xref: /titanic_50/usr/src/uts/common/fs/sockfs/socksubr.c (revision 6ff38bdbfc861331ef88ccf49146bfd51b952142)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/t_lock.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/buf.h>
32 #include <sys/conf.h>
33 #include <sys/cred.h>
34 #include <sys/kmem.h>
35 #include <sys/sysmacros.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/debug.h>
40 #include <sys/errno.h>
41 #include <sys/time.h>
42 #include <sys/file.h>
43 #include <sys/open.h>
44 #include <sys/user.h>
45 #include <sys/uio.h>
46 #include <sys/termios.h>
47 #include <sys/stream.h>
48 #include <sys/strsubr.h>
49 #include <sys/strsun.h>
50 #include <sys/esunddi.h>
51 #include <sys/flock.h>
52 #include <sys/modctl.h>
53 #include <sys/cmn_err.h>
54 #include <sys/mkdev.h>
55 #include <sys/pathname.h>
56 #include <sys/ddi.h>
57 #include <sys/stat.h>
58 #include <sys/fs/snode.h>
59 #include <sys/fs/dv_node.h>
60 #include <sys/zone.h>
61 
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <netinet/in.h>
65 #include <sys/un.h>
66 
67 #include <sys/ucred.h>
68 
69 #include <sys/tiuser.h>
70 #define	_SUN_TPI_VERSION	2
71 #include <sys/tihdr.h>
72 
73 #include <c2/audit.h>
74 
75 #include <fs/sockfs/nl7c.h>
76 
77 /*
78  * Macros that operate on struct cmsghdr.
79  * The CMSG_VALID macro does not assume that the last option buffer is padded.
80  */
81 #define	CMSG_CONTENT(cmsg)	(&((cmsg)[1]))
82 #define	CMSG_CONTENTLEN(cmsg)	((cmsg)->cmsg_len - sizeof (struct cmsghdr))
83 #define	CMSG_VALID(cmsg, start, end)					\
84 	(ISALIGNED_cmsghdr(cmsg) &&					\
85 	((uintptr_t)(cmsg) >= (uintptr_t)(start)) &&			\
86 	((uintptr_t)(cmsg) < (uintptr_t)(end)) &&			\
87 	((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) &&	\
88 	((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
89 #define	SO_LOCK_WAKEUP_TIME	3000	/* Wakeup time in milliseconds */
90 
91 static struct kmem_cache *socktpi_cache, *socktpi_unix_cache;
92 struct kmem_cache *socktpi_sod_cache;
93 
94 dev_t sockdev;	/* For fsid in getattr */
95 int sockfs_defer_nl7c_init = 0;
96 struct sockparams *sphead;
97 krwlock_t splist_lock;
98 
99 struct socklist socklist;
100 
101 static int sockfs_update(kstat_t *, int);
102 static int sockfs_snapshot(kstat_t *, void *, int);
103 
104 extern void sendfile_init();
105 
106 extern void nl7c_init(void);
107 
108 extern int sostr_init();
109 
110 extern int modrootloaded;
111 
112 #define	ADRSTRLEN (2 * sizeof (void *) + 1)
113 /*
114  * kernel structure for passing the sockinfo data back up to the user.
115  * the strings array allows us to convert AF_UNIX addresses into strings
116  * with a common method regardless of which n-bit kernel we're running.
117  */
118 struct k_sockinfo {
119 	struct sockinfo	ks_si;
120 	char		ks_straddr[3][ADRSTRLEN];
121 };
122 
123 /*
124  * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
125  * Returns with the vnode held.
126  */
127 static int
128 sogetvp(char *devpath, vnode_t **vpp, int uioflag)
129 {
130 	struct snode *csp;
131 	vnode_t *vp, *dvp;
132 	major_t maj;
133 	int error;
134 
135 	ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
136 	/*
137 	 * Lookup the underlying filesystem vnode.
138 	 */
139 	error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
140 	if (error)
141 		return (error);
142 
143 	/* Check that it is the correct vnode */
144 	if (vp->v_type != VCHR) {
145 		VN_RELE(vp);
146 		return (ENOTSOCK);
147 	}
148 
149 	/*
150 	 * If devpath went through devfs, the device should already
151 	 * be configured. If devpath is a mknod file, however, we
152 	 * need to make sure the device is properly configured.
153 	 * To do this, we do something similar to spec_open()
154 	 * except that we resolve to the minor/leaf level since
155 	 * we need to return a vnode.
156 	 */
157 	csp = VTOS(VTOS(vp)->s_commonvp);
158 	if (!(csp->s_flag & SDIPSET)) {
159 		char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
160 		error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
161 		if (error == 0)
162 			error = devfs_lookupname(pathname, NULLVPP, &dvp);
163 		VN_RELE(vp);
164 		kmem_free(pathname, MAXPATHLEN);
165 		if (error != 0)
166 			return (ENXIO);
167 		vp = dvp;	/* use the devfs vp */
168 	}
169 
170 	/* device is configured at this point */
171 	maj = getmajor(vp->v_rdev);
172 	if (!STREAMSTAB(maj)) {
173 		VN_RELE(vp);
174 		return (ENOSTR);
175 	}
176 
177 	*vpp = vp;
178 	return (0);
179 }
180 
181 /*
182  * Add or delete (latter if devpath is NULL) an enter to the sockparams
183  * table. If devpathlen is zero the devpath with not be kmem_freed. Otherwise
184  * this routine assumes that the caller has kmem_alloced devpath/devpathlen
185  * for this routine to consume.
186  * The zero devpathlen could be used if the kernel wants to create entries
187  * itself by calling sockconfig(1,2,3, "/dev/tcp", 0);
188  */
189 int
190 soconfig(int domain, int type, int protocol,
191     char *devpath, int devpathlen)
192 {
193 	struct sockparams **spp;
194 	struct sockparams *sp;
195 	int error = 0;
196 
197 	dprint(0, ("soconfig(%d,%d,%d,%s,%d)\n",
198 	    domain, type, protocol, devpath, devpathlen));
199 
200 	if (sockfs_defer_nl7c_init) {
201 		nl7c_init();
202 		sockfs_defer_nl7c_init = 0;
203 	}
204 
205 	/*
206 	 * Look for an existing match.
207 	 */
208 	rw_enter(&splist_lock, RW_WRITER);
209 	for (spp = &sphead; (sp = *spp) != NULL; spp = &sp->sp_next) {
210 		if (sp->sp_domain == domain &&
211 		    sp->sp_type == type &&
212 		    sp->sp_protocol == protocol) {
213 			break;
214 		}
215 	}
216 	if (devpath == NULL) {
217 		ASSERT(devpathlen == 0);
218 
219 		/* Delete existing entry */
220 		if (sp == NULL) {
221 			error = ENXIO;
222 			goto done;
223 		}
224 		/* Unlink and free existing entry */
225 		*spp = sp->sp_next;
226 		ASSERT(sp->sp_vnode);
227 		VN_RELE(sp->sp_vnode);
228 		if (sp->sp_devpathlen != 0)
229 			kmem_free(sp->sp_devpath, sp->sp_devpathlen);
230 		kmem_free(sp, sizeof (*sp));
231 	} else {
232 		vnode_t *vp;
233 
234 		/* Add new entry */
235 		if (sp != NULL) {
236 			error = EEXIST;
237 			goto done;
238 		}
239 
240 		error = sogetvp(devpath, &vp, UIO_SYSSPACE);
241 		if (error) {
242 			dprint(0, ("soconfig: vp %s failed with %d\n",
243 			    devpath, error));
244 			goto done;
245 		}
246 
247 		dprint(0, ("soconfig: %s => vp %p, dev 0x%lx\n",
248 		    devpath, (void *)vp, vp->v_rdev));
249 
250 		sp = kmem_alloc(sizeof (*sp), KM_SLEEP);
251 		sp->sp_domain = domain;
252 		sp->sp_type = type;
253 		sp->sp_protocol = protocol;
254 		sp->sp_devpath = devpath;
255 		sp->sp_devpathlen = devpathlen;
256 		sp->sp_vnode = vp;
257 		sp->sp_next = NULL;
258 		*spp = sp;
259 	}
260 done:
261 	rw_exit(&splist_lock);
262 	if (error) {
263 		if (devpath != NULL)
264 			kmem_free(devpath, devpathlen);
265 #ifdef SOCK_DEBUG
266 		eprintline(error);
267 #endif /* SOCK_DEBUG */
268 	}
269 	return (error);
270 }
271 
272 /*
273  * Lookup an entry in the sockparams list based on the triple.
274  * If no entry is found and devpath is not NULL translate devpath to a
275  * vnode. Note that devpath is a pointer to a user address!
276  * Returns with the vnode held.
277  *
278  * When this routine uses devpath it does not create an entry in the sockparams
279  * list since this routine can run on behalf of any user and one user
280  * should not be able to effect the transport used by another user.
281  *
282  * In order to return the correct error this routine has to do wildcard scans
283  * of the list. The errors are (in decreasing precedence):
284  *	EAFNOSUPPORT - address family not in list
285  *	EPROTONOSUPPORT - address family supported but not protocol.
286  *	EPROTOTYPE - address family and protocol supported but not socket type.
287  */
288 vnode_t *
289 solookup(int domain, int type, int protocol, char *devpath, int *errorp)
290 {
291 	struct sockparams *sp;
292 	int error;
293 	vnode_t *vp;
294 
295 	rw_enter(&splist_lock, RW_READER);
296 	for (sp = sphead; sp != NULL; sp = sp->sp_next) {
297 		if (sp->sp_domain == domain &&
298 		    sp->sp_type == type &&
299 		    sp->sp_protocol == protocol) {
300 			break;
301 		}
302 	}
303 	if (sp == NULL) {
304 		dprint(0, ("solookup(%d,%d,%d) not found\n",
305 		    domain, type, protocol));
306 		if (devpath == NULL) {
307 			/* Determine correct error code */
308 			int found = 0;
309 
310 			for (sp = sphead; sp != NULL; sp = sp->sp_next) {
311 				if (sp->sp_domain == domain && found < 1)
312 					found = 1;
313 				if (sp->sp_domain == domain &&
314 				    sp->sp_protocol == protocol && found < 2)
315 					found = 2;
316 			}
317 			rw_exit(&splist_lock);
318 			switch (found) {
319 			case 0:
320 				*errorp = EAFNOSUPPORT;
321 				break;
322 			case 1:
323 				*errorp = EPROTONOSUPPORT;
324 				break;
325 			case 2:
326 				*errorp = EPROTOTYPE;
327 				break;
328 			}
329 			return (NULL);
330 		}
331 		rw_exit(&splist_lock);
332 
333 		/*
334 		 * Return vp based on devpath.
