xref: /titanic_50/usr/src/uts/common/fs/proc/prsubr.c (revision ac9418faa9bc5d2e2b8fdb33f434b05183528026)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  */
27 
28 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
29 /*	  All Rights Reserved  	*/
30 
31 
32 #pragma ident	"%Z%%M%	%I%	%E% SMI"
33 
34 #include <sys/types.h>
35 #include <sys/t_lock.h>
36 #include <sys/param.h>
37 #include <sys/cmn_err.h>
38 #include <sys/cred.h>
39 #include <sys/priv.h>
40 #include <sys/debug.h>
41 #include <sys/errno.h>
42 #include <sys/inline.h>
43 #include <sys/kmem.h>
44 #include <sys/mman.h>
45 #include <sys/proc.h>
46 #include <sys/sobject.h>
47 #include <sys/sysmacros.h>
48 #include <sys/systm.h>
49 #include <sys/uio.h>
50 #include <sys/var.h>
51 #include <sys/vfs.h>
52 #include <sys/vnode.h>
53 #include <sys/session.h>
54 #include <sys/pcb.h>
55 #include <sys/signal.h>
56 #include <sys/user.h>
57 #include <sys/disp.h>
58 #include <sys/class.h>
59 #include <sys/ts.h>
60 #include <sys/bitmap.h>
61 #include <sys/poll.h>
62 #include <sys/shm_impl.h>
63 #include <sys/fault.h>
64 #include <sys/syscall.h>
65 #include <sys/procfs.h>
66 #include <sys/processor.h>
67 #include <sys/cpuvar.h>
68 #include <sys/copyops.h>
69 #include <sys/time.h>
70 #include <sys/msacct.h>
71 #include <vm/as.h>
72 #include <vm/rm.h>
73 #include <vm/seg.h>
74 #include <vm/seg_vn.h>
75 #include <vm/seg_dev.h>
76 #include <vm/seg_spt.h>
77 #include <vm/page.h>
78 #include <sys/vmparam.h>
79 #include <sys/swap.h>
80 #include <fs/proc/prdata.h>
81 #include <sys/task.h>
82 #include <sys/project.h>
83 #include <sys/contract_impl.h>
84 #include <sys/contract/process.h>
85 #include <sys/contract/process_impl.h>
86 #include <sys/schedctl.h>
87 #include <sys/pool.h>
88 #include <sys/zone.h>
89 #include <sys/atomic.h>
90 
91 #define	MAX_ITERS_SPIN	5
92 
93 typedef struct prpagev {
94 	uint_t *pg_protv;	/* vector of page permissions */
95 	char *pg_incore;	/* vector of incore flags */
96 	size_t pg_npages;	/* number of pages in protv and incore */
97 	ulong_t pg_pnbase;	/* pn within segment of first protv element */
98 } prpagev_t;
99 
100 size_t pagev_lim = 256 * 1024;	/* limit on number of pages in prpagev_t */
101 
102 extern struct seg_ops segdev_ops;	/* needs a header file */
103 extern struct seg_ops segspt_shmops;	/* needs a header file */
104 
105 static	int	set_watched_page(proc_t *, caddr_t, caddr_t, ulong_t, ulong_t);
106 static	void	clear_watched_page(proc_t *, caddr_t, caddr_t, ulong_t);
107 
108 /*
109  * Choose an lwp from the complete set of lwps for the process.
110  * This is called for any operation applied to the process
111  * file descriptor that requires an lwp to operate upon.
112  *
113  * Returns a pointer to the thread for the selected LWP,
114  * and with the dispatcher lock held for the thread.
115  *
116  * The algorithm for choosing an lwp is critical for /proc semantics;
117  * don't touch this code unless you know all of the implications.
118  */
119 kthread_t *
120 prchoose(proc_t *p)
121 {
122 	kthread_t *t;
123 	kthread_t *t_onproc = NULL;	/* running on processor */
124 	kthread_t *t_run = NULL;	/* runnable, on disp queue */
125 	kthread_t *t_sleep = NULL;	/* sleeping */
126 	kthread_t *t_hold = NULL;	/* sleeping, performing hold */
127 	kthread_t *t_susp = NULL;	/* suspended stop */
128 	kthread_t *t_jstop = NULL;	/* jobcontrol stop, w/o directed stop */
129 	kthread_t *t_jdstop = NULL;	/* jobcontrol stop with directed stop */
130 	kthread_t *t_req = NULL;	/* requested stop */
131 	kthread_t *t_istop = NULL;	/* event-of-interest stop */
132 
133 	ASSERT(MUTEX_HELD(&p->p_lock));
134 
135 	/*
136 	 * If the agent lwp exists, it takes precedence over all others.
137 	 */
138 	if ((t = p->p_agenttp) != NULL) {
139 		thread_lock(t);
140 		return (t);
141 	}
142 
143 	if ((t = p->p_tlist) == NULL)	/* start at the head of the list */
144 		return (t);
145 	do {		/* for eacn lwp in the process */
146 		if (VSTOPPED(t)) {	/* virtually stopped */
147 			if (t_req == NULL)
148 				t_req = t;
149 			continue;
150 		}
151 
152 		thread_lock(t);		/* make sure thread is in good state */
153 		switch (t->t_state) {
154 		default:
155 			panic("prchoose: bad thread state %d, thread 0x%p",
156 			    t->t_state, (void *)t);
157 			/*NOTREACHED*/
158 		case TS_SLEEP:
159 			/* this is filthy */
160 			if (t->t_wchan == (caddr_t)&p->p_holdlwps &&
161 			    t->t_wchan0 == NULL) {
162 				if (t_hold == NULL)
163 					t_hold = t;
164 			} else {
165 				if (t_sleep == NULL)
166 					t_sleep = t;
167 			}
168 			break;
169 		case TS_RUN:
170 			if (t_run == NULL)
171 				t_run = t;
172 			break;
173 		case TS_ONPROC:
174 			if (t_onproc == NULL)
175 				t_onproc = t;
176 			break;
177 		case TS_ZOMB:		/* last possible choice */
178 			break;
179 		case TS_STOPPED:
180 			switch (t->t_whystop) {
181 			case PR_SUSPENDED:
182 				if (t_susp == NULL)
183 					t_susp = t;
184 				break;
185 			case PR_JOBCONTROL:
186 				if (t->t_proc_flag & TP_PRSTOP) {
187 					if (t_jdstop == NULL)
188 						t_jdstop = t;
189 				} else {
190 					if (t_jstop == NULL)
191 						t_jstop = t;
192 				}
193 				break;
194 			case PR_REQUESTED:
195 				if (t_req == NULL)
196 					t_req = t;
197 				break;
198 			case PR_SYSENTRY:
199 			case PR_SYSEXIT:
200 			case PR_SIGNALLED:
201 			case PR_FAULTED:
202 				/*
203 				 * Make an lwp calling exit() be the
204 				 * last lwp seen in the process.
205 				 */
206 				if (t_istop == NULL ||
207 				    (t_istop->t_whystop == PR_SYSENTRY &&
208 				    t_istop->t_whatstop == SYS_exit))
209 					t_istop = t;
210 				break;
211 			case PR_CHECKPOINT:	/* can't happen? */
212 				break;
213 			default:
214 				panic("prchoose: bad t_whystop %d, thread 0x%p",
215 				    t->t_whystop, (void *)t);
216 				/*NOTREACHED*/
217 			}
218 			break;
219 		}
220 		thread_unlock(t);
221 	} while ((t = t->t_forw) != p->p_tlist);
222 
223 	if (t_onproc)
224 		t = t_onproc;
225 	else if (t_run)
226 		t = t_run;
227 	else if (t_sleep)
228 		t = t_sleep;
229 	else if (t_jstop)
230 		t = t_jstop;
231 	else if (t_jdstop)
232 		t = t_jdstop;
233 	else if (t_istop)
234 		t = t_istop;
235 	else if (t_req)
236 		t = t_req;
237 	else if (t_hold)
238 		t = t_hold;
239 	else if (t_susp)
240 		t = t_susp;
241 	else			/* TS_ZOMB */
242 		t = p->p_tlist;
243 
244 	if (t != NULL)
245 		thread_lock(t);
246 	return (t);
247 }
248 
249 /*
250  * Wakeup anyone sleeping on the /proc vnode for the process/lwp to stop.
251  * Also call pollwakeup() if any lwps are waiting in poll() for POLLPRI
252  * on the /proc file descriptor.  Called from stop() when a traced
253  * process stops on an event of interest.  Also called from exit()
254  * and prinvalidate() to indicate POLLHUP and POLLERR respectively.
255  */
256 void
257 prnotify(struct vnode *vp)
258 {
259 	prcommon_t *pcp = VTOP(vp)->pr_common;
260 
261 	mutex_enter(&pcp->prc_mutex);
262 	cv_broadcast(&pcp->prc_wait);
263 	mutex_exit(&pcp->prc_mutex);
264 	if (pcp->prc_flags & PRC_POLL) {
265 		/*
266 		 * We call pollwakeup() with POLLHUP to ensure that
267 		 * the pollers are awakened even if they are polling
268 		 * for nothing (i.e., waiting for the process to exit).
269 		 * This enables the use of the PRC_POLL flag for optimization
270 		 * (we can turn off PRC_POLL only if we know no pollers remain).
271 		 */
272 		pcp->prc_flags &= ~PRC_POLL;
273 		pollwakeup(&pcp->prc_pollhead, POLLHUP);
274 	}
275 }
276 
277 /* called immediately below, in prfree() */
278 static void
279 prfreenotify(vnode_t *vp)
280 {
281 	prnode_t *pnp;
282 	prcommon_t *pcp;
283 
284 	while (vp != NULL) {
285 		pnp = VTOP(vp);
286 		pcp = pnp->pr_common;
287 		ASSERT(pcp->prc_thread == NULL);
288 		pcp->prc_proc = NULL;
289 		/*
290 		 * We can't call prnotify() here because we are holding
291 		 * pidlock.  We assert that there is no need to.
292 		 */
293 		mutex_enter(&pcp->prc_mutex);
294 		cv_broadcast(&pcp->prc_wait);
295 		mutex_exit(&pcp->prc_mutex);
296 		ASSERT(!(pcp->prc_flags & PRC_POLL));
297 
298 		vp = pnp->pr_next;
299 		pnp->pr_next = NULL;
300 	}
301 }
302 
303 /*
304  * Called from a hook in freeproc() when a traced process is removed
305  * from the process table.  The proc-table pointers of all associated
306  * /proc vnodes are cleared to indicate that the process has gone away.
307  */
308 void
309 prfree(proc_t *p)
310 {
311 	uint_t slot = p->p_slot;
312 
313 	ASSERT(MUTEX_HELD(&pidlock));
314 
315 	/*
316 	 * Block the process against /proc so it can be freed.
317 	 * It cannot be freed while locked by some controlling process.
318 	 * Lock ordering:
319 	 *	pidlock -> pr_pidlock -> p->p_lock -> pcp->prc_mutex
320 	 */
321 	mutex_enter(&pr_pidlock);	/* protects pcp->prc_proc */
322 	mutex_enter(&p->p_lock);
323 	while (p->p_proc_flag & P_PR_LOCK) {
324 		mutex_exit(&pr_pidlock);
325 		cv_wait(&pr_pid_cv[slot], &p->p_lock);
326 		mutex_exit(&p->p_lock);
327 		mutex_enter(&pr_pidlock);
328 		mutex_enter(&p->p_lock);
329 	}
330 
331 	ASSERT(p->p_tlist == NULL);
332 
333 	prfreenotify(p->p_plist);
334 	p->p_plist = NULL;
335 
336 	prfreenotify(p->p_trace);
337 	p->p_trace = NULL;
338 
339 	/*
340 	 * We broadcast to wake up everyone waiting for this process.
341 	 * No one can reach this process from this point on.
342 	 */
343 	cv_broadcast(&pr_pid_cv[slot]);
344 
345 	mutex_exit(&p->p_lock);
346 	mutex_exit(&pr_pidlock);
347 }
348 
349 /*
350  * Called from a hook in exit() when a traced process is becoming a zombie.
351  */
352 void
353 prexit(proc_t *p)
354 {
355 	ASSERT(MUTEX_HELD(&p->p_lock));
356 
357 	if (pr_watch_active(p)) {
358 		pr_free_watchpoints(p);
359 		watch_disable(curthread);
360 	}
361 	/* pr_free_watched_pages() is called in exit(), after dropping p_lock */
362 	if (p->p_trace) {
363 		VTOP(p->p_trace)->pr_common->prc_flags |= PRC_DESTROY;
364 		prnotify(p->p_trace);
365 	}
366 	cv_broadcast(&pr_pid_cv[p->p_slot]);	/* pauselwps() */
367 }
368 
369 /*
370  * Called when a thread calls lwp_exit().
371  */
372 void
373 prlwpexit(kthread_t *t)
374 {
375 	vnode_t *vp;
376 	prnode_t *pnp;
377 	prcommon_t *pcp;
378 	proc_t *p = ttoproc(t);
379 	lwpent_t *lep = p->p_lwpdir[t->t_dslot].ld_entry;
380 
381 	ASSERT(t == curthread);
382 	ASSERT(MUTEX_HELD(&p->p_lock));
383 
384 	/*
385 	 * The process must be blocked against /proc to do this safely.
386 	 * The lwp must not disappear while the process is marked P_PR_LOCK.
387 	 * It is the caller's responsibility to have called prbarrier(p).
388 	 */
389 	ASSERT(!(p->p_proc_flag & P_PR_LOCK));
390 
391 	for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) {
392 		pnp = VTOP(vp);
393 		pcp = pnp->pr_common;
394 		if (pcp->prc_thread == t) {
395 			pcp->prc_thread = NULL;
396 			pcp->prc_flags |= PRC_DESTROY;
397 		}
398 	}
399 
400 	for (vp = lep->le_trace; vp != NULL; vp = pnp->pr_next) {
401 		pnp = VTOP(vp);
402 		pcp = pnp->pr_common;
403 		pcp->prc_thread = NULL;
404 		pcp->prc_flags |= PRC_DESTROY;
405 		prnotify(vp);
406 	}
407 
408 	if (p->p_trace)
409 		prnotify(p->p_trace);
410 }
411 
412 /*
413  * Called when a zombie thread is joined or when a
414  * detached lwp exits.  Called from lwp_hash_out().
415  */
416 void
417 prlwpfree(proc_t *p, lwpent_t *lep)
418 {
419 	vnode_t *vp;
420 	prnode_t *pnp;
421 	prcommon_t *pcp;
422 
423 	ASSERT(MUTEX_HELD(&p->p_lock));
424 
425 	/*
426 	 * The process must be blocked against /proc to do this safely.
427 	 * The lwp must not disappear while the process is marked P_PR_LOCK.
428 	 * It is the caller's responsibility to have called prbarrier(p).
429 	 */
430 	ASSERT(!(p->p_proc_flag & P_PR_LOCK));
431 
432 	vp = lep->le_trace;
433 	lep->le_trace = NULL;
434 	while (vp) {
435 		prnotify(vp);
436 		pnp = VTOP(vp);
437 		pcp = pnp->pr_common;
438 		ASSERT(pcp->prc_thread == NULL &&
439 		    (pcp->prc_flags & PRC_DESTROY));
440 		pcp->prc_tslot = -1;
441 		vp = pnp->pr_next;
442 		pnp->pr_next = NULL;
443 	}
444 
445 	if (p->p_trace)
446 		prnotify(p->p_trace);
447 }
448 
449 /*
450  * Called from a hook in exec() when a thread starts exec().
451  */
452 void
453 prexecstart(void)
454 {
455 	proc_t *p = ttoproc(curthread);
456 	klwp_t *lwp = ttolwp(curthread);
457 
458 	/*
459 	 * The P_PR_EXEC flag blocks /proc operations for
460 	 * the duration of the exec().
461 	 * We can't start exec() while the process is
462 	 * locked by /proc, so we call prbarrier().
463 	 * lwp_nostop keeps the process from being stopped
464 	 * via job control for the duration of the exec().
465 	 */
466 
467 	ASSERT(MUTEX_HELD(&p->p_lock));
468 	prbarrier(p);
469 	lwp->lwp_nostop++;
470 	p->p_proc_flag |= P_PR_EXEC;
471 }
472 
473 /*
474  * Called from a hook in exec() when a thread finishes exec().
475  * The thread may or may not have succeeded.  Some other thread
476  * may have beat it to the punch.
477  */
478 void
479 prexecend(void)
480 {
481 	proc_t *p = ttoproc(curthread);
482 	klwp_t *lwp = ttolwp(curthread);
483 	vnode_t *vp;
484 	prnode_t *pnp;
485 	prcommon_t *pcp;
486 	model_t model = p->p_model;
487 	id_t tid = curthread->t_tid;
488 	int tslot = curthread->t_dslot;
489 
490 	ASSERT(MUTEX_HELD(&p->p_lock));
491 
492 	lwp->lwp_nostop--;
493 	if (p->p_flag & SEXITLWPS) {
494 		/*
495 		 * We are on our way to exiting because some
496 		 * other thread beat us in the race to exec().
497 		 * Don't clear the P_PR_EXEC flag in this case.
498 		 */
499 		return;
500 	}
501 
502 	/*
503 	 * Wake up anyone waiting in /proc for the process to complete exec().
504 	 */
505 	p->p_proc_flag &= ~P_PR_EXEC;
506 	if ((vp = p->p_trace) != NULL) {
507 		pcp = VTOP(vp)->pr_common;
508 		mutex_enter(&pcp->prc_mutex);
509 		cv_broadcast(&pcp->prc_wait);
510 		mutex_exit(&pcp->prc_mutex);
511 		for (; vp != NULL; vp = pnp->pr_next) {
512 			pnp = VTOP(vp);
513 			pnp->pr_common->prc_datamodel = model;
514 		}
515 	}
516 	if ((vp = p->p_lwpdir[tslot].ld_entry->le_trace) != NULL) {
517 		/*
518 		 * We dealt with the process common above.
519 		 */
520 		ASSERT(p->p_trace != NULL);
521 		pcp = VTOP(vp)->pr_common;
522 		mutex_enter(&pcp->prc_mutex);
523 		cv_broadcast(&pcp->prc_wait);
524 		mutex_exit(&pcp->prc_mutex);
525 		for (; vp != NULL; vp = pnp->pr_next) {
526 			pnp = VTOP(vp);
527 			pcp = pnp->pr_common;
528 			pcp->prc_datamodel = model;
529 			pcp->prc_tid = tid;
530 			pcp->prc_tslot = tslot;
531 		}
532 	}
533 }
534 
535 /*
536  * Called from a hook in relvm() just before freeing the address space.
537  * We free all the watched areas now.
538  */
539 void
540 prrelvm(void)
541 {
542 	proc_t *p = ttoproc(curthread);
543 
544 	mutex_enter(&p->p_lock);
545 	prbarrier(p);	/* block all other /proc operations */
546 	if (pr_watch_active(p)) {
547 		pr_free_watchpoints(p);
548 		watch_disable(curthread);
549 	}
550 	mutex_exit(&p->p_lock);
551 	pr_free_watched_pages(p);
552 }
553 
554 /*
555  * Called from hooks in exec-related code when a traced process
556  * attempts to exec(2) a setuid/setgid program or an unreadable
557  * file.  Rather than fail the exec we invalidate the associated
558  * /proc vnodes so that subsequent attempts to use them will fail.
559  *
560  * All /proc vnodes, except directory vnodes, are retained on a linked
561  * list (rooted at p_plist in the process structure) until last close.
562  *
563  * A controlling process must re-open the /proc files in order to
564  * regain control.
565  */
566 void
567 prinvalidate(struct user *up)
568 {
569 	kthread_t *t = curthread;
570 	proc_t *p = ttoproc(t);
571 	vnode_t *vp;
572 	prnode_t *pnp;
573 	int writers = 0;
574 
575 	mutex_enter(&p->p_lock);
576 	prbarrier(p);	/* block all other /proc operations */
577 
578 	/*
579 	 * At this moment, there can be only one lwp in the process.
580 	 */
581 	ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0);
582 
583 	/*
584 	 * Invalidate any currently active /proc vnodes.
585 	 */
586 	for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) {
587 		pnp = VTOP(vp);
588 		switch (pnp->pr_type) {
589 		case PR_PSINFO:		/* these files can read by anyone */
590 		case PR_LPSINFO:
591 		case PR_LWPSINFO:
592 		case PR_LWPDIR:
593 		case PR_LWPIDDIR:
594 		case PR_USAGE:
595 		case PR_LUSAGE:
596 		case PR_LWPUSAGE:
597 			break;
598 		default:
599 			pnp->pr_flags |= PR_INVAL;
600 			break;
601 		}
602 	}
603 	/*
604 	 * Wake up anyone waiting for the process or lwp.
