen = msg->msg_controllen;
1182 	if ((control != NULL) && (controllen != 0)) {
1183 		/*
1184 		 * Verify that the length is not excessive to prevent
1185 		 * an application from consuming all of kernel memory.
1186 		 */
1187 		if (controllen > SO_MAXARGSIZE) {
1188 			error = EINVAL;
1189 			goto done2;
1190 		}
1191 		control = kmem_alloc(controllen, KM_SLEEP);
1192 
1193 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1194 		if (copyin(msg->msg_control, control, controllen)) {
1195 			error = EFAULT;
1196 			goto done1;
1197 		}
1198 		msg->msg_control = control;
1199 	} else {
1200 		msg->msg_control = control = NULL;
1201 		msg->msg_controllen = controllen = 0;
1202 	}
1203 
1204 	len = uiop->uio_resid;
1205 	msg->msg_flags = flags;
1206 
1207 	error = SOP_SENDMSG(so, msg, uiop);
1208 done1:
1209 	if (control != NULL)
1210 		kmem_free(control, controllen);
1211 done2:
1212 	if (name != NULL)
1213 		kmem_free(name, namelen);
1214 done3:
1215 	if (error != 0) {
1216 		releasef(sock);
1217 		return (set_errno(error));
1218 	}
1219 	lwp_stat_update(LWP_STAT_MSGSND, 1);
1220 	so_update_attrs(so, SOMOD);
1221 	releasef(sock);
1222 	return (len - uiop->uio_resid);
1223 }
1224 
1225 /*
1226  * Native system call
1227  */
1228 ssize_t
1229 send(int sock, void *buffer, size_t len, int flags)
1230 {
1231 	struct nmsghdr lmsg;
1232 	struct uio auio;
1233 	struct iovec aiov[1];
1234 
1235 	dprint(1, ("send(%d, %p, %ld, %d)\n",
1236 		sock, buffer, len, flags));
1237 
1238 	if ((ssize_t)len < 0) {
1239 		return (set_errno(EINVAL));
1240 	}
1241 
1242 	aiov[0].iov_base = buffer;
1243 	aiov[0].iov_len = len;
1244 	auio.uio_loffset = 0;
1245 	auio.uio_iov = aiov;
1246 	auio.uio_iovcnt = 1;
1247 	auio.uio_resid = len;
1248 	auio.uio_segflg = UIO_USERSPACE;
1249 	auio.uio_limit = 0;
1250 
1251 	lmsg.msg_name = NULL;
1252 	lmsg.msg_control = NULL;
1253 	if (!(flags & MSG_XPG4_2)) {
1254 		/*
1255 		 * In order to be compatible with the libsocket/sockmod
1256 		 * implementation we set EOR for all send* calls.
1257 		 */
1258 		flags |= MSG_EOR;
1259 	}
1260 	return (sendit(sock, &lmsg, &auio, flags));
1261 }
1262 
1263 /*
1264  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1265  * struct omsghdr or struct nmsghdr.
1266  */
1267 ssize_t
1268 sendmsg(int sock, struct nmsghdr *msg, int flags)
1269 {
1270 	struct nmsghdr lmsg;
1271 	STRUCT_DECL(nmsghdr, u_lmsg);
1272 	struct uio auio;
1273 	struct iovec aiov[MSG_MAXIOVLEN];
1274 	int iovcnt;
1275 	ssize_t len;
1276 	int i;
1277 	model_t	model;
1278 
1279 	dprint(1, ("sendmsg(%d, %p, %d)\n", sock, msg, flags));
1280 
1281 	model = get_udatamodel();
1282 	STRUCT_INIT(u_lmsg, model);
1283 
1284 	if (flags & MSG_XPG4_2) {
1285 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1286 		    STRUCT_SIZE(u_lmsg)))
1287 			return (set_errno(EFAULT));
1288 	} else {
1289 		/*
1290 		 * Assumes that nmsghdr and omsghdr are identically shaped
1291 		 * except for the added msg_flags field.
1292 		 */
1293 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1294 		    SIZEOF_STRUCT(omsghdr, model)))
1295 			return (set_errno(EFAULT));
1296 		/*
1297 		 * In order to be compatible with the libsocket/sockmod
1298 		 * implementation we set EOR for all send* calls.
1299 		 */
1300 		flags |= MSG_EOR;
1301 	}
1302 
1303 	/*
1304 	 * Code below us will kmem_alloc memory and hang it
1305 	 * off msg_control and msg_name fields. This forces
1306 	 * us to copy the structure to its native form.
1307 	 */
1308 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1309 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1310 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1311 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1312 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1313 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1314 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1315 
1316 	iovcnt = lmsg.msg_iovlen;
1317 
1318 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1319 		/*
1320 		 * Unless this is XPG 4.2 we allow iovcnt == 0 to
1321 		 * be compatible with SunOS 4.X and 4.4BSD.
1322 		 */
1323 		if (iovcnt != 0 || (flags & MSG_XPG4_2))
1324 			return (set_errno(EMSGSIZE));
1325 	}
1326 
1327 #ifdef _SYSCALL32_IMPL
1328 	/*
1329 	 * 32-bit callers need to have their iovec expanded, while ensuring
1330 	 * that they can't move more than 2Gbytes of data in a single call.
1331 	 */
1332 	if (model == DATAMODEL_ILP32) {
1333 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1334 		ssize32_t count32;
1335 
1336 		if (iovcnt != 0 &&
1337 		    copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1338 		    iovcnt * sizeof (struct iovec32)))
1339 			return (set_errno(EFAULT));
1340 
1341 		count32 = 0;
1342 		for (i = 0; i < iovcnt; i++) {
1343 			ssize32_t iovlen32;
1344 
1345 			iovlen32 = aiov32[i].iov_len;
1346 			count32 += iovlen32;
1347 			if (iovlen32 < 0 || count32 < 0)
1348 				return (set_errno(EINVAL));
1349 			aiov[i].iov_len = iovlen32;
1350 			aiov[i].iov_base =
1351 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1352 		}
1353 	} else
1354 #endif /* _SYSCALL32_IMPL */
1355 	if (iovcnt != 0 &&
1356 	    copyin(lmsg.msg_iov, aiov,
1357 	    (unsigned)iovcnt * sizeof (struct iovec))) {
1358 		return (set_errno(EFAULT));
1359 	}
1360 	len = 0;
1361 	for (i = 0; i < iovcnt; i++) {
1362 		ssize_t iovlen = aiov[i].iov_len;
1363 		len += iovlen;
1364 		if (iovlen < 0 || len < 0) {
1365 			return (set_errno(EINVAL));
1366 		}
1367 	}
1368 	auio.uio_loffset = 0;
1369 	auio.uio_iov = aiov;
1370 	auio.uio_iovcnt = iovcnt;
1371 	auio.uio_resid = len;
1372 	auio.uio_segflg = UIO_USERSPACE;
1373 	auio.uio_limit = 0;
1374 
1375 	return (sendit(sock, &lmsg, &auio, flags));
1376 }
1377 
1378 ssize_t
1379 sendto(int sock, void *buffer, size_t len, int flags,
1380     struct sockaddr *name, socklen_t namelen)
1381 {
1382 	struct nmsghdr lmsg;
1383 	struct uio auio;
1384 	struct iovec aiov[1];
1385 
1386 	dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n",
1387 		sock, buffer, len, flags, name, namelen));
1388 
1389 	if ((ssize_t)len < 0) {
1390 		return (set_errno(EINVAL));
1391 	}
1392 
1393 	aiov[0].iov_base = buffer;
1394 	aiov[0].iov_len = len;
1395 	auio.uio_loffset = 0;
1396 	auio.uio_iov = aiov;
1397 	auio.uio_iovcnt = 1;
1398 	auio.uio_resid = len;
1399 	auio.uio_segflg = UIO_USERSPACE;
1400 	auio.uio_limit = 0;
1401 
1402 	lmsg.msg_name = (char *)name;
1403 	lmsg.msg_namelen = namelen;
1404 	lmsg.msg_control = NULL;
1405 	if (!(flags & MSG_XPG4_2)) {
1406 		/*
1407 		 * In order to be compatible with the libsocket/sockmod
1408 		 * implementation we set EOR for all send* calls.