335 		 * Do not enter into table to avoid random users
336 		 * modifying the sockparams list.
337 		 */
338 		error = sogetvp(devpath, &vp, UIO_USERSPACE);
339 		if (error) {
340 			dprint(0, ("solookup: vp %p failed with %d\n",
341 			    (void *)devpath, error));
342 			*errorp = EPROTONOSUPPORT;
343 			return (NULL);
344 		}
345 		dprint(0, ("solookup: %p => vp %p, dev 0x%lx\n",
346 		    (void *)devpath, (void *)vp, vp->v_rdev));
347 
348 		return (vp);
349 	}
350 	dprint(0, ("solookup(%d,%d,%d) vp %p devpath %s\n",
351 	    domain, type, protocol, (void *)sp->sp_vnode, sp->sp_devpath));
352 
353 	vp = sp->sp_vnode;
354 	VN_HOLD(vp);
355 	rw_exit(&splist_lock);
356 	return (vp);
357 }
358 
359 /*
360  * Return a socket vnode.
361  *
362  * Assumes that the caller is "passing" an VN_HOLD for accessvp i.e.
363  * when the socket is freed a VN_RELE will take place.
364  *
365  * Note that sockets assume that the driver will clone (either itself
366  * or by using the clone driver) i.e. a socket() call will always
367  * result in a new vnode being created.
368  */
369 struct vnode *
370 makesockvp(struct vnode *accessvp, int domain, int type, int protocol)
371 {
372 	kmem_cache_t *cp;
373 	struct sonode *so;
374 	struct vnode *vp;
375 	time_t now;
376 	dev_t dev;
377 
378 	cp = (domain == AF_UNIX) ? socktpi_unix_cache : socktpi_cache;
379 	so = kmem_cache_alloc(cp, KM_SLEEP);
380 	so->so_cache = cp;
381 	so->so_obj = so;
382 	vp = SOTOV(so);
383 	now = gethrestime_sec();
384 
385 	so->so_flag	= 0;
386 	ASSERT(so->so_accessvp == NULL);
387 	so->so_accessvp	= accessvp;
388 	dev = accessvp->v_rdev;
389 
390 	/*
391 	 * Record in so_flag that it is a clone.
392 	 */
393 	if (getmajor(dev) == clone_major) {
394 		so->so_flag |= SOCLONE;
395 	}
396 	so->so_dev = dev;
397 
398 	so->so_state	= 0;
399 	so->so_mode	= 0;
400 
401 	so->so_fsid	= sockdev;
402 	so->so_atime	= now;
403 	so->so_mtime	= now;
404 	so->so_ctime	= now;		/* Never modified */
405 	so->so_count	= 0;
406 
407 	so->so_family	= (short)domain;
408 	so->so_type	= (short)type;
409 	so->so_protocol	= (short)protocol;
410 	so->so_pushcnt	= 0;
411 
412 	so->so_options	= 0;
413 	so->so_linger.l_onoff	= 0;
414 	so->so_linger.l_linger = 0;
415 	so->so_sndbuf	= 0;
416 	so->so_rcvbuf	= 0;
417 	so->so_sndlowat	= 0;
418 	so->so_rcvlowat	= 0;
419 #ifdef notyet
420 	so->so_sndtimeo	= 0;
421 	so->so_rcvtimeo	= 0;
422 #endif /* notyet */
423 	so->so_error	= 0;
424 	so->so_delayed_error = 0;
425 
426 	ASSERT(so->so_oobmsg == NULL);
427 	so->so_oobcnt	= 0;
428 	so->so_oobsigcnt = 0;
429 	so->so_pgrp	= 0;
430 	so->so_provinfo = NULL;
431 
432 	ASSERT(so->so_laddr_sa == NULL && so->so_faddr_sa == NULL);
433 	so->so_laddr_len = so->so_faddr_len = 0;
434 	so->so_laddr_maxlen = so->so_faddr_maxlen = 0;
435 	so->so_eaddr_mp = NULL;
436 	so->so_priv = NULL;
437 
438 	so->so_peercred = NULL;
439 
440 	ASSERT(so->so_ack_mp == NULL);
441 	ASSERT(so->so_conn_ind_head == NULL);
442 	ASSERT(so->so_conn_ind_tail == NULL);
443 	ASSERT(so->so_ux_bound_vp == NULL);
444 	ASSERT(so->so_unbind_mp == NULL);
445 
446 	vn_reinit(vp);
447 	vp->v_vfsp	= rootvfs;
448 	vp->v_type	= VSOCK;
449 	vp->v_rdev	= so->so_dev;
450 	vn_exists(vp);
451 
452 	return (vp);
453 }
454 
455 void
456 sockfree(struct sonode *so)
457 {
458 	mblk_t *mp;
459 	vnode_t *vp;
460 
461 	ASSERT(so->so_count == 0);
462 	ASSERT(so->so_accessvp);
463 	ASSERT(so->so_discon_ind_mp == NULL);
464 
465 	vp = so->so_accessvp;
466 	VN_RELE(vp);
467 
468 	/*
469 	 * Protect so->so_[lf]addr_sa so that sockfs_snapshot() can safely
470 	 * indirect them.  It also uses so_accessvp as a validity test.
471 	 */
472 	mutex_enter(&so->so_lock);
473 
474 	so->so_accessvp = NULL;
475 
476 	if (so->so_laddr_sa) {
477 		ASSERT((caddr_t)so->so_faddr_sa ==
478 		    (caddr_t)so->so_laddr_sa + so->so_laddr_maxlen);
479 		ASSERT(so->so_faddr_maxlen == so->so_laddr_maxlen);
480 		so->so_state &= ~(SS_LADDR_VALID | SS_FADDR_VALID);
481 		kmem_free(so->so_laddr_sa, so->so_laddr_maxlen * 2);
482 		so->so_laddr_sa = NULL;
483 		so->so_laddr_len = so->so_laddr_maxlen = 0;
484 		so->so_faddr_sa = NULL;
485 		so->so_faddr_len = so->so_faddr_maxlen = 0;
486 	}
487 
488 	mutex_exit(&so->so_lock);
489 
490 	if ((mp = so->so_eaddr_mp) != NULL) {
491 		freemsg(mp);
492 		so->so_eaddr_mp = NULL;
493 		so->so_delayed_error = 0;
494 	}
495 	if ((mp = so->so_ack_mp) != NULL) {
496 		freemsg(mp);
497 		so->so_ack_mp = NULL;
498 	}
499 	if ((mp = so->so_conn_ind_head) != NULL) {
500 		mblk_t *mp1;
501 
502 		while (mp) {
503 			mp1 = mp->b_next;
504 			mp->b_next = NULL;
505 			freemsg(mp);
506 			mp = mp1;
507 		}
508 		so->so_conn_ind_head = so->so_conn_ind_tail = NULL;
509 		so->so_state &= ~SS_HASCONNIND;
510 	}
511 #ifdef DEBUG
512 	mutex_enter(&so->so_lock);
513 	ASSERT(so_verify_oobstate(so));
514 	mutex_exit(&so->so_lock);
515 #endif /* DEBUG */
516 	if ((mp = so->so_oobmsg) != NULL) {
517 		freemsg(mp);
518 		so->so_oobmsg = NULL;
519 		so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA);
520 	}
521 
522 	if ((mp = so->so_nl7c_rcv_mp) != NULL) {
523 		so->so_nl7c_rcv_mp = NULL;
524 		freemsg(mp);
525 	}
526 	so->so_nl7c_rcv_rval = 0;
527 	if (so->so_nl7c_uri != NULL) {
528 		nl7c_urifree(so);
529 		/* urifree() cleared nl7c_uri */
530 	}
531 	if (so->so_nl7c_flags) {
532 		so->so_nl7c_flags = 0;
533 	}
534 
535 	if (so->so_direct != NULL) {
536 		sodirect_t *sodp = so->so_direct;
537 
538 		ASSERT(sodp->sod_uioafh == NULL);
539 
540 		so->so_direct = NULL;
541 		kmem_cache_free(socktpi_sod_cache, sodp);
542 	}
543 
544 	ASSERT(so->so_ux_bound_vp == NULL);
545 	if ((mp = so->so_unbind_mp) != NULL) {
546 		freemsg(mp);
547 		so->so_unbind_mp = NULL;
548 	}
549 	vn_invalid(SOTOV(so));
550 
551 	if (so->so_peercred != NULL)
552 		crfree(so->so_peercred);
553 
554 	kmem_cache_free(so->so_cache, so->so_obj);
555 }
556 
557 /*
558  * Update the accessed, updated, or changed times in an sonode
559  * with the current time.
560  *
561  * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
562  * attributes in a fstat call. (They return the current time and 0 for
563  * all timestamps, respectively.) We maintain the current timestamps
564  * here primarily so that should sockmod be popped the resulting
565  * file descriptor will behave like a stream w.r.t. the timestamps.