605 	 * p->p_trace is guaranteed to be non-NULL if there
606 	 * are any open /proc files for this process.
607 	 */
608 	if ((vp = p->p_trace) != NULL) {
609 		prcommon_t *pcp = VTOP(vp)->pr_pcommon;
610 
611 		prnotify(vp);
612 		/*
613 		 * Are there any writers?
614 		 */
615 		if ((writers = pcp->prc_writers) != 0) {
616 			/*
617 			 * Clear the exclusive open flag (old /proc interface).
618 			 * Set prc_selfopens equal to prc_writers so that
619 			 * the next O_EXCL|O_WRITE open will succeed
620 			 * even with existing (though invalid) writers.
621 			 * prclose() must decrement prc_selfopens when
622 			 * the invalid files are closed.
623 			 */
624 			pcp->prc_flags &= ~PRC_EXCL;
625 			ASSERT(pcp->prc_selfopens <= writers);
626 			pcp->prc_selfopens = writers;
627 		}
628 	}
629 	vp = p->p_lwpdir[t->t_dslot].ld_entry->le_trace;
630 	while (vp != NULL) {
631 		/*
632 		 * We should not invalidate the lwpiddir vnodes,
633 		 * but the necessities of maintaining the old
634 		 * ioctl()-based version of /proc require it.
635 		 */
636 		pnp = VTOP(vp);
637 		pnp->pr_flags |= PR_INVAL;
638 		prnotify(vp);
639 		vp = pnp->pr_next;
640 	}
641 
642 	/*
643 	 * If any tracing flags are in effect and any vnodes are open for
644 	 * writing then set the requested-stop and run-on-last-close flags.
645 	 * Otherwise, clear all tracing flags.
646 	 */
647 	t->t_proc_flag &= ~TP_PAUSE;
648 	if ((p->p_proc_flag & P_PR_TRACE) && writers) {
649 		t->t_proc_flag |= TP_PRSTOP;
650 		aston(t);		/* so ISSIG will see the flag */
651 		p->p_proc_flag |= P_PR_RUNLCL;
652 	} else {
653 		premptyset(&up->u_entrymask);		/* syscalls */
654 		premptyset(&up->u_exitmask);
655 		up->u_systrap = 0;
656 		premptyset(&p->p_sigmask);		/* signals */
657 		premptyset(&p->p_fltmask);		/* faults */
658 		t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP|TP_STOPPING);
659 		p->p_proc_flag &= ~(P_PR_RUNLCL|P_PR_KILLCL|P_PR_TRACE);
660 		prnostep(ttolwp(t));
661 	}
662 
663 	mutex_exit(&p->p_lock);
664 }
665 
666 /*
667  * Acquire the controlled process's p_lock and mark it P_PR_LOCK.
668  * Return with pr_pidlock held in all cases.
669  * Return with p_lock held if the the process still exists.
670  * Return value is the process pointer if the process still exists, else NULL.
671  * If we lock the process, give ourself kernel priority to avoid deadlocks;
672  * this is undone in prunlock().
673  */
674 proc_t *
675 pr_p_lock(prnode_t *pnp)
676 {
677 	proc_t *p;
678 	prcommon_t *pcp;
679 
680 	mutex_enter(&pr_pidlock);
681 	if ((pcp = pnp->pr_pcommon) == NULL || (p = pcp->prc_proc) == NULL)
682 		return (NULL);
683 	mutex_enter(&p->p_lock);
684 	while (p->p_proc_flag & P_PR_LOCK) {
685 		/*
686 		 * This cv/mutex pair is persistent even if
687 		 * the process disappears while we sleep.
688 		 */
689 		kcondvar_t *cv = &pr_pid_cv[p->p_slot];
690 		kmutex_t *mp = &p->p_lock;
691 
692 		mutex_exit(&pr_pidlock);
693 		cv_wait(cv, mp);
694 		mutex_exit(mp);
695 		mutex_enter(&pr_pidlock);
696 		if (pcp->prc_proc == NULL)
697 			return (NULL);
698 		ASSERT(p == pcp->prc_proc);
699 		mutex_enter(&p->p_lock);
700 	}
701 	p->p_proc_flag |= P_PR_LOCK;
702 	THREAD_KPRI_REQUEST();
703 	return (p);
704 }
705 
706 /*
707  * Lock the target process by setting P_PR_LOCK and grabbing p->p_lock.
708  * This prevents any lwp of the process from disappearing and
709  * blocks most operations that a process can perform on itself.
710  * Returns 0 on success, a non-zero error number on failure.
711  *
712  * 'zdisp' is ZYES or ZNO to indicate whether prlock() should succeed when
713  * the subject process is a zombie (ZYES) or fail for zombies (ZNO).
714  *
715  * error returns:
716  *	ENOENT: process or lwp has disappeared or process is exiting
717  *		(or has become a zombie and zdisp == ZNO).
718  *	EAGAIN: procfs vnode has become invalid.
719  *	EINTR:  signal arrived while waiting for exec to complete.
720  */
721 int
722 prlock(prnode_t *pnp, int zdisp)
723 {
724 	prcommon_t *pcp;
725 	proc_t *p;
726 
727 again:
728 	pcp = pnp->pr_common;
729 	p = pr_p_lock(pnp);
730 	mutex_exit(&pr_pidlock);
731 
732 	/*
733 	 * Return ENOENT immediately if there is no process.
734 	 */
735 	if (p == NULL)
736 		return (ENOENT);
737 
738 	ASSERT(p == pcp->prc_proc && p->p_stat != 0 && p->p_stat != SIDL);
739 
740 	/*
741 	 * Return ENOENT if process entered zombie state or is exiting
742 	 * and the 'zdisp' flag is set to ZNO indicating not to lock zombies.
743 	 */
744 	if (zdisp == ZNO &&
745 	    ((pcp->prc_flags & PRC_DESTROY) || (p->p_flag & SEXITING))) {
746 		prunlock(pnp);
747 		return (ENOENT);
748 	}
749 
750 	/*
751 	 * If lwp-specific, check to see if lwp has disappeared.
752 	 */
753 	if (pcp->prc_flags & PRC_LWP) {
754 		if ((zdisp == ZNO && (pcp->prc_flags & PRC_DESTROY)) ||
755 		    pcp->prc_tslot == -1) {
756 			prunlock(pnp);
757 			return (ENOENT);
758 		}
759 	}
760 
761 	/*
762 	 * Return EAGAIN if we have encountered a security violation.
763 	 * (The process exec'd a set-id or unreadable executable file.)
764 	 */
765 	if (pnp->pr_flags & PR_INVAL) {
766 		prunlock(pnp);
767 		return (EAGAIN);
768 	}
769 
770 	/*
771 	 * If process is undergoing an exec(), wait for
772 	 * completion and then start all over again.
773 	 */
774 	if (p->p_proc_flag & P_PR_EXEC) {
775 		pcp = pnp->pr_pcommon;	/* Put on the correct sleep queue */
776 		mutex_enter(&pcp->prc_mutex);
777 		prunlock(pnp);
778 		if (!cv_wait_sig(&pcp->prc_wait, &pcp->prc_mutex)) {
779 			mutex_exit(&pcp->prc_mutex);
780 			return (EINTR);
781 		}
782 		mutex_exit(&pcp->prc_mutex);
783 		goto again;
784 	}
785 
786 	/*
787 	 * We return holding p->p_lock.
788 	 */
789 	return (0);
790 }
791 
792 /*
793  * Undo prlock() and pr_p_lock().
794  * p->p_lock is still held; pr_pidlock is no longer held.
795  *
796  * prunmark() drops the P_PR_LOCK flag and wakes up another thread,
797  * if any, waiting for the flag to be dropped; it retains p->p_lock.
798  *
799  * prunlock() calls prunmark() and then drops p->p_lock.
800  */
801 void
802 prunmark(proc_t *p)
803 {
804 	ASSERT(p->p_proc_flag & P_PR_LOCK);
805 	ASSERT(MUTEX_HELD(&p->p_lock));
806 
807 	cv_signal(&pr_pid_cv[p->p_slot]);
808 	p->p_proc_flag &= ~P_PR_LOCK;
809 	THREAD_KPRI_RELEASE();
810 }
811 
812 void
813 prunlock(prnode_t *pnp)
814 {
815 	proc_t *p = pnp->pr_pcommon->prc_proc;
816 
817 	prunmark(p);
818 	mutex_exit(&p->p_lock);
819 }
820 
821 /*
822  * Called while holding p->p_lock to delay until the process is unlocked.
823  * We enter holding p->p_lock; p->p_lock is dropped and reacquired.
824  * The process cannot become locked again until p->p_lock is dropped.
825  */
826 void
827 prbarrier(proc_t *p)
828 {
829 	ASSERT(MUTEX_HELD(&p->p_lock));
830 
831 	if (p->p_proc_flag & P_PR_LOCK) {
832 		/* The process is locked; delay until not locked */
833 		uint_t slot = p->p_slot;
834 
835 		while (p->p_proc_flag & P_PR_LOCK)
836 			cv_wait(&pr_pid_cv[slot], &p->p_lock);
837 		cv_signal(&pr_pid_cv[slot]);
838 	}
839 }
840 
841 /*
842  * Return process/lwp status.
843  * The u-block is mapped in by this routine and unmapped at the end.
844  */
845 void
846 prgetstatus(proc_t *p, pstatus_t *sp, zone_t *zp)
847 {
848 	kthread_t *t;
849 
850 	ASSERT(MUTEX_HELD(&p->p_lock));
851 
852 	t = prchoose(p);	/* returns locked thread */
853 	ASSERT(t != NULL);
854 	thread_unlock(t);
855 
856 	/* just bzero the process part, prgetlwpstatus() does the rest */
857 	bzero(sp, sizeof (pstatus_t) - sizeof (lwpstatus_t));
858 	sp->pr_nlwp = p->p_lwpcnt;
859 	sp->pr_nzomb = p->p_zombcnt;
860 	prassignset(&sp->pr_sigpend, &p->p_sig);
861 	sp->pr_brkbase = (uintptr_t)p->p_brkbase;
862 	sp->pr_brksize = p->p_brksize;
863 	sp->pr_stkbase = (uintptr_t)prgetstackbase(p);
864 	sp->pr_stksize = p->p_stksize;
865 	sp->pr_pid = p->p_pid;
866 	if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
867 	    (p->p_flag & SZONETOP)) {
868 		ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
869 		/*
870 		 * Inside local zones, fake zsched's pid as parent pids for
871 		 * processes which reference processes outside of the zone.
872 		 */
873 		sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
874 	} else {
875 		sp->pr_ppid = p->p_ppid;
876 	}
877 	sp->pr_pgid  = p->p_pgrp;
878 	sp->pr_sid   = p->p_sessp->s_sid;
879 	sp->pr_taskid = p->p_task->tk_tkid;
880 	sp->pr_projid = p->p_task->tk_proj->kpj_id;
881 	sp->pr_zoneid = p->p_zone->zone_id;
882 	hrt2ts(mstate_aggr_state(p, LMS_USER), &sp->pr_utime);
883 	hrt2ts(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime);
884 	TICK_TO_TIMESTRUC(p->p_cutime, &sp->pr_cutime);
885 	TICK_TO_TIMESTRUC(p->p_cstime, &sp->pr_cstime);
886 	prassignset(&sp->pr_sigtrace, &p->p_sigmask);
887 	prassignset(&sp->pr_flttrace, &p->p_fltmask);
888 	prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask);
889 	prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask);
890 	switch (p->p_model) {
891 	case DATAMODEL_ILP32:
892 		sp->pr_dmodel = PR_MODEL_ILP32;
893 		break;
894 	case DATAMODEL_LP64:
895 		sp->pr_dmodel = PR_MODEL_LP64;
896 		break;
897 	}
898 	if (p->p_agenttp)
899 		sp->pr_agentid = p->p_agenttp->t_tid;
900 
901 	/* get the chosen lwp's status */
902 	prgetlwpstatus(t, &sp->pr_lwp, zp);
903 
904 	/* replicate the flags */
905 	sp->pr_flags = sp->pr_lwp.pr_flags;
906 }
907 
908 #ifdef _SYSCALL32_IMPL
909 void
910 prgetlwpstatus32(kthread_t *t, lwpstatus32_t *sp, zone_t *zp)
911 {
912 	proc_t *p = ttoproc(t);
913 	klwp_t *lwp = ttolwp(t);
914 	struct mstate *ms = &lwp->lwp_mstate;
915 	hrtime_t usr, sys;
916 	int flags;
917 	ulong_t instr;
918 
919 	ASSERT(MUTEX_HELD(&p->p_lock));
920 
921 	bzero(sp, sizeof (*sp));
922 	flags = 0L;
923 	if (t->t_state == TS_STOPPED) {
924 		flags |= PR_STOPPED;
925 		if ((t->t_schedflag & TS_PSTART) == 0)
926 			flags |= PR_ISTOP;
927 	} else if (VSTOPPED(t)) {
928 		flags |= PR_STOPPED|PR_ISTOP;
929 	}
930 	if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP))
931 		flags |= PR_DSTOP;
932 	if (lwp->lwp_asleep)
933 		flags |= PR_ASLEEP;
934 	if (t == p->p_agenttp)
935 		flags |= PR_AGENT;
936 	if (!(t->t_proc_flag & TP_TWAIT))
937 		flags |= PR_DETACH;
938 	if (t->t_proc_flag & TP_DAEMON)
939 		flags |= PR_DAEMON;
940 	if (p->p_proc_flag & P_PR_FORK)
941 		flags |= PR_FORK;
942 	if (p->p_proc_flag & P_PR_RUNLCL)
943 		flags |= PR_RLC;
944 	if (p->p_proc_flag & P_PR_KILLCL)
945 		flags |= PR_KLC;
946 	if (p->p_proc_flag & P_PR_ASYNC)
947 		flags |= PR_ASYNC;
948 	if (p->p_proc_flag & P_PR_BPTADJ)
949 		flags |= PR_BPTADJ;
950 	if (p->p_proc_flag & P_PR_PTRACE)
951 		flags |= PR_PTRACE;
952 	if (p->p_flag & SMSACCT)
953 		flags |= PR_MSACCT;
954 	if (p->p_flag & SMSFORK)
955 		flags |= PR_MSFORK;
956 	if (p->p_flag & SVFWAIT)
957 		flags |= PR_VFORKP;
958 	sp->pr_flags = flags;
959 	if (VSTOPPED(t)) {
960 		sp->pr_why   = PR_REQUESTED;
961 		sp->pr_what  = 0;
962 	} else {
963 		sp->pr_why   = t->t_whystop;
964 		sp->pr_what  = t->t_whatstop;
965 	}
966 	sp->pr_lwpid = t->t_tid;
967 	sp->pr_cursig  = lwp->lwp_cursig;
968 	prassignset(&sp->pr_lwppend, &t->t_sig);
969 	schedctl_finish_sigblock(t);
970 	prassignset(&sp->pr_lwphold, &t->t_hold);
971 	if (t->t_whystop == PR_FAULTED) {
972 		siginfo_kto32(&lwp->lwp_siginfo, &sp->pr_info);
973 		if (t->t_whatstop == FLTPAGE)
974 			sp->pr_info.si_addr =
975 			    (caddr32_t)(uintptr_t)lwp->lwp_siginfo.si_addr;
976 	} else if (lwp->lwp_curinfo)
977 		siginfo_kto32(&lwp->lwp_curinfo->sq_info, &sp->pr_info);
978 	if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID &&
979 	    sp->pr_info.si_zoneid != zp->zone_id) {
980 		sp->pr_info.si_pid = zp->zone_zsched->p_pid;
981 		sp->pr_info.si_uid = 0;
982 		sp->pr_info.si_ctid = -1;
983 		sp->pr_info.si_zoneid = zp->zone_id;
984 	}
985 	sp->pr_altstack.ss_sp =
986 	    (caddr32_t)(uintptr_t)lwp->lwp_sigaltstack.ss_sp;
987 	sp->pr_altstack.ss_size = (size32_t)lwp->lwp_sigaltstack.ss_size;
988 	sp->pr_altstack.ss_flags = (int32_t)lwp->lwp_sigaltstack.ss_flags;
989 	prgetaction32(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action);
990 	sp->pr_oldcontext = (caddr32_t)lwp->lwp_oldcontext;
991 	sp->pr_ustack = (caddr32_t)lwp->lwp_ustack;
992 	(void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name,
993 		sizeof (sp->pr_clname) - 1);
994 	if (flags & PR_STOPPED)
995 		hrt2ts32(t->t_stoptime, &sp->pr_tstamp);
996 	usr = ms->ms_acct[LMS_USER];
997 	sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
998 	scalehrtime(&usr);
999 	scalehrtime(&sys);
1000 	hrt2ts32(usr, &sp->pr_utime);
1001 	hrt2ts32(sys, &sp->pr_stime);
1002 
1003 	/*
1004 	 * Fetch the current instruction, if not a system process.
1005 	 * We don't attempt this unless the lwp is stopped.
1006 	 */
1007 	if ((p->p_flag & SSYS) || p->p_as == &kas)
1008 		sp->pr_flags |= (PR_ISSYS|PR_PCINVAL);
1009 	else if (!(flags & PR_STOPPED))
1010 		sp->pr_flags |= PR_PCINVAL;
1011 	else if (!prfetchinstr(lwp, &instr))
1012 		sp->pr_flags |= PR_PCINVAL;
1013 	else
1014 		sp->pr_instr = (uint32_t)instr;
1015 
1016 	/*
1017 	 * Drop p_lock while touching the lwp's stack.
1018 	 */
1019 	mutex_exit(&p->p_lock);
1020 	if (prisstep(lwp))
1021 		sp->pr_flags |= PR_STEP;
1022 	if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) {
1023 		int i;
1024 
1025 		sp->pr_syscall = get_syscall32_args(lwp,
1026 			(int *)sp->pr_sysarg, &i);
1027 		sp->pr_nsysarg = (ushort_t)i;
1028 	}
1029 	if ((flags & PR_STOPPED) || t == curthread)
1030 		prgetprregs32(lwp, sp->pr_reg);
1031 	if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) ||
1032 	    (flags & PR_VFORKP)) {
1033 		long r1, r2;
1034 		user_t *up;
1035 		auxv_t *auxp;
1036 		int i;
1037 
1038 		sp->pr_errno = prgetrvals(lwp, &r1, &r2);
1039 		if (sp->pr_errno == 0) {
1040 			sp->pr_rval1 = (int32_t)r1;
1041 			sp->pr_rval2 = (int32_t)r2;
1042 			sp->pr_errpriv = PRIV_NONE;
1043 		} else
1044 			sp->pr_errpriv = lwp->lwp_badpriv;
1045 
1046 		if (t->t_sysnum == SYS_exec || t->t_sysnum == SYS_execve) {
1047 			up = PTOU(p);
1048 			sp->pr_sysarg[0] = 0;
1049 			sp->pr_sysarg[1] = (caddr32_t)up->u_argv;
1050 			sp->pr_sysarg[2] = (caddr32_t)up->u_envp;
1051 			for (i = 0, auxp = up->u_auxv;
1052 			    i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]);
1053 			    i++, auxp++) {
1054 				if (auxp->a_type == AT_SUN_EXECNAME) {
1055 					sp->pr_sysarg[0] =
1056 					(caddr32_t)(uintptr_t)auxp->a_un.a_ptr;
1057 					break;
1058 				}
1059 			}
1060 		}
1061 	}
1062 	if (prhasfp())
1063 		prgetprfpregs32(lwp, &sp->pr_fpreg);
1064 	mutex_enter(&p->p_lock);
1065 }
1066 
1067 void
1068 prgetstatus32(proc_t *p, pstatus32_t *sp, zone_t *zp)
1069 {
1070 	kthread_t *t;
1071 
1072 	ASSERT(MUTEX_HELD(&p->p_lock));
1073 
1074 	t = prchoose(p);	/* returns locked thread */
1075 	ASSERT(t != NULL);
1076 	thread_unlock(t);
1077 
1078 	/* just bzero the process part, prgetlwpstatus32() does the rest */
1079 	bzero(sp, sizeof (pstatus32_t) - sizeof (lwpstatus32_t));
1080 	sp->pr_nlwp = p->p_lwpcnt;
1081 	sp->pr_nzomb = p->p_zombcnt;
1082 	prassignset(&sp->pr_sigpend, &p->p_sig);
1083 	sp->pr_brkbase = (uint32_t)(uintptr_t)p->p_brkbase;
1084 	sp->pr_brksize = (uint32_t)p->p_brksize;
1085 	sp->pr_stkbase = (uint32_t)(uintptr_t)prgetstackbase(p);
1086 	sp->pr_stksize = (uint32_t)p->p_stksize;
1087 	sp->pr_pid   = p->p_pid;
1088 	if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
1089 	    (p->p_flag & SZONETOP)) {
1090 		ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
1091 		/*
1092 		 * Inside local zones, fake zsched's pid as parent pids for
1093 		 * processes which reference processes outside of the zone.
