xref: /titanic_50/usr/src/uts/common/fs/sockfs/sockcommon_subr.c (revision 07247649496653b0ece32ce7ea710057f85fa9da)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/signal.h>
30 #include <sys/cmn_err.h>
31 
32 #include <sys/stropts.h>
33 #include <sys/socket.h>
34 #include <sys/socketvar.h>
35 #include <sys/sockio.h>
36 #include <sys/sodirect.h>
37 #include <sys/strsubr.h>
38 #include <sys/strsun.h>
39 #include <sys/atomic.h>
40 #include <sys/tihdr.h>
41 
42 #include <fs/sockfs/sockcommon.h>
43 #include <fs/sockfs/socktpi.h>
44 #include <sys/ddi.h>
45 #include <inet/ip.h>
46 #include <sys/time.h>
47 #include <sys/cmn_err.h>
48 
49 #ifdef SOCK_TEST
50 extern int do_useracc;
51 extern clock_t sock_test_timelimit;
52 #endif /* SOCK_TEST */
53 
54 #define	MBLK_PULL_LEN 64
55 uint32_t so_mblk_pull_len = MBLK_PULL_LEN;
56 
57 #ifdef DEBUG
58 boolean_t so_debug_length = B_FALSE;
59 static boolean_t so_check_length(sonode_t *so);
60 #endif
61 
62 int
63 so_acceptq_enqueue_locked(struct sonode *so, struct sonode *nso)
64 {
65 	ASSERT(MUTEX_HELD(&so->so_acceptq_lock));
66 	ASSERT(nso->so_acceptq_next == NULL);
67 
68 	*so->so_acceptq_tail = nso;
69 	so->so_acceptq_tail = &nso->so_acceptq_next;
70 	so->so_acceptq_len++;
71 
72 	/* Wakeup a single consumer */
73 	cv_signal(&so->so_acceptq_cv);
74 
75 	return (so->so_acceptq_len);
76 }
77 
78 /*
79  * int so_acceptq_enqueue(struct sonode *so, struct sonode *nso)
80  *
81  * Enqueue an incoming connection on a listening socket.
82  *
83  * Arguments:
84  *   so	  - listening socket
85  *   nso  - new connection
86  *
87  * Returns:
88  *   Number of queued connections, including the new connection
89  */
90 int
91 so_acceptq_enqueue(struct sonode *so, struct sonode *nso)
92 {
93 	int conns;
94 
95 	mutex_enter(&so->so_acceptq_lock);
96 	conns = so_acceptq_enqueue_locked(so, nso);
97 	mutex_exit(&so->so_acceptq_lock);
98 
99 	return (conns);
100 }
101 
102 static int
103 so_acceptq_dequeue_locked(struct sonode *so, boolean_t dontblock,
104     struct sonode **nsop)
105 {
106 	struct sonode *nso = NULL;
107 
108 	*nsop = NULL;
109 	ASSERT(MUTEX_HELD(&so->so_acceptq_lock));
110 	while ((nso = so->so_acceptq_head) == NULL) {
111 		/*
112 		 * No need to check so_error here, because it is not
113 		 * possible for a listening socket to be reset or otherwise
114 		 * disconnected.
115 		 *
116 		 * So now we just need check if it's ok to wait.
117 		 */
118 		if (dontblock)
119 			return (EWOULDBLOCK);
120 		if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
121 			return (EINTR);
122 
123 		if (cv_wait_sig_swap(&so->so_acceptq_cv,
124 		    &so->so_acceptq_lock) == 0)
125 			return (EINTR);
126 	}
127 
128 	ASSERT(nso != NULL);
129 	so->so_acceptq_head = nso->so_acceptq_next;
130 	nso->so_acceptq_next = NULL;
131 
132 	if (so->so_acceptq_head == NULL) {
133 		ASSERT(so->so_acceptq_tail == &nso->so_acceptq_next);
134 		so->so_acceptq_tail = &so->so_acceptq_head;
135 	}
136 	ASSERT(so->so_acceptq_len > 0);
137 	--so->so_acceptq_len;
138 
139 	*nsop = nso;
140 
141 	return (0);
142 }
143 
144 /*
145  * int so_acceptq_dequeue(struct sonode *, boolean_t, struct sonode **)
146  *
147  * Pulls a connection off of the accept queue.
148  *
149  * Arguments:
150  *   so	       - listening socket
151  *   dontblock - indicate whether it's ok to sleep if there are no
152  *		 connections on the queue
153  *   nsop      - Value-return argument
154  *
155  * Return values:
156  *   0 when a connection is successfully dequeued, in which case nsop
157  *   is set to point to the new connection. Upon failure a non-zero
158  *   value is returned, and the value of nsop is set to NULL.
159  *
160  * Note:
161  *   so_acceptq_dequeue() may return prematurly if the socket is falling
162  *   back to TPI.
163  */
164 int
165 so_acceptq_dequeue(struct sonode *so, boolean_t dontblock,
166     struct sonode **nsop)
167 {
168 	int error;
169 
170 	mutex_enter(&so->so_acceptq_lock);
171 	error = so_acceptq_dequeue_locked(so, dontblock, nsop);
172 	mutex_exit(&so->so_acceptq_lock);
173 
174 	return (error);
175 }
176 
177 /*
178  * void so_acceptq_flush(struct sonode *so)
179  *
180  * Removes all pending connections from a listening socket, and
181  * frees the associated resources.
182  *
183  * Arguments
184  *   so	    - listening socket
185  *
186  * Return values:
187  *   None.
188  *
189  * Note:
190  *   The caller has to ensure that no calls to so_acceptq_enqueue() or
191  *   so_acceptq_dequeue() occur while the accept queue is being flushed.
192  *   So either the socket needs to be in a state where no operations
193  *   would come in, or so_lock needs to be obtained.
194  */
195 void
196 so_acceptq_flush(struct sonode *so)
197 {
198 	struct sonode *nso;
199 
200 	nso = so->so_acceptq_head;
201 
202 	while (nso != NULL) {
203 		struct sonode *nnso = NULL;
204 
205 		nnso = nso->so_acceptq_next;
206 		nso->so_acceptq_next = NULL;
207 		/*
208 		 * Since the socket is on the accept queue, there can
209 		 * only be one reference. We drop the reference and
210 		 * just blow off the socket.
211 		 */
212 		ASSERT(nso->so_count == 1);
213 		nso->so_count--;
214 		socket_destroy(nso);
215 		nso = nnso;
216 	}
217 
218 	so->so_acceptq_head = NULL;
219 	so->so_acceptq_tail = &so->so_acceptq_head;
220 	so->so_acceptq_len = 0;
221 }
222 
223 int
224 so_wait_connected_locked(struct sonode *so, boolean_t nonblock,
225     sock_connid_t id)
226 {
227 	ASSERT(MUTEX_HELD(&so->so_lock));
228 
229 	/*
230 	 * The protocol has notified us that a connection attempt is being
231 	 * made, so before we wait for a notification to arrive we must
232 	 * clear out any errors associated with earlier connection attempts.
233 	 */
234 	if (so->so_error != 0 && SOCK_CONNID_LT(so->so_proto_connid, id))
235 		so->so_error = 0;
236 
237 	while (SOCK_CONNID_LT(so->so_proto_connid, id)) {
238 		if (nonblock)
239 			return (EINPROGRESS);
240 
241 		if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
242 			return (EINTR);
243 
244 		if (cv_wait_sig_swap(&so->so_state_cv, &so->so_lock) == 0)
245 			return (EINTR);
246 	}
247 
248 	if (so->so_error != 0)
249 		return (sogeterr(so, B_TRUE));
250 	/*
251 	 * Under normal circumstances, so_error should contain an error
252 	 * in case the connect failed. However, it is possible for another
253 	 * thread to come in a consume the error, so generate a sensible
254 	 * error in that case.
255 	 */
256 	if ((so->so_state & SS_ISCONNECTED) == 0)
257 		return (ECONNREFUSED);
258 
259 	return (0);
260 }
261 
262 /*
263  * int so_wait_connected(struct sonode *so, boolean_t nonblock,
264  *    sock_connid_t id)
265  *
266  * Wait until the socket is connected or an error has occured.
267  *
268  * Arguments:
269  *   so	      - socket
270  *   nonblock - indicate whether it's ok to sleep if the connection has
271  *		not yet been established
272  *   gen      - generation number that was returned by the protocol
273  *		when the operation was started
274  *
275  * Returns:
276  *   0 if the connection attempt was successful, or an error indicating why
277  *   the connection attempt failed.
278  */
279 int
280 so_wait_connected(struct sonode *so, boolean_t nonblock, sock_connid_t id)
281 {
282 	int error;
283 
284 	mutex_enter(&so->so_lock);
285 	error = so_wait_connected_locked(so, nonblock, id);
286 	mutex_exit(&so->so_lock);
287 
288 	return (error);
289 }
290 
291 int
292 so_snd_wait_qnotfull_locked(struct sonode *so, boolean_t dontblock)
293 {
294 	int error;
295 
296 	ASSERT(MUTEX_HELD(&so->so_lock));
297 	while (so->so_snd_qfull) {
298 		if (so->so_state & SS_CANTSENDMORE)
299 			return (EPIPE);
300 		if (dontblock)
301 			return (EWOULDBLOCK);
302 
303 		if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
304 			return (EINTR);
305 
306 		if (so->so_sndtimeo == 0) {
307 			/*
308 			 * Zero means disable timeout.
309 			 */
310 			error = cv_wait_sig(&so->so_snd_cv, &so->so_lock);
311 		} else {
312 			clock_t now;
313 
314 			time_to_wait(&now, so->so_sndtimeo);
315 			error = cv_timedwait_sig(&so->so_snd_cv, &so->so_lock,
316 			    now);
317 		}
318 		if (error == 0)
319 			return (EINTR);
320 		else if (error == -1)
321 			return (EAGAIN);
322 	}
323 	return (0);
324 }
325 
326 /*
327  * int so_wait_sendbuf(struct sonode *so, boolean_t dontblock)
328  *
329  * Wait for the transport to notify us about send buffers becoming
330  * available.
331  */
332 int
333 so_snd_wait_qnotfull(struct sonode *so, boolean_t dontblock)
334 {
335 	int error = 0;
336 
337 	mutex_enter(&so->so_lock);
338 	if (so->so_snd_qfull) {
339 		so->so_snd_wakeup = B_TRUE;
340 		error = so_snd_wait_qnotfull_locked(so, dontblock);
341 		so->so_snd_wakeup = B_FALSE;
342 	}
343 	mutex_exit(&so->so_lock);
344 
345 	return (error);
346 }
347 
348 void
349 so_snd_qfull(struct sonode *so)
350 {
351 	mutex_enter(&so->so_lock);
352 	so->so_snd_qfull = B_TRUE;
353 	mutex_exit(&so->so_lock);
354 }
355 
356 void
357 so_snd_qnotfull(struct sonode *so)
358 {
359 	mutex_enter(&so->so_lock);
360 	so->so_snd_qfull = B_FALSE;
361 	/* wake up everyone waiting for buffers */
362 	cv_broadcast(&so->so_snd_cv);
363 	mutex_exit(&so->so_lock);
364 }
365 
366 /*
367  * Change the process/process group to which SIGIO is sent.