1409 		 */
1410 		flags |= MSG_EOR;
1411 	}
1412 	return (sendit(sock, &lmsg, &auio, flags));
1413 }
1414 
1415 /*ARGSUSED3*/
1416 int
1417 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1418 {
1419 	struct sonode *so;
1420 	int error;
1421 	socklen_t namelen;
1422 	union {
1423 		struct sockaddr_in sin;
1424 		struct sockaddr_in6 sin6;
1425 	} sin;			/* Temporary buffer, common case */
1426 	void *addr;		/* Temporary buffer, uncommon case */
1427 	socklen_t addrlen, size;
1428 
1429 	dprint(1, ("getpeername(%d, %p, %p)\n",
1430 		sock, name, namelenp));
1431 
1432 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1433 		goto bad;
1434 
1435 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1436 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1437 	    (name == NULL && namelen != 0)) {
1438 		error = EFAULT;
1439 		goto rel_out;
1440 	}
1441 	/*
1442 	 * If a connect or accept has been done, unless we're an Xnet socket,
1443 	 * the remote address has already been updated in so_faddr_sa.
1444 	 */
1445 	if (so->so_version != SOV_SOCKSTREAM && so->so_version != SOV_SOCKBSD ||
1446 	    !(so->so_state & SS_FADDR_VALID)) {
1447 		if ((error = SOP_GETPEERNAME(so)) != 0)
1448 			goto rel_out;
1449 	}
1450 
1451 	if (so->so_faddr_maxlen <= sizeof (sin)) {
1452 		size = 0;
1453 		addr = &sin;
1454 	} else {
1455 		/*
1456 		 * Allocate temporary to avoid holding so_lock across
1457 		 * copyout
1458 		 */
1459 		size = so->so_faddr_maxlen;
1460 		addr = kmem_alloc(size, KM_SLEEP);
1461 	}
1462 	/* Prevent so_faddr_sa/len from changing while accessed */
1463 	mutex_enter(&so->so_lock);
1464 	if (!(so->so_state & SS_ISCONNECTED)) {
1465 		mutex_exit(&so->so_lock);
1466 		error = ENOTCONN;
1467 		goto free_out;
1468 	}
1469 	addrlen = so->so_faddr_len;
1470 	bcopy(so->so_faddr_sa, addr, addrlen);
1471 	mutex_exit(&so->so_lock);
1472 
1473 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1474 	error = copyout_name(name, namelen, namelenp, addr,
1475 	    (so->so_state & SS_FADDR_NOXLATE) ? 0 : addrlen);
1476 free_out:
1477 	if (size != 0)
1478 		kmem_free(addr, size);
1479 rel_out:
1480 	releasef(sock);
1481 bad:	return (error != 0 ? set_errno(error) : 0);
1482 }
1483 
1484 /*ARGSUSED3*/
1485 int
1486 getsockname(int sock, struct sockaddr *name,
1487 		socklen_t *namelenp, int version)
1488 {
1489 	struct sonode *so;
1490 	int error;
1491 	socklen_t namelen;
1492 	union {
1493 		struct sockaddr_in sin;
1494 		struct sockaddr_in6 sin6;
1495 	} sin;			/* Temporary buffer, common case */
1496 	void *addr;		/* Temporary buffer, uncommon case */
1497 	socklen_t addrlen, size;
1498 
1499 	dprint(1, ("getsockname(%d, %p, %p)\n",
1500 		sock, name, namelenp));
1501 
1502 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1503 		goto bad;
1504 
1505 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1506 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1507 	    (name == NULL && namelen != 0)) {
1508 		error = EFAULT;
1509 		goto rel_out;
1510 	}
1511 
1512 	/*
1513 	 * If a bind or accept has been done, unless we're an Xnet endpoint,
1514 	 * the local address has already been updated in so_laddr_sa.
1515 	 */
1516 	if ((so->so_version != SOV_SOCKSTREAM &&
1517 	    so->so_version != SOV_SOCKBSD) ||
1518 	    !(so->so_state & SS_LADDR_VALID)) {
1519 		if ((error = SOP_GETSOCKNAME(so)) != 0)
1520 			goto rel_out;
1521 	}
1522 
1523 	if (so->so_laddr_maxlen <= sizeof (sin)) {
1524 		size = 0;
1525 		addr = &sin;
1526 	} else {
1527 		/*
1528 		 * Allocate temporary to avoid holding so_lock across
1529 		 * copyout
1530 		 */
1531 		size = so->so_laddr_maxlen;
1532 		addr = kmem_alloc(size, KM_SLEEP);
1533 	}
1534 	/* Prevent so_laddr_sa/len from changing while accessed */
1535 	mutex_enter(&so->so_lock);
1536 	addrlen = so->so_laddr_len;
1537 	bcopy(so->so_laddr_sa, addr, addrlen);
1538 	mutex_exit(&so->so_lock);
1539 
1540 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1541 	error = copyout_name(name, namelen, namelenp,
1542 	    addr, addrlen);
1543 	if (size != 0)
1544 		kmem_free(addr, size);
1545 rel_out:
1546 	releasef(sock);
1547 bad:	return (error != 0 ? set_errno(error) : 0);
1548 }
1549 
1550 /*ARGSUSED5*/
1551 int
1552 getsockopt(int sock,
1553 	int level,
1554 	int option_name,
1555 	void *option_value,
1556 	socklen_t *option_lenp,
1557 	int version)
1558 {
1559 	struct sonode *so;
1560 	socklen_t optlen, optlen_res;
1561 	void *optval;
1562 	int error;
1563 
1564 	dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n",
1565 		sock, level, option_name, option_value, option_lenp));
1566 
1567 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1568 		return (set_errno(error));
1569 
1570 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1571 	if (copyin(option_lenp, &optlen, sizeof (optlen))) {
1572 		releasef(sock);
1573 		return (set_errno(EFAULT));
1574 	}
1575 	/*
1576 	 * Verify that the length is not excessive to prevent
1577 	 * an application from consuming all of kernel memory.