1094 		 */
1095 		sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
1096 	} else {
1097 		sp->pr_ppid = p->p_ppid;
1098 	}
1099 	sp->pr_pgid  = p->p_pgrp;
1100 	sp->pr_sid   = p->p_sessp->s_sid;
1101 	sp->pr_taskid = p->p_task->tk_tkid;
1102 	sp->pr_projid = p->p_task->tk_proj->kpj_id;
1103 	sp->pr_zoneid = p->p_zone->zone_id;
1104 	hrt2ts32(mstate_aggr_state(p, LMS_USER), &sp->pr_utime);
1105 	hrt2ts32(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime);
1106 	TICK_TO_TIMESTRUC32(p->p_cutime, &sp->pr_cutime);
1107 	TICK_TO_TIMESTRUC32(p->p_cstime, &sp->pr_cstime);
1108 	prassignset(&sp->pr_sigtrace, &p->p_sigmask);
1109 	prassignset(&sp->pr_flttrace, &p->p_fltmask);
1110 	prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask);
1111 	prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask);
1112 	switch (p->p_model) {
1113 	case DATAMODEL_ILP32:
1114 		sp->pr_dmodel = PR_MODEL_ILP32;
1115 		break;
1116 	case DATAMODEL_LP64:
1117 		sp->pr_dmodel = PR_MODEL_LP64;
1118 		break;
1119 	}
1120 	if (p->p_agenttp)
1121 		sp->pr_agentid = p->p_agenttp->t_tid;
1122 
1123 	/* get the chosen lwp's status */
1124 	prgetlwpstatus32(t, &sp->pr_lwp, zp);
1125 
1126 	/* replicate the flags */
1127 	sp->pr_flags = sp->pr_lwp.pr_flags;
1128 }
1129 #endif	/* _SYSCALL32_IMPL */
1130 
1131 /*
1132  * Return lwp status.
1133  */
1134 void
1135 prgetlwpstatus(kthread_t *t, lwpstatus_t *sp, zone_t *zp)
1136 {
1137 	proc_t *p = ttoproc(t);
1138 	klwp_t *lwp = ttolwp(t);
1139 	struct mstate *ms = &lwp->lwp_mstate;
1140 	hrtime_t usr, sys;
1141 	int flags;
1142 	ulong_t instr;
1143 
1144 	ASSERT(MUTEX_HELD(&p->p_lock));
1145 
1146 	bzero(sp, sizeof (*sp));
1147 	flags = 0L;
1148 	if (t->t_state == TS_STOPPED) {
1149 		flags |= PR_STOPPED;
1150 		if ((t->t_schedflag & TS_PSTART) == 0)
1151 			flags |= PR_ISTOP;
1152 	} else if (VSTOPPED(t)) {
1153 		flags |= PR_STOPPED|PR_ISTOP;
1154 	}
1155 	if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP))
1156 		flags |= PR_DSTOP;
1157 	if (lwp->lwp_asleep)
1158 		flags |= PR_ASLEEP;
1159 	if (t == p->p_agenttp)
1160 		flags |= PR_AGENT;
1161 	if (!(t->t_proc_flag & TP_TWAIT))
1162 		flags |= PR_DETACH;
1163 	if (t->t_proc_flag & TP_DAEMON)
1164 		flags |= PR_DAEMON;
1165 	if (p->p_proc_flag & P_PR_FORK)
1166 		flags |= PR_FORK;
1167 	if (p->p_proc_flag & P_PR_RUNLCL)
1168 		flags |= PR_RLC;
1169 	if (p->p_proc_flag & P_PR_KILLCL)
1170 		flags |= PR_KLC;
1171 	if (p->p_proc_flag & P_PR_ASYNC)
1172 		flags |= PR_ASYNC;
1173 	if (p->p_proc_flag & P_PR_BPTADJ)
1174 		flags |= PR_BPTADJ;
1175 	if (p->p_proc_flag & P_PR_PTRACE)
1176 		flags |= PR_PTRACE;
1177 	if (p->p_flag & SMSACCT)
1178 		flags |= PR_MSACCT;
1179 	if (p->p_flag & SMSFORK)
1180 		flags |= PR_MSFORK;
1181 	if (p->p_flag & SVFWAIT)
1182 		flags |= PR_VFORKP;
1183 	if (p->p_pgidp->pid_pgorphaned)
1184 		flags |= PR_ORPHAN;
1185 	sp->pr_flags = flags;
1186 	if (VSTOPPED(t)) {
1187 		sp->pr_why   = PR_REQUESTED;
1188 		sp->pr_what  = 0;
1189 	} else {
1190 		sp->pr_why   = t->t_whystop;
1191 		sp->pr_what  = t->t_whatstop;
1192 	}
1193 	sp->pr_lwpid = t->t_tid;
1194 	sp->pr_cursig  = lwp->lwp_cursig;
1195 	prassignset(&sp->pr_lwppend, &t->t_sig);
1196 	schedctl_finish_sigblock(t);
1197 	prassignset(&sp->pr_lwphold, &t->t_hold);
1198 	if (t->t_whystop == PR_FAULTED)
1199 		bcopy(&lwp->lwp_siginfo,
1200 		    &sp->pr_info, sizeof (k_siginfo_t));
1201 	else if (lwp->lwp_curinfo)
1202 		bcopy(&lwp->lwp_curinfo->sq_info,
1203 		    &sp->pr_info, sizeof (k_siginfo_t));
1204 	if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID &&
1205 	    sp->pr_info.si_zoneid != zp->zone_id) {
1206 		sp->pr_info.si_pid = zp->zone_zsched->p_pid;
1207 		sp->pr_info.si_uid = 0;
1208 		sp->pr_info.si_ctid = -1;
1209 		sp->pr_info.si_zoneid = zp->zone_id;
1210 	}
1211 	sp->pr_altstack = lwp->lwp_sigaltstack;
1212 	prgetaction(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action);
1213 	sp->pr_oldcontext = (uintptr_t)lwp->lwp_oldcontext;
1214 	sp->pr_ustack = lwp->lwp_ustack;
1215 	(void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name,
1216 		sizeof (sp->pr_clname) - 1);
1217 	if (flags & PR_STOPPED)
1218 		hrt2ts(t->t_stoptime, &sp->pr_tstamp);
1219 	usr = ms->ms_acct[LMS_USER];
1220 	sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
1221 	scalehrtime(&usr);
1222 	scalehrtime(&sys);
1223 	hrt2ts(usr, &sp->pr_utime);
1224 	hrt2ts(sys, &sp->pr_stime);
1225 
1226 	/*
1227 	 * Fetch the current instruction, if not a system process.
1228 	 * We don't attempt this unless the lwp is stopped.
1229 	 */
1230 	if ((p->p_flag & SSYS) || p->p_as == &kas)
1231 		sp->pr_flags |= (PR_ISSYS|PR_PCINVAL);
1232 	else if (!(flags & PR_STOPPED))
1233 		sp->pr_flags |= PR_PCINVAL;
1234 	else if (!prfetchinstr(lwp, &instr))
1235 		sp->pr_flags |= PR_PCINVAL;
1236 	else
1237 		sp->pr_instr = instr;
1238 
1239 	/*
1240 	 * Drop p_lock while touching the lwp's stack.
1241 	 */
1242 	mutex_exit(&p->p_lock);
1243 	if (prisstep(lwp))
1244 		sp->pr_flags |= PR_STEP;
1245 	if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) {
1246 		int i;
1247 
1248 		sp->pr_syscall = get_syscall_args(lwp,
1249 			(long *)sp->pr_sysarg, &i);
1250 		sp->pr_nsysarg = (ushort_t)i;
1251 	}
1252 	if ((flags & PR_STOPPED) || t == curthread)
1253 		prgetprregs(lwp, sp->pr_reg);
1254 	if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) ||
1255 	    (flags & PR_VFORKP)) {
1256 		user_t *up;
1257 		auxv_t *auxp;
1258 		int i;
1259 
1260 		sp->pr_errno = prgetrvals(lwp, &sp->pr_rval1, &sp->pr_rval2);
1261 		if (sp->pr_errno == 0)
1262 			sp->pr_errpriv = PRIV_NONE;
1263 		else
1264 			sp->pr_errpriv = lwp->lwp_badpriv;
1265 
1266 		if (t->t_sysnum == SYS_exec || t->t_sysnum == SYS_execve) {
1267 			up = PTOU(p);
1268 			sp->pr_sysarg[0] = 0;
1269 			sp->pr_sysarg[1] = (uintptr_t)up->u_argv;
1270 			sp->pr_sysarg[2] = (uintptr_t)up->u_envp;
1271 			for (i = 0, auxp = up->u_auxv;
1272 			    i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]);
1273 			    i++, auxp++) {
1274 				if (auxp->a_type == AT_SUN_EXECNAME) {
1275 					sp->pr_sysarg[0] =
1276 						(uintptr_t)auxp->a_un.a_ptr;
1277 					break;
1278 				}
1279 			}
1280 		}
1281 	}
1282 	if (prhasfp())
1283 		prgetprfpregs(lwp, &sp->pr_fpreg);
1284 	mutex_enter(&p->p_lock);
1285 }
1286 
1287 /*
1288  * Get the sigaction structure for the specified signal.  The u-block
1289  * must already have been mapped in by the caller.
1290  */
1291 void
1292 prgetaction(proc_t *p, user_t *up, uint_t sig, struct sigaction *sp)
1293 {
1294 	bzero(sp, sizeof (*sp));
1295 
1296 	if (sig != 0 && (unsigned)sig < NSIG) {
1297 		sp->sa_handler = up->u_signal[sig-1];
1298 		prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]);
1299 		if (sigismember(&up->u_sigonstack, sig))
1300 			sp->sa_flags |= SA_ONSTACK;
1301 		if (sigismember(&up->u_sigresethand, sig))
1302 			sp->sa_flags |= SA_RESETHAND;
1303 		if (sigismember(&up->u_sigrestart, sig))
1304 			sp->sa_flags |= SA_RESTART;
1305 		if (sigismember(&p->p_siginfo, sig))
1306 			sp->sa_flags |= SA_SIGINFO;
1307 		if (sigismember(&up->u_signodefer, sig))
1308 			sp->sa_flags |= SA_NODEFER;
1309 		if (sig == SIGCLD) {
1310 			if (p->p_flag & SNOWAIT)
1311 				sp->sa_flags |= SA_NOCLDWAIT;
1312 			if ((p->p_flag & SJCTL) == 0)
1313 				sp->sa_flags |= SA_NOCLDSTOP;
1314 		}
1315 	}
1316 }
1317 
1318 #ifdef _SYSCALL32_IMPL
1319 void
1320 prgetaction32(proc_t *p, user_t *up, uint_t sig, struct sigaction32 *sp)
1321 {
1322 	bzero(sp, sizeof (*sp));
1323 
1324 	if (sig != 0 && (unsigned)sig < NSIG) {
1325 		sp->sa_handler = (caddr32_t)(uintptr_t)up->u_signal[sig-1];
1326 		prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]);
1327 		if (sigismember(&up->u_sigonstack, sig))
1328 			sp->sa_flags |= SA_ONSTACK;
1329 		if (sigismember(&up->u_sigresethand, sig))
1330 			sp->sa_flags |= SA_RESETHAND;
1331 		if (sigismember(&up->u_sigrestart, sig))
1332 			sp->sa_flags |= SA_RESTART;
1333 		if (sigismember(&p->p_siginfo, sig))
1334 			sp->sa_flags |= SA_SIGINFO;
1335 		if (sigismember(&up->u_signodefer, sig))
1336 			sp->sa_flags |= SA_NODEFER;
1337 		if (sig == SIGCLD) {
1338 			if (p->p_flag & SNOWAIT)
1339 				sp->sa_flags |= SA_NOCLDWAIT;
1340 			if ((p->p_flag & SJCTL) == 0)
1341 				sp->sa_flags |= SA_NOCLDSTOP;
1342 		}
1343 	}
1344 }
1345 #endif	/* _SYSCALL32_IMPL */
1346 
1347 /*
1348  * Count the number of segments in this process's address space.
1349  */
1350 int
1351 prnsegs(struct as *as, int reserved)
1352 {
1353 	int n = 0;
1354 	struct seg *seg;
1355 
1356 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
1357 
1358 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1359 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved);
1360 		caddr_t saddr, naddr;
1361 		void *tmp = NULL;
1362 
1363 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1364 			(void) pr_getprot(seg, reserved, &tmp,
1365 			    &saddr, &naddr, eaddr);
1366 			if (saddr != naddr)
1367 				n++;
1368 		}
1369 
1370 		ASSERT(tmp == NULL);
1371 	}
1372 
1373 	return (n);
1374 }
1375 
1376 /*
1377  * Convert uint32_t to decimal string w/o leading zeros.
1378  * Add trailing null characters if 'len' is greater than string length.
1379  * Return the string length.
1380  */
1381 int
1382 pr_u32tos(uint32_t n, char *s, int len)
1383 {
1384 	char cbuf[11];		/* 32-bit unsigned integer fits in 10 digits */
1385 	char *cp = cbuf;
1386 	char *end = s + len;
1387 
1388 	do {
1389 		*cp++ = (char)(n % 10 + '0');
1390 		n /= 10;
1391 	} while (n);
1392 
1393 	len = (int)(cp - cbuf);
1394 
1395 	do {
1396 		*s++ = *--cp;
1397 	} while (cp > cbuf);
1398 
1399 	while (s < end)		/* optional pad */
1400 		*s++ = '\0';
1401 
1402 	return (len);
1403 }
1404 
1405 /*
1406  * Convert uint64_t to decimal string w/o leading zeros.
1407  * Return the string length.
1408  */
1409 static int
1410 pr_u64tos(uint64_t n, char *s)
1411 {
1412 	char cbuf[21];		/* 64-bit unsigned integer fits in 20 digits */
1413 	char *cp = cbuf;
1414 	int len;
1415 
1416 	do {
1417 		*cp++ = (char)(n % 10 + '0');
1418 		n /= 10;
1419 	} while (n);
1420 
1421 	len = (int)(cp - cbuf);
1422 
1423 	do {
1424 		*s++ = *--cp;
1425 	} while (cp > cbuf);
1426 
1427 	return (len);
1428 }
1429 
1430 void
1431 pr_object_name(char *name, vnode_t *vp, struct vattr *vattr)
1432 {
1433 	char *s = name;
1434 	struct vfs *vfsp;
1435 	struct vfssw *vfsswp;
1436 
1437 	if ((vfsp = vp->v_vfsp) != NULL &&
1438 	    ((vfsswp = vfssw + vfsp->vfs_fstype), vfsswp->vsw_name) &&
1439 	    *vfsswp->vsw_name) {
1440 		(void) strcpy(s, vfsswp->vsw_name);
1441 		s += strlen(s);
1442 		*s++ = '.';
1443 	}
1444 	s += pr_u32tos(getmajor(vattr->va_fsid), s, 0);
1445 	*s++ = '.';
1446 	s += pr_u32tos(getminor(vattr->va_fsid), s, 0);
1447 	*s++ = '.';
1448 	s += pr_u64tos(vattr->va_nodeid, s);
1449 	*s++ = '\0';
1450 }
1451 
1452 struct seg *
1453 break_seg(proc_t *p)
1454 {
1455 	caddr_t addr = p->p_brkbase;
1456 	struct seg *seg;
1457 	struct vnode *vp;
1458 
1459 	if (p->p_brksize != 0)
1460 		addr += p->p_brksize - 1;
1461 	seg = as_segat(p->p_as, addr);
1462 	if (seg != NULL && seg->s_ops == &segvn_ops &&
1463 	    (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL))
1464 		return (seg);
1465 	return (NULL);
1466 }
1467 
1468 /*
1469  * Return an array of structures with memory map information.
1470  * We allocate here; the caller must deallocate.
1471  */
1472 #define	INITIAL_MAPSIZE	65536
1473 #define	MAPSIZE	8192
1474 int
1475 prgetmap(proc_t *p, int reserved, prmap_t **prmapp, size_t *sizep)
1476 {
1477 	struct as *as = p->p_as;
1478 	int nmaps = 0;
1479 	prmap_t *mp;
1480 	size_t size;
1481 	struct seg *seg;
1482 	struct seg *brkseg, *stkseg;
1483 	struct vnode *vp;
1484 	struct vattr vattr;
1485 	uint_t prot;
1486 
1487 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
1488 
1489 	/* initial allocation */
1490 	*sizep = size = INITIAL_MAPSIZE;
1491 	*prmapp = mp = kmem_alloc(size, KM_SLEEP);
1492 
1493 	if ((seg = AS_SEGFIRST(as)) == NULL)
1494 		return (0);
1495 
1496 	brkseg = break_seg(p);
1497 	stkseg = as_segat(as, prgetstackbase(p));
1498 
1499 	do {
1500 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved);
1501 		caddr_t saddr, naddr;
1502 		void *tmp = NULL;
1503 
1504 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1505 			prot = pr_getprot(seg, reserved, &tmp,
1506 			    &saddr, &naddr, eaddr);
1507 			if (saddr == naddr)
1508 				continue;
1509 			/* reallocate if necessary */
1510 			if ((nmaps + 1) * sizeof (prmap_t) > size) {
1511 				size_t newsize = size + 3 * size / 16;
1512 				prmap_t *newmp = kmem_alloc(newsize, KM_SLEEP);
1513 
1514 				bcopy(*prmapp, newmp, nmaps * sizeof (prmap_t));
1515 				kmem_free(*prmapp, size);
1516 				*sizep = size = newsize;
1517 				*prmapp = newmp;
1518 				mp = newmp + nmaps;
1519 			}
1520 			bzero(mp, sizeof (*mp));
1521 			mp->pr_vaddr = (uintptr_t)saddr;
1522 			mp->pr_size = naddr - saddr;
1523 			mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
1524 			mp->pr_mflags = 0;
1525 			if (prot & PROT_READ)
1526 				mp->pr_mflags |= MA_READ;
1527 			if (prot & PROT_WRITE)
1528 				mp->pr_mflags |= MA_WRITE;
1529 			if (prot & PROT_EXEC)
1530 				mp->pr_mflags |= MA_EXEC;
1531 			if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
1532 				mp->pr_mflags |= MA_SHARED;
1533 			if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
1534 				mp->pr_mflags |= MA_NORESERVE;
1535 			if (seg->s_ops == &segspt_shmops ||
1536 			    (seg->s_ops == &segvn_ops &&
1537 			    (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
1538 				mp->pr_mflags |= MA_ANON;
1539 			if (seg == brkseg)
1540 				mp->pr_mflags |= MA_BREAK;
1541 			else if (seg == stkseg) {
1542 				mp->pr_mflags |= MA_STACK;
1543 				if (reserved) {
1544 					size_t maxstack =
1545 					    ((size_t)p->p_stk_ctl +
1546 					    PAGEOFFSET) & PAGEMASK;
1547 					mp->pr_vaddr =
1548 					    (uintptr_t)prgetstackbase(p) +
1549 					    p->p_stksize - maxstack;
1550 					mp->pr_size = (uintptr_t)naddr -
1551 					    mp->pr_vaddr;
1552 				}
1553 			}
1554 			if (seg->s_ops == &segspt_shmops)
1555 				mp->pr_mflags |= MA_ISM | MA_SHM;
1556 			mp->pr_pagesize = PAGESIZE;
1557 
1558 			/*
1559 			 * Manufacture a filename for the "object" directory.
1560 			 */
1561 			vattr.va_mask = AT_FSID|AT_NODEID;
1562 			if (seg->s_ops == &segvn_ops &&
1563 			    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
1564 			    vp != NULL && vp->v_type == VREG &&
1565 			    VOP_GETATTR(vp, &vattr, 0, CRED()) == 0) {
1566 				if (vp == p->p_exec)
1567 					(void) strcpy(mp->pr_mapname, "a.out");
1568 				else
1569 					pr_object_name(mp->pr_mapname,
1570 						vp, &vattr);
1571 			}
1572 
1573 			/*
1574 			 * Get the SysV shared memory id, if any.
