xref: /titanic_50/usr/src/uts/common/fs/sockfs/nl7curi.c (revision 8461248208fabd3a8230615f8615e5bf1b4dcdcb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/strsubr.h>
30 #include <sys/strsun.h>
31 #include <sys/param.h>
32 #include <sys/sysmacros.h>
33 #include <vm/seg_map.h>
34 #include <vm/seg_kpm.h>
35 #include <sys/condvar_impl.h>
36 #include <sys/promif.h>
37 #include <sys/sendfile.h>
38 #include <fs/sockfs/nl7c.h>
39 #include <fs/sockfs/nl7curi.h>
40 
41 /*
42  * Some externs:
43  */
44 
45 extern boolean_t nl7c_logd_enabled;
46 extern void	nl7c_logd_log(uri_desc_t *, uri_desc_t *, time_t, ipaddr_t);
47 boolean_t	nl7c_close_addr(struct sonode *);
48 
49 /*
50  * Various global tuneables:
51  */
52 
53 clock_t		nl7c_uri_ttl = -1;	/* TTL in seconds (-1 == infinite) */
54 
55 boolean_t	nl7c_use_kmem = B_FALSE; /* Force use of kmem (no segmap) */
56 
57 uint64_t	nl7c_file_prefetch = 1; /* File cache prefetch pages */
58 
59 uint64_t	nl7c_uri_max = 0;	/* Maximum bytes (0 == infinite) */
60 uint64_t	nl7c_uri_bytes = 0;	/* Bytes of kmem used by URIs */
61 
62 /*
63  * Counters that need to move to kstat and/or be removed:
64  */
65 
66 volatile uint64_t nl7c_uri_request = 0;
67 volatile uint64_t nl7c_uri_hit = 0;
68 volatile uint64_t nl7c_uri_pass = 0;
69 volatile uint64_t nl7c_uri_miss = 0;
70 volatile uint64_t nl7c_uri_temp = 0;
71 volatile uint64_t nl7c_uri_more = 0;
72 volatile uint64_t nl7c_uri_data = 0;
73 volatile uint64_t nl7c_uri_sendfilev = 0;
74 volatile uint64_t nl7c_uri_reclaim_calls = 0;
75 volatile uint64_t nl7c_uri_reclaim_cnt = 0;
76 volatile uint64_t nl7c_uri_pass_urifail = 0;
77 volatile uint64_t nl7c_uri_pass_dupbfail = 0;
78 volatile uint64_t nl7c_uri_more_get = 0;
79 volatile uint64_t nl7c_uri_pass_getnot = 0;
80 volatile uint64_t nl7c_uri_pass_option = 0;
81 volatile uint64_t nl7c_uri_more_eol = 0;
82 volatile uint64_t nl7c_uri_more_http = 0;
83 volatile uint64_t nl7c_uri_pass_http = 0;
84 volatile uint64_t nl7c_uri_pass_addfail = 0;
85 volatile uint64_t nl7c_uri_pass_temp = 0;
86 volatile uint64_t nl7c_uri_expire = 0;
87 volatile uint64_t nl7c_uri_NULL1 = 0;
88 volatile uint64_t nl7c_uri_NULL2 = 0;
89 volatile uint64_t nl7c_uri_close = 0;
90 volatile uint64_t nl7c_uri_temp_close = 0;
91 volatile uint64_t nl7c_uri_free = 0;
92 volatile uint64_t nl7c_uri_temp_free = 0;
93 
94 /*
95  * Various kmem_cache_t's:
96  */
97 
98 static kmem_cache_t *uri_kmc;
99 static kmem_cache_t *uri_rd_kmc;
100 static kmem_cache_t *uri_desb_kmc;
101 static kmem_cache_t *uri_segmap_kmc;
102 
103 static void uri_kmc_reclaim(void *);
104 
105 static void nl7c_uri_reclaim(void);
106 
107 /*
108  * The URI hash is a dynamically sized A/B bucket hash, when the current
109  * hash's average bucket chain length exceeds URI_HASH_AVRG a new hash of
110  * the next P2Ps[] size is created.
111  *
112  * All lookups are done in the current hash then the new hash (if any),
113  * if there is a new has then when a current hash bucket chain is examined
114  * any uri_desc_t members will be migrated to the new hash and when the
115  * last uri_desc_t has been migrated then the new hash will become the
116  * current and the previous current hash will be freed leaving a single
117  * hash.
118  *
119  * uri_hash_t - hash bucket (chain) type, contained in the uri_hash_ab[]
120  * and can be accessed only after aquiring the uri_hash_access lock (for
121  * READER or WRITER) then acquiring the lock uri_hash_t.lock, the uri_hash_t
122  * and all linked uri_desc_t.hash members are protected. Note, a REF_HOLD()
123  * is placed on all uri_desc_t uri_hash_t list members.
124  *
125  * uri_hash_access - rwlock for all uri_hash_* variables, READER for read
126  * access and WRITER for write access. Note, WRITER is only required for
127  * hash geometry changes.
128  *
129  * uri_hash_which - which uri_hash_ab[] is the current hash.
130  *
131  * uri_hash_n[] - the P2Ps[] index for each uri_hash_ab[].
132  *
133  * uri_hash_sz[] - the size for each uri_hash_ab[].
134  *
135  * uri_hash_cnt[] - the total uri_desc_t members for each uri_hash_ab[].
136  *
137  * uri_hash_overflow[] - the uri_hash_cnt[] for each uri_hash_ab[] when
138  * a new uri_hash_ab[] needs to be created.
139  *
140  * uri_hash_ab[] - the uri_hash_t entries.
141  *
142  * uri_hash_lru[] - the last uri_hash_ab[] walked for lru reclaim.
143  */
144 
145 typedef struct uri_hash_s {
146 	struct uri_desc_s	*list;		/* List of uri_t(s) */
147 	kmutex_t		lock;
148 } uri_hash_t;
149 
150 #define	URI_HASH_AVRG	5	/* Desired average hash chain length */
151 #define	URI_HASH_N_INIT	9	/* P2Ps[] initial index */
152 
153 static krwlock_t	uri_hash_access;
154 static uint32_t		uri_hash_which = 0;
155 static uint32_t		uri_hash_n[2] = {URI_HASH_N_INIT, 0};
156 static uint32_t		uri_hash_sz[2] = {0, 0};
157 static uint32_t		uri_hash_cnt[2] = {0, 0};
158 static uint32_t		uri_hash_overflow[2] = {0, 0};
159 static uri_hash_t	*uri_hash_ab[2] = {NULL, NULL};
160 static uri_hash_t	*uri_hash_lru[2] = {NULL, NULL};
161 
162 /*
163  * Primes for N of 3 - 24 where P is first prime less then (2^(N-1))+(2^(N-2))
164  * these primes have been foud to be useful for prime sized hash tables.
165  */
166 
167 static const int P2Ps[] = {
168 	0, 0, 0, 5, 11, 23, 47, 89, 191, 383, 761, 1531, 3067,
169 	6143, 12281, 24571, 49139, 98299, 196597, 393209,
170 	786431, 1572853, 3145721, 6291449, 12582893, 0};
171 
172 /*
173  * Hash macros:
174  *
175  *    H2A(char *cp, char *ep, char c) - convert the escaped octet (ASCII)
176  *    hex multichar of the format "%HH" pointeded to by *cp to a char and
177  *    return in c, *ep points to past end of (char *), on return *cp will
178  *    point to the last char consumed.
179  *
180  *    URI_HASH(unsigned hix, char *cp, char *ep) - hash the char(s) from
181  *    *cp to *ep to the unsigned hix, cp nor ep are modified.
182  *
183  *    URI_HASH_STR(unsigned hix, str_t *sp) - hash the str_t *sp.
184  *
185  *    URI_HASH_IX(unsigned hix, int hsz) - convert the hash value hix to
186  *    a hash index 0 - hsz.
187  *
188  *    URI_HASH_DESC(uri_desc_t *uri, int which, unsigned hix) - hash the
189  *    uri_desc_t *uri's str_t path member,
190  *
191  *    URI_HASH_MIGRATE(from, hp, to) - migrate the uri_hash_t *hp list
192  *    uri_desc_t members from hash from to hash to.
193  *
194  *    URI_HASH_UNLINK(cur, new, hp, puri, uri) - unlink the uri_desc_t
195  *    *uri which is a member of the uri_hash_t *hp list with a previous
196  *    list member of *puri for the uri_hash_ab[] cur. After unlinking
197  *    check for cur hash empty, if so make new cur. Note, as this macro
198  *    can change a hash chain it needs to be run under hash_access as
199  *    RW_WRITER, futher as it can change the new hash to cur any access
200  *    to the hash state must be done after either dropping locks and
201  *    starting over or making sure the global state is consistent after
202  *    as before.