566  */
567 void
568 so_update_attrs(struct sonode *so, int flag)
569 {
570 	time_t now = gethrestime_sec();
571 
572 	mutex_enter(&so->so_lock);
573 	so->so_flag |= flag;
574 	if (flag & SOACC)
575 		so->so_atime = now;
576 	if (flag & SOMOD)
577 		so->so_mtime = now;
578 	mutex_exit(&so->so_lock);
579 }
580 
581 /*ARGSUSED*/
582 static int
583 socktpi_constructor(void *buf, void *cdrarg, int kmflags)
584 {
585 	struct sonode *so = buf;
586 	struct vnode *vp;
587 
588 	vp = so->so_vnode = vn_alloc(kmflags);
589 	if (vp == NULL) {
590 		return (-1);
591 	}
592 	vn_setops(vp, socktpi_vnodeops);
593 	vp->v_data = so;
594 
595 	so->so_direct		= NULL;
596 
597 	so->so_nl7c_flags	= 0;
598 	so->so_nl7c_uri		= NULL;
599 	so->so_nl7c_rcv_mp	= NULL;
600 
601 	so->so_oobmsg		= NULL;
602 	so->so_ack_mp		= NULL;
603 	so->so_conn_ind_head	= NULL;
604 	so->so_conn_ind_tail	= NULL;
605 	so->so_discon_ind_mp	= NULL;
606 	so->so_ux_bound_vp	= NULL;
607 	so->so_unbind_mp	= NULL;
608 	so->so_accessvp		= NULL;
609 	so->so_laddr_sa		= NULL;
610 	so->so_faddr_sa		= NULL;
611 	so->so_ops		= &sotpi_sonodeops;
612 
613 	mutex_init(&so->so_lock, NULL, MUTEX_DEFAULT, NULL);
614 	mutex_init(&so->so_plumb_lock, NULL, MUTEX_DEFAULT, NULL);
615 	cv_init(&so->so_state_cv, NULL, CV_DEFAULT, NULL);
616 	cv_init(&so->so_ack_cv, NULL, CV_DEFAULT, NULL);
617 	cv_init(&so->so_connind_cv, NULL, CV_DEFAULT, NULL);
618 	cv_init(&so->so_want_cv, NULL, CV_DEFAULT, NULL);
619 
620 	return (0);
621 }
622 
623 /*ARGSUSED1*/
624 static void
625 socktpi_destructor(void *buf, void *cdrarg)
626 {
627 	struct sonode *so = buf;
628 	struct vnode *vp = SOTOV(so);
629 
630 	ASSERT(so->so_direct == NULL);
631 
632 	ASSERT(so->so_nl7c_flags == 0);
633 	ASSERT(so->so_nl7c_uri == NULL);
634 	ASSERT(so->so_nl7c_rcv_mp == NULL);
635 
636 	ASSERT(so->so_oobmsg == NULL);
637 	ASSERT(so->so_ack_mp == NULL);
638 	ASSERT(so->so_conn_ind_head == NULL);
639 	ASSERT(so->so_conn_ind_tail == NULL);
640 	ASSERT(so->so_discon_ind_mp == NULL);
641 	ASSERT(so->so_ux_bound_vp == NULL);
642 	ASSERT(so->so_unbind_mp == NULL);
643 	ASSERT(so->so_ops == &sotpi_sonodeops);
644 
645 	ASSERT(vn_matchops(vp, socktpi_vnodeops));
646 	ASSERT(vp->v_data == so);
647 
648 	vn_free(vp);
649 
650 	mutex_destroy(&so->so_lock);
651 	mutex_destroy(&so->so_plumb_lock);
652 	cv_destroy(&so->so_state_cv);
653 	cv_destroy(&so->so_ack_cv);
654 	cv_destroy(&so->so_connind_cv);
655 	cv_destroy(&so->so_want_cv);
656 }
657 
658 static int
659 socktpi_unix_constructor(void *buf, void *cdrarg, int kmflags)
660 {
661 	int retval;
662 
663 	if ((retval = socktpi_constructor(buf, cdrarg, kmflags)) == 0) {
664 		struct sonode *so = (struct sonode *)buf;
665 
666 		mutex_enter(&socklist.sl_lock);
667 
668 		so->so_next = socklist.sl_list;
669 		so->so_prev = NULL;
670 		if (so->so_next != NULL)
671 			so->so_next->so_prev = so;
672 		socklist.sl_list = so;
673 
674 		mutex_exit(&socklist.sl_lock);
675 
676 	}
677 	return (retval);
678 }
679 
680 static void
681 socktpi_unix_destructor(void *buf, void *cdrarg)
682 {
683 	struct sonode	*so	= (struct sonode *)buf;
684 
685 	mutex_enter(&socklist.sl_lock);
686 
687 	if (so->so_next != NULL)
688 		so->so_next->so_prev = so->so_prev;
689 	if (so->so_prev != NULL)
690 		so->so_prev->so_next = so->so_next;
691 	else
692 		socklist.sl_list = so->so_next;
693 
694 	mutex_exit(&socklist.sl_lock);
695 
696 	socktpi_destructor(buf, cdrarg);
697 }
698 
699 /*
700  * Init function called when sockfs is loaded.
701  */
702 int
703 sockinit(int fstype, char *name)
704 {
705 	static const fs_operation_def_t sock_vfsops_template[] = {
706 		NULL, NULL
707 	};
708 	int error;
709 	major_t dev;
710 	char *err_str;
711 
712 	error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
713 	if (error != 0) {
714 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
715 		    "sockinit: bad vfs ops template");
716 		return (error);
717 	}
718 
719 	error = vn_make_ops(name, socktpi_vnodeops_template, &socktpi_vnodeops);
720 	if (error != 0) {
721 		err_str = "sockinit: bad sock vnode ops template";
722 		/* vn_make_ops() does not reset socktpi_vnodeops on failure. */
723 		socktpi_vnodeops = NULL;
724 		goto failure;
725 	}
726 
727 	error = sosctp_init();
728 	if (error != 0) {
729 		err_str = NULL;
730 		goto failure;
731 	}
732 
733 	error = sosdp_init();
734 	if (error != 0) {
735 		err_str = NULL;
736 		goto failure;
737 	}
738 
739 	error = sostr_init();
740 	if (error != 0) {
741 		err_str = NULL;
742 		goto failure;
743 	}
744 
745 	/*
746 	 * Create sonode caches.  We create a special one for AF_UNIX so
747 	 * that we can track them for netstat(1m).
748 	 */
749 	socktpi_cache = kmem_cache_create("socktpi_cache",
750 	    sizeof (struct sonode), 0, socktpi_constructor,
751 	    socktpi_destructor, NULL, NULL, NULL, 0);
752 
753 	socktpi_unix_cache = kmem_cache_create("socktpi_unix_cache",
754 	    sizeof (struct sonode), 0, socktpi_unix_constructor,
755 	    socktpi_unix_destructor, NULL, NULL, NULL, 0);
756 
757 	/*
758 	 * Build initial list mapping socket parameters to vnode.
759 	 */
760 	rw_init(&splist_lock, NULL, RW_DEFAULT, NULL);
761 
762 	/*
763 	 * If sockets are needed before init runs /sbin/soconfig
764 	 * it is possible to preload the sockparams list here using
765 	 * calls like:
766 	 *	sockconfig(1,2,3, "/dev/tcp", 0);
767 	 */
768 
769 	/*
770 	 * Create a unique dev_t for use in so_fsid.
771 	 */
772 
773 	if ((dev = getudev()) == (major_t)-1)
774 		dev = 0;
775 	sockdev = makedevice(dev, 0);
776 
777 	mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
778 	sendfile_init();
779 	if (!modrootloaded) {
780 		sockfs_defer_nl7c_init = 1;
781 	} else {
782 		nl7c_init();
783 	}
784 
785 	return (0);
786 
787 failure:
788 	(void) vfs_freevfsops_by_type(fstype);
789 	if (socktpi_vnodeops != NULL)
790 		vn_freevnodeops(socktpi_vnodeops);
791 	if (err_str != NULL)
792 		zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
793 	return (error);
794 }
795 
796 /*
797  * Caller must hold the mutex. Used to set SOLOCKED.
798  */
799 void
800 so_lock_single(struct sonode *so)
801 {
802 	ASSERT(MUTEX_HELD(&so->so_lock));
803 
804 	while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
805 		so->so_flag |= SOWANT;
806 		cv_wait_stop(&so->so_want_cv, &so->so_lock,
807 		    SO_LOCK_WAKEUP_TIME);
808 	}
809 	so->so_flag |= SOLOCKED;
810 }
811 
812 /*
813  * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
814  * Used to clear SOLOCKED or SOASYNC_UNBIND.
815  */
816 void
817 so_unlock_single(struct sonode *so, int flag)
818 {
819 	ASSERT(MUTEX_HELD(&so->so_lock));
820 	ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
821 	ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
822 	ASSERT(so->so_flag & flag);
823 
824 	/*
825 	 * Process the T_DISCON_IND on so_discon_ind_mp.
826 	 *
827 	 * Call to so_drain_discon_ind will result in so_lock
828 	 * being dropped and re-acquired later.
829 	 */
830 	if (so->so_discon_ind_mp != NULL)
831 		so_drain_discon_ind(so);
832 
833 	if (so->so_flag & SOWANT)
834 		cv_broadcast(&so->so_want_cv);
835 	so->so_flag &= ~(SOWANT|flag);
836 }
837 
838 /*
839  * Caller must hold the mutex. Used to set SOREADLOCKED.
840  * If the caller wants nonblocking behavior it should set fmode.
841  */
842 int
843 so_lock_read(struct sonode *so, int fmode)
844 {
845 	ASSERT(MUTEX_HELD(&so->so_lock));
846 
847 	while (so->so_flag & SOREADLOCKED) {
848 		if (fmode & (FNDELAY|FNONBLOCK))
849 			return (EWOULDBLOCK);
850 		so->so_flag |= SOWANT;
851 		cv_wait_stop(&so->so_want_cv, &so->so_lock,
852 		    SO_LOCK_WAKEUP_TIME);
853 	}
854 	so->so_flag |= SOREADLOCKED;
855 	return (0);
856 }
857 
858 /*
859  * Like so_lock_read above but allows signals.
860  */
861 int
862 so_lock_read_intr(struct sonode *so, int fmode)
863 {
864 	ASSERT(MUTEX_HELD(&so->so_lock));
865 
866 	while (so->so_flag & SOREADLOCKED) {
867 		if (fmode & (FNDELAY|FNONBLOCK))
868 			return (EWOULDBLOCK);
869 		so->so_flag |= SOWANT;
870 		if (!cv_wait_sig(&so->so_want_cv, &so->so_lock))
871 			return (EINTR);
872 	}
873 	so->so_flag |= SOREADLOCKED;
874 	return (0);
875 }
876 
877 /*
878  * Caller must hold the mutex. Used to clear SOREADLOCKED,
879  * set in so_lock_read() or so_lock_read_intr().
880  */
881 void
882 so_unlock_read(struct sonode *so)
883 {
884 	ASSERT(MUTEX_HELD(&so->so_lock));
885 	ASSERT(so->so_flag & SOREADLOCKED);
886 
887 	if (so->so_flag & SOWANT)
888 		cv_broadcast(&so->so_want_cv);
889 	so->so_flag &= ~(SOWANT|SOREADLOCKED);
890 }
891 
892 /*
893  * Verify that the specified offset falls within the mblk and
894  * that the resulting pointer is aligned.
895  * Returns NULL if not.
