xref: /titanic_50/usr/src/uts/common/fs/sockfs/sockcommon_subr.c (revision 07a48826732249fcd3aa8dd53c8389595e9f1fbc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/signal.h>
30 #include <sys/cmn_err.h>
31 
32 #include <sys/stropts.h>
33 #include <sys/socket.h>
34 #include <sys/socketvar.h>
35 #include <sys/sockio.h>
36 #include <sys/strsubr.h>
37 #include <sys/strsun.h>
38 #include <sys/atomic.h>
39 #include <sys/tihdr.h>
40 
41 #include <fs/sockfs/sockcommon.h>
42 #include <fs/sockfs/socktpi.h>
43 #include <fs/sockfs/sodirect.h>
44 #include <sys/ddi.h>
45 #include <inet/ip.h>
46 #include <sys/time.h>
47 #include <sys/cmn_err.h>
48 
49 #ifdef SOCK_TEST
50 extern int do_useracc;
51 extern clock_t sock_test_timelimit;
52 #endif /* SOCK_TEST */
53 
54 #define	MBLK_PULL_LEN 64
55 uint32_t so_mblk_pull_len = MBLK_PULL_LEN;
56 
57 #ifdef DEBUG
58 boolean_t so_debug_length = B_FALSE;
59 static boolean_t so_check_length(sonode_t *so);
60 #endif
61 
62 int
63 so_acceptq_enqueue_locked(struct sonode *so, struct sonode *nso)
64 {
65 	ASSERT(MUTEX_HELD(&so->so_acceptq_lock));
66 	ASSERT(nso->so_acceptq_next == NULL);
67 
68 	*so->so_acceptq_tail = nso;
69 	so->so_acceptq_tail = &nso->so_acceptq_next;
70 	so->so_acceptq_len++;
71 
72 	/* Wakeup a single consumer */
73 	cv_signal(&so->so_acceptq_cv);
74 
75 	return (so->so_acceptq_len);
76 }
77 
78 /*
79  * int so_acceptq_enqueue(struct sonode *so, struct sonode *nso)
80  *
81  * Enqueue an incoming connection on a listening socket.
82  *
83  * Arguments:
84  *   so	  - listening socket
85  *   nso  - new connection
86  *
87  * Returns:
88  *   Number of queued connections, including the new connection
89  */
90 int
91 so_acceptq_enqueue(struct sonode *so, struct sonode *nso)
92 {
93 	int conns;
94 
95 	mutex_enter(&so->so_acceptq_lock);
96 	conns = so_acceptq_enqueue_locked(so, nso);
97 	mutex_exit(&so->so_acceptq_lock);
98 
99 	return (conns);
100 }
101 
102 static int
103 so_acceptq_dequeue_locked(struct sonode *so, boolean_t dontblock,
104     struct sonode **nsop)
105 {
106 	struct sonode *nso = NULL;
107 
108 	*nsop = NULL;
109 	ASSERT(MUTEX_HELD(&so->so_acceptq_lock));
110 	while ((nso = so->so_acceptq_head) == NULL) {
111 		/*
112 		 * No need to check so_error here, because it is not
113 		 * possible for a listening socket to be reset or otherwise
114 		 * disconnected.
115 		 *
116 		 * So now we just need check if it's ok to wait.
117 		 */
118 		if (dontblock)
119 			return (EWOULDBLOCK);
120 		if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
121 			return (EINTR);
122 
123 		if (cv_wait_sig_swap(&so->so_acceptq_cv,
124 		    &so->so_acceptq_lock) == 0)
125 			return (EINTR);
126 	}
127 
128 	ASSERT(nso != NULL);
129 	so->so_acceptq_head = nso->so_acceptq_next;
130 	nso->so_acceptq_next = NULL;
131 
132 	if (so->so_acceptq_head == NULL) {
133 		ASSERT(so->so_acceptq_tail == &nso->so_acceptq_next);
134 		so->so_acceptq_tail = &so->so_acceptq_head;
135 	}
136 	ASSERT(so->so_acceptq_len > 0);
137 	--so->so_acceptq_len;
138 
139 	*nsop = nso;
140 
141 	return (0);
142 }
143 
144 /*
145  * int so_acceptq_dequeue(struct sonode *, boolean_t, struct sonode **)
146  *
147  * Pulls a connection off of the accept queue.
148  *
149  * Arguments:
150  *   so	       - listening socket
151  *   dontblock - indicate whether it's ok to sleep if there are no
152  *		 connections on the queue
153  *   nsop      - Value-return argument
154  *
155  * Return values:
156  *   0 when a connection is successfully dequeued, in which case nsop
157  *   is set to point to the new connection. Upon failure a non-zero
158  *   value is returned, and the value of nsop is set to NULL.
159  *
160  * Note:
161  *   so_acceptq_dequeue() may return prematurly if the socket is falling
162  *   back to TPI.
163  */
164 int
165 so_acceptq_dequeue(struct sonode *so, boolean_t dontblock,
166     struct sonode **nsop)
167 {
168 	int error;
169 
170 	mutex_enter(&so->so_acceptq_lock);
171 	error = so_acceptq_dequeue_locked(so, dontblock, nsop);
172 	mutex_exit(&so->so_acceptq_lock);
173 
174 	return (error);
175 }
176 
177 /*
178  * void so_acceptq_flush(struct sonode *so)
179  *
180  * Removes all pending connections from a listening socket, and
181  * frees the associated resources.
182  *
183  * Arguments
184  *   so	    - listening socket
185  *
186  * Return values:
187  *   None.
188  *
189  * Note:
190  *   The caller has to ensure that no calls to so_acceptq_enqueue() or
191  *   so_acceptq_dequeue() occur while the accept queue is being flushed.
192  *   So either the socket needs to be in a state where no operations
193  *   would come in, or so_lock needs to be obtained.
194  */
195 void
196 so_acceptq_flush(struct sonode *so)
197 {
198 	struct sonode *nso;
199 
200 	nso = so->so_acceptq_head;
201 
202 	while (nso != NULL) {
203 		struct sonode *nnso = NULL;
204 
205 		nnso = nso->so_acceptq_next;
206 		nso->so_acceptq_next = NULL;
207 		/*
208 		 * Since the socket is on the accept queue, there can
209 		 * only be one reference. We drop the reference and
210 		 * just blow off the socket.
211 		 */
212 		ASSERT(nso->so_count == 1);
213 		nso->so_count--;
214 		socket_destroy(nso);
215 		nso = nnso;
216 	}
217 
218 	so->so_acceptq_head = NULL;
219 	so->so_acceptq_tail = &so->so_acceptq_head;
220 	so->so_acceptq_len = 0;
221 }
222 
223 int
224 so_wait_connected_locked(struct sonode *so, boolean_t nonblock,
225     sock_connid_t id)
226 {
227 	ASSERT(MUTEX_HELD(&so->so_lock));
228 
229 	/*
230 	 * The protocol has notified us that a connection attempt is being
231 	 * made, so before we wait for a notification to arrive we must
232 	 * clear out any errors associated with earlier connection attempts.
233 	 */
234 	if (so->so_error != 0 && SOCK_CONNID_LT(so->so_proto_connid, id))
235 		so->so_error = 0;
236 
237 	while (SOCK_CONNID_LT(so->so_proto_connid, id)) {
238 		if (nonblock)
239 			return (EINPROGRESS);
240 
241 		if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
242 			return (EINTR);
243 
244 		if (cv_wait_sig_swap(&so->so_state_cv, &so->so_lock) == 0)
245 			return (EINTR);
246 	}
247 
248 	if (so->so_error != 0)
249 		return (sogeterr(so, B_TRUE));
250 	/*
251 	 * Under normal circumstances, so_error should contain an error
252 	 * in case the connect failed. However, it is possible for another
253 	 * thread to come in a consume the error, so generate a sensible
254 	 * error in that case.
255 	 */
256 	if ((so->so_state & SS_ISCONNECTED) == 0)
257 		return (ECONNREFUSED);
258 
259 	return (0);
260 }
261 
262 /*
263  * int so_wait_connected(struct sonode *so, boolean_t nonblock,
264  *    sock_connid_t id)
265  *
266  * Wait until the socket is connected or an error has occured.
267  *
268  * Arguments:
269  *   so	      - socket
270  *   nonblock - indicate whether it's ok to sleep if the connection has
271  *		not yet been established
272  *   gen      - generation number that was returned by the protocol
273  *		when the operation was started
274  *
275  * Returns:
276  *   0 if the connection attempt was successful, or an error indicating why
277  *   the connection attempt failed.
278  */
279 int
280 so_wait_connected(struct sonode *so, boolean_t nonblock, sock_connid_t id)
281 {
282 	int error;
283 
284 	mutex_enter(&so->so_lock);
285 	error = so_wait_connected_locked(so, nonblock, id);
286 	mutex_exit(&so->so_lock);
287 
288 	return (error);
289 }
290 
291 int
292 so_snd_wait_qnotfull_locked(struct sonode *so, boolean_t dontblock)
293 {
294 	int error;
295 
296 	ASSERT(MUTEX_HELD(&so->so_lock));
297 	while (so->so_snd_qfull) {
298 		if (so->so_state & SS_CANTSENDMORE)
299 			return (EPIPE);
300 		if (dontblock)
301 			return (EWOULDBLOCK);
302 
303 		if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
304 			return (EINTR);
305 
306 		if (so->so_sndtimeo == 0) {
307 			/*
308 			 * Zero means disable timeout.
309 			 */
310 			error = cv_wait_sig(&so->so_snd_cv, &so->so_lock);
311 		} else {
312 			clock_t now;
313 
314 			time_to_wait(&now, so->so_sndtimeo);
315 			error = cv_timedwait_sig(&so->so_snd_cv, &so->so_lock,
316 			    now);
317 		}
318 		if (error == 0)
319 			return (EINTR);
320 		else if (error == -1)
321 			return (EAGAIN);
322 	}
323 	return (0);
324 }
325 
326 /*
327  * int so_wait_sendbuf(struct sonode *so, boolean_t dontblock)
328  *
329  * Wait for the transport to notify us about send buffers becoming
330  * available.
331  */
332 int
333 so_snd_wait_qnotfull(struct sonode *so, boolean_t dontblock)
334 {
335 	int error = 0;
336 
337 	mutex_enter(&so->so_lock);
338 	if (so->so_snd_qfull) {
339 		so->so_snd_wakeup = B_TRUE;
340 		error = so_snd_wait_qnotfull_locked(so, dontblock);
341 		so->so_snd_wakeup = B_FALSE;
342 	}
343 	mutex_exit(&so->so_lock);
344 
345 	return (error);
346 }
347 
348 void
349 so_snd_qfull(struct sonode *so)
350 {
351 	mutex_enter(&so->so_lock);
352 	so->so_snd_qfull = B_TRUE;
353 	mutex_exit(&so->so_lock);
354 }
355 
356 void
357 so_snd_qnotfull(struct sonode *so)
358 {
359 	mutex_enter(&so->so_lock);
360 	so->so_snd_qfull = B_FALSE;
361 	/* wake up everyone waiting for buffers */
362 	cv_broadcast(&so->so_snd_cv);
363 	mutex_exit(&so->so_lock);
364 }
365 
366 /*
367  * Change the process/process group to which SIGIO is sent.