203  */
204 
205 #define	H2A(cp, ep, c) {						\
206 	int	_h = 2;							\
207 	int	_n = 0;							\
208 	char	_hc;							\
209 									\
210 	while (_h > 0 && ++(cp) < (ep)) {				\
211 		if (_h == 1)						\
212 			_n *= 0x10;					\
213 		_hc = *(cp);						\
214 		if (_hc >= '0' && _hc <= '9')				\
215 			_n += _hc - '0';				\
216 		else if (_hc >= 'a' || _hc <= 'f')			\
217 			_n += _hc - 'W';				\
218 		else if (_hc >= 'A' || _hc <= 'F')			\
219 			_n += _hc - '7';				\
220 		_h--;							\
221 	}								\
222 	(c) = _n;							\
223 }
224 
225 #define	URI_HASH(hv, cp, ep) {						\
226 	char	*_s = (cp);						\
227 	char	_c;							\
228 									\
229 	while (_s < (ep)) {						\
230 		if ((_c = *_s) == '%') {				\
231 			H2A(_s, (ep), _c);				\
232 		}							\
233 		(hv) = ((hv) << 5) + (hv) + _c;				\
234 		(hv) &= 0x7FFFFFFF;					\
235 		_s++;							\
236 	}								\
237 }
238 
239 #define	URI_HASH_STR(hix, sp) URI_HASH(hix, (sp)->cp, (sp)->ep)
240 
241 #define	URI_HASH_IX(hix, hsz) (hix) = (hix) % (hsz)
242 
243 #define	URI_HASH_DESC(uri, which, hix) {				\
244 	(hix) = 0;							\
245 	URI_HASH_STR((hix), &(uri)->path);				\
246 	if ((uri)->auth.cp != NULL) {					\
247 		URI_HASH_STR((hix), &(uri)->auth);			\
248 	}								\
249 	URI_HASH_IX((hix), uri_hash_sz[(which)]);			\
250 }
251 
252 #define	URI_HASH_MIGRATE(from, hp, to) {				\
253 	uri_desc_t	*_nuri;						\
254 	uint32_t	_nhix;						\
255 	uri_hash_t	*_nhp;						\
256 									\
257 	mutex_enter(&(hp)->lock);					\
258 	while ((_nuri = (hp)->list) != NULL) {				\
259 		(hp)->list = _nuri->hash;				\
260 		atomic_add_32(&uri_hash_cnt[(from)], -1);		\
261 		atomic_add_32(&uri_hash_cnt[(to)], 1);			\
262 		URI_HASH_DESC(_nuri, (to), _nhix);			\
263 		_nhp = &uri_hash_ab[(to)][_nhix];			\
264 		mutex_enter(&_nhp->lock);				\
265 		_nuri->hash = _nhp->list;				\
266 		_nhp->list = _nuri;					\
267 		_nuri->hit = 0;						\
268 		mutex_exit(&_nhp->lock);				\
269 	}								\
270 	mutex_exit(&(hp)->lock);					\
271 }
272 
273 #define	URI_HASH_UNLINK(cur, new, hp, puri, uri) {			\
274 	if ((puri) != NULL) {						\
275 		(puri)->hash = (uri)->hash;				\
276 	} else {							\
277 		(hp)->list = (uri)->hash;				\
278 	}								\
279 	if (atomic_add_32_nv(&uri_hash_cnt[(cur)], -1) == 0 &&		\
280 	    uri_hash_ab[(new)] != NULL) {				\
281 		kmem_free(uri_hash_ab[cur],				\
282 		    sizeof (uri_hash_t) * uri_hash_sz[cur]);		\
283 		uri_hash_ab[(cur)] = NULL;				\
284 		uri_hash_lru[(cur)] = NULL;				\
285 		uri_hash_which = (new);					\
286 	} else {							\
287 		uri_hash_lru[(cur)] = (hp);				\
288 	}								\
289 }
290 
291 #define	URI_RD_ADD(uri, rdp, size, offset) {				\
292 	if ((uri)->tail == NULL) {					\
293 		(rdp) = &(uri)->response;				\
294 	} else {							\
295 		(rdp) = kmem_cache_alloc(uri_rd_kmc, KM_SLEEP);		\
296 		(uri)->tail->next = (rdp);				\
297 	}								\
298 	(rdp)->sz = size;						\
299 	(rdp)->off = offset;						\
300 	(rdp)->next = NULL;						\
301 	(uri)->tail = rdp;						\
302 	(uri)->count += size;						\
303 }
304 
305 void
306 nl7c_uri_init(void)
307 {
308 	uint32_t	cur = uri_hash_which;
309 
310 	rw_init(&uri_hash_access, NULL, RW_DEFAULT, NULL);
311 
312 	uri_hash_sz[cur] = P2Ps[URI_HASH_N_INIT];
313 	uri_hash_overflow[cur] = P2Ps[URI_HASH_N_INIT] * URI_HASH_AVRG;
314 	uri_hash_ab[cur] = kmem_zalloc(sizeof (uri_hash_t) * uri_hash_sz[cur],
315 	    KM_SLEEP);
316 	uri_hash_lru[cur] = uri_hash_ab[cur];
317 
318 	uri_kmc = kmem_cache_create("NL7C_uri_kmc", sizeof (uri_desc_t), 0,
319 	    NULL, NULL, uri_kmc_reclaim, NULL, NULL, 0);
320 
321 	uri_rd_kmc = kmem_cache_create("NL7C_uri_rd_kmc", sizeof (uri_rd_t), 0,
322 	    NULL, NULL, NULL, NULL, NULL, 0);
323 
324 	uri_desb_kmc = kmem_cache_create("NL7C_uri_desb_kmc",
325 	    sizeof (uri_desb_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
326 
327 	uri_segmap_kmc = kmem_cache_create("NL7C_uri_segmap_kmc",
328 	    sizeof (uri_segmap_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
329 
330 	nl7c_http_init();
331 }
332 
333 /*
334  * The uri_desc_t ref_t inactive function called on the last REF_RELE(),
335  * free all resources contained in the uri_desc_t. Note, the uri_desc_t
336  * will be freed by REF_RELE() on return.
337  */
338 
339 static void
340 uri_inactive(uri_desc_t *uri)
341 {
342 	int64_t	 bytes = 0;
343 
344 	if (uri->tail) {
345 		uri_rd_t *rdp = &uri->response;
346 		uri_rd_t *free = NULL;
347 
348 		while (rdp) {
349 			if (rdp->off == -1) {
350 				bytes += rdp->sz;
351 				kmem_free(rdp->data.kmem, rdp->sz);
352 			} else {
353 				VN_RELE(rdp->data.vnode);
354 			}
355 			rdp = rdp->next;
356 			if (free != NULL) {
357 				kmem_cache_free(uri_rd_kmc, free);
358 			}
359 			free = rdp;
360 		}
361 	}
362 	if (bytes) {
363 		atomic_add_64(&nl7c_uri_bytes, -bytes);
364 	}
365 	if (uri->scheme != NULL) {
366 		nl7c_http_free(uri->scheme);
367 	}
368 	if (uri->reqmp) {
369 		freeb(uri->reqmp);
370 	}
371 }
372 
373 /*
374  * The reclaim is called by the kmem subsystem when kmem is running
375  * low. More work is needed to determine the best reclaim policy, for
376  * now we just manipulate the nl7c_uri_max global maximum bytes threshold
377  * value using a simple arithmetic backoff of the value every time this
378  * function is called then call uri_reclaim() to enforce it.
379  *
380  * Note, this value remains in place and enforced for all subsequent
381  * URI request/response processing.
382  *
383  * Note, nl7c_uri_max is currently initialized to 0 or infinite such that
384  * the first call here set it to the current uri_bytes value then backoff
385  * from there.
386  *
387  * XXX how do we determine when to increase nl7c_uri_max ???
388  */
389 
390 /*ARGSUSED*/
391 static void
392 uri_kmc_reclaim(void *arg)
393 {
394 	uint64_t new_max;
395 
396 	if ((new_max = nl7c_uri_max) == 0) {
397 		/* Currently infinite, initialize to current bytes used */
398 		nl7c_uri_max = nl7c_uri_bytes;
399 		new_max = nl7c_uri_bytes;
400 	}
401 	if (new_max > 1) {
402 		/* Lower max_bytes to 93% of current value */
403 		new_max >>= 1;			/* 50% */
404 		new_max += (new_max >> 1);	/* 75% */
405 		new_max += (new_max >> 2);	/* 93% */
406 		if (new_max < nl7c_uri_max)
407 			nl7c_uri_max = new_max;
408 		else
409 			nl7c_uri_max = 1;
410 	}
411 	nl7c_uri_reclaim();
412 }
413 
414 /*
415  * Delete a uri_desc_t from the URI hash.
416  */
417 
418 static void
419 uri_delete(uri_desc_t *del)
420 {
421 	uint32_t	hash = 0;
422 	uint32_t	hix;
423 	uri_hash_t	*hp;
424 	uri_desc_t	*uri;
425 	uri_desc_t	*puri;
426 	uint32_t	cur;
427 	uint32_t	new;
428 
429 	URI_HASH_STR(hash, &(del->path));
430 	if (del->auth.cp != NULL) {
431 		/* Calculate hash for request authority */
432 		URI_HASH(hash, del->auth.cp, del->auth.ep);
433 	}
434 	rw_enter(&uri_hash_access, RW_WRITER);
435 	cur = uri_hash_which;
436 	new = cur ? 0 : 1;
437 next:
438 	puri = NULL;
439 	hix = hash;
440 	URI_HASH_IX(hix, uri_hash_sz[cur]);
441 	hp = &uri_hash_ab[cur][hix];
442 	for (uri = hp->list; uri != NULL; uri = uri->hash) {
443 		if (uri != del) {
444 			puri = uri;
445 			continue;
446 		}
447 		/*
448 		 * Found the URI, unlink from the hash chain,
449 		 * drop locks, ref release it.