368  */
369 int
370 socket_chgpgrp(struct sonode *so, pid_t pid)
371 {
372 	int error;
373 
374 	ASSERT(MUTEX_HELD(&so->so_lock));
375 	if (pid != 0) {
376 		/*
377 		 * Permissions check by sending signal 0.
378 		 * Note that when kill fails it does a
379 		 * set_errno causing the system call to fail.
380 		 */
381 		error = kill(pid, 0);
382 		if (error != 0) {
383 			return (error);
384 		}
385 	}
386 	so->so_pgrp = pid;
387 	return (0);
388 }
389 
390 
391 /*
392  * Generate a SIGIO, for 'writable' events include siginfo structure,
393  * for read events just send the signal.
394  */
395 /*ARGSUSED*/
396 static void
397 socket_sigproc(proc_t *proc, int event)
398 {
399 	k_siginfo_t info;
400 
401 	ASSERT(event & (SOCKETSIG_WRITE | SOCKETSIG_READ | SOCKETSIG_URG));
402 
403 	if (event & SOCKETSIG_WRITE) {
404 		info.si_signo = SIGPOLL;
405 		info.si_code = POLL_OUT;
406 		info.si_errno = 0;
407 		info.si_fd = 0;
408 		info.si_band = 0;
409 		sigaddq(proc, NULL, &info, KM_NOSLEEP);
410 	}
411 	if (event & SOCKETSIG_READ) {
412 		sigtoproc(proc, NULL, SIGPOLL);
413 	}
414 	if (event & SOCKETSIG_URG) {
415 		sigtoproc(proc, NULL, SIGURG);
416 	}
417 }
418 
419 void
420 socket_sendsig(struct sonode *so, int event)
421 {
422 	proc_t *proc;
423 
424 	ASSERT(MUTEX_HELD(&so->so_lock));
425 
426 	if (so->so_pgrp == 0 || (!(so->so_state & SS_ASYNC) &&
427 	    event != SOCKETSIG_URG)) {
428 		return;
429 	}
430 
431 	dprint(3, ("sending sig %d to %d\n", event, so->so_pgrp));
432 
433 	if (so->so_pgrp > 0) {
434 		/*
435 		 * XXX This unfortunately still generates
436 		 * a signal when a fd is closed but
437 		 * the proc is active.
438 		 */
439 		mutex_enter(&pidlock);
440 		proc = prfind(so->so_pgrp);
441 		if (proc == NULL) {
442 			mutex_exit(&pidlock);
443 			return;
444 		}
445 		mutex_enter(&proc->p_lock);
446 		mutex_exit(&pidlock);
447 		socket_sigproc(proc, event);
448 		mutex_exit(&proc->p_lock);
449 	} else {
450 		/*
451 		 * Send to process group. Hold pidlock across
452 		 * calls to socket_sigproc().
453 		 */
454 		pid_t pgrp = -so->so_pgrp;
455 
456 		mutex_enter(&pidlock);
457 		proc = pgfind(pgrp);
458 		while (proc != NULL) {
459 			mutex_enter(&proc->p_lock);
460 			socket_sigproc(proc, event);
461 			mutex_exit(&proc->p_lock);
462 			proc = proc->p_pglink;
463 		}
464 		mutex_exit(&pidlock);
465 	}
466 }
467 
468 #define	MIN(a, b) ((a) < (b) ? (a) : (b))
469 /* Copy userdata into a new mblk_t */
470 mblk_t *
471 socopyinuio(uio_t *uiop, ssize_t iosize, size_t wroff, ssize_t maxblk,
472     size_t tail_len, int *errorp, cred_t *cr)
473 {
474 	mblk_t	*head = NULL, **tail = &head;
475 
476 	ASSERT(iosize == INFPSZ || iosize > 0);
477 
478 	if (iosize == INFPSZ || iosize > uiop->uio_resid)
479 		iosize = uiop->uio_resid;
480 
481 	if (maxblk == INFPSZ)
482 		maxblk = iosize;
483 
484 	/* Nothing to do in these cases, so we're done */
485 	if (iosize < 0 || maxblk < 0 || (maxblk == 0 && iosize > 0))
486 		goto done;
487 
488 	/*
489 	 * We will enter the loop below if iosize is 0; it will allocate an
490 	 * empty message block and call uiomove(9F) which will just return.
491 	 * We could avoid that with an extra check but would only slow
492 	 * down the much more likely case where iosize is larger than 0.
493 	 */
494 	do {
495 		ssize_t blocksize;
496 		mblk_t	*mp;
497 
498 		blocksize = MIN(iosize, maxblk);
499 		ASSERT(blocksize >= 0);
500 		if (is_system_labeled())
501 			mp = allocb_cred(wroff + blocksize + tail_len,
502 			    cr, curproc->p_pid);
503 		else
504 			mp = allocb(wroff + blocksize + tail_len, BPRI_MED);
505 		if (mp == NULL) {
506 			*errorp = ENOMEM;
507 			return (head);
508 		}
509 		mp->b_rptr += wroff;
510 		mp->b_wptr = mp->b_rptr + blocksize;
511 
512 		*tail = mp;
513 		tail = &mp->b_cont;
514 
515 		/* uiomove(9F) either returns 0 or EFAULT */
516 		if ((*errorp = uiomove(mp->b_rptr, (size_t)blocksize,
517 		    UIO_WRITE, uiop)) != 0) {
518 			ASSERT(*errorp != ENOMEM);
519 			freemsg(head);
520 			return (NULL);
521 		}
522 
523 		iosize -= blocksize;
524 	} while (iosize > 0);
525 
526 done:
527 	*errorp = 0;
528 	return (head);
529 }
530 
531 mblk_t *
532 socopyoutuio(mblk_t *mp, struct uio *uiop, ssize_t max_read, int *errorp)
533 {
534 	int error;
535 	ptrdiff_t n;
536 	mblk_t *nmp;
537 
538 	ASSERT(mp->b_wptr >= mp->b_rptr);
539 
540 	/*
541 	 * max_read is the offset of the oobmark and read can not go pass
542 	 * the oobmark.
543 	 */
544 	if (max_read == INFPSZ || max_read > uiop->uio_resid)
545 		max_read = uiop->uio_resid;
546 
547 	do {
548 		if ((n = MIN(max_read, MBLKL(mp))) != 0) {
549 			ASSERT(n > 0);
550 
551 			error = uiomove(mp->b_rptr, n, UIO_READ, uiop);
552 			if (error != 0) {
553 				freemsg(mp);
554 				*errorp = error;
555 				return (NULL);
556 			}
557 		}
558 
559 		mp->b_rptr += n;
560 		max_read -= n;
561 		while (mp != NULL && (mp->b_rptr >= mp->b_wptr)) {
562 			/*
563 			 * get rid of zero length mblks
564 			 */
565 			nmp = mp;
566 			mp = mp->b_cont;
567 			freeb(nmp);
568 		}
569 	} while (mp != NULL && max_read > 0);
570 
571 	*errorp = 0;
572 	return (mp);
573 }
574 
575 static void
576 so_prepend_msg(struct sonode *so, mblk_t *mp, mblk_t *last_tail)
577 {
578 	ASSERT(last_tail != NULL);
579 	mp->b_next = so->so_rcv_q_head;
580 	mp->b_prev = last_tail;
581 	ASSERT(!(DB_FLAGS(mp) & DBLK_UIOA));
582 
583 	if (so->so_rcv_q_head == NULL) {
584 		ASSERT(so->so_rcv_q_last_head == NULL);
585 		so->so_rcv_q_last_head = mp;
586 #ifdef DEBUG
587 	} else {
588 		ASSERT(!(DB_FLAGS(so->so_rcv_q_head) & DBLK_UIOA));
589 #endif
590 	}
591 	so->so_rcv_q_head = mp;
592 
593 #ifdef DEBUG
594 	if (so_debug_length) {
595 		mutex_enter(&so->so_lock);
596 		ASSERT(so_check_length(so));
597 		mutex_exit(&so->so_lock);
598 	}
599 #endif
600 }
601 
602 static void
603 process_new_message(struct sonode *so, mblk_t *mp_head, mblk_t *mp_last_head)
604 {
605 	ASSERT(mp_head->b_prev != NULL);
606 	if (so->so_rcv_q_head  == NULL) {
607 		so->so_rcv_q_head = mp_head;
608 		so->so_rcv_q_last_head = mp_last_head;
609 		ASSERT(so->so_rcv_q_last_head->b_prev != NULL);
610 	} else {
611 		boolean_t flag_equal = ((DB_FLAGS(mp_head) & DBLK_UIOA) ==
612 		    (DB_FLAGS(so->so_rcv_q_last_head) & DBLK_UIOA));
613 
614 		if (mp_head->b_next == NULL &&
615 		    DB_TYPE(mp_head) == M_DATA &&
616 		    DB_TYPE(so->so_rcv_q_last_head) == M_DATA && flag_equal) {
617 			so->so_rcv_q_last_head->b_prev->b_cont = mp_head;
618 			so->so_rcv_q_last_head->b_prev = mp_head->b_prev;
619 			mp_head->b_prev = NULL;
620 		} else if (flag_equal && (DB_FLAGS(mp_head) & DBLK_UIOA)) {
621 			/*
622 			 * Append to last_head if more than one mblks, and both
623 			 * mp_head and last_head are I/OAT mblks.
624 			 */
625 			ASSERT(mp_head->b_next != NULL);
626 			so->so_rcv_q_last_head->b_prev->b_cont = mp_head;
627 			so->so_rcv_q_last_head->b_prev = mp_head->b_prev;
628 			mp_head->b_prev = NULL;
629 
630 			so->so_rcv_q_last_head->b_next = mp_head->b_next;
631 			mp_head->b_next = NULL;
632 			so->so_rcv_q_last_head = mp_last_head;
633 		} else {
634 #ifdef DEBUG
635 			{
636 				mblk_t *tmp_mblk;
637 				tmp_mblk = mp_head;
638 				while (tmp_mblk != NULL) {
639 					ASSERT(tmp_mblk->b_prev != NULL);
640 					tmp_mblk = tmp_mblk->b_next;
641 				}
642 			}
643 #endif
644 			so->so_rcv_q_last_head->b_next = mp_head;
645 			so->so_rcv_q_last_head = mp_last_head;
646 		}
647 	}
648 }
649 
650 int
651 so_dequeue_msg(struct sonode *so, mblk_t **mctlp, struct uio *uiop,
652     rval_t *rvalp, int flags)
653 {
654 	mblk_t	*mp, *nmp;
655 	mblk_t	*savemp, *savemptail;
656 	mblk_t	*new_msg_head;
657 	mblk_t	*new_msg_last_head;
658 	mblk_t	*last_tail;
659 	boolean_t partial_read;
660 	boolean_t reset_atmark = B_FALSE;
661 	int more = 0;
662 	int error;
663 	ssize_t oobmark;
664 	sodirect_t *sodp = so->so_direct;
665 
666 	partial_read = B_FALSE;
667 	*mctlp = NULL;
668 again:
669 	mutex_enter(&so->so_lock);
670 again1:
671 #ifdef DEBUG
672 	if (so_debug_length) {
673 		ASSERT(so_check_length(so));
674 	}
675 #endif
676 	/*
677 	 * First move messages from the dump area to processing area
678 	 */
679 	if (sodp != NULL) {
680 		/* No need to grab sod_lockp since it pointers to so_lock */
681 		if (sodp->sod_state & SOD_ENABLED) {
682 			ASSERT(sodp->sod_lockp == &so->so_lock);
683 
684 			if (sodp->sod_uioa.uioa_state & UIOA_ALLOC) {
685 				/* nothing to uioamove */
686 				sodp = NULL;
687 			} else if (sodp->sod_uioa.uioa_state & UIOA_INIT) {
688 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
689 				sodp->sod_uioa.uioa_state |= UIOA_ENABLED;
690 				/*
691 				 * try to uioamove() the data that
692 				 * has already queued.