896  */
897 void *
898 sogetoff(mblk_t *mp, t_uscalar_t offset,
899     t_uscalar_t length, uint_t align_size)
900 {
901 	uintptr_t ptr1, ptr2;
902 
903 	ASSERT(mp && mp->b_wptr >= mp->b_rptr);
904 	ptr1 = (uintptr_t)mp->b_rptr + offset;
905 	ptr2 = (uintptr_t)ptr1 + length;
906 	if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
907 		eprintline(0);
908 		return (NULL);
909 	}
910 	if ((ptr1 & (align_size - 1)) != 0) {
911 		eprintline(0);
912 		return (NULL);
913 	}
914 	return ((void *)ptr1);
915 }
916 
917 /*
918  * Return the AF_UNIX underlying filesystem vnode matching a given name.
919  * Makes sure the sending and the destination sonodes are compatible.
920  * The vnode is returned held.
921  *
922  * The underlying filesystem VSOCK vnode has a v_stream pointer that
923  * references the actual stream head (hence indirectly the actual sonode).
924  */
925 static int
926 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
927 		vnode_t **vpp)
928 {
929 	vnode_t		*vp;	/* Underlying filesystem vnode */
930 	vnode_t		*rvp;	/* real vnode */
931 	vnode_t		*svp;	/* sockfs vnode */
932 	struct sonode	*so2;
933 	int		error;
934 
935 	dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", (void *)so,
936 	    soun->sun_path));
937 
938 	error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
939 	if (error) {
940 		eprintsoline(so, error);
941 		return (error);
942 	}
943 
944 	/*
945 	 * Traverse lofs mounts get the real vnode
946 	 */
947 	if (VOP_REALVP(vp, &rvp, NULL) == 0) {
948 		VN_HOLD(rvp);		/* hold the real vnode */
949 		VN_RELE(vp);		/* release hold from lookup */
950 		vp = rvp;
951 	}
952 
953 	if (vp->v_type != VSOCK) {
954 		error = ENOTSOCK;
955 		eprintsoline(so, error);
956 		goto done2;
957 	}
958 
959 	if (checkaccess) {
960 		/*
961 		 * Check that we have permissions to access the destination
962 		 * vnode. This check is not done in BSD but it is required
963 		 * by X/Open.
964 		 */
965 		if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL)) {
966 			eprintsoline(so, error);
967 			goto done2;
968 		}
969 	}
970 
971 	/*
972 	 * Check if the remote socket has been closed.
973 	 *
974 	 * Synchronize with vn_rele_stream by holding v_lock while traversing
975 	 * v_stream->sd_vnode.
976 	 */
977 	mutex_enter(&vp->v_lock);
978 	if (vp->v_stream == NULL) {
979 		mutex_exit(&vp->v_lock);
980 		if (so->so_type == SOCK_DGRAM)
981 			error = EDESTADDRREQ;
982 		else
983 			error = ECONNREFUSED;
984 
985 		eprintsoline(so, error);
986 		goto done2;
987 	}
988 	ASSERT(vp->v_stream->sd_vnode);
989 	svp = vp->v_stream->sd_vnode;
990 	/*
991 	 * holding v_lock on underlying filesystem vnode and acquiring
992 	 * it on sockfs vnode. Assumes that no code ever attempts to
993 	 * acquire these locks in the reverse order.
994 	 */
995 	VN_HOLD(svp);
996 	mutex_exit(&vp->v_lock);
997 
998 	if (svp->v_type != VSOCK) {
999 		error = ENOTSOCK;
1000 		eprintsoline(so, error);
1001 		goto done;
1002 	}
1003 
1004 	so2 = VTOSO(svp);
1005 
1006 	if (so->so_type != so2->so_type) {
1007 		error = EPROTOTYPE;
1008 		eprintsoline(so, error);
1009 		goto done;
1010 	}
1011 
1012 	VN_RELE(svp);
1013 	*vpp = vp;
1014 	return (0);
1015 
1016 done:
1017 	VN_RELE(svp);
1018 done2:
1019 	VN_RELE(vp);
1020 	return (error);
1021 }
1022 
1023 /*
1024  * Verify peer address for connect and sendto/sendmsg.
1025  * Since sendto/sendmsg would not get synchronous errors from the transport
1026  * provider we have to do these ugly checks in the socket layer to
1027  * preserve compatibility with SunOS 4.X.
1028  */
1029 int
1030 so_addr_verify(struct sonode *so, const struct sockaddr *name,
1031     socklen_t namelen)
1032 {
1033 	int		family;
1034 
1035 	dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n",
1036 	    (void *)so, (void *)name, namelen));
1037 
1038 	ASSERT(name != NULL);
1039 
1040 	family = so->so_family;
1041 	switch (family) {
1042 	case AF_INET:
1043 		if (name->sa_family != family) {
1044 			eprintsoline(so, EAFNOSUPPORT);
1045 			return (EAFNOSUPPORT);
1046 		}
1047 		if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
1048 			eprintsoline(so, EINVAL);
1049 			return (EINVAL);
1050 		}
1051 		break;
1052 	case AF_INET6: {
1053 #ifdef DEBUG
1054 		struct sockaddr_in6 *sin6;
1055 #endif /* DEBUG */
1056 
1057 		if (name->sa_family != family) {
1058 			eprintsoline(so, EAFNOSUPPORT);
1059 			return (EAFNOSUPPORT);
1060 		}
1061 		if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
1062 			eprintsoline(so, EINVAL);
1063 			return (EINVAL);
1064 		}
1065 #ifdef DEBUG
1066 		/* Verify that apps don't forget to clear sin6_scope_id etc */
1067 		sin6 = (struct sockaddr_in6 *)name;
1068 		if (sin6->sin6_scope_id != 0 &&
1069 		    !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
1070 			zcmn_err(getzoneid(), CE_WARN,
1071 			    "connect/send* with uninitialized sin6_scope_id "
1072 			    "(%d) on socket. Pid = %d\n",
1073 			    (int)sin6->sin6_scope_id, (int)curproc->p_pid);
1074 		}
1075 #endif /* DEBUG */
1076 		break;
1077 	}
1078 	case AF_UNIX:
1079 		if (so->so_state & SS_FADDR_NOXLATE) {
1080 			return (0);
1081 		}
1082 		if (namelen < (socklen_t)sizeof (short)) {
1083 			eprintsoline(so, ENOENT);
1084 			return (ENOENT);
1085 		}
1086 		if (name->sa_family != family) {
1087 			eprintsoline(so, EAFNOSUPPORT);
1088 			return (EAFNOSUPPORT);
1089 		}
1090 		/* MAXPATHLEN + soun_family + nul termination */
1091 		if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
1092 			eprintsoline(so, ENAMETOOLONG);
1093 			return (ENAMETOOLONG);
1094 		}
1095 
1096 		break;
1097 
1098 	default:
1099 		/*
1100 		 * Default is don't do any length or sa_family check
1101 		 * to allow non-sockaddr style addresses.
1102 		 */
1103 		break;
1104 	}
1105 
1106 	return (0);
1107 }
1108 
1109 
1110 /*
1111  * Translate an AF_UNIX sockaddr_un to the transport internal name.
1112  * Assumes caller has called so_addr_verify first.
1113  */
1114 /*ARGSUSED*/
1115 int
1116 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
1117     socklen_t namelen, int checkaccess,
1118     void **addrp, socklen_t *addrlenp)
1119 {
1120 	int			error;
1121 	struct sockaddr_un	*soun;
1122 	vnode_t			*vp;
1123 	void			*addr;
1124 	socklen_t		addrlen;
1125 
1126 	dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
1127 	    (void *)so, (void *)name, namelen, checkaccess));
1128 
1129 	ASSERT(name != NULL);
1130 	ASSERT(so->so_family == AF_UNIX);
1131 	ASSERT(!(so->so_state & SS_FADDR_NOXLATE));
1132 	ASSERT(namelen >= (socklen_t)sizeof (short));
1133 	ASSERT(name->sa_family == AF_UNIX);
1134 	soun = (struct sockaddr_un *)name;
1135 	/*
1136 	 * Lookup vnode for the specified path name and verify that
1137 	 * it is a socket.
1138 	 */
1139 	error = so_ux_lookup(so, soun, checkaccess, &vp);
1140 	if (error) {
1141 		eprintsoline(so, error);
1142 		return (error);
1143 	}
1144 	/*
1145 	 * Use the address of the peer vnode as the address to send
1146 	 * to. We release the peer vnode here. In case it has been
1147 	 * closed by the time the T_CONN_REQ or T_UNIDATA_REQ reaches the
1148 	 * transport the message will get an error or be dropped.
1149 	 */
1150 	so->so_ux_faddr.soua_vp = vp;
1151 	so->so_ux_faddr.soua_magic = SOU_MAGIC_EXPLICIT;
1152 	addr = &so->so_ux_faddr;
1153 	addrlen = (socklen_t)sizeof (so->so_ux_faddr);
1154 	dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n",
1155 	    addrlen, (void *)vp));
1156 	VN_RELE(vp);
1157 	*addrp = addr;
1158 	*addrlenp = (socklen_t)addrlen;
1159 	return (0);
1160 }
1161 
1162 /*
1163  * Esballoc free function for messages that contain SO_FILEP option.
1164  * Decrement the reference count on the file pointers using closef.
1165  */
1166 void
1167 fdbuf_free(struct fdbuf *fdbuf)
1168 {
1169 	int	i;
1170 	struct file *fp;
1171 
1172 	dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
1173 	for (i = 0; i < fdbuf->fd_numfd; i++) {
1174 		/*
1175 		 * We need pointer size alignment for fd_fds. On a LP64
1176 		 * kernel, the required alignment is 8 bytes while
1177 		 * the option headers and values are only 4 bytes
1178 		 * aligned. So its safer to do a bcopy compared to
1179 		 * assigning fdbuf->fd_fds[i] to fp.
1180 		 */
1181 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
1182 		dprint(1, ("fdbuf_free: [%d] = %p\n", i, (void *)fp));
1183 		(void) closef(fp);
1184 	}
1185 	if (fdbuf->fd_ebuf != NULL)
1186 		kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
1187 	kmem_free(fdbuf, fdbuf->fd_size);
1188 }
1189 
1190 /*
1191  * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
1192  * Waits if memory is not available.
1193  */
1194 mblk_t *
1195 fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
1196 {
1197 	uchar_t	*buf;
1198 	mblk_t	*mp;
1199 
1200 	dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
1201 	buf = kmem_alloc(size, KM_SLEEP);
1202 	fdbuf->fd_ebuf = (caddr_t)buf;
1203 	fdbuf->fd_ebuflen = size;
1204 	fdbuf->fd_frtn.free_func = fdbuf_free;
1205 	fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
1206 
1207 	mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
1208 	mp->b_datap->db_type = M_PROTO;
1209 	return (mp);
1210 }
1211 
1212 /*
1213  * Extract file descriptors from a fdbuf.