450 		 */
451 		URI_HASH_UNLINK(cur, new, hp, puri, uri);
452 		rw_exit(&uri_hash_access);
453 		REF_RELE(uri);
454 		return;
455 	}
456 	if (cur != new && uri_hash_ab[new] != NULL) {
457 		/*
458 		 * Not found in current hash and have a new hash so
459 		 * check the new hash next.
460 		 */
461 		cur = new;
462 		goto next;
463 	}
464 	rw_exit(&uri_hash_access);
465 }
466 
467 /*
468  * Add a uri_desc_t to the URI hash.
469  */
470 
471 static void
472 uri_add(uri_desc_t *uri, krw_t rwlock, boolean_t nonblocking)
473 {
474 	uint32_t	hix;
475 	uri_hash_t	*hp;
476 	uint32_t	cur = uri_hash_which;
477 	uint32_t	new = cur ? 0 : 1;
478 
479 	/*
480 	 * Caller of uri_add() must hold the uri_hash_access rwlock.
481 	 */
482 	ASSERT((rwlock == RW_READER && RW_READ_HELD(&uri_hash_access)) ||
483 	    (rwlock == RW_WRITER && RW_WRITE_HELD(&uri_hash_access)));
484 	/*
485 	 * uri_add() always succeeds so add a hash ref to the URI now.
486 	 */
487 	REF_HOLD(uri);
488 again:
489 	URI_HASH_DESC(uri, cur, hix);
490 	if (uri_hash_ab[new] == NULL &&
491 	    uri_hash_cnt[cur] < uri_hash_overflow[cur]) {
492 		/*
493 		 * Easy case, no new hash and current hasn't overflowed,
494 		 * add URI to current hash and return.
495 		 *
496 		 * Note, the check for uri_hash_cnt[] above aren't done
497 		 * atomictally, i.e. multiple threads can be in this code
498 		 * as RW_READER and update the cnt[], this isn't a problem
499 		 * as the check is only advisory.
500 		 */
501 	fast:
502 		atomic_add_32(&uri_hash_cnt[cur], 1);
503 		hp = &uri_hash_ab[cur][hix];
504 		mutex_enter(&hp->lock);
505 		uri->hash = hp->list;
506 		hp->list = uri;
507 		mutex_exit(&hp->lock);
508 		rw_exit(&uri_hash_access);
509 		return;
510 	}
511 	if (uri_hash_ab[new] == NULL) {
512 		/*
513 		 * Need a new a or b hash, if not already RW_WRITER
514 		 * try to upgrade our lock to writer.
515 		 */
516 		if (rwlock != RW_WRITER && ! rw_tryupgrade(&uri_hash_access)) {
517 			/*
518 			 * Upgrade failed, we can't simple exit and reenter
519 			 * the lock as after the exit and before the reenter
520 			 * the whole world can change so just wait for writer
521 			 * then do everything again.
522 			 */
523 			if (nonblocking) {
524 				/*
525 				 * Can't block, use fast-path above.
526 				 *
527 				 * XXX should have a background thread to
528 				 * handle new ab[] in this case so as to
529 				 * not overflow the cur hash to much.
530 				 */
531 				goto fast;
532 			}
533 			rw_exit(&uri_hash_access);
534 			rwlock = RW_WRITER;
535 			rw_enter(&uri_hash_access, rwlock);
536 			cur = uri_hash_which;
537 			new = cur ? 0 : 1;
538 			goto again;
539 		}
540 		rwlock = RW_WRITER;
541 		if (uri_hash_ab[new] == NULL) {
542 			/*
543 			 * Still need a new hash, allocate and initialize
544 			 * the new hash.
545 			 */
546 			uri_hash_n[new] = uri_hash_n[cur] + 1;
547 			if (uri_hash_n[new] == 0) {
548 				/*
549 				 * No larger P2Ps[] value so use current,
550 				 * i.e. 2 of the largest are better than 1 ?
551 				 */
552 				uri_hash_n[new] = uri_hash_n[cur];
553 				cmn_err(CE_NOTE, "NL7C: hash index overflow");
554 			}
555 			uri_hash_sz[new] = P2Ps[uri_hash_n[new]];
556 			ASSERT(uri_hash_cnt[new] == 0);
557 			uri_hash_overflow[new] = uri_hash_sz[new] *
558 			    URI_HASH_AVRG;
559 			uri_hash_ab[new] = kmem_zalloc(sizeof (uri_hash_t) *
560 			    uri_hash_sz[new], nonblocking ? KM_NOSLEEP :
561 			    KM_SLEEP);
562 			if (uri_hash_ab[new] == NULL) {
563 				/*
564 				 * Alloc failed, use fast-path above.
565 				 *
566 				 * XXX should have a background thread to
567 				 * handle new ab[] in this case so as to
568 				 * not overflow the cur hash to much.
569 				 */
570 				goto fast;
571 			}
572 			uri_hash_lru[new] = uri_hash_ab[new];
573 		}
574 	}
575 	/*
576 	 * Hashed against current hash so migrate any current hash chain
577 	 * members, if any.
578 	 *
579 	 * Note, the hash chain list can be checked for a non empty list
580 	 * outside of the hash chain list lock as the hash chain struct
581 	 * can't be destroyed while in the uri_hash_access rwlock, worst
582 	 * case is that a non empty list is found and after acquiring the
583 	 * lock another thread beats us to it (i.e. migrated the list).
584 	 */
585 	hp = &uri_hash_ab[cur][hix];
586 	if (hp->list != NULL) {
587 		URI_HASH_MIGRATE(cur, hp, new);
588 	}
589 	/*
590 	 * If new hash has overflowed before current hash has been
591 	 * completely migrated then walk all current hash chains and
592 	 * migrate list members now.
593 	 */
594 	if (atomic_add_32_nv(&uri_hash_cnt[new], 1) >= uri_hash_overflow[new]) {
595 		for (hix = 0; hix < uri_hash_sz[cur]; hix++) {
596 			hp = &uri_hash_ab[cur][hix];
597 			if (hp->list != NULL) {
598 				URI_HASH_MIGRATE(cur, hp, new);
599 			}
600 		}
601 	}
602 	/*
603 	 * Add URI to new hash.
604 	 */
605 	URI_HASH_DESC(uri, new, hix);
606 	hp = &uri_hash_ab[new][hix];
607 	mutex_enter(&hp->lock);
608 	uri->hash = hp->list;
609 	hp->list = uri;
610 	mutex_exit(&hp->lock);
611 	/*
612 	 * Last, check to see if last cur hash chain has been
613 	 * migrated, if so free cur hash and make new hash cur.
614 	 */
615 	if (uri_hash_cnt[cur] == 0) {
616 		/*
617 		 * If we don't already hold the uri_hash_access rwlock for
618 		 * RW_WRITE try to upgrade to RW_WRITE and if successful
619 		 * check again and to see if still need to do the free.
620 		 */
621 		if ((rwlock == RW_WRITER || rw_tryupgrade(&uri_hash_access)) &&
622 		    uri_hash_cnt[cur] == 0 && uri_hash_ab[new] != 0) {
623 			kmem_free(uri_hash_ab[cur],
624 			    sizeof (uri_hash_t) * uri_hash_sz[cur]);
625 			uri_hash_ab[cur] = NULL;
626 			uri_hash_lru[cur] = NULL;
627 			uri_hash_which = new;
628 		}
629 	}
630 	rw_exit(&uri_hash_access);
631 }
632 
633 /*
634  * Lookup a uri_desc_t in the URI hash, if found free the request uri_desc_t
635  * and return the found uri_desc_t with a REF_HOLD() placed on it. Else, use
636  * the request URI to create a new hash entry.