368  */
369 int
370 socket_chgpgrp(struct sonode *so, pid_t pid)
371 {
372 	int error;
373 
374 	ASSERT(MUTEX_HELD(&so->so_lock));
375 	if (pid != 0) {
376 		/*
377 		 * Permissions check by sending signal 0.
378 		 * Note that when kill fails it does a
379 		 * set_errno causing the system call to fail.
380 		 */
381 		error = kill(pid, 0);
382 		if (error != 0) {
383 			return (error);
384 		}
385 	}
386 	so->so_pgrp = pid;
387 	return (0);
388 }
389 
390 
391 /*
392  * Generate a SIGIO, for 'writable' events include siginfo structure,
393  * for read events just send the signal.
394  */
395 /*ARGSUSED*/
396 static void
397 socket_sigproc(proc_t *proc, int event)
398 {
399 	k_siginfo_t info;
400 
401 	ASSERT(event & (SOCKETSIG_WRITE | SOCKETSIG_READ | SOCKETSIG_URG));
402 
403 	if (event & SOCKETSIG_WRITE) {
404 		info.si_signo = SIGPOLL;
405 		info.si_code = POLL_OUT;
406 		info.si_errno = 0;
407 		info.si_fd = 0;
408 		info.si_band = 0;
409 		sigaddq(proc, NULL, &info, KM_NOSLEEP);
410 	}
411 	if (event & SOCKETSIG_READ) {
412 		sigtoproc(proc, NULL, SIGPOLL);
413 	}
414 	if (event & SOCKETSIG_URG) {
415 		sigtoproc(proc, NULL, SIGURG);
416 	}
417 }
418 
419 void
420 socket_sendsig(struct sonode *so, int event)
421 {
422 	proc_t *proc;
423 
424 	ASSERT(MUTEX_HELD(&so->so_lock));
425 
426 	if (so->so_pgrp == 0 || (!(so->so_state & SS_ASYNC) &&
427 	    event != SOCKETSIG_URG)) {
428 		return;
429 	}
430 
431 	dprint(3, ("sending sig %d to %d\n", event, so->so_pgrp));
432 
433 	if (so->so_pgrp > 0) {
434 		/*
435 		 * XXX This unfortunately still generates
436 		 * a signal when a fd is closed but
437 		 * the proc is active.
438 		 */
439 		mutex_enter(&pidlock);
440 		proc = prfind(so->so_pgrp);
441 		if (proc == NULL) {
442 			mutex_exit(&pidlock);
443 			return;
444 		}
445 		mutex_enter(&proc->p_lock);
446 		mutex_exit(&pidlock);
447 		socket_sigproc(proc, event);
448 		mutex_exit(&proc->p_lock);
449 	} else {
450 		/*
451 		 * Send to process group. Hold pidlock across
452 		 * calls to socket_sigproc().
453 		 */
454 		pid_t pgrp = -so->so_pgrp;
455 
456 		mutex_enter(&pidlock);
457 		proc = pgfind(pgrp);
458 		while (proc != NULL) {
459 			mutex_enter(&proc->p_lock);
460 			socket_sigproc(proc, event);
461 			mutex_exit(&proc->p_lock);
462 			proc = proc->p_pglink;
463 		}
464 		mutex_exit(&pidlock);
465 	}
466 }
467 
468 #define	MIN(a, b) ((a) < (b) ? (a) : (b))
469 /* Copy userdata into a new mblk_t */
470 mblk_t *
471 socopyinuio(uio_t *uiop, ssize_t iosize, size_t wroff, ssize_t maxblk,
472     size_t tail_len, int *errorp, cred_t *cr)
473 {
474 	mblk_t	*head = NULL, **tail = &head;
475 
476 	ASSERT(iosize == INFPSZ || iosize > 0);
477 
478 	if (iosize == INFPSZ || iosize > uiop->uio_resid)
479 		iosize = uiop->uio_resid;
480 
481 	if (maxblk == INFPSZ)
482 		maxblk = iosize;
483 
484 	/* Nothing to do in these cases, so we're done */
485 	if (iosize < 0 || maxblk < 0 || (maxblk == 0 && iosize > 0))
486 		goto done;
487 
488 	/*
489 	 * We will enter the loop below if iosize is 0; it will allocate an
490 	 * empty message block and call uiomove(9F) which will just return.
491 	 * We could avoid that with an extra check but would only slow
492 	 * down the much more likely case where iosize is larger than 0.
493 	 */
494 	do {
495 		ssize_t blocksize;
496 		mblk_t	*mp;
497 
498 		blocksize = MIN(iosize, maxblk);
499 		ASSERT(blocksize >= 0);
500 		if (is_system_labeled())
501 			mp = allocb_cred(wroff + blocksize + tail_len,
502 			    cr, curproc->p_pid);
503 		else
504 			mp = allocb(wroff + blocksize + tail_len, BPRI_MED);
505 		if (mp == NULL) {
506 			*errorp = ENOMEM;
507 			return (head);
508 		}
509 		mp->b_rptr += wroff;
510 		mp->b_wptr = mp->b_rptr + blocksize;
511 
512 		*tail = mp;
513 		tail = &mp->b_cont;
514 
515 		/* uiomove(9F) either returns 0 or EFAULT */
516 		if ((*errorp = uiomove(mp->b_rptr, (size_t)blocksize,
517 		    UIO_WRITE, uiop)) != 0) {
518 			ASSERT(*errorp != ENOMEM);
519 			freemsg(head);
520 			return (NULL);
521 		}
522 
523 		iosize -= blocksize;
524 	} while (iosize > 0);
525 
526 done:
527 	*errorp = 0;
528 	return (head);
529 }
530 
531 mblk_t *
532 socopyoutuio(mblk_t *mp, struct uio *uiop, ssize_t max_read, int *errorp)
533 {
534 	int error;
535 	ptrdiff_t n;
536 	mblk_t *nmp;
537 
538 	ASSERT(mp->b_wptr >= mp->b_rptr);
539 
540 	/*
541 	 * max_read is the offset of the oobmark and read can not go pass
542 	 * the oobmark.
543 	 */
544 	if (max_read == INFPSZ || max_read > uiop->uio_resid)
545 		max_read = uiop->uio_resid;
546 
547 	do {
548 		if ((n = MIN(max_read, MBLKL(mp))) != 0) {
549 			ASSERT(n > 0);
550 
551 			error = uiomove(mp->b_rptr, n, UIO_READ, uiop);
552 			if (error != 0) {
553 				freemsg(mp);
554 				*errorp = error;
555 				return (NULL);
556 			}
557 		}
558 
559 		mp->b_rptr += n;
560 		max_read -= n;
561 		while (mp != NULL && (mp->b_rptr >= mp->b_wptr)) {
562 			/*
563 			 * get rid of zero length mblks
564 			 */
565 			nmp = mp;
566 			mp = mp->b_cont;
567 			freeb(nmp);
568 		}
569 	} while (mp != NULL && max_read > 0);
570 
571 	*errorp = 0;
572 	return (mp);
573 }
574 
575 static void
576 so_prepend_msg(struct sonode *so, mblk_t *mp, mblk_t *last_tail)
577 {
578 	ASSERT(last_tail != NULL);
579 	mp->b_next = so->so_rcv_q_head;
580 	mp->b_prev = last_tail;
581 	ASSERT(!(DB_FLAGS(mp) & DBLK_UIOA));
582 
583 	if (so->so_rcv_q_head == NULL) {
584 		ASSERT(so->so_rcv_q_last_head == NULL);
585 		so->so_rcv_q_last_head = mp;
586 #ifdef DEBUG
587 	} else {
588 		ASSERT(!(DB_FLAGS(so->so_rcv_q_head) & DBLK_UIOA));
589 #endif
590 	}
591 	so->so_rcv_q_head = mp;
592 
593 #ifdef DEBUG
594 	if (so_debug_length) {
595 		mutex_enter(&so->so_lock);
596 		ASSERT(so_check_length(so));
597 		mutex_exit(&so->so_lock);
598 	}
599 #endif
600 }
601 
602 /*
603  * Move a mblk chain (mp_head, mp_last_head) to the sonode's rcv queue so it
604  * can be processed by so_dequeue_msg().
605  */
606 void
607 so_process_new_message(struct sonode *so, mblk_t *mp_head, mblk_t *mp_last_head)
608 {
609 	ASSERT(mp_head->b_prev != NULL);
610 	if (so->so_rcv_q_head  == NULL) {
611 		so->so_rcv_q_head = mp_head;
612 		so->so_rcv_q_last_head = mp_last_head;
613 		ASSERT(so->so_rcv_q_last_head->b_prev != NULL);
614 	} else {
615 		boolean_t flag_equal = ((DB_FLAGS(mp_head) & DBLK_UIOA) ==
616 		    (DB_FLAGS(so->so_rcv_q_last_head) & DBLK_UIOA));
617 
618 		if (mp_head->b_next == NULL &&
619 		    DB_TYPE(mp_head) == M_DATA &&
620 		    DB_TYPE(so->so_rcv_q_last_head) == M_DATA && flag_equal) {
621 			so->so_rcv_q_last_head->b_prev->b_cont = mp_head;
622 			so->so_rcv_q_last_head->b_prev = mp_head->b_prev;
623 			mp_head->b_prev = NULL;
624 		} else if (flag_equal && (DB_FLAGS(mp_head) & DBLK_UIOA)) {
625 			/*
626 			 * Append to last_head if more than one mblks, and both
627 			 * mp_head and last_head are I/OAT mblks.
628 			 */
629 			ASSERT(mp_head->b_next != NULL);
630 			so->so_rcv_q_last_head->b_prev->b_cont = mp_head;
631 			so->so_rcv_q_last_head->b_prev = mp_head->b_prev;
632 			mp_head->b_prev = NULL;
633 
634 			so->so_rcv_q_last_head->b_next = mp_head->b_next;
635 			mp_head->b_next = NULL;
636 			so->so_rcv_q_last_head = mp_last_head;
637 		} else {
638 #ifdef DEBUG
639 			{
640 				mblk_t *tmp_mblk;
641 				tmp_mblk = mp_head;
642 				while (tmp_mblk != NULL) {
643 					ASSERT(tmp_mblk->b_prev != NULL);
644 					tmp_mblk = tmp_mblk->b_next;
645 				}
646 			}
647 #endif
648 			so->so_rcv_q_last_head->b_next = mp_head;
649 			so->so_rcv_q_last_head = mp_last_head;
650 		}
651 	}
652 }
653 
654 /*
655  * Check flow control on a given sonode.  Must have so_lock held, and
656  * this function will release the hold.
657  */
658 
659 static void
660 so_check_flow_control(struct sonode *so)
661 {
662 	ASSERT(MUTEX_HELD(&so->so_lock));
663 
664 	if (so->so_flowctrld && so->so_rcv_queued < so->so_rcvlowat) {
665 		so->so_flowctrld = B_FALSE;
666 		mutex_exit(&so->so_lock);
667 		/*
668 		 * Open up flow control. SCTP does not have any downcalls, and
669 		 * it will clr flow ctrl in sosctp_recvmsg().
