1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/cred.h> 36 #include <sys/kmem.h> 37 #include <sys/sysmacros.h> 38 #include <sys/vfs.h> 39 #include <sys/vnode.h> 40 #include <sys/debug.h> 41 #include <sys/errno.h> 42 #include <sys/time.h> 43 #include <sys/file.h> 44 #include <sys/open.h> 45 #include <sys/user.h> 46 #include <sys/termios.h> 47 #include <sys/stream.h> 48 #include <sys/strsubr.h> 49 #include <sys/strsun.h> 50 #include <sys/esunddi.h> 51 #include <sys/flock.h> 52 #include <sys/modctl.h> 53 #include <sys/cmn_err.h> 54 #include <sys/mkdev.h> 55 #include <sys/pathname.h> 56 #include <sys/ddi.h> 57 #include <sys/stat.h> 58 #include <sys/fs/snode.h> 59 #include <sys/fs/dv_node.h> 60 #include <sys/zone.h> 61 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <netinet/in.h> 65 #include <sys/un.h> 66 67 #include <sys/ucred.h> 68 69 #include <sys/tiuser.h> 70 #define _SUN_TPI_VERSION 2 71 #include <sys/tihdr.h> 72 73 #include <c2/audit.h> 74 75 #include <fs/sockfs/nl7c.h> 76 77 /* 78 * Macros that operate on struct cmsghdr. 79 * The CMSG_VALID macro does not assume that the last option buffer is padded. 80 */ 81 #define CMSG_CONTENT(cmsg) (&((cmsg)[1])) 82 #define CMSG_CONTENTLEN(cmsg) ((cmsg)->cmsg_len - sizeof (struct cmsghdr)) 83 #define CMSG_VALID(cmsg, start, end) \ 84 (ISALIGNED_cmsghdr(cmsg) && \ 85 ((uintptr_t)(cmsg) >= (uintptr_t)(start)) && \ 86 ((uintptr_t)(cmsg) < (uintptr_t)(end)) && \ 87 ((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) && \ 88 ((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end))) 89 #define SO_LOCK_WAKEUP_TIME 3000 /* Wakeup time in milliseconds */ 90 91 static struct kmem_cache *socktpi_cache, *socktpi_unix_cache; 92 93 dev_t sockdev; /* For fsid in getattr */ 94 95 struct sockparams *sphead; 96 krwlock_t splist_lock; 97 98 struct socklist socklist; 99 100 static int sockfs_update(kstat_t *, int); 101 static int sockfs_snapshot(kstat_t *, void *, int); 102 103 extern void sendfile_init(); 104 105 extern void nl7c_init(void); 106 107 #define ADRSTRLEN (2 * sizeof (void *) + 1) 108 /* 109 * kernel structure for passing the sockinfo data back up to the user. 110 * the strings array allows us to convert AF_UNIX addresses into strings 111 * with a common method regardless of which n-bit kernel we're running. 112 */ 113 struct k_sockinfo { 114 struct sockinfo ks_si; 115 char ks_straddr[3][ADRSTRLEN]; 116 }; 117 118 /* 119 * Translate from a device pathname (e.g. "/dev/tcp") to a vnode. 120 * Returns with the vnode held. 121 */ 122 static int 123 sogetvp(char *devpath, vnode_t **vpp, int uioflag) 124 { 125 struct snode *csp; 126 vnode_t *vp, *dvp; 127 major_t maj; 128 int error; 129 130 ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE); 131 /* 132 * Lookup the underlying filesystem vnode. 133 */ 134 error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp); 135 if (error) 136 return (error); 137 138 /* Check that it is the correct vnode */ 139 if (vp->v_type != VCHR) { 140 VN_RELE(vp); 141 return (ENOTSOCK); 142 } 143 144 /* 145 * If devpath went through devfs, the device should already 146 * be configured. If devpath is a mknod file, however, we 147 * need to make sure the device is properly configured. 148 * To do this, we do something similar to spec_open() 149 * except that we resolve to the minor/leaf level since 150 * we need to return a vnode. 151 */ 152 csp = VTOS(VTOS(vp)->s_commonvp); 153 if (!(csp->s_flag & SDIPSET)) { 154 char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 155 error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname); 156 if (error == 0) 157 error = devfs_lookupname(pathname, NULLVPP, &dvp); 158 VN_RELE(vp); 159 kmem_free(pathname, MAXPATHLEN); 160 if (error != 0) 161 return (ENXIO); 162 vp = dvp; /* use the devfs vp */ 163 } 164 165 /* device is configured at this point */ 166 maj = getmajor(vp->v_rdev); 167 if (!STREAMSTAB(maj)) { 168 VN_RELE(vp); 169 return (ENOSTR); 170 } 171 172 *vpp = vp; 173 return (0); 174 } 175 176 /* 177 * Add or delete (latter if devpath is NULL) an enter to the sockparams 178 * table. If devpathlen is zero the devpath with not be kmem_freed. Otherwise 179 * this routine assumes that the caller has kmem_alloced devpath/devpathlen 180 * for this routine to consume. 181 * The zero devpathlen could be used if the kernel wants to create entries 182 * itself by calling sockconfig(1,2,3, "/dev/tcp", 0); 183 */ 184 int 185 soconfig(int domain, int type, int protocol, 186 char *devpath, int devpathlen) 187 { 188 struct sockparams **spp; 189 struct sockparams *sp; 190 int error = 0; 191 192 dprint(0, ("soconfig(%d,%d,%d,%s,%d)\n", 193 domain, type, protocol, devpath, devpathlen)); 194 195 /* 196 * Look for an existing match. 197 */ 198 rw_enter(&splist_lock, RW_WRITER); 199 for (spp = &sphead; (sp = *spp) != NULL; spp = &sp->sp_next) { 200 if (sp->sp_domain == domain && 201 sp->sp_type == type && 202 sp->sp_protocol == protocol) { 203 break; 204 } 205 } 206 if (devpath == NULL) { 207 ASSERT(devpathlen == 0); 208 209 /* Delete existing entry */ 210 if (sp == NULL) { 211 error = ENXIO; 212 goto done; 213 } 214 /* Unlink and free existing entry */ 215 *spp = sp->sp_next; 216 ASSERT(sp->sp_vnode); 217 VN_RELE(sp->sp_vnode); 218 if (sp->sp_devpathlen != 0) 219 kmem_free(sp->sp_devpath, sp->sp_devpathlen); 220 kmem_free(sp, sizeof (*sp)); 221 } else { 222 vnode_t *vp; 223 224 /* Add new entry */ 225 if (sp != NULL) { 226 error = EEXIST; 227 goto done; 228 } 229 230 error = sogetvp(devpath, &vp, UIO_SYSSPACE); 231 if (error) { 232 dprint(0, ("soconfig: vp %s failed with %d\n", 233 devpath, error)); 234 goto done; 235 } 236 237 dprint(0, ("soconfig: %s => vp %p, dev 0x%lx\n", 238 devpath, vp, vp->v_rdev)); 239 240 sp = kmem_alloc(sizeof (*sp), KM_SLEEP); 241 sp->sp_domain = domain; 242 sp->sp_type = type; 243 sp->sp_protocol = protocol; 244 sp->sp_devpath = devpath; 245 sp->sp_devpathlen = devpathlen; 246 sp->sp_vnode = vp; 247 sp->sp_next = NULL; 248 *spp = sp; 249 } 250 done: 251 rw_exit(&splist_lock); 252 if (error) { 253 if (devpath != NULL) 254 kmem_free(devpath, devpathlen); 255 #ifdef SOCK_DEBUG 256 eprintline(error); 257 #endif /* SOCK_DEBUG */ 258 } 259 return (error); 260 } 261 262 /* 263 * Lookup an entry in the sockparams list based on the triple. 264 * If no entry is found and devpath is not NULL translate devpath to a 265 * vnode. Note that devpath is a pointer to a user address! 266 * Returns with the vnode held. 267 * 268 * When this routine uses devpath it does not create an entry in the sockparams 269 * list since this routine can run on behalf of any user and one user 270 * should not be able to effect the transport used by another user. 271 * 272 * In order to return the correct error this routine has to do wildcard scans 273 * of the list. The errors are (in decreasing precedence): 274 * EAFNOSUPPORT - address family not in list 275 * EPROTONOSUPPORT - address family supported but not protocol. 276 * EPROTOTYPE - address family and protocol supported but not socket type. 277 */ 278 vnode_t * 279 solookup(int domain, int type, int protocol, char *devpath, int *errorp) 280 { 281 struct sockparams *sp; 282 int error; 283 vnode_t *vp; 284 285 rw_enter(&splist_lock, RW_READER); 286 for (sp = sphead; sp != NULL; sp = sp->sp_next) { 287 if (sp->sp_domain == domain && 288 sp->sp_type == type && 289 sp->sp_protocol == protocol) { 290 break; 291 } 292 } 293 if (sp == NULL) { 294 dprint(0, ("solookup(%d,%d,%d) not found\n", 295 domain, type, protocol)); 296 if (devpath == NULL) { 297 /* Determine correct error code */ 298 int found = 0; 299 300 for (sp = sphead; sp != NULL; sp = sp->sp_next) { 301 if (sp->sp_domain == domain && found < 1) 302 found = 1; 303 if (sp->sp_domain == domain && 304 sp->sp_protocol == protocol && found < 2) 305 found = 2; 306 } 307 rw_exit(&splist_lock); 308 switch (found) { 309 case 0: 310 *errorp = EAFNOSUPPORT; 311 break; 312 case 1: 313 *errorp = EPROTONOSUPPORT; 314 break; 315 case 2: 316 *errorp = EPROTOTYPE; 317 break; 318 } 319 return (NULL); 320 } 321 rw_exit(&splist_lock); 322 323 /* 324 * Return vp based on devpath. 