693 				 */
694 				sod_uioa_so_init(so, sodp, uiop);
695 			}
696 		} else {
697 			sodp = NULL;
698 		}
699 	}
700 	new_msg_head = so->so_rcv_head;
701 	new_msg_last_head = so->so_rcv_last_head;
702 	so->so_rcv_head = NULL;
703 	so->so_rcv_last_head = NULL;
704 	oobmark = so->so_oobmark;
705 	/*
706 	 * We can release the lock as there can only be one reader
707 	 */
708 	mutex_exit(&so->so_lock);
709 
710 	if (so->so_state & SS_RCVATMARK) {
711 		reset_atmark = B_TRUE;
712 	}
713 	if (new_msg_head != NULL) {
714 		process_new_message(so, new_msg_head, new_msg_last_head);
715 	}
716 	savemp = savemptail = NULL;
717 	rvalp->r_val1 = 0;
718 	error = 0;
719 	mp = so->so_rcv_q_head;
720 
721 	if (mp != NULL &&
722 	    (so->so_rcv_timer_tid == 0 ||
723 	    so->so_rcv_queued >= so->so_rcv_thresh)) {
724 		partial_read = B_FALSE;
725 
726 		if (flags & MSG_PEEK) {
727 			if ((nmp = dupmsg(mp)) == NULL &&
728 			    (nmp = copymsg(mp)) == NULL) {
729 				size_t size = msgsize(mp);
730 
731 				error = strwaitbuf(size, BPRI_HI);
732 				if (error) {
733 					return (error);
734 				}
735 				goto again;
736 			}
737 			mp = nmp;
738 		} else {
739 			ASSERT(mp->b_prev != NULL);
740 			last_tail = mp->b_prev;
741 			mp->b_prev = NULL;
742 			so->so_rcv_q_head = mp->b_next;
743 			if (so->so_rcv_q_head == NULL) {
744 				so->so_rcv_q_last_head = NULL;
745 			}
746 			mp->b_next = NULL;
747 		}
748 
749 		ASSERT(mctlp != NULL);
750 		/*
751 		 * First process PROTO or PCPROTO blocks, if any.
752 		 */
753 		if (DB_TYPE(mp) != M_DATA) {
754 			*mctlp = mp;
755 			savemp = mp;
756 			savemptail = mp;
757 			ASSERT(DB_TYPE(mp) == M_PROTO ||
758 			    DB_TYPE(mp) == M_PCPROTO);
759 			while (mp->b_cont != NULL &&
760 			    DB_TYPE(mp->b_cont) != M_DATA) {
761 				ASSERT(DB_TYPE(mp->b_cont) == M_PROTO ||
762 				    DB_TYPE(mp->b_cont) == M_PCPROTO);
763 				mp = mp->b_cont;
764 				savemptail = mp;
765 			}
766 			mp = savemptail->b_cont;
767 			savemptail->b_cont = NULL;
768 		}
769 
770 		ASSERT(DB_TYPE(mp) == M_DATA);
771 		/*
772 		 * Now process DATA blocks, if any. Note that for sodirect
773 		 * enabled socket, uio_resid can be 0.
774 		 */
775 		if (uiop->uio_resid >= 0) {
776 			ssize_t copied = 0;
777 
778 			if (sodp != NULL && (DB_FLAGS(mp) & DBLK_UIOA)) {
779 				mutex_enter(sodp->sod_lockp);
780 				ASSERT(uiop == (uio_t *)&sodp->sod_uioa);
781 				copied = sod_uioa_mblk(so, mp);
782 				if (copied > 0)
783 					partial_read = B_TRUE;
784 				mutex_exit(sodp->sod_lockp);
785 				/* mark this mblk as processed */
786 				mp = NULL;
787 			} else {
788 				ssize_t oldresid = uiop->uio_resid;
789 
790 				if (MBLKL(mp) < so_mblk_pull_len) {
791 					if (pullupmsg(mp, -1) == 1) {
792 						last_tail = mp;
793 					}
794 				}
795 				/*
796 				 * Can not read beyond the oobmark
797 				 */
798 				mp = socopyoutuio(mp, uiop,
799 				    oobmark == 0 ? INFPSZ : oobmark, &error);
800 				if (error != 0) {
801 					freemsg(*mctlp);
802 					*mctlp = NULL;
803 					more = 0;
804 					goto done;
805 				}
806 				ASSERT(oldresid >= uiop->uio_resid);
807 				copied = oldresid - uiop->uio_resid;
808 				if (oldresid > uiop->uio_resid)
809 					partial_read = B_TRUE;
810 			}
811 			ASSERT(copied >= 0);
812 			if (copied > 0 && !(flags & MSG_PEEK)) {
813 				mutex_enter(&so->so_lock);
814 				so->so_rcv_queued -= copied;
815 				ASSERT(so->so_oobmark >= 0);
816 				if (so->so_oobmark > 0) {
817 					so->so_oobmark -= copied;
818 					ASSERT(so->so_oobmark >= 0);
819 					if (so->so_oobmark == 0) {
820 						ASSERT(so->so_state &
821 						    SS_OOBPEND);
822 						so->so_oobmark = 0;
823 						so->so_state |= SS_RCVATMARK;
824 					}
825 				}
826 				if (so->so_flowctrld && so->so_rcv_queued <
827 				    so->so_rcvlowat) {
828 					so->so_flowctrld = B_FALSE;
829 					mutex_exit(&so->so_lock);
830 					/*
831 					 * Open up flow control. SCTP does
832 					 * not have any downcalls, and it will
833 					 * clr flow ctrl in sosctp_recvmsg().
834 					 */
835 					if (so->so_downcalls != NULL &&
836 					    so->so_downcalls->sd_clr_flowctrl !=
837 					    NULL) {
838 						(*so->so_downcalls->
839 						    sd_clr_flowctrl)
840 						    (so->so_proto_handle);
841 					}
842 				} else {
843 					mutex_exit(&so->so_lock);
844 				}
845 			}
846 		}
847 		if (mp != NULL) { /* more data blocks in msg */
848 			more |= MOREDATA;
849 			if ((flags & (MSG_PEEK|MSG_TRUNC))) {
850 				if (flags & MSG_TRUNC &&
851 				    ((flags & MSG_PEEK) == 0)) {
852 					mutex_enter(&so->so_lock);
853 					so->so_rcv_queued -= msgdsize(mp);
854 					mutex_exit(&so->so_lock);
855 				}
856 				freemsg(mp);
857 			} else if (partial_read && !somsghasdata(mp)) {
858 				/*
859 				 * Avoid queuing a zero-length tail part of
860 				 * a message. partial_read == 1 indicates that
861 				 * we read some of the message.
862 				 */
863 				freemsg(mp);
864 				more &= ~MOREDATA;
865 			} else {
866 				if (savemp != NULL &&
867 				    (flags & MSG_DUPCTRL)) {
868 					mblk_t *nmp;
869 					/*
870 					 * There should only be non data mblks
871 					 */
872 					ASSERT(DB_TYPE(savemp) != M_DATA &&
873 					    DB_TYPE(savemptail) != M_DATA);
874 try_again:
875 					if ((nmp = dupmsg(savemp)) == NULL &&
876 					    (nmp = copymsg(savemp)) == NULL) {
877 
878 						size_t size = msgsize(savemp);
879 
880 						error = strwaitbuf(size,
881 						    BPRI_HI);
882 						if (error != 0) {
883 							/*
884 							 * In case we
885 							 * cannot copy
886 							 * control data
887 							 * free the remaining
888 							 * data.
889 							 */
890 							freemsg(mp);
891 							goto done;
892 						}
893 						goto try_again;
894 					}
895 
896 					ASSERT(nmp != NULL);
897 					ASSERT(DB_TYPE(nmp) != M_DATA);
898 					savemptail->b_cont = mp;
899 					*mctlp = nmp;
900 					mp = savemp;
901 				}
902 				/*
903 				 * putback mp
904 				 */
905 				so_prepend_msg(so, mp, last_tail);
906 			}
907 		}
908 
909 		/* fast check so_rcv_head if there is more data */
910 		if (partial_read && !(so->so_state & SS_RCVATMARK) &&
911 		    *mctlp == NULL && uiop->uio_resid > 0 &&
912 		    !(flags & MSG_PEEK) && so->so_rcv_head != NULL) {
913 			goto again;
914 		}
915 	} else if (!partial_read) {
916 		mutex_enter(&so->so_lock);
917 		if (so->so_error != 0) {
918 			error = sogeterr(so, !(flags & MSG_PEEK));
919 			mutex_exit(&so->so_lock);
920 			return (error);
921 		}
922 		/*
923 		 * No pending data. Return right away for nonblocking
924 		 * socket, otherwise sleep waiting for data.
925 		 */
926 		if (!(so->so_state & SS_CANTRCVMORE) && uiop->uio_resid > 0) {
927 			if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
928 			    (flags & MSG_DONTWAIT)) {
929 				error = EWOULDBLOCK;
930 			} else {
931 				if (so->so_state & (SS_CLOSING |
932 				    SS_FALLBACK_PENDING)) {
933 					mutex_exit(&so->so_lock);
934 					error = EINTR;
935 					goto done;
936 				}
937 
938 				if (so->so_rcv_head != NULL) {
939 					goto again1;
940 				}
941 				so->so_rcv_wakeup = B_TRUE;
942 				so->so_rcv_wanted = uiop->uio_resid;
943 				if (so->so_rcvtimeo == 0) {
944 					/*
945 					 * Zero means disable timeout.
946 					 */
947 					error = cv_wait_sig(&so->so_rcv_cv,
948 					    &so->so_lock);
949 				} else {
950 					clock_t now;
951 					time_to_wait(&now, so->so_rcvtimeo);
952 					error = cv_timedwait_sig(&so->so_rcv_cv,
953 					    &so->so_lock, now);
954 				}
955 				so->so_rcv_wakeup = B_FALSE;
956 				so->so_rcv_wanted = 0;
957 
958 				if (error == 0) {
959 					error = EINTR;
960 				} else if (error == -1) {
961 					error = EAGAIN;
962 				} else {
963 					goto again1;
964 				}
965 			}
966 		}
967 		mutex_exit(&so->so_lock);
968 	}
969 	if (reset_atmark && partial_read && !(flags & MSG_PEEK)) {
970 		/*
971 		 * We are passed the mark, update state
972 		 * 4.3BSD and 4.4BSD clears the mark when peeking across it.