637  */
638 
639 static uri_desc_t *
640 uri_lookup(uri_desc_t *ruri, boolean_t add, boolean_t nonblocking)
641 {
642 	uint32_t	hash = 0;
643 	uint32_t	hix;
644 	uri_hash_t	*hp;
645 	uri_desc_t	*uri;
646 	uri_desc_t	*puri;
647 	uint32_t	cur;
648 	uint32_t	new;
649 	char		*rcp = ruri->path.cp;
650 	char		*rep = ruri->path.ep;
651 
652 	/* Calculate hash for request path */
653 	URI_HASH(hash, rcp, rep);
654 	if (ruri->auth.cp != NULL) {
655 		/* Calculate hash for request authority */
656 		URI_HASH(hash, ruri->auth.cp, ruri->auth.ep);
657 	}
658 again:
659 	rw_enter(&uri_hash_access, RW_READER);
660 	cur = uri_hash_which;
661 	new = cur ? 0 : 1;
662 nexthash:
663 	puri = NULL;
664 	hix = hash;
665 	URI_HASH_IX(hix, uri_hash_sz[cur]);
666 	hp = &uri_hash_ab[cur][hix];
667 	mutex_enter(&hp->lock);
668 	for (uri = hp->list; uri != NULL; uri = uri->hash) {
669 		char	*ap = uri->path.cp;
670 		char	*bp = rcp;
671 		char	a, b;
672 
673 		/* Compare paths */
674 		while (bp < rep && ap < uri->path.ep) {
675 			if ((a = *ap) == '%') {
676 				/* Escaped hex multichar, convert it */
677 				H2A(ap, uri->path.ep, a);
678 			}
679 			if ((b = *bp) == '%') {
680 				/* Escaped hex multichar, convert it */
681 				H2A(bp, rep, b);
682 			}
683 			if (a != b) {
684 				/* Char's don't match */
685 				goto nexturi;
686 			}
687 			ap++;
688 			bp++;
689 		}
690 		if (bp != rep || ap != uri->path.ep) {
691 			/* Not same length */
692 			goto nexturi;
693 		}
694 		ap = uri->auth.cp;
695 		bp = ruri->auth.cp;
696 		if (ap != NULL) {
697 			if (bp == NULL) {
698 				/* URI has auth request URI doesn't */
699 				goto nexturi;
700 			}
701 			while (bp < ruri->auth.ep && ap < uri->auth.ep) {
702 				if ((a = *ap) == '%') {
703 					/* Escaped hex multichar, convert it */
704 					H2A(ap, uri->path.ep, a);
705 				}
706 				if ((b = *bp) == '%') {
707 					/* Escaped hex multichar, convert it */
708 					H2A(bp, rep, b);
709 				}
710 				if (a != b) {
711 					/* Char's don't match */
712 					goto nexturi;
713 				}
714 				ap++;
715 				bp++;
716 			}
717 			if (bp != ruri->auth.ep || ap != uri->auth.ep) {
718 				/* Not same length */
719 				goto nexturi;
720 			}
721 		} else if (bp != NULL) {
722 			/* URI doesn't have auth and request URI does */
723 			goto nexturi;
724 		}
725 		if (uri->scheme != NULL) {
726 			if (ruri->scheme == NULL) {
727 				/*
728 				 * URI has scheme private qualifiers,
729 				 * request URI doesn't.
730 				 */
731 				goto nexturi;
732 			}
733 			if (! nl7c_http_cmp(uri->scheme, ruri->scheme)) {
734 				/* No match */
735 				goto nexturi;
736 			}
737 		} else if (ruri->scheme != NULL) {
738 			/*
739 			 * URI doesn't have scheme private qualifiers,
740 			 * request URI does.
741 			 */
742 			goto nexturi;
743 		}
744 		/*
745 		 * Have a match, check for expire or request no cache.
746 		 */
747 		if (uri->expire >= 0 && uri->expire <= lbolt || ruri->nocache) {
748 			/*
749 			 * URI has expired or request specified to not use
750 			 * the cached version, unlink the URI from the hash
751 			 * chain, release all locks, release the hash ref
752 			 * on the URI, and last look it up again.
753 			 */
754 			if (puri != NULL) {
755 				puri->hash = uri->hash;
756 			} else {
757 				hp->list = uri->hash;
758 			}
759 			mutex_exit(&hp->lock);
760 			atomic_add_32(&uri_hash_cnt[cur], -1);
761 			rw_exit(&uri_hash_access);
762 			nl7c_uri_expire++;
763 			REF_RELE(uri);
764 			goto again;
765 		}
766 		/*
767 		 * Ready URI for return, put a reference hold on the URI,
768 		 * if this URI is currently being processed (i.e. filled)
769 		 * then wait for the processing to be completed first, free
770 		 * up the request URI and return the matched URI.
771 		 */
772 		REF_HOLD(uri);
773 		mutex_enter(&uri->proclock);
774 		if (uri->proc != NULL) {
775 			/* The URI is being processed, wait for completion */
776 			mutex_exit(&hp->lock);
777 			rw_exit(&uri_hash_access);
778 			if (! nonblocking &&
779 			    cv_wait_sig(&uri->waiting, &uri->proclock)) {
780 				/*
781 				 * URI has been processed but things may
782 				 * have changed while we were away so do
783 				 * most everything again.
784 				 */
785 				mutex_exit(&uri->proclock);
786 				REF_RELE(uri);
787 				goto again;
788 			} else {
789 				/*
790 				 * A nonblocking socket or an interrupted
791 				 * cv_wait_sig() in the first case can't
792 				 * block waiting for the processing of the
793 				 * uri hash hit uri to complete, in both
794 				 * cases just return failure to lookup.
795 				 */
796 				mutex_exit(&uri->proclock);
797 				REF_RELE(uri);
798 				REF_RELE(ruri);
799 				return (NULL);
800 			}
801 		} else {
802 			mutex_exit(&uri->proclock);
803 		}
804 		uri->hit++;
805 		mutex_exit(&hp->lock);
806 		rw_exit(&uri_hash_access);
807 		REF_RELE(ruri);
808 		return (uri);
809 	nexturi:
810 		puri = uri;
811 	}
812 	mutex_exit(&hp->lock);
813 	if (cur != new && uri_hash_ab[new] != NULL) {
814 		/*
815 		 * Not found in current hash and have a new hash so
816 		 * check the new hash next.
817 		 */
818 		cur = new;
819 		goto nexthash;
820 	}
821 add:
822 	if (! add) {
823 		/*
824 		 * Lookup only so free the
825 		 * request URI and return.
826 		 */
827 		rw_exit(&uri_hash_access);
828 		REF_RELE(ruri);
829 		return (NULL);
830 	}
831 	/*
832 	 * URI not hashed, finish intialization of the
833 	 * request URI, add it to the hash, return it.
834 	 */
835 	ruri->hit = 0;
836 	ruri->expire = -1;
837 	ruri->response.sz = 0;
838 	cv_init(&ruri->waiting, NULL, CV_DEFAULT, NULL);
839 	mutex_init(&ruri->proclock, NULL, MUTEX_DEFAULT, NULL);
840 	uri_add(ruri, RW_READER, nonblocking);
841 	/* uri_add() has done rw_exit(&uri_hash_access) */
842 	return (ruri);
843 }
844 
845 /*
846  * Reclaim URIs until max cache size threshold has been reached.
847  *
848  * A CLOCK based reclaim modified with a history (hit counter) counter.
849  */
850 
851 static void
852 nl7c_uri_reclaim(void)
853 {
854 	uri_hash_t	*hp, *start, *pend;
855 	uri_desc_t	*uri;
856 	uri_desc_t	*puri;
857 	uint32_t	cur;
858 	uint32_t	new;
859 
860 	nl7c_uri_reclaim_calls++;
861 again:
862 	rw_enter(&uri_hash_access, RW_WRITER);
863 	cur = uri_hash_which;
864 	new = cur ? 0 : 1;
865 next:
866 	hp = uri_hash_lru[cur];
867 	start = hp;
868 	pend = &uri_hash_ab[cur][uri_hash_sz[cur]];
869 	while (nl7c_uri_bytes > nl7c_uri_max) {
870 		puri = NULL;
871 		for (uri = hp->list; uri != NULL; uri = uri->hash) {
872 			if (uri->hit != 0) {
873 				/*
874 				 * Decrement URI activity counter and skip.
875 				 */
876 				uri->hit--;
877 				puri = uri;
878 				continue;
879 			}
880 			if (uri->proc != NULL) {
881 				/*
882 				 * Currently being processed by a socket, skip.
883 				 */
884 				continue;
885 			}
886 			/*
887 			 * Found a candidate, no hit(s) since added or last
888 			 * reclaim pass, unlink from it's hash chain, update
889 			 * lru scan pointer, drop lock, ref release it.
890 			 */
891 			URI_HASH_UNLINK(cur, new, hp, puri, uri);
892 			if (cur == uri_hash_which) {
893 				if (++hp == pend) {
894 					/* Wrap pointer */
895 					hp = uri_hash_ab[cur];
896 				}
897 				uri_hash_lru[cur] = hp;
898 			}
899 			rw_exit(&uri_hash_access);
900 			REF_RELE(uri);
901 			nl7c_uri_reclaim_cnt++;
902 			goto again;
903 		}
904 		if (++hp == pend) {
905 			/* Wrap pointer */
906 			hp = uri_hash_ab[cur];
907 		}
908 		if (hp == start) {
909 			if (cur != new && uri_hash_ab[new] != NULL) {
910 				/*
911 				 * Done with the current hash and have a
912 				 * new hash so check the new hash next.
913 				 */
914 				cur = new;
915 				goto next;
916 			}
917 		}
918 	}
919 	rw_exit(&uri_hash_access);
920 }
921 
922 /*
923  * Called for a socket which is being freed prior to close, e.g. errored.
924  */
925 
926 void
927 nl7c_urifree(struct sonode *so)
928 {
929 	uri_desc_t *uri = (uri_desc_t *)so->so_nl7c_uri;
930 
931 	so->so_nl7c_uri = NULL;
932 	if (uri->hash != URI_TEMP) {
933 		uri_delete(uri);
934 		mutex_enter(&uri->proclock);
935 		uri->proc = NULL;
936 		if (CV_HAS_WAITERS(&uri->waiting)) {
937 			cv_broadcast(&uri->waiting);
938 		}
939 		mutex_exit(&uri->proclock);
940 		nl7c_uri_free++;
941 	} else {
942 		/* No proclock as uri exclusively owned by so */
943 		uri->proc = NULL;
944 		nl7c_uri_temp_free++;
945 	}
946 	REF_RELE(uri);
947 }
948 
949 /*
950  * Called to copy some application response data.