325 * Do not enter into table to avoid random users 326 * modifying the sockparams list. 327 */ 328 error = sogetvp(devpath, &vp, UIO_USERSPACE); 329 if (error) { 330 dprint(0, ("solookup: vp %p failed with %d\n", 331 devpath, error)); 332 *errorp = EPROTONOSUPPORT; 333 return (NULL); 334 } 335 dprint(0, ("solookup: %p => vp %p, dev 0x%lx\n", 336 devpath, vp, vp->v_rdev)); 337 338 return (vp); 339 } 340 dprint(0, ("solookup(%d,%d,%d) vp %p devpath %s\n", 341 domain, type, protocol, sp->sp_vnode, sp->sp_devpath)); 342 343 vp = sp->sp_vnode; 344 VN_HOLD(vp); 345 rw_exit(&splist_lock); 346 return (vp); 347 } 348 349 /* 350 * Return a socket vnode. 351 * 352 * Assumes that the caller is "passing" an VN_HOLD for accessvp i.e. 353 * when the socket is freed a VN_RELE will take place. 354 * 355 * Note that sockets assume that the driver will clone (either itself 356 * or by using the clone driver) i.e. a socket() call will always 357 * result in a new vnode being created. 358 */ 359 struct vnode * 360 makesockvp(struct vnode *accessvp, int domain, int type, int protocol) 361 { 362 kmem_cache_t *cp; 363 struct sonode *so; 364 struct vnode *vp; 365 time_t now; 366 dev_t dev; 367 368 cp = (domain == AF_UNIX) ? socktpi_unix_cache : socktpi_cache; 369 so = kmem_cache_alloc(cp, KM_SLEEP); 370 so->so_cache = cp; 371 so->so_obj = so; 372 vp = SOTOV(so); 373 now = gethrestime_sec(); 374 375 so->so_flag = 0; 376 ASSERT(so->so_accessvp == NULL); 377 so->so_accessvp = accessvp; 378 dev = accessvp->v_rdev; 379 380 /* 381 * Record in so_flag that it is a clone. 382 */ 383 if (getmajor(dev) == clone_major) { 384 so->so_flag |= SOCLONE; 385 } 386 so->so_dev = dev; 387 388 so->so_state = 0; 389 so->so_mode = 0; 390 391 so->so_fsid = sockdev; 392 so->so_atime = now; 393 so->so_mtime = now; 394 so->so_ctime = now; /* Never modified */ 395 so->so_count = 0; 396 397 so->so_family = (short)domain; 398 so->so_type = (short)type; 399 so->so_protocol = (short)protocol; 400 so->so_pushcnt = 0; 401 402 so->so_options = 0; 403 so->so_linger.l_onoff = 0; 404 so->so_linger.l_linger = 0; 405 so->so_sndbuf = 0; 406 so->so_rcvbuf = 0; 407 so->so_sndlowat = 0; 408 so->so_rcvlowat = 0; 409 #ifdef notyet 410 so->so_sndtimeo = 0; 411 so->so_rcvtimeo = 0; 412 #endif /* notyet */ 413 so->so_error = 0; 414 so->so_delayed_error = 0; 415 416 ASSERT(so->so_oobmsg == NULL); 417 so->so_oobcnt = 0; 418 so->so_oobsigcnt = 0; 419 so->so_pgrp = 0; 420 so->so_provinfo = NULL; 421 422 ASSERT(so->so_laddr_sa == NULL && so->so_faddr_sa == NULL); 423 so->so_laddr_len = so->so_faddr_len = 0; 424 so->so_laddr_maxlen = so->so_faddr_maxlen = 0; 425 so->so_eaddr_mp = NULL; 426 so->so_priv = NULL; 427 428 so->so_peercred = NULL; 429 430 ASSERT(so->so_ack_mp == NULL); 431 ASSERT(so->so_conn_ind_head == NULL); 432 ASSERT(so->so_conn_ind_tail == NULL); 433 ASSERT(so->so_ux_bound_vp == NULL); 434 ASSERT(so->so_unbind_mp == NULL); 435 436 vn_reinit(vp); 437 vp->v_vfsp = rootvfs; 438 vp->v_type = VSOCK; 439 vp->v_rdev = so->so_dev; 440 vn_exists(vp); 441 442 return (vp); 443 } 444 445 void 446 sockfree(struct sonode *so) 447 { 448 mblk_t *mp; 449 vnode_t *vp; 450 451 ASSERT(so->so_count == 0); 452 ASSERT(so->so_accessvp); 453 ASSERT(so->so_discon_ind_mp == NULL); 454 455 vp = so->so_accessvp; 456 VN_RELE(vp); 457 458 /* 459 * Protect so->so_[lf]addr_sa so that sockfs_snapshot() can safely 460 * indirect them. It also uses so_accessvp as a validity test. 461 */ 462 mutex_enter(&so->so_lock); 463 464 so->so_accessvp = NULL; 465 466 if (so->so_laddr_sa) { 467 ASSERT((caddr_t)so->so_faddr_sa == 468 (caddr_t)so->so_laddr_sa + so->so_laddr_maxlen); 469 ASSERT(so->so_faddr_maxlen == so->so_laddr_maxlen); 470 so->so_state &= ~(SS_LADDR_VALID | SS_FADDR_VALID); 471 kmem_free(so->so_laddr_sa, so->so_laddr_maxlen * 2); 472 so->so_laddr_sa = NULL; 473 so->so_laddr_len = so->so_laddr_maxlen = 0; 474 so->so_faddr_sa = NULL; 475 so->so_faddr_len = so->so_faddr_maxlen = 0; 476 } 477 478 mutex_exit(&so->so_lock); 479 480 if ((mp = so->so_eaddr_mp) != NULL) { 481 freemsg(mp); 482 so->so_eaddr_mp = NULL; 483 so->so_delayed_error = 0; 484 } 485 if ((mp = so->so_ack_mp) != NULL) { 486 freemsg(mp); 487 so->so_ack_mp = NULL; 488 } 489 if ((mp = so->so_conn_ind_head) != NULL) { 490 mblk_t *mp1; 491 492 while (mp) { 493 mp1 = mp->b_next; 494 mp->b_next = NULL; 495 freemsg(mp); 496 mp = mp1; 497 } 498 so->so_conn_ind_head = so->so_conn_ind_tail = NULL; 499 so->so_state &= ~SS_HASCONNIND; 500 } 501 #ifdef DEBUG 502 mutex_enter(&so->so_lock); 503 ASSERT(so_verify_oobstate(so)); 504 mutex_exit(&so->so_lock); 505 #endif /* DEBUG */ 506 if ((mp = so->so_oobmsg) != NULL) { 507 freemsg(mp); 508 so->so_oobmsg = NULL; 509 so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA); 510 } 511 512 if ((mp = so->so_nl7c_rcv_mp) != NULL) { 513 so->so_nl7c_rcv_mp = NULL; 514 freemsg(mp); 515 } 516 so->so_nl7c_rcv_rval = 0; 517 if (so->so_nl7c_uri != NULL) { 518 nl7c_urifree(so); 519 } 520 so->so_nl7c_flags = 0; 521 522 ASSERT(so->so_ux_bound_vp == NULL); 523 if ((mp = so->so_unbind_mp) != NULL) { 524 freemsg(mp); 525 so->so_unbind_mp = NULL; 526 } 527 vn_invalid(SOTOV(so)); 528 529 if (so->so_peercred != NULL) 530 crfree(so->so_peercred); 531 532 kmem_cache_free(so->so_cache, so->so_obj); 533 } 534 535 /* 536 * Update the accessed, updated, or changed times in an sonode 537 * with the current time. 538 * 539 * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable 540 * attributes in a fstat call. (They return the current time and 0 for 541 * all timestamps, respectively.) We maintain the current timestamps 542 * here primarily so that should sockmod be popped the resulting 543 * file descriptor will behave like a stream w.r.t. the timestamps. 544 */ 545 void 546 so_update_attrs(struct sonode *so, int flag) 547 { 548 time_t now = gethrestime_sec(); 549 550 mutex_enter(&so->so_lock); 551 so->so_flag |= flag; 552 if (flag & SOACC) 553 so->so_atime = now; 554 if (flag & SOMOD) 555 so->so_mtime = now; 556 mutex_exit(&so->so_lock); 557 } 558 559 /*ARGSUSED*/ 560 static int 561 socktpi_constructor(void *buf, void *cdrarg, int kmflags) 562 { 563 struct sonode *so = buf; 564 struct vnode *vp; 565 566 so->so_nl7c_flags = 0; 567 so->so_nl7c_uri = NULL; 568 so->so_nl7c_rcv_mp = NULL; 569 570 so->so_oobmsg = NULL; 571 so->so_ack_mp = NULL; 572 so->so_conn_ind_head = NULL; 573 so->so_conn_ind_tail = NULL; 574 so->so_discon_ind_mp = NULL; 575 so->so_ux_bound_vp = NULL; 576 so->so_unbind_mp = NULL; 577 so->so_accessvp = NULL; 578 so->so_laddr_sa = NULL; 579 so->so_faddr_sa = NULL; 580 so->so_ops = &sotpi_sonodeops; 581 582 vp = vn_alloc(KM_SLEEP); 583 so->so_vnode = vp; 584 585 vn_setops(vp, socktpi_vnodeops); 586 vp->v_data = (caddr_t)so; 587 588 mutex_init(&so->so_lock, NULL, MUTEX_DEFAULT, NULL); 589 mutex_init(&so->so_plumb_lock, NULL, MUTEX_DEFAULT, NULL); 590 cv_init(&so->so_state_cv, NULL, CV_DEFAULT, NULL); 591 cv_init(&so->so_ack_cv, NULL, CV_DEFAULT, NULL); 592 cv_init(&so->so_connind_cv, NULL, CV_DEFAULT, NULL); 593 cv_init(&so->so_want_cv, NULL, CV_DEFAULT, NULL); 594 595 return (0); 596 } 597 598 /*ARGSUSED1*/ 599 static void 600 socktpi_destructor(void *buf, void *cdrarg) 601 { 602 struct sonode *so = buf; 603 struct vnode *vp = SOTOV(so); 604 605 ASSERT(so->so_nl7c_flags == 0); 606 ASSERT(so->so_nl7c_uri == NULL); 607 ASSERT(so->so_nl7c_rcv_mp == NULL); 608 609 ASSERT(so->so_oobmsg == NULL); 610 ASSERT(so->so_ack_mp == NULL); 611 ASSERT(so->so_conn_ind_head == NULL); 612 ASSERT(so->so_conn_ind_tail == NULL); 613 ASSERT(so->so_discon_ind_mp == NULL); 614 ASSERT(so->so_ux_bound_vp == NULL); 615 