1578 	 */
1579 	if (optlen > SO_MAXARGSIZE) {
1580 		error = EINVAL;
1581 		releasef(sock);
1582 		return (set_errno(error));
1583 	}
1584 	optval = kmem_alloc(optlen, KM_SLEEP);
1585 	optlen_res = optlen;
1586 	error = SOP_GETSOCKOPT(so, level, option_name, optval,
1587 	    &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2);
1588 	releasef(sock);
1589 	if (error) {
1590 		kmem_free(optval, optlen);
1591 		return (set_errno(error));
1592 	}
1593 	error = copyout_arg(option_value, optlen, option_lenp,
1594 	    optval, optlen_res);
1595 	kmem_free(optval, optlen);
1596 	if (error)
1597 		return (set_errno(error));
1598 	return (0);
1599 }
1600 
1601 /*ARGSUSED5*/
1602 int
1603 setsockopt(int sock,
1604 	int level,
1605 	int option_name,
1606 	void *option_value,
1607 	socklen_t option_len,
1608 	int version)
1609 {
1610 	struct sonode *so;
1611 	intptr_t buffer[2];
1612 	void *optval = NULL;
1613 	int error;
1614 
1615 	dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n",
1616 		sock, level, option_name, option_value, option_len));
1617 
1618 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1619 		return (set_errno(error));
1620 
1621 	if (option_value != NULL) {
1622 		if (option_len != 0) {
1623 			/*
1624 			 * Verify that the length is not excessive to prevent
1625 			 * an application from consuming all of kernel memory.
1626 			 */
1627 			if (option_len > SO_MAXARGSIZE) {
1628 				error = EINVAL;
1629 				goto done2;
1630 			}
1631 			optval = option_len <= sizeof (buffer) ?
1632 			    &buffer : kmem_alloc((size_t)option_len, KM_SLEEP);
1633 			ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1634 			if (copyin(option_value, optval, (size_t)option_len)) {
1635 				error = EFAULT;
1636 				goto done1;
1637 			}
1638 		}
1639 	} else
1640 		option_len = 0;
1641 
1642 	error = SOP_SETSOCKOPT(so, level, option_name, optval,
1643 	    (t_uscalar_t)option_len);
1644 done1:
1645 	if (optval != buffer)
1646 		kmem_free(optval, (size_t)option_len);
1647 done2:
1648 	releasef(sock);
1649 	if (error)
1650 		return (set_errno(error));
1651 	return (0);
1652 }
1653 
1654 /*
1655  * Add config info when devpath is non-NULL; delete info when devpath is NULL.
1656  * devpath is a user address.
1657  */
1658 int
1659 sockconfig(int domain, int type, int protocol, char *devpath)
1660 {
1661 	char *kdevpath;		/* Copied in devpath string */
1662 	size_t kdevpathlen;
1663 	int error = 0;
1664 
1665 	dprint(1, ("sockconfig(%d, %d, %d, %p)\n",
1666 		domain, type, protocol, devpath));
1667 
1668 	if (secpolicy_net_config(CRED(), B_FALSE) != 0)
1669 		return (set_errno(EPERM));
1670 
1671 	if (devpath == NULL) {
1672 		/* Deleting an entry */
1673 		kdevpath = NULL;
1674 		kdevpathlen = 0;
1675 	} else {
1676 		/*
1677 		 * Adding an entry.
1678 		 * Copyin the devpath.
1679 		 * This also makes it possible to check for too long pathnames.
1680 		 * Compress the space needed for the devpath before passing it
1681 		 * to soconfig - soconfig will store the string until
1682 		 * the configuration is removed.
1683 		 */
1684 		char *buf;
1685 
1686 		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1687 		if ((error = copyinstr(devpath, buf, MAXPATHLEN,
1688 		    &kdevpathlen)) != 0) {
1689 			kmem_free(buf, MAXPATHLEN);
1690 			goto done;
1691 		}
1692 
1693 		kdevpath = kmem_alloc(kdevpathlen, KM_SLEEP);
1694 		bcopy(buf, kdevpath, kdevpathlen);
1695 		kdevpath[kdevpathlen - 1] = '\0';
1696 
1697 		kmem_free(buf, MAXPATHLEN);
1698 	}
1699 	error = soconfig(domain, type, protocol, kdevpath, (int)kdevpathlen);
1700 done:
1701 	if (error) {
1702 		eprintline(error);
1703 		return (set_errno(error));
1704 	}
1705 	return (0);
1706 }
1707 
1708 
1709 /*
1710  * Sendfile is implemented through two schemes, direct I/O or by
1711  * caching in the filesystem page cache. We cache the input file by
1712  * default and use direct I/O only if sendfile_max_size is set
1713  * appropriately as explained below. Note that this logic is consistent
1714  * with other filesystems where caching is turned on by default
1715  * unless explicitly turned off by using the DIRECTIO ioctl.
1716  *
1717  * We choose a slightly different scheme here. One can turn off
1718  * caching by setting sendfile_max_size to 0. One can also enable
1719  * caching of files <= sendfile_max_size by setting sendfile_max_size
1720  * to an appropriate value. By default sendfile_max_size is set to the
1721  * maximum value so that all files are cached. In future, we may provide
1722  * better interfaces for caching the file.
1723  *
1724  * Sendfile through Direct I/O (Zero copy)
1725  * --------------------------------------
1726  *
1727  * As disks are normally slower than the network, we can't have a
1728  * single thread that reads the disk and writes to the network. We
1729  * need to have parallelism. This is done by having the sendfile
1730  * thread create another thread that reads from the filesystem
1731  * and queues it for network processing. In this scheme, the data
1732  * is never copied anywhere i.e it is zero copy unlike the other
1733  * scheme.
1734  *
1735  * We have a sendfile queue (snfq) where each sendfile
1736  * request (snf_req_t) is queued for processing by a thread. Number
1737  * of threads is dynamically allocated and they exit if they are idling
1738  * beyond a specified amount of time. When each request (snf_req_t) is
1739  * processed by a thread, it produces a number of mblk_t structures to
1740  * be consumed by the sendfile thread. snf_deque and snf_enque are
1741  * used for consuming and producing mblks. Size of the filesystem
1742  * read is determined by the tuneable (sendfile_read_size). A single
1743  * mblk holds sendfile_read_size worth of data (except the last
1744  * read of the file) which is sent down as a whole to the network.