670 		 */
671 		if (so->so_downcalls != NULL &&
672 		    so->so_downcalls->sd_clr_flowctrl != NULL) {
673 			(*so->so_downcalls->sd_clr_flowctrl)
674 			    (so->so_proto_handle);
675 		}
676 	} else {
677 		mutex_exit(&so->so_lock);
678 	}
679 }
680 
681 int
682 so_dequeue_msg(struct sonode *so, mblk_t **mctlp, struct uio *uiop,
683     rval_t *rvalp, int flags)
684 {
685 	mblk_t	*mp, *nmp;
686 	mblk_t	*savemp, *savemptail;
687 	mblk_t	*new_msg_head;
688 	mblk_t	*new_msg_last_head;
689 	mblk_t	*last_tail;
690 	boolean_t partial_read;
691 	boolean_t reset_atmark = B_FALSE;
692 	int more = 0;
693 	int error;
694 	ssize_t oobmark;
695 	sodirect_t *sodp = so->so_direct;
696 
697 	partial_read = B_FALSE;
698 	*mctlp = NULL;
699 again:
700 	mutex_enter(&so->so_lock);
701 again1:
702 #ifdef DEBUG
703 	if (so_debug_length) {
704 		ASSERT(so_check_length(so));
705 	}
706 #endif
707 	if (so->so_state & SS_RCVATMARK) {
708 		/* Check whether the caller is OK to read past the mark */
709 		if (flags & MSG_NOMARK) {
710 			mutex_exit(&so->so_lock);
711 			return (EWOULDBLOCK);
712 		}
713 		reset_atmark = B_TRUE;
714 	}
715 	/*
716 	 * First move messages from the dump area to processing area
717 	 */
718 	if (sodp != NULL) {
719 		if (sodp->sod_enabled) {
720 			if (sodp->sod_uioa.uioa_state & UIOA_ALLOC) {
721 				/* nothing to uioamove */
722 				sodp = NULL;
723 			} else if (sodp->sod_uioa.uioa_state & UIOA_INIT) {
724 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
725 				sodp->sod_uioa.uioa_state |= UIOA_ENABLED;
726 				/*
727 				 * try to uioamove() the data that
728 				 * has already queued.
729 				 */
730 				sod_uioa_so_init(so, sodp, uiop);
731 			}
732 		} else {
733 			sodp = NULL;
734 		}
735 	}
736 	new_msg_head = so->so_rcv_head;
737 	new_msg_last_head = so->so_rcv_last_head;
738 	so->so_rcv_head = NULL;
739 	so->so_rcv_last_head = NULL;
740 	oobmark = so->so_oobmark;
741 	/*
742 	 * We can release the lock as there can only be one reader
743 	 */
744 	mutex_exit(&so->so_lock);
745 
746 	if (new_msg_head != NULL) {
747 		so_process_new_message(so, new_msg_head, new_msg_last_head);
748 	}
749 	savemp = savemptail = NULL;
750 	rvalp->r_val1 = 0;
751 	error = 0;
752 	mp = so->so_rcv_q_head;
753 
754 	if (mp != NULL &&
755 	    (so->so_rcv_timer_tid == 0 ||
756 	    so->so_rcv_queued >= so->so_rcv_thresh)) {
757 		partial_read = B_FALSE;
758 
759 		if (flags & MSG_PEEK) {
760 			if ((nmp = dupmsg(mp)) == NULL &&
761 			    (nmp = copymsg(mp)) == NULL) {
762 				size_t size = msgsize(mp);
763 
764 				error = strwaitbuf(size, BPRI_HI);
765 				if (error) {
766 					return (error);
767 				}
768 				goto again;
769 			}
770 			mp = nmp;
771 		} else {
772 			ASSERT(mp->b_prev != NULL);
773 			last_tail = mp->b_prev;
774 			mp->b_prev = NULL;
775 			so->so_rcv_q_head = mp->b_next;
776 			if (so->so_rcv_q_head == NULL) {
777 				so->so_rcv_q_last_head = NULL;
778 			}
779 			mp->b_next = NULL;
780 		}
781 
782 		ASSERT(mctlp != NULL);
783 		/*
784 		 * First process PROTO or PCPROTO blocks, if any.
785 		 */
786 		if (DB_TYPE(mp) != M_DATA) {
787 			*mctlp = mp;
788 			savemp = mp;
789 			savemptail = mp;
790 			ASSERT(DB_TYPE(mp) == M_PROTO ||
791 			    DB_TYPE(mp) == M_PCPROTO);
792 			while (mp->b_cont != NULL &&
793 			    DB_TYPE(mp->b_cont) != M_DATA) {
794 				ASSERT(DB_TYPE(mp->b_cont) == M_PROTO ||
795 				    DB_TYPE(mp->b_cont) == M_PCPROTO);
796 				mp = mp->b_cont;
797 				savemptail = mp;
798 			}
799 			mp = savemptail->b_cont;
800 			savemptail->b_cont = NULL;
801 		}
802 
803 		ASSERT(DB_TYPE(mp) == M_DATA);
804 		/*
805 		 * Now process DATA blocks, if any. Note that for sodirect
806 		 * enabled socket, uio_resid can be 0.
807 		 */
808 		if (uiop->uio_resid >= 0) {
809 			ssize_t copied = 0;
810 
811 			if (sodp != NULL && (DB_FLAGS(mp) & DBLK_UIOA)) {
812 				mutex_enter(&so->so_lock);
813 				ASSERT(uiop == (uio_t *)&sodp->sod_uioa);
814 				copied = sod_uioa_mblk(so, mp);
815 				if (copied > 0)
816 					partial_read = B_TRUE;
817 				mutex_exit(&so->so_lock);
818 				/* mark this mblk as processed */
819 				mp = NULL;
820 			} else {
821 				ssize_t oldresid = uiop->uio_resid;
822 
823 				if (MBLKL(mp) < so_mblk_pull_len) {
824 					if (pullupmsg(mp, -1) == 1) {
825 						last_tail = mp;
826 					}
827 				}
828 				/*
829 				 * Can not read beyond the oobmark
830 				 */
831 				mp = socopyoutuio(mp, uiop,
832 				    oobmark == 0 ? INFPSZ : oobmark, &error);
833 				if (error != 0) {
834 					freemsg(*mctlp);
835 					*mctlp = NULL;
836 					more = 0;
837 					goto done;
838 				}
839 				ASSERT(oldresid >= uiop->uio_resid);
840 				copied = oldresid - uiop->uio_resid;
841 				if (oldresid > uiop->uio_resid)
842 					partial_read = B_TRUE;
843 			}
844 			ASSERT(copied >= 0);
845 			if (copied > 0 && !(flags & MSG_PEEK)) {
846 				mutex_enter(&so->so_lock);
847 				so->so_rcv_queued -= copied;
848 				ASSERT(so->so_oobmark >= 0);
849 				if (so->so_oobmark > 0) {
850 					so->so_oobmark -= copied;
851 					ASSERT(so->so_oobmark >= 0);
852 					if (so->so_oobmark == 0) {
853 						ASSERT(so->so_state &
854 						    SS_OOBPEND);
855 						so->so_oobmark = 0;
856 						so->so_state |= SS_RCVATMARK;
857 					}
858 				}
859 				/*
860 				 * so_check_flow_control() will drop
861 				 * so->so_lock.
862 				 */
863 				so_check_flow_control(so);
864 			}
865 		}
866 		if (mp != NULL) { /* more data blocks in msg */
867 			more |= MOREDATA;
868 			if ((flags & (MSG_PEEK|MSG_TRUNC))) {
869 				if (flags & MSG_PEEK) {
870 					freemsg(mp);
871 				} else {
872 					unsigned int msize = msgdsize(mp);
873 
874 					freemsg(mp);
875 					mutex_enter(&so->so_lock);
876 					so->so_rcv_queued -= msize;
877 					/*
878 					 * so_check_flow_control() will drop
879 					 * so->so_lock.
880 					 */
881 					so_check_flow_control(so);
882 				}
883 			} else if (partial_read && !somsghasdata(mp)) {
884 				/*
885 				 * Avoid queuing a zero-length tail part of
886 				 * a message. partial_read == 1 indicates that
887 				 * we read some of the message.
888 				 */
889 				freemsg(mp);
890 				more &= ~MOREDATA;
891 			} else {
892 				if (savemp != NULL &&
893 				    (flags & MSG_DUPCTRL)) {
894 					mblk_t *nmp;
895 					/*
896 					 * There should only be non data mblks
897 					 */
898 					ASSERT(DB_TYPE(savemp) != M_DATA &&
899 					    DB_TYPE(savemptail) != M_DATA);
900 try_again:
901 					if ((nmp = dupmsg(savemp)) == NULL &&
902 					    (nmp = copymsg(savemp)) == NULL) {
903 
904 						size_t size = msgsize(savemp);
905 
906 						error = strwaitbuf(size,
907 						    BPRI_HI);
908 						if (error != 0) {
909 							/*
910 							 * In case we
911 							 * cannot copy
912 							 * control data
913 							 * free the remaining
914 							 * data.
915 							 */
916 							freemsg(mp);
917 							goto done;
918 						}
919 						goto try_again;
920 					}
921 
922 					ASSERT(nmp != NULL);
923 					ASSERT(DB_TYPE(nmp) != M_DATA);
924 					savemptail->b_cont = mp;
925 					*mctlp = nmp;
926 					mp = savemp;
927 				}
928 				/*
929 				 * putback mp
930 				 */
931 				so_prepend_msg(so, mp, last_tail);
932 			}
933 		}
934 
935 		/* fast check so_rcv_head if there is more data */
936 		if (partial_read && !(so->so_state & SS_RCVATMARK) &&
937 		    *mctlp == NULL && uiop->uio_resid > 0 &&
938 		    !(flags & MSG_PEEK) && so->so_rcv_head != NULL) {
939 			goto again;
940 		}
941 	} else if (!partial_read) {
942 		mutex_enter(&so->so_lock);
943 		if (so->so_error != 0) {
944 			error = sogeterr(so, !(flags & MSG_PEEK));
945 			mutex_exit(&so->so_lock);
946 			return (error);
947 		}
948 		/*
949 		 * No pending data. Return right away for nonblocking
950 		 * socket, otherwise sleep waiting for data.
951 		 */
952 		if (!(so->so_state & SS_CANTRCVMORE) && uiop->uio_resid > 0) {
953 			if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
954 			    (flags & MSG_DONTWAIT)) {
955 				error = EWOULDBLOCK;
956 			} else {
957 				if (so->so_state & (SS_CLOSING |
958 				    SS_FALLBACK_PENDING)) {
959 					mutex_exit(&so->so_lock);
960 					error = EINTR;
961 					goto done;
962 				}
963 
964 				if (so->so_rcv_head != NULL) {
965 					goto again1;
966 				}
967 				so->so_rcv_wakeup = B_TRUE;
968 				so->so_rcv_wanted = uiop->uio_resid;
969 				if (so->so_rcvtimeo == 0) {
970 					/*
971 					 * Zero means disable timeout.