ASSERT(so->so_unbind_mp == NULL); 616 ASSERT(so->so_ops == &sotpi_sonodeops); 617 618 ASSERT(vn_matchops(vp, socktpi_vnodeops)); 619 ASSERT(vp->v_data == (caddr_t)so); 620 621 vn_free(vp); 622 623 mutex_destroy(&so->so_lock); 624 mutex_destroy(&so->so_plumb_lock); 625 cv_destroy(&so->so_state_cv); 626 cv_destroy(&so->so_ack_cv); 627 cv_destroy(&so->so_connind_cv); 628 cv_destroy(&so->so_want_cv); 629 } 630 631 static int 632 socktpi_unix_constructor(void *buf, void *cdrarg, int kmflags) 633 { 634 int retval; 635 636 if ((retval = socktpi_constructor(buf, cdrarg, kmflags)) == 0) { 637 struct sonode *so = (struct sonode *)buf; 638 639 mutex_enter(&socklist.sl_lock); 640 641 so->so_next = socklist.sl_list; 642 so->so_prev = NULL; 643 if (so->so_next != NULL) 644 so->so_next->so_prev = so; 645 socklist.sl_list = so; 646 647 mutex_exit(&socklist.sl_lock); 648 649 } 650 return (retval); 651 } 652 653 static void 654 socktpi_unix_destructor(void *buf, void *cdrarg) 655 { 656 struct sonode *so = (struct sonode *)buf; 657 658 mutex_enter(&socklist.sl_lock); 659 660 if (so->so_next != NULL) 661 so->so_next->so_prev = so->so_prev; 662 if (so->so_prev != NULL) 663 so->so_prev->so_next = so->so_next; 664 else 665 socklist.sl_list = so->so_next; 666 667 mutex_exit(&socklist.sl_lock); 668 669 socktpi_destructor(buf, cdrarg); 670 } 671 672 /* 673 * Init function called when sockfs is loaded. 674 */ 675 int 676 sockinit(int fstype, char *name) 677 { 678 static const fs_operation_def_t sock_vfsops_template[] = { 679 NULL, NULL 680 }; 681 int error; 682 major_t dev; 683 char *err_str; 684 685 error = vfs_setfsops(fstype, sock_vfsops_template, NULL); 686 if (error != 0) { 687 zcmn_err(GLOBAL_ZONEID, CE_WARN, 688 "sockinit: bad vfs ops template"); 689 return (error); 690 } 691 692 error = vn_make_ops(name, socktpi_vnodeops_template, &socktpi_vnodeops); 693 if (error != 0) { 694 err_str = "sockinit: bad sock vnode ops template"; 695 /* vn_make_ops() does not reset socktpi_vnodeops on failure. */ 696 socktpi_vnodeops = NULL; 697 goto failure; 698 } 699 700 error = sosctp_init(); 701 if (error != 0) { 702 err_str = NULL; 703 goto failure; 704 } 705 706 /* 707 * Create sonode caches. We create a special one for AF_UNIX so 708 * that we can track them for netstat(1m). 709 */ 710 socktpi_cache = kmem_cache_create("socktpi_cache", 711 sizeof (struct sonode), 0, socktpi_constructor, 712 socktpi_destructor, NULL, NULL, NULL, 0); 713 714 socktpi_unix_cache = kmem_cache_create("socktpi_unix_cache", 715 sizeof (struct sonode), 0, socktpi_unix_constructor, 716 socktpi_unix_destructor, NULL, NULL, NULL, 0); 717 718 /* 719 * Build initial list mapping socket parameters to vnode. 720 */ 721 rw_init(&splist_lock, NULL, RW_DEFAULT, NULL); 722 723 /* 724 * If sockets are needed before init runs /sbin/soconfig 725 * it is possible to preload the sockparams list here using 726 * calls like: 727 * sockconfig(1,2,3, "/dev/tcp", 0); 728 */ 729 730 /* 731 * Create a unique dev_t for use in so_fsid. 732 */ 733 734 if ((dev = getudev()) == (major_t)-1) 735 dev = 0; 736 sockdev = makedevice(dev, 0); 737 738 mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL); 739 sendfile_init(); 740 nl7c_init(); 741 742 return (0); 743 744 failure: 745 (void) vfs_freevfsops_by_type(fstype); 746 if (socktpi_vnodeops != NULL) 747 vn_freevnodeops(socktpi_vnodeops); 748 if (err_str != NULL) 749 zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str); 750 return (error); 751 } 752 753 /* 754 * Caller must hold the mutex. Used to set SOLOCKED. 755 */ 756 void 757 so_lock_single(struct sonode *so) 758 { 759 ASSERT(MUTEX_HELD(&so->so_lock)); 760 761 while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) { 762 so->so_flag |= SOWANT; 763 cv_wait_stop(&so->so_want_cv, &so->so_lock, 764 SO_LOCK_WAKEUP_TIME); 765 } 766 so->so_flag |= SOLOCKED; 767 } 768 769 /* 770 * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND. 771 * Used to clear SOLOCKED or SOASYNC_UNBIND. 772 */ 773 void 774 so_unlock_single(struct sonode *so, int flag) 775 { 776 ASSERT(MUTEX_HELD(&so->so_lock)); 777 ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND)); 778 ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0); 779 ASSERT(so->so_flag & flag); 780 781 /* 782 * Process the T_DISCON_IND on so_discon_ind_mp. 783 * 784 * Call to so_drain_discon_ind will result in so_lock 785 * being dropped and re-acquired later. 786 */ 787 if (so->so_discon_ind_mp != NULL) 788 so_drain_discon_ind(so); 789 790 if (so->so_flag & SOWANT) 791 cv_broadcast(&so->so_want_cv); 792 so->so_flag &= ~(SOWANT|flag); 793 } 794 795 /* 796 * Caller must hold the mutex. Used to set SOREADLOCKED. 797 * If the caller wants nonblocking behavior it should set fmode. 798 */ 799 int 800 so_lock_read(struct sonode *so, int fmode) 801 { 802 ASSERT(MUTEX_HELD(&so->so_lock)); 803 804 while (so->so_flag & SOREADLOCKED) { 805 if (fmode & (FNDELAY|FNONBLOCK)) 806 return (EWOULDBLOCK); 807 so->so_flag |= SOWANT; 808 cv_wait_stop(&so->so_want_cv, &so->so_lock, 809 SO_LOCK_WAKEUP_TIME); 810 } 811 so->so_flag |= SOREADLOCKED; 812 return (0); 813 } 814 815 /* 816 * Like so_lock_read above but allows signals. 817 */ 818 int 819 so_lock_read_intr(struct sonode *so, int fmode) 820 { 821 ASSERT(MUTEX_HELD(&so->so_lock)); 822 823 while (so->so_flag & SOREADLOCKED) { 824 if (fmode & (FNDELAY|FNONBLOCK)) 825 return (EWOULDBLOCK); 826 so->so_flag |= SOWANT; 827 if (!cv_wait_sig(&so->so_want_cv, &so->so_lock)) 828 return (EINTR); 829 } 830 so->so_flag |= SOREADLOCKED; 831 return (0); 832 } 833 834 /* 835 * Caller must hold the mutex. Used to clear SOREADLOCKED, 836 * set in so_lock_read() or so_lock_read_intr(). 837 */ 838 void 839 so_unlock_read(struct sonode *so) 840 { 841 ASSERT(MUTEX_HELD(&so->so_lock)); 842 ASSERT(so->so_flag & SOREADLOCKED); 843 844 if (so->so_flag & SOWANT) 845 cv_broadcast(&so->so_want_cv); 846 so->so_flag &= ~(SOWANT|SOREADLOCKED); 847 } 848 849 /* 850 * Verify that the specified offset falls within the mblk and 851 * that the resulting pointer is aligned. 852 * Returns NULL if not. 853 */ 854 void * 855 sogetoff(mblk_t *mp, t_uscalar_t offset, 856 t_uscalar_t length, uint_t align_size) 857 { 858 uintptr_t ptr1, ptr2; 859 860 ASSERT(mp && mp->b_wptr >= mp->b_rptr); 861 ptr1 = (uintptr_t)mp->b_rptr + offset; 862 ptr2 = (uintptr_t)ptr1 + length; 863 if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) { 864 eprintline(0); 865 return (NULL); 866 } 867 if ((ptr1 & (align_size - 1)) != 0) { 868 eprintline(0); 869 return (NULL); 870 } 871 return ((void *)ptr1); 872 } 873 874 /* 875 * Return the AF_UNIX underlying filesystem vnode matching a given name. 876 * Makes sure the sending and the destination sonodes are compatible. 877 * The vnode is returned held. 878 * 879 * The underlying filesystem VSOCK vnode has a v_stream pointer that 880 * references the actual stream head (hence indirectly the actual sonode). 881 */ 882 static int 883 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess, 884 vnode_t **vpp) 885 { 886 vnode_t *vp; /* Underlying filesystem vnode */ 887 vnode_t *svp; /* sockfs vnode */ 888 struct sonode *so2; 889 int error; 890 891 dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", 892 so, soun->sun_path)); 893 894 error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp); 895 if (error) { 896 eprintsoline(so, error); 897 return (error); 898 } 899 if (vp->v_type != VSOCK) { 900 error = ENOTSOCK; 901 eprintsoline(so, error); 902 goto done2; 903 } 904 905 if (checkaccess) { 906 /* 907 * Check that we have permissions to access the destination 908 * vnode. This check is not done in BSD but it is required 909 * by X/Open. 910 */ 911 if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED())) { 912 eprintsoline(so, error); 913 goto done2; 914 } 915 } 916 917 /* 918 * Check if the remote socket has been closed. 