1214  * Return list in rights/rightslen.
1215  */
1216 /*ARGSUSED*/
1217 static int
1218 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen)
1219 {
1220 	int	i, fd;
1221 	int	*rp;
1222 	struct file *fp;
1223 	int	numfd;
1224 
1225 	dprint(1, ("fdbuf_extract: %d fds, len %d\n",
1226 	    fdbuf->fd_numfd, rightslen));
1227 
1228 	numfd = fdbuf->fd_numfd;
1229 	ASSERT(rightslen == numfd * (int)sizeof (int));
1230 
1231 	/*
1232 	 * Allocate a file descriptor and increment the f_count.
1233 	 * The latter is needed since we always call fdbuf_free
1234 	 * which performs a closef.
1235 	 */
1236 	rp = (int *)rights;
1237 	for (i = 0; i < numfd; i++) {
1238 		if ((fd = ufalloc(0)) == -1)
1239 			goto cleanup;
1240 		/*
1241 		 * We need pointer size alignment for fd_fds. On a LP64
1242 		 * kernel, the required alignment is 8 bytes while
1243 		 * the option headers and values are only 4 bytes
1244 		 * aligned. So its safer to do a bcopy compared to
1245 		 * assigning fdbuf->fd_fds[i] to fp.
1246 		 */
1247 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
1248 		mutex_enter(&fp->f_tlock);
1249 		fp->f_count++;
1250 		mutex_exit(&fp->f_tlock);
1251 		setf(fd, fp);
1252 		*rp++ = fd;
1253 		if (audit_active)
1254 			audit_fdrecv(fd, fp);
1255 		dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
1256 		    i, fd, (void *)fp, fp->f_count));
1257 	}
1258 	return (0);
1259 
1260 cleanup:
1261 	/*
1262 	 * Undo whatever partial work the loop above has done.
1263 	 */
1264 	{
1265 		int j;
1266 
1267 		rp = (int *)rights;
1268 		for (j = 0; j < i; j++) {
1269 			dprint(0,
1270 			    ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
1271 			(void) closeandsetf(*rp++, NULL);
1272 		}
1273 	}
1274 
1275 	return (EMFILE);
1276 }
1277 
1278 /*
1279  * Insert file descriptors into an fdbuf.
1280  * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
1281  * by calling fdbuf_free().
1282  */
1283 int
1284 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
1285 {
1286 	int		numfd, i;
1287 	int		*fds;
1288 	struct file	*fp;
1289 	struct fdbuf	*fdbuf;
1290 	int		fdbufsize;
1291 
1292 	dprint(1, ("fdbuf_create: len %d\n", rightslen));
1293 
1294 	numfd = rightslen / (int)sizeof (int);
1295 
1296 	fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
1297 	fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
1298 	fdbuf->fd_size = fdbufsize;
1299 	fdbuf->fd_numfd = 0;
1300 	fdbuf->fd_ebuf = NULL;
1301 	fdbuf->fd_ebuflen = 0;
1302 	fds = (int *)rights;
1303 	for (i = 0; i < numfd; i++) {
1304 		if ((fp = getf(fds[i])) == NULL) {
1305 			fdbuf_free(fdbuf);
1306 			return (EBADF);
1307 		}
1308 		dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
1309 		    i, fds[i], (void *)fp, fp->f_count));
1310 		mutex_enter(&fp->f_tlock);
1311 		fp->f_count++;
1312 		mutex_exit(&fp->f_tlock);
1313 		/*
1314 		 * The maximum alignment for fdbuf (or any option header
1315 		 * and its value) it 4 bytes. On a LP64 kernel, the alignment
1316 		 * is not sufficient for pointers (fd_fds in this case). Since
1317 		 * we just did a kmem_alloc (we get a double word alignment),
1318 		 * we don't need to do anything on the send side (we loose
1319 		 * the double word alignment because fdbuf goes after an
1320 		 * option header (eg T_unitdata_req) which is only 4 byte
1321 		 * aligned). We take care of this when we extract the file
1322 		 * descriptor in fdbuf_extract or fdbuf_free.
1323 		 */
1324 		fdbuf->fd_fds[i] = fp;
1325 		fdbuf->fd_numfd++;
1326 		releasef(fds[i]);
1327 		if (audit_active)
1328 			audit_fdsend(fds[i], fp, 0);
1329 	}
1330 	*fdbufp = fdbuf;
1331 	return (0);
1332 }
1333 
1334 static int
1335 fdbuf_optlen(int rightslen)
1336 {
1337 	int numfd;
1338 
1339 	numfd = rightslen / (int)sizeof (int);
1340 
1341 	return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
1342 }
1343 
1344 static t_uscalar_t
1345 fdbuf_cmsglen(int fdbuflen)
1346 {
1347 	return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
1348 	    (int)sizeof (struct file *) * (int)sizeof (int));
1349 }
1350 
1351 
1352 /*
1353  * Return non-zero if the mblk and fdbuf are consistent.
1354  */
1355 static int
1356 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
1357 {
1358 	if (fdbuflen >= FDBUF_HDRSIZE &&
1359 	    fdbuflen == fdbuf->fd_size) {
1360 		frtn_t *frp = mp->b_datap->db_frtnp;
1361 		/*
1362 		 * Check that the SO_FILEP portion of the
1363 		 * message has not been modified by
1364 		 * the loopback transport. The sending sockfs generates
1365 		 * a message that is esballoc'ed with the free function
1366 		 * being fdbuf_free() and where free_arg contains the
1367 		 * identical information as the SO_FILEP content.
1368 		 *
1369 		 * If any of these constraints are not satisfied we
1370 		 * silently ignore the option.
1371 		 */
1372 		ASSERT(mp);
1373 		if (frp != NULL &&
1374 		    frp->free_func == fdbuf_free &&
1375 		    frp->free_arg != NULL &&
1376 		    bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
1377 			dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
1378 			    (void *)fdbuf, fdbuflen));
1379 			return (1);
1380 		} else {
1381 			zcmn_err(getzoneid(), CE_WARN,
1382 			    "sockfs: mismatched fdbuf content (%p)",
1383 			    (void *)mp);
1384 			return (0);
1385 		}
1386 	} else {
1387 		zcmn_err(getzoneid(), CE_WARN,
1388 		    "sockfs: mismatched fdbuf len %d, %d\n",
1389 		    fdbuflen, fdbuf->fd_size);
1390 		return (0);
1391 	}
1392 }
1393 
1394 /*
1395  * When the file descriptors returned by sorecvmsg can not be passed
1396  * to the application this routine will cleanup the references on
1397  * the files. Start at startoff bytes into the buffer.
1398  */
1399 static void
1400 close_fds(void *fdbuf, int fdbuflen, int startoff)
1401 {
1402 	int *fds = (int *)fdbuf;
1403 	int numfd = fdbuflen / (int)sizeof (int);
1404 	int i;
1405 
1406 	dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
1407 
1408 	for (i = 0; i < numfd; i++) {
1409 		if (startoff < 0)
1410 			startoff = 0;
1411 		if (startoff < (int)sizeof (int)) {
1412 			/*
1413 			 * This file descriptor is partially or fully after
1414 			 * the offset
1415 			 */
1416 			dprint(0,
1417 			    ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
1418 			(void) closeandsetf(fds[i], NULL);
1419 		}
1420 		startoff -= (int)sizeof (int);
1421 	}
1422 }
1423 
1424 /*
1425  * Close all file descriptors contained in the control part starting at
1426  * the startoffset.
1427  */
1428 void
1429 so_closefds(void *control, t_uscalar_t controllen, int oldflg,
1430     int startoff)
1431 {
1432 	struct cmsghdr *cmsg;
1433 
1434 	if (control == NULL)
1435 		return;
1436 
1437 	if (oldflg) {
1438 		close_fds(control, controllen, startoff);
1439 		return;
1440 	}
1441 	/* Scan control part for file descriptors. */
1442 	for (cmsg = (struct cmsghdr *)control;
1443 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1444 	    cmsg = CMSG_NEXT(cmsg)) {
1445 		if (cmsg->cmsg_level == SOL_SOCKET &&
1446 		    cmsg->cmsg_type == SCM_RIGHTS) {
1447 			close_fds(CMSG_CONTENT(cmsg),
1448 			    (int)CMSG_CONTENTLEN(cmsg),
1449 			    startoff - (int)sizeof (struct cmsghdr));
1450 		}
1451 		startoff -= cmsg->cmsg_len;
1452 	}
1453 }
1454 
1455 /*
1456  * Returns a pointer/length for the file descriptors contained
1457  * in the control buffer. Returns with *fdlenp == -1 if there are no
1458  * file descriptor options present. This is different than there being
1459  * a zero-length file descriptor option.
1460  * Fail if there are multiple SCM_RIGHT cmsgs.
1461  */
1462 int
1463 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
1464     void **fdsp, int *fdlenp)
1465 {
1466 	struct cmsghdr *cmsg;
1467 	void *fds;
1468 	int fdlen;
1469 
1470 	if (control == NULL) {
1471 		*fdsp = NULL;
1472 		*fdlenp = -1;
1473 		return (0);
1474 	}
1475 
1476 	if (oldflg) {
1477 		*fdsp = control;
1478 		if (controllen == 0)
1479 			*fdlenp = -1;
1480 		else
1481 			*fdlenp = controllen;
1482 		dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
1483 		return (0);
1484 	}
1485 
1486 	fds = NULL;
1487 	fdlen = 0;
1488 
1489 	for (cmsg = (struct cmsghdr *)control;
1490 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1491 	    cmsg = CMSG_NEXT(cmsg)) {
1492 		if (cmsg->cmsg_level == SOL_SOCKET &&
1493 		    cmsg->cmsg_type == SCM_RIGHTS) {
1494 			if (fds != NULL)
1495 				return (EINVAL);
1496 			fds = CMSG_CONTENT(cmsg);
1497 			fdlen = (int)CMSG_CONTENTLEN(cmsg);
1498 			dprint(1, ("so_getfdopt: new %lu\n",
1499 			    (size_t)CMSG_CONTENTLEN(cmsg)));
1500 		}
1501 	}
1502 	if (fds == NULL) {
1503 		dprint(1, ("so_getfdopt: NONE\n"));
1504 		*fdlenp = -1;
1505 	} else
1506 		*fdlenp = fdlen;
1507 	*fdsp = fds;
1508 	return (0);
1509 }
1510 
1511 /*
1512  * Return the length of the options including any file descriptor options.