1575 			 */
1576 			if ((mp->pr_mflags & MA_SHARED) && p->p_segacct &&
1577 			    (mp->pr_shmid = shmgetid(p, seg->s_base)) !=
1578 			    SHMID_NONE) {
1579 				if (mp->pr_shmid == SHMID_FREE)
1580 					mp->pr_shmid = -1;
1581 
1582 				mp->pr_mflags |= MA_SHM;
1583 			} else {
1584 				mp->pr_shmid = -1;
1585 			}
1586 
1587 			mp++;
1588 			nmaps++;
1589 		}
1590 		ASSERT(tmp == NULL);
1591 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1592 
1593 	return (nmaps);
1594 }
1595 
1596 #ifdef _SYSCALL32_IMPL
1597 int
1598 prgetmap32(proc_t *p, int reserved, prmap32_t **prmapp, size_t *sizep)
1599 {
1600 	struct as *as = p->p_as;
1601 	int nmaps = 0;
1602 	prmap32_t *mp;
1603 	size_t size;
1604 	struct seg *seg;
1605 	struct seg *brkseg, *stkseg;
1606 	struct vnode *vp;
1607 	struct vattr vattr;
1608 	uint_t prot;
1609 
1610 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
1611 
1612 	/* initial allocation */
1613 	*sizep = size = INITIAL_MAPSIZE;
1614 	*prmapp = mp = kmem_alloc(size, KM_SLEEP);
1615 
1616 	if ((seg = AS_SEGFIRST(as)) == NULL)
1617 		return (0);
1618 
1619 	brkseg = break_seg(p);
1620 	stkseg = as_segat(as, prgetstackbase(p));
1621 
1622 	do {
1623 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved);
1624 		caddr_t saddr, naddr;
1625 		void *tmp = NULL;
1626 
1627 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1628 			prot = pr_getprot(seg, reserved, &tmp,
1629 			    &saddr, &naddr, eaddr);
1630 			if (saddr == naddr)
1631 				continue;
1632 			/* reallocate if necessary */
1633 			if ((nmaps + 1) * sizeof (prmap32_t) > size) {
1634 				size_t newsize = size + 3 * size / 16;
1635 				prmap32_t *newmp =
1636 					kmem_alloc(newsize, KM_SLEEP);
1637 
1638 				bcopy(*prmapp, newmp,
1639 					nmaps * sizeof (prmap32_t));
1640 				kmem_free(*prmapp, size);
1641 				*sizep = size = newsize;
1642 				*prmapp = newmp;
1643 				mp = newmp + nmaps;
1644 			}
1645 			bzero(mp, sizeof (*mp));
1646 			mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr;
1647 			mp->pr_size = (size32_t)(naddr - saddr);
1648 			mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
1649 			mp->pr_mflags = 0;
1650 			if (prot & PROT_READ)
1651 				mp->pr_mflags |= MA_READ;
1652 			if (prot & PROT_WRITE)
1653 				mp->pr_mflags |= MA_WRITE;
1654 			if (prot & PROT_EXEC)
1655 				mp->pr_mflags |= MA_EXEC;
1656 			if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
1657 				mp->pr_mflags |= MA_SHARED;
1658 			if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
1659 				mp->pr_mflags |= MA_NORESERVE;
1660 			if (seg->s_ops == &segspt_shmops ||
1661 			    (seg->s_ops == &segvn_ops &&
1662 			    (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
1663 				mp->pr_mflags |= MA_ANON;
1664 			if (seg == brkseg)
1665 				mp->pr_mflags |= MA_BREAK;
1666 			else if (seg == stkseg) {
1667 				mp->pr_mflags |= MA_STACK;
1668 				if (reserved) {
1669 					size_t maxstack =
1670 					    ((size_t)p->p_stk_ctl +
1671 					    PAGEOFFSET) & PAGEMASK;
1672 					uintptr_t vaddr =
1673 					    (uintptr_t)prgetstackbase(p) +
1674 					    p->p_stksize - maxstack;
1675 					mp->pr_vaddr = (caddr32_t)vaddr;
1676 					mp->pr_size = (size32_t)
1677 					    ((uintptr_t)naddr - vaddr);
1678 				}
1679 			}
1680 			if (seg->s_ops == &segspt_shmops)
1681 				mp->pr_mflags |= MA_ISM | MA_SHM;
1682 			mp->pr_pagesize = PAGESIZE;
1683 
1684 			/*
1685 			 * Manufacture a filename for the "object" directory.
1686 			 */
1687 			vattr.va_mask = AT_FSID|AT_NODEID;
1688 			if (seg->s_ops == &segvn_ops &&
1689 			    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
1690 			    vp != NULL && vp->v_type == VREG &&
1691 			    VOP_GETATTR(vp, &vattr, 0, CRED()) == 0) {
1692 				if (vp == p->p_exec)
1693 					(void) strcpy(mp->pr_mapname, "a.out");
1694 				else
1695 					pr_object_name(mp->pr_mapname,
1696 						vp, &vattr);
1697 			}
1698 
1699 			/*
1700 			 * Get the SysV shared memory id, if any.
1701 			 */
1702 			if ((mp->pr_mflags & MA_SHARED) && p->p_segacct &&
1703 			    (mp->pr_shmid = shmgetid(p, seg->s_base)) !=
1704 			    SHMID_NONE) {
1705 				if (mp->pr_shmid == SHMID_FREE)
1706 					mp->pr_shmid = -1;
1707 
1708 				mp->pr_mflags |= MA_SHM;
1709 			} else {
1710 				mp->pr_shmid = -1;
1711 			}
1712 
1713 			mp++;
1714 			nmaps++;
1715 		}
1716 		ASSERT(tmp == NULL);
1717 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1718 
1719 	return (nmaps);
1720 }
1721 #endif	/* _SYSCALL32_IMPL */
1722 
1723 /*
1724  * Return the size of the /proc page data file.
1725  */
1726 size_t
1727 prpdsize(struct as *as)
1728 {
1729 	struct seg *seg;
1730 	size_t size;
1731 
1732 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
1733 
1734 	if ((seg = AS_SEGFIRST(as)) == NULL)
1735 		return (0);
1736 
1737 	size = sizeof (prpageheader_t);
1738 	do {
1739 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1740 		caddr_t saddr, naddr;
1741 		void *tmp = NULL;
1742 		size_t npage;
1743 
1744 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1745 			(void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1746 			if ((npage = (naddr - saddr) / PAGESIZE) != 0)
1747 				size += sizeof (prasmap_t) + round8(npage);
1748 		}
1749 		ASSERT(tmp == NULL);
1750 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1751 
1752 	return (size);
1753 }
1754 
1755 #ifdef _SYSCALL32_IMPL
1756 size_t
1757 prpdsize32(struct as *as)
1758 {
1759 	struct seg *seg;
1760 	size_t size;
1761 
1762 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
1763 
1764 	if ((seg = AS_SEGFIRST(as)) == NULL)
1765 		return (0);
1766 
1767 	size = sizeof (prpageheader32_t);
1768 	do {
1769 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1770 		caddr_t saddr, naddr;
1771 		void *tmp = NULL;
1772 		size_t npage;
1773 
1774 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1775 			(void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1776 			if ((npage = (naddr - saddr) / PAGESIZE) != 0)
1777 				size += sizeof (prasmap32_t) + round8(npage);
1778 		}
1779 		ASSERT(tmp == NULL);
1780 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1781 
1782 	return (size);
1783 }
1784 #endif	/* _SYSCALL32_IMPL */
1785 
1786 /*
1787  * Read page data information.
1788  */
1789 int
1790 prpdread(proc_t *p, uint_t hatid, struct uio *uiop)
1791 {
1792 	struct as *as = p->p_as;
1793 	caddr_t buf;
1794 	size_t size;
1795 	prpageheader_t *php;
1796 	prasmap_t *pmp;
1797 	struct seg *seg;
1798 	int error;
1799 
1800 again:
1801 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1802 
1803 	if ((seg = AS_SEGFIRST(as)) == NULL) {
1804 		AS_LOCK_EXIT(as, &as->a_lock);
1805 		return (0);
1806 	}
1807 	size = prpdsize(as);
1808 	if (uiop->uio_resid < size) {
1809 		AS_LOCK_EXIT(as, &as->a_lock);
1810 		return (E2BIG);
1811 	}
1812 
1813 	buf = kmem_zalloc(size, KM_SLEEP);
1814 	php = (prpageheader_t *)buf;
1815 	pmp = (prasmap_t *)(buf + sizeof (prpageheader_t));
1816 
1817 	hrt2ts(gethrtime(), &php->pr_tstamp);
1818 	php->pr_nmap = 0;
1819 	php->pr_npage = 0;
1820 	do {
1821 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1822 		caddr_t saddr, naddr;
1823 		void *tmp = NULL;
1824 
1825 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1826 			struct vnode *vp;
1827 			struct vattr vattr;
1828 			size_t len;
1829 			size_t npage;
1830 			uint_t prot;
1831 			uintptr_t next;
1832 
1833 			prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1834 			if ((len = (size_t)(naddr - saddr)) == 0)
1835 				continue;
1836 			npage = len / PAGESIZE;
1837 			next = (uintptr_t)(pmp + 1) + round8(npage);
1838 			/*
1839 			 * It's possible that the address space can change
1840 			 * subtlely even though we're holding as->a_lock
1841 			 * due to the nondeterminism of page_exists() in
1842 			 * the presence of asychronously flushed pages or
1843 			 * mapped files whose sizes are changing.
1844 			 * page_exists() may be called indirectly from
1845 			 * pr_getprot() by a SEGOP_INCORE() routine.
1846 			 * If this happens we need to make sure we don't
1847 			 * overrun the buffer whose size we computed based
1848 			 * on the initial iteration through the segments.
1849 			 * Once we've detected an overflow, we need to clean
1850 			 * up the temporary memory allocated in pr_getprot()
1851 			 * and retry. If there's a pending signal, we return
1852 			 * EINTR so that this thread can be dislodged if
1853 			 * a latent bug causes us to spin indefinitely.
1854 			 */
1855 			if (next > (uintptr_t)buf + size) {
1856 				pr_getprot_done(&tmp);
1857 				AS_LOCK_EXIT(as, &as->a_lock);
1858 
1859 				kmem_free(buf, size);
1860 
1861 				if (ISSIG(curthread, JUSTLOOKING))
1862 					return (EINTR);
1863 
1864 				goto again;
1865 			}
1866 
1867 			php->pr_nmap++;
1868 			php->pr_npage += npage;
1869 			pmp->pr_vaddr = (uintptr_t)saddr;
1870 			pmp->pr_npage = npage;
1871 			pmp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
1872 			pmp->pr_mflags = 0;
1873 			if (prot & PROT_READ)
1874 				pmp->pr_mflags |= MA_READ;
1875 			if (prot & PROT_WRITE)
1876 				pmp->pr_mflags |= MA_WRITE;
1877 			if (prot & PROT_EXEC)
1878 				pmp->pr_mflags |= MA_EXEC;
1879 			if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
1880 				pmp->pr_mflags |= MA_SHARED;
1881 			if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
1882 				pmp->pr_mflags |= MA_NORESERVE;
1883 			if (seg->s_ops == &segspt_shmops ||
1884 			    (seg->s_ops == &segvn_ops &&
1885 			    (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
1886 				pmp->pr_mflags |= MA_ANON;
1887 			if (seg->s_ops == &segspt_shmops)
1888 				pmp->pr_mflags |= MA_ISM | MA_SHM;
1889 			pmp->pr_pagesize = PAGESIZE;
1890 			/*
1891 			 * Manufacture a filename for the "object" directory.
1892 			 */
1893 			vattr.va_mask = AT_FSID|AT_NODEID;
1894 			if (seg->s_ops == &segvn_ops &&
1895 			    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
1896 			    vp != NULL && vp->v_type == VREG &&
1897 			    VOP_GETATTR(vp, &vattr, 0, CRED()) == 0) {
1898 				if (vp == p->p_exec)
1899 					(void) strcpy(pmp->pr_mapname, "a.out");
1900 				else
1901 					pr_object_name(pmp->pr_mapname,
1902 						vp, &vattr);
1903 			}
1904 
1905 			/*
1906 			 * Get the SysV shared memory id, if any.
1907 			 */
1908 			if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct &&
1909 			    (pmp->pr_shmid = shmgetid(p, seg->s_base)) !=
1910 			    SHMID_NONE) {
1911 				if (pmp->pr_shmid == SHMID_FREE)
1912 					pmp->pr_shmid = -1;
1913 
1914 				pmp->pr_mflags |= MA_SHM;
1915 			} else {
1916 				pmp->pr_shmid = -1;
1917 			}
1918 
1919 			hat_getstat(as, saddr, len, hatid,
1920 			    (char *)(pmp + 1), HAT_SYNC_ZERORM);
1921 			pmp = (prasmap_t *)next;
1922 		}
1923 		ASSERT(tmp == NULL);
1924 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1925 
1926 	AS_LOCK_EXIT(as, &as->a_lock);
1927 
1928 	ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size);
1929 	error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop);
1930 	kmem_free(buf, size);
1931 
1932 	return (error);
1933 }
1934 
1935 #ifdef _SYSCALL32_IMPL
1936 int
1937 prpdread32(proc_t *p, uint_t hatid, struct uio *uiop)
1938 {
1939 	struct as *as = p->p_as;
1940 	caddr_t buf;
1941 	size_t size;
1942 	prpageheader32_t *php;
1943 	prasmap32_t *pmp;
1944 	struct seg *seg;
1945 	int error;
1946 
1947 again:
1948 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1949 
1950 	if ((seg = AS_SEGFIRST(as)) == NULL) {
1951 		AS_LOCK_EXIT(as, &as->a_lock);
1952 		return (0);
1953 	}
1954 	size = prpdsize32(as);
1955 	if (uiop->uio_resid < size) {
1956 		AS_LOCK_EXIT(as, &as->a_lock);
1957 		return (E2BIG);
1958 	}
1959 
1960 	buf = kmem_zalloc(size, KM_SLEEP);
1961 	php = (prpageheader32_t *)buf;
1962 	pmp = (prasmap32_t *)(buf + sizeof (prpageheader32_t));
1963 
1964 	hrt2ts32(gethrtime(), &php->pr_tstamp);
1965 	php->pr_nmap = 0;
1966 	php->pr_npage = 0;
1967 	do {
1968 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1969 		caddr_t saddr, naddr;
1970 		void *tmp = NULL;
1971 
1972 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1973 			struct vnode *vp;
1974 			struct vattr vattr;
1975 			size_t len;
1976 			size_t npage;
1977 			uint_t prot;
1978 			uintptr_t next;
1979 
1980 			prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1981 			if ((len = (size_t)(naddr - saddr)) == 0)
1982 				continue;
1983 			npage = len / PAGESIZE;
1984 			next = (uintptr_t)(pmp + 1) + round8(npage);
1985 			/*
1986 			 * It's possible that the address space can change
1987 			 * subtlely even though we're holding as->a_lock
1988 			 * due to the nondeterminism of page_exists() in
1989 			 * the presence of asychronously flushed pages or
1990 			 * mapped files whose sizes are changing.
1991 			 * page_exists() may be called indirectly from
1992 			 * pr_getprot() by a SEGOP_INCORE() routine.
1993 			 * If this happens we need to make sure we don't
1994 			 * overrun the buffer whose size we computed based
1995 			 * on the initial iteration through the segments.
1996 			 * Once we've detected an overflow, we need to clean
1997 			 * up the temporary memory allocated in pr_getprot()
1998 			 * and retry. If there's a pending signal, we return
1999 			 * EINTR so that this thread can be dislodged if
2000 			 * a latent bug causes us to spin indefinitely.
2001 			 */
2002 			if (next > (uintptr_t)buf + size) {
2003 				pr_getprot_done(&tmp);
2004 				AS_LOCK_EXIT(as, &as->a_lock);
2005 
2006 				kmem_free(buf, size);
2007 
2008 				if (ISSIG(curthread, JUSTLOOKING))
2009 					return (EINTR);
2010 
2011 				goto again;
2012 			}
2013 
2014 			php->pr_nmap++;
2015 			php->pr_npage += npage;
2016 			pmp->pr_vaddr = (caddr32_t)(uintptr_t)saddr;
2017 			pmp->pr_npage = (size32_t)npage;
2018 			pmp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
2019 			pmp->pr_mflags = 0;
2020 			if (prot & PROT_READ)
2021 				pmp->pr_mflags |= MA_READ;
2022 			if (prot & PROT_WRITE)
2023 				pmp->pr_mflags |= MA_WRITE;
2024 			if (prot & PROT_EXEC)
2025 				pmp->pr_mflags |= MA_EXEC;
2026 			if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
2027 				pmp->pr_mflags |= MA_SHARED;
2028 			if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
2029 				pmp->pr_mflags |= MA_NORESERVE;
2030 			if (seg->s_ops == &segspt_shmops ||
2031 			    (seg->s_ops == &segvn_ops &&
2032 			    (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
2033 				pmp->pr_mflags |= MA_ANON;
2034 			if (seg->s_ops == &segspt_shmops)
2035 				pmp->pr_mflags |= MA_ISM | MA_SHM;
2036 			pmp->pr_pagesize = PAGESIZE;
2037 			/*
2038 			 * Manufacture a filename for the "object" directory.
2039 			 */
2040 			vattr.va_mask = AT_FSID|AT_NODEID;
2041 			if (seg->s_ops == &segvn_ops &&
2042 			    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
2043 			    vp != NULL && vp->v_type == VREG &&
2044 			    VOP_GETATTR(vp, &vattr, 0, CRED()) == 0) {
2045 				if (vp == p->p_exec)
2046 					(void) strcpy(pmp->pr_mapname, "a.out");
2047 				else
2048 					pr_object_name(pmp->pr_mapname,
2049 						vp, &vattr);
2050 			}
2051 
2052 			/*
2053 			 * Get the SysV shared memory id, if any.
2054 			 */
2055 			if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct &&
2056 			    (pmp->pr_shmid = shmgetid(p, seg->s_base)) !=
2057 			    SHMID_NONE) {
2058 				if (pmp->pr_shmid == SHMID_FREE)
2059 					pmp->pr_shmid = -1;
2060 
2061 				pmp->pr_mflags |= MA_SHM;
2062 			} else {
2063 				pmp->pr_shmid = -1;
2064 			}
2065 
2066 			hat_getstat(as, saddr, len, hatid,
2067 			    (char *)(pmp + 1), HAT_SYNC_ZERORM);
2068 			pmp = (prasmap32_t *)next;
2069 		}
2070 		ASSERT(tmp == NULL);
2071 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
2072 
2073 	AS_LOCK_EXIT(as, &as->a_lock);
2074 
2075 	ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size);
2076 	error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop);
2077 	kmem_free(buf, size);
2078 
2079 	return (error);
2080 }
2081 #endif	/* _SYSCALL32_IMPL */
2082 
2083 ushort_t
2084 prgetpctcpu(uint64_t pct)
2085 {
2086 	/*
2087 	 * The value returned will be relevant in the zone of the examiner,
2088 	 * which may not be the same as the zone which performed the procfs
2089 	 * mount.
2090 	 */
2091 	int nonline = zone_ncpus_online_get(curproc->p_zone);
2092 
2093 	/*
2094 	 * Prorate over online cpus so we don't exceed 100%
2095 	 */
2096 	if (nonline > 1)
2097 		pct /= nonline;
2098 	pct >>= 16;		/* convert to 16-bit scaled integer */
2099 	if (pct > 0x8000)	/* might happen, due to rounding */
2100 		pct = 0x8000;
2101 	return ((ushort_t)pct);
2102 }
2103 
2104 /*
2105  * Return information used by ps(1).
2106  */
2107 void
2108 prgetpsinfo(proc_t *p, psinfo_t *psp)
2109 {
2110 	kthread_t *t;
2111 	struct cred *cred;
2112 	hrtime_t hrutime, hrstime;
2113 
2114 	ASSERT(MUTEX_HELD(&p->p_lock));
2115 
2116 	if ((t = prchoose(p)) == NULL)	/* returns locked thread */
2117 		bzero(psp, sizeof (*psp));
2118 	else {
2119 		thread_unlock(t);
2120 		bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp));
2121 	}
2122 
2123 	/*
2124 	 * only export SSYS and SMSACCT; everything else is off-limits to
2125 	 * userland apps.
2126 	 */
2127 	psp->pr_flag = p->p_flag & (SSYS | SMSACCT);
2128 	psp->pr_nlwp = p->p_lwpcnt;
2129 	psp->pr_nzomb = p->p_zombcnt;
2130 	mutex_enter(&p->p_crlock);
2131 	cred = p->p_cred;
2132 	psp->pr_uid = crgetruid(cred);
2133 	psp->pr_euid = crgetuid(cred);
2134 	psp->pr_gid = crgetrgid(cred);
2135 	psp->pr_egid = crgetgid(cred);
2136 	mutex_exit(&p->p_crlock);
2137 	psp->pr_pid = p->p_pid;
2138 	if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
2139 	    (p->p_flag & SZONETOP)) {
2140 		ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
2141 		/*
2142 		 * Inside local zones, fake zsched's pid as parent pids for
2143 		 * processes which reference processes outside of the zone.