951  */
952 
953 volatile uint64_t nl7c_data_pfail = 0;
954 volatile uint64_t nl7c_data_ntemp = 0;
955 volatile uint64_t nl7c_data_ncntl = 0;
956 
957 void
958 nl7c_data(struct sonode *so, uio_t *uiop)
959 {
960 	uri_desc_t	*uri = (uri_desc_t *)so->so_nl7c_uri;
961 	iovec_t		*iovp = uiop->uio_iov;
962 	int		resid = uiop->uio_resid;
963 	int		sz, len, cnt;
964 	char		*alloc;
965 	char		*data;
966 	char		*bp;
967 	uri_rd_t	*rdp;
968 	int		error = 0;
969 
970 	nl7c_uri_data++;
971 
972 	if (uri == NULL) {
973 		/* Socket & NL7C out of sync, disable NL7C */
974 		so->so_nl7c_flags = 0;
975 		nl7c_uri_NULL1++;
976 		return;
977 	}
978 
979 	if (so->so_nl7c_flags & NL7C_WAITWRITE)
980 		so->so_nl7c_flags &= ~NL7C_WAITWRITE;
981 
982 	if (uri->hash == URI_TEMP) {
983 		if (uri->resplen == -1)
984 			sz = MIN(resid, URI_TEMP_PARSE_SZ);
985 		else
986 			sz = 0;
987 	} else {
988 		sz = resid;
989 	}
990 	if (sz > 0) {
991 		alloc = kmem_alloc(sz, KM_SLEEP);
992 	} else {
993 		alloc = NULL;
994 	}
995 	if (uri->hash == URI_TEMP) {
996 		uri->count += resid;
997 		data = alloc;
998 	} else {
999 		URI_RD_ADD(uri, rdp, sz, -1);
1000 		if (rdp == NULL)
1001 			goto fail;
1002 		rdp->data.kmem = alloc;
1003 		data = alloc;
1004 		alloc = NULL;
1005 	}
1006 	bp = data;
1007 	for (len = sz; len > 0; len -= cnt) {
1008 		cnt = MIN(len, iovp->iov_len);
1009 		error = xcopyin(iovp->iov_base, bp, cnt);
1010 		if (error) {
1011 			goto fail;
1012 		}
1013 		bp += cnt;
1014 		iovp++;
1015 	}
1016 	bp = data;
1017 	if (uri->resplen == -1 &&
1018 	    ! nl7c_http_response(&bp, &bp[sz], uri, so) &&
1019 	    (bp == NULL || uri->hash != URI_TEMP || uri->resplen == -1)) {
1020 		/*
1021 		 * Parse not complete and parse failed or not TEMP
1022 		 * partial parse or TEMP partial parse and no resplen.
1023 		 */
1024 		if (bp == NULL)
1025 			nl7c_data_pfail++;
1026 		else if (uri->hash != URI_TEMP)
1027 			nl7c_data_ntemp++;
1028 		else if (uri->resplen == -1)
1029 			nl7c_data_ncntl++;
1030 		goto fail;
1031 	}
1032 	if (uri->resplen != -1 && uri->count >= uri->resplen) {
1033 		/* Got the response data, close the uri */
1034 		nl7c_close(so);
1035 	}
1036 	if (alloc != NULL) {
1037 		kmem_free(alloc, sz);
1038 	} else {
1039 		atomic_add_64(&nl7c_uri_bytes, sz);
1040 	}
1041 	return;
1042 
1043 fail:
1044 	if (alloc != NULL) {
1045 		kmem_free(alloc, sz);
1046 	}
1047 	so->so_nl7c_flags = 0;
1048 	nl7c_urifree(so);
1049 }
1050 
1051 /*
1052  * Called to read data from file "*fp" at offset "*off" of length "*len"
1053  * for a maximum of "*max_rem" bytes.
1054  *
1055  * On success a pointer to the kmem_alloc()ed file data is returned, "*off"
1056  * and "*len" are updated for the acutal number of bytes read and "*max_rem"
1057  * is updated with the number of bytes remaining to be read.
1058  *
1059  * Else, "NULL" is returned.
1060  */
1061 
1062 static char *
1063 nl7c_readfile(file_t *fp, u_offset_t *off, int *len, int *max_rem)
1064 {
1065 	vnode_t	*vp = fp->f_vnode;
1066 	int	flg = 0;
1067 	size_t	size = MIN(*len, *max_rem);
1068 	char	*data;
1069 	int	error;
1070 	uio_t	uio;
1071 	iovec_t	iov;
1072 
1073 	(void) VOP_RWLOCK(vp, flg, NULL);
1074 
1075 	if (*off > MAXOFFSET_T) {
1076 		VOP_RWUNLOCK(vp, flg, NULL);
1077 		return (NULL);
1078 	}
1079 
1080 	if (*off + size > MAXOFFSET_T)
1081 		size = (ssize32_t)(MAXOFFSET_T - *off);
1082 
1083 	data = kmem_alloc(size, KM_SLEEP);
1084 
1085 	iov.iov_base = data;
1086 	iov.iov_len = size;
1087 	uio.uio_loffset = *off;
1088 	uio.uio_iov = &iov;
1089 	uio.uio_iovcnt = 1;
1090 	uio.uio_resid = size;
1091 	uio.uio_segflg = UIO_SYSSPACE;
1092 	uio.uio_llimit = MAXOFFSET_T;
1093 	uio.uio_fmode = fp->f_flag;
1094 
1095 	error = VOP_READ(vp, &uio, fp->f_flag, fp->f_cred, NULL);
1096 	VOP_RWUNLOCK(vp, flg, NULL);
1097 	if (error) {
1098 		kmem_free(data, size);
1099 		return (NULL);
1100 	}
1101 	*max_rem = *len - size;
1102 	*len = size;
1103 	*off += size;
1104 	return (data);
1105 }
1106 
1107 /*
1108  * Called to copy application response sendfilev.
1109  *
1110  * Note, the value of kmem_bytes is a segmap max sized value greater
1111  * than or equal to TCP's tcp_slow_start_initial, there are several
1112  * issues with this scheme least of which is assuming that TCP is the
1113  * only IP transport we care about or that we hardcode the TCP value
1114  * but until ...
1115  */
1116 
1117 void
1118 nl7c_sendfilev(struct sonode *so, u_offset_t off, sendfilevec_t *sfvp, int sfvc)
1119 {
1120 	uri_desc_t	*uri = (uri_desc_t *)so->so_nl7c_uri;
1121 	file_t		*fp = NULL;
1122 	vnode_t		*vp = NULL;
1123 	char		*data = NULL;
1124 	int		len;
1125 	int		count;
1126 	int		total_count = 0;
1127 	char		*bp;
1128 	uri_rd_t	*rdp;
1129 	int		max_rem;
1130 	int		error = 0;
1131 
1132 	nl7c_uri_sendfilev++;
1133 
1134 	if (uri == NULL) {
1135 		/* Socket & NL7C out of sync, disable NL7C */
1136 		so->so_nl7c_flags = 0;
1137 		nl7c_uri_NULL2++;
1138 		return;
1139 	}
1140 
1141 	if (so->so_nl7c_flags & NL7C_WAITWRITE)
1142 		so->so_nl7c_flags &= ~NL7C_WAITWRITE;
1143 
1144 	while (sfvc-- > 0) {
1145 		/*
1146 		 * off - the current sfv read file offset or user address.
1147 		 *
1148 		 * len - the current sfv kmem_alloc()ed buffer length, note
1149 		 *	 may be less than the actual sfv size.
1150 		 *
1151 		 * count - the actual current sfv size in bytes.
1152 		 *
1153 		 * data - the kmem_alloc()ed buffer of size "len".
1154 		 *
1155 		 * fp - the current sfv file_t pointer.
1156 		 *
1157 		 * vp - the current "*vp" vnode_t pointer.
1158 		 *
1159 		 * Note, for "data" and "fp" and "vp" a NULL value is used
1160 		 * when not allocated such that the common failure path "fail"
1161 		 * is used.
1162 		 */
1163 		off = sfvp->sfv_off;
1164 		len = sfvp->sfv_len;
1165 		count = len;
1166 		if (uri->hash == URI_TEMP) {
1167 			if (uri->resplen == -1)
1168 				len = MIN(len, URI_TEMP_PARSE_SZ);
1169 			else
1170 				len = 0;
1171 		}
1172 		if (len == 0) {
1173 			/*
1174 			 * TEMP uri with no data to sink, just count bytes.
1175 			 */
1176 			uri->count += count;
1177 		} else if (sfvp->sfv_fd == SFV_FD_SELF) {
1178 			/*
1179 			 * Process user memory, copyin().
1180 			 */
1181 			data = kmem_alloc(len, KM_SLEEP);
1182 
1183 			error = xcopyin((caddr_t)(uintptr_t)off, data, len);
1184 			if (error)
1185 				goto fail;
1186 
1187 			bp = data;
1188 			if (uri->resplen == -1 &&
1189 			    ! nl7c_http_response(&bp, &bp[len], uri, so) &&
1190 			    (bp == NULL || uri->hash != URI_TEMP ||
1191 			    (uri->hash == URI_TEMP && uri->resplen == -1))) {
1192 				/*
1193 				 * Parse not complete and parse failed or
1194 				 * not TEMP partial parse or TEMP partial
1195 				 * parse and no resplen.