919 * 920 * Synchronize with vn_rele_stream by holding v_lock while traversing 921 * v_stream->sd_vnode. 922 */ 923 mutex_enter(&vp->v_lock); 924 if (vp->v_stream == NULL) { 925 mutex_exit(&vp->v_lock); 926 if (so->so_type == SOCK_DGRAM) 927 error = EDESTADDRREQ; 928 else 929 error = ECONNREFUSED; 930 931 eprintsoline(so, error); 932 goto done2; 933 } 934 ASSERT(vp->v_stream->sd_vnode); 935 svp = vp->v_stream->sd_vnode; 936 /* 937 * holding v_lock on underlying filesystem vnode and acquiring 938 * it on sockfs vnode. Assumes that no code ever attempts to 939 * acquire these locks in the reverse order. 940 */ 941 VN_HOLD(svp); 942 mutex_exit(&vp->v_lock); 943 944 if (svp->v_type != VSOCK) { 945 error = ENOTSOCK; 946 eprintsoline(so, error); 947 goto done; 948 } 949 950 so2 = VTOSO(svp); 951 952 if (so->so_type != so2->so_type) { 953 error = EPROTOTYPE; 954 eprintsoline(so, error); 955 goto done; 956 } 957 958 VN_RELE(svp); 959 *vpp = vp; 960 return (0); 961 962 done: 963 VN_RELE(svp); 964 done2: 965 VN_RELE(vp); 966 return (error); 967 } 968 969 /* 970 * Verify peer address for connect and sendto/sendmsg. 971 * Since sendto/sendmsg would not get synchronous errors from the transport 972 * provider we have to do these ugly checks in the socket layer to 973 * preserve compatibility with SunOS 4.X. 974 */ 975 int 976 so_addr_verify(struct sonode *so, const struct sockaddr *name, 977 socklen_t namelen) 978 { 979 int family; 980 981 dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n", so, name, namelen)); 982 983 ASSERT(name != NULL); 984 985 family = so->so_family; 986 switch (family) { 987 case AF_INET: 988 if (name->sa_family != family) { 989 eprintsoline(so, EAFNOSUPPORT); 990 return (EAFNOSUPPORT); 991 } 992 if (namelen != (socklen_t)sizeof (struct sockaddr_in)) { 993 eprintsoline(so, EINVAL); 994 return (EINVAL); 995 } 996 break; 997 case AF_INET6: { 998 #ifdef DEBUG 999 struct sockaddr_in6 *sin6; 1000 #endif /* DEBUG */ 1001 1002 if (name->sa_family != family) { 1003 eprintsoline(so, EAFNOSUPPORT); 1004 return (EAFNOSUPPORT); 1005 } 1006 if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) { 1007 eprintsoline(so, EINVAL); 1008 return (EINVAL); 1009 } 1010 #ifdef DEBUG 1011 /* Verify that apps don't forget to clear sin6_scope_id etc */ 1012 sin6 = (struct sockaddr_in6 *)name; 1013 if (sin6->sin6_scope_id != 0 && 1014 !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) { 1015 zcmn_err(getzoneid(), CE_WARN, 1016 "connect/send* with uninitialized sin6_scope_id " 1017 "(%d) on socket. Pid = %d\n", 1018 (int)sin6->sin6_scope_id, (int)curproc->p_pid); 1019 } 1020 #endif /* DEBUG */ 1021 break; 1022 } 1023 case AF_UNIX: 1024 if (so->so_state & SS_FADDR_NOXLATE) { 1025 return (0); 1026 } 1027 if (namelen < (socklen_t)sizeof (short)) { 1028 eprintsoline(so, ENOENT); 1029 return (ENOENT); 1030 } 1031 if (name->sa_family != family) { 1032 eprintsoline(so, EAFNOSUPPORT); 1033 return (EAFNOSUPPORT); 1034 } 1035 /* MAXPATHLEN + soun_family + nul termination */ 1036 if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) { 1037 eprintsoline(so, ENAMETOOLONG); 1038 return (ENAMETOOLONG); 1039 } 1040 1041 break; 1042 1043 default: 1044 /* 1045 * Default is don't do any length or sa_family check 1046 * to allow non-sockaddr style addresses. 1047 */ 1048 break; 1049 } 1050 1051 return (0); 1052 } 1053 1054 1055 /* 1056 * Translate an AF_UNIX sockaddr_un to the transport internal name. 1057 * Assumes caller has called so_addr_verify first. 1058 */ 1059 /*ARGSUSED*/ 1060 int 1061 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name, 1062 socklen_t namelen, int checkaccess, 1063 void **addrp, socklen_t *addrlenp) 1064 { 1065 int error; 1066 struct sockaddr_un *soun; 1067 vnode_t *vp; 1068 void *addr; 1069 socklen_t addrlen; 1070 1071 dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n", 1072 so, name, namelen, checkaccess)); 1073 1074 ASSERT(name != NULL); 1075 ASSERT(so->so_family == AF_UNIX); 1076 ASSERT(!(so->so_state & SS_FADDR_NOXLATE)); 1077 ASSERT(namelen >= (socklen_t)sizeof (short)); 1078 ASSERT(name->sa_family == AF_UNIX); 1079 soun = (struct sockaddr_un *)name; 1080 /* 1081 * Lookup vnode for the specified path name and verify that 1082 * it is a socket. 1083 */ 1084 error = so_ux_lookup(so, soun, checkaccess, &vp); 1085 if (error) { 1086 eprintsoline(so, error); 1087 return (error); 1088 } 1089 /* 1090 * Use the address of the peer vnode as the address to send 1091 * to. We release the peer vnode here. In case it has been 1092 * closed by the time the T_CONN_REQ or T_UNIDATA_REQ reaches the 1093 * transport the message will get an error or be dropped. 1094 */ 1095 so->so_ux_faddr.soua_vp = vp; 1096 so->so_ux_faddr.soua_magic = SOU_MAGIC_EXPLICIT; 1097 addr = &so->so_ux_faddr; 1098 addrlen = (socklen_t)sizeof (so->so_ux_faddr); 1099 dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n", 1100 addrlen, vp)); 1101 VN_RELE(vp); 1102 *addrp = addr; 1103 *addrlenp = (socklen_t)addrlen; 1104 return (0); 1105 } 1106 1107 /* 1108 * Esballoc free function for messages that contain SO_FILEP option. 1109 * Decrement the reference count on the file pointers using closef. 1110 */ 1111 void 1112 fdbuf_free(struct fdbuf *fdbuf) 1113 { 1114 int i; 1115 struct file *fp; 1116 1117 dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd)); 1118 for (i = 0; i < fdbuf->fd_numfd; i++) { 1119 /* 1120 * We need pointer size alignment for fd_fds. On a LP64 1121 * kernel, the required alignment is 8 bytes while 1122 * the option headers and values are only 4 bytes 1123 * aligned. So its safer to do a bcopy compared to 1124 * assigning fdbuf->fd_fds[i] to fp. 1125 */ 1126 bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp)); 1127 dprint(1, ("fdbuf_free: [%d] = %p\n", i, fp)); 1128 (void) closef(fp); 1129 } 1130 if (fdbuf->fd_ebuf != NULL) 1131 kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen); 1132 kmem_free(fdbuf, fdbuf->fd_size); 1133 } 1134 1135 /* 1136 * Allocate an esballoc'ed message for AF_UNIX file descriptor passing. 1137 * Waits if memory is not available. 1138 */ 1139 mblk_t * 1140 fdbuf_allocmsg(int size, struct fdbuf *fdbuf) 1141 { 1142 uchar_t *buf; 1143 mblk_t *mp; 1144 1145 dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd)); 1146 buf = kmem_alloc(size, KM_SLEEP); 1147 fdbuf->fd_ebuf = (caddr_t)buf; 1148 fdbuf->fd_ebuflen = size; 1149 fdbuf->fd_frtn.free_func = fdbuf_free; 1150 fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf; 1151 1152 mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn); 1153 mp->b_datap->db_type = M_PROTO; 1154 return (mp); 1155 } 1156 1157 /* 1158 * Extract file descriptors from a fdbuf. 1159 * Return list in rights/rightslen. 1160 */ 1161 /*ARGSUSED*/ 1162 static int 1163 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen) 1164 { 1165 int i, fd; 1166 int *rp; 1167 struct file *fp; 1168 int numfd; 1169 1170 dprint(1, ("fdbuf_extract: %d fds, len %d\n", 1171 fdbuf->fd_numfd, rightslen)); 1172 1173 numfd = fdbuf->fd_numfd; 1174 ASSERT(rightslen == numfd * (int)sizeof (int)); 1175 1176 /* 1177 * Allocate a file descriptor and increment the f_count. 1178 * The latter is needed since we always call fdbuf_free 1179 * which performs a closef. 1180 */ 1181 rp = (int *)rights; 1182 for (i = 0; i < numfd; i++) { 1183 if ((fd = ufalloc(0)) == -1) 1184 goto cleanup; 1185 /* 1186 * We need pointer size alignment for fd_fds. On a LP64 1187 * kernel, the required alignment is 8 bytes while 1188 * the option headers and values are only 4 bytes 1189 * aligned. So its safer to do a bcopy compared to 1190 * assigning fdbuf->fd_fds[i] to fp. 1191 */ 1192 bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp)); 1193 mutex_enter(&fp->f_tlock); 1194 fp->f_count++; 1195 mutex_exit(&fp->f_tlock); 1196 setf(fd, fp); 1197 *rp++ = fd; 1198 #ifdef C2_AUDIT 1199 if (audit_active) 1200 audit_fdrecv(fd, fp); 1201 #endif 1202 dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n", 1203 i, fd, fp, fp->f_count)); 1204 } 1205 return (0); 1206 1207 cleanup: 1208 /* 1209 * Undo whatever partial work the loop above has done. 1210 */ 1211 { 1212 int j; 1213 1214 rp = (int *)rights; 1215 for (j = 0; j < i; j++) { 1216 dprint(0, 1217 ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp)); 1218 (void) closeandsetf(*rp++, NULL); 1219 } 1220 } 1221 1222 return (EMFILE); 1223 } 1224 1225 /* 1226 * Insert file descriptors into an fdbuf. 