973 		 * The draft Posix socket spec states that the mark should
974 		 * not be cleared when peeking. We follow the latter.
975 		 */
976 		mutex_enter(&so->so_lock);
977 		ASSERT(so_verify_oobstate(so));
978 		so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK);
979 		freemsg(so->so_oobmsg);
980 		so->so_oobmsg = NULL;
981 		ASSERT(so_verify_oobstate(so));
982 		mutex_exit(&so->so_lock);
983 	}
984 	ASSERT(so->so_rcv_wakeup == B_FALSE);
985 done:
986 	if (sodp != NULL) {
987 		mutex_enter(sodp->sod_lockp);
988 		if ((sodp->sod_state & SOD_ENABLED) &&
989 		    (sodp->sod_uioa.uioa_state & UIOA_ENABLED)) {
990 			SOD_UIOAFINI(sodp);
991 			if (sodp->sod_uioa.uioa_mbytes > 0) {
992 				ASSERT(so->so_rcv_q_head != NULL ||
993 				    so->so_rcv_head != NULL);
994 				so->so_rcv_queued -= sod_uioa_mblk(so, NULL);
995 				if (error == EWOULDBLOCK)
996 					error = 0;
997 			}
998 		}
999 		mutex_exit(sodp->sod_lockp);
1000 	}
1001 #ifdef DEBUG
1002 	if (so_debug_length) {
1003 		mutex_enter(&so->so_lock);
1004 		ASSERT(so_check_length(so));
1005 		mutex_exit(&so->so_lock);
1006 	}
1007 #endif
1008 	rvalp->r_val1 = more;
1009 	return (error);
1010 }
1011 
1012 void
1013 so_enqueue_msg(struct sonode *so, mblk_t *mp, size_t msg_size)
1014 {
1015 	ASSERT(MUTEX_HELD(&so->so_lock));
1016 
1017 #ifdef DEBUG
1018 	if (so_debug_length) {
1019 		ASSERT(so_check_length(so));
1020 	}
1021 #endif
1022 	so->so_rcv_queued += msg_size;
1023 
1024 	if (so->so_rcv_head == NULL) {
1025 		ASSERT(so->so_rcv_last_head == NULL);
1026 		so->so_rcv_head = mp;
1027 		so->so_rcv_last_head = mp;
1028 	} else if ((DB_TYPE(mp) == M_DATA &&
1029 	    DB_TYPE(so->so_rcv_last_head) == M_DATA) &&
1030 	    ((DB_FLAGS(mp) & DBLK_UIOA) ==
1031 	    (DB_FLAGS(so->so_rcv_last_head) & DBLK_UIOA))) {
1032 		/* Added to the end */
1033 		ASSERT(so->so_rcv_last_head != NULL);
1034 		ASSERT(so->so_rcv_last_head->b_prev != NULL);
1035 		so->so_rcv_last_head->b_prev->b_cont = mp;
1036 	} else {
1037 		/* Start a new end */
1038 		so->so_rcv_last_head->b_next = mp;
1039 		so->so_rcv_last_head = mp;
1040 	}
1041 	while (mp->b_cont != NULL)
1042 		mp = mp->b_cont;
1043 
1044 	so->so_rcv_last_head->b_prev = mp;
1045 #ifdef DEBUG
1046 	if (so_debug_length) {
1047 		ASSERT(so_check_length(so));
1048 	}
1049 #endif
1050 }
1051 
1052 /*
1053  * Return B_TRUE if there is data in the message, B_FALSE otherwise.
1054  */
1055 boolean_t
1056 somsghasdata(mblk_t *mp)
1057 {
1058 	for (; mp; mp = mp->b_cont)
1059 		if (mp->b_datap->db_type == M_DATA) {
1060 			ASSERT(mp->b_wptr >= mp->b_rptr);
1061 			if (mp->b_wptr > mp->b_rptr)
1062 				return (B_TRUE);
1063 		}
1064 	return (B_FALSE);
1065 }
1066 
1067 /*
1068  * Flush the read side of sockfs.
1069  *
1070  * The caller must be sure that a reader is not already active when the
1071  * buffer is being flushed.
1072  */
1073 void
1074 so_rcv_flush(struct sonode *so)
1075 {
1076 	mblk_t  *mp;
1077 
1078 	ASSERT(MUTEX_HELD(&so->so_lock));
1079 
1080 	if (so->so_oobmsg != NULL) {
1081 		freemsg(so->so_oobmsg);
1082 		so->so_oobmsg = NULL;
1083 		so->so_oobmark = 0;
1084 		so->so_state &=
1085 		    ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA|SS_RCVATMARK);
1086 	}
1087 
1088 	/*
1089 	 * Free messages sitting in the send and recv queue
1090 	 */
1091 	while (so->so_rcv_q_head != NULL) {
1092 		mp = so->so_rcv_q_head;
1093 		so->so_rcv_q_head = mp->b_next;
1094 		mp->b_next = mp->b_prev = NULL;
1095 		freemsg(mp);
1096 	}
1097 	while (so->so_rcv_head != NULL) {
1098 		mp = so->so_rcv_head;
1099 		so->so_rcv_head = mp->b_next;
1100 		mp->b_next = mp->b_prev = NULL;
1101 		freemsg(mp);
1102 	}
1103 	so->so_rcv_queued = 0;
1104 	so->so_rcv_q_head = NULL;
1105 	so->so_rcv_q_last_head = NULL;
1106 	so->so_rcv_head = NULL;
1107 	so->so_rcv_last_head = NULL;
1108 }
1109 
1110 /*
1111  * Handle recv* calls that set MSG_OOB or MSG_OOB together with MSG_PEEK.
1112  */
1113 int
1114 sorecvoob(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, int flags,
1115     boolean_t oob_inline)
1116 {
1117 	mblk_t		*mp, *nmp;
1118 	int		error;
1119 
1120 	dprintso(so, 1, ("sorecvoob(%p, %p, 0x%x)\n", (void *)so, (void *)msg,
1121 	    flags));
1122 
1123 	if (msg != NULL) {
1124 		/*
1125 		 * There is never any oob data with addresses or control since
1126 		 * the T_EXDATA_IND does not carry any options.
1127 		 */
1128 		msg->msg_controllen = 0;
1129 		msg->msg_namelen = 0;
1130 		msg->msg_flags = 0;
1131 	}
1132 
1133 	mutex_enter(&so->so_lock);
1134 	ASSERT(so_verify_oobstate(so));
1135 	if (oob_inline ||
1136 	    (so->so_state & (SS_OOBPEND|SS_HADOOBDATA)) != SS_OOBPEND) {
1137 		dprintso(so, 1, ("sorecvoob: inline or data consumed\n"));
1138 		mutex_exit(&so->so_lock);
1139 		return (EINVAL);
1140 	}
1141 	if (!(so->so_state & SS_HAVEOOBDATA)) {
1142 		dprintso(so, 1, ("sorecvoob: no data yet\n"));
1143 		mutex_exit(&so->so_lock);
1144 		return (EWOULDBLOCK);
1145 	}
1146 	ASSERT(so->so_oobmsg != NULL);
1147 	mp = so->so_oobmsg;
1148 	if (flags & MSG_PEEK) {
1149 		/*
1150 		 * Since recv* can not return ENOBUFS we can not use dupmsg.
1151 		 * Instead we revert to the consolidation private
1152 		 * allocb_wait plus bcopy.
1153 		 */
1154 		mblk_t *mp1;
1155 
1156 		mp1 = allocb_wait(msgdsize(mp), BPRI_MED, STR_NOSIG, NULL);
1157 		ASSERT(mp1);
1158 
1159 		while (mp != NULL) {
1160 			ssize_t size;
1161 
1162 			size = MBLKL(mp);
1163 			bcopy(mp->b_rptr, mp1->b_wptr, size);
1164 			mp1->b_wptr += size;
1165 			ASSERT(mp1->b_wptr <= mp1->b_datap->db_lim);
1166 			mp = mp->b_cont;
1167 		}
1168 		mp = mp1;
1169 	} else {
1170 		/*
1171 		 * Update the state indicating that the data has been consumed.
1172 		 * Keep SS_OOBPEND set until data is consumed past the mark.
1173 		 */
1174 		so->so_oobmsg = NULL;
1175 		so->so_state ^= SS_HAVEOOBDATA|SS_HADOOBDATA;
1176 	}
1177 	ASSERT(so_verify_oobstate(so));
1178 	mutex_exit(&so->so_lock);
1179 
1180 	error = 0;
1181 	nmp = mp;
1182 	while (nmp != NULL && uiop->uio_resid > 0) {
1183 		ssize_t n = MBLKL(nmp);
1184 
1185 		n = MIN(n, uiop->uio_resid);
1186 		if (n > 0)
1187 			error = uiomove(nmp->b_rptr, n,
1188 			    UIO_READ, uiop);
1189 		if (error)
1190 			break;
1191 		nmp = nmp->b_cont;
1192 	}
1193 	ASSERT(mp->b_next == NULL && mp->b_prev == NULL);
1194 	freemsg(mp);
1195 	return (error);
1196 }
1197 
1198 /*
1199  * Allocate and initializ sonode
1200  */
1201 /* ARGSUSED */
1202 struct sonode *
1203 socket_sonode_create(struct sockparams *sp, int family, int type,
1204     int protocol, int version, int sflags, int *errorp, struct cred *cr)
1205 {
1206 	sonode_t *so;
1207 	int	kmflags;
1208 
1209 	/*
1210 	 * Choose the right set of sonodeops based on the upcall and
1211 	 * down call version that the protocol has provided
1212 	 */
1213 	if (SOCK_UC_VERSION != sp->sp_smod_info->smod_uc_version ||
1214 	    SOCK_DC_VERSION != sp->sp_smod_info->smod_dc_version) {
1215 		/*
1216 		 * mismatch
1217 		 */
1218 #ifdef DEBUG
1219 		cmn_err(CE_CONT, "protocol and socket module version mismatch");
1220 #endif
1221 		*errorp = EINVAL;
1222 		return (NULL);
1223 	}
1224 
1225 	kmflags = (sflags & SOCKET_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
1226 
1227 	so = kmem_cache_alloc(socket_cache, kmflags);
1228 	if (so == NULL) {
1229 		*errorp = ENOMEM;
1230 		return (NULL);
1231 	}
1232 
1233 	sonode_init(so, sp, family, type, protocol, &so_sonodeops);
1234 
1235 	if (version == SOV_DEFAULT)
1236 		version = so_default_version;
1237 
1238 	so->so_version = (short)version;
1239 
1240 	/*
1241 	 * set the default values to be INFPSZ
1242 	 * if a protocol desires it can change the value later
1243 	 */
1244 	so->so_proto_props.sopp_rxhiwat = SOCKET_RECVHIWATER;
1245 	so->so_proto_props.sopp_rxlowat = SOCKET_RECVLOWATER;
1246 	so->so_proto_props.sopp_maxpsz = INFPSZ;
1247 	so->so_proto_props.sopp_maxblk = INFPSZ;
1248 
1249 	return (so);
1250 }
1251 
1252 int
1253 socket_init_common(struct sonode *so, struct sonode *pso, int flags, cred_t *cr)
1254 {
1255 	int error = 0;
1256 
1257 	if (pso != NULL) {
1258 		/*
1259 		 * We have a passive open, so inherit basic state from
1260 		 * the parent (listener).