2144 		 */
2145 		psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
2146 	} else {
2147 		psp->pr_ppid = p->p_ppid;
2148 	}
2149 	psp->pr_pgid = p->p_pgrp;
2150 	psp->pr_sid = p->p_sessp->s_sid;
2151 	psp->pr_taskid = p->p_task->tk_tkid;
2152 	psp->pr_projid = p->p_task->tk_proj->kpj_id;
2153 	psp->pr_poolid = p->p_pool->pool_id;
2154 	psp->pr_zoneid = p->p_zone->zone_id;
2155 	if ((psp->pr_contract = PRCTID(p)) == 0)
2156 		psp->pr_contract = -1;
2157 	psp->pr_addr = (uintptr_t)prgetpsaddr(p);
2158 	switch (p->p_model) {
2159 	case DATAMODEL_ILP32:
2160 		psp->pr_dmodel = PR_MODEL_ILP32;
2161 		break;
2162 	case DATAMODEL_LP64:
2163 		psp->pr_dmodel = PR_MODEL_LP64;
2164 		break;
2165 	}
2166 	hrutime = mstate_aggr_state(p, LMS_USER);
2167 	hrstime = mstate_aggr_state(p, LMS_SYSTEM);
2168 	hrt2ts((hrutime + hrstime), &psp->pr_time);
2169 	TICK_TO_TIMESTRUC(p->p_cutime + p->p_cstime, &psp->pr_ctime);
2170 
2171 	if (t == NULL) {
2172 		int wcode = p->p_wcode;		/* must be atomic read */
2173 
2174 		if (wcode)
2175 			psp->pr_wstat = wstat(wcode, p->p_wdata);
2176 		psp->pr_ttydev = PRNODEV;
2177 		psp->pr_lwp.pr_state = SZOMB;
2178 		psp->pr_lwp.pr_sname = 'Z';
2179 		psp->pr_lwp.pr_bindpro = PBIND_NONE;
2180 		psp->pr_lwp.pr_bindpset = PS_NONE;
2181 	} else {
2182 		user_t *up = PTOU(p);
2183 		struct as *as;
2184 		dev_t d;
2185 		extern dev_t rwsconsdev, rconsdev, uconsdev;
2186 
2187 		d = cttydev(p);
2188 		/*
2189 		 * If the controlling terminal is the real
2190 		 * or workstation console device, map to what the
2191 		 * user thinks is the console device.
2192 		 */
2193 		if (d == rwsconsdev || d == rconsdev)
2194 			d = uconsdev;
2195 		psp->pr_ttydev = (d == NODEV) ? PRNODEV : d;
2196 		psp->pr_start = up->u_start;
2197 		bcopy(up->u_comm, psp->pr_fname,
2198 		    MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1));
2199 		bcopy(up->u_psargs, psp->pr_psargs,
2200 		    MIN(PRARGSZ-1, PSARGSZ));
2201 		psp->pr_argc = up->u_argc;
2202 		psp->pr_argv = up->u_argv;
2203 		psp->pr_envp = up->u_envp;
2204 
2205 		/* get the chosen lwp's lwpsinfo */
2206 		prgetlwpsinfo(t, &psp->pr_lwp);
2207 
2208 		/* compute %cpu for the process */
2209 		if (p->p_lwpcnt == 1)
2210 			psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu;
2211 		else {
2212 			uint64_t pct = 0;
2213 			hrtime_t cur_time = gethrtime_unscaled();
2214 
2215 			t = p->p_tlist;
2216 			do {
2217 				pct += cpu_update_pct(t, cur_time);
2218 			} while ((t = t->t_forw) != p->p_tlist);
2219 
2220 			psp->pr_pctcpu = prgetpctcpu(pct);
2221 		}
2222 		if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) {
2223 			psp->pr_size = 0;
2224 			psp->pr_rssize = 0;
2225 		} else {
2226 			mutex_exit(&p->p_lock);
2227 			AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2228 			psp->pr_size = btopr(rm_assize(as)) * (PAGESIZE / 1024);
2229 			psp->pr_rssize = rm_asrss(as) * (PAGESIZE / 1024);
2230 			psp->pr_pctmem = rm_pctmemory(as);
2231 			AS_LOCK_EXIT(as, &as->a_lock);
2232 			mutex_enter(&p->p_lock);
2233 		}
2234 	}
2235 }
2236 
2237 #ifdef _SYSCALL32_IMPL
2238 void
2239 prgetpsinfo32(proc_t *p, psinfo32_t *psp)
2240 {
2241 	kthread_t *t;
2242 	struct cred *cred;
2243 	hrtime_t hrutime, hrstime;
2244 
2245 	ASSERT(MUTEX_HELD(&p->p_lock));
2246 
2247 	if ((t = prchoose(p)) == NULL)	/* returns locked thread */
2248 		bzero(psp, sizeof (*psp));
2249 	else {
2250 		thread_unlock(t);
2251 		bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp));
2252 	}
2253 
2254 	/*
2255 	 * only export SSYS and SMSACCT; everything else is off-limits to
2256 	 * userland apps.
2257 	 */
2258 	psp->pr_flag = p->p_flag & (SSYS | SMSACCT);
2259 	psp->pr_nlwp = p->p_lwpcnt;
2260 	psp->pr_nzomb = p->p_zombcnt;
2261 	mutex_enter(&p->p_crlock);
2262 	cred = p->p_cred;
2263 	psp->pr_uid = crgetruid(cred);
2264 	psp->pr_euid = crgetuid(cred);
2265 	psp->pr_gid = crgetrgid(cred);
2266 	psp->pr_egid = crgetgid(cred);
2267 	mutex_exit(&p->p_crlock);
2268 	psp->pr_pid = p->p_pid;
2269 	if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
2270 	    (p->p_flag & SZONETOP)) {
2271 		ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
2272 		/*
2273 		 * Inside local zones, fake zsched's pid as parent pids for
2274 		 * processes which reference processes outside of the zone.
2275 		 */
2276 		psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
2277 	} else {
2278 		psp->pr_ppid = p->p_ppid;
2279 	}
2280 	psp->pr_pgid = p->p_pgrp;
2281 	psp->pr_sid = p->p_sessp->s_sid;
2282 	psp->pr_taskid = p->p_task->tk_tkid;
2283 	psp->pr_projid = p->p_task->tk_proj->kpj_id;
2284 	psp->pr_poolid = p->p_pool->pool_id;
2285 	psp->pr_zoneid = p->p_zone->zone_id;
2286 	if ((psp->pr_contract = PRCTID(p)) == 0)
2287 		psp->pr_contract = -1;
2288 	psp->pr_addr = 0;	/* cannot represent 64-bit addr in 32 bits */
2289 	switch (p->p_model) {
2290 	case DATAMODEL_ILP32:
2291 		psp->pr_dmodel = PR_MODEL_ILP32;
2292 		break;
2293 	case DATAMODEL_LP64:
2294 		psp->pr_dmodel = PR_MODEL_LP64;
2295 		break;
2296 	}
2297 	hrutime = mstate_aggr_state(p, LMS_USER);
2298 	hrstime = mstate_aggr_state(p, LMS_SYSTEM);
2299 	hrt2ts32(hrutime + hrstime, &psp->pr_time);
2300 	TICK_TO_TIMESTRUC32(p->p_cutime + p->p_cstime, &psp->pr_ctime);
2301 
2302 	if (t == NULL) {
2303 		extern int wstat(int, int);	/* needs a header file */
2304 		int wcode = p->p_wcode;		/* must be atomic read */
2305 
2306 		if (wcode)
2307 			psp->pr_wstat = wstat(wcode, p->p_wdata);
2308 		psp->pr_ttydev = PRNODEV32;
2309 		psp->pr_lwp.pr_state = SZOMB;
2310 		psp->pr_lwp.pr_sname = 'Z';
2311 	} else {
2312 		user_t *up = PTOU(p);
2313 		struct as *as;
2314 		dev_t d;
2315 		extern dev_t rwsconsdev, rconsdev, uconsdev;
2316 
2317 		d = cttydev(p);
2318 		/*
2319 		 * If the controlling terminal is the real
2320 		 * or workstation console device, map to what the
2321 		 * user thinks is the console device.
2322 		 */
2323 		if (d == rwsconsdev || d == rconsdev)
2324 			d = uconsdev;
2325 		(void) cmpldev(&psp->pr_ttydev, d);
2326 		TIMESPEC_TO_TIMESPEC32(&psp->pr_start, &up->u_start);
2327 		bcopy(up->u_comm, psp->pr_fname,
2328 		    MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1));
2329 		bcopy(up->u_psargs, psp->pr_psargs,
2330 		    MIN(PRARGSZ-1, PSARGSZ));
2331 		psp->pr_argc = up->u_argc;
2332 		psp->pr_argv = (caddr32_t)up->u_argv;
2333 		psp->pr_envp = (caddr32_t)up->u_envp;
2334 
2335 		/* get the chosen lwp's lwpsinfo */
2336 		prgetlwpsinfo32(t, &psp->pr_lwp);
2337 
2338 		/* compute %cpu for the process */
2339 		if (p->p_lwpcnt == 1)
2340 			psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu;
2341 		else {
2342 			uint64_t pct = 0;
2343 			hrtime_t cur_time;
2344 
2345 			t = p->p_tlist;
2346 			cur_time = gethrtime_unscaled();
2347 			do {
2348 				pct += cpu_update_pct(t, cur_time);
2349 			} while ((t = t->t_forw) != p->p_tlist);
2350 
2351 			psp->pr_pctcpu = prgetpctcpu(pct);
2352 		}
2353 		if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) {
2354 			psp->pr_size = 0;
2355 			psp->pr_rssize = 0;
2356 		} else {
2357 			mutex_exit(&p->p_lock);
2358 			AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2359 			psp->pr_size = (size32_t)
2360 				(btopr(rm_assize(as)) * (PAGESIZE / 1024));
2361 			psp->pr_rssize = (size32_t)
2362 				(rm_asrss(as) * (PAGESIZE / 1024));
2363 			psp->pr_pctmem = rm_pctmemory(as);
2364 			AS_LOCK_EXIT(as, &as->a_lock);
2365 			mutex_enter(&p->p_lock);
2366 		}
2367 	}
2368 
2369 	/*
2370 	 * If we are looking at an LP64 process, zero out
2371 	 * the fields that cannot be represented in ILP32.
2372 	 */
2373 	if (p->p_model != DATAMODEL_ILP32) {
2374 		psp->pr_size = 0;
2375 		psp->pr_rssize = 0;
2376 		psp->pr_argv = 0;
2377 		psp->pr_envp = 0;
2378 	}
2379 }
2380 #endif	/* _SYSCALL32_IMPL */
2381 
2382 void
2383 prgetlwpsinfo(kthread_t *t, lwpsinfo_t *psp)
2384 {
2385 	klwp_t *lwp = ttolwp(t);
2386 	sobj_ops_t *sobj;
2387 	char c, state;
2388 	uint64_t pct;
2389 	int retval, niceval;
2390 	hrtime_t hrutime, hrstime;
2391 
2392 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2393 
2394 	bzero(psp, sizeof (*psp));
2395 
2396 	psp->pr_flag = 0;	/* lwpsinfo_t.pr_flag is deprecated */
2397 	psp->pr_lwpid = t->t_tid;
2398 	psp->pr_addr = (uintptr_t)t;
2399 	psp->pr_wchan = (uintptr_t)t->t_wchan;
2400 
2401 	/* map the thread state enum into a process state enum */
2402 	state = VSTOPPED(t) ? TS_STOPPED : t->t_state;
2403 	switch (state) {
2404 	case TS_SLEEP:		state = SSLEEP;		c = 'S';	break;
2405 	case TS_RUN:		state = SRUN;		c = 'R';	break;
2406 	case TS_ONPROC:		state = SONPROC;	c = 'O';	break;
2407 	case TS_ZOMB:		state = SZOMB;		c = 'Z';	break;
2408 	case TS_STOPPED:	state = SSTOP;		c = 'T';	break;
2409 	default:		state = 0;		c = '?';	break;
2410 	}
2411 	psp->pr_state = state;
2412 	psp->pr_sname = c;
2413 	if ((sobj = t->t_sobj_ops) != NULL)
2414 		psp->pr_stype = SOBJ_TYPE(sobj);
2415 	retval = CL_DONICE(t, NULL, 0, &niceval);
2416 	if (retval == 0) {
2417 		psp->pr_oldpri = v.v_maxsyspri - t->t_pri;
2418 		psp->pr_nice = niceval + NZERO;
2419 	}
2420 	psp->pr_syscall = t->t_sysnum;
2421 	psp->pr_pri = t->t_pri;
2422 	psp->pr_start.tv_sec = t->t_start;
2423 	psp->pr_start.tv_nsec = 0L;
2424 	hrutime = lwp->lwp_mstate.ms_acct[LMS_USER];
2425 	scalehrtime(&hrutime);
2426 	hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] +
2427 	    lwp->lwp_mstate.ms_acct[LMS_TRAP];
2428 	scalehrtime(&hrstime);
2429 	hrt2ts(hrutime + hrstime, &psp->pr_time);
2430 	/* compute %cpu for the lwp */
2431 	pct = cpu_update_pct(t, gethrtime_unscaled());
2432 	psp->pr_pctcpu = prgetpctcpu(pct);
2433 	psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15;	/* [0..99] */
2434 	if (psp->pr_cpu > 99)
2435 		psp->pr_cpu = 99;
2436 
2437 	(void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name,
2438 		sizeof (psp->pr_clname) - 1);
2439 	bzero(psp->pr_name, sizeof (psp->pr_name));	/* XXX ??? */
2440 	psp->pr_onpro = t->t_cpu->cpu_id;
2441 	psp->pr_bindpro = t->t_bind_cpu;
2442 	psp->pr_bindpset = t->t_bind_pset;
2443 }
2444 
2445 #ifdef _SYSCALL32_IMPL
2446 void
2447 prgetlwpsinfo32(kthread_t *t, lwpsinfo32_t *psp)
2448 {
2449 	proc_t *p = ttoproc(t);
2450 	klwp_t *lwp = ttolwp(t);
2451 	sobj_ops_t *sobj;
2452 	char c, state;
2453 	uint64_t pct;
2454 	int retval, niceval;
2455 	hrtime_t hrutime, hrstime;
2456 
2457 	ASSERT(MUTEX_HELD(&p->p_lock));
2458 
2459 	bzero(psp, sizeof (*psp));
2460 
2461 	psp->pr_flag = 0;	/* lwpsinfo_t.pr_flag is deprecated */
2462 	psp->pr_lwpid = t->t_tid;
2463 	psp->pr_addr = 0;	/* cannot represent 64-bit addr in 32 bits */
2464 	psp->pr_wchan = 0;	/* cannot represent 64-bit addr in 32 bits */
2465 
2466 	/* map the thread state enum into a process state enum */
2467 	state = VSTOPPED(t) ? TS_STOPPED : t->t_state;
2468 	switch (state) {
2469 	case TS_SLEEP:		state = SSLEEP;		c = 'S';	break;
2470 	case TS_RUN:		state = SRUN;		c = 'R';	break;
2471 	case TS_ONPROC:		state = SONPROC;	c = 'O';	break;
2472 	case TS_ZOMB:		state = SZOMB;		c = 'Z';	break;
2473 	case TS_STOPPED:	state = SSTOP;		c = 'T';	break;
2474 	default:		state = 0;		c = '?';	break;
2475 	}
2476 	psp->pr_state = state;
2477 	psp->pr_sname = c;
2478 	if ((sobj = t->t_sobj_ops) != NULL)
2479 		psp->pr_stype = SOBJ_TYPE(sobj);
2480 	retval = CL_DONICE(t, NULL, 0, &niceval);
2481 	if (retval == 0) {
2482 		psp->pr_oldpri = v.v_maxsyspri - t->t_pri;
2483 		psp->pr_nice = niceval + NZERO;
2484 	} else {
2485 		psp->pr_oldpri = 0;
2486 		psp->pr_nice = 0;
2487 	}
2488 	psp->pr_syscall = t->t_sysnum;
2489 	psp->pr_pri = t->t_pri;
2490 	psp->pr_start.tv_sec = (time32_t)t->t_start;
2491 	psp->pr_start.tv_nsec = 0L;
2492 	hrutime = lwp->lwp_mstate.ms_acct[LMS_USER];
2493 	scalehrtime(&hrutime);
2494 	hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] +
2495 	    lwp->lwp_mstate.ms_acct[LMS_TRAP];
2496 	scalehrtime(&hrstime);
2497 	hrt2ts32(hrutime + hrstime, &psp->pr_time);
2498 	/* compute %cpu for the lwp */
2499 	pct = cpu_update_pct(t, gethrtime_unscaled());
2500 	psp->pr_pctcpu = prgetpctcpu(pct);
2501 	psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15;	/* [0..99] */
2502 	if (psp->pr_cpu > 99)
2503 		psp->pr_cpu = 99;
2504 
2505 	(void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name,
2506 		sizeof (psp->pr_clname) - 1);
2507 	bzero(psp->pr_name, sizeof (psp->pr_name));	/* XXX ??? */
2508 	psp->pr_onpro = t->t_cpu->cpu_id;
2509 	psp->pr_bindpro = t->t_bind_cpu;
2510 	psp->pr_bindpset = t->t_bind_pset;
2511 }
2512 #endif	/* _SYSCALL32_IMPL */
2513 
2514 /*
2515  * This used to get called when microstate accounting was disabled but
2516  * microstate information was requested.  Since Microstate accounting is on
2517  * regardless of the proc flags, this simply makes it appear to procfs that
2518  * microstate accounting is on.  This is relatively meaningless since you
2519  * can't turn it off, but this is here for the sake of appearances.
2520  */
2521 
2522 /*ARGSUSED*/
2523 void
2524 estimate_msacct(kthread_t *t, hrtime_t curtime)
2525 {
2526 	proc_t *p;
2527 
2528 	if (t == NULL)
2529 		return;
2530 
2531 	p = ttoproc(t);
2532 	ASSERT(MUTEX_HELD(&p->p_lock));
2533 
2534 	/*
2535 	 * A system process (p0) could be referenced if the thread is
2536 	 * in the process of exiting.  Don't turn on microstate accounting
2537 	 * in that case.
2538 	 */
2539 	if (p->p_flag & SSYS)
2540 		return;
2541 
2542 	/*
2543 	 * Loop through all the LWPs (kernel threads) in the process.
2544 	 */
2545 	t = p->p_tlist;
2546 	do {
2547 		t->t_proc_flag |= TP_MSACCT;
2548 	} while ((t = t->t_forw) != p->p_tlist);
2549 
2550 	p->p_flag |= SMSACCT;			/* set process-wide MSACCT */
2551 }
2552 
2553 /*
2554  * It's not really possible to disable microstate accounting anymore.
2555  * However, this routine simply turns off the ms accounting flags in a process
2556  * This way procfs can still pretend to turn microstate accounting on and
2557  * off for a process, but it actually doesn't do anything.  This is
2558  * a neutered form of preemptive idiot-proofing.
2559  */
2560 void
2561 disable_msacct(proc_t *p)
2562 {
2563 	kthread_t *t;
2564 
2565 	ASSERT(MUTEX_HELD(&p->p_lock));
2566 
2567 	p->p_flag &= ~SMSACCT;		/* clear process-wide MSACCT */
2568 	/*
2569 	 * Loop through all the LWPs (kernel threads) in the process.
2570 	 */
2571 	if ((t = p->p_tlist) != NULL) {
2572 		do {
2573 			/* clear per-thread flag */
2574 			t->t_proc_flag &= ~TP_MSACCT;
2575 		} while ((t = t->t_forw) != p->p_tlist);
2576 	}
2577 }
2578 
2579 /*
2580  * Return resource usage information.