1196 				 */
1197 				goto fail;
1198 			}
1199 
1200 			if (uri->hash == URI_TEMP) {
1201 				uri->count += len;
1202 				kmem_free(data, len);
1203 				data = NULL;
1204 			} else {
1205 				URI_RD_ADD(uri, rdp, len, -1);
1206 				if (rdp == NULL)
1207 					goto fail;
1208 				rdp->data.kmem = data;
1209 				data = NULL;
1210 				total_count += len;
1211 			}
1212 		} else {
1213 			/*
1214 			 * File descriptor, prefetch some bytes,
1215 			 * save vnode_t if any bytes left.
1216 			 */
1217 			if ((fp = getf(sfvp->sfv_fd)) == NULL)
1218 				goto fail;
1219 
1220 			if ((fp->f_flag & FREAD) == 0)
1221 				goto fail;
1222 
1223 			vp = fp->f_vnode;
1224 			if (vp->v_type != VREG)
1225 				goto fail;
1226 			VN_HOLD(vp);
1227 
1228 			/* Read max_rem bytes from file for prefetch */
1229 			if (nl7c_use_kmem) {
1230 				max_rem = len;
1231 			} else {
1232 				max_rem = MAXBSIZE * nl7c_file_prefetch;
1233 			}
1234 			data = nl7c_readfile(fp, &off, &len, &max_rem);
1235 			if (data == NULL)
1236 				goto fail;
1237 
1238 			releasef(sfvp->sfv_fd);
1239 			fp = NULL;
1240 
1241 			bp = data;
1242 			if (uri->resplen == -1 &&
1243 			    ! nl7c_http_response(&bp, &bp[len], uri, so) &&
1244 			    (bp == NULL || uri->hash != URI_TEMP ||
1245 			    uri->resplen == -1)) {
1246 				/*
1247 				 * Parse not complete and parse failed or
1248 				 * not TEMP partial parse or TEMP partial
1249 				 * parse and no resplen.
1250 				 */
1251 				goto fail;
1252 			}
1253 
1254 			if (uri->hash == URI_TEMP) {
1255 				/*
1256 				 * Temp uri, account for all sfv bytes and
1257 				 * free up any resources allocated above.
1258 				 */
1259 				uri->count += count;
1260 				kmem_free(data, len);
1261 				data = NULL;
1262 				VN_RELE(vp);
1263 				vp = NULL;
1264 			} else {
1265 				/*
1266 				 * Setup an uri_rd_t for the prefetch and
1267 				 * if any sfv data remains setup an another
1268 				 * uri_rd_t to map it, last free up any
1269 				 * resources allocated above.
1270 				 */
1271 				URI_RD_ADD(uri, rdp, len, -1);
1272 				if (rdp == NULL)
1273 					goto fail;
1274 				rdp->data.kmem = data;
1275 				data = NULL;
1276 				if (max_rem > 0) {
1277 					/* More file data so add it */
1278 					URI_RD_ADD(uri, rdp, max_rem, off);
1279 					if (rdp == NULL)
1280 						goto fail;
1281 					rdp->data.vnode = vp;
1282 				} else {
1283 					/* All file data fit in the prefetch */
1284 					VN_RELE(vp);
1285 				}
1286 				vp = NULL;
1287 				/* Only account for the kmem_alloc()ed bytes */
1288 				total_count += len;
1289 			}
1290 		}
1291 		sfvp++;
1292 	}
1293 	if (total_count > 0) {
1294 		atomic_add_64(&nl7c_uri_bytes, total_count);
1295 	}
1296 	if (uri->resplen != -1 && uri->count >= uri->resplen) {
1297 		/* Got the response data, close the uri */
1298 		nl7c_close(so);
1299 	}
1300 	return;
1301 
1302 fail:
1303 	if (data != NULL)
1304 		kmem_free(data, len);
1305 
1306 	if (vp != NULL)
1307 		VN_RELE(vp);
1308 
1309 	if (fp != NULL)
1310 		releasef(sfvp->sfv_fd);
1311 
1312 	if (total_count > 0) {
1313 		atomic_add_64(&nl7c_uri_bytes, total_count);
1314 	}
1315 	so->so_nl7c_flags = 0;
1316 	nl7c_urifree(so);
1317 }
1318 
1319 /*
1320  * Called for a socket which is closing or when an application has
1321  * completed sending all the response data (i.e. for a persistent
1322  * connection called once for each completed application response).
1323  */
1324 
1325 void
1326 nl7c_close(struct sonode *so)
1327 {
1328 	uri_desc_t *uri = (uri_desc_t *)so->so_nl7c_uri;
1329 
1330 	if (uri == NULL) {
1331 		/*
1332 		 * No URI being processed so might be a listen()er
1333 		 * if so do any cleanup, else nothing more to do.
1334 		 */
1335 		if (so->so_state & SS_ACCEPTCONN) {
1336 			(void) nl7c_close_addr(so);
1337 		}
1338 		return;
1339 	}
1340 	so->so_nl7c_uri = NULL;
1341 	if (uri->hash != URI_TEMP) {
1342 		mutex_enter(&uri->proclock);
1343 		uri->proc = NULL;
1344 		if (CV_HAS_WAITERS(&uri->waiting)) {
1345 			cv_broadcast(&uri->waiting);
1346 		}
1347 		mutex_exit(&uri->proclock);
1348 		nl7c_uri_close++;
1349 	} else {
1350 		/* No proclock as uri exclusively owned by so */
1351 		uri->proc = NULL;
1352 		nl7c_uri_temp_close++;
1353 	}
1354 	REF_RELE(uri);
1355 	if (nl7c_uri_max > 0 && nl7c_uri_bytes > nl7c_uri_max) {
1356 		nl7c_uri_reclaim();
1357 	}
1358 }
1359 
1360 /*
1361  * The uri_segmap_t ref_t inactive function called on the last REF_RELE(),
1362  * release the segmap mapping. Note, the uri_segmap_t will be freed by
1363  * REF_RELE() on return.
1364  */
1365 
1366 void
1367 uri_segmap_inactive(uri_segmap_t *smp)
1368 {
1369 	if (!segmap_kpm) {
1370 		(void) segmap_fault(kas.a_hat, segkmap, smp->base,
1371 		    smp->len, F_SOFTUNLOCK, S_OTHER);
1372 	}
1373 	(void) segmap_release(segkmap, smp->base, SM_DONTNEED);
1374 	VN_RELE(smp->vp);
1375 }
1376 
1377 /*
1378  * The call-back for desballoc()ed mblk_t's, if a segmap mapped mblk_t
1379  * release the reference, one per deballoc() of a segmap page, release
1380  * the reference of the URI containing the uri_rd_t, last free kmem
1381  * free the uri_desb_t.
1382  */
1383 
1384 static void
1385 uri_desb_free(uri_desb_t *desb)
1386 {
1387 	if (desb->segmap != NULL) {
1388 		REF_RELE(desb->segmap);
1389 	}
1390 	REF_RELE(desb->uri);
1391 	kmem_cache_free(uri_desb_kmc, desb);
1392 }
1393 
1394 /*
1395  * Segmap map up to a page of a uri_rd_t file descriptor.
1396  */
1397 
1398 uri_segmap_t *
1399 uri_segmap_map(uri_rd_t *rdp, int bytes)
1400 {
1401 	uri_segmap_t	*segmap = kmem_cache_alloc(uri_segmap_kmc, KM_SLEEP);
1402 	int		len = MIN(rdp->sz, MAXBSIZE);
1403 
1404 	if (len > bytes)
1405 		len = bytes;
1406 
1407 	REF_INIT(segmap, 1, uri_segmap_inactive, uri_segmap_kmc);
1408 	segmap->len = len;
1409 	VN_HOLD(rdp->data.vnode);
1410 	segmap->vp = rdp->data.vnode;
1411 
1412 	segmap->base = segmap_getmapflt(segkmap, segmap->vp, rdp->off, len,
1413 	    segmap_kpm ? SM_FAULT : 0, S_READ);
1414 
1415 	if (segmap_fault(kas.a_hat, segkmap, segmap->base, len,
1416 	    F_SOFTLOCK, S_READ) != 0) {
1417 		REF_RELE(segmap);
1418 		return (NULL);
1419 	}
1420 	return (segmap);
1421 }
1422 
1423 /*
1424  * Chop up the kernel virtual memory area *data of size *sz bytes for
1425  * a maximum of *bytes bytes into an besballoc()ed mblk_t chain using
1426  * the given template uri_desb_t *temp of max_mblk bytes per.
1427  *
1428  * The values of *data, *sz, and *bytes are updated on return, the
1429  * mblk_t chain is returned.