1745  * sendfile_read_size is set to 1 MB as this seems to be the optimal
1746  * value for the UFS filesystem backed by a striped storage array.
1747  *
1748  * Synchronisation between read (producer) and write (consumer) threads.
1749  * --------------------------------------------------------------------
1750  *
1751  * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while
1752  * adding and deleting items in this list. Error can happen anytime
1753  * during read or write. There could be unprocessed mblks in the
1754  * sr_ib_XXX list when a read or write error occurs. Whenever error
1755  * is encountered, we need two things to happen :
1756  *
1757  * a) One of the threads need to clean the mblks.
1758  * b) When one thread encounters an error, the other should stop.
1759  *
1760  * For (a), we don't want to penalise the reader thread as it could do
1761  * some useful work processing other requests. For (b), the error can
1762  * be detected by examining sr_read_error or sr_write_error.
1763  * sr_lock protects sr_read_error and sr_write_error. If both reader and
1764  * writer encounters error, we need to report the write error back to
1765  * the application as that's what would have happened if the operations
1766  * were done sequentially. With this in mind, following should work :
1767  *
1768  * 	- Check for errors before read or write.
1769  *	- If the reader encounters error, set the error in sr_read_error.
1770  *	  Check sr_write_error, if it is set, send cv_signal as it is
1771  *	  waiting for reader to complete. If it is not set, the writer
1772  *	  is either running sinking data to the network or blocked
1773  *        because of flow control. For handling the latter case, we
1774  *	  always send a signal. In any case, it will examine sr_read_error
1775  *	  and return. sr_read_error is marked with SR_READ_DONE to tell
1776  *	  the writer that the reader is done in all the cases.
1777  *	- If the writer encounters error, set the error in sr_write_error.
1778  *	  The reader thread is either blocked because of flow control or
1779  *	  running reading data from the disk. For the former, we need to
1780  *	  wakeup the thread. Again to keep it simple, we always wake up
1781  *	  the reader thread. Then, wait for the read thread to complete
1782  *	  if it is not done yet. Cleanup and return.
1783  *
1784  * High and low water marks for the read thread.
1785  * --------------------------------------------
1786  *
1787  * If sendfile() is used to send data over a slow network, we need to
1788  * make sure that the read thread does not produce data at a faster
1789  * rate than the network. This can happen if the disk is faster than
1790  * the network. In such a case, we don't want to build a very large queue.
1791  * But we would still like to get all of the network throughput possible.
1792  * This implies that network should never block waiting for data.
1793  * As there are lot of disk throughput/network throughput combinations
1794  * possible, it is difficult to come up with an accurate number.
1795  * A typical 10K RPM disk has a max seek latency 17ms and rotational
1796  * latency of 3ms for reading a disk block. Thus, the total latency to
1797  * initiate a new read, transfer data from the disk and queue for
1798  * transmission would take about a max of 25ms. Todays max transfer rate
1799  * for network is 100MB/sec. If the thread is blocked because of flow
1800  * control, it would take 25ms to get new data ready for transmission.
1801  * We have to make sure that network is not idling, while we are initiating
1802  * new transfers. So, at 100MB/sec, to keep network busy we would need
1803  * 2.5MB of data. Roundig off, we keep the low water mark to be 3MB of data.
1804  * We need to pick a high water mark so that the woken up thread would
1805  * do considerable work before blocking again to prevent thrashing. Currently,
1806  * we pick this to be 10 times that of the low water mark.
1807  *
1808  * Sendfile with segmap caching (One copy from page cache to mblks).
1809  * ----------------------------------------------------------------
1810  *
1811  * We use the segmap cache for caching the file, if the size of file
1812  * is <= sendfile_max_size. In this case we don't use threads as VM
1813  * is reasonably fast enough to keep up with the network. If the underlying
1814  * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth
1815  * of data into segmap space, and use the virtual address from segmap
1816  * directly through desballoc() to avoid copy. Once the transport is done
1817  * with the data, the mapping will be released through segmap_release()
1818  * called by the call-back routine.
1819  *
1820  * If zero-copy is not allowed by the transport, we simply call VOP_READ()
1821  * to copy the data from the filesystem into our temporary network buffer.
1822  *
1823  * To disable caching, set sendfile_max_size to 0.
1824  */
1825 
1826 uint_t sendfile_read_size = 1024 * 1024;
1827 #define	SENDFILE_REQ_LOWAT	3 * 1024 * 1024
1828 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT;
1829 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT;
1830 struct sendfile_stats sf_stats;
1831 struct sendfile_queue *snfq;
1832 clock_t snfq_timeout;
1833 off64_t sendfile_max_size;
1834 
1835 static void snf_enque(snf_req_t *, mblk_t *);
1836 static mblk_t *snf_deque(snf_req_t *);
1837 
1838 void
1839 sendfile_init(void)
1840 {
1841 	snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP);
1842 
1843 	mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL);
1844 	cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL);
1845 	snfq->snfq_max_threads = max_ncpus;
1846 	snfq_timeout = SNFQ_TIMEOUT;
1847 	/* Cache all files by default. */
1848 	sendfile_max_size = MAXOFFSET_T;
1849 }
1850 
1851 /*
1852  * Queues a mblk_t for network processing.
1853  */
1854 static void
1855 snf_enque(snf_req_t *sr, mblk_t *mp)
1856 {
1857 	mp->b_next = NULL;
1858 	mutex_enter(&sr->sr_lock);
1859 	if (sr->sr_mp_head == NULL) {
1860 		sr->sr_mp_head = sr->sr_mp_tail = mp;
1861 		cv_signal(&sr->sr_cv);
1862 	} else {
1863 		sr->sr_mp_tail->b_next = mp;
1864 		sr->sr_mp_tail = mp;
1865 	}
1866 	sr->sr_qlen += MBLKL(mp);
1867 	while ((sr->sr_qlen > sr->sr_hiwat) &&
1868 	    (sr->sr_write_error == 0)) {
1869 		sf_stats.ss_full_waits++;
1870 		cv_wait(&sr->sr_cv, &sr->sr_lock);
1871 	}
1872 	mutex_exit(&sr->sr_lock);
1873 }
1874 
1875 /*
1876  * De-queues a mblk_t for network processing.
1877  */
1878 static mblk_t *
1879 snf_deque(snf_req_t *sr)
1880 {
1881 	mblk_t *mp;
1882 
1883 	mutex_enter(&sr->sr_lock);
1884 	/*
1885 	 * If we have encountered an error on read or read is
1886 	 * completed and no more mblks, return NULL.
1887 	 * We need to check for NULL sr_mp_head also as
1888 	 * the reads could have completed and there is
1889 	 * nothing more to come.
