1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All rights reserved. 29 * Use is subject to license terms. 30 */ 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/systm.h> 35 #include <sys/cred.h> 36 #include <sys/proc.h> 37 #include <sys/user.h> 38 #include <sys/buf.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/pathname.h> 42 #include <sys/uio.h> 43 #include <sys/file.h> 44 #include <sys/stat.h> 45 #include <sys/errno.h> 46 #include <sys/socket.h> 47 #include <sys/sysmacros.h> 48 #include <sys/siginfo.h> 49 #include <sys/tiuser.h> 50 #include <sys/statvfs.h> 51 #include <sys/stream.h> 52 #include <sys/strsubr.h> 53 #include <sys/stropts.h> 54 #include <sys/timod.h> 55 #include <sys/t_kuser.h> 56 #include <sys/kmem.h> 57 #include <sys/kstat.h> 58 #include <sys/dirent.h> 59 #include <sys/cmn_err.h> 60 #include <sys/debug.h> 61 #include <sys/unistd.h> 62 #include <sys/vtrace.h> 63 #include <sys/mode.h> 64 #include <sys/acl.h> 65 #include <sys/sdt.h> 66 67 #include <rpc/types.h> 68 #include <rpc/auth.h> 69 #include <rpc/auth_unix.h> 70 #include <rpc/auth_des.h> 71 #include <rpc/svc.h> 72 #include <rpc/xdr.h> 73 #include <rpc/rpc_rdma.h> 74 75 #include <nfs/nfs.h> 76 #include <nfs/export.h> 77 #include <nfs/nfssys.h> 78 #include <nfs/nfs_clnt.h> 79 #include <nfs/nfs_acl.h> 80 #include <nfs/nfs_log.h> 81 #include <nfs/nfs_cmd.h> 82 #include <nfs/lm.h> 83 #include <nfs/nfs_dispatch.h> 84 #include <nfs/nfs4_drc.h> 85 86 #include <sys/modctl.h> 87 #include <sys/cladm.h> 88 #include <sys/clconf.h> 89 90 #include <sys/tsol/label.h> 91 92 #define MAXHOST 32 93 const char *kinet_ntop6(uchar_t *, char *, size_t); 94 95 /* 96 * Module linkage information. 97 */ 98 99 static struct modlmisc modlmisc = { 100 &mod_miscops, "NFS server module" 101 }; 102 103 static struct modlinkage modlinkage = { 104 MODREV_1, (void *)&modlmisc, NULL 105 }; 106 107 char _depends_on[] = "misc/klmmod"; 108 109 int 110 _init(void) 111 { 112 int status; 113 114 if ((status = nfs_srvinit()) != 0) { 115 cmn_err(CE_WARN, "_init: nfs_srvinit failed"); 116 return (status); 117 } 118 119 status = mod_install((struct modlinkage *)&modlinkage); 120 if (status != 0) { 121 /* 122 * Could not load module, cleanup previous 123 * initialization work. 124 */ 125 nfs_srvfini(); 126 } 127 128 /* 129 * Initialise some placeholders for nfssys() calls. These have 130 * to be declared by the nfs module, since that handles nfssys() 131 * calls - also used by NFS clients - but are provided by this 132 * nfssrv module. These also then serve as confirmation to the 133 * relevant code in nfs that nfssrv has been loaded, as they're 134 * initially NULL. 135 */ 136 nfs_srv_quiesce_func = nfs_srv_quiesce_all; 137 nfs_srv_dss_func = rfs4_dss_setpaths; 138 139 /* setup DSS paths here; must be done before initial server startup */ 140 rfs4_dss_paths = rfs4_dss_oldpaths = NULL; 141 142 return (status); 143 } 144 145 int 146 _fini() 147 { 148 return (EBUSY); 149 } 150 151 int 152 _info(struct modinfo *modinfop) 153 { 154 return (mod_info(&modlinkage, modinfop)); 155 } 156 157 /* 158 * PUBLICFH_CHECK() checks if the dispatch routine supports 159 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the 160 * incoming request is using the public filehandle. The check duplicates 161 * the exportmatch() call done in checkexport(), and we should consider 162 * modifying those routines to avoid the duplication. For now, we optimize 163 * by calling exportmatch() only after checking that the dispatch routine 164 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported 165 * public (i.e., not the placeholder). 166 */ 167 #define PUBLICFH_CHECK(disp, exi, fsid, xfid) \ 168 ((disp->dis_flags & RPC_PUBLICFH_OK) && \ 169 ((exi->exi_export.ex_flags & EX_PUBLIC) || \ 170 (exi == exi_public && exportmatch(exi_root, \ 171 fsid, xfid)))) 172 173 static void nfs_srv_shutdown_all(int); 174 static void rfs4_server_start(int); 175 static void nullfree(void); 176 static void rfs_dispatch(struct svc_req *, SVCXPRT *); 177 static void acl_dispatch(struct svc_req *, SVCXPRT *); 178 static void common_dispatch(struct svc_req *, SVCXPRT *, 179 rpcvers_t, rpcvers_t, char *, 180 struct rpc_disptable *); 181 static void hanfsv4_failover(void); 182 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int, 183 bool_t); 184 static char *client_name(struct svc_req *req); 185 static char *client_addr(struct svc_req *req, char *buf); 186 extern int sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *); 187 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *); 188 189 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \ 190 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \ 191 (nb)->len = (xprt)->xp_rtaddr.len; \ 192 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \ 193 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \ 194 } 195 196 /* 197 * Public Filehandle common nfs routines 198 */ 199 static int MCLpath(char **); 200 static void URLparse(char *); 201 202 /* 203 * NFS callout table. 