1513  */
1514 t_uscalar_t
1515 so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1516 {
1517 	struct cmsghdr *cmsg;
1518 	t_uscalar_t optlen = 0;
1519 	t_uscalar_t len;
1520 
1521 	if (control == NULL)
1522 		return (0);
1523 
1524 	if (oldflg)
1525 		return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1526 		    fdbuf_optlen(controllen)));
1527 
1528 	for (cmsg = (struct cmsghdr *)control;
1529 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1530 	    cmsg = CMSG_NEXT(cmsg)) {
1531 		if (cmsg->cmsg_level == SOL_SOCKET &&
1532 		    cmsg->cmsg_type == SCM_RIGHTS) {
1533 			len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1534 		} else {
1535 			len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1536 		}
1537 		optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1538 		    sizeof (struct T_opthdr));
1539 	}
1540 	dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1541 	    controllen, oldflg, optlen));
1542 	return (optlen);
1543 }
1544 
1545 /*
1546  * Copy options from control to the mblk. Skip any file descriptor options.
1547  */
1548 void
1549 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1550 {
1551 	struct T_opthdr toh;
1552 	struct cmsghdr *cmsg;
1553 
1554 	if (control == NULL)
1555 		return;
1556 
1557 	if (oldflg) {
1558 		/* No real options - caller has handled file descriptors */
1559 		return;
1560 	}
1561 	for (cmsg = (struct cmsghdr *)control;
1562 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1563 	    cmsg = CMSG_NEXT(cmsg)) {
1564 		/*
1565 		 * Note: The caller handles file descriptors prior
1566 		 * to calling this function.
1567 		 */
1568 		t_uscalar_t len;
1569 
1570 		if (cmsg->cmsg_level == SOL_SOCKET &&
1571 		    cmsg->cmsg_type == SCM_RIGHTS)
1572 			continue;
1573 
1574 		len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1575 		toh.level = cmsg->cmsg_level;
1576 		toh.name = cmsg->cmsg_type;
1577 		toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1578 		toh.status = 0;
1579 
1580 		soappendmsg(mp, &toh, sizeof (toh));
1581 		soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1582 		mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1583 		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1584 	}
1585 }
1586 
1587 /*
1588  * Return the length of the control message derived from the options.
1589  * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1590  * When oldflg is set only include SO_FILEP.
1591  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1592  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1593  * also be checked for any possible impacts.
1594  */
1595 t_uscalar_t
1596 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1597 {
1598 	t_uscalar_t cmsglen = 0;
1599 	struct T_opthdr *tohp;
1600 	t_uscalar_t len;
1601 	t_uscalar_t last_roundup = 0;
1602 
1603 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1604 
1605 	for (tohp = (struct T_opthdr *)opt;
1606 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1607 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1608 		dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1609 		    tohp->level, tohp->name, tohp->len));
1610 		if (tohp->level == SOL_SOCKET &&
1611 		    (tohp->name == SO_SRCADDR ||
1612 		    tohp->name == SO_UNIX_CLOSE)) {
1613 			continue;
1614 		}
1615 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1616 			struct fdbuf *fdbuf;
1617 			int fdbuflen;
1618 
1619 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1620 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1621 
1622 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1623 				continue;
1624 			if (oldflg) {
1625 				cmsglen += fdbuf_cmsglen(fdbuflen);
1626 				continue;
1627 			}
1628 			len = fdbuf_cmsglen(fdbuflen);
1629 		} else if (tohp->level == SOL_SOCKET &&
1630 		    tohp->name == SCM_TIMESTAMP) {
1631 			if (oldflg)
1632 				continue;
1633 
1634 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1635 				len = sizeof (struct timeval);
1636 			} else {
1637 				len = sizeof (struct timeval32);
1638 			}
1639 		} else {
1640 			if (oldflg)
1641 				continue;
1642 			len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1643 		}
1644 		/*
1645 		 * Exclude roundup for last option to not set
1646 		 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1647 		 */
1648 		last_roundup = (t_uscalar_t)
1649 		    (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1650 		    (len + (int)sizeof (struct cmsghdr)));
1651 		cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1652 		    last_roundup;
1653 	}
1654 	cmsglen -= last_roundup;
1655 	dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1656 	    optlen, oldflg, cmsglen));
1657 	return (cmsglen);
1658 }
1659 
1660 /*
1661  * Copy options from options to the control. Convert SO_FILEP to
1662  * file descriptors.
1663  * Returns errno or zero.
1664  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1665  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1666  * also be checked for any possible impacts.
1667  */
1668 int
1669 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg,
1670     void *control, t_uscalar_t controllen)
1671 {
1672 	struct T_opthdr *tohp;
1673 	struct cmsghdr *cmsg;
1674 	struct fdbuf *fdbuf;
1675 	int fdbuflen;
1676 	int error;
1677 #if defined(DEBUG) || defined(__lint)
1678 	struct cmsghdr *cend = (struct cmsghdr *)
1679 	    (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1680 #endif
1681 	cmsg = (struct cmsghdr *)control;
1682 
1683 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1684 
1685 	for (tohp = (struct T_opthdr *)opt;
1686 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1687 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1688 		dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1689 		    tohp->level, tohp->name, tohp->len));
1690 
1691 		if (tohp->level == SOL_SOCKET &&
1692 		    (tohp->name == SO_SRCADDR ||
1693 		    tohp->name == SO_UNIX_CLOSE)) {
1694 			continue;
1695 		}
1696 		ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1697 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1698 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1699 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1700 
1701 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1702 				return (EPROTO);
1703 			if (oldflg) {
1704 				error = fdbuf_extract(fdbuf, control,
1705 				    (int)controllen);
1706 				if (error != 0)
1707 					return (error);
1708 				continue;
1709 			} else {
1710 				int fdlen;
1711 
1712 				fdlen = (int)fdbuf_cmsglen(
1713 				    (int)_TPI_TOPT_DATALEN(tohp));
1714 
1715 				cmsg->cmsg_level = tohp->level;
1716 				cmsg->cmsg_type = SCM_RIGHTS;
1717 				cmsg->cmsg_len = (socklen_t)(fdlen +
1718 				    sizeof (struct cmsghdr));
1719 
1720 				error = fdbuf_extract(fdbuf,
1721 				    CMSG_CONTENT(cmsg), fdlen);
1722 				if (error != 0)
1723 					return (error);
1724 			}
1725 		} else if (tohp->level == SOL_SOCKET &&
1726 		    tohp->name == SCM_TIMESTAMP) {
1727 			timestruc_t *timestamp;
1728 
1729 			if (oldflg)
1730 				continue;
1731 
1732 			cmsg->cmsg_level = tohp->level;
1733 			cmsg->cmsg_type = tohp->name;
1734 
1735 			timestamp =
1736 			    (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1737 			    sizeof (intptr_t));
1738 
1739 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1740 				struct timeval tv;
1741 
1742 				cmsg->cmsg_len = sizeof (struct timeval) +
1743 				    sizeof (struct cmsghdr);
1744 				tv.tv_sec = timestamp->tv_sec;
1745 				tv.tv_usec = timestamp->tv_nsec /
1746 				    (NANOSEC / MICROSEC);
1747 				/*
1748 				 * on LP64 systems, the struct timeval in
1749 				 * the destination will not be 8-byte aligned,
1750 				 * so use bcopy to avoid alignment trouble
1751 				 */
1752 				bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1753 			} else {
1754 				struct timeval32 *time32;
1755 
1756 				cmsg->cmsg_len = sizeof (struct timeval32) +
1757 				    sizeof (struct cmsghdr);
1758 				time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1759 				time32->tv_sec = (time32_t)timestamp->tv_sec;
1760 				time32->tv_usec =
1761 				    (int32_t)(timestamp->tv_nsec /
1762 				    (NANOSEC / MICROSEC));
1763 			}
1764 
1765 		} else {
1766 			if (oldflg)
1767 				continue;
1768 
1769 			cmsg->cmsg_level = tohp->level;
1770 			cmsg->cmsg_type = tohp->name;
1771 			cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) +
1772 			    sizeof (struct cmsghdr));
1773 
1774 			/* copy content to control data part */
1775 			bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1776 			    CMSG_CONTENTLEN(cmsg));
1777 		}
1778 		/* move to next CMSG structure! */
1779 		cmsg = CMSG_NEXT(cmsg);
1780 	}
1781 	dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1782 	    control, controllen, (void *)cend, (void *)cmsg));
1783 	ASSERT(cmsg <= cend);
1784 	return (0);
1785 }
1786 
1787 /*
1788  * Extract the SO_SRCADDR option value if present.
1789  */
1790 void
1791 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1792     t_uscalar_t *srclenp)
1793 {
1794 	struct T_opthdr		*tohp;
1795 
1796 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1797 
1798 	ASSERT(srcp != NULL && srclenp != NULL);
1799 	*srcp = NULL;
1800 	*srclenp = 0;
1801 
1802 	for (tohp = (struct T_opthdr *)opt;
1803 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1804 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1805 		dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1806 		    tohp->level, tohp->name, tohp->len));
1807 		if (tohp->level == SOL_SOCKET &&
1808 		    tohp->name == SO_SRCADDR) {
1809 			*srcp = _TPI_TOPT_DATA(tohp);
1810 			*srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1811 		}
1812 	}
1813 }
1814 
1815 /*
1816  * Verify if the SO_UNIX_CLOSE option is present.
1817  */
1818 int
1819 so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1820 {
1821 	struct T_opthdr		*tohp;
1822 
1823 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1824 
1825 	for (tohp = (struct T_opthdr *)opt;
1826 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1827 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1828 		dprint(1,
1829 		    ("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1830 		    tohp->level, tohp->name, tohp->len));
1831 		if (tohp->level == SOL_SOCKET &&
1832 		    tohp->name == SO_UNIX_CLOSE)
1833 			return (1);
1834 	}
1835 	return (0);
1836 }
1837 
1838 /*
1839  * Allocate an M_PROTO message.
1840  *
1841  * If allocation fails the behavior depends on sleepflg:
1842  *	_ALLOC_NOSLEEP	fail immediately
1843  *	_ALLOC_INTR	sleep for memory until a signal is caught
1844  *	_ALLOC_SLEEP	sleep forever. Don't return NULL.