1890 	 */
1891 	if (((sr->sr_read_error & ~SR_READ_DONE) != 0) ||
1892 	    ((sr->sr_read_error & SR_READ_DONE) &&
1893 	    sr->sr_mp_head == NULL)) {
1894 		mutex_exit(&sr->sr_lock);
1895 		return (NULL);
1896 	}
1897 	/*
1898 	 * To start with neither SR_READ_DONE is marked nor
1899 	 * the error is set. When we wake up from cv_wait,
1900 	 * following are the possibilities :
1901 	 *
1902 	 *	a) sr_read_error is zero and mblks are queued.
1903 	 *	b) sr_read_error is set to SR_READ_DONE
1904 	 *	   and mblks are queued.
1905 	 *	c) sr_read_error is set to SR_READ_DONE
1906 	 *	   and no mblks.
1907 	 *	d) sr_read_error is set to some error other
1908 	 *	   than SR_READ_DONE.
1909 	 */
1910 
1911 	while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) {
1912 		sf_stats.ss_empty_waits++;
1913 		cv_wait(&sr->sr_cv, &sr->sr_lock);
1914 	}
1915 	/* Handle (a) and (b) first  - the normal case. */
1916 	if (((sr->sr_read_error & ~SR_READ_DONE) == 0) &&
1917 	    (sr->sr_mp_head != NULL)) {
1918 		mp = sr->sr_mp_head;
1919 		sr->sr_mp_head = mp->b_next;
1920 		sr->sr_qlen -= MBLKL(mp);
1921 		if (sr->sr_qlen < sr->sr_lowat)
1922 			cv_signal(&sr->sr_cv);
1923 		mutex_exit(&sr->sr_lock);
1924 		mp->b_next = NULL;
1925 		return (mp);
1926 	}
1927 	/* Handle (c) and (d). */
1928 	mutex_exit(&sr->sr_lock);
1929 	return (NULL);
1930 }
1931 
1932 /*
1933  * Reads data from the filesystem and queues it for network processing.
1934  */
1935 void
1936 snf_async_read(snf_req_t *sr)
1937 {
1938 	size_t iosize;
1939 	u_offset_t fileoff;
1940 	u_offset_t size;
1941 	int ret_size;
1942 	int error;
1943 	file_t *fp;
1944 	mblk_t *mp;
1945 
1946 	fp = sr->sr_fp;
1947 	size = sr->sr_file_size;
1948 	fileoff = sr->sr_file_off;
1949 
1950 	/*
1951 	 * Ignore the error for filesystems that doesn't support DIRECTIO.
1952 	 */
1953 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0,
1954 	    kcred, NULL);
1955 
1956 	while ((size != 0) && (sr->sr_write_error == 0)) {
1957 
1958 		iosize = (int)MIN(sr->sr_maxpsz, size);
1959 
1960 		if ((mp = allocb(iosize, BPRI_MED)) == NULL) {
1961 			error = EAGAIN;
1962 			break;
1963 		}
1964 		ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize);
1965 
1966 		/* Error or Reached EOF ? */
1967 		if ((error != 0) || (ret_size == 0)) {
1968 			freeb(mp);
1969 			break;
1970 		}
1971 		mp->b_wptr = mp->b_rptr + ret_size;
1972 
1973 		snf_enque(sr, mp);
1974 		size -= ret_size;
1975 		fileoff += ret_size;
1976 	}
1977 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0,
1978 	    kcred, NULL);
1979 	mutex_enter(&sr->sr_lock);
1980 	sr->sr_read_error = error;
1981 	sr->sr_read_error |= SR_READ_DONE;
1982 	cv_signal(&sr->sr_cv);
1983 	mutex_exit(&sr->sr_lock);
1984 }
1985 
1986 void
1987 snf_async_thread(void)
1988 {
1989 	snf_req_t *sr;
1990 	callb_cpr_t cprinfo;
1991 	clock_t time_left = 1;
1992 	clock_t now;
1993 
1994 	CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq");
1995 
1996 	mutex_enter(&snfq->snfq_lock);
1997 	for (;;) {
1998 		/*
1999 		 * If we didn't find a entry, then block until woken up
2000 		 * again and then look through the queues again.
2001 		 */
2002 		while ((sr = snfq->snfq_req_head) == NULL) {
2003 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2004 			if (time_left <= 0) {
2005 				snfq->snfq_svc_threads--;
2006 				CALLB_CPR_EXIT(&cprinfo);
2007 				thread_exit();
2008 				/* NOTREACHED */
2009 			}
2010 			snfq->snfq_idle_cnt++;
2011 
2012 			time_to_wait(&now, snfq_timeout);
2013 			time_left = cv_timedwait(&snfq->snfq_cv,
2014 			    &snfq->snfq_lock, now);
2015 			snfq->snfq_idle_cnt--;
2016 
2017 			CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock);
2018 		}
2019 		snfq->snfq_req_head = sr->sr_next;
2020 		snfq->snfq_req_cnt--;
2021 		mutex_exit(&snfq->snfq_lock);
2022 		snf_async_read(sr);
2023 		mutex_enter(&snfq->snfq_lock);
2024 	}
2025 }
2026 
2027 
2028 snf_req_t *
2029 create_thread(int operation, struct vnode *vp, file_t *fp,
2030     u_offset_t fileoff, u_offset_t size)
2031 {
2032 	snf_req_t *sr;
2033 	stdata_t *stp;
2034 
2035 	sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP);
2036 
2037 	sr->sr_vp = vp;
2038 	sr->sr_fp = fp;
2039 	stp = vp->v_stream;
2040 
2041 	/*
2042 	 * store sd_qn_maxpsz into sr_maxpsz while we have stream head.
2043 	 * stream might be closed before thread returns from snf_async_read.
2044 	 */
2045 	if (stp->sd_qn_maxpsz > 0) {
2046 		sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz);
2047 	} else {
2048 		sr->sr_maxpsz = MAXBSIZE;
2049 	}
2050 
2051 	sr->sr_operation = operation;
2052 	sr->sr_file_off = fileoff;
2053 	sr->sr_file_size = size;
2054 	sr->sr_hiwat = sendfile_req_hiwat;
2055 	sr->sr_lowat = sendfile_req_lowat;
2056 	mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL);
2057 	cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL);
2058 	/*
2059 	 * See whether we need another thread for servicing this
2060 	 * request. If there are already enough requests queued
2061 	 * for the threads, create one if not exceeding
2062 	 * snfq_max_threads.