1261 		 *
1262 		 * No need to grab the new sonode's lock, since there is no
1263 		 * one that can have a reference to it.
1264 		 */
1265 		mutex_enter(&pso->so_lock);
1266 
1267 		so->so_state |= SS_ISCONNECTED | (pso->so_state & SS_ASYNC);
1268 		so->so_pgrp = pso->so_pgrp;
1269 		so->so_rcvtimeo = pso->so_rcvtimeo;
1270 		so->so_sndtimeo = pso->so_sndtimeo;
1271 		so->so_xpg_rcvbuf = pso->so_xpg_rcvbuf;
1272 		/*
1273 		 * Make note of the socket level options. TCP and IP level
1274 		 * options are already inherited. We could do all this after
1275 		 * accept is successful but doing it here simplifies code and
1276 		 * no harm done for error case.
1277 		 */
1278 		so->so_options = pso->so_options & (SO_DEBUG|SO_REUSEADDR|
1279 		    SO_KEEPALIVE|SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK|
1280 		    SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER);
1281 		so->so_proto_props = pso->so_proto_props;
1282 		so->so_mode = pso->so_mode;
1283 		so->so_pollev = pso->so_pollev & SO_POLLEV_ALWAYS;
1284 
1285 		mutex_exit(&pso->so_lock);
1286 
1287 		if (uioasync.enabled) {
1288 			sod_sock_init(so, NULL, NULL, NULL, &so->so_lock);
1289 		}
1290 		return (0);
1291 	} else {
1292 		struct sockparams *sp = so->so_sockparams;
1293 		sock_upcalls_t *upcalls_to_use;
1294 
1295 		/*
1296 		 * Based on the version number select the right upcalls to
1297 		 * pass down. Currently we only have one version so choose
1298 		 * default
1299 		 */
1300 		upcalls_to_use = &so_upcalls;
1301 
1302 		/* active open, so create a lower handle */
1303 		so->so_proto_handle =
1304 		    sp->sp_smod_info->smod_proto_create_func(so->so_family,
1305 		    so->so_type, so->so_protocol, &so->so_downcalls,
1306 		    &so->so_mode, &error, flags, cr);
1307 
1308 		if (so->so_proto_handle == NULL) {
1309 			ASSERT(error != 0);
1310 			/*
1311 			 * To be safe; if a lower handle cannot be created, and
1312 			 * the proto does not give a reason why, assume there
1313 			 * was a lack of memory.
1314 			 */
1315 			return ((error == 0) ? ENOMEM : error);
1316 		}
1317 		ASSERT(so->so_downcalls != NULL);
1318 		ASSERT(so->so_downcalls->sd_send != NULL ||
1319 		    so->so_downcalls->sd_send_uio != NULL);
1320 		if (so->so_downcalls->sd_recv_uio != NULL) {
1321 			ASSERT(so->so_downcalls->sd_poll != NULL);
1322 			so->so_pollev |= SO_POLLEV_ALWAYS;
1323 		}
1324 
1325 		(*so->so_downcalls->sd_activate)(so->so_proto_handle,
1326 		    (sock_upper_handle_t)so, upcalls_to_use, 0, cr);
1327 
1328 		/* Wildcard */
1329 
1330 		/*
1331 		 * FIXME No need for this, the protocol can deal with it in
1332 		 * sd_create(). Should update ICMP.
1333 		 */
1334 		if (so->so_protocol != so->so_sockparams->sp_protocol) {
1335 			int protocol = so->so_protocol;
1336 			int error;
1337 			/*
1338 			 * Issue SO_PROTOTYPE setsockopt.
1339 			 */
1340 			error = socket_setsockopt(so, SOL_SOCKET, SO_PROTOTYPE,
1341 			    &protocol, (t_uscalar_t)sizeof (protocol), cr);
1342 			if (error) {
1343 				(void) (*so->so_downcalls->sd_close)
1344 				    (so->so_proto_handle, 0, cr);
1345 
1346 				mutex_enter(&so->so_lock);
1347 				so_rcv_flush(so);
1348 				mutex_exit(&so->so_lock);
1349 				/*
1350 				 * Setsockopt often fails with ENOPROTOOPT but
1351 				 * socket() should fail with
1352 				 * EPROTONOSUPPORT/EPROTOTYPE.
1353 				 */
1354 				return (EPROTONOSUPPORT);
1355 			}
1356 		}
1357 		return (0);
1358 	}
1359 }
1360 
1361 /*
1362  * int socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1363  *         struct cred *cr, int32_t *rvalp)
1364  *
1365  * Handle ioctls that manipulate basic socket state; non-blocking,
1366  * async, etc.
1367  *
1368  * Returns:
1369  *   < 0  - ioctl was not handle
1370  *  >= 0  - ioctl was handled, if > 0, then it is an errno
1371  *
1372  * Notes:
1373  *   Assumes the standard receive buffer is used to obtain info for
1374  *   NREAD.
1375  */
1376 /* ARGSUSED */
1377 int
1378 socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1379     struct cred *cr, int32_t *rvalp)
1380 {
1381 	switch (cmd) {
1382 	case SIOCSQPTR:
1383 		/*
1384 		 * SIOCSQPTR is valid only when helper stream is created
1385 		 * by the protocol.
1386 		 */
1387 
1388 		return (EOPNOTSUPP);
1389 	case FIONBIO: {
1390 		int32_t value;
1391 
1392 		if (so_copyin((void *)arg, &value, sizeof (int32_t),
1393 		    (mode & (int)FKIOCTL)))
1394 			return (EFAULT);
1395 
1396 		mutex_enter(&so->so_lock);
1397 		if (value) {
1398 			so->so_state |= SS_NDELAY;
1399 		} else {
1400 			so->so_state &= ~SS_NDELAY;
1401 		}
1402 		mutex_exit(&so->so_lock);
1403 		return (0);
1404 	}
1405 	case FIOASYNC: {
1406 		int32_t value;
1407 
1408 		if (so_copyin((void *)arg, &value, sizeof (int32_t),
1409 		    (mode & (int)FKIOCTL)))
1410 			return (EFAULT);
1411 
1412 		mutex_enter(&so->so_lock);
1413 
1414 		if (value) {
1415 			/* Turn on SIGIO */
1416 			so->so_state |= SS_ASYNC;
1417 		} else {
1418 			/* Turn off SIGIO */
1419 			so->so_state &= ~SS_ASYNC;
1420 		}
1421 		mutex_exit(&so->so_lock);
1422 
1423 		return (0);
1424 	}
1425 
1426 	case SIOCSPGRP:
1427 	case FIOSETOWN: {
1428 		int error;
1429 		pid_t pid;
1430 
1431 		if (so_copyin((void *)arg, &pid, sizeof (pid_t),
1432 		    (mode & (int)FKIOCTL)))
1433 			return (EFAULT);
1434 
1435 		mutex_enter(&so->so_lock);
1436 		error = (pid != so->so_pgrp) ? socket_chgpgrp(so, pid) : 0;
1437 		mutex_exit(&so->so_lock);
1438 		return (error);
1439 	}
1440 	case SIOCGPGRP:
1441 	case FIOGETOWN:
1442 		if (so_copyout(&so->so_pgrp, (void *)arg,
1443 		    sizeof (pid_t), (mode & (int)FKIOCTL)))
1444 			return (EFAULT);
1445 
1446 		return (0);
1447 	case SIOCATMARK: {
1448 		int retval;
1449 
1450 		/*
1451 		 * Only protocols that support urgent data can handle ATMARK.
1452 		 */
1453 		if ((so->so_mode & SM_EXDATA) == 0)
1454 			return (EINVAL);
1455 
1456 		/*
1457 		 * If the protocol is maintaining its own buffer, then the
1458 		 * request must be passed down.
1459 		 */
1460 		if (so->so_downcalls->sd_recv_uio != NULL)
1461 			return (-1);
1462 
1463 		retval = (so->so_state & SS_RCVATMARK) != 0;
1464 
1465 		if (so_copyout(&retval, (void *)arg, sizeof (int),
1466 		    (mode & (int)FKIOCTL))) {
1467 			return (EFAULT);
1468 		}
1469 		return (0);
1470 	}
1471 
1472 	case FIONREAD: {
1473 		int retval;
1474 
1475 		/*
1476 		 * If the protocol is maintaining its own buffer, then the
1477 		 * request must be passed down.
1478 		 */
1479 		if (so->so_downcalls->sd_recv_uio != NULL)
1480 			return (-1);
1481 
1482 		retval = MIN(so->so_rcv_queued, INT_MAX);
1483 
1484 		if (so_copyout(&retval, (void *)arg,
1485 		    sizeof (retval), (mode & (int)FKIOCTL))) {
1486 			return (EFAULT);
1487 		}
1488 		return (0);
1489 	}
1490 
1491 	case _I_GETPEERCRED: {
1492 		int error = 0;
1493 
1494 		if ((mode & FKIOCTL) == 0)
1495 			return (EINVAL);
1496 
1497 		mutex_enter(&so->so_lock);
1498 		if ((so->so_mode & SM_CONNREQUIRED) == 0) {
1499 			error = ENOTSUP;
1500 		} else if ((so->so_state & SS_ISCONNECTED) == 0) {
1501 			error = ENOTCONN;
1502 		} else if (so->so_peercred != NULL) {
1503 			k_peercred_t *kp = (k_peercred_t *)arg;
1504 			kp->pc_cr = so->so_peercred;
1505 			kp->pc_cpid = so->so_cpid;
1506 			crhold(so->so_peercred);
1507 		} else {
1508 			error = EINVAL;
1509 		}
1510 		mutex_exit(&so->so_lock);
1511 		return (error);
1512 	}
1513 	default:
1514 		return (-1);
1515 	}
1516 }
1517 
1518 /*
1519  * Handle the I_NREAD STREAM ioctl.
1520  */
1521 static int
1522 so_strioc_nread(struct sonode *so, intptr_t arg, int mode, int32_t *rvalp)
1523 {
1524 	size_t size = 0;
1525 	int retval;
1526 	int count = 0;
1527 	mblk_t *mp;
1528 
1529 	if (so->so_downcalls == NULL ||
1530 	    so->so_downcalls->sd_recv_uio != NULL)
1531 		return (EINVAL);
1532 
1533 	mutex_enter(&so->so_lock);
1534 	/* Wait for reader to get out of the way. */
1535 	while (so->so_flag & SOREADLOCKED) {
1536 		/*
1537 		 * If reader is waiting for data, then there should be nothing
1538 		 * on the rcv queue.