204 * This table is used by svc_getreq() to dispatch a request with 205 * a given prog/vers pair to an appropriate service provider 206 * dispatch routine. 207 * 208 * NOTE: ordering is relied upon below when resetting the version min/max 209 * for NFS_PROGRAM. Careful, if this is ever changed. 210 */ 211 static SVC_CALLOUT __nfs_sc_clts[] = { 212 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 213 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 214 }; 215 216 static SVC_CALLOUT_TABLE nfs_sct_clts = { 217 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE, 218 __nfs_sc_clts 219 }; 220 221 static SVC_CALLOUT __nfs_sc_cots[] = { 222 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 223 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 224 }; 225 226 static SVC_CALLOUT_TABLE nfs_sct_cots = { 227 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots 228 }; 229 230 static SVC_CALLOUT __nfs_sc_rdma[] = { 231 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 232 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 233 }; 234 235 static SVC_CALLOUT_TABLE nfs_sct_rdma = { 236 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma 237 }; 238 rpcvers_t nfs_versmin = NFS_VERSMIN_DEFAULT; 239 rpcvers_t nfs_versmax = NFS_VERSMAX_DEFAULT; 240 241 /* 242 * Used to track the state of the server so that initialization 243 * can be done properly. 244 */ 245 typedef enum { 246 NFS_SERVER_STOPPED, /* server state destroyed */ 247 NFS_SERVER_STOPPING, /* server state being destroyed */ 248 NFS_SERVER_RUNNING, 249 NFS_SERVER_QUIESCED, /* server state preserved */ 250 NFS_SERVER_OFFLINE /* server pool offline */ 251 } nfs_server_running_t; 252 253 static nfs_server_running_t nfs_server_upordown; 254 static kmutex_t nfs_server_upordown_lock; 255 static kcondvar_t nfs_server_upordown_cv; 256 257 /* 258 * DSS: distributed stable storage 259 * lists of all DSS paths: current, and before last warmstart 260 */ 261 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths; 262 263 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *); 264 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *); 265 266 /* 267 * RDMA wait variables. 268 */ 269 static kcondvar_t rdma_wait_cv; 270 static kmutex_t rdma_wait_mutex; 271 272 /* 273 * Will be called at the point the server pool is being unregistered 274 * from the pool list. From that point onwards, the pool is waiting 275 * to be drained and as such the server state is stale and pertains 276 * to the old instantiation of the NFS server pool. 277 */ 278 void 279 nfs_srv_offline(void) 280 { 281 mutex_enter(&nfs_server_upordown_lock); 282 if (nfs_server_upordown == NFS_SERVER_RUNNING) { 283 nfs_server_upordown = NFS_SERVER_OFFLINE; 284 } 285 mutex_exit(&nfs_server_upordown_lock); 286 } 287 288 /* 289 * Will be called at the point the server pool is being destroyed so 290 * all transports have been closed and no service threads are in 291 * existence. 292 * 293 * If we quiesce the server, we're shutting it down without destroying the 294 * server state. This allows it to warm start subsequently. 295 */ 296 void 297 nfs_srv_stop_all(void) 298 { 299 int quiesce = 0; 300 nfs_srv_shutdown_all(quiesce); 301 } 302 303 /* 304 * This alternative shutdown routine can be requested via nfssys() 305 */ 306 void 307 nfs_srv_quiesce_all(void) 308 { 309 int quiesce = 1; 310 nfs_srv_shutdown_all(quiesce); 311 } 312 313 static void 314 nfs_srv_shutdown_all(int quiesce) { 315 mutex_enter(&nfs_server_upordown_lock); 316 if (quiesce) { 317 if (nfs_server_upordown == NFS_SERVER_RUNNING || 318 nfs_server_upordown == NFS_SERVER_OFFLINE) { 319 nfs_server_upordown = NFS_SERVER_QUIESCED; 320 cv_signal(&nfs_server_upordown_cv); 321 322 /* reset DSS state, for subsequent warm restart */ 323 rfs4_dss_numnewpaths = 0; 324 rfs4_dss_newpaths = NULL; 325 326 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; " 327 "NFSv4 state has been preserved"); 328 } 329 } else { 330 if (nfs_server_upordown == NFS_SERVER_OFFLINE) { 331 nfs_server_upordown = NFS_SERVER_STOPPING; 332 mutex_exit(&nfs_server_upordown_lock); 333 rfs4_state_fini(); 334 rfs4_fini_drc(nfs4_drc); 335 mutex_enter(&nfs_server_upordown_lock); 336 nfs_server_upordown = NFS_SERVER_STOPPED; 337 cv