2063 	 */
2064 	mutex_enter(&snfq->snfq_lock);
2065 	if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt &&
2066 	    snfq->snfq_svc_threads < snfq->snfq_max_threads) {
2067 		(void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0,
2068 		    TS_RUN, minclsyspri);
2069 		snfq->snfq_svc_threads++;
2070 	}
2071 	if (snfq->snfq_req_head == NULL) {
2072 		snfq->snfq_req_head = snfq->snfq_req_tail = sr;
2073 		cv_signal(&snfq->snfq_cv);
2074 	} else {
2075 		snfq->snfq_req_tail->sr_next = sr;
2076 		snfq->snfq_req_tail = sr;
2077 	}
2078 	snfq->snfq_req_cnt++;
2079 	mutex_exit(&snfq->snfq_lock);
2080 	return (sr);
2081 }
2082 
2083 int
2084 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size,
2085     ssize_t *count)
2086 {
2087 	snf_req_t *sr;
2088 	mblk_t *mp;
2089 	int iosize;
2090 	int error = 0;
2091 	short fflag;
2092 	struct vnode *vp;
2093 	int ksize;
2094 
2095 	ksize = 0;
2096 	*count = 0;
2097 
2098 	vp = fp->f_vnode;
2099 	fflag = fp->f_flag;
2100 	if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL)
2101 		return (EAGAIN);
2102 
2103 	/*
2104 	 * We check for read error in snf_deque. It has to check
2105 	 * for successful READ_DONE and return NULL, and we might
2106 	 * as well make an additional check there.
2107 	 */
2108 	while ((mp = snf_deque(sr)) != NULL) {
2109 
2110 		if (ISSIG(curthread, JUSTLOOKING)) {
2111 			freeb(mp);
2112 			error = EINTR;
2113 			break;
2114 		}
2115 		iosize = MBLKL(mp);
2116 
2117 		if ((error = kstrwritemp(vp, mp, fflag)) != 0) {
2118 			freeb(mp);
2119 			break;
2120 		}
2121 		ksize += iosize;
2122 	}
2123 	*count = ksize;
2124 
2125 	mutex_enter(&sr->sr_lock);
2126 	sr->sr_write_error = error;
2127 	/* Look at the big comments on why we cv_signal here. */
2128 	cv_signal(&sr->sr_cv);
2129 
2130 	/* Wait for the reader to complete always. */
2131 	while (!(sr->sr_read_error & SR_READ_DONE)) {
2132 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2133 	}
2134 	/* If there is no write error, check for read error. */
2135 	if (error == 0)
2136 		error = (sr->sr_read_error & ~SR_READ_DONE);
2137 
2138 	if (error != 0) {
2139 		mblk_t *next_mp;
2140 
2141 		mp = sr->sr_mp_head;
2142 		while (mp != NULL) {
2143 			next_mp = mp->b_next;
2144 			mp->b_next = NULL;
2145 			freeb(mp);
2146 			mp = next_mp;
2147 		}
2148 	}
2149 	mutex_exit(&sr->sr_lock);
2150 	kmem_free(sr, sizeof (snf_req_t));
2151 	return (error);
2152 }
2153 
2154 typedef struct {
2155 	frtn_t		snfi_frtn;
2156 	caddr_t		snfi_base;
2157 	uint_t		snfi_mapoff;
2158 	size_t		snfi_len;
2159 	vnode_t		*snfi_vp;
2160 } snf_smap_desbinfo;
2161 
2162 /*
2163  * The callback function when the last ref of the mblk is dropped,
2164  * normally occurs when TCP receives the ack. But it can be the driver
2165  * too due to lazy reclaim.
2166  */
2167 void
2168 snf_smap_desbfree(snf_smap_desbinfo *snfi)
2169 {
2170 	if (!segmap_kpm) {
2171 		/*
2172 		 * We don't need to call segmap_fault(F_SOFTUNLOCK) for
2173 		 * segmap_kpm as long as the latter never falls back to
2174 		 * "use_segmap_range". (See segmap_getmapflt().)
2175 		 *
2176 		 * Using S_OTHER saves an redundant hat_setref() in
2177 		 * segmap_unlock()
2178 		 */
2179 		(void) segmap_fault(kas.a_hat, segkmap,
2180 		    (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base +
2181 		    snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len,
2182 		    F_SOFTUNLOCK, S_OTHER);
2183 	}
2184 	(void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED);
2185 	VN_RELE(snfi->snfi_vp);
2186 	kmem_free(snfi, sizeof (*snfi));
2187 }
2188 
2189 /*
2190  * Use segmap instead of bcopy to send down a chain of desballoca'ed, mblks.
2191  * Each mblk contains a segmap slot of no more than MAXBSIZE. The total
2192  * length of a chain is no more than sd_qn_maxpsz.
2193  *
2194  * At the end of the whole sendfile() operation, we wait till the data from
2195  * the last mblk is ack'ed by the transport before returning so that the
2196  * caller of sendfile() can safely modify the file content.
2197  */
2198 int
2199 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2200     uint_t maxpsz, ssize_t *count, boolean_t nowait)
2201 {
2202 	caddr_t base;
2203 	int mapoff;
2204 	vnode_t *vp;
2205 	mblk_t *mp, *mp1;
2206 	int iosize, iosize1;
2207 	int error;
2208 	short fflag;
2209 	int ksize;
2210 	snf_smap_desbinfo *snfi;
2211 	struct vattr va;
2212 	boolean_t dowait = B_FALSE;
2213 
2214 	vp = fp->f_vnode;
2215 	fflag = fp->f_flag;
2216 	ksize = 0;
2217 	for (;;) {
2218 		if (ISSIG(curthread, JUSTLOOKING)) {
2219 			error = EINTR;
2220 			break;
2221 		}
2222 		iosize = 0;
2223 		mp = NULL;
2224 		do {
2225 			mapoff = fileoff & MAXBOFFSET;
2226 			iosize1 = MAXBSIZE - mapoff;
2227 			if (iosize1 > size)
2228 				iosize1 = size;
2229 			/*
2230 			 * we don't forcefault because we'll call
2231 			 * segmap_fault(F_SOFTLOCK) next.
2232 			 *
2233 			 * S_READ will get the ref bit set (by either
2234 			 * segmap_getmapflt() or segmap_fault()) and page
2235 			 * shared locked.
2236 			 */
2237 			base = segmap_getmapflt(segkmap, fvp, fileoff, iosize1,
2238 			    segmap_kpm ? SM_FAULT : 0, S_READ);
2239 
2240 			snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP);
2241 			snfi->snfi_len = (size_t)roundup(mapoff+iosize1,
2242 			    PAGESIZE)- (mapoff & PAGEMASK);
2243 			/*
2244 			 * We must call segmap_fault() even for segmap_kpm
2245 			 * because that's how error gets returned.
2246 			 * (segmap_getmapflt() never fails but segmap_fault()
2247 			 * does.)