2581  */
2582 void
2583 prgetusage(kthread_t *t, prhusage_t *pup)
2584 {
2585 	klwp_t *lwp = ttolwp(t);
2586 	hrtime_t *mstimep;
2587 	struct mstate *ms = &lwp->lwp_mstate;
2588 	int state;
2589 	int i;
2590 	hrtime_t curtime;
2591 	hrtime_t waitrq;
2592 	hrtime_t tmp1;
2593 
2594 	curtime = gethrtime_unscaled();
2595 
2596 	pup->pr_lwpid	= t->t_tid;
2597 	pup->pr_count	= 1;
2598 	pup->pr_create	= ms->ms_start;
2599 	pup->pr_term    = ms->ms_term;
2600 	scalehrtime(&pup->pr_create);
2601 	scalehrtime(&pup->pr_term);
2602 	if (ms->ms_term == 0) {
2603 		pup->pr_rtime = curtime - ms->ms_start;
2604 		scalehrtime(&pup->pr_rtime);
2605 	} else {
2606 		pup->pr_rtime = ms->ms_term - ms->ms_start;
2607 		scalehrtime(&pup->pr_rtime);
2608 	}
2609 
2610 
2611 	pup->pr_utime    = ms->ms_acct[LMS_USER];
2612 	pup->pr_stime    = ms->ms_acct[LMS_SYSTEM];
2613 	pup->pr_ttime    = ms->ms_acct[LMS_TRAP];
2614 	pup->pr_tftime   = ms->ms_acct[LMS_TFAULT];
2615 	pup->pr_dftime   = ms->ms_acct[LMS_DFAULT];
2616 	pup->pr_kftime   = ms->ms_acct[LMS_KFAULT];
2617 	pup->pr_ltime    = ms->ms_acct[LMS_USER_LOCK];
2618 	pup->pr_slptime  = ms->ms_acct[LMS_SLEEP];
2619 	pup->pr_wtime    = ms->ms_acct[LMS_WAIT_CPU];
2620 	pup->pr_stoptime = ms->ms_acct[LMS_STOPPED];
2621 
2622 	prscaleusage(pup);
2623 
2624 	/*
2625 	 * Adjust for time waiting in the dispatcher queue.
2626 	 */
2627 	waitrq = t->t_waitrq;	/* hopefully atomic */
2628 	if (waitrq != 0) {
2629 		tmp1 = curtime - waitrq;
2630 		scalehrtime(&tmp1);
2631 		pup->pr_wtime += tmp1;
2632 		curtime = waitrq;
2633 	}
2634 
2635 	/*
2636 	 * Adjust for time spent in current microstate.
2637 	 */
2638 	if (ms->ms_state_start > curtime) {
2639 		curtime = gethrtime_unscaled();
2640 	}
2641 
2642 	i = 0;
2643 	do {
2644 		switch (state = t->t_mstate) {
2645 		case LMS_SLEEP:
2646 			/*
2647 			 * Update the timer for the current sleep state.
2648 			 */
2649 			switch (state = ms->ms_prev) {
2650 			case LMS_TFAULT:
2651 			case LMS_DFAULT:
2652 			case LMS_KFAULT:
2653 			case LMS_USER_LOCK:
2654 				break;
2655 			default:
2656 				state = LMS_SLEEP;
2657 				break;
2658 			}
2659 			break;
2660 		case LMS_TFAULT:
2661 		case LMS_DFAULT:
2662 		case LMS_KFAULT:
2663 		case LMS_USER_LOCK:
2664 			state = LMS_SYSTEM;
2665 			break;
2666 		}
2667 		switch (state) {
2668 		case LMS_USER:		mstimep = &pup->pr_utime;	break;
2669 		case LMS_SYSTEM:	mstimep = &pup->pr_stime;	break;
2670 		case LMS_TRAP:		mstimep = &pup->pr_ttime;	break;
2671 		case LMS_TFAULT:	mstimep = &pup->pr_tftime;	break;
2672 		case LMS_DFAULT:	mstimep = &pup->pr_dftime;	break;
2673 		case LMS_KFAULT:	mstimep = &pup->pr_kftime;	break;
2674 		case LMS_USER_LOCK:	mstimep = &pup->pr_ltime;	break;
2675 		case LMS_SLEEP:		mstimep = &pup->pr_slptime;	break;
2676 		case LMS_WAIT_CPU:	mstimep = &pup->pr_wtime;	break;
2677 		case LMS_STOPPED:	mstimep = &pup->pr_stoptime;	break;
2678 		default:		panic("prgetusage: unknown microstate");
2679 		}
2680 		tmp1 = curtime - ms->ms_state_start;
2681 		if (tmp1 <= 0) {
2682 			curtime = gethrtime_unscaled();
2683 			tmp1 = 0;
2684 			i++;
2685 			continue;
2686 		}
2687 		scalehrtime(&tmp1);
2688 	} while (tmp1 <= 0 && i < MAX_ITERS_SPIN);
2689 
2690 	*mstimep += tmp1;
2691 
2692 	/* update pup timestamp */
2693 	pup->pr_tstamp = curtime;
2694 	scalehrtime(&pup->pr_tstamp);
2695 
2696 	/*
2697 	 * Resource usage counters.
2698 	 */
2699 	pup->pr_minf  = lwp->lwp_ru.minflt;
2700 	pup->pr_majf  = lwp->lwp_ru.majflt;
2701 	pup->pr_nswap = lwp->lwp_ru.nswap;
2702 	pup->pr_inblk = lwp->lwp_ru.inblock;
2703 	pup->pr_oublk = lwp->lwp_ru.oublock;
2704 	pup->pr_msnd  = lwp->lwp_ru.msgsnd;
2705 	pup->pr_mrcv  = lwp->lwp_ru.msgrcv;
2706 	pup->pr_sigs  = lwp->lwp_ru.nsignals;
2707 	pup->pr_vctx  = lwp->lwp_ru.nvcsw;
2708 	pup->pr_ictx  = lwp->lwp_ru.nivcsw;
2709 	pup->pr_sysc  = lwp->lwp_ru.sysc;
2710 	pup->pr_ioch  = lwp->lwp_ru.ioch;
2711 }
2712 
2713 /*
2714  * Convert ms_acct stats from unscaled high-res time to nanoseconds
2715  */
2716 void
2717 prscaleusage(prhusage_t *usg)
2718 {
2719 	scalehrtime(&usg->pr_utime);
2720 	scalehrtime(&usg->pr_stime);
2721 	scalehrtime(&usg->pr_ttime);
2722 	scalehrtime(&usg->pr_tftime);
2723 	scalehrtime(&usg->pr_dftime);
2724 	scalehrtime(&usg->pr_kftime);
2725 	scalehrtime(&usg->pr_ltime);
2726 	scalehrtime(&usg->pr_slptime);
2727 	scalehrtime(&usg->pr_wtime);
2728 	scalehrtime(&usg->pr_stoptime);
2729 }
2730 
2731 
2732 /*
2733  * Sum resource usage information.
2734  */
2735 void
2736 praddusage(kthread_t *t, prhusage_t *pup)
2737 {
2738 	klwp_t *lwp = ttolwp(t);
2739 	hrtime_t *mstimep;
2740 	struct mstate *ms = &lwp->lwp_mstate;
2741 	int state;
2742 	int i;
2743 	hrtime_t curtime;
2744 	hrtime_t waitrq;
2745 	hrtime_t tmp;
2746 	prhusage_t conv;
2747 
2748 	curtime = gethrtime_unscaled();
2749 
2750 	if (ms->ms_term == 0) {
2751 		tmp = curtime - ms->ms_start;
2752 		scalehrtime(&tmp);
2753 		pup->pr_rtime += tmp;
2754 	} else {
2755 		tmp = ms->ms_term - ms->ms_start;
2756 		scalehrtime(&tmp);
2757 		pup->pr_rtime += tmp;
2758 	}
2759 
2760 	conv.pr_utime = ms->ms_acct[LMS_USER];
2761 	conv.pr_stime = ms->ms_acct[LMS_SYSTEM];
2762 	conv.pr_ttime = ms->ms_acct[LMS_TRAP];
2763 	conv.pr_tftime = ms->ms_acct[LMS_TFAULT];
2764 	conv.pr_dftime = ms->ms_acct[LMS_DFAULT];
2765 	conv.pr_kftime = ms->ms_acct[LMS_KFAULT];
2766 	conv.pr_ltime = ms->ms_acct[LMS_USER_LOCK];
2767 	conv.pr_slptime = ms->ms_acct[LMS_SLEEP];
2768 	conv.pr_wtime = ms->ms_acct[LMS_WAIT_CPU];
2769 	conv.pr_stoptime = ms->ms_acct[LMS_STOPPED];
2770 
2771 	prscaleusage(&conv);
2772 
2773 	pup->pr_utime	+= conv.pr_utime;
2774 	pup->pr_stime	+= conv.pr_stime;
2775 	pup->pr_ttime	+= conv.pr_ttime;
2776 	pup->pr_tftime	+= conv.pr_tftime;
2777 	pup->pr_dftime	+= conv.pr_dftime;
2778 	pup->pr_kftime	+= conv.pr_kftime;
2779 	pup->pr_ltime	+= conv.pr_ltime;
2780 	pup->pr_slptime	+= conv.pr_slptime;
2781 	pup->pr_wtime	+= conv.pr_wtime;
2782 	pup->pr_stoptime += conv.pr_stoptime;
2783 
2784 	/*
2785 	 * Adjust for time waiting in the dispatcher queue.
2786 	 */
2787 	waitrq = t->t_waitrq;	/* hopefully atomic */
2788 	if (waitrq != 0) {
2789 		tmp = curtime - waitrq;
2790 		scalehrtime(&tmp);
2791 		pup->pr_wtime += tmp;
2792 		curtime = waitrq;
2793 	}
2794 
2795 	/*
2796 	 * Adjust for time spent in current microstate.
2797 	 */
2798 	if (ms->ms_state_start > curtime) {
2799 		curtime = gethrtime_unscaled();
2800 	}
2801 
2802 	i = 0;
2803 	do {
2804 		switch (state = t->t_mstate) {
2805 		case LMS_SLEEP:
2806 			/*
2807 			 * Update the timer for the current sleep state.
2808 			 */
2809 			switch (state = ms->ms_prev) {
2810 			case LMS_TFAULT:
2811 			case LMS_DFAULT:
2812 			case LMS_KFAULT:
2813 			case LMS_USER_LOCK:
2814 				break;
2815 			default:
2816 				state = LMS_SLEEP;
2817 				break;
2818 			}
2819 			break;
2820 		case LMS_TFAULT:
2821 		case LMS_DFAULT:
2822 		case LMS_KFAULT:
2823 		case LMS_USER_LOCK:
2824 			state = LMS_SYSTEM;
2825 			break;
2826 		}
2827 		switch (state) {
2828 		case LMS_USER:		mstimep = &pup->pr_utime;	break;
2829 		case LMS_SYSTEM:	mstimep = &pup->pr_stime;	break;
2830 		case LMS_TRAP:		mstimep = &pup->pr_ttime;	break;
2831 		case LMS_TFAULT:	mstimep = &pup->pr_tftime;	break;
2832 		case LMS_DFAULT:	mstimep = &pup->pr_dftime;	break;
2833 		case LMS_KFAULT:	mstimep = &pup->pr_kftime;	break;
2834 		case LMS_USER_LOCK:	mstimep = &pup->pr_ltime;	break;
2835 		case LMS_SLEEP:		mstimep = &pup->pr_slptime;	break;
2836 		case LMS_WAIT_CPU:	mstimep = &pup->pr_wtime;	break;
2837 		case LMS_STOPPED:	mstimep = &pup->pr_stoptime;	break;
2838 		default:		panic("praddusage: unknown microstate");
2839 		}
2840 		tmp = curtime - ms->ms_state_start;
2841 		if (tmp <= 0) {
2842 			curtime = gethrtime_unscaled();
2843 			tmp = 0;
2844 			i++;
2845 			continue;
2846 		}
2847 		scalehrtime(&tmp);
2848 	} while (tmp <= 0 && i < MAX_ITERS_SPIN);
2849 
2850 	*mstimep += tmp;
2851 
2852 	/* update pup timestamp */
2853 	pup->pr_tstamp = curtime;
2854 	scalehrtime(&pup->pr_tstamp);
2855 
2856 	/*
2857 	 * Resource usage counters.
2858 	 */
2859 	pup->pr_minf  += lwp->lwp_ru.minflt;
2860 	pup->pr_majf  += lwp->lwp_ru.majflt;
2861 	pup->pr_nswap += lwp->lwp_ru.nswap;
2862 	pup->pr_inblk += lwp->lwp_ru.inblock;
2863 	pup->pr_oublk += lwp->lwp_ru.oublock;
2864 	pup->pr_msnd  += lwp->lwp_ru.msgsnd;
2865 	pup->pr_mrcv  += lwp->lwp_ru.msgrcv;
2866 	pup->pr_sigs  += lwp->lwp_ru.nsignals;
2867 	pup->pr_vctx  += lwp->lwp_ru.nvcsw;
2868 	pup->pr_ictx  += lwp->lwp_ru.nivcsw;
2869 	pup->pr_sysc  += lwp->lwp_ru.sysc;
2870 	pup->pr_ioch  += lwp->lwp_ru.ioch;
2871 }
2872 
2873 /*
2874  * Convert a prhusage_t to a prusage_t.
2875  * This means convert each hrtime_t to a timestruc_t
2876  * and copy the count fields uint64_t => ulong_t.
2877  */
2878 void
2879 prcvtusage(prhusage_t *pup, prusage_t *upup)
2880 {
2881 	uint64_t *ullp;
2882 	ulong_t *ulp;
2883 	int i;
2884 
2885 	upup->pr_lwpid = pup->pr_lwpid;
2886 	upup->pr_count = pup->pr_count;
2887 
2888 	hrt2ts(pup->pr_tstamp,	&upup->pr_tstamp);
2889 	hrt2ts(pup->pr_create,	&upup->pr_create);
2890 	hrt2ts(pup->pr_term,	&upup->pr_term);
2891 	hrt2ts(pup->pr_rtime,	&upup->pr_rtime);
2892 	hrt2ts(pup->pr_utime,	&upup->pr_utime);
2893 	hrt2ts(pup->pr_stime,	&upup->pr_stime);
2894 	hrt2ts(pup->pr_ttime,	&upup->pr_ttime);
2895 	hrt2ts(pup->pr_tftime,	&upup->pr_tftime);
2896 	hrt2ts(pup->pr_dftime,	&upup->pr_dftime);
2897 	hrt2ts(pup->pr_kftime,	&upup->pr_kftime);
2898 	hrt2ts(pup->pr_ltime,	&upup->pr_ltime);
2899 	hrt2ts(pup->pr_slptime,	&upup->pr_slptime);
2900 	hrt2ts(pup->pr_wtime,	&upup->pr_wtime);
2901 	hrt2ts(pup->pr_stoptime, &upup->pr_stoptime);
2902 	bzero(upup->filltime, sizeof (upup->filltime));
2903 
2904 	ullp = &pup->pr_minf;
2905 	ulp = &upup->pr_minf;
2906 	for (i = 0; i < 22; i++)
2907 		*ulp++ = (ulong_t)*ullp++;
2908 }
2909 
2910 #ifdef _SYSCALL32_IMPL
2911 void
2912 prcvtusage32(prhusage_t *pup, prusage32_t *upup)
2913 {
2914 	uint64_t *ullp;
2915 	uint32_t *ulp;
2916 	int i;
2917 
2918 	upup->pr_lwpid = pup->pr_lwpid;
2919 	upup->pr_count = pup->pr_count;
2920 
2921 	hrt2ts32(pup->pr_tstamp,	&upup->pr_tstamp);
2922 	hrt2ts32(pup->pr_create,	&upup->pr_create);
2923 	hrt2ts32(pup->pr_term,		&upup->pr_term);
2924 	hrt2ts32(pup->pr_rtime,		&upup->pr_rtime);
2925 	hrt2ts32(pup->pr_utime,		&upup->pr_utime);
2926 	hrt2ts32(pup->pr_stime,		&upup->pr_stime);
2927 	hrt2ts32(pup->pr_ttime,		&upup->pr_ttime);
2928 	hrt2ts32(pup->pr_tftime,	&upup->pr_tftime);
2929 	hrt2ts32(pup->pr_dftime,	&upup->pr_dftime);
2930 	hrt2ts32(pup->pr_kftime,	&upup->pr_kftime);
2931 	hrt2ts32(pup->pr_ltime,		&upup->pr_ltime);
2932 	hrt2ts32(pup->pr_slptime,	&upup->pr_slptime);
2933 	hrt2ts32(pup->pr_wtime,		&upup->pr_wtime);
2934 	hrt2ts32(pup->pr_stoptime,	&upup->pr_stoptime);
2935 	bzero(upup->filltime, sizeof (upup->filltime));
2936 
2937 	ullp = &pup->pr_minf;
2938 	ulp = &upup->pr_minf;
2939 	for (i = 0; i < 22; i++)
2940 		*ulp++ = (uint32_t)*ullp++;
2941 }
2942 #endif	/* _SYSCALL32_IMPL */
2943 
2944 /*
2945  * Determine whether a set is empty.
2946  */
2947 int
2948 setisempty(uint32_t *sp, uint_t n)
2949 {
2950 	while (n--)
2951 		if (*sp++)
2952 			return (0);
2953 	return (1);
2954 }
2955 
2956 /*
2957  * Utility routine for establishing a watched area in the process.
2958  * Keep the list of watched areas sorted by virtual address.
2959  */
2960 int
2961 set_watched_area(proc_t *p, struct watched_area *pwa)
2962 {
2963 	caddr_t vaddr = pwa->wa_vaddr;
2964 	caddr_t eaddr = pwa->wa_eaddr;
2965 	ulong_t flags = pwa->wa_flags;
2966 	struct watched_area *target;
2967 	avl_index_t where;
2968 	int error = 0;
2969 
2970 	/* we must not be holding p->p_lock, but the process must be locked */
2971 	ASSERT(MUTEX_NOT_HELD(&p->p_lock));
2972 	ASSERT(p->p_proc_flag & P_PR_LOCK);
2973 
2974 	/*
2975 	 * If this is our first watchpoint, enable watchpoints for the process.
2976 	 */
2977 	if (!pr_watch_active(p)) {
2978 		kthread_t *t;
2979 
2980 		mutex_enter(&p->p_lock);
2981 		if ((t = p->p_tlist) != NULL) {
2982 			do {
2983 				watch_enable(t);
2984 			} while ((t = t->t_forw) != p->p_tlist);
2985 		}
2986 		mutex_exit(&p->p_lock);
2987 	}
2988 
2989 	target = pr_find_watched_area(p, pwa, &where);
2990 	if (target != NULL) {
2991 		/*
2992 		 * We discovered an existing, overlapping watched area.
2993 		 * Allow it only if it is an exact match.
2994 		 */
2995 		if (target->wa_vaddr != vaddr ||
2996 		    target->wa_eaddr != eaddr)
2997 			error = EINVAL;
2998 		else if (target->wa_flags != flags) {
2999 			error = set_watched_page(p, vaddr, eaddr,
3000 			    flags, target->wa_flags);
3001 			target->wa_flags = flags;
3002 		}
3003 		kmem_free(pwa, sizeof (struct watched_area));
3004 	} else {
3005 		avl_insert(&p->p_warea, pwa, where);
3006 		error = set_watched_page(p, vaddr, eaddr, flags, 0);
3007 	}
3008 
3009 	return (error);
3010 }
3011 
3012 /*
3013  * Utility routine for clearing a watched area in the process.
3014  * Must be an exact match of the virtual address.
3015  * size and flags don't matter.
3016  */
3017 int
3018 clear_watched_area(proc_t *p, struct watched_area *pwa)
3019 {
3020 	struct watched_area *found;
3021 
3022 	/* we must not be holding p->p_lock, but the process must be locked */
3023 	ASSERT(MUTEX_NOT_HELD(&p->p_lock));
3024 	ASSERT(p->p_proc_flag & P_PR_LOCK);
3025 
3026 
3027 	if (!pr_watch_active(p)) {
3028 		kmem_free(pwa, sizeof (struct watched_area));
3029 		return (0);
3030 	}
3031 
3032 	/*
3033 	 * Look for a matching address in the watched areas.  If a match is
3034 	 * found, clear the old watched area and adjust the watched page(s).  It
3035 	 * is not an error if there is no match.
3036 	 */
3037 	if ((found = pr_find_watched_area(p, pwa, NULL)) != NULL &&
3038 	    found->wa_vaddr == pwa->wa_vaddr) {
3039 		clear_watched_page(p, found->wa_vaddr, found->wa_eaddr,
3040 		    found->wa_flags);
3041 		avl_remove(&p->p_warea, found);
3042 		kmem_free(found, sizeof (struct watched_area));
3043 	}
3044 
3045 	kmem_free(pwa, sizeof (struct watched_area));
3046 
3047 	/*
3048 	 * If we removed the last watched area from the process, disable
3049 	 * watchpoints.