1539 		 */
1540 		if (so->so_rcv_wakeup)
1541 			goto out;
1542 
1543 		so->so_flag |= SOWANT;
1544 		/* Do a timed sleep, in case the reader goes to sleep. */
1545 		(void) cv_timedwait(&so->so_state_cv, &so->so_lock,
1546 		    lbolt + drv_usectohz(10));
1547 	}
1548 
1549 	/*
1550 	 * Since we are holding so_lock no new reader will come in, and the
1551 	 * protocol will not be able to enqueue data. So it's safe to walk
1552 	 * both rcv queues.
1553 	 */
1554 	mp = so->so_rcv_q_head;
1555 	if (mp != NULL) {
1556 		size = msgdsize(so->so_rcv_q_head);
1557 		for (; mp != NULL; mp = mp->b_next)
1558 			count++;
1559 	} else {
1560 		/*
1561 		 * In case the processing list was empty, get the size of the
1562 		 * next msg in line.
1563 		 */
1564 		size = msgdsize(so->so_rcv_head);
1565 	}
1566 
1567 	for (mp = so->so_rcv_head; mp != NULL; mp = mp->b_next)
1568 		count++;
1569 out:
1570 	mutex_exit(&so->so_lock);
1571 
1572 	/*
1573 	 * Drop down from size_t to the "int" required by the
1574 	 * interface.  Cap at INT_MAX.
1575 	 */
1576 	retval = MIN(size, INT_MAX);
1577 	if (so_copyout(&retval, (void *)arg, sizeof (retval),
1578 	    (mode & (int)FKIOCTL))) {
1579 		return (EFAULT);
1580 	} else {
1581 		*rvalp = count;
1582 		return (0);
1583 	}
1584 }
1585 
1586 /*
1587  * Process STREAM ioctls.
1588  *
1589  * Returns:
1590  *   < 0  - ioctl was not handle
1591  *  >= 0  - ioctl was handled, if > 0, then it is an errno
1592  */
1593 int
1594 socket_strioc_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1595     struct cred *cr, int32_t *rvalp)
1596 {
1597 	int retval;
1598 
1599 	/* Only STREAM iotcls are handled here */
1600 	if ((cmd & 0xffffff00U) != STR)
1601 		return (-1);
1602 
1603 	switch (cmd) {
1604 	case I_CANPUT:
1605 		/*
1606 		 * We return an error for I_CANPUT so that isastream(3C) will
1607 		 * not report the socket as being a STREAM.
1608 		 */
1609 		return (EOPNOTSUPP);
1610 	case I_NREAD:
1611 		/* Avoid doing a fallback for I_NREAD. */
1612 		return (so_strioc_nread(so, arg, mode, rvalp));
1613 	case I_LOOK:
1614 		/* Avoid doing a fallback for I_LOOK. */
1615 		if (so_copyout("sockmod", (void *)arg, strlen("sockmod") + 1,
1616 		    (mode & (int)FKIOCTL))) {
1617 			return (EFAULT);
1618 		}
1619 		return (0);
1620 	default:
1621 		break;
1622 	}
1623 
1624 	/*
1625 	 * Try to fall back to TPI, and if successful, reissue the ioctl.
1626 	 */
1627 	if ((retval = so_tpi_fallback(so, cr)) == 0) {
1628 		/* Reissue the ioctl */
1629 		ASSERT(so->so_rcv_q_head == NULL);
1630 		return (SOP_IOCTL(so, cmd, arg, mode, cr, rvalp));
1631 	} else {
1632 		return (retval);
1633 	}
1634 }
1635 
1636 int
1637 socket_getopt_common(struct sonode *so, int level, int option_name,
1638     void *optval, socklen_t *optlenp, int flags)
1639 {
1640 	if (level != SOL_SOCKET)
1641 		return (-1);
1642 
1643 	switch (option_name) {
1644 	case SO_ERROR:
1645 	case SO_DOMAIN:
1646 	case SO_TYPE:
1647 	case SO_ACCEPTCONN: {
1648 		int32_t value;
1649 		socklen_t optlen = *optlenp;
1650 
1651 		if (optlen < (t_uscalar_t)sizeof (int32_t)) {
1652 			return (EINVAL);
1653 		}
1654 
1655 		switch (option_name) {
1656 		case SO_ERROR:
1657 			mutex_enter(&so->so_lock);
1658 			value = sogeterr(so, B_TRUE);
1659 			mutex_exit(&so->so_lock);
1660 			break;
1661 		case SO_DOMAIN:
1662 			value = so->so_family;
1663 			break;
1664 		case SO_TYPE:
1665 			value = so->so_type;
1666 			break;
1667 		case SO_ACCEPTCONN:
1668 			if (so->so_state & SS_ACCEPTCONN)
1669 				value = SO_ACCEPTCONN;
1670 			else
1671 				value = 0;
1672 			break;
1673 		}
1674 
1675 		bcopy(&value, optval, sizeof (value));
1676 		*optlenp = sizeof (value);
1677 
1678 		return (0);
1679 	}
1680 	case SO_SNDTIMEO:
1681 	case SO_RCVTIMEO: {
1682 		clock_t value;
1683 		socklen_t optlen = *optlenp;
1684 
1685 		if (get_udatamodel() == DATAMODEL_NONE ||
1686 		    get_udatamodel() == DATAMODEL_NATIVE) {
1687 			if (optlen < sizeof (struct timeval))
1688 				return (EINVAL);
1689 		} else {
1690 			if (optlen < sizeof (struct timeval32))
1691 				return (EINVAL);
1692 		}
1693 		if (option_name == SO_RCVTIMEO)
1694 			value = drv_hztousec(so->so_rcvtimeo);
1695 		else
1696 			value = drv_hztousec(so->so_sndtimeo);
1697 
1698 		if (get_udatamodel() == DATAMODEL_NONE ||
1699 		    get_udatamodel() == DATAMODEL_NATIVE) {
1700 			((struct timeval *)(optval))->tv_sec =
1701 			    value / (1000 * 1000);
1702 			((struct timeval *)(optval))->tv_usec =
1703 			    value % (1000 * 1000);
1704 			*optlenp = sizeof (struct timeval);
1705 		} else {
1706 			((struct timeval32 *)(optval))->tv_sec =
1707 			    value / (1000 * 1000);
1708 			((struct timeval32 *)(optval))->tv_usec =
1709 			    value % (1000 * 1000);
1710 			*optlenp = sizeof (struct timeval32);
1711 		}
1712 		return (0);
1713 	}
1714 	case SO_DEBUG:
1715 	case SO_REUSEADDR:
1716 	case SO_KEEPALIVE:
1717 	case SO_DONTROUTE:
1718 	case SO_BROADCAST:
1719 	case SO_USELOOPBACK:
1720 	case SO_OOBINLINE:
1721 	case SO_SNDBUF:
1722 #ifdef notyet
1723 	case SO_SNDLOWAT:
1724 	case SO_RCVLOWAT:
1725 #endif /* notyet */
1726 	case SO_DGRAM_ERRIND: {
1727 		socklen_t optlen = *optlenp;
1728 
1729 		if (optlen < (t_uscalar_t)sizeof (int32_t))
1730 			return (EINVAL);
1731 		break;
1732 	}
1733 	case SO_RCVBUF: {
1734 		socklen_t optlen = *optlenp;
1735 
1736 		if (optlen < (t_uscalar_t)sizeof (int32_t))
1737 			return (EINVAL);
1738 
1739 		if ((flags & _SOGETSOCKOPT_XPG4_2) && so->so_xpg_rcvbuf != 0) {
1740 			/*
1741 			 * XXX If SO_RCVBUF has been set and this is an
1742 			 * XPG 4.2 application then do not ask the transport
1743 			 * since the transport might adjust the value and not
1744 			 * return exactly what was set by the application.
1745 			 * For non-XPG 4.2 application we return the value
1746 			 * that the transport is actually using.
1747 			 */
1748 			*(int32_t *)optval = so->so_xpg_rcvbuf;
1749 			*optlenp = sizeof (so->so_xpg_rcvbuf);
1750 			return (0);
1751 		}
1752 		/*
1753 		 * If the option has not been set then get a default
1754 		 * value from the transport.
1755 		 */
1756 		break;
1757 	}
1758 	case SO_LINGER: {
1759 		socklen_t optlen = *optlenp;
1760 
1761 		if (optlen < (t_uscalar_t)sizeof (struct linger))
1762 			return (EINVAL);
1763 		break;
1764 	}
1765 	case SO_SND_BUFINFO: {
1766 		socklen_t optlen = *optlenp;
1767 
1768 		if (optlen < (t_uscalar_t)sizeof (struct so_snd_bufinfo))
1769 			return (EINVAL);
1770 		((struct so_snd_bufinfo *)(optval))->sbi_wroff =
1771 		    (so->so_proto_props).sopp_wroff;
1772 		((struct so_snd_bufinfo *)(optval))->sbi_maxblk =
1773 		    (so->so_proto_props).sopp_maxblk;
1774 		((struct so_snd_bufinfo *)(optval))->sbi_maxpsz =
1775 		    (so->so_proto_props).sopp_maxpsz;
1776 		((struct so_snd_bufinfo *)(optval))->sbi_tail =
1777 		    (so->so_proto_props).sopp_tail;
1778 		*optlenp = sizeof (struct so_snd_bufinfo);
1779 		return (0);
1780 	}
1781 	default:
1782 		break;
1783 	}
1784 
1785 	/* Unknown Option */
1786 	return (-1);
1787 }
1788 
1789 void
1790 socket_sonode_destroy(struct sonode *so)
1791 {
1792 	sonode_fini(so);
1793 	kmem_cache_free(socket_cache, so);
1794 }
1795 
1796 int
1797 so_zcopy_wait(struct sonode *so)
1798 {
1799 	int error = 0;
1800 
1801 	mutex_enter(&so->so_lock);
1802 	while (!(so->so_copyflag & STZCNOTIFY)) {
1803 		if (so->so_state & SS_CLOSING) {
1804 			mutex_exit(&so->so_lock);
1805 			return (EINTR);
1806 		}
1807 		if (cv_wait_sig(&so->so_copy_cv, &so->so_lock) == 0) {
1808 			error = EINTR;
1809 			break;
1810 		}
1811 	}
1812 	so->so_copyflag &= ~STZCNOTIFY;
1813 	mutex_exit(&so->so_lock);
1814 	return (error);
1815 }
1816 
1817 void
1818 so_timer_callback(void *arg)
1819 {
1820 	struct sonode *so = (struct sonode *)arg;
1821 
1822 	mutex_enter(&so->so_lock);
1823 
1824 	so->so_rcv_timer_tid = 0;
1825 	if (so->so_rcv_queued > 0) {
1826 		so_notify_data(so, so->so_rcv_queued);
1827 	} else {
1828 		mutex_exit(&so->so_lock);
1829 	}
1830 }
1831 
1832 #ifdef DEBUG
1833 /*
1834  * Verify that the length stored in so_rcv_queued and the length of data blocks
1835  * queued is same.