1227 * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed 1228 * by calling fdbuf_free(). 1229 */ 1230 int 1231 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp) 1232 { 1233 int numfd, i; 1234 int *fds; 1235 struct file *fp; 1236 struct fdbuf *fdbuf; 1237 int fdbufsize; 1238 1239 dprint(1, ("fdbuf_create: len %d\n", rightslen)); 1240 1241 numfd = rightslen / (int)sizeof (int); 1242 1243 fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)); 1244 fdbuf = kmem_alloc(fdbufsize, KM_SLEEP); 1245 fdbuf->fd_size = fdbufsize; 1246 fdbuf->fd_numfd = 0; 1247 fdbuf->fd_ebuf = NULL; 1248 fdbuf->fd_ebuflen = 0; 1249 fds = (int *)rights; 1250 for (i = 0; i < numfd; i++) { 1251 if ((fp = getf(fds[i])) == NULL) { 1252 fdbuf_free(fdbuf); 1253 return (EBADF); 1254 } 1255 dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n", 1256 i, fds[i], fp, fp->f_count)); 1257 mutex_enter(&fp->f_tlock); 1258 fp->f_count++; 1259 mutex_exit(&fp->f_tlock); 1260 /* 1261 * The maximum alignment for fdbuf (or any option header 1262 * and its value) it 4 bytes. On a LP64 kernel, the alignment 1263 * is not sufficient for pointers (fd_fds in this case). Since 1264 * we just did a kmem_alloc (we get a double word alignment), 1265 * we don't need to do anything on the send side (we loose 1266 * the double word alignment because fdbuf goes after an 1267 * option header (eg T_unitdata_req) which is only 4 byte 1268 * aligned). We take care of this when we extract the file 1269 * descriptor in fdbuf_extract or fdbuf_free. 1270 */ 1271 fdbuf->fd_fds[i] = fp; 1272 fdbuf->fd_numfd++; 1273 releasef(fds[i]); 1274 #ifdef C2_AUDIT 1275 if (audit_active) 1276 audit_fdsend(fds[i], fp, 0); 1277 #endif 1278 } 1279 *fdbufp = fdbuf; 1280 return (0); 1281 } 1282 1283 static int 1284 fdbuf_optlen(int rightslen) 1285 { 1286 int numfd; 1287 1288 numfd = rightslen / (int)sizeof (int); 1289 1290 return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *))); 1291 } 1292 1293 static t_uscalar_t 1294 fdbuf_cmsglen(int fdbuflen) 1295 { 1296 return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) / 1297 (int)sizeof (struct file *) * (int)sizeof (int)); 1298 } 1299 1300 1301 /* 1302 * Return non-zero if the mblk and fdbuf are consistent. 1303 */ 1304 static int 1305 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen) 1306 { 1307 if (fdbuflen >= FDBUF_HDRSIZE && 1308 fdbuflen == fdbuf->fd_size) { 1309 frtn_t *frp = mp->b_datap->db_frtnp; 1310 /* 1311 * Check that the SO_FILEP portion of the 1312 * message has not been modified by 1313 * the loopback transport. The sending sockfs generates 1314 * a message that is esballoc'ed with the free function 1315 * being fdbuf_free() and where free_arg contains the 1316 * identical information as the SO_FILEP content. 1317 * 1318 * If any of these constraints are not satisfied we 1319 * silently ignore the option. 1320 */ 1321 ASSERT(mp); 1322 if (frp != NULL && 1323 frp->free_func == fdbuf_free && 1324 frp->free_arg != NULL && 1325 bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) { 1326 dprint(1, ("fdbuf_verify: fdbuf %p len %d\n", 1327 fdbuf, fdbuflen)); 1328 return (1); 1329 } else { 1330 zcmn_err(getzoneid(), CE_WARN, 1331 "sockfs: mismatched fdbuf content (%p)", 1332 (void *)mp); 1333 return (0); 1334 } 1335 } else { 1336 zcmn_err(getzoneid(), CE_WARN, 1337 "sockfs: mismatched fdbuf len %d, %d\n", 1338 fdbuflen, fdbuf->fd_size); 1339 return (0); 1340 } 1341 } 1342 1343 /* 1344 * When the file descriptors returned by sorecvmsg can not be passed 1345 * to the application this routine will cleanup the references on 1346 * the files. Start at startoff bytes into the buffer. 1347 */ 1348 static void 1349 close_fds(void *fdbuf, int fdbuflen, int startoff) 1350 { 1351 int *fds = (int *)fdbuf; 1352 int numfd = fdbuflen / (int)sizeof (int); 1353 int i; 1354 1355 dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff)); 1356 1357 for (i = 0; i < numfd; i++) { 1358 if (startoff < 0) 1359 startoff = 0; 1360 if (startoff < (int)sizeof (int)) { 1361 /* 1362 * This file descriptor is partially or fully after 1363 * the offset 1364 */ 1365 dprint(0, 1366 ("close_fds: cleanup[%d] = %d\n", i, fds[i])); 1367 (void) closeandsetf(fds[i], NULL); 1368 } 1369 startoff -= (int)sizeof (int); 1370 } 1371 } 1372 1373 /* 1374 * Close all file descriptors contained in the control part starting at 1375 * the startoffset. 1376 */ 1377 void 1378 so_closefds(void *control, t_uscalar_t controllen, int oldflg, 1379 int startoff) 1380 { 1381 struct cmsghdr *cmsg; 1382 1383 if (control == NULL) 1384 return; 1385 1386 if (oldflg) { 1387 close_fds(control, controllen, startoff); 1388 return; 1389 } 1390 /* Scan control part for file descriptors. */ 1391 for (cmsg = (struct cmsghdr *)control; 1392 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen); 1393 cmsg = CMSG_NEXT(cmsg)) { 1394 if (cmsg->cmsg_level == SOL_SOCKET && 1395 cmsg->cmsg_type == SCM_RIGHTS) { 1396 close_fds(CMSG_CONTENT(cmsg), 1397 (int)CMSG_CONTENTLEN(cmsg), 1398 startoff - (int)sizeof (struct cmsghdr)); 1399 } 1400 startoff -= cmsg->cmsg_len; 1401 } 1402 } 1403 1404 /* 1405 * Returns a pointer/length for the file descriptors contained 1406 * in the control buffer. Returns with *fdlenp == -1 if there are no 1407 * file descriptor options present. This is different than there being 1408 * a zero-length file descriptor option. 1409 * Fail if there are multiple SCM_RIGHT cmsgs. 1410 */ 1411 int 1412 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg, 1413 void **fdsp, int *fdlenp) 1414 { 1415 struct cmsghdr *cmsg; 1416 void *fds; 1417 int fdlen; 1418 1419 if (control == NULL) { 1420 *fdsp = NULL; 1421 *fdlenp = -1; 1422 return (0); 1423 } 1424 1425 if (oldflg) { 1426 *fdsp = control; 1427 if (controllen == 0) 1428 *fdlenp = -1; 1429 else 1430 *fdlenp = controllen; 1431 dprint(1, ("so_getfdopt: old %d\n", *fdlenp)); 1432 return (0); 1433 } 1434 1435 fds = NULL; 1436 fdlen = 0; 1437 1438 for (cmsg = (struct cmsghdr *)control; 1439 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen); 1440 cmsg = CMSG_NEXT(cmsg)) { 1441 if (cmsg->cmsg_level == SOL_SOCKET && 1442 cmsg->cmsg_type == SCM_RIGHTS) { 1443 if (fds != NULL) 1444 return (EINVAL); 1445 fds = CMSG_CONTENT(cmsg); 1446 fdlen = (int)CMSG_CONTENTLEN(cmsg); 1447 dprint(1, ("so_getfdopt: new %lu\n", 1448 (size_t)CMSG_CONTENTLEN(cmsg))); 1449 } 1450 } 1451 if (fds == NULL) { 1452 dprint(1, ("so_getfdopt: NONE\n")); 1453 *fdlenp = -1; 1454 } else 1455 *fdlenp = fdlen; 1456 *fdsp = fds; 1457 return (0); 1458 } 1459 1460 /* 1461 * Return the length of the options including any file descriptor options. 1462 */ 1463 t_uscalar_t 1464 so_optlen(void *control, t_uscalar_t controllen, int oldflg) 1465 { 1466 struct cmsghdr *cmsg; 1467 t_uscalar_t optlen = 0; 1468 t_uscalar_t len; 1469 1470 if (control == NULL) 1471 return (0); 1472 1473 if (oldflg) 1474 return ((t_uscalar_t)(sizeof (struct T_opthdr) + 1475 fdbuf_optlen(controllen))); 1476 1477 for (cmsg = (struct cmsghdr *)control; 1478 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen); 1479 cmsg = CMSG_NEXT(cmsg)) { 1480 if (cmsg->cmsg_level == SOL_SOCKET && 1481 cmsg->cmsg_type == SCM_RIGHTS) { 1482 len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg)); 1483 } else { 1484 len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg); 1485 } 1486 optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) + 1487 sizeof (struct T_opthdr)); 1488 } 1489 dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n", 1490 controllen, oldflg, optlen)); 1491 return (optlen); 1492 } 1493 1494 /* 1495 * Copy options from control to the mblk. Skip any file descriptor options. 