972 					 */
973 					error = cv_wait_sig(&so->so_rcv_cv,
974 					    &so->so_lock);
975 				} else {
976 					clock_t now;
977 					time_to_wait(&now, so->so_rcvtimeo);
978 					error = cv_timedwait_sig(&so->so_rcv_cv,
979 					    &so->so_lock, now);
980 				}
981 				so->so_rcv_wakeup = B_FALSE;
982 				so->so_rcv_wanted = 0;
983 
984 				if (error == 0) {
985 					error = EINTR;
986 				} else if (error == -1) {
987 					error = EAGAIN;
988 				} else {
989 					goto again1;
990 				}
991 			}
992 		}
993 		mutex_exit(&so->so_lock);
994 	}
995 	if (reset_atmark && partial_read && !(flags & MSG_PEEK)) {
996 		/*
997 		 * We are passed the mark, update state
998 		 * 4.3BSD and 4.4BSD clears the mark when peeking across it.
999 		 * The draft Posix socket spec states that the mark should
1000 		 * not be cleared when peeking. We follow the latter.
1001 		 */
1002 		mutex_enter(&so->so_lock);
1003 		ASSERT(so_verify_oobstate(so));
1004 		so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK);
1005 		freemsg(so->so_oobmsg);
1006 		so->so_oobmsg = NULL;
1007 		ASSERT(so_verify_oobstate(so));
1008 		mutex_exit(&so->so_lock);
1009 	}
1010 	ASSERT(so->so_rcv_wakeup == B_FALSE);
1011 done:
1012 	if (sodp != NULL) {
1013 		mutex_enter(&so->so_lock);
1014 		if (sodp->sod_enabled &&
1015 		    (sodp->sod_uioa.uioa_state & UIOA_ENABLED)) {
1016 			SOD_UIOAFINI(sodp);
1017 			if (sodp->sod_uioa.uioa_mbytes > 0) {
1018 				ASSERT(so->so_rcv_q_head != NULL ||
1019 				    so->so_rcv_head != NULL);
1020 				so->so_rcv_queued -= sod_uioa_mblk(so, NULL);
1021 				if (error == EWOULDBLOCK)
1022 					error = 0;
1023 			}
1024 		}
1025 		mutex_exit(&so->so_lock);
1026 	}
1027 #ifdef DEBUG
1028 	if (so_debug_length) {
1029 		mutex_enter(&so->so_lock);
1030 		ASSERT(so_check_length(so));
1031 		mutex_exit(&so->so_lock);
1032 	}
1033 #endif
1034 	rvalp->r_val1 = more;
1035 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1036 	return (error);
1037 }
1038 
1039 /*
1040  * Enqueue data from the protocol on the socket's rcv queue.
1041  *
1042  * We try to hook new M_DATA mblks onto an existing chain, however,
1043  * that cannot be done if the existing chain has already been
1044  * processed by I/OAT. Non-M_DATA mblks are just linked together via
1045  * b_next. In all cases the b_prev of the enqueued mblk is set to
1046  * point to the last mblk in its b_cont chain.
1047  */
1048 void
1049 so_enqueue_msg(struct sonode *so, mblk_t *mp, size_t msg_size)
1050 {
1051 	ASSERT(MUTEX_HELD(&so->so_lock));
1052 
1053 #ifdef DEBUG
1054 	if (so_debug_length) {
1055 		ASSERT(so_check_length(so));
1056 	}
1057 #endif
1058 	so->so_rcv_queued += msg_size;
1059 
1060 	if (so->so_rcv_head == NULL) {
1061 		ASSERT(so->so_rcv_last_head == NULL);
1062 		so->so_rcv_head = mp;
1063 		so->so_rcv_last_head = mp;
1064 	} else if ((DB_TYPE(mp) == M_DATA &&
1065 	    DB_TYPE(so->so_rcv_last_head) == M_DATA) &&
1066 	    ((DB_FLAGS(mp) & DBLK_UIOA) ==
1067 	    (DB_FLAGS(so->so_rcv_last_head) & DBLK_UIOA))) {
1068 		/* Added to the end */
1069 		ASSERT(so->so_rcv_last_head != NULL);
1070 		ASSERT(so->so_rcv_last_head->b_prev != NULL);
1071 		so->so_rcv_last_head->b_prev->b_cont = mp;
1072 	} else {
1073 		/* Start a new end */
1074 		so->so_rcv_last_head->b_next = mp;
1075 		so->so_rcv_last_head = mp;
1076 	}
1077 	while (mp->b_cont != NULL)
1078 		mp = mp->b_cont;
1079 
1080 	so->so_rcv_last_head->b_prev = mp;
1081 #ifdef DEBUG
1082 	if (so_debug_length) {
1083 		ASSERT(so_check_length(so));
1084 	}
1085 #endif
1086 }
1087 
1088 /*
1089  * Return B_TRUE if there is data in the message, B_FALSE otherwise.
1090  */
1091 boolean_t
1092 somsghasdata(mblk_t *mp)
1093 {
1094 	for (; mp; mp = mp->b_cont)
1095 		if (mp->b_datap->db_type == M_DATA) {
1096 			ASSERT(mp->b_wptr >= mp->b_rptr);
1097 			if (mp->b_wptr > mp->b_rptr)
1098 				return (B_TRUE);
1099 		}
1100 	return (B_FALSE);
1101 }
1102 
1103 /*
1104  * Flush the read side of sockfs.
1105  *
1106  * The caller must be sure that a reader is not already active when the
1107  * buffer is being flushed.
1108  */
1109 void
1110 so_rcv_flush(struct sonode *so)
1111 {
1112 	mblk_t  *mp;
1113 
1114 	ASSERT(MUTEX_HELD(&so->so_lock));
1115 
1116 	if (so->so_oobmsg != NULL) {
1117 		freemsg(so->so_oobmsg);
1118 		so->so_oobmsg = NULL;
1119 		so->so_oobmark = 0;
1120 		so->so_state &=
1121 		    ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA|SS_RCVATMARK);
1122 	}
1123 
1124 	/*
1125 	 * Free messages sitting in the send and recv queue
1126 	 */
1127 	while (so->so_rcv_q_head != NULL) {
1128 		mp = so->so_rcv_q_head;
1129 		so->so_rcv_q_head = mp->b_next;
1130 		mp->b_next = mp->b_prev = NULL;
1131 		freemsg(mp);
1132 	}
1133 	while (so->so_rcv_head != NULL) {
1134 		mp = so->so_rcv_head;
1135 		so->so_rcv_head = mp->b_next;
1136 		mp->b_next = mp->b_prev = NULL;
1137 		freemsg(mp);
1138 	}
1139 	so->so_rcv_queued = 0;
1140 	so->so_rcv_q_head = NULL;
1141 	so->so_rcv_q_last_head = NULL;
1142 	so->so_rcv_head = NULL;
1143 	so->so_rcv_last_head = NULL;
1144 }
1145 
1146 /*
1147  * Handle recv* calls that set MSG_OOB or MSG_OOB together with MSG_PEEK.
1148  */
1149 int
1150 sorecvoob(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, int flags,
1151     boolean_t oob_inline)
1152 {
1153 	mblk_t		*mp, *nmp;
1154 	int		error;
1155 
1156 	dprintso(so, 1, ("sorecvoob(%p, %p, 0x%x)\n", (void *)so, (void *)msg,
1157 	    flags));
1158 
1159 	if (msg != NULL) {
1160 		/*
1161 		 * There is never any oob data with addresses or control since
1162 		 * the T_EXDATA_IND does not carry any options.
1163 		 */
1164 		msg->msg_controllen = 0;
1165 		msg->msg_namelen = 0;
1166 		msg->msg_flags = 0;
1167 	}
1168 
1169 	mutex_enter(&so->so_lock);
1170 	ASSERT(so_verify_oobstate(so));
1171 	if (oob_inline ||
1172 	    (so->so_state & (SS_OOBPEND|SS_HADOOBDATA)) != SS_OOBPEND) {
1173 		dprintso(so, 1, ("sorecvoob: inline or data consumed\n"));
1174 		mutex_exit(&so->so_lock);
1175 		return (EINVAL);
1176 	}
1177 	if (!(so->so_state & SS_HAVEOOBDATA)) {
1178 		dprintso(so, 1, ("sorecvoob: no data yet\n"));
1179 		mutex_exit(&so->so_lock);
1180 		return (EWOULDBLOCK);
1181 	}
1182 	ASSERT(so->so_oobmsg != NULL);
1183 	mp = so->so_oobmsg;
1184 	if (flags & MSG_PEEK) {
1185 		/*
1186 		 * Since recv* can not return ENOBUFS we can not use dupmsg.
1187 		 * Instead we revert to the consolidation private
1188 		 * allocb_wait plus bcopy.
1189 		 */
1190 		mblk_t *mp1;
1191 
1192 		mp1 = allocb_wait(msgdsize(mp), BPRI_MED, STR_NOSIG, NULL);
1193 		ASSERT(mp1);
1194 
1195 		while (mp != NULL) {
1196 			ssize_t size;
1197 
1198 			size = MBLKL(mp);
1199 			bcopy(mp->b_rptr, mp1->b_wptr, size);
1200 			mp1->b_wptr += size;
1201 			ASSERT(mp1->b_wptr <= mp1->b_datap->db_lim);
1202 			mp = mp->b_cont;
1203 		}
1204 		mp = mp1;
1205 	} else {
1206 		/*
1207 		 * Update the state indicating that the data has been consumed.
1208 		 * Keep SS_OOBPEND set until data is consumed past the mark.
1209 		 */
1210 		so->so_oobmsg = NULL;
1211 		so->so_state ^= SS_HAVEOOBDATA|SS_HADOOBDATA;
1212 	}
1213 	ASSERT(so_verify_oobstate(so));
1214 	mutex_exit(&so->so_lock);
1215 
1216 	error = 0;
1217 	nmp = mp;
1218 	while (nmp != NULL && uiop->uio_resid > 0) {
1219 		ssize_t n = MBLKL(nmp);
1220 
1221 		n = MIN(n, uiop->uio_resid);
1222 		if (n > 0)
1223 			error = uiomove(nmp->b_rptr, n,
1224 			    UIO_READ, uiop);
1225 		if (error)
1226 			break;
1227 		nmp = nmp->b_cont;
1228 	}
1229 	ASSERT(mp->b_next == NULL && mp->b_prev == NULL);
1230 	freemsg(mp);
1231 	return (error);
1232 }
1233 
1234 /*
1235  * Allocate and initializ sonode
1236  */
1237 /* ARGSUSED */
1238 struct sonode *
1239 socket_sonode_create(struct sockparams *sp, int family, int type,
1240     int protocol, int version, int sflags, int *errorp, struct cred *cr)
1241 {
1242 	sonode_t *so;
1243 	int	kmflags;
1244 
1245 	/*
1246 	 * Choose the right set of sonodeops based on the upcall and
1247 	 * down call version that the protocol has provided
1248 	 */
1249 	if (SOCK_UC_VERSION != sp->sp_smod_info->smod_uc_version ||
1250 	    SOCK_DC_VERSION != sp->sp_smod_info->smod_dc_version) {
1251 		/*
1252 		 * mismatch
1253 		 */
1254 #ifdef DEBUG
1255 		cmn_err(CE_CONT, "protocol and socket module version mismatch");
1256 #endif
1257 		*errorp = EINVAL;
1258 		return (NULL);
1259 	}
1260 
1261 	kmflags = (sflags & SOCKET_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
1262 
1263 	so = kmem_cache_alloc(socket_cache, kmflags);
1264 	if (so == NULL) {
1265 		*errorp = ENOMEM;
1266 		return (NULL);
1267 	}
1268 
1269 	sonode_init(so, sp, family, type, protocol, &so_sonodeops);
1270 
1271 	if (version == SOV_DEFAULT)
1272 		version = so_default_version;
1273 
1274 	so->so_version = (short)version;
1275 
1276 	/*
1277 	 * set the default values to be INFPSZ
1278 	 * if a protocol desires it can change the value later
1279 	 */
1280 	so->so_proto_props.sopp_rxhiwat = SOCKET_RECVHIWATER;
1281 	so->so_proto_props.sopp_rxlowat = SOCKET_RECVLOWATER;
1282 	so->so_proto_props.sopp_maxpsz = INFPSZ;
1283 	so->so_proto_props.sopp_maxblk = INFPSZ;
1284 
1285 	return (so);
1286 }
1287 
1288 int
1289 socket_init_common(struct sonode *so, struct sonode *pso, int flags, cred_t *cr)
1290 {
1291 	int error = 0;
1292 
1293 	if (pso != NULL) {
1294 		/*
1295 		 * We have a passive open, so inherit basic state from
1296 		 * the parent (listener).