1845  */
1846 mblk_t *
1847 soallocproto(size_t size, int sleepflg)
1848 {
1849 	mblk_t	*mp;
1850 
1851 	/* Round up size for reuse */
1852 	size = MAX(size, 64);
1853 	mp = allocb(size, BPRI_MED);
1854 	if (mp == NULL) {
1855 		int error;	/* Dummy - error not returned to caller */
1856 
1857 		switch (sleepflg) {
1858 		case _ALLOC_SLEEP:
1859 			mp = allocb_wait(size, BPRI_MED, STR_NOSIG, &error);
1860 			ASSERT(mp);
1861 			break;
1862 		case _ALLOC_INTR:
1863 			mp = allocb_wait(size, BPRI_MED, 0, &error);
1864 			if (mp == NULL) {
1865 				/* Caught signal while sleeping for memory */
1866 				eprintline(ENOBUFS);
1867 				return (NULL);
1868 			}
1869 			break;
1870 		case _ALLOC_NOSLEEP:
1871 		default:
1872 			eprintline(ENOBUFS);
1873 			return (NULL);
1874 		}
1875 	}
1876 	DB_TYPE(mp) = M_PROTO;
1877 	return (mp);
1878 }
1879 
1880 /*
1881  * Allocate an M_PROTO message with a single component.
1882  * len is the length of buf. size is the amount to allocate.
1883  *
1884  * buf can be NULL with a non-zero len.
1885  * This results in a bzero'ed chunk being placed the message.
1886  */
1887 mblk_t *
1888 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg)
1889 {
1890 	mblk_t	*mp;
1891 
1892 	if (size == 0)
1893 		size = len;
1894 
1895 	ASSERT(size >= len);
1896 	/* Round up size for reuse */
1897 	size = MAX(size, 64);
1898 	mp = soallocproto(size, sleepflg);
1899 	if (mp == NULL)
1900 		return (NULL);
1901 	mp->b_datap->db_type = M_PROTO;
1902 	if (len != 0) {
1903 		if (buf != NULL)
1904 			bcopy(buf, mp->b_wptr, len);
1905 		else
1906 			bzero(mp->b_wptr, len);
1907 		mp->b_wptr += len;
1908 	}
1909 	return (mp);
1910 }
1911 
1912 /*
1913  * Append buf/len to mp.
1914  * The caller has to ensure that there is enough room in the mblk.
1915  *
1916  * buf can be NULL with a non-zero len.
1917  * This results in a bzero'ed chunk being placed the message.
1918  */
1919 void
1920 soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1921 {
1922 	ASSERT(mp);
1923 
1924 	if (len != 0) {
1925 		/* Assert for room left */
1926 		ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1927 		if (buf != NULL)
1928 			bcopy(buf, mp->b_wptr, len);
1929 		else
1930 			bzero(mp->b_wptr, len);
1931 	}
1932 	mp->b_wptr += len;
1933 }
1934 
1935 /*
1936  * Create a message using two kernel buffers.
1937  * If size is set that will determine the allocation size (e.g. for future
1938  * soappendmsg calls). If size is zero it is derived from the buffer
1939  * lengths.
1940  */
1941 mblk_t *
1942 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1943     ssize_t size, int sleepflg)
1944 {
1945 	mblk_t *mp;
1946 
1947 	if (size == 0)
1948 		size = len1 + len2;
1949 	ASSERT(size >= len1 + len2);
1950 
1951 	mp = soallocproto1(buf1, len1, size, sleepflg);
1952 	if (mp)
1953 		soappendmsg(mp, buf2, len2);
1954 	return (mp);
1955 }
1956 
1957 /*
1958  * Create a message using three kernel buffers.
1959  * If size is set that will determine the allocation size (for future
1960  * soappendmsg calls). If size is zero it is derived from the buffer
1961  * lengths.
1962  */
1963 mblk_t *
1964 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1965     const void *buf3, ssize_t len3, ssize_t size, int sleepflg)
1966 {
1967 	mblk_t *mp;
1968 
1969 	if (size == 0)
1970 		size = len1 + len2 +len3;
1971 	ASSERT(size >= len1 + len2 + len3);
1972 
1973 	mp = soallocproto1(buf1, len1, size, sleepflg);
1974 	if (mp != NULL) {
1975 		soappendmsg(mp, buf2, len2);
1976 		soappendmsg(mp, buf3, len3);
1977 	}
1978 	return (mp);
1979 }
1980 
1981 #ifdef DEBUG
1982 char *
1983 pr_state(uint_t state, uint_t mode)
1984 {
1985 	static char buf[1024];
1986 
1987 	buf[0] = 0;
1988 	if (state & SS_ISCONNECTED)
1989 		(void) strcat(buf, "ISCONNECTED ");
1990 	if (state & SS_ISCONNECTING)
1991 		(void) strcat(buf, "ISCONNECTING ");
1992 	if (state & SS_ISDISCONNECTING)
1993 		(void) strcat(buf, "ISDISCONNECTING ");
1994 	if (state & SS_CANTSENDMORE)
1995 		(void) strcat(buf, "CANTSENDMORE ");
1996 
1997 	if (state & SS_CANTRCVMORE)
1998 		(void) strcat(buf, "CANTRCVMORE ");
1999 	if (state & SS_ISBOUND)
2000 		(void) strcat(buf, "ISBOUND ");
2001 	if (state & SS_NDELAY)
2002 		(void) strcat(buf, "NDELAY ");
2003 	if (state & SS_NONBLOCK)
2004 		(void) strcat(buf, "NONBLOCK ");
2005 
2006 	if (state & SS_ASYNC)
2007 		(void) strcat(buf, "ASYNC ");
2008 	if (state & SS_ACCEPTCONN)
2009 		(void) strcat(buf, "ACCEPTCONN ");
2010 	if (state & SS_HASCONNIND)
2011 		(void) strcat(buf, "HASCONNIND ");
2012 	if (state & SS_SAVEDEOR)
2013 		(void) strcat(buf, "SAVEDEOR ");
2014 
2015 	if (state & SS_RCVATMARK)
2016 		(void) strcat(buf, "RCVATMARK ");
2017 	if (state & SS_OOBPEND)
2018 		(void) strcat(buf, "OOBPEND ");
2019 	if (state & SS_HAVEOOBDATA)
2020 		(void) strcat(buf, "HAVEOOBDATA ");
2021 	if (state & SS_HADOOBDATA)
2022 		(void) strcat(buf, "HADOOBDATA ");
2023 
2024 	if (state & SS_FADDR_NOXLATE)
2025 		(void) strcat(buf, "FADDR_NOXLATE ");
2026 
2027 	if (mode & SM_PRIV)
2028 		(void) strcat(buf, "PRIV ");
2029 	if (mode & SM_ATOMIC)
2030 		(void) strcat(buf, "ATOMIC ");
2031 	if (mode & SM_ADDR)
2032 		(void) strcat(buf, "ADDR ");
2033 	if (mode & SM_CONNREQUIRED)
2034 		(void) strcat(buf, "CONNREQUIRED ");
2035 
2036 	if (mode & SM_FDPASSING)
2037 		(void) strcat(buf, "FDPASSING ");
2038 	if (mode & SM_EXDATA)
2039 		(void) strcat(buf, "EXDATA ");
2040 	if (mode & SM_OPTDATA)
2041 		(void) strcat(buf, "OPTDATA ");
2042 	if (mode & SM_BYTESTREAM)
2043 		(void) strcat(buf, "BYTESTREAM ");
2044 	return (buf);
2045 }
2046 
2047 char *
2048 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
2049 {
2050 	static char buf[1024];
2051 
2052 	if (addr == NULL || addrlen == 0) {
2053 		(void) sprintf(buf, "(len %d) %p", addrlen, (void *)addr);
2054 		return (buf);
2055 	}
2056 	switch (family) {
2057 	case AF_INET: {
2058 		struct sockaddr_in sin;
2059 
2060 		bcopy(addr, &sin, sizeof (sin));
2061 
2062 		(void) sprintf(buf, "(len %d) %x/%d",
2063 		    addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port));
2064 		break;
2065 	}
2066 	case AF_INET6: {
2067 		struct sockaddr_in6 sin6;
2068 		uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
2069 
2070 		bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
2071 		(void) sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
2072 		    addrlen,
2073 		    ntohs(piece[0]), ntohs(piece[1]),
2074 		    ntohs(piece[2]), ntohs(piece[3]),
2075 		    ntohs(piece[4]), ntohs(piece[5]),
2076 		    ntohs(piece[6]), ntohs(piece[7]),
2077 		    ntohs(sin6.sin6_port));
2078 		break;
2079 	}
2080 	case AF_UNIX: {
2081 		struct sockaddr_un *soun = (struct sockaddr_un *)addr;
2082 
2083 		(void) sprintf(buf, "(len %d) %s", addrlen,
2084 		    (soun == NULL) ? "(none)" : soun->sun_path);
2085 		break;
2086 	}
2087 	default:
2088 		(void) sprintf(buf, "(unknown af %d)", family);
2089 		break;
2090 	}
2091 	return (buf);
2092 }
2093 
2094 /* The logical equivalence operator (a if-and-only-if b) */
2095 #define	EQUIV(a, b)	(((a) && (b)) || (!(a) && (!(b))))
2096 
2097 /*
2098  * Verify limitations and invariants on oob state.