1496 */ 1497 void 1498 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp) 1499 { 1500 struct T_opthdr toh; 1501 struct cmsghdr *cmsg; 1502 1503 if (control == NULL) 1504 return; 1505 1506 if (oldflg) { 1507 /* No real options - caller has handled file descriptors */ 1508 return; 1509 } 1510 for (cmsg = (struct cmsghdr *)control; 1511 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen); 1512 cmsg = CMSG_NEXT(cmsg)) { 1513 /* 1514 * Note: The caller handles file descriptors prior 1515 * to calling this function. 1516 */ 1517 t_uscalar_t len; 1518 1519 if (cmsg->cmsg_level == SOL_SOCKET && 1520 cmsg->cmsg_type == SCM_RIGHTS) 1521 continue; 1522 1523 len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg); 1524 toh.level = cmsg->cmsg_level; 1525 toh.name = cmsg->cmsg_type; 1526 toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr); 1527 toh.status = 0; 1528 1529 soappendmsg(mp, &toh, sizeof (toh)); 1530 soappendmsg(mp, CMSG_CONTENT(cmsg), len); 1531 mp->b_wptr += _TPI_ALIGN_TOPT(len) - len; 1532 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 1533 } 1534 } 1535 1536 /* 1537 * Return the length of the control message derived from the options. 1538 * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP. 1539 * When oldflg is set only include SO_FILEP. 1540 */ 1541 t_uscalar_t 1542 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg) 1543 { 1544 t_uscalar_t cmsglen = 0; 1545 struct T_opthdr *tohp; 1546 t_uscalar_t len; 1547 t_uscalar_t last_roundup = 0; 1548 1549 ASSERT(__TPI_TOPT_ISALIGNED(opt)); 1550 1551 for (tohp = (struct T_opthdr *)opt; 1552 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen); 1553 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) { 1554 dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n", 1555 tohp->level, tohp->name, tohp->len)); 1556 if (tohp->level == SOL_SOCKET && 1557 (tohp->name == SO_SRCADDR || 1558 tohp->name == SO_UNIX_CLOSE)) { 1559 continue; 1560 } 1561 if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) { 1562 struct fdbuf *fdbuf; 1563 int fdbuflen; 1564 1565 fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp); 1566 fdbuflen = (int)_TPI_TOPT_DATALEN(tohp); 1567 1568 if (!fdbuf_verify(mp, fdbuf, fdbuflen)) 1569 continue; 1570 if (oldflg) { 1571 cmsglen += fdbuf_cmsglen(fdbuflen); 1572 continue; 1573 } 1574 len = fdbuf_cmsglen(fdbuflen); 1575 } else { 1576 if (oldflg) 1577 continue; 1578 len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp); 1579 } 1580 /* 1581 * Exlucde roundup for last option to not set 1582 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit. 1583 */ 1584 last_roundup = (t_uscalar_t) 1585 (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) - 1586 (len + (int)sizeof (struct cmsghdr))); 1587 cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) + 1588 last_roundup; 1589 } 1590 cmsglen -= last_roundup; 1591 dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n", 1592 optlen, oldflg, cmsglen)); 1593 return (cmsglen); 1594 } 1595 1596 /* 1597 * Copy options from options to the control. Convert SO_FILEP to 1598 * file descriptors. 1599 * Returns errno or zero. 1600 */ 1601 int 1602 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg, 1603 void *control, t_uscalar_t controllen) 1604 { 1605 struct T_opthdr *tohp; 1606 struct cmsghdr *cmsg; 1607 struct fdbuf *fdbuf; 1608 int fdbuflen; 1609 int error; 1610 1611 cmsg = (struct cmsghdr *)control; 1612 1613 ASSERT(__TPI_TOPT_ISALIGNED(opt)); 1614 1615 for (tohp = (struct T_opthdr *)opt; 1616 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen); 1617 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) { 1618 dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n", 1619 tohp->level, tohp->name, tohp->len)); 1620 1621 if (tohp->level == SOL_SOCKET && 1622 (tohp->name == SO_SRCADDR || 1623 tohp->name == SO_UNIX_CLOSE)) { 1624 continue; 1625 } 1626 ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen); 1627 if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) { 1628 fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp); 1629 fdbuflen = (int)_TPI_TOPT_DATALEN(tohp); 1630 1631 if (!fdbuf_verify(mp, fdbuf, fdbuflen)) 1632 return (EPROTO); 1633 if (oldflg) { 1634 error = fdbuf_extract(fdbuf, control, 1635 (int)controllen); 1636 if (error != 0) 1637 return (error); 1638 continue; 1639 } else { 1640 int fdlen; 1641 1642 fdlen = (int)fdbuf_cmsglen( 1643 (int)_TPI_TOPT_DATALEN(tohp)); 1644 1645 cmsg->cmsg_level = tohp->level; 1646 cmsg->cmsg_type = SCM_RIGHTS; 1647 cmsg->cmsg_len = (socklen_t)(fdlen + 1648 sizeof (struct cmsghdr)); 1649 1650 error = fdbuf_extract(fdbuf, 1651 CMSG_CONTENT(cmsg), fdlen); 1652 if (error != 0) 1653 return (error); 1654 } 1655 } else if (tohp->level == SOL_SOCKET && 1656 tohp->name == SCM_TIMESTAMP) { 1657 timestruc_t *timestamp; 1658 1659 if (oldflg) 1660 continue; 1661 1662 cmsg->cmsg_level = tohp->level; 1663 cmsg->cmsg_type = tohp->name; 1664 1665 timestamp = 1666 (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1], 1667 sizeof (intptr_t)); 1668 1669 if (get_udatamodel() == DATAMODEL_NATIVE) { 1670 struct timeval *time_native; 1671 1672 cmsg->cmsg_len = sizeof (struct timeval) + 1673 sizeof (struct cmsghdr); 1674 time_native = 1675 (struct timeval *)CMSG_CONTENT(cmsg); 1676 time_native->tv_sec = timestamp->tv_sec; 1677 time_native->tv_usec = 1678 timestamp->tv_nsec / (NANOSEC / MICROSEC); 1679 } else { 1680 struct timeval32 *time32; 1681 1682 cmsg->cmsg_len = sizeof (struct timeval32) + 1683 sizeof (struct cmsghdr); 1684 time32 = (struct timeval32 *)CMSG_CONTENT(cmsg); 1685 time32->tv_sec = (time32_t)timestamp->tv_sec; 1686 time32->tv_usec = 1687 (int32_t)(timestamp->tv_nsec / 1688 (NANOSEC / MICROSEC)); 1689 } 1690 1691 } else { 1692 if (oldflg) 1693 continue; 1694 1695 cmsg->cmsg_level = tohp->level; 1696 cmsg->cmsg_type = tohp->name; 1697 cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) + 1698 sizeof (struct cmsghdr)); 1699 1700 /* copy content to control data part */ 1701 bcopy(&tohp[1], CMSG_CONTENT(cmsg), 1702 CMSG_CONTENTLEN(cmsg)); 1703 } 1704 /* move to next CMSG structure! */ 1705 cmsg = CMSG_NEXT(cmsg); 1706 } 1707 return (0); 1708 } 1709 1710 /* 1711 * Extract the SO_SRCADDR option value if present. 1712 */ 1713 void 1714 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp, 1715 t_uscalar_t *srclenp) 1716 { 1717 struct T_opthdr *tohp; 1718 1719 ASSERT(__TPI_TOPT_ISALIGNED(opt)); 1720 1721 ASSERT(srcp != NULL && srclenp != NULL); 1722 *srcp = NULL; 1723 *srclenp = 0; 1724 1725 for (tohp = (struct T_opthdr *)opt; 1726 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen); 1727 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) { 1728 dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n", 1729 tohp->level, tohp->name, tohp->len)); 1730 if (tohp->level == SOL_SOCKET && 1731 tohp->name == SO_SRCADDR) { 1732 *srcp = _TPI_TOPT_DATA(tohp); 1733 *srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp); 1734 } 1735 } 1736 } 1737 1738 /* 1739 * Verify if the SO_UNIX_CLOSE option is present. 1740 */ 1741 int 1742 so_getopt_unix_close(void *opt, t_uscalar_t optlen) 1743 { 1744 struct T_opthdr *tohp; 1745 1746 ASSERT(__TPI_TOPT_ISALIGNED(opt)); 1747 1748 for (tohp = (struct T_opthdr *)opt; 1749 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen); 1750 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) { 1751 dprint(1, 1752 ("so_getopt_unix_close: level 0x%x, name %d, len %d\n", 1753 tohp->level, tohp->name, tohp->len)); 1754 if (tohp->level == SOL_SOCKET && 1755 tohp->name == SO_UNIX_CLOSE) 1756 return (1); 1757 } 1758 return (0); 1759 } 1760 1761 /* 1762 * Allocate an M_PROTO message. 