2248 			 */
2249 			if (segmap_fault(kas.a_hat, segkmap,
2250 			    (caddr_t)(uintptr_t)(((uintptr_t)base + mapoff) &
2251 			    PAGEMASK), snfi->snfi_len, F_SOFTLOCK,
2252 			    S_READ) != 0) {
2253 				(void) segmap_release(segkmap, base, 0);
2254 				kmem_free(snfi, sizeof (*snfi));
2255 				freemsg(mp);
2256 				error = EIO;
2257 				goto out;
2258 			}
2259 			snfi->snfi_frtn.free_func = snf_smap_desbfree;
2260 			snfi->snfi_frtn.free_arg = (caddr_t)snfi;
2261 			snfi->snfi_base = base;
2262 			snfi->snfi_mapoff = mapoff;
2263 			mp1 = desballoca((uchar_t *)base + mapoff,
2264 			    iosize1, BPRI_HI, &snfi->snfi_frtn);
2265 
2266 			if (mp1 == NULL) {
2267 				(void) segmap_fault(kas.a_hat, segkmap,
2268 				    (caddr_t)(uintptr_t)(((uintptr_t)base +
2269 				    mapoff) & PAGEMASK), snfi->snfi_len,
2270 				    F_SOFTUNLOCK, S_OTHER);
2271 				(void) segmap_release(segkmap, base, 0);
2272 				kmem_free(snfi, sizeof (*snfi));
2273 				freemsg(mp);
2274 				error = EAGAIN;
2275 				goto out;
2276 			}
2277 			VN_HOLD(fvp);
2278 			snfi->snfi_vp = fvp;
2279 			mp1->b_wptr += iosize1;
2280 
2281 			/* Mark this dblk with the zero-copy flag */
2282 			mp1->b_datap->db_struioflag |= STRUIO_ZC;
2283 			if (mp == NULL)
2284 				mp = mp1;
2285 			else
2286 				linkb(mp, mp1);
2287 			iosize += iosize1;
2288 			fileoff += iosize1;
2289 			size -= iosize1;
2290 		} while (iosize < maxpsz && size != 0);
2291 
2292 		if (size == 0 && !nowait) {
2293 			ASSERT(!dowait);
2294 			dowait = B_TRUE;
2295 			mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
2296 		}
2297 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2298 		if ((error = kstrwritemp(vp, mp, fflag)) != 0) {
2299 			*count = ksize;
2300 			freemsg(mp);
2301 			return (error);
2302 		}
2303 		ksize += iosize;
2304 		if (size == 0)
2305 			goto done;
2306 
2307 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2308 		va.va_mask = AT_SIZE;
2309 		error = VOP_GETATTR(fvp, &va, 0, kcred);
2310 		if (error)
2311 			break;
2312 		/* Read as much as possible. */
2313 		if (fileoff >= va.va_size)
2314 			break;
2315 		if (size + fileoff > va.va_size)
2316 			size = va.va_size - fileoff;
2317 	}
2318 out:
2319 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2320 done:
2321 	*count = ksize;
2322 	if (dowait) {
2323 		stdata_t *stp;
2324 
2325 		stp = vp->v_stream;
2326 		mutex_enter(&stp->sd_lock);
2327 		while (!(stp->sd_flag & STZCNOTIFY)) {
2328 			(void) cv_wait_sig(&stp->sd_zcopy_wait,
2329 			    &stp->sd_lock);
2330 		}
2331 		stp->sd_flag &= ~STZCNOTIFY;
2332 		mutex_exit(&stp->sd_lock);
2333 	}
2334 	return (error);
2335 }
2336 
2337 int
2338 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2339     uint_t maxpsz, ssize_t *count)
2340 {
2341 	struct vnode *vp;
2342 	mblk_t *mp;
2343 	int iosize;
2344 	int error;
2345 	short fflag;
2346 	int ksize;
2347 	int ioflag;
2348 	struct uio auio;
2349 	struct iovec aiov;
2350 	struct vattr va;
2351 
2352 	vp = fp->f_vnode;
2353 	fflag = fp->f_flag;
2354 	ksize = 0;
2355 	auio.uio_iov = &aiov;
2356 	auio.uio_iovcnt = 1;
2357 	auio.uio_segflg = UIO_SYSSPACE;
2358 	auio.uio_llimit = MAXOFFSET_T;
2359 	auio.uio_fmode = fflag;
2360 	auio.uio_extflg = UIO_COPY_CACHED;
2361 	ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC);
2362 	/* If read sync is not asked for, filter sync flags */
2363 	if ((ioflag & FRSYNC) == 0)
2364 		ioflag &= ~(FSYNC|FDSYNC);
2365 	for (;;) {
2366 		if (ISSIG(curthread, JUSTLOOKING)) {
2367 			error = EINTR;
2368 			break;
2369 		}
2370 		iosize = (int)MIN(maxpsz, size);
2371 		if ((mp = allocb(iosize, BPRI_MED)) == NULL) {
2372 			error = EAGAIN;
2373 			break;
2374 		}
2375 		aiov.iov_base = (caddr_t)mp->b_rptr;
2376 		aiov.iov_len = iosize;
2377 		auio.uio_loffset = fileoff;
2378 		auio.uio_resid = iosize;
2379 
2380 		error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL);
2381 		iosize -= auio.uio_resid;
2382 
2383 		if (error == EINTR && iosize != 0)
2384 			error = 0;
2385 
2386 		if (error != 0 || iosize == 0) {
2387 			freeb(mp);
2388 			break;
2389 		}
2390 		mp->b_wptr = mp->b_rptr + iosize;
2391 
2392 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2393 		if ((error = kstrwritemp(vp, mp, fflag)) != 0) {
2394 			*count = ksize;
2395 			freeb(mp);
2396 			return (error);
2397 		}
2398 		ksize += iosize;
2399 		size -= iosize;
2400 		if (size == 0)
2401 			goto done;
2402 
2403 		fileoff += iosize;
2404 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2405 		va.va_mask = AT_SIZE;
2406 		error = VOP_GETATTR(fvp, &va, 0, kcred);
2407 		if (error)
2408 			break;
2409 		/* Read as much as possible. */
2410 		if (fileoff >= va.va_size)
2411 			size = 0;
2412 		else if (size + fileoff > va.va_size)
2413 			size = va.va_size - fileoff;
2414 	}
2415 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2416 done:
2417 	*count = ksize;
2418 	return (error);
2419 }
2420 
2421 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
2422 /*
2423  * Largefile support for 32 bit applications only.