1836  */
1837 static boolean_t
1838 so_check_length(sonode_t *so)
1839 {
1840 	mblk_t *mp = so->so_rcv_q_head;
1841 	int len = 0;
1842 
1843 	ASSERT(MUTEX_HELD(&so->so_lock));
1844 
1845 	if (mp != NULL) {
1846 		len = msgdsize(mp);
1847 		while ((mp = mp->b_next) != NULL)
1848 			len += msgdsize(mp);
1849 	}
1850 	mp = so->so_rcv_head;
1851 	if (mp != NULL) {
1852 		len += msgdsize(mp);
1853 		while ((mp = mp->b_next) != NULL)
1854 			len += msgdsize(mp);
1855 	}
1856 	return ((len == so->so_rcv_queued) ? B_TRUE : B_FALSE);
1857 }
1858 #endif
1859 
1860 int
1861 so_get_mod_version(struct sockparams *sp)
1862 {
1863 	ASSERT(sp != NULL && sp->sp_smod_info != NULL);
1864 	return (sp->sp_smod_info->smod_version);
1865 }
1866 
1867 /*
1868  * so_start_fallback()
1869  *
1870  * Block new socket operations from coming in, and wait for active operations
1871  * to complete. Threads that are sleeping will be woken up so they can get
1872  * out of the way.
1873  *
1874  * The caller must be a reader on so_fallback_rwlock.
1875  */
1876 static boolean_t
1877 so_start_fallback(struct sonode *so)
1878 {
1879 	ASSERT(RW_READ_HELD(&so->so_fallback_rwlock));
1880 
1881 	mutex_enter(&so->so_lock);
1882 	if (so->so_state & SS_FALLBACK_PENDING) {
1883 		mutex_exit(&so->so_lock);
1884 		return (B_FALSE);
1885 	}
1886 	so->so_state |= SS_FALLBACK_PENDING;
1887 	/*
1888 	 * Poke all threads that might be sleeping. Any operation that comes
1889 	 * in after the cv_broadcast will observe the fallback pending flag
1890 	 * which cause the call to return where it would normally sleep.
1891 	 */
1892 	cv_broadcast(&so->so_state_cv);		/* threads in connect() */
1893 	cv_broadcast(&so->so_rcv_cv);		/* threads in recvmsg() */
1894 	cv_broadcast(&so->so_snd_cv);		/* threads in sendmsg() */
1895 	mutex_enter(&so->so_acceptq_lock);
1896 	cv_broadcast(&so->so_acceptq_cv);	/* threads in accept() */
1897 	mutex_exit(&so->so_acceptq_lock);
1898 	mutex_exit(&so->so_lock);
1899 
1900 	/*
1901 	 * The main reason for the rw_tryupgrade call is to provide
1902 	 * observability during the fallback process. We want to
1903 	 * be able to see if there are pending operations.
1904 	 */
1905 	if (rw_tryupgrade(&so->so_fallback_rwlock) == 0) {
1906 		/*
1907 		 * It is safe to drop and reaquire the fallback lock, because
1908 		 * we are guaranteed that another fallback cannot take place.
1909 		 */
1910 		rw_exit(&so->so_fallback_rwlock);
1911 		DTRACE_PROBE1(pending__ops__wait, (struct sonode *), so);
1912 		rw_enter(&so->so_fallback_rwlock, RW_WRITER);
1913 		DTRACE_PROBE1(pending__ops__complete, (struct sonode *), so);
1914 	}
1915 
1916 	return (B_TRUE);
1917 }
1918 
1919 /*
1920  * so_end_fallback()
1921  *
1922  * Allow socket opertions back in.
1923  *
1924  * The caller must be a writer on so_fallback_rwlock.
1925  */
1926 static void
1927 so_end_fallback(struct sonode *so)
1928 {
1929 	ASSERT(RW_ISWRITER(&so->so_fallback_rwlock));
1930 
1931 	mutex_enter(&so->so_lock);
1932 	so->so_state &= ~(SS_FALLBACK_PENDING|SS_FALLBACK_DRAIN);
1933 	mutex_exit(&so->so_lock);
1934 
1935 	rw_downgrade(&so->so_fallback_rwlock);
1936 }
1937 
1938 /*
1939  * so_quiesced_cb()
1940  *
1941  * Callback passed to the protocol during fallback. It is called once
1942  * the endpoint is quiescent.
1943  *
1944  * No requests from the user, no notifications from the protocol, so it
1945  * is safe to synchronize the state. Data can also be moved without
1946  * risk for reordering.
1947  *
1948  * We do not need to hold so_lock, since there can be only one thread
1949  * operating on the sonode.
1950  */
1951 static void
1952 so_quiesced_cb(sock_upper_handle_t sock_handle, queue_t *q,
1953     struct T_capability_ack *tcap, struct sockaddr *laddr, socklen_t laddrlen,
1954     struct sockaddr *faddr, socklen_t faddrlen, short opts)
1955 {
1956 	struct sonode *so = (struct sonode *)sock_handle;
1957 	boolean_t atmark;
1958 
1959 	sotpi_update_state(so, tcap, laddr, laddrlen, faddr, faddrlen, opts);
1960 
1961 	/*
1962 	 * Some protocols do not quiece the data path during fallback. Once
1963 	 * we set the SS_FALLBACK_DRAIN flag any attempt to queue data will
1964 	 * fail and the protocol is responsible for saving the data for later
1965 	 * delivery (i.e., once the fallback has completed).
1966 	 */
1967 	mutex_enter(&so->so_lock);
1968 	so->so_state |= SS_FALLBACK_DRAIN;
1969 	SOCKET_TIMER_CANCEL(so);
1970 	mutex_exit(&so->so_lock);
1971 
1972 	if (so->so_rcv_head != NULL) {
1973 		if (so->so_rcv_q_last_head == NULL)
1974 			so->so_rcv_q_head = so->so_rcv_head;
1975 		else
1976 			so->so_rcv_q_last_head->b_next = so->so_rcv_head;
1977 		so->so_rcv_q_last_head = so->so_rcv_last_head;
1978 	}
1979 
1980 	atmark = (so->so_state & SS_RCVATMARK) != 0;
1981 	/*
1982 	 * Clear any OOB state having to do with pending data. The TPI
1983 	 * code path will set the appropriate oob state when we move the
1984 	 * oob data to the STREAM head. We leave SS_HADOOBDATA since the oob
1985 	 * data has already been consumed.
1986 	 */
1987 	so->so_state &= ~(SS_RCVATMARK|SS_OOBPEND|SS_HAVEOOBDATA);
1988 
1989 	ASSERT(so->so_oobmsg != NULL || so->so_oobmark <= so->so_rcv_queued);
1990 
1991 	/*
1992 	 * Move data to the STREAM head.
1993 	 */
1994 	while (so->so_rcv_q_head != NULL) {
1995 		mblk_t *mp = so->so_rcv_q_head;
1996 		size_t mlen = msgdsize(mp);
1997 
1998 		so->so_rcv_q_head = mp->b_next;
1999 		mp->b_next = NULL;
2000 		mp->b_prev = NULL;
2001 
2002 		/*
2003 		 * Send T_EXDATA_IND if we are at the oob mark.
2004 		 */
2005 		if (atmark) {
2006 			struct T_exdata_ind *tei;
2007 			mblk_t *mp1 = SOTOTPI(so)->sti_exdata_mp;
2008 
2009 			SOTOTPI(so)->sti_exdata_mp = NULL;
2010 			ASSERT(mp1 != NULL);
2011 			mp1->b_datap->db_type = M_PROTO;
2012 			tei = (struct T_exdata_ind *)mp1->b_rptr;
2013 			tei->PRIM_type = T_EXDATA_IND;
2014 			tei->MORE_flag = 0;
2015 			mp1->b_wptr = (uchar_t *)&tei[1];
2016 
2017 			if (IS_SO_OOB_INLINE(so)) {
2018 				mp1->b_cont = mp;
2019 			} else {
2020 				ASSERT(so->so_oobmsg != NULL);
2021 				mp1->b_cont = so->so_oobmsg;
2022 				so->so_oobmsg = NULL;
2023 
2024 				/* process current mp next time around */
2025 				mp->b_next = so->so_rcv_q_head;
2026 				so->so_rcv_q_head = mp;
2027 				mlen = 0;
2028 			}
2029 			mp = mp1;
2030 
2031 			/* we have consumed the oob mark */
2032 			atmark = B_FALSE;
2033 		} else if (so->so_oobmark > 0) {
2034 			/*
2035 			 * Check if the OOB mark is within the current
2036 			 * mblk chain. In that case we have to split it up.
2037 			 */
2038 			if (so->so_oobmark < mlen) {
2039 				mblk_t *urg_mp = mp;
2040 
2041 				atmark = B_TRUE;
2042 				mp = NULL;
2043 				mlen = so->so_oobmark;
2044 
2045 				/*
2046 				 * It is assumed that the OOB mark does
2047 				 * not land within a mblk.
2048 				 */
2049 				do {
2050 					so->so_oobmark -= MBLKL(urg_mp);
2051 					mp = urg_mp;
2052 					urg_mp = urg_mp->b_cont;
2053 				} while (so->so_oobmark > 0);
2054 				mp->b_cont = NULL;
2055 				if (urg_mp != NULL) {
2056 					urg_mp->b_next = so->so_rcv_q_head;
2057 					so->so_rcv_q_head = urg_mp;
2058 				}
2059 			} else {
2060 				so->so_oobmark -= mlen;
2061 				if (so->so_oobmark == 0)
2062 					atmark = B_TRUE;
2063 			}
2064 		}
2065 
2066 		/*
2067 		 * Queue data on the STREAM head.
2068 		 */
2069 		so->so_rcv_queued -= mlen;
2070 		putnext(q, mp);
2071 	}
2072 	so->so_rcv_head = NULL;
2073 	so->so_rcv_last_head = NULL;
2074 	so->so_rcv_q_head = NULL;
2075 	so->so_rcv_q_last_head = NULL;
2076 
2077 	/*
2078 	 * Check if the oob byte is at the end of the data stream, or if the
2079 	 * oob byte has not yet arrived. In the latter case we have to send a
2080 	 * SIGURG and a mark indicator to the STREAM head. The mark indicator
2081 	 * is needed to guarantee correct behavior for SIOCATMARK. See block
2082 	 * comment in socktpi.h for more details.