1763 * 1764 * If allocation fails the behavior depends on sleepflg: 1765 * _ALLOC_NOSLEEP fail immediately 1766 * _ALLOC_INTR sleep for memory until a signal is caught 1767 * _ALLOC_SLEEP sleep forever. Don't return NULL. 1768 */ 1769 mblk_t * 1770 soallocproto(size_t size, int sleepflg) 1771 { 1772 mblk_t *mp; 1773 1774 /* Round up size for reuse */ 1775 size = MAX(size, 64); 1776 mp = allocb(size, BPRI_MED); 1777 if (mp == NULL) { 1778 int error; /* Dummy - error not returned to caller */ 1779 1780 switch (sleepflg) { 1781 case _ALLOC_SLEEP: 1782 mp = allocb_wait(size, BPRI_MED, STR_NOSIG, &error); 1783 ASSERT(mp); 1784 break; 1785 case _ALLOC_INTR: 1786 mp = allocb_wait(size, BPRI_MED, 0, &error); 1787 if (mp == NULL) { 1788 /* Caught signal while sleeping for memory */ 1789 eprintline(ENOBUFS); 1790 return (NULL); 1791 } 1792 break; 1793 case _ALLOC_NOSLEEP: 1794 default: 1795 eprintline(ENOBUFS); 1796 return (NULL); 1797 } 1798 } 1799 DB_TYPE(mp) = M_PROTO; 1800 return (mp); 1801 } 1802 1803 /* 1804 * Allocate an M_PROTO message with a single component. 1805 * len is the length of buf. size is the amount to allocate. 1806 * 1807 * buf can be NULL with a non-zero len. 1808 * This results in a bzero'ed chunk being placed the message. 1809 */ 1810 mblk_t * 1811 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg) 1812 { 1813 mblk_t *mp; 1814 1815 if (size == 0) 1816 size = len; 1817 1818 ASSERT(size >= len); 1819 /* Round up size for reuse */ 1820 size = MAX(size, 64); 1821 mp = soallocproto(size, sleepflg); 1822 if (mp == NULL) 1823 return (NULL); 1824 mp->b_datap->db_type = M_PROTO; 1825 if (len != 0) { 1826 if (buf != NULL) 1827 bcopy(buf, mp->b_wptr, len); 1828 else 1829 bzero(mp->b_wptr, len); 1830 mp->b_wptr += len; 1831 } 1832 return (mp); 1833 } 1834 1835 /* 1836 * Append buf/len to mp. 1837 * The caller has to ensure that there is enough room in the mblk. 1838 * 1839 * buf can be NULL with a non-zero len. 1840 * This results in a bzero'ed chunk being placed the message. 1841 */ 1842 void 1843 soappendmsg(mblk_t *mp, const void *buf, ssize_t len) 1844 { 1845 ASSERT(mp); 1846 1847 if (len != 0) { 1848 /* Assert for room left */ 1849 ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len); 1850 if (buf != NULL) 1851 bcopy(buf, mp->b_wptr, len); 1852 else 1853 bzero(mp->b_wptr, len); 1854 } 1855 mp->b_wptr += len; 1856 } 1857 1858 /* 1859 * Create a message using two kernel buffers. 1860 * If size is set that will determine the allocation size (e.g. for future 1861 * soappendmsg calls). If size is zero it is derived from the buffer 1862 * lengths. 1863 */ 1864 mblk_t * 1865 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2, 1866 ssize_t size, int sleepflg) 1867 { 1868 mblk_t *mp; 1869 1870 if (size == 0) 1871 size = len1 + len2; 1872 ASSERT(size >= len1 + len2); 1873 1874 mp = soallocproto1(buf1, len1, size, sleepflg); 1875 if (mp) 1876 soappendmsg(mp, buf2, len2); 1877 return (mp); 1878 } 1879 1880 /* 1881 * Create a message using three kernel buffers. 1882 * If size is set that will determine the allocation size (for future 1883 * soappendmsg calls). If size is zero it is derived from the buffer 1884 * lengths. 1885 */ 1886 mblk_t * 1887 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2, 1888 const void *buf3, ssize_t len3, ssize_t size, int sleepflg) 1889 { 1890 mblk_t *mp; 1891 1892 if (size == 0) 1893 size = len1 + len2 +len3; 1894 ASSERT(size >= len1 + len2 + len3); 1895 1896 mp = soallocproto1(buf1, len1, size, sleepflg); 1897 if (mp != NULL) { 1898 soappendmsg(mp, buf2, len2); 1899 soappendmsg(mp, buf3, len3); 1900 } 1901 return (mp); 1902 } 1903 1904 #ifdef DEBUG 1905 char * 1906 pr_state(uint_t state, uint_t mode) 1907 { 1908 static char buf[1024]; 1909 1910 buf[0] = 0; 1911 if (state & SS_ISCONNECTED) 1912 strcat(buf, "ISCONNECTED "); 1913 if (state & SS_ISCONNECTING) 1914 strcat(buf, "ISCONNECTING "); 1915 if (state & SS_ISDISCONNECTING) 1916 strcat(buf, "ISDISCONNECTING "); 1917 if (state & SS_CANTSENDMORE) 1918 strcat(buf, "CANTSENDMORE "); 1919 1920 if (state & SS_CANTRCVMORE) 1921 strcat(buf, "CANTRCVMORE "); 1922 if (state & SS_ISBOUND) 1923 strcat(buf, "ISBOUND "); 1924 if (state & SS_NDELAY) 1925 strcat(buf, "NDELAY "); 1926 if (state & SS_NONBLOCK) 1927 strcat(buf, "NONBLOCK "); 1928 1929 if (state & SS_ASYNC) 1930 strcat(buf, "ASYNC "); 1931 if (state & SS_ACCEPTCONN) 1932 strcat(buf, "ACCEPTCONN "); 1933 if (state & SS_HASCONNIND) 1934 strcat(buf, "HASCONNIND "); 1935 if (state & SS_SAVEDEOR) 1936 strcat(buf, "SAVEDEOR "); 1937 1938 if (state & SS_RCVATMARK) 1939 strcat(buf, "RCVATMARK "); 1940 if (state & SS_OOBPEND) 1941 strcat(buf, "OOBPEND "); 1942 if (state & SS_HAVEOOBDATA) 1943 strcat(buf, "HAVEOOBDATA "); 1944 if (state & SS_HADOOBDATA) 1945 strcat(buf, "HADOOBDATA "); 1946 1947 if (state & SS_FADDR_NOXLATE) 1948 strcat(buf, "FADDR_NOXLATE "); 1949 1950 if (mode & SM_PRIV) 1951 strcat(buf, "PRIV "); 1952 if (mode & SM_ATOMIC) 1953 strcat(buf, "ATOMIC "); 1954 if (mode & SM_ADDR) 1955 strcat(buf, "ADDR "); 1956 if (mode & SM_CONNREQUIRED) 1957 strcat(buf, "CONNREQUIRED "); 1958 1959 if (mode & SM_FDPASSING) 1960 strcat(buf, "FDPASSING "); 1961 if (mode & SM_EXDATA) 1962 strcat(buf, "EXDATA "); 1963 if (mode & SM_OPTDATA) 1964 strcat(buf, "OPTDATA "); 1965 if (mode & SM_BYTESTREAM) 1966 strcat(buf, "BYTESTREAM "); 1967 return (buf); 1968 } 1969 1970 char * 1971 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen) 1972 { 1973 static char buf[1024]; 1974 1975 if (addr == NULL || addrlen == 0) { 1976 sprintf(buf, "(len %d) %p", addrlen, addr); 1977 return (buf); 1978 } 1979 switch (family) { 1980 case AF_INET: { 1981 struct sockaddr_in sin; 1982 1983 bcopy(addr, &sin, sizeof (sin)); 1984 1985 (void) sprintf(buf, "(len %d) %x/%d", 1986 addrlen, ntohl(sin.sin_addr.s_addr), 1987 ntohs(sin.sin_port)); 1988 break; 1989 } 1990 case AF_INET6: { 1991 struct sockaddr_in6 sin6; 1992 uint16_t *piece = (uint16_t *)&sin6.sin6_addr; 1993 1994 bcopy((char *)addr, (char *)&sin6, sizeof (sin6)); 1995 sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d", 1996 addrlen, 1997 ntohs(piece[0]), ntohs(piece[1]), 1998 ntohs(piece[2]), ntohs(piece[3]), 1999 ntohs(piece[4]), ntohs(piece[5]), 2000 ntohs(piece[6]), ntohs(piece[7]), 2001 ntohs(sin6.sin6_port)); 2002 break; 2003 } 2004 case AF_UNIX: { 2005 struct sockaddr_un *soun = (struct sockaddr_un *)addr; 2006 2007 (void) sprintf(buf, "(len %d) %s", 2008 addrlen, 2009 (soun == NULL) ? "(none)" : soun->sun_path); 2010 break; 2011 } 2012 default: 2013 (void) sprintf(buf, "(unknown af %d)", family); 2014 break; 2015 } 2016 return (buf); 2017 } 2018 2019 /* The logical equivalence operator (a if-and-only-if b) */ 2020 #define EQUIV(a, b) (((a) && (b)) || (!(a) && (!(b)))) 2021 2022 /* 2023 * Verify limitations and invariants on oob state. 2024 * Return 1 if OK, otherwise 0 so that it can be used as 2025 * ASSERT(verify_oobstate(so)); 2026 */ 2027 int 2028 so_verify_oobstate(struct sonode *so) 2029 { 2030 ASSERT(MUTEX_HELD(&so->so_lock)); 2031 2032 /* 2033 * The possible state combinations are: 2034 * 0 2035 * SS_OOBPEND 2036 * SS_OOBPEND|SS_HAVEOOBDATA 2037 * SS_OOBPEND|SS_HADOOBDATA 2038 * SS_HADOOBDATA 2039 */ 2040 switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) { 2041 case 0: 2042 case SS_OOBPEND: 2043 case SS_OOBPEND|SS_HAVEOOBDATA: 2044 case SS_OOBPEND|SS_HADOOBDATA: 2045 case SS_HADOOBDATA: 2046 break; 2047 default: 2048 printf("Bad oob state 1 (%p): counts %d/%d state %s\n", 2049 so, so->so_oobsigcnt, 2050 so->so_oobcnt, pr_state(so->so_state, so->so_mode)); 2051 return (0); 2052 } 2053 2054 /* SS_RCVATMARK should only be set when SS_OOBPEND is set */ 2055 if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) { 2056 printf("Bad oob state 2 (%p): counts %d/%d state %s\n", 2057 so, so->so_oobsigcnt, 2058 so->so_oobcnt, pr_state(so->so_state, so->so_mode)); 2059 return (0); 2060 } 2061 2062 /* 2063 * (so_oobsigcnt != 0 or SS_RCVATMARK) iff SS_OOBPEND 2064 */ 2065 if (!EQUIV((so->so_oobsigcnt != 0) || (so->so_state & SS_RCVATMARK), 2066 so->so_state & SS_OOBPEND)) { 2067 printf("Bad oob state 3 (%p): counts %d/%d state %s\n", 2068 so, so->so_oobsigcnt, 2069 so->so_oobcnt, pr_state(so->so_state, so->so_mode)); 2070 return (0); 2071 } 2072 2073 /* 2074 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA 2075 */ 2076 if (!