1297 		 *
1298 		 * No need to grab the new sonode's lock, since there is no
1299 		 * one that can have a reference to it.
1300 		 */
1301 		mutex_enter(&pso->so_lock);
1302 
1303 		so->so_state |= SS_ISCONNECTED | (pso->so_state & SS_ASYNC);
1304 		so->so_pgrp = pso->so_pgrp;
1305 		so->so_rcvtimeo = pso->so_rcvtimeo;
1306 		so->so_sndtimeo = pso->so_sndtimeo;
1307 		so->so_xpg_rcvbuf = pso->so_xpg_rcvbuf;
1308 		/*
1309 		 * Make note of the socket level options. TCP and IP level
1310 		 * options are already inherited. We could do all this after
1311 		 * accept is successful but doing it here simplifies code and
1312 		 * no harm done for error case.
1313 		 */
1314 		so->so_options = pso->so_options & (SO_DEBUG|SO_REUSEADDR|
1315 		    SO_KEEPALIVE|SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK|
1316 		    SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER);
1317 		so->so_proto_props = pso->so_proto_props;
1318 		so->so_mode = pso->so_mode;
1319 		so->so_pollev = pso->so_pollev & SO_POLLEV_ALWAYS;
1320 
1321 		mutex_exit(&pso->so_lock);
1322 	} else {
1323 		struct sockparams *sp = so->so_sockparams;
1324 		sock_upcalls_t *upcalls_to_use;
1325 
1326 		/*
1327 		 * Based on the version number select the right upcalls to
1328 		 * pass down. Currently we only have one version so choose
1329 		 * default
1330 		 */
1331 		upcalls_to_use = &so_upcalls;
1332 
1333 		/* active open, so create a lower handle */
1334 		so->so_proto_handle =
1335 		    sp->sp_smod_info->smod_proto_create_func(so->so_family,
1336 		    so->so_type, so->so_protocol, &so->so_downcalls,
1337 		    &so->so_mode, &error, flags, cr);
1338 
1339 		if (so->so_proto_handle == NULL) {
1340 			ASSERT(error != 0);
1341 			/*
1342 			 * To be safe; if a lower handle cannot be created, and
1343 			 * the proto does not give a reason why, assume there
1344 			 * was a lack of memory.
1345 			 */
1346 			return ((error == 0) ? ENOMEM : error);
1347 		}
1348 		ASSERT(so->so_downcalls != NULL);
1349 		ASSERT(so->so_downcalls->sd_send != NULL ||
1350 		    so->so_downcalls->sd_send_uio != NULL);
1351 		if (so->so_downcalls->sd_recv_uio != NULL) {
1352 			ASSERT(so->so_downcalls->sd_poll != NULL);
1353 			so->so_pollev |= SO_POLLEV_ALWAYS;
1354 		}
1355 
1356 		(*so->so_downcalls->sd_activate)(so->so_proto_handle,
1357 		    (sock_upper_handle_t)so, upcalls_to_use, 0, cr);
1358 
1359 		/* Wildcard */
1360 
1361 		/*
1362 		 * FIXME No need for this, the protocol can deal with it in
1363 		 * sd_create(). Should update ICMP.
1364 		 */
1365 		if (so->so_protocol != so->so_sockparams->sp_protocol) {
1366 			int protocol = so->so_protocol;
1367 			int error;
1368 			/*
1369 			 * Issue SO_PROTOTYPE setsockopt.
1370 			 */
1371 			error = socket_setsockopt(so, SOL_SOCKET, SO_PROTOTYPE,
1372 			    &protocol, (t_uscalar_t)sizeof (protocol), cr);
1373 			if (error) {
1374 				(void) (*so->so_downcalls->sd_close)
1375 				    (so->so_proto_handle, 0, cr);
1376 
1377 				mutex_enter(&so->so_lock);
1378 				so_rcv_flush(so);
1379 				mutex_exit(&so->so_lock);
1380 				/*
1381 				 * Setsockopt often fails with ENOPROTOOPT but
1382 				 * socket() should fail with
1383 				 * EPROTONOSUPPORT/EPROTOTYPE.
1384 				 */
1385 				return (EPROTONOSUPPORT);
1386 			}
1387 		}
1388 	}
1389 
1390 	if (uioasync.enabled)
1391 		sod_sock_init(so);
1392 
1393 	return (0);
1394 }
1395 
1396 /*
1397  * int socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1398  *         struct cred *cr, int32_t *rvalp)
1399  *
1400  * Handle ioctls that manipulate basic socket state; non-blocking,
1401  * async, etc.
1402  *
1403  * Returns:
1404  *   < 0  - ioctl was not handle
1405  *  >= 0  - ioctl was handled, if > 0, then it is an errno
1406  *
1407  * Notes:
1408  *   Assumes the standard receive buffer is used to obtain info for
1409  *   NREAD.
1410  */
1411 /* ARGSUSED */
1412 int
1413 socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1414     struct cred *cr, int32_t *rvalp)
1415 {
1416 	switch (cmd) {
1417 	case SIOCSQPTR:
1418 		/*
1419 		 * SIOCSQPTR is valid only when helper stream is created
1420 		 * by the protocol.
1421 		 */
1422 
1423 		return (EOPNOTSUPP);
1424 	case FIONBIO: {
1425 		int32_t value;
1426 
1427 		if (so_copyin((void *)arg, &value, sizeof (int32_t),
1428 		    (mode & (int)FKIOCTL)))
1429 			return (EFAULT);
1430 
1431 		mutex_enter(&so->so_lock);
1432 		if (value) {
1433 			so->so_state |= SS_NDELAY;
1434 		} else {
1435 			so->so_state &= ~SS_NDELAY;
1436 		}
1437 		mutex_exit(&so->so_lock);
1438 		return (0);
1439 	}
1440 	case FIOASYNC: {
1441 		int32_t value;
1442 
1443 		if (so_copyin((void *)arg, &value, sizeof (int32_t),
1444 		    (mode & (int)FKIOCTL)))
1445 			return (EFAULT);
1446 
1447 		mutex_enter(&so->so_lock);
1448 
1449 		if (value) {
1450 			/* Turn on SIGIO */
1451 			so->so_state |= SS_ASYNC;
1452 		} else {
1453 			/* Turn off SIGIO */
1454 			so->so_state &= ~SS_ASYNC;
1455 		}
1456 		mutex_exit(&so->so_lock);
1457 
1458 		return (0);
1459 	}
1460 
1461 	case SIOCSPGRP:
1462 	case FIOSETOWN: {
1463 		int error;
1464 		pid_t pid;
1465 
1466 		if (so_copyin((void *)arg, &pid, sizeof (pid_t),
1467 		    (mode & (int)FKIOCTL)))
1468 			return (EFAULT);
1469 
1470 		mutex_enter(&so->so_lock);
1471 		error = (pid != so->so_pgrp) ? socket_chgpgrp(so, pid) : 0;
1472 		mutex_exit(&so->so_lock);
1473 		return (error);
1474 	}
1475 	case SIOCGPGRP:
1476 	case FIOGETOWN:
1477 		if (so_copyout(&so->so_pgrp, (void *)arg,
1478 		    sizeof (pid_t), (mode & (int)FKIOCTL)))
1479 			return (EFAULT);
1480 
1481 		return (0);
1482 	case SIOCATMARK: {
1483 		int retval;
1484 
1485 		/*
1486 		 * Only protocols that support urgent data can handle ATMARK.
1487 		 */
1488 		if ((so->so_mode & SM_EXDATA) == 0)
1489 			return (EINVAL);
1490 
1491 		/*
1492 		 * If the protocol is maintaining its own buffer, then the
1493 		 * request must be passed down.
1494 		 */
1495 		if (so->so_downcalls->sd_recv_uio != NULL)
1496 			return (-1);
1497 
1498 		retval = (so->so_state & SS_RCVATMARK) != 0;
1499 
1500 		if (so_copyout(&retval, (void *)arg, sizeof (int),
1501 		    (mode & (int)FKIOCTL))) {
1502 			return (EFAULT);
1503 		}
1504 		return (0);
1505 	}
1506 
1507 	case FIONREAD: {
1508 		int retval;
1509 
1510 		/*
1511 		 * If the protocol is maintaining its own buffer, then the
1512 		 * request must be passed down.
1513 		 */
1514 		if (so->so_downcalls->sd_recv_uio != NULL)
1515 			return (-1);
1516 
1517 		retval = MIN(so->so_rcv_queued, INT_MAX);
1518 
1519 		if (so_copyout(&retval, (void *)arg,
1520 		    sizeof (retval), (mode & (int)FKIOCTL))) {
1521 			return (EFAULT);
1522 		}
1523 		return (0);
1524 	}
1525 
1526 	case _I_GETPEERCRED: {
1527 		int error = 0;
1528 
1529 		if ((mode & FKIOCTL) == 0)
1530 			return (EINVAL);
1531 
1532 		mutex_enter(&so->so_lock);
1533 		if ((so->so_mode & SM_CONNREQUIRED) == 0) {
1534 			error = ENOTSUP;
1535 		} else if ((so->so_state & SS_ISCONNECTED) == 0) {
1536 			error = ENOTCONN;
1537 		} else if (so->so_peercred != NULL) {
1538 			k_peercred_t *kp = (k_peercred_t *)arg;
1539 			kp->pc_cr = so->so_peercred;
1540 			kp->pc_cpid = so->so_cpid;
1541 			crhold(so->so_peercred);
1542 		} else {
1543 			error = EINVAL;
1544 		}
1545 		mutex_exit(&so->so_lock);
1546 		return (error);
1547 	}
1548 	default:
1549 		return (-1);
1550 	}
1551 }
1552 
1553 /*
1554  * Handle the I_NREAD STREAM ioctl.