1430  */
1431 
1432 static mblk_t *
1433 uri_desb_chop(
1434 	char 		**data,
1435 	size_t		*sz,
1436 	int 		*bytes,
1437 	uri_desb_t 	*temp,
1438 	int		max_mblk,
1439 	char		*eoh,
1440 	mblk_t		*persist
1441 )
1442 {
1443 	char		*ldata = *data;
1444 	size_t		lsz = *sz;
1445 	int		lbytes = bytes ? *bytes : lsz;
1446 	uri_desb_t	*desb;
1447 	mblk_t		*mp = NULL;
1448 	mblk_t		*nmp, *tmp, *pmp = NULL;
1449 	int		msz;
1450 
1451 	if (lbytes == 0 && lsz == 0)
1452 		return (NULL);
1453 
1454 	while (lbytes > 0 && lsz > 0) {
1455 		msz = MIN(lbytes, max_mblk);
1456 		msz = MIN(msz, lsz);
1457 		if (persist && eoh >= ldata && eoh < &ldata[msz]) {
1458 			msz = (eoh - ldata);
1459 			pmp = persist;
1460 			persist = NULL;
1461 		}
1462 		desb = kmem_cache_alloc(uri_desb_kmc, KM_SLEEP);
1463 		REF_HOLD(temp->uri);
1464 		if (temp->segmap) {
1465 			REF_HOLD(temp->segmap);
1466 		}
1467 		bcopy(temp, desb, sizeof (*desb));
1468 		desb->frtn.free_arg = (caddr_t)desb;
1469 		nmp = desballoc((uchar_t *)ldata, msz, BPRI_HI, &desb->frtn);
1470 		if (nmp == NULL) {
1471 			if (temp->segmap) {
1472 				REF_RELE(temp->segmap);
1473 			}
1474 			REF_RELE(temp->uri);
1475 			if (mp != NULL) {
1476 				freemsg(mp);
1477 			}
1478 			return (NULL);
1479 		}
1480 		nmp->b_wptr += msz;
1481 		if (mp != NULL) {
1482 			/*LINTED*/
1483 			ASSERT(tmp->b_cont == NULL);
1484 			/*LINTED*/
1485 			tmp->b_cont = nmp;
1486 		} else {
1487 			mp = nmp;
1488 		}
1489 		tmp = nmp;
1490 		ldata += msz;
1491 		lsz -= msz;
1492 		lbytes -= msz;
1493 		if (pmp) {
1494 			tmp->b_cont = pmp;
1495 			tmp = pmp;
1496 			pmp = NULL;
1497 		}
1498 	}
1499 	*data = ldata;
1500 	*sz = lsz;
1501 	if (bytes)
1502 		*bytes = lbytes;
1503 	mp->b_next = tmp;
1504 	return (mp);
1505 }
1506 
1507 /*
1508  * Experimential noqwait (i.e. no canput()/qwait() checks), just send
1509  * the entire mblk_t chain down without flow-control checks.
1510  */
1511 
1512 static int
1513 kstrwritempnoqwait(struct vnode *vp, mblk_t *mp)
1514 {
1515 	struct stdata *stp;
1516 	int error = 0;
1517 
1518 	ASSERT(vp->v_stream);
1519 	stp = vp->v_stream;
1520 
1521 	/* Fast check of flags before acquiring the lock */
1522 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
1523 		mutex_enter(&stp->sd_lock);
1524 		error = strgeterr(stp, STWRERR|STRHUP|STPLEX, 0);
1525 		mutex_exit(&stp->sd_lock);
1526 		if (error != 0) {
1527 			if (!(stp->sd_flag & STPLEX) &&
1528 			    (stp->sd_wput_opt & SW_SIGPIPE)) {
1529 				tsignal(curthread, SIGPIPE);
1530 				error = EPIPE;
1531 			}
1532 			return (error);
1533 		}
1534 	}
1535 	putnext(stp->sd_wrq, mp);
1536 	return (0);
1537 }
1538 
1539 /*
1540  * Send the URI response uri_desc_t *uri out the socket_t *so.
1541  */
1542 
1543 static void
1544 uri_response(struct sonode *so, uri_desc_t *uri, int max_mblk)
1545 {
1546 	uri_rd_t	*rdp = &uri->response;
1547 	vnode_t		*vp = SOTOV(so);
1548 	int		wsz;
1549 	mblk_t		*mp, *wmp, *persist;
1550 	int		write_bytes;
1551 	uri_rd_t	rd = {0};
1552 	uri_desb_t	desb;
1553 	uri_segmap_t	*segmap = NULL;
1554 	char		*segmap_data;
1555 	size_t		segmap_sz;
1556 	boolean_t	first = B_TRUE;
1557 
1558 	/* For first kstrwrite() enough data to get things going */
1559 	write_bytes = P2ROUNDUP((max_mblk * 4), MAXBSIZE * nl7c_file_prefetch);
1560 
1561 	/* Initialize template uri_desb_t */
1562 	desb.frtn.free_func = uri_desb_free;
1563 	desb.frtn.free_arg = NULL;
1564 	desb.uri = uri;
1565 
1566 	do {
1567 		wmp = NULL;
1568 		wsz = write_bytes;
1569 		do {
1570 			if (rd.sz == 0) {
1571 				bcopy(rdp, &rd, sizeof (rd));
1572 				rdp = rdp->next;
1573 			}
1574 			if (rd.off == -1) {
1575 				if (uri->eoh >= rd.data.kmem &&
1576 				    uri->eoh < &rd.data.kmem[rd.sz]) {
1577 					persist = nl7c_http_persist(so);
1578 				} else {
1579 					persist = NULL;
1580 				}
1581 				desb.segmap = NULL;
1582 				mp = uri_desb_chop(&rd.data.kmem, &rd.sz,
1583 				    &wsz, &desb, max_mblk, uri->eoh, persist);
1584 				if (mp == NULL)
1585 					goto invalidate;
1586 			} else {
1587 				if (segmap == NULL) {
1588 					segmap = uri_segmap_map(&rd,
1589 					    write_bytes);
1590 					if (segmap == NULL)
1591 						goto invalidate;
1592 					desb.segmap = segmap;
1593 					segmap_data = segmap->base;
1594 					segmap_sz = segmap->len;
1595 				}
1596 				mp = uri_desb_chop(&segmap_data, &segmap_sz,
1597 				    &wsz, &desb, max_mblk, NULL, NULL);
1598 				if (mp == NULL)
1599 					goto invalidate;
1600 				if (segmap_sz == 0) {
1601 					rd.sz -= segmap->len;
1602 					rd.off += segmap->len;
1603 					REF_RELE(segmap);
1604 					segmap = NULL;
1605 				}
1606 			}
1607 			if (wmp == NULL) {
1608 				wmp = mp;
1609 			} else {
1610 				wmp->b_next->b_cont = mp;
1611 				wmp->b_next = mp->b_next;
1612 				mp->b_next = NULL;
1613 			}
1614 		} while (wsz > 0 && (rd.sz > 0 || rdp != NULL));
1615 
1616 		wmp->b_next = NULL;
1617 		if (first) {
1618 			/* First kstrwrite(), use noqwait */
1619 			if (kstrwritempnoqwait(vp, wmp) != 0)
1620 				goto invalidate;
1621 			/*
1622 			 * For the rest of the kstrwrite()s use SO_SNDBUF
1623 			 * worth of data at a time, note these kstrwrite()s
1624 			 * may (will) block one or more times.
1625 			 */
1626 			first = B_FALSE;
1627 			if ((write_bytes = so->so_sndbuf) == 0)
1628 				write_bytes = vp->v_stream->sd_qn_maxpsz;
1629 			ASSERT(write_bytes > 0);
1630 			write_bytes = P2ROUNDUP(write_bytes, MAXBSIZE);
1631 		} else {
1632 			if (kstrwritemp(vp, wmp, 0) != 0)
1633 				goto invalidate;
1634 		}
1635 	} while (rd.sz > 0 || rdp != NULL);
1636 
1637 	return;
1638 
1639 invalidate:
1640 	if (segmap) {
1641 		REF_RELE(segmap);
1642 	}
1643 	if (wmp)
1644 		freemsg(wmp);
1645 	uri_delete(uri);
1646 }
1647 
1648 /*
1649  * The pchars[] array is indexed by a char to determine if it's a
1650  * valid URI path component chararcter where:
1651  *
1652  *    pchar       = unreserved | escaped |
1653  *                  ":" | "@" | "&" | "=" | "+" | "$" | ","
1654  *
1655  *    unreserved  = alphanum | mark
1656  *
1657  *    alphanum    = alpha | digit
1658  *
1659  *    alpha       = lowalpha | upalpha
1660  *
1661  *    lowalpha    = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |
1662  *                  "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" |
1663  *                  "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" |
1664  *                  "y" | "z"
1665  *
1666  *    upalpha     = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" |
1667  *                  "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" |
1668  *                  "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" |
1669  *                  "Y" | "Z"
1670  *
1671  *    digit       = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
1672  *                  "8" | "9"
1673  *
1674  *    mark        = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"
1675  *
1676  *    escaped     = "%" hex hex
1677  *    hex         = digit | "A" | "B" | "C" | "D" | "E" | "F" |
1678  *                  "a" | "b" | "c" | "d" | "e" | "f"
1679  */
1680 
1681 static char pchars[] = {
1682     0, 0, 0, 0, 0, 0, 0, 0,	/* 0x00 - 0x07 */
1683     0, 0, 0, 0, 0, 0, 0, 0,	/* 0x08 - 0x0F */
1684     0, 0, 0, 0, 0, 0, 0, 0,	/* 0x10 - 0x17 */
1685     0, 0, 0, 0, 0, 0, 0, 0,	/* 0x18 - 0x1F */
1686     0, 1, 0, 0, 1, 1, 1, 1,	/* 0x20 - 0x27 */
1687     0, 0, 1, 1, 1, 1, 1, 1,	/* 0x28 - 0x2F */
1688     1, 1, 1, 1, 1, 1, 1, 1,	/* 0x30 - 0x37 */
1689     1, 1, 1, 0, 0, 1, 0, 0,	/* 0x38 - 0x3F */
1690     1, 1, 1, 1, 1, 1, 1, 1,	/* 0x40 - 0x47 */
1691     1, 1, 1, 1, 1, 1, 1, 1,	/* 0x48 - 0x4F */
1692     1, 1, 1, 1, 1, 1, 1, 1,	/* 0x50 - 0x57 */
1693     1, 1, 1, 0, 0, 0, 0, 1,	/* 0x58 - 0x5F */
1694     0, 1, 1, 1, 1, 1, 1, 1,	/* 0x60 - 0x67 */
1695     1, 1, 1, 1, 1, 1, 1, 1,	/* 0x68 - 0x6F */
1696     1, 1, 1, 1, 1, 1, 1, 1,	/* 0x70 - 0x77 */
1697     1, 1, 1, 0, 0, 0, 1, 0	/* 0x78 - 0x7F */
1698 };
1699 
1700 #define	PCHARS_MASK 0x7F
1701 
1702 /*
1703  * This is the main L7 request message parse, we are called each time
1704  * new data is availble for a socket, each time a single buffer of the
1705  * entire message to date is given.