3050 	 */
3051 	if (!pr_watch_active(p)) {
3052 		kthread_t *t;
3053 
3054 		mutex_enter(&p->p_lock);
3055 		if ((t = p->p_tlist) != NULL) {
3056 			do {
3057 				watch_disable(t);
3058 			} while ((t = t->t_forw) != p->p_tlist);
3059 		}
3060 		mutex_exit(&p->p_lock);
3061 	}
3062 
3063 	return (0);
3064 }
3065 
3066 /*
3067  * Frees all the watched_area structures
3068  */
3069 void
3070 pr_free_watchpoints(proc_t *p)
3071 {
3072 	struct watched_area *delp;
3073 	void *cookie;
3074 
3075 	cookie = NULL;
3076 	while ((delp = avl_destroy_nodes(&p->p_warea, &cookie)) != NULL)
3077 		kmem_free(delp, sizeof (struct watched_area));
3078 
3079 	avl_destroy(&p->p_warea);
3080 }
3081 
3082 /*
3083  * This one is called by the traced process to unwatch all the
3084  * pages while deallocating the list of watched_page structs.
3085  */
3086 void
3087 pr_free_watched_pages(proc_t *p)
3088 {
3089 	struct as *as = p->p_as;
3090 	struct watched_page *pwp;
3091 	uint_t prot;
3092 	int    retrycnt, err;
3093 	void *cookie;
3094 
3095 	if (as == NULL || avl_numnodes(&as->a_wpage) == 0)
3096 		return;
3097 
3098 	ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
3099 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3100 
3101 	pwp = avl_first(&as->a_wpage);
3102 
3103 	cookie = NULL;
3104 	while ((pwp = avl_destroy_nodes(&as->a_wpage, &cookie)) != NULL) {
3105 		retrycnt = 0;
3106 		if ((prot = pwp->wp_oprot) != 0) {
3107 			caddr_t addr = pwp->wp_vaddr;
3108 			struct seg *seg;
3109 		retry:
3110 
3111 			if ((pwp->wp_prot != prot ||
3112 			    (pwp->wp_flags & WP_NOWATCH)) &&
3113 			    (seg = as_segat(as, addr)) != NULL) {
3114 				err = SEGOP_SETPROT(seg, addr, PAGESIZE, prot);
3115 				if (err == IE_RETRY) {
3116 					ASSERT(retrycnt == 0);
3117 					retrycnt++;
3118 					goto retry;
3119 				}
3120 			}
3121 		}
3122 		kmem_free(pwp, sizeof (struct watched_page));
3123 	}
3124 
3125 	avl_destroy(&as->a_wpage);
3126 	p->p_wprot = NULL;
3127 
3128 	AS_LOCK_EXIT(as, &as->a_lock);
3129 }
3130 
3131 /*
3132  * Insert a watched area into the list of watched pages.
3133  * If oflags is zero then we are adding a new watched area.
3134  * Otherwise we are changing the flags of an existing watched area.
3135  */
3136 static int
3137 set_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr,
3138 	ulong_t flags, ulong_t oflags)
3139 {
3140 	struct as *as = p->p_as;
3141 	avl_tree_t *pwp_tree;
3142 	struct watched_page *pwp, *newpwp;
3143 	struct watched_page tpw;
3144 	avl_index_t where;
3145 	struct seg *seg;
3146 	uint_t prot;
3147 	caddr_t addr;
3148 
3149 	/*
3150 	 * We need to pre-allocate a list of structures before we grab the
3151 	 * address space lock to avoid calling kmem_alloc(KM_SLEEP) with locks
3152 	 * held.
3153 	 */
3154 	newpwp = NULL;
3155 	for (addr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
3156 	    addr < eaddr; addr += PAGESIZE) {
3157 		pwp = kmem_zalloc(sizeof (struct watched_page), KM_SLEEP);
3158 		pwp->wp_list = newpwp;
3159 		newpwp = pwp;
3160 	}
3161 
3162 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3163 
3164 	/*
3165 	 * Search for an existing watched page to contain the watched area.
3166 	 * If none is found, grab a new one from the available list
3167 	 * and insert it in the active list, keeping the list sorted
3168 	 * by user-level virtual address.
3169 	 */
3170 	if (p->p_flag & SVFWAIT)
3171 		pwp_tree = &p->p_wpage;
3172 	else
3173 		pwp_tree = &as->a_wpage;
3174 
3175 again:
3176 	if (avl_numnodes(pwp_tree) > prnwatch) {
3177 		AS_LOCK_EXIT(as, &as->a_lock);
3178 		while (newpwp != NULL) {
3179 			pwp = newpwp->wp_list;
3180 			kmem_free(newpwp, sizeof (struct watched_page));
3181 			newpwp = pwp;
3182 		}
3183 		return (E2BIG);
3184 	}
3185 
3186 	tpw.wp_vaddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
3187 	if ((pwp = avl_find(pwp_tree, &tpw, &where)) == NULL) {
3188 		pwp = newpwp;
3189 		newpwp = newpwp->wp_list;
3190 		pwp->wp_list = NULL;
3191 		pwp->wp_vaddr = (caddr_t)((uintptr_t)vaddr &
3192 		    (uintptr_t)PAGEMASK);
3193 		avl_insert(pwp_tree, pwp, where);
3194 	}
3195 
3196 	ASSERT(vaddr >= pwp->wp_vaddr && vaddr < pwp->wp_vaddr + PAGESIZE);
3197 
3198 	if (oflags & WA_READ)
3199 		pwp->wp_read--;
3200 	if (oflags & WA_WRITE)
3201 		pwp->wp_write--;
3202 	if (oflags & WA_EXEC)
3203 		pwp->wp_exec--;
3204 
3205 	ASSERT(pwp->wp_read >= 0);
3206 	ASSERT(pwp->wp_write >= 0);
3207 	ASSERT(pwp->wp_exec >= 0);
3208 
3209 	if (flags & WA_READ)
3210 		pwp->wp_read++;
3211 	if (flags & WA_WRITE)
3212 		pwp->wp_write++;
3213 	if (flags & WA_EXEC)
3214 		pwp->wp_exec++;
3215 
3216 	if (!(p->p_flag & SVFWAIT)) {
3217 		vaddr = pwp->wp_vaddr;
3218 		if (pwp->wp_oprot == 0 &&
3219 		    (seg = as_segat(as, vaddr)) != NULL) {
3220 			SEGOP_GETPROT(seg, vaddr, 0, &prot);
3221 			pwp->wp_oprot = (uchar_t)prot;
3222 			pwp->wp_prot = (uchar_t)prot;
3223 		}
3224 		if (pwp->wp_oprot != 0) {
3225 			prot = pwp->wp_oprot;
3226 			if (pwp->wp_read)
3227 				prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3228 			if (pwp->wp_write)
3229 				prot &= ~PROT_WRITE;
3230 			if (pwp->wp_exec)
3231 				prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3232 			if (!(pwp->wp_flags & WP_NOWATCH) &&
3233 			    pwp->wp_prot != prot &&
3234 			    (pwp->wp_flags & WP_SETPROT) == 0) {
3235 				pwp->wp_flags |= WP_SETPROT;
3236 				pwp->wp_list = p->p_wprot;
3237 				p->p_wprot = pwp;
3238 			}
3239 			pwp->wp_prot = (uchar_t)prot;
3240 		}
3241 	}
3242 
3243 	/*
3244 	 * If the watched area extends into the next page then do
3245 	 * it over again with the virtual address of the next page.
3246 	 */
3247 	if ((vaddr = pwp->wp_vaddr + PAGESIZE) < eaddr)
3248 		goto again;
3249 
3250 	AS_LOCK_EXIT(as, &as->a_lock);
3251 
3252 	/*
3253 	 * Free any pages we may have over-allocated
3254 	 */
3255 	while (newpwp != NULL) {
3256 		pwp = newpwp->wp_list;
3257 		kmem_free(newpwp, sizeof (struct watched_page));
3258 		newpwp = pwp;
3259 	}
3260 
3261 	return (0);
3262 }
3263 
3264 /*
3265  * Remove a watched area from the list of watched pages.
3266  * A watched area may extend over more than one page.
3267  */
3268 static void
3269 clear_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr, ulong_t flags)
3270 {
3271 	struct as *as = p->p_as;
3272 	struct watched_page *pwp;
3273 	struct watched_page tpw;
3274 	avl_tree_t *tree;
3275 	avl_index_t where;
3276 
3277 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3278 
3279 	if (p->p_flag & SVFWAIT)
3280 		tree = &p->p_wpage;
3281 	else
3282 		tree = &as->a_wpage;
3283 
3284 	tpw.wp_vaddr = vaddr =
3285 	    (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
3286 	pwp = avl_find(tree, &tpw, &where);
3287 	if (pwp == NULL)
3288 		pwp = avl_nearest(tree, where, AVL_AFTER);
3289 
3290 	while (pwp != NULL && pwp->wp_vaddr < eaddr) {
3291 		ASSERT(vaddr <=  pwp->wp_vaddr);
3292 
3293 		if (flags & WA_READ)
3294 			pwp->wp_read--;
3295 		if (flags & WA_WRITE)
3296 			pwp->wp_write--;
3297 		if (flags & WA_EXEC)
3298 			pwp->wp_exec--;
3299 
3300 		if (pwp->wp_read + pwp->wp_write + pwp->wp_exec != 0) {
3301 			/*
3302 			 * Reset the hat layer's protections on this page.
3303 			 */
3304 			if (pwp->wp_oprot != 0) {
3305 				uint_t prot = pwp->wp_oprot;
3306 
3307 				if (pwp->wp_read)
3308 					prot &=
3309 					    ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3310 				if (pwp->wp_write)
3311 					prot &= ~PROT_WRITE;
3312 				if (pwp->wp_exec)
3313 					prot &=
3314 					    ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3315 				if (!(pwp->wp_flags & WP_NOWATCH) &&
3316 				    pwp->wp_prot != prot &&
3317 				    (pwp->wp_flags & WP_SETPROT) == 0) {
3318 					pwp->wp_flags |= WP_SETPROT;
3319 					pwp->wp_list = p->p_wprot;
3320 					p->p_wprot = pwp;
3321 				}
3322 				pwp->wp_prot = (uchar_t)prot;
3323 			}
3324 		} else {
3325 			/*
3326 			 * No watched areas remain in this page.
3327 			 * Reset everything to normal.
3328 			 */
3329 			if (pwp->wp_oprot != 0) {
3330 				pwp->wp_prot = pwp->wp_oprot;
3331 				if ((pwp->wp_flags & WP_SETPROT) == 0) {
3332 					pwp->wp_flags |= WP_SETPROT;
3333 					pwp->wp_list = p->p_wprot;
3334 					p->p_wprot = pwp;
3335 				}
3336 			}
3337 		}
3338 
3339 		pwp = AVL_NEXT(tree, pwp);
3340 	}
3341 
3342 	AS_LOCK_EXIT(as, &as->a_lock);
3343 }
3344 
3345 /*
3346  * Return the original protections for the specified page.
3347  */
3348 static void
3349 getwatchprot(struct as *as, caddr_t addr, uint_t *prot)
3350 {
3351 	struct watched_page *pwp;
3352 	struct watched_page tpw;
3353 
3354 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
3355 
3356 	tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3357 	if ((pwp = avl_find(&as->a_wpage, &tpw, NULL)) != NULL)
3358 		*prot = pwp->wp_oprot;
3359 }
3360 
3361 static prpagev_t *
3362 pr_pagev_create(struct seg *seg, int check_noreserve)
3363 {
3364 	prpagev_t *pagev = kmem_alloc(sizeof (prpagev_t), KM_SLEEP);
3365 	size_t total_pages = seg_pages(seg);
3366 
3367 	/*
3368 	 * Limit the size of our vectors to pagev_lim pages at a time.  We need
3369 	 * 4 or 5 bytes of storage per page, so this means we limit ourself
3370 	 * to about a megabyte of kernel heap by default.
3371 	 */
3372 	pagev->pg_npages = MIN(total_pages, pagev_lim);
3373 	pagev->pg_pnbase = 0;
3374 
3375 	pagev->pg_protv =
3376 	    kmem_alloc(pagev->pg_npages * sizeof (uint_t), KM_SLEEP);
3377 
3378 	if (check_noreserve)
3379 		pagev->pg_incore =
3380 		    kmem_alloc(pagev->pg_npages * sizeof (char), KM_SLEEP);
3381 	else
3382 		pagev->pg_incore = NULL;
3383 
3384 	return (pagev);
3385 }
3386 
3387 static void
3388 pr_pagev_destroy(prpagev_t *pagev)
3389 {
3390 	if (pagev->pg_incore != NULL)
3391 		kmem_free(pagev->pg_incore, pagev->pg_npages * sizeof (char));
3392 
3393 	kmem_free(pagev->pg_protv, pagev->pg_npages * sizeof (uint_t));
3394 	kmem_free(pagev, sizeof (prpagev_t));
3395 }
3396 
3397 static caddr_t
3398 pr_pagev_fill(prpagev_t *pagev, struct seg *seg, caddr_t addr, caddr_t eaddr)
3399 {
3400 	ulong_t lastpg = seg_page(seg, eaddr - 1);
3401 	ulong_t pn, pnlim;
3402 	caddr_t saddr;
3403 	size_t len;
3404 
3405 	ASSERT(addr >= seg->s_base && addr <= eaddr);
3406 
3407 	if (addr == eaddr)
3408 		return (eaddr);
3409 
3410 refill:
3411 	ASSERT(addr < eaddr);
3412 	pagev->pg_pnbase = seg_page(seg, addr);
3413 	pnlim = pagev->pg_pnbase + pagev->pg_npages;
3414 	saddr = addr;
3415 
3416 	if (lastpg < pnlim)
3417 		len = (size_t)(eaddr - addr);
3418 	else
3419 		len = pagev->pg_npages * PAGESIZE;
3420 
3421 	if (pagev->pg_incore != NULL) {
3422 		/*
3423 		 * INCORE cleverly has different semantics than GETPROT:
3424 		 * it returns info on pages up to but NOT including addr + len.
3425 		 */
3426 		SEGOP_INCORE(seg, addr, len, pagev->pg_incore);
3427 		pn = pagev->pg_pnbase;
3428 
3429 		do {
3430 			/*
3431 			 * Guilty knowledge here:  We know that segvn_incore
3432 			 * returns more than just the low-order bit that
3433 			 * indicates the page is actually in memory.  If any
3434 			 * bits are set, then the page has backing store.
3435 			 */
3436 			if (pagev->pg_incore[pn++ - pagev->pg_pnbase])
3437 				goto out;
3438 
3439 		} while ((addr += PAGESIZE) < eaddr && pn < pnlim);
3440 
3441 		/*
3442 		 * If we examined all the pages in the vector but we're not
3443 		 * at the end of the segment, take another lap.
3444 		 */
3445 		if (addr < eaddr)
3446 			goto refill;
3447 	}
3448 
3449 	/*
3450 	 * Need to take len - 1 because addr + len is the address of the
3451 	 * first byte of the page just past the end of what we want.
3452 	 */
3453 out:
3454 	SEGOP_GETPROT(seg, saddr, len - 1, pagev->pg_protv);
3455 	return (addr);
3456 }
3457 
3458 static caddr_t
3459 pr_pagev_nextprot(prpagev_t *pagev, struct seg *seg,
3460     caddr_t *saddrp, caddr_t eaddr, uint_t *protp)
3461 {
3462 	/*
3463 	 * Our starting address is either the specified address, or the base
3464 	 * address from the start of the pagev.  If the latter is greater,
3465 	 * this means a previous call to pr_pagev_fill has already scanned
3466 	 * further than the end of the previous mapping.
3467 	 */
3468 	caddr_t base = seg->s_base + pagev->pg_pnbase * PAGESIZE;
3469 	caddr_t addr = MAX(*saddrp, base);
3470 	ulong_t pn = seg_page(seg, addr);
3471 	uint_t prot, nprot;
3472 
3473 	/*
3474 	 * If we're dealing with noreserve pages, then advance addr to
3475 	 * the address of the next page which has backing store.
3476 	 */
3477 	if (pagev->pg_incore != NULL) {
3478 		while (pagev->pg_incore[pn - pagev->pg_pnbase] == 0) {
3479 			if ((addr += PAGESIZE) == eaddr) {
3480 				*saddrp = addr;
3481 				prot = 0;
3482 				goto out;
3483 			}
3484 			if (++pn == pagev->pg_pnbase + pagev->pg_npages) {
3485 				addr = pr_pagev_fill(pagev, seg, addr, eaddr);
3486 				if (addr == eaddr) {
3487 					*saddrp = addr;
3488 					prot = 0;
3489 					goto out;
3490 				}
3491 				pn = seg_page(seg, addr);
3492 			}
3493 		}
3494 	}
3495 
3496 	/*
3497 	 * Get the protections on the page corresponding to addr.
3498 	 */
3499 	pn = seg_page(seg, addr);
3500 	ASSERT(pn >= pagev->pg_pnbase);
3501 	ASSERT(pn < (pagev->pg_pnbase + pagev->pg_npages));
3502 
3503 	prot = pagev->pg_protv[pn - pagev->pg_pnbase];
3504 	getwatchprot(seg->s_as, addr, &prot);
3505 	*saddrp = addr;
3506 
3507 	/*
3508 	 * Now loop until we find a backed page with different protections
3509 	 * or we reach the end of this segment.
3510 	 */
3511 	while ((addr += PAGESIZE) < eaddr) {
3512 		/*
3513 		 * If pn has advanced to the page number following what we
3514 		 * have information on, refill the page vector and reset
3515 		 * addr and pn.  If pr_pagev_fill does not return the
3516 		 * address of the next page, we have a discontiguity and
3517 		 * thus have reached the end of the current mapping.
3518 		 */
3519 		if (++pn == pagev->pg_pnbase + pagev->pg_npages) {
3520 			caddr_t naddr = pr_pagev_fill(pagev, seg, addr, eaddr);
3521 			if (naddr != addr)
3522 				goto out;
3523 			pn = seg_page(seg, addr);
3524 		}
3525 
3526 		/*
3527 		 * The previous page's protections are in prot, and it has
3528 		 * backing.  If this page is MAP_NORESERVE and has no backing,
3529 		 * then end this mapping and return the previous protections.
3530 		 */
3531 		if (pagev->pg_incore != NULL &&
3532 		    pagev->pg_incore[pn - pagev->pg_pnbase] == 0)
3533 			break;
3534 
3535 		/*
3536 		 * Otherwise end the mapping if this page's protections (nprot)
3537 		 * are different than those in the previous page (prot).
3538 		 */
3539 		nprot = pagev->pg_protv[pn - pagev->pg_pnbase];
3540 		getwatchprot(seg->s_as, addr, &nprot);
3541 
3542 		if (nprot != prot)
3543 			break;
3544 	}
3545 
3546 out:
3547 	*protp = prot;
3548 	return (addr);
3549 }
3550 
3551 size_t
3552 pr_getsegsize(struct seg *seg, int reserved)
3553 {
3554 	size_t size = seg->s_size;
3555 
3556 	/*
3557 	 * If we're interested in the reserved space, return the size of the
3558 	 * segment itself.  Everything else in this function is a special case
3559 	 * to determine the actual underlying size of various segment types.
3560 	 */
3561 	if (reserved)
3562 		return (size);
3563 
3564 	/*
3565 	 * If this is a segvn mapping of a regular file, return the smaller
3566 	 * of the segment size and the remaining size of the file beyond
3567 	 * the file offset corresponding to seg->s_base.
3568 	 */
3569 	if (seg->s_ops == &segvn_ops) {
3570 		vattr_t vattr;
3571 		vnode_t *vp;
3572 
3573 		vattr.va_mask = AT_SIZE;
3574 
3575 		if (SEGOP_GETVP(seg, seg->s_base, &vp) == 0 &&
3576 		    vp != NULL && vp->v_type == VREG &&
3577 		    VOP_GETATTR(vp, &vattr, 0, CRED()) == 0) {
3578 
3579 			u_offset_t fsize = vattr.va_size;
3580 			u_offset_t offset = SEGOP_GETOFFSET(seg, seg->s_base);
3581 
3582 			if (fsize < offset)
3583 				fsize = 0;
3584 			else
3585 				fsize -= offset;
3586 
3587 			fsize = roundup(fsize, (u_offset_t)PAGESIZE);
3588 
3589 			if (fsize < (u_offset_t)size)
3590 				size = (size_t)fsize;
3591 		}
3592 
3593 		return (size);
3594 	}
3595 
3596 	/*
3597 	 * If this is an ISM shared segment, don't include pages that are
3598 	 * beyond the real size of the spt segment that backs it.
3599 	 */
3600 	if (seg->s_ops == &segspt_shmops)
3601 		return (MIN(spt_realsize(seg), size));
3602 
3603 	/*
3604 	 * If this is segment is a mapping from /dev/null, then this is a
3605 	 * reservation of virtual address space and has no actual size.
3606 	 * Such segments are backed by segdev and have type set to neither
3607 	 * MAP_SHARED nor MAP_PRIVATE.