1555  */
1556 static int
1557 so_strioc_nread(struct sonode *so, intptr_t arg, int mode, int32_t *rvalp)
1558 {
1559 	size_t size = 0;
1560 	int retval;
1561 	int count = 0;
1562 	mblk_t *mp;
1563 
1564 	if (so->so_downcalls == NULL ||
1565 	    so->so_downcalls->sd_recv_uio != NULL)
1566 		return (EINVAL);
1567 
1568 	mutex_enter(&so->so_lock);
1569 	/* Wait for reader to get out of the way. */
1570 	while (so->so_flag & SOREADLOCKED) {
1571 		/*
1572 		 * If reader is waiting for data, then there should be nothing
1573 		 * on the rcv queue.
1574 		 */
1575 		if (so->so_rcv_wakeup)
1576 			goto out;
1577 
1578 		so->so_flag |= SOWANT;
1579 		/* Do a timed sleep, in case the reader goes to sleep. */
1580 		(void) cv_timedwait(&so->so_state_cv, &so->so_lock,
1581 		    lbolt + drv_usectohz(10));
1582 	}
1583 
1584 	/*
1585 	 * Since we are holding so_lock no new reader will come in, and the
1586 	 * protocol will not be able to enqueue data. So it's safe to walk
1587 	 * both rcv queues.
1588 	 */
1589 	mp = so->so_rcv_q_head;
1590 	if (mp != NULL) {
1591 		size = msgdsize(so->so_rcv_q_head);
1592 		for (; mp != NULL; mp = mp->b_next)
1593 			count++;
1594 	} else {
1595 		/*
1596 		 * In case the processing list was empty, get the size of the
1597 		 * next msg in line.
1598 		 */
1599 		size = msgdsize(so->so_rcv_head);
1600 	}
1601 
1602 	for (mp = so->so_rcv_head; mp != NULL; mp = mp->b_next)
1603 		count++;
1604 out:
1605 	mutex_exit(&so->so_lock);
1606 
1607 	/*
1608 	 * Drop down from size_t to the "int" required by the
1609 	 * interface.  Cap at INT_MAX.
1610 	 */
1611 	retval = MIN(size, INT_MAX);
1612 	if (so_copyout(&retval, (void *)arg, sizeof (retval),
1613 	    (mode & (int)FKIOCTL))) {
1614 		return (EFAULT);
1615 	} else {
1616 		*rvalp = count;
1617 		return (0);
1618 	}
1619 }
1620 
1621 /*
1622  * Process STREAM ioctls.
1623  *
1624  * Returns:
1625  *   < 0  - ioctl was not handle
1626  *  >= 0  - ioctl was handled, if > 0, then it is an errno
1627  */
1628 int
1629 socket_strioc_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1630     struct cred *cr, int32_t *rvalp)
1631 {
1632 	int retval;
1633 
1634 	/* Only STREAM iotcls are handled here */
1635 	if ((cmd & 0xffffff00U) != STR)
1636 		return (-1);
1637 
1638 	switch (cmd) {
1639 	case I_CANPUT:
1640 		/*
1641 		 * We return an error for I_CANPUT so that isastream(3C) will
1642 		 * not report the socket as being a STREAM.
1643 		 */
1644 		return (EOPNOTSUPP);
1645 	case I_NREAD:
1646 		/* Avoid doing a fallback for I_NREAD. */
1647 		return (so_strioc_nread(so, arg, mode, rvalp));
1648 	case I_LOOK:
1649 		/* Avoid doing a fallback for I_LOOK. */
1650 		if (so_copyout("sockmod", (void *)arg, strlen("sockmod") + 1,
1651 		    (mode & (int)FKIOCTL))) {
1652 			return (EFAULT);
1653 		}
1654 		return (0);
1655 	default:
1656 		break;
1657 	}
1658 
1659 	/*
1660 	 * Try to fall back to TPI, and if successful, reissue the ioctl.
1661 	 */
1662 	if ((retval = so_tpi_fallback(so, cr)) == 0) {
1663 		/* Reissue the ioctl */
1664 		ASSERT(so->so_rcv_q_head == NULL);
1665 		return (SOP_IOCTL(so, cmd, arg, mode, cr, rvalp));
1666 	} else {
1667 		return (retval);
1668 	}
1669 }
1670 
1671 int
1672 socket_getopt_common(struct sonode *so, int level, int option_name,
1673     void *optval, socklen_t *optlenp, int flags)
1674 {
1675 	if (level != SOL_SOCKET)
1676 		return (-1);
1677 
1678 	switch (option_name) {
1679 	case SO_ERROR:
1680 	case SO_DOMAIN:
1681 	case SO_TYPE:
1682 	case SO_ACCEPTCONN: {
1683 		int32_t value;
1684 		socklen_t optlen = *optlenp;
1685 
1686 		if (optlen < (t_uscalar_t)sizeof (int32_t)) {
1687 			return (EINVAL);
1688 		}
1689 
1690 		switch (option_name) {
1691 		case SO_ERROR:
1692 			mutex_enter(&so->so_lock);
1693 			value = sogeterr(so, B_TRUE);
1694 			mutex_exit(&so->so_lock);
1695 			break;
1696 		case SO_DOMAIN:
1697 			value = so->so_family;
1698 			break;
1699 		case SO_TYPE:
1700 			value = so->so_type;
1701 			break;
1702 		case SO_ACCEPTCONN:
1703 			if (so->so_state & SS_ACCEPTCONN)
1704 				value = SO_ACCEPTCONN;
1705 			else
1706 				value = 0;
1707 			break;
1708 		}
1709 
1710 		bcopy(&value, optval, sizeof (value));
1711 		*optlenp = sizeof (value);
1712 
1713 		return (0);
1714 	}
1715 	case SO_SNDTIMEO:
1716 	case SO_RCVTIMEO: {
1717 		clock_t value;
1718 		socklen_t optlen = *optlenp;
1719 
1720 		if (get_udatamodel() == DATAMODEL_NONE ||
1721 		    get_udatamodel() == DATAMODEL_NATIVE) {
1722 			if (optlen < sizeof (struct timeval))
1723 				return (EINVAL);
1724 		} else {
1725 			if (optlen < sizeof (struct timeval32))
1726 				return (EINVAL);
1727 		}
1728 		if (option_name == SO_RCVTIMEO)
1729 			value = drv_hztousec(so->so_rcvtimeo);
1730 		else
1731 			value = drv_hztousec(so->so_sndtimeo);
1732 
1733 		if (get_udatamodel() == DATAMODEL_NONE ||
1734 		    get_udatamodel() == DATAMODEL_NATIVE) {
1735 			((struct timeval *)(optval))->tv_sec =
1736 			    value / (1000 * 1000);
1737 			((struct timeval *)(optval))->tv_usec =
1738 			    value % (1000 * 1000);
1739 			*optlenp = sizeof (struct timeval);
1740 		} else {
1741 			((struct timeval32 *)(optval))->tv_sec =
1742 			    value / (1000 * 1000);
1743 			((struct timeval32 *)(optval))->tv_usec =
1744 			    value % (1000 * 1000);
1745 			*optlenp = sizeof (struct timeval32);
1746 		}
1747 		return (0);
1748 	}
1749 	case SO_DEBUG:
1750 	case SO_REUSEADDR:
1751 	case SO_KEEPALIVE:
1752 	case SO_DONTROUTE:
1753 	case SO_BROADCAST:
1754 	case SO_USELOOPBACK:
1755 	case SO_OOBINLINE:
1756 	case SO_SNDBUF:
1757 #ifdef notyet
1758 	case SO_SNDLOWAT:
1759 	case SO_RCVLOWAT:
1760 #endif /* notyet */
1761 	case SO_DGRAM_ERRIND: {
1762 		socklen_t optlen = *optlenp;
1763 
1764 		if (optlen < (t_uscalar_t)sizeof (int32_t))
1765 			return (EINVAL);
1766 		break;
1767 	}
1768 	case SO_RCVBUF: {
1769 		socklen_t optlen = *optlenp;
1770 
1771 		if (optlen < (t_uscalar_t)sizeof (int32_t))
1772 			return (EINVAL);
1773 
1774 		if ((flags & _SOGETSOCKOPT_XPG4_2) && so->so_xpg_rcvbuf != 0) {
1775 			/*
1776 			 * XXX If SO_RCVBUF has been set and this is an
1777 			 * XPG 4.2 application then do not ask the transport
1778 			 * since the transport might adjust the value and not
1779 			 * return exactly what was set by the application.
1780 			 * For non-XPG 4.2 application we return the value
1781 			 * that the transport is actually using.
1782 			 */
1783 			*(int32_t *)optval = so->so_xpg_rcvbuf;
1784 			*optlenp = sizeof (so->so_xpg_rcvbuf);
1785 			return (0);
1786 		}
1787 		/*
1788 		 * If the option has not been set then get a default
1789 		 * value from the transport.
1790 		 */
1791 		break;
1792 	}
1793 	case SO_LINGER: {
1794 		socklen_t optlen = *optlenp;
1795 
1796 		if (optlen < (t_uscalar_t)sizeof (struct linger))
1797 			return (EINVAL);
1798 		break;
1799 	}
1800 	case SO_SND_BUFINFO: {
1801 		socklen_t optlen = *optlenp;
1802 
1803 		if (optlen < (t_uscalar_t)sizeof (struct so_snd_bufinfo))
1804 			return (EINVAL);
1805 		((struct so_snd_bufinfo *)(optval))->sbi_wroff =
1806 		    (so->so_proto_props).sopp_wroff;
1807 		((struct so_snd_bufinfo *)(optval))->sbi_maxblk =
1808 		    (so->so_proto_props).sopp_maxblk;
1809 		((struct so_snd_bufinfo *)(optval))->sbi_maxpsz =
1810 		    (so->so_proto_props).sopp_maxpsz;
1811 		((struct so_snd_bufinfo *)(optval))->sbi_tail =
1812 		    (so->so_proto_props).sopp_tail;
1813 		*optlenp = sizeof (struct so_snd_bufinfo);
1814 		return (0);
1815 	}
1816 	default:
1817 		break;
1818 	}
1819 
1820 	/* Unknown Option */
1821 	return (-1);
1822 }
1823 
1824 void
1825 socket_sonode_destroy(struct sonode *so)
1826 {
1827 	sonode_fini(so);
1828 	kmem_cache_free(socket_cache, so);
1829 }
1830 
1831 int
1832 so_zcopy_wait(struct sonode *so)
1833 {
1834 	int error = 0;
1835 
1836 	mutex_enter(&so->so_lock);
1837 	while (!(so->so_copyflag & STZCNOTIFY)) {
1838 		if (so->so_state & SS_CLOSING) {
1839 			mutex_exit(&so->so_lock);
1840 			return (EINTR);
1841 		}
1842 		if (cv_wait_sig(&so->so_copy_cv, &so->so_lock) == 0) {
1843 			error = EINTR;
1844 			break;
1845 		}
1846 	}
1847 	so->so_copyflag &= ~STZCNOTIFY;
1848 	mutex_exit(&so->so_lock);
1849 	return (error);
1850 }
1851 
1852 void
1853 so_timer_callback(void *arg)
1854 {
1855 	struct sonode *so = (struct sonode *)arg;
1856 
1857 	mutex_enter(&so->so_lock);
1858 
1859 	so->so_rcv_timer_tid = 0;
1860 	if (so->so_rcv_queued > 0) {
1861 		so_notify_data(so, so->so_rcv_queued);
1862 	} else {
1863 		mutex_exit(&so->so_lock);
1864 	}
1865 }
1866 
1867 #ifdef DEBUG
1868 /*
1869  * Verify that the length stored in so_rcv_queued and the length of data blocks
1870  * queued is same.