2083 	 */
2084 	if (atmark || so->so_oobmark > 0) {
2085 		mblk_t *mp;
2086 
2087 		if (atmark && so->so_oobmsg != NULL) {
2088 			struct T_exdata_ind *tei;
2089 
2090 			mp = SOTOTPI(so)->sti_exdata_mp;
2091 			SOTOTPI(so)->sti_exdata_mp = NULL;
2092 			ASSERT(mp != NULL);
2093 			mp->b_datap->db_type = M_PROTO;
2094 			tei = (struct T_exdata_ind *)mp->b_rptr;
2095 			tei->PRIM_type = T_EXDATA_IND;
2096 			tei->MORE_flag = 0;
2097 			mp->b_wptr = (uchar_t *)&tei[1];
2098 
2099 			mp->b_cont = so->so_oobmsg;
2100 			so->so_oobmsg = NULL;
2101 
2102 			putnext(q, mp);
2103 		} else {
2104 			/* Send up the signal */
2105 			mp = SOTOTPI(so)->sti_exdata_mp;
2106 			SOTOTPI(so)->sti_exdata_mp = NULL;
2107 			ASSERT(mp != NULL);
2108 			DB_TYPE(mp) = M_PCSIG;
2109 			*mp->b_wptr++ = (uchar_t)SIGURG;
2110 			putnext(q, mp);
2111 
2112 			/* Send up the mark indicator */
2113 			mp = SOTOTPI(so)->sti_urgmark_mp;
2114 			SOTOTPI(so)->sti_urgmark_mp = NULL;
2115 			mp->b_flag = atmark ? MSGMARKNEXT : MSGNOTMARKNEXT;
2116 			putnext(q, mp);
2117 
2118 			so->so_oobmark = 0;
2119 		}
2120 	}
2121 
2122 	if (SOTOTPI(so)->sti_exdata_mp != NULL) {
2123 		freeb(SOTOTPI(so)->sti_exdata_mp);
2124 		SOTOTPI(so)->sti_exdata_mp = NULL;
2125 	}
2126 
2127 	if (SOTOTPI(so)->sti_urgmark_mp != NULL) {
2128 		freeb(SOTOTPI(so)->sti_urgmark_mp);
2129 		SOTOTPI(so)->sti_urgmark_mp = NULL;
2130 	}
2131 
2132 	ASSERT(so->so_oobmark == 0);
2133 	ASSERT(so->so_rcv_queued == 0);
2134 }
2135 
2136 #ifdef DEBUG
2137 /*
2138  * Do an integrity check of the sonode. This should be done if a
2139  * fallback fails after sonode has initially been converted to use
2140  * TPI and subsequently have to be reverted.
2141  *
2142  * Failure to pass the integrity check will panic the system.
2143  */
2144 void
2145 so_integrity_check(struct sonode *cur, struct sonode *orig)
2146 {
2147 	VERIFY(cur->so_vnode == orig->so_vnode);
2148 	VERIFY(cur->so_ops == orig->so_ops);
2149 	/*
2150 	 * For so_state we can only VERIFY the state flags in CHECK_STATE.
2151 	 * The other state flags might be affected by a notification from the
2152 	 * protocol.
2153 	 */
2154 #define	CHECK_STATE	(SS_CANTRCVMORE|SS_CANTSENDMORE|SS_NDELAY|SS_NONBLOCK| \
2155 	SS_ASYNC|SS_ACCEPTCONN|SS_SAVEDEOR|SS_RCVATMARK|SS_OOBPEND| \
2156 	SS_HAVEOOBDATA|SS_HADOOBDATA|SS_SENTLASTREADSIG|SS_SENTLASTWRITESIG)
2157 	VERIFY((cur->so_state & (orig->so_state & CHECK_STATE)) ==
2158 	    (orig->so_state & CHECK_STATE));
2159 	VERIFY(cur->so_mode == orig->so_mode);
2160 	VERIFY(cur->so_flag == orig->so_flag);
2161 	VERIFY(cur->so_count == orig->so_count);
2162 	/* Cannot VERIFY so_proto_connid; proto can update it */
2163 	VERIFY(cur->so_sockparams == orig->so_sockparams);
2164 	/* an error might have been recorded, but it can not be lost */
2165 	VERIFY(cur->so_error != 0 || orig->so_error == 0);
2166 	VERIFY(cur->so_family == orig->so_family);
2167 	VERIFY(cur->so_type == orig->so_type);
2168 	VERIFY(cur->so_protocol == orig->so_protocol);
2169 	VERIFY(cur->so_version == orig->so_version);
2170 	/* New conns might have arrived, but none should have been lost */
2171 	VERIFY(cur->so_acceptq_len >= orig->so_acceptq_len);
2172 	VERIFY(cur->so_acceptq_head == orig->so_acceptq_head);
2173 	VERIFY(cur->so_backlog == orig->so_backlog);
2174 	/* New OOB migth have arrived, but mark should not have been lost */
2175 	VERIFY(cur->so_oobmark >= orig->so_oobmark);
2176 	/* Cannot VERIFY so_oobmsg; the proto might have sent up a new one */
2177 	VERIFY(cur->so_pgrp == orig->so_pgrp);
2178 	VERIFY(cur->so_peercred == orig->so_peercred);
2179 	VERIFY(cur->so_cpid == orig->so_cpid);
2180 	VERIFY(cur->so_zoneid == orig->so_zoneid);
2181 	/* New data migth have arrived, but none should have been lost */
2182 	VERIFY(cur->so_rcv_queued >= orig->so_rcv_queued);
2183 	VERIFY(cur->so_rcv_q_head == orig->so_rcv_q_head);
2184 	VERIFY(cur->so_rcv_head == orig->so_rcv_head);
2185 	VERIFY(cur->so_proto_handle == orig->so_proto_handle);
2186 	VERIFY(cur->so_downcalls == orig->so_downcalls);
2187 	/* Cannot VERIFY so_proto_props; they can be updated by proto */
2188 }
2189 #endif
2190 
2191 /*
2192  * so_tpi_fallback()
2193  *
2194  * This is the fallback initation routine; things start here.
2195  *
2196  * Basic strategy:
2197  *   o Block new socket operations from coming in
2198  *   o Allocate/initate info needed by TPI
2199  *   o Quiesce the connection, at which point we sync
2200  *     state and move data
2201  *   o Change operations (sonodeops) associated with the socket
2202  *   o Unblock threads waiting for the fallback to finish
2203  */
2204 int
2205 so_tpi_fallback(struct sonode *so, struct cred *cr)
2206 {
2207 	int error;
2208 	queue_t *q;
2209 	struct sockparams *sp;
2210 	struct sockparams *newsp = NULL;
2211 	so_proto_fallback_func_t fbfunc;
2212 	boolean_t direct;
2213 	struct sonode *nso;
2214 #ifdef DEBUG
2215 	struct sonode origso;
2216 #endif
2217 	error = 0;
2218 	sp = so->so_sockparams;
2219 	fbfunc = sp->sp_smod_info->smod_proto_fallback_func;
2220 
2221 	/*
2222 	 * Fallback can only happen if there is a device associated
2223 	 * with the sonode, and the socket module has a fallback function.
2224 	 */
2225 	if (!SOCKPARAMS_HAS_DEVICE(sp) || fbfunc == NULL)
2226 		return (EINVAL);
2227 
2228 	/*
2229 	 * Initiate fallback; upon success we know that no new requests
2230 	 * will come in from the user.
2231 	 */
2232 	if (!so_start_fallback(so))
2233 		return (EAGAIN);
2234 #ifdef DEBUG
2235 	/*
2236 	 * Make a copy of the sonode in case we need to make an integrity
2237 	 * check later on.
2238 	 */
2239 	bcopy(so, &origso, sizeof (*so));
2240 #endif
2241 
2242 	sp->sp_stats.sps_nfallback.value.ui64++;
2243 
2244 	newsp = sockparams_hold_ephemeral_bydev(so->so_family, so->so_type,
2245 	    so->so_protocol, so->so_sockparams->sp_sdev_info.sd_devpath,
2246 	    KM_SLEEP, &error);
2247 	if (error != 0)
2248 		goto out;
2249 
2250 	if (so->so_direct != NULL) {
2251 		sodirect_t *sodp = so->so_direct;
2252 		mutex_enter(sodp->sod_lockp);
2253 
2254 		so->so_direct->sod_state &= ~SOD_ENABLED;
2255 		so->so_state &= ~SS_SODIRECT;
2256 		ASSERT(sodp->sod_uioafh == NULL);
2257 		mutex_exit(sodp->sod_lockp);
2258 	}
2259 
2260 	/* Turn sonode into a TPI socket */
2261 	error = sotpi_convert_sonode(so, newsp, &direct, &q, cr);
2262 	if (error != 0)
2263 		goto out;
2264 
2265 
2266 	/*
2267 	 * Now tell the protocol to start using TPI. so_quiesced_cb be
2268 	 * called once it's safe to synchronize state.
2269 	 */
2270 	DTRACE_PROBE1(proto__fallback__begin, struct sonode *, so);
2271 	error = (*fbfunc)(so->so_proto_handle, q, direct, so_quiesced_cb);
2272 	DTRACE_PROBE1(proto__fallback__end, struct sonode *, so);
2273 
2274 	if (error != 0) {
2275 		/* protocol was unable to do a fallback, revert the sonode */
2276 		sotpi_revert_sonode(so, cr);
2277 		goto out;
2278 	}
2279 
2280 	/*
2281 	 * Walk the accept queue and notify the proto that they should
2282 	 * fall back to TPI. The protocol will send up the T_CONN_IND.
2283 	 */
2284 	nso = so->so_acceptq_head;
2285 	while (nso != NULL) {
2286 		int rval;
2287 
2288 		DTRACE_PROBE1(proto__fallback__begin, struct sonode *, nso);
2289 		rval = (*fbfunc)(nso->so_proto_handle, NULL, direct, NULL);
2290 		DTRACE_PROBE1(proto__fallback__end, struct sonode *, nso);
2291 		if (rval != 0) {
2292 			zcmn_err(getzoneid(), CE_WARN,
2293 			    "Failed to convert socket in accept queue to TPI. "
2294 			    "Pid = %d\n", curproc->p_pid);
2295 		}
2296 		nso = nso->so_acceptq_next;
2297 	}
2298 
2299 	/*
2300 	 * Now flush the acceptq, this will destroy all sockets. They will
2301 	 * be recreated in sotpi_accept().
2302 	 */
2303 	so_acceptq_flush(so);
2304 
2305 	mutex_enter(&so->so_lock);
2306 	so->so_state |= SS_FALLBACK_COMP;
2307 	mutex_exit(&so->so_lock);
2308 
2309 	/*
2310 	 * Swap the sonode ops. Socket opertations that come in once this
2311 	 * is done will proceed without blocking.
2312 	 */
2313 	so->so_ops = &sotpi_sonodeops;
2314 
2315 	/*
2316 	 * Wake up any threads stuck in poll. This is needed since the poll
2317 	 * head changes when the fallback happens (moves from the sonode to
2318 	 * the STREAMS head).
2319 	 */
2320 	pollwakeup(&so->so_poll_list, POLLERR);
2321 out:
2322 	so_end_fallback(so);
2323 
2324 	if (error != 0) {
2325 #ifdef DEBUG
2326 		so_integrity_check(so, &origso);
2327 #endif
2328 		zcmn_err(getzoneid(), CE_WARN,
2329 		    "Failed to convert socket to TPI (err=%d). Pid = %d\n",
2330 		    error, curproc->p_pid);
2331 		if (newsp != NULL)
2332 			SOCKPARAMS_DEC_REF(newsp);
2333 	}
2334 
2335 	return (error);
2336 }
2337