3608 	 */
3609 	if (seg->s_ops == &segdev_ops &&
3610 	    ((SEGOP_GETTYPE(seg, seg->s_base) &
3611 		(MAP_SHARED | MAP_PRIVATE)) == 0))
3612 		return (0);
3613 
3614 	/*
3615 	 * If this segment doesn't match one of the special types we handle,
3616 	 * just return the size of the segment itself.
3617 	 */
3618 	return (size);
3619 }
3620 
3621 uint_t
3622 pr_getprot(struct seg *seg, int reserved, void **tmp,
3623 	caddr_t *saddrp, caddr_t *naddrp, caddr_t eaddr)
3624 {
3625 	struct as *as = seg->s_as;
3626 
3627 	caddr_t saddr = *saddrp;
3628 	caddr_t naddr;
3629 
3630 	int check_noreserve;
3631 	uint_t prot;
3632 
3633 	union {
3634 		struct segvn_data *svd;
3635 		struct segdev_data *sdp;
3636 		void *data;
3637 	} s;
3638 
3639 	s.data = seg->s_data;
3640 
3641 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3642 	ASSERT(saddr >= seg->s_base && saddr < eaddr);
3643 	ASSERT(eaddr <= seg->s_base + seg->s_size);
3644 
3645 	/*
3646 	 * Don't include MAP_NORESERVE pages in the address range
3647 	 * unless their mappings have actually materialized.
3648 	 * We cheat by knowing that segvn is the only segment
3649 	 * driver that supports MAP_NORESERVE.
3650 	 */
3651 	check_noreserve =
3652 	    (!reserved && seg->s_ops == &segvn_ops && s.svd != NULL &&
3653 	    (s.svd->vp == NULL || s.svd->vp->v_type != VREG) &&
3654 	    (s.svd->flags & MAP_NORESERVE));
3655 
3656 	/*
3657 	 * Examine every page only as a last resort.  We use guilty knowledge
3658 	 * of segvn and segdev to avoid this: if there are no per-page
3659 	 * protections present in the segment and we don't care about
3660 	 * MAP_NORESERVE, then s_data->prot is the prot for the whole segment.
3661 	 */
3662 	if (!check_noreserve && saddr == seg->s_base &&
3663 	    seg->s_ops == &segvn_ops && s.svd != NULL && s.svd->pageprot == 0) {
3664 		prot = s.svd->prot;
3665 		getwatchprot(as, saddr, &prot);
3666 		naddr = eaddr;
3667 
3668 	} else if (saddr == seg->s_base && seg->s_ops == &segdev_ops &&
3669 	    s.sdp != NULL && s.sdp->pageprot == 0) {
3670 		prot = s.sdp->prot;
3671 		getwatchprot(as, saddr, &prot);
3672 		naddr = eaddr;
3673 
3674 	} else {
3675 		prpagev_t *pagev;
3676 
3677 		/*
3678 		 * If addr is sitting at the start of the segment, then
3679 		 * create a page vector to store protection and incore
3680 		 * information for pages in the segment, and fill it.
3681 		 * Otherwise, we expect *tmp to address the prpagev_t
3682 		 * allocated by a previous call to this function.
3683 		 */
3684 		if (saddr == seg->s_base) {
3685 			pagev = pr_pagev_create(seg, check_noreserve);
3686 			saddr = pr_pagev_fill(pagev, seg, saddr, eaddr);
3687 
3688 			ASSERT(*tmp == NULL);
3689 			*tmp = pagev;
3690 
3691 			ASSERT(saddr <= eaddr);
3692 			*saddrp = saddr;
3693 
3694 			if (saddr == eaddr) {
3695 				naddr = saddr;
3696 				prot = 0;
3697 				goto out;
3698 			}
3699 
3700 		} else {
3701 			ASSERT(*tmp != NULL);
3702 			pagev = (prpagev_t *)*tmp;
3703 		}
3704 
3705 		naddr = pr_pagev_nextprot(pagev, seg, saddrp, eaddr, &prot);
3706 		ASSERT(naddr <= eaddr);
3707 	}
3708 
3709 out:
3710 	if (naddr == eaddr)
3711 		pr_getprot_done(tmp);
3712 	*naddrp = naddr;
3713 	return (prot);
3714 }
3715 
3716 void
3717 pr_getprot_done(void **tmp)
3718 {
3719 	if (*tmp != NULL) {
3720 		pr_pagev_destroy((prpagev_t *)*tmp);
3721 		*tmp = NULL;
3722 	}
3723 }
3724 
3725 /*
3726  * Return true iff the vnode is a /proc file from the object directory.
3727  */
3728 int
3729 pr_isobject(vnode_t *vp)
3730 {
3731 	return (vn_matchops(vp, prvnodeops) && VTOP(vp)->pr_type == PR_OBJECT);
3732 }
3733 
3734 /*
3735  * Return true iff the vnode is a /proc file opened by the process itself.
3736  */
3737 int
3738 pr_isself(vnode_t *vp)
3739 {
3740 	/*
3741 	 * XXX: To retain binary compatibility with the old
3742 	 * ioctl()-based version of /proc, we exempt self-opens
3743 	 * of /proc/<pid> from being marked close-on-exec.
3744 	 */
3745 	return (vn_matchops(vp, prvnodeops) &&
3746 	    (VTOP(vp)->pr_flags & PR_ISSELF) &&
3747 	    VTOP(vp)->pr_type != PR_PIDDIR);
3748 }
3749 
3750 static ssize_t
3751 pr_getpagesize(struct seg *seg, caddr_t saddr, caddr_t *naddrp, caddr_t eaddr)
3752 {
3753 	ssize_t pagesize, hatsize;
3754 
3755 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
3756 	ASSERT(IS_P2ALIGNED(saddr, PAGESIZE));
3757 	ASSERT(IS_P2ALIGNED(eaddr, PAGESIZE));
3758 	ASSERT(saddr < eaddr);
3759 
3760 	pagesize = hatsize = hat_getpagesize(seg->s_as->a_hat, saddr);
3761 	ASSERT(pagesize == -1 || IS_P2ALIGNED(pagesize, pagesize));
3762 	ASSERT(pagesize != 0);
3763 
3764 	if (pagesize == -1)
3765 		pagesize = PAGESIZE;
3766 
3767 	saddr += P2NPHASE((uintptr_t)saddr, pagesize);
3768 
3769 	while (saddr < eaddr) {
3770 		if (hatsize != hat_getpagesize(seg->s_as->a_hat, saddr))
3771 			break;
3772 		ASSERT(IS_P2ALIGNED(saddr, pagesize));
3773 		saddr += pagesize;
3774 	}
3775 
3776 	*naddrp = ((saddr < eaddr) ? saddr : eaddr);
3777 	return (hatsize);
3778 }
3779 
3780 /*
3781  * Return an array of structures with extended memory map information.
3782  * We allocate here; the caller must deallocate.
3783  */
3784 int
3785 prgetxmap(proc_t *p, prxmap_t **prxmapp, size_t *sizep)
3786 {
3787 	struct as *as = p->p_as;
3788 	int nmaps = 0;
3789 	prxmap_t *mp;
3790 	size_t size;
3791 	struct seg *seg;
3792 	struct seg *brkseg, *stkseg;
3793 	struct vnode *vp;
3794 	struct vattr vattr;
3795 	uint_t prot;
3796 
3797 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
3798 
3799 	/* initial allocation */
3800 	*sizep = size = INITIAL_MAPSIZE;
3801 	*prxmapp = mp = kmem_alloc(size, KM_SLEEP);
3802 
3803 	if ((seg = AS_SEGFIRST(as)) == NULL)
3804 		return (0);
3805 
3806 	brkseg = break_seg(p);
3807 	stkseg = as_segat(as, prgetstackbase(p));
3808 
3809 	do {
3810 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
3811 		caddr_t saddr, naddr, baddr;
3812 		void *tmp = NULL;
3813 		ssize_t psz;
3814 		char *parr;
3815 		uint64_t npages;
3816 		uint64_t pagenum;
3817 
3818 		/*
3819 		 * Segment loop part one: iterate from the base of the segment
3820 		 * to its end, pausing at each address boundary (baddr) between
3821 		 * ranges that have different virtual memory protections.
3822 		 */
3823 		for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) {
3824 			prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr);
3825 			ASSERT(baddr >= saddr && baddr <= eaddr);
3826 
3827 			/*
3828 			 * Segment loop part two: iterate from the current
3829 			 * position to the end of the protection boundary,
3830 			 * pausing at each address boundary (naddr) between
3831 			 * ranges that have different underlying page sizes.
3832 			 */
3833 			for (; saddr < baddr; saddr = naddr) {
3834 				psz = pr_getpagesize(seg, saddr, &naddr, baddr);
3835 				ASSERT(naddr >= saddr && naddr <= baddr);
3836 
3837 				/* reallocate if necessary */
3838 				if ((nmaps + 1) * sizeof (prxmap_t) > size) {
3839 					size_t newsize = size + 3 * size / 16;
3840 					prxmap_t *newmp =
3841 					    kmem_alloc(newsize, KM_SLEEP);
3842 
3843 					bcopy(*prxmapp, newmp,
3844 					    nmaps * sizeof (prxmap_t));
3845 					kmem_free(*prxmapp, size);
3846 					*sizep = size = newsize;
3847 					*prxmapp = newmp;
3848 					mp = newmp + nmaps;
3849 				}
3850 
3851 				bzero(mp, sizeof (*mp));
3852 				mp->pr_vaddr = (uintptr_t)saddr;
3853 				mp->pr_size = naddr - saddr;
3854 				mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
3855 				mp->pr_mflags = 0;
3856 				if (prot & PROT_READ)
3857 					mp->pr_mflags |= MA_READ;
3858 				if (prot & PROT_WRITE)
3859 					mp->pr_mflags |= MA_WRITE;
3860 				if (prot & PROT_EXEC)
3861 					mp->pr_mflags |= MA_EXEC;
3862 				if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
3863 					mp->pr_mflags |= MA_SHARED;
3864 				if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
3865 					mp->pr_mflags |= MA_NORESERVE;
3866 				if (seg->s_ops == &segspt_shmops ||
3867 				    (seg->s_ops == &segvn_ops &&
3868 				    (SEGOP_GETVP(seg, saddr, &vp) != 0 ||
3869 				    vp == NULL)))
3870 					mp->pr_mflags |= MA_ANON;
3871 				if (seg == brkseg)
3872 					mp->pr_mflags |= MA_BREAK;
3873 				else if (seg == stkseg)
3874 					mp->pr_mflags |= MA_STACK;
3875 				if (seg->s_ops == &segspt_shmops)
3876 					mp->pr_mflags |= MA_ISM | MA_SHM;
3877 
3878 				mp->pr_pagesize = PAGESIZE;
3879 				if (psz == -1) {
3880 					mp->pr_hatpagesize = 0;
3881 				} else {
3882 					mp->pr_hatpagesize = psz;
3883 				}
3884 
3885 				/*
3886 				 * Manufacture a filename for the "object" dir.
3887 				 */
3888 				mp->pr_dev = PRNODEV;
3889 				vattr.va_mask = AT_FSID|AT_NODEID;
3890 				if (seg->s_ops == &segvn_ops &&
3891 				    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
3892 				    vp != NULL && vp->v_type == VREG &&
3893 				    VOP_GETATTR(vp, &vattr, 0, CRED()) == 0) {
3894 					mp->pr_dev = vattr.va_fsid;
3895 					mp->pr_ino = vattr.va_nodeid;
3896 					if (vp == p->p_exec)
3897 						(void) strcpy(mp->pr_mapname,
3898 						    "a.out");
3899 					else
3900 						pr_object_name(mp->pr_mapname,
3901 						    vp, &vattr);
3902 				}
3903 
3904 				/*
3905 				 * Get the SysV shared memory id, if any.
3906 				 */
3907 				if ((mp->pr_mflags & MA_SHARED) &&
3908 				    p->p_segacct && (mp->pr_shmid = shmgetid(p,
3909 				    seg->s_base)) != SHMID_NONE) {
3910 					if (mp->pr_shmid == SHMID_FREE)
3911 						mp->pr_shmid = -1;
3912 
3913 					mp->pr_mflags |= MA_SHM;
3914 				} else {
3915 					mp->pr_shmid = -1;
3916 				}
3917 
3918 				npages = ((uintptr_t)(naddr - saddr)) >>
3919 				    PAGESHIFT;
3920 				parr = kmem_zalloc(npages, KM_SLEEP);
3921 
3922 				SEGOP_INCORE(seg, saddr, naddr - saddr, parr);
3923 
3924 				for (pagenum = 0; pagenum < npages; pagenum++) {
3925 					if (parr[pagenum] & SEG_PAGE_INCORE)
3926 						mp->pr_rss++;
3927 					if (parr[pagenum] & SEG_PAGE_ANON)
3928 						mp->pr_anon++;
3929 					if (parr[pagenum] & SEG_PAGE_LOCKED)
3930 						mp->pr_locked++;
3931 				}
3932 				kmem_free(parr, npages);
3933 				mp++;
3934 				nmaps++;
3935 			}
3936 		}
3937 		ASSERT(tmp == NULL);
3938 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
3939 
3940 	return (nmaps);
3941 }
3942 
3943 /*
3944  * Return the process's credentials.  We don't need a 32-bit equivalent of
3945  * this function because prcred_t and prcred32_t are actually the same.
3946  */
3947 void
3948 prgetcred(proc_t *p, prcred_t *pcrp)
3949 {
3950 	mutex_enter(&p->p_crlock);
3951 	cred2prcred(p->p_cred, pcrp);
3952 	mutex_exit(&p->p_crlock);
3953 }
3954 
3955 /*
3956  * Compute actual size of the prpriv_t structure.
3957  */
3958 
3959 size_t
3960 prgetprivsize(void)
3961 {
3962 	return (priv_prgetprivsize(NULL));
3963 }
3964 
3965 /*
3966  * Return the process's privileges.  We don't need a 32-bit equivalent of
3967  * this function because prpriv_t and prpriv32_t are actually the same.
3968  */
3969 void
3970 prgetpriv(proc_t *p, prpriv_t *pprp)
3971 {
3972 	mutex_enter(&p->p_crlock);
3973 	cred2prpriv(p->p_cred, pprp);
3974 	mutex_exit(&p->p_crlock);
3975 }
3976 
3977 #ifdef _SYSCALL32_IMPL
3978 /*
3979  * Return an array of structures with HAT memory map information.
3980  * We allocate here; the caller must deallocate.
3981  */
3982 int
3983 prgetxmap32(proc_t *p, prxmap32_t **prxmapp, size_t *sizep)
3984 {
3985 	struct as *as = p->p_as;
3986 	int nmaps = 0;
3987 	prxmap32_t *mp;
3988 	size_t size;
3989 	struct seg *seg;
3990 	struct seg *brkseg, *stkseg;
3991 	struct vnode *vp;
3992 	struct vattr vattr;
3993 	uint_t prot;
3994 
3995 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
3996 
3997 	/* initial allocation */
3998 	*sizep = size = INITIAL_MAPSIZE;
3999 	*prxmapp = mp = kmem_alloc(size, KM_SLEEP);
4000 
4001 	if ((seg = AS_SEGFIRST(as)) == NULL)
4002 		return (0);
4003 
4004 	brkseg = break_seg(p);
4005 	stkseg = as_segat(as, prgetstackbase(p));
4006 
4007 	do {
4008 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
4009 		caddr_t saddr, naddr, baddr;
4010 		void *tmp = NULL;
4011 		ssize_t psz;
4012 		char *parr;
4013 		uint64_t npages;
4014 		uint64_t pagenum;
4015 
4016 		/*
4017 		 * Segment loop part one: iterate from the base of the segment
4018 		 * to its end, pausing at each address boundary (baddr) between
4019 		 * ranges that have different virtual memory protections.
4020 		 */
4021 		for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) {
4022 			prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr);
4023 			ASSERT(baddr >= saddr && baddr <= eaddr);
4024 
4025 			/*
4026 			 * Segment loop part two: iterate from the current
4027 			 * position to the end of the protection boundary,
4028 			 * pausing at each address boundary (naddr) between
4029 			 * ranges that have different underlying page sizes.
4030 			 */
4031 			for (; saddr < baddr; saddr = naddr) {
4032 				psz = pr_getpagesize(seg, saddr, &naddr, baddr);
4033 				ASSERT(naddr >= saddr && naddr <= baddr);
4034 
4035 				/* reallocate if necessary */
4036 				if ((nmaps + 1) * sizeof (prxmap32_t) > size) {
4037 					size_t newsize = size + 3 * size / 16;
4038 					prxmap32_t *newmp =
4039 					    kmem_alloc(newsize, KM_SLEEP);
4040 
4041 					bcopy(*prxmapp, newmp,
4042 					    nmaps * sizeof (prxmap32_t));
4043 					kmem_free(*prxmapp, size);
4044 					*sizep = size = newsize;
4045 					*prxmapp = newmp;
4046 					mp = newmp + nmaps;
4047 				}
4048 
4049 				bzero(mp, sizeof (*mp));
4050 				mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr;
4051 				mp->pr_size = (size32_t)(naddr - saddr);
4052 				mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
4053 				mp->pr_mflags = 0;
4054 				if (prot & PROT_READ)
4055 					mp->pr_mflags |= MA_READ;
4056 				if (prot & PROT_WRITE)
4057 					mp->pr_mflags |= MA_WRITE;
4058 				if (prot & PROT_EXEC)
4059 					mp->pr_mflags |= MA_EXEC;
4060 				if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
4061 					mp->pr_mflags |= MA_SHARED;
4062 				if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
4063 					mp->pr_mflags |= MA_NORESERVE;
4064 				if (seg->s_ops == &segspt_shmops ||
4065 				    (seg->s_ops == &segvn_ops &&
4066 				    (SEGOP_GETVP(seg, saddr, &vp) != 0 ||
4067 				    vp == NULL)))
4068 					mp->pr_mflags |= MA_ANON;
4069 				if (seg == brkseg)
4070 					mp->pr_mflags |= MA_BREAK;
4071 				else if (seg == stkseg)
4072 					mp->pr_mflags |= MA_STACK;
4073 				if (seg->s_ops == &segspt_shmops)
4074 					mp->pr_mflags |= MA_ISM | MA_SHM;
4075 
4076 				mp->pr_pagesize = PAGESIZE;
4077 				if (psz == -1) {
4078 					mp->pr_hatpagesize = 0;
4079 				} else {
4080 					mp->pr_hatpagesize = psz;
4081 				}
4082 
4083 				/*
4084 				 * Manufacture a filename for the "object" dir.
4085 				 */
4086 				mp->pr_dev = PRNODEV32;
4087 				vattr.va_mask = AT_FSID|AT_NODEID;
4088 				if (seg->s_ops == &segvn_ops &&
4089 				    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
4090 				    vp != NULL && vp->v_type == VREG &&
4091 				    VOP_GETATTR(vp, &vattr, 0, CRED()) == 0) {
4092 					(void) cmpldev(&mp->pr_dev,
4093 					    vattr.va_fsid);
4094 					mp->pr_ino = vattr.va_nodeid;
4095 					if (vp == p->p_exec)
4096 						(void) strcpy(mp->pr_mapname,
4097 						    "a.out");
4098 					else
4099 						pr_object_name(mp->pr_mapname,
4100 						    vp, &vattr);
4101 				}
4102 
4103 				/*
4104 				 * Get the SysV shared memory id, if any.
4105 				 */
4106 				if ((mp->pr_mflags & MA_SHARED) &&
4107 				    p->p_segacct && (mp->pr_shmid = shmgetid(p,
4108 				    seg->s_base)) != SHMID_NONE) {
4109 					if (mp->pr_shmid == SHMID_FREE)
4110 						mp->pr_shmid = -1;
4111 
4112 					mp->pr_mflags |= MA_SHM;
4113 				} else {
4114 					mp->pr_shmid = -1;
4115 				}
4116 
4117 				npages = ((uintptr_t)(naddr - saddr)) >>
4118 				    PAGESHIFT;
4119 				parr = kmem_zalloc(npages, KM_SLEEP);
4120 
4121 				SEGOP_INCORE(seg, saddr, naddr - saddr, parr);
4122 
4123 				for (pagenum = 0; pagenum < npages; pagenum++) {
4124 					if (parr[pagenum] & SEG_PAGE_INCORE)
4125 						mp->pr_rss++;
4126 					if (parr[pagenum] & SEG_PAGE_ANON)
4127 						mp->pr_anon++;
4128 					if (parr[pagenum] & SEG_PAGE_LOCKED)
4129 						mp->pr_locked++;
4130 				}
4131 				kmem_free(parr, npages);
4132 				mp++;
4133 				nmaps++;
4134 			}
4135 		}
4136 		ASSERT(tmp == NULL);
4137 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
4138 
4139 	return (nmaps);
4140 }
4141 #endif	/* _SYSCALL32_IMPL */
4142