1871  */
1872 static boolean_t
1873 so_check_length(sonode_t *so)
1874 {
1875 	mblk_t *mp = so->so_rcv_q_head;
1876 	int len = 0;
1877 
1878 	ASSERT(MUTEX_HELD(&so->so_lock));
1879 
1880 	if (mp != NULL) {
1881 		len = msgdsize(mp);
1882 		while ((mp = mp->b_next) != NULL)
1883 			len += msgdsize(mp);
1884 	}
1885 	mp = so->so_rcv_head;
1886 	if (mp != NULL) {
1887 		len += msgdsize(mp);
1888 		while ((mp = mp->b_next) != NULL)
1889 			len += msgdsize(mp);
1890 	}
1891 	return ((len == so->so_rcv_queued) ? B_TRUE : B_FALSE);
1892 }
1893 #endif
1894 
1895 int
1896 so_get_mod_version(struct sockparams *sp)
1897 {
1898 	ASSERT(sp != NULL && sp->sp_smod_info != NULL);
1899 	return (sp->sp_smod_info->smod_version);
1900 }
1901 
1902 /*
1903  * so_start_fallback()
1904  *
1905  * Block new socket operations from coming in, and wait for active operations
1906  * to complete. Threads that are sleeping will be woken up so they can get
1907  * out of the way.
1908  *
1909  * The caller must be a reader on so_fallback_rwlock.
1910  */
1911 static boolean_t
1912 so_start_fallback(struct sonode *so)
1913 {
1914 	ASSERT(RW_READ_HELD(&so->so_fallback_rwlock));
1915 
1916 	mutex_enter(&so->so_lock);
1917 	if (so->so_state & SS_FALLBACK_PENDING) {
1918 		mutex_exit(&so->so_lock);
1919 		return (B_FALSE);
1920 	}
1921 	so->so_state |= SS_FALLBACK_PENDING;
1922 	/*
1923 	 * Poke all threads that might be sleeping. Any operation that comes
1924 	 * in after the cv_broadcast will observe the fallback pending flag
1925 	 * which cause the call to return where it would normally sleep.
1926 	 */
1927 	cv_broadcast(&so->so_state_cv);		/* threads in connect() */
1928 	cv_broadcast(&so->so_rcv_cv);		/* threads in recvmsg() */
1929 	cv_broadcast(&so->so_snd_cv);		/* threads in sendmsg() */
1930 	mutex_enter(&so->so_acceptq_lock);
1931 	cv_broadcast(&so->so_acceptq_cv);	/* threads in accept() */
1932 	mutex_exit(&so->so_acceptq_lock);
1933 	mutex_exit(&so->so_lock);
1934 
1935 	/*
1936 	 * The main reason for the rw_tryupgrade call is to provide
1937 	 * observability during the fallback process. We want to
1938 	 * be able to see if there are pending operations.
1939 	 */
1940 	if (rw_tryupgrade(&so->so_fallback_rwlock) == 0) {
1941 		/*
1942 		 * It is safe to drop and reaquire the fallback lock, because
1943 		 * we are guaranteed that another fallback cannot take place.
1944 		 */
1945 		rw_exit(&so->so_fallback_rwlock);
1946 		DTRACE_PROBE1(pending__ops__wait, (struct sonode *), so);
1947 		rw_enter(&so->so_fallback_rwlock, RW_WRITER);
1948 		DTRACE_PROBE1(pending__ops__complete, (struct sonode *), so);
1949 	}
1950 
1951 	return (B_TRUE);
1952 }
1953 
1954 /*
1955  * so_end_fallback()
1956  *
1957  * Allow socket opertions back in.
1958  *
1959  * The caller must be a writer on so_fallback_rwlock.
1960  */
1961 static void
1962 so_end_fallback(struct sonode *so)
1963 {
1964 	ASSERT(RW_ISWRITER(&so->so_fallback_rwlock));
1965 
1966 	mutex_enter(&so->so_lock);
1967 	so->so_state &= ~(SS_FALLBACK_PENDING|SS_FALLBACK_DRAIN);
1968 	mutex_exit(&so->so_lock);
1969 
1970 	rw_downgrade(&so->so_fallback_rwlock);
1971 }
1972 
1973 /*
1974  * so_quiesced_cb()
1975  *
1976  * Callback passed to the protocol during fallback. It is called once
1977  * the endpoint is quiescent.
1978  *
1979  * No requests from the user, no notifications from the protocol, so it
1980  * is safe to synchronize the state. Data can also be moved without
1981  * risk for reordering.
1982  *
1983  * We do not need to hold so_lock, since there can be only one thread
1984  * operating on the sonode.
1985  */
1986 static void
1987 so_quiesced_cb(sock_upper_handle_t sock_handle, queue_t *q,
1988     struct T_capability_ack *tcap, struct sockaddr *laddr, socklen_t laddrlen,
1989     struct sockaddr *faddr, socklen_t faddrlen, short opts)
1990 {
1991 	struct sonode *so = (struct sonode *)sock_handle;
1992 	boolean_t atmark;
1993 
1994 	sotpi_update_state(so, tcap, laddr, laddrlen, faddr, faddrlen, opts);
1995 
1996 	/*
1997 	 * Some protocols do not quiece the data path during fallback. Once
1998 	 * we set the SS_FALLBACK_DRAIN flag any attempt to queue data will
1999 	 * fail and the protocol is responsible for saving the data for later
2000 	 * delivery (i.e., once the fallback has completed).
2001 	 */
2002 	mutex_enter(&so->so_lock);
2003 	so->so_state |= SS_FALLBACK_DRAIN;
2004 	SOCKET_TIMER_CANCEL(so);
2005 	mutex_exit(&so->so_lock);
2006 
2007 	if (so->so_rcv_head != NULL) {
2008 		if (so->so_rcv_q_last_head == NULL)
2009 			so->so_rcv_q_head = so->so_rcv_head;
2010 		else
2011 			so->so_rcv_q_last_head->b_next = so->so_rcv_head;
2012 		so->so_rcv_q_last_head = so->so_rcv_last_head;
2013 	}
2014 
2015 	atmark = (so->so_state & SS_RCVATMARK) != 0;
2016 	/*
2017 	 * Clear any OOB state having to do with pending data. The TPI
2018 	 * code path will set the appropriate oob state when we move the
2019 	 * oob data to the STREAM head. We leave SS_HADOOBDATA since the oob
2020 	 * data has already been consumed.
2021 	 */
2022 	so->so_state &= ~(SS_RCVATMARK|SS_OOBPEND|SS_HAVEOOBDATA);
2023 
2024 	ASSERT(so->so_oobmsg != NULL || so->so_oobmark <= so->so_rcv_queued);
2025 
2026 	/*
2027 	 * Move data to the STREAM head.
2028 	 */
2029 	while (so->so_rcv_q_head != NULL) {
2030 		mblk_t *mp = so->so_rcv_q_head;
2031 		size_t mlen = msgdsize(mp);
2032 
2033 		so->so_rcv_q_head = mp->b_next;
2034 		mp->b_next = NULL;
2035 		mp->b_prev = NULL;
2036 
2037 		/*
2038 		 * Send T_EXDATA_IND if we are at the oob mark.
2039 		 */
2040 		if (atmark) {
2041 			struct T_exdata_ind *tei;
2042 			mblk_t *mp1 = SOTOTPI(so)->sti_exdata_mp;
2043 
2044 			SOTOTPI(so)->sti_exdata_mp = NULL;
2045 			ASSERT(mp1 != NULL);
2046 			mp1->b_datap->db_type = M_PROTO;
2047 			tei = (struct T_exdata_ind *)mp1->b_rptr;
2048 			tei->PRIM_type = T_EXDATA_IND;
2049 			tei->MORE_flag = 0;
2050 			mp1->b_wptr = (uchar_t *)&tei[1];
2051 
2052 			if (IS_SO_OOB_INLINE(so)) {
2053 				mp1->b_cont = mp;
2054 			} else {
2055 				ASSERT(so->so_oobmsg != NULL);
2056 				mp1->b_cont = so->so_oobmsg;
2057 				so->so_oobmsg = NULL;
2058 
2059 				/* process current mp next time around */
2060 				mp->b_next = so->so_rcv_q_head;
2061 				so->so_rcv_q_head = mp;
2062 				mlen = 0;
2063 			}
2064 			mp = mp1;
2065 
2066 			/* we have consumed the oob mark */
2067 			atmark = B_FALSE;
2068 		} else if (so->so_oobmark > 0) {
2069 			/*
2070 			 * Check if the OOB mark is within the current
2071 			 * mblk chain. In that case we have to split it up.
2072 			 */
2073 			if (so->so_oobmark < mlen) {
2074 				mblk_t *urg_mp = mp;
2075 
2076 				atmark = B_TRUE;
2077 				mp = NULL;
2078 				mlen = so->so_oobmark;
2079 
2080 				/*
2081 				 * It is assumed that the OOB mark does
2082 				 * not land within a mblk.
2083 				 */
2084 				do {
2085 					so->so_oobmark -= MBLKL(urg_mp);
2086 					mp = urg_mp;
2087 					urg_mp = urg_mp->b_cont;
2088 				} while (so->so_oobmark > 0);
2089 				mp->b_cont = NULL;
2090 				if (urg_mp != NULL) {
2091 					urg_mp->b_next = so->so_rcv_q_head;
2092 					so->so_rcv_q_head = urg_mp;
2093 				}
2094 			} else {
2095 				so->so_oobmark -= mlen;
2096 				if (so->so_oobmark == 0)
2097 					atmark = B_TRUE;
2098 			}
2099 		}
2100 
2101 		/*
2102 		 * Queue data on the STREAM head.
2103 		 */
2104 		so->so_rcv_queued -= mlen;
2105 		putnext(q, mp);
2106 	}
2107 	so->so_rcv_head = NULL;
2108 	so->so_rcv_last_head = NULL;
2109 	so->so_rcv_q_head = NULL;
2110 	so->so_rcv_q_last_head = NULL;
2111 
2112 	/*
2113 	 * Check if the oob byte is at the end of the data stream, or if the
2114 	 * oob byte has not yet arrived. In the latter case we have to send a
2115 	 * SIGURG and a mark indicator to the STREAM head. The mark indicator
2116 	 * is needed to guarantee correct behavior for SIOCATMARK. See block
2117 	 * comment in socktpi.h for more details.