(so->so_options & SO_OOBINLINE) && 2077 !EQUIV(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) { 2078 printf("Bad oob state 4 (%p): counts %d/%d state %s\n", 2079 so, so->so_oobsigcnt, 2080 so->so_oobcnt, pr_state(so->so_state, so->so_mode)); 2081 return (0); 2082 } 2083 if (so->so_oobsigcnt < so->so_oobcnt) { 2084 printf("Bad oob state 5 (%p): counts %d/%d state %s\n", 2085 so, so->so_oobsigcnt, 2086 so->so_oobcnt, pr_state(so->so_state, so->so_mode)); 2087 return (0); 2088 } 2089 return (1); 2090 } 2091 #undef EQUIV 2092 2093 #endif /* DEBUG */ 2094 2095 /* initialize sockfs zone specific kstat related items */ 2096 void * 2097 sock_kstat_init(zoneid_t zoneid) 2098 { 2099 kstat_t *ksp; 2100 2101 ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc", 2102 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid); 2103 2104 if (ksp != NULL) { 2105 ksp->ks_update = sockfs_update; 2106 ksp->ks_snapshot = sockfs_snapshot; 2107 ksp->ks_lock = &socklist.sl_lock; 2108 ksp->ks_private = (void *)(uintptr_t)zoneid; 2109 kstat_install(ksp); 2110 } 2111 2112 return (ksp); 2113 } 2114 2115 /* tear down sockfs zone specific kstat related items */ 2116 /*ARGSUSED*/ 2117 void 2118 sock_kstat_fini(zoneid_t zoneid, void *arg) 2119 { 2120 kstat_t *ksp = (kstat_t *)arg; 2121 2122 if (ksp != NULL) { 2123 ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private); 2124 kstat_delete(ksp); 2125 } 2126 } 2127 2128 /* 2129 * Zones: 2130 * Note that nactive is going to be different for each zone. 2131 * This means we require kstat to call sockfs_update and then sockfs_snapshot 2132 * for the same zone, or sockfs_snapshot will be taken into the wrong size 2133 * buffer. This is safe, but if the buffer is too small, user will not be 2134 * given details of all sockets. However, as this kstat has a ks_lock, kstat 2135 * driver will keep it locked between the update and the snapshot, so no 2136 * other process (zone) can currently get inbetween resulting in a wrong size 2137 * buffer allocation. 2138 */ 2139 static int 2140 sockfs_update(kstat_t *ksp, int rw) 2141 { 2142 uint_t nactive = 0; /* # of active AF_UNIX sockets */ 2143 struct sonode *so; /* current sonode on socklist */ 2144 zoneid_t myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private; 2145 2146 ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid()); 2147 2148 if (rw == KSTAT_WRITE) { /* bounce all writes */ 2149 return (EACCES); 2150 } 2151 2152 for (so = socklist.sl_list; so != NULL; so = so->so_next) { 2153 if (so->so_accessvp != NULL && so->so_zoneid == myzoneid) { 2154 nactive++; 2155 } 2156 } 2157 ksp->ks_ndata = nactive; 2158 ksp->ks_data_size = nactive * sizeof (struct k_sockinfo); 2159 2160 return (0); 2161 } 2162 2163 static int 2164 sockfs_snapshot(kstat_t *ksp, void *buf, int rw) 2165 { 2166 int ns; /* # of sonodes we've copied */ 2167 struct sonode *so; /* current sonode on socklist */ 2168 struct k_sockinfo *pksi; /* where we put sockinfo data */ 2169 t_uscalar_t sn_len; /* soa_len */ 2170 zoneid_t myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private; 2171 2172 ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid()); 2173 2174 ksp->ks_snaptime = gethrtime(); 2175 2176 if (rw == KSTAT_WRITE) { /* bounce all writes */ 2177 return (EACCES); 2178 } 2179 2180 /* 2181 * for each sonode on the socklist, we massage the important 2182 * info into buf, in k_sockinfo format. 2183 */ 2184 pksi = (struct k_sockinfo *)buf; 2185 for (ns = 0, so = socklist.sl_list; so != NULL; so = so->so_next) { 2186 /* only stuff active sonodes and the same zone: */ 2187 if (so->so_accessvp == NULL || so->so_zoneid != myzoneid) { 2188 continue; 2189 } 2190 2191 /* 2192 * If the sonode was activated between the update and the 2193 * snapshot, we're done - as this is only a snapshot. 2194 */ 2195 if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) { 2196 break; 2197 } 2198 2199 /* copy important info into buf: */ 2200 pksi->ks_si.si_size = sizeof (struct k_sockinfo); 2201 pksi->ks_si.si_family = so->so_family; 2202 pksi->ks_si.si_type = so->so_type; 2203 pksi->ks_si.si_flag = so->so_flag; 2204 pksi->ks_si.si_state = so->so_state; 2205 pksi->ks_si.si_serv_type = so->so_serv_type; 2206 pksi->ks_si.si_ux_laddr_sou_magic = so->so_ux_laddr.soua_magic; 2207 pksi->ks_si.si_ux_faddr_sou_magic = so->so_ux_faddr.soua_magic; 2208 pksi->ks_si.si_laddr_soa_len = so->so_laddr.soa_len; 2209 pksi->ks_si.si_faddr_soa_len = so->so_faddr.soa_len; 2210 pksi->ks_si.si_szoneid = so->so_zoneid; 2211 2212 mutex_enter(&so->so_lock); 2213 2214 if (so->so_laddr_sa != NULL) { 2215 ASSERT(so->so_laddr_sa->sa_data != NULL); 2216 sn_len = so->so_laddr_len; 2217 ASSERT(sn_len <= sizeof (short) + 2218 sizeof (pksi->ks_si.si_laddr_sun_path)); 2219 2220 pksi->ks_si.si_laddr_family = 2221 so->so_laddr_sa->sa_family; 2222 if (sn_len != 0) { 2223 /* AF_UNIX socket names are NULL terminated */ 2224 (void) strncpy(pksi->ks_si.si_laddr_sun_path, 2225 so->so_laddr_sa->sa_data, 2226 sizeof (pksi->ks_si.si_laddr_sun_path)); 2227 sn_len = strlen(pksi->ks_si.si_laddr_sun_path); 2228 } 2229 pksi->ks_si.si_laddr_sun_path[sn_len] = 0; 2230 } 2231 2232 if (so->so_faddr_sa != NULL) { 2233 ASSERT(so->so_faddr_sa->sa_data != NULL); 2234 sn_len = so->so_faddr_len; 2235 ASSERT(sn_len <= sizeof (short) + 2236 sizeof (pksi->ks_si.si_faddr_sun_path)); 2237 2238 pksi->ks_si.si_faddr_family = 2239 so->so_faddr_sa->sa_family; 2240 if (sn_len != 0) { 2241 (void) strncpy(pksi->ks_si.si_faddr_sun_path, 2242 so->so_faddr_sa->sa_data, 2243 sizeof (pksi->ks_si.si_faddr_sun_path)); 2244 sn_len = strlen(pksi->ks_si.si_faddr_sun_path); 2245 } 2246 pksi->ks_si.si_faddr_sun_path[sn_len] = 0; 2247 } 2248 2249 mutex_exit(&so->so_lock); 2250 2251 (void) sprintf(pksi->ks_straddr[0], "%p", (void *)so); 2252 (void) sprintf(pksi->ks_straddr[1], "%p", 2253 (void *)so->so_ux_laddr.soua_vp); 2254 (void) sprintf(pksi->ks_straddr[2], "%p", 2255 (void *)so->so_ux_faddr.soua_vp); 2256 2257 ns++; 2258 pksi++; 2259 } 2260 2261 ksp->ks_ndata = ns; 2262 return (0); 2263 } 2264 2265 ssize_t 2266 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size) 2267 { 2268 struct uio auio; 2269 struct iovec aiov[MSG_MAXIOVLEN]; 2270 register vnode_t *vp; 2271 int ioflag, rwflag; 2272 ssize_t cnt; 2273 int error = 0; 2274 int iovcnt = 0; 2275 short fflag; 2276 2277 vp = fp->f_vnode; 2278 fflag = fp->f_flag; 2279 2280 rwflag = 0; 2281 aiov[0].iov_base = (caddr_t)buf; 2282 aiov[0].iov_len = size; 2283 iovcnt = 1; 2284 cnt = (ssize_t)size; 2285 (void) VOP_RWLOCK(vp, rwflag, NULL); 2286 2287 auio.uio_loffset = fileoff; 2288 auio.uio_iov = aiov; 2289 auio.uio_iovcnt = iovcnt; 2290 auio.uio_resid = cnt; 2291 auio.uio_segflg = UIO_SYSSPACE; 2292 auio.uio_llimit = MAXOFFSET_T; 2293 auio.uio_fmode = fflag; 2294 auio.uio_extflg = UIO_COPY_CACHED; 2295 2296 ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC); 2297 2298 /* If read sync is not asked for, filter sync flags */ 2299 if ((ioflag & FRSYNC) == 0) 2300 ioflag &= ~(FSYNC|FDSYNC); 2301 error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL); 2302 cnt -= auio.uio_resid; 2303 2304 VOP_RWUNLOCK(vp, rwflag, NULL); 2305 2306 if (error == EINTR && cnt != 0) 2307 error = 0; 2308 out: 2309 if (error != 0) { 2310 *err = error; 2311 return (0); 2312 } else { 2313 *err = 0; 2314 return (cnt); 2315 } 2316 } 2317