2424  */
2425 int
2426 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv,
2427     ssize32_t *count32)
2428 {
2429 	ssize32_t sfv_len;
2430 	u_offset_t sfv_off, va_size;
2431 	struct vnode *vp, *fvp, *realvp;
2432 	struct vattr va;
2433 	stdata_t *stp;
2434 	ssize_t count = 0;
2435 	int error = 0;
2436 	boolean_t dozcopy = B_FALSE;
2437 	uint_t maxpsz;
2438 
2439 	sfv_len = (ssize32_t)sfv->sfv_len;
2440 	if (sfv_len < 0) {
2441 		error = EINVAL;
2442 		goto out;
2443 	}
2444 
2445 	if (sfv_len == 0) goto out;
2446 
2447 	sfv_off = (u_offset_t)sfv->sfv_off;
2448 
2449 	/* Same checks as in pread */
2450 	if (sfv_off > MAXOFFSET_T) {
2451 		error = EINVAL;
2452 		goto out;
2453 	}
2454 	if (sfv_off + sfv_len > MAXOFFSET_T)
2455 		sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off);
2456 
2457 	/*
2458 	 * There are no more checks on sfv_len. So, we cast it to
2459 	 * u_offset_t and share the snf_direct_io/snf_cache code between
2460 	 * 32 bit and 64 bit.
2461 	 *
2462 	 * TODO: should do nbl_need_check() like read()?
2463 	 */
2464 	if (sfv_len > sendfile_max_size) {
2465 		sf_stats.ss_file_not_cached++;
2466 		error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len,
2467 		    &count);
2468 		goto out;
2469 	}
2470 	fvp = rfp->f_vnode;
2471 	if (VOP_REALVP(fvp, &realvp) == 0)
2472 		fvp = realvp;
2473 	/*
2474 	 * Grab the lock as a reader to prevent the file size
2475 	 * from changing underneath.
2476 	 */
2477 	(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2478 	va.va_mask = AT_SIZE;
2479 	error = VOP_GETATTR(fvp, &va, 0, kcred);
2480 	va_size = va.va_size;
2481 	if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) {
2482 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2483 		goto out;
2484 	}
2485 	/* Read as much as possible. */
2486 	if (sfv_off + sfv_len > va_size)
2487 		sfv_len = va_size - sfv_off;
2488 
2489 	vp = fp->f_vnode;
2490 	stp = vp->v_stream;
2491 	if (stp->sd_qn_maxpsz == INFPSZ)
2492 		maxpsz = MAXOFF32_T;
2493 	else
2494 		maxpsz = roundup(stp->sd_qn_maxpsz, MAXBSIZE);
2495 	/*
2496 	 * When the NOWAIT flag is not set, we enable zero-copy only if the
2497 	 * transfer size is large enough. This prevents performance loss
2498 	 * when the caller sends the file piece by piece.
2499 	 */
2500 	if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) ||
2501 	    (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) &&
2502 	    !vn_has_flocks(fvp)) {
2503 		if ((stp->sd_copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) {
2504 			int on = 1;
2505 
2506 			if (SOP_SETSOCKOPT(VTOSO(vp), SOL_SOCKET,
2507 			    SO_SND_COPYAVOID, &on, sizeof (on)) == 0)
2508 				dozcopy = B_TRUE;
2509 		} else {
2510 			dozcopy = (stp->sd_copyflag & STZCVMSAFE);
2511 		}
2512 	}
2513 	if (dozcopy) {
2514 		sf_stats.ss_file_segmap++;
2515 		error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2516 		    maxpsz, &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0));
2517 	} else {
2518 		sf_stats.ss_file_cached++;
2519 		error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2520 		    maxpsz, &count);
2521 	}
2522 out:
2523 	releasef(sfv->sfv_fd);
2524 	*count32 = (ssize32_t)count;
2525 	return (error);
2526 }
2527 #endif
2528 
2529 #ifdef _SYSCALL32_IMPL
2530 /*
2531  * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a
2532  * ssize_t rather than ssize32_t; see the comments above read32 for details.
2533  */
2534 
2535 ssize_t
2536 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2537 {
2538 	return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2539 }
2540 
2541 ssize_t
2542 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2543 	caddr32_t name, caddr32_t namelenp)
2544 {
2545 	return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2546 	    (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp));
2547 }
2548 
2549 ssize_t
2550 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2551 {
2552 	return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2553 }
2554 
2555 ssize_t
2556 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2557 	caddr32_t name, socklen_t namelen)
2558 {
2559 	return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2560 	    (void *)(uintptr_t)name, namelen));
2561 }
2562 #endif	/* _SYSCALL32_IMPL */
2563 
2564 /*
2565  * Function wrappers (mostly arround the sonode switch) for
2566  * backward compatibility.
2567  */
2568 
2569 int
2570 soaccept(struct sonode *so, int fflag, struct sonode **nsop)
2571 {
2572 	return (SOP_ACCEPT(so, fflag, nsop));
2573 }
2574 
2575 int
2576 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
2577     int backlog, int flags)
2578 {
2579 	int	error;
2580 
2581 	error = SOP_BIND(so, name, namelen, flags);
2582 	if (error == 0 && backlog != 0)
2583 		return (SOP_LISTEN(so, backlog));
2584 
2585 	return (error);
2586 }
2587 
2588 int
2589 solisten(struct sonode *so, int backlog)
2590 {
2591 	return (SOP_LISTEN(so, backlog));
2592 }
2593 
2594 int
2595 soconnect(struct sonode *so, const struct sockaddr *name, socklen_t namelen,
2596     int fflag, int flags)
2597 {
2598 	return (SOP_CONNECT(so, name, namelen, fflag, flags));
2599 }
2600 
2601 int
2602 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
2603 {
2604 	return (SOP_RECVMSG(so, msg, uiop));
2605 }
2606 
2607 int
2608 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
2609 {
2610 	return (SOP_SENDMSG(so, msg, uiop));
2611 }
2612 
2613 int
2614 sogetpeername(struct sonode *so)
2615 {
2616 	return (SOP_GETPEERNAME(so));
2617 }
2618 
2619 int
2620 sogetsockname(struct sonode *so)
2621 {
2622 	return (SOP_GETSOCKNAME(so));
2623 }
2624 
2625 int
2626 soshutdown(struct sonode *so, int how)
2627 {
2628 	return (SOP_SHUTDOWN(so, how));
2629 }
2630 
2631 int
2632 sogetsockopt(struct sonode *so, int level, int option_name, void *optval,
2633     socklen_t *optlenp, int flags)
2634 {
2635 	return (SOP_GETSOCKOPT(so, level, option_name, optval, optlenp,
2636 	    flags));
2637 }
2638 
2639 int
2640 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval,
2641     t_uscalar_t optlen)
2642 {
2643 	return (SOP_SETSOCKOPT(so, level, option_name, optval, optlen));
2644 }
2645 
2646 /*
2647  * Because this is backward compatibility interface it only needs to be
2648  * able to handle the creation of TPI sockfs sockets.
2649  */
2650 struct sonode *
2651 socreate(vnode_t *accessvp, int domain, int type, int protocol, int version,
2652     struct sonode *tso, int *errorp)
2653 {
2654 	return (sotpi_create(accessvp, domain, type, protocol, version, tso,
2655 	    errorp));
2656 }
2657