2118 	 */
2119 	if (atmark || so->so_oobmark > 0) {
2120 		mblk_t *mp;
2121 
2122 		if (atmark && so->so_oobmsg != NULL) {
2123 			struct T_exdata_ind *tei;
2124 
2125 			mp = SOTOTPI(so)->sti_exdata_mp;
2126 			SOTOTPI(so)->sti_exdata_mp = NULL;
2127 			ASSERT(mp != NULL);
2128 			mp->b_datap->db_type = M_PROTO;
2129 			tei = (struct T_exdata_ind *)mp->b_rptr;
2130 			tei->PRIM_type = T_EXDATA_IND;
2131 			tei->MORE_flag = 0;
2132 			mp->b_wptr = (uchar_t *)&tei[1];
2133 
2134 			mp->b_cont = so->so_oobmsg;
2135 			so->so_oobmsg = NULL;
2136 
2137 			putnext(q, mp);
2138 		} else {
2139 			/* Send up the signal */
2140 			mp = SOTOTPI(so)->sti_exdata_mp;
2141 			SOTOTPI(so)->sti_exdata_mp = NULL;
2142 			ASSERT(mp != NULL);
2143 			DB_TYPE(mp) = M_PCSIG;
2144 			*mp->b_wptr++ = (uchar_t)SIGURG;
2145 			putnext(q, mp);
2146 
2147 			/* Send up the mark indicator */
2148 			mp = SOTOTPI(so)->sti_urgmark_mp;
2149 			SOTOTPI(so)->sti_urgmark_mp = NULL;
2150 			mp->b_flag = atmark ? MSGMARKNEXT : MSGNOTMARKNEXT;
2151 			putnext(q, mp);
2152 
2153 			so->so_oobmark = 0;
2154 		}
2155 	}
2156 
2157 	if (SOTOTPI(so)->sti_exdata_mp != NULL) {
2158 		freeb(SOTOTPI(so)->sti_exdata_mp);
2159 		SOTOTPI(so)->sti_exdata_mp = NULL;
2160 	}
2161 
2162 	if (SOTOTPI(so)->sti_urgmark_mp != NULL) {
2163 		freeb(SOTOTPI(so)->sti_urgmark_mp);
2164 		SOTOTPI(so)->sti_urgmark_mp = NULL;
2165 	}
2166 
2167 	ASSERT(so->so_oobmark == 0);
2168 	ASSERT(so->so_rcv_queued == 0);
2169 }
2170 
2171 #ifdef DEBUG
2172 /*
2173  * Do an integrity check of the sonode. This should be done if a
2174  * fallback fails after sonode has initially been converted to use
2175  * TPI and subsequently have to be reverted.
2176  *
2177  * Failure to pass the integrity check will panic the system.
2178  */
2179 void
2180 so_integrity_check(struct sonode *cur, struct sonode *orig)
2181 {
2182 	VERIFY(cur->so_vnode == orig->so_vnode);
2183 	VERIFY(cur->so_ops == orig->so_ops);
2184 	/*
2185 	 * For so_state we can only VERIFY the state flags in CHECK_STATE.
2186 	 * The other state flags might be affected by a notification from the
2187 	 * protocol.
2188 	 */
2189 #define	CHECK_STATE	(SS_CANTRCVMORE|SS_CANTSENDMORE|SS_NDELAY|SS_NONBLOCK| \
2190 	SS_ASYNC|SS_ACCEPTCONN|SS_SAVEDEOR|SS_RCVATMARK|SS_OOBPEND| \
2191 	SS_HAVEOOBDATA|SS_HADOOBDATA|SS_SENTLASTREADSIG|SS_SENTLASTWRITESIG)
2192 	VERIFY((cur->so_state & (orig->so_state & CHECK_STATE)) ==
2193 	    (orig->so_state & CHECK_STATE));
2194 	VERIFY(cur->so_mode == orig->so_mode);
2195 	VERIFY(cur->so_flag == orig->so_flag);
2196 	VERIFY(cur->so_count == orig->so_count);
2197 	/* Cannot VERIFY so_proto_connid; proto can update it */
2198 	VERIFY(cur->so_sockparams == orig->so_sockparams);
2199 	/* an error might have been recorded, but it can not be lost */
2200 	VERIFY(cur->so_error != 0 || orig->so_error == 0);
2201 	VERIFY(cur->so_family == orig->so_family);
2202 	VERIFY(cur->so_type == orig->so_type);
2203 	VERIFY(cur->so_protocol == orig->so_protocol);
2204 	VERIFY(cur->so_version == orig->so_version);
2205 	/* New conns might have arrived, but none should have been lost */
2206 	VERIFY(cur->so_acceptq_len >= orig->so_acceptq_len);
2207 	VERIFY(cur->so_acceptq_head == orig->so_acceptq_head);
2208 	VERIFY(cur->so_backlog == orig->so_backlog);
2209 	/* New OOB migth have arrived, but mark should not have been lost */
2210 	VERIFY(cur->so_oobmark >= orig->so_oobmark);
2211 	/* Cannot VERIFY so_oobmsg; the proto might have sent up a new one */
2212 	VERIFY(cur->so_pgrp == orig->so_pgrp);
2213 	VERIFY(cur->so_peercred == orig->so_peercred);
2214 	VERIFY(cur->so_cpid == orig->so_cpid);
2215 	VERIFY(cur->so_zoneid == orig->so_zoneid);
2216 	/* New data migth have arrived, but none should have been lost */
2217 	VERIFY(cur->so_rcv_queued >= orig->so_rcv_queued);
2218 	VERIFY(cur->so_rcv_q_head == orig->so_rcv_q_head);
2219 	VERIFY(cur->so_rcv_head == orig->so_rcv_head);
2220 	VERIFY(cur->so_proto_handle == orig->so_proto_handle);
2221 	VERIFY(cur->so_downcalls == orig->so_downcalls);
2222 	/* Cannot VERIFY so_proto_props; they can be updated by proto */
2223 }
2224 #endif
2225 
2226 /*
2227  * so_tpi_fallback()
2228  *
2229  * This is the fallback initation routine; things start here.
2230  *
2231  * Basic strategy:
2232  *   o Block new socket operations from coming in
2233  *   o Allocate/initate info needed by TPI
2234  *   o Quiesce the connection, at which point we sync
2235  *     state and move data
2236  *   o Change operations (sonodeops) associated with the socket
2237  *   o Unblock threads waiting for the fallback to finish
2238  */
2239 int
2240 so_tpi_fallback(struct sonode *so, struct cred *cr)
2241 {
2242 	int error;
2243 	queue_t *q;
2244 	struct sockparams *sp;
2245 	struct sockparams *newsp = NULL;
2246 	so_proto_fallback_func_t fbfunc;
2247 	boolean_t direct;
2248 	struct sonode *nso;
2249 #ifdef DEBUG
2250 	struct sonode origso;
2251 #endif
2252 	error = 0;
2253 	sp = so->so_sockparams;
2254 	fbfunc = sp->sp_smod_info->smod_proto_fallback_func;
2255 
2256 	/*
2257 	 * Fallback can only happen if there is a device associated
2258 	 * with the sonode, and the socket module has a fallback function.
2259 	 */
2260 	if (!SOCKPARAMS_HAS_DEVICE(sp) || fbfunc == NULL)
2261 		return (EINVAL);
2262 
2263 	/*
2264 	 * Initiate fallback; upon success we know that no new requests
2265 	 * will come in from the user.
2266 	 */
2267 	if (!so_start_fallback(so))
2268 		return (EAGAIN);
2269 #ifdef DEBUG
2270 	/*
2271 	 * Make a copy of the sonode in case we need to make an integrity
2272 	 * check later on.
2273 	 */
2274 	bcopy(so, &origso, sizeof (*so));
2275 #endif
2276 
2277 	sp->sp_stats.sps_nfallback.value.ui64++;
2278 
2279 	newsp = sockparams_hold_ephemeral_bydev(so->so_family, so->so_type,
2280 	    so->so_protocol, so->so_sockparams->sp_sdev_info.sd_devpath,
2281 	    KM_SLEEP, &error);
2282 	if (error != 0)
2283 		goto out;
2284 
2285 	if (so->so_direct != NULL) {
2286 		sodirect_t *sodp = so->so_direct;
2287 		mutex_enter(&so->so_lock);
2288 
2289 		so->so_direct->sod_enabled = B_FALSE;
2290 		so->so_state &= ~SS_SODIRECT;
2291 		ASSERT(sodp->sod_uioafh == NULL);
2292 		mutex_exit(&so->so_lock);
2293 	}
2294 
2295 	/* Turn sonode into a TPI socket */
2296 	error = sotpi_convert_sonode(so, newsp, &direct, &q, cr);
2297 	if (error != 0)
2298 		goto out;
2299 
2300 
2301 	/*
2302 	 * Now tell the protocol to start using TPI. so_quiesced_cb be
2303 	 * called once it's safe to synchronize state.
2304 	 */
2305 	DTRACE_PROBE1(proto__fallback__begin, struct sonode *, so);
2306 	error = (*fbfunc)(so->so_proto_handle, q, direct, so_quiesced_cb);
2307 	DTRACE_PROBE1(proto__fallback__end, struct sonode *, so);
2308 
2309 	if (error != 0) {
2310 		/* protocol was unable to do a fallback, revert the sonode */
2311 		sotpi_revert_sonode(so, cr);
2312 		goto out;
2313 	}
2314 
2315 	/*
2316 	 * Walk the accept queue and notify the proto that they should
2317 	 * fall back to TPI. The protocol will send up the T_CONN_IND.
2318 	 */
2319 	nso = so->so_acceptq_head;
2320 	while (nso != NULL) {
2321 		int rval;
2322 
2323 		DTRACE_PROBE1(proto__fallback__begin, struct sonode *, nso);
2324 		rval = (*fbfunc)(nso->so_proto_handle, NULL, direct, NULL);
2325 		DTRACE_PROBE1(proto__fallback__end, struct sonode *, nso);
2326 		if (rval != 0) {
2327 			zcmn_err(getzoneid(), CE_WARN,
2328 			    "Failed to convert socket in accept queue to TPI. "
2329 			    "Pid = %d\n", curproc->p_pid);
2330 		}
2331 		nso = nso->so_acceptq_next;
2332 	}
2333 
2334 	/*
2335 	 * Now flush the acceptq, this will destroy all sockets. They will
2336 	 * be recreated in sotpi_accept().
2337 	 */
2338 	so_acceptq_flush(so);
2339 
2340 	mutex_enter(&so->so_lock);
2341 	so->so_state |= SS_FALLBACK_COMP;
2342 	mutex_exit(&so->so_lock);
2343 
2344 	/*
2345 	 * Swap the sonode ops. Socket opertations that come in once this
2346 	 * is done will proceed without blocking.
2347 	 */
2348 	so->so_ops = &sotpi_sonodeops;
2349 
2350 	/*
2351 	 * Wake up any threads stuck in poll. This is needed since the poll
2352 	 * head changes when the fallback happens (moves from the sonode to
2353 	 * the STREAMS head).
2354 	 */
2355 	pollwakeup(&so->so_poll_list, POLLERR);
2356 out:
2357 	so_end_fallback(so);
2358 
2359 	if (error != 0) {
2360 #ifdef DEBUG
2361 		so_integrity_check(so, &origso);
2362 #endif
2363 		zcmn_err(getzoneid(), CE_WARN,
2364 		    "Failed to convert socket to TPI (err=%d). Pid = %d\n",
2365 		    error, curproc->p_pid);
2366 		if (newsp != NULL)
2367 			SOCKPARAMS_DEC_REF(newsp);
2368 	}
2369 
2370 	return (error);
2371 }
2372