1706  *
1707  * Here we parse the request looking for the URI, parse it, and if a
1708  * supported scheme call the scheme parser to commplete the parse of any
1709  * headers which may further qualify the identity of the requested object
1710  * then lookup it up in the URI hash.
1711  *
1712  * Return B_TRUE for more processing.
1713  *
1714  * Note, at this time the parser supports the generic message format as
1715  * specified in RFC 822 with potentional limitations as specified in RFC
1716  * 2616 for HTTP messages.
1717  *
1718  * Note, the caller supports an mblk_t chain, for now the parser(s)
1719  * require the complete header in a single mblk_t. This is the common
1720  * case and certainly for high performance environments, if at a future
1721  * date mblk_t chains are important the parse can be reved to process
1722  * mblk_t chains.
1723  */
1724 
1725 boolean_t
1726 nl7c_parse(struct sonode *so, boolean_t nonblocking, boolean_t *ret,
1727 	int max_mblk)
1728 {
1729 	char	*cp = (char *)so->so_nl7c_rcv_mp->b_rptr;
1730 	char	*ep = (char *)so->so_nl7c_rcv_mp->b_wptr;
1731 	char	*get = "GET ";
1732 	char	c;
1733 	char	*uris;
1734 	uri_desc_t *uri;
1735 	uri_desc_t *ruri = NULL;
1736 
1737 	/*
1738 	 * Allocate and initialize minimumal state for the request
1739 	 * uri_desc_t, in the cache hit case this uri_desc_t will
1740 	 * be freed.
1741 	 */
1742 	uri = kmem_cache_alloc(uri_kmc, KM_SLEEP);
1743 	REF_INIT(uri, 1, uri_inactive, uri_kmc);
1744 	uri->hash = NULL;
1745 	uri->tail = NULL;
1746 	uri->scheme = NULL;
1747 	uri->count = 0;
1748 	if ((uri->reqmp = dupb(so->so_nl7c_rcv_mp)) == NULL) {
1749 		nl7c_uri_pass_dupbfail++;
1750 		goto pass;
1751 	}
1752 	/*
1753 	 * Set request time to current time.
1754 	 */
1755 	so->so_nl7c_rtime = gethrestime_sec();
1756 	/*
1757 	 * Parse the Request-Line for the URI.
1758 	 *
1759 	 * For backwards HTTP version compatable reasons skip any leading
1760 	 * CRLF (or CR or LF) line terminator(s) preceding Request-Line.
1761 	 */
1762 	while (cp < ep && (*cp == '\r' || *cp == '\n')) {
1763 		cp++;
1764 	}
1765 	while (cp < ep && *get == *cp) {
1766 		get++;
1767 		cp++;
1768 	}
1769 	if (*get != 0) {
1770 		if (cp == ep) {
1771 			nl7c_uri_more_get++;
1772 			goto more;
1773 		}
1774 		nl7c_uri_pass_getnot++;
1775 		goto pass;
1776 	}
1777 	/*
1778 	 * Skip over URI path char(s) and save start and past end pointers.
1779 	 */
1780 	uris = cp;
1781 	while (cp < ep && (c = *cp) != ' ' && c != '\r') {
1782 		if (c == '?') {
1783 			/* Don't cache but still may want to parse */
1784 			uri->hash = URI_TEMP;
1785 		}
1786 		cp++;
1787 	}
1788 	if (c != '\r' && cp == ep) {
1789 		nl7c_uri_more_eol++;
1790 		goto more;
1791 	}
1792 	/*
1793 	 * Request-Line URI parsed, pass the rest of the request on
1794 	 * to the the http scheme parse.
1795 	 */
1796 	uri->path.cp = uris;
1797 	uri->path.ep = cp;
1798 	if (! nl7c_http_request(&cp, ep, uri, so)) {
1799 		/*
1800 		 * Parse not successful, the pointer to the parse pointer
1801 		 * "cp" is overloaded such that ! NULL for more data and
1802 		 * NULL for pass on request.
1803 		 */
1804 		if (cp != NULL) {
1805 			nl7c_uri_more_http++;
1806 			goto more;
1807 		}
1808 		nl7c_uri_pass_http++;
1809 		goto pass;
1810 	}
1811 	if (uri->hash == URI_TEMP) {
1812 		if (so->so_nl7c_flags & NL7C_SOPERSIST) {
1813 			/* Temporary URI so skip hash processing */
1814 			nl7c_uri_request++;
1815 			nl7c_uri_temp++;
1816 			goto temp;
1817 		}
1818 		/* Not persistent so not interested in the response */
1819 		nl7c_uri_pass_temp++;
1820 		goto pass;
1821 	}
1822 	/*
1823 	 * If logging enabled save the request uri pointer and place
1824 	 * an additional reference on it for logging use after lookup().
1825 	 */
1826 	if (nl7c_logd_enabled) {
1827 		ruri = uri;
1828 		REF_HOLD(ruri);
1829 	}
1830 	/*
1831 	 * Check the URI hash for a cached response.
1832 	 */
1833 	if ((uri = uri_lookup(uri, B_TRUE, nonblocking)) == NULL) {
1834 		/*
1835 		 * Failed to lookup due to nonblocking wait required,
1836 		 * interrupted cv_wait_sig(), KM_NOSLEEP memory alloc
1837 		 * failure, ... Just pass on this request.
1838 		 */
1839 		nl7c_uri_pass_addfail++;
1840 		goto pass;
1841 	}
1842 	nl7c_uri_request++;
1843 	if (uri->response.sz > 0) {
1844 		/*
1845 		 * We have the response cached, update recv mblk rptr
1846 		 * to reflect the data consumed above, send the response
1847 		 * out the socket, release reference on uri from the
1848 		 * call to lookup_add(), set the *ret value to B_TRUE
1849 		 * for socket close and return B_FALSE to indcate no
1850 		 * more data needed.
1851 		 */
1852 		mblk_t	*mp = so->so_nl7c_rcv_mp;
1853 
1854 		/* If a saved ruri set above then log request */
1855 		if (ruri != NULL) {
1856 			ipaddr_t faddr;
1857 
1858 			if (so->so_family == AF_INET) {
1859 				/* Only support IPv4 addrs */
1860 				faddr = ((struct sockaddr_in *)
1861 				    so->so_faddr_sa) ->sin_addr.s_addr;
1862 			} else {
1863 				faddr = 0;
1864 			}
1865 			nl7c_logd_log(ruri, uri, so->so_nl7c_rtime, faddr);
1866 			REF_RELE(ruri);
1867 		}
1868 		nl7c_uri_hit++;
1869 		if (cp == (char *)mp->b_wptr) {
1870 			so->so_nl7c_rcv_mp = mp->b_cont;
1871 			mp->b_cont = NULL;
1872 			freeb(mp);
1873 		} else {
1874 			mp->b_rptr = (unsigned char *)cp;
1875 		}
1876 		uri_response(so, uri, max_mblk);
1877 		REF_RELE(uri);
1878 		*ret = B_TRUE;
1879 		return (B_FALSE);
1880 	}
1881 	if (ruri != NULL) {
1882 		REF_RELE(ruri);
1883 	}
1884 	/*
1885 	 * Don't have a response cached or may want to cache the
1886 	 * response from the webserver so store the uri pointer in
1887 	 * the so subsequent write-side calls ...
1888 	 */
1889 	nl7c_uri_miss++;
1890 temp:
1891 	uri->proc = so;
1892 	so->so_nl7c_uri = uri;
1893 	so->so_nl7c_flags |= NL7C_WAITWRITE;
1894 	*ret = B_FALSE;
1895 	return (B_FALSE);
1896 
1897 more:
1898 	/* More data is needed, note fragmented recv not supported */
1899 	nl7c_uri_more++;
1900 
1901 pass:
1902 	/* Pass on this request */
1903 	nl7c_uri_pass++;
1904 	nl7c_uri_request++;
1905 	if (ruri != NULL) {
1906 		REF_RELE(ruri);
1907 	}
1908 	if (uri) {
1909 		REF_RELE(uri);
1910 	}
1911 	so->so_nl7c_flags = 0;
1912 	*ret = B_FALSE;
1913 	return (B_FALSE);
1914 }
1915