2099  * Return 1 if OK, otherwise 0 so that it can be used as
2100  *	ASSERT(verify_oobstate(so));
2101  */
2102 int
2103 so_verify_oobstate(struct sonode *so)
2104 {
2105 	ASSERT(MUTEX_HELD(&so->so_lock));
2106 
2107 	/*
2108 	 * The possible state combinations are:
2109 	 *	0
2110 	 *	SS_OOBPEND
2111 	 *	SS_OOBPEND|SS_HAVEOOBDATA
2112 	 *	SS_OOBPEND|SS_HADOOBDATA
2113 	 *	SS_HADOOBDATA
2114 	 */
2115 	switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
2116 	case 0:
2117 	case SS_OOBPEND:
2118 	case SS_OOBPEND|SS_HAVEOOBDATA:
2119 	case SS_OOBPEND|SS_HADOOBDATA:
2120 	case SS_HADOOBDATA:
2121 		break;
2122 	default:
2123 		printf("Bad oob state 1 (%p): counts %d/%d state %s\n",
2124 		    (void *)so, so->so_oobsigcnt,
2125 		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2126 		return (0);
2127 	}
2128 
2129 	/* SS_RCVATMARK should only be set when SS_OOBPEND is set */
2130 	if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
2131 		printf("Bad oob state 2 (%p): counts %d/%d state %s\n",
2132 		    (void *)so, so->so_oobsigcnt,
2133 		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2134 		return (0);
2135 	}
2136 
2137 	/*
2138 	 * (so_oobsigcnt != 0 or SS_RCVATMARK) iff SS_OOBPEND
2139 	 */
2140 	if (!EQUIV((so->so_oobsigcnt != 0) || (so->so_state & SS_RCVATMARK),
2141 	    so->so_state & SS_OOBPEND)) {
2142 		printf("Bad oob state 3 (%p): counts %d/%d state %s\n",
2143 		    (void *)so, so->so_oobsigcnt,
2144 		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2145 		return (0);
2146 	}
2147 
2148 	/*
2149 	 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
2150 	 */
2151 	if (!(so->so_options & SO_OOBINLINE) &&
2152 	    !EQUIV(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
2153 		printf("Bad oob state 4 (%p): counts %d/%d state %s\n",
2154 		    (void *)so, so->so_oobsigcnt,
2155 		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2156 		return (0);
2157 	}
2158 	if (so->so_oobsigcnt < so->so_oobcnt) {
2159 		printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
2160 		    (void *)so, so->so_oobsigcnt,
2161 		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2162 		return (0);
2163 	}
2164 	return (1);
2165 }
2166 #undef	EQUIV
2167 
2168 #endif /* DEBUG */
2169 
2170 /* initialize sockfs zone specific kstat related items			*/
2171 void *
2172 sock_kstat_init(zoneid_t zoneid)
2173 {
2174 	kstat_t	*ksp;
2175 
2176 	ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
2177 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
2178 
2179 	if (ksp != NULL) {
2180 		ksp->ks_update = sockfs_update;
2181 		ksp->ks_snapshot = sockfs_snapshot;
2182 		ksp->ks_lock = &socklist.sl_lock;
2183 		ksp->ks_private = (void *)(uintptr_t)zoneid;
2184 		kstat_install(ksp);
2185 	}
2186 
2187 	return (ksp);
2188 }
2189 
2190 /* tear down sockfs zone specific kstat related items			*/
2191 /*ARGSUSED*/
2192 void
2193 sock_kstat_fini(zoneid_t zoneid, void *arg)
2194 {
2195 	kstat_t *ksp = (kstat_t *)arg;
2196 
2197 	if (ksp != NULL) {
2198 		ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
2199 		kstat_delete(ksp);
2200 	}
2201 }
2202 
2203 /*
2204  * Zones:
2205  * Note that nactive is going to be different for each zone.
2206  * This means we require kstat to call sockfs_update and then sockfs_snapshot
2207  * for the same zone, or sockfs_snapshot will be taken into the wrong size
2208  * buffer. This is safe, but if the buffer is too small, user will not be
2209  * given details of all sockets. However, as this kstat has a ks_lock, kstat
2210  * driver will keep it locked between the update and the snapshot, so no
2211  * other process (zone) can currently get inbetween resulting in a wrong size
2212  * buffer allocation.
2213  */
2214 static int
2215 sockfs_update(kstat_t *ksp, int rw)
2216 {
2217 	uint_t	nactive = 0;		/* # of active AF_UNIX sockets	*/
2218 	struct sonode	*so;		/* current sonode on socklist	*/
2219 	zoneid_t	myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
2220 
2221 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
2222 
2223 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
2224 		return (EACCES);
2225 	}
2226 
2227 	for (so = socklist.sl_list; so != NULL; so = so->so_next) {
2228 		if (so->so_accessvp != NULL && so->so_zoneid == myzoneid) {
2229 			nactive++;
2230 		}
2231 	}
2232 	ksp->ks_ndata = nactive;
2233 	ksp->ks_data_size = nactive * sizeof (struct k_sockinfo);
2234 
2235 	return (0);
2236 }
2237 
2238 static int
2239 sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
2240 {
2241 	int			ns;	/* # of sonodes we've copied	*/
2242 	struct sonode		*so;	/* current sonode on socklist	*/
2243 	struct k_sockinfo	*pksi;	/* where we put sockinfo data	*/
2244 	t_uscalar_t		sn_len;	/* soa_len			*/
2245 	zoneid_t		myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
2246 
2247 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
2248 
2249 	ksp->ks_snaptime = gethrtime();
2250 
2251 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
2252 		return (EACCES);
2253 	}
2254 
2255 	/*
2256 	 * for each sonode on the socklist, we massage the important
2257 	 * info into buf, in k_sockinfo format.
2258 	 */
2259 	pksi = (struct k_sockinfo *)buf;
2260 	for (ns = 0, so = socklist.sl_list; so != NULL; so = so->so_next) {
2261 		/* only stuff active sonodes and the same zone:		*/
2262 		if (so->so_accessvp == NULL || so->so_zoneid != myzoneid) {
2263 			continue;
2264 		}
2265 
2266 		/*
2267 		 * If the sonode was activated between the update and the
2268 		 * snapshot, we're done - as this is only a snapshot.
2269 		 */
2270 		if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) {
2271 			break;
2272 		}
2273 
2274 		/* copy important info into buf:			*/
2275 		pksi->ks_si.si_size = sizeof (struct k_sockinfo);
2276 		pksi->ks_si.si_family = so->so_family;
2277 		pksi->ks_si.si_type = so->so_type;
2278 		pksi->ks_si.si_flag = so->so_flag;
2279 		pksi->ks_si.si_state = so->so_state;
2280 		pksi->ks_si.si_serv_type = so->so_serv_type;
2281 		pksi->ks_si.si_ux_laddr_sou_magic = so->so_ux_laddr.soua_magic;
2282 		pksi->ks_si.si_ux_faddr_sou_magic = so->so_ux_faddr.soua_magic;
2283 		pksi->ks_si.si_laddr_soa_len = so->so_laddr.soa_len;
2284 		pksi->ks_si.si_faddr_soa_len = so->so_faddr.soa_len;
2285 		pksi->ks_si.si_szoneid = so->so_zoneid;
2286 
2287 		mutex_enter(&so->so_lock);
2288 
2289 		if (so->so_laddr_sa != NULL) {
2290 			ASSERT(so->so_laddr_sa->sa_data != NULL);
2291 			sn_len = so->so_laddr_len;
2292 			ASSERT(sn_len <= sizeof (short) +
2293 			    sizeof (pksi->ks_si.si_laddr_sun_path));
2294 
2295 			pksi->ks_si.si_laddr_family =
2296 			    so->so_laddr_sa->sa_family;
2297 			if (sn_len != 0) {
2298 				/* AF_UNIX socket names are NULL terminated */
2299 				(void) strncpy(pksi->ks_si.si_laddr_sun_path,
2300 				    so->so_laddr_sa->sa_data,
2301 				    sizeof (pksi->ks_si.si_laddr_sun_path));
2302 				sn_len = strlen(pksi->ks_si.si_laddr_sun_path);
2303 			}
2304 			pksi->ks_si.si_laddr_sun_path[sn_len] = 0;
2305 		}
2306 
2307 		if (so->so_faddr_sa != NULL) {
2308 			ASSERT(so->so_faddr_sa->sa_data != NULL);
2309 			sn_len = so->so_faddr_len;
2310 			ASSERT(sn_len <= sizeof (short) +
2311 			    sizeof (pksi->ks_si.si_faddr_sun_path));
2312 
2313 			pksi->ks_si.si_faddr_family =
2314 			    so->so_faddr_sa->sa_family;
2315 			if (sn_len != 0) {
2316 				(void) strncpy(pksi->ks_si.si_faddr_sun_path,
2317 				    so->so_faddr_sa->sa_data,
2318 				    sizeof (pksi->ks_si.si_faddr_sun_path));
2319 				sn_len = strlen(pksi->ks_si.si_faddr_sun_path);
2320 			}
2321 			pksi->ks_si.si_faddr_sun_path[sn_len] = 0;
2322 		}
2323 
2324 		mutex_exit(&so->so_lock);
2325 
2326 		(void) sprintf(pksi->ks_straddr[0], "%p", (void *)so);
2327 		(void) sprintf(pksi->ks_straddr[1], "%p",
2328 		    (void *)so->so_ux_laddr.soua_vp);
2329 		(void) sprintf(pksi->ks_straddr[2], "%p",
2330 		    (void *)so->so_ux_faddr.soua_vp);
2331 
2332 		ns++;
2333 		pksi++;
2334 	}
2335 
2336 	ksp->ks_ndata = ns;
2337 	return (0);
2338 }
2339 
2340 ssize_t
2341 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
2342 {
2343 	struct uio auio;
2344 	struct iovec aiov[MSG_MAXIOVLEN];
2345 	register vnode_t *vp;
2346 	int ioflag, rwflag;
2347 	ssize_t cnt;
2348 	int error = 0;
2349 	int iovcnt = 0;
2350 	short fflag;
2351 
2352 	vp = fp->f_vnode;
2353 	fflag = fp->f_flag;
2354 
2355 	rwflag = 0;
2356 	aiov[0].iov_base = (caddr_t)buf;
2357 	aiov[0].iov_len = size;
2358 	iovcnt = 1;
2359 	cnt = (ssize_t)size;
2360 	(void) VOP_RWLOCK(vp, rwflag, NULL);
2361 
2362 	auio.uio_loffset = fileoff;
2363 	auio.uio_iov = aiov;
2364 	auio.uio_iovcnt = iovcnt;
2365 	auio.uio_resid = cnt;
2366 	auio.uio_segflg = UIO_SYSSPACE;
2367 	auio.uio_llimit = MAXOFFSET_T;
2368 	auio.uio_fmode = fflag;
2369 	auio.uio_extflg = UIO_COPY_CACHED;
2370 
2371 	ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
2372 
2373 	/* If read sync is not asked for, filter sync flags */
2374 	if ((ioflag & FRSYNC) == 0)
2375 		ioflag &= ~(FSYNC|FDSYNC);
2376 	error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
2377 	cnt -= auio.uio_resid;
2378 
2379 	VOP_RWUNLOCK(vp, rwflag, NULL);
2380 
2381 	if (error == EINTR && cnt != 0)
2382 		error = 0;
2383 out:
2384 	if (error != 0) {
2385 		*err = error;
2386 		return (0);
2387 	} else {
2388 		*err = 0;
2389 		return (cnt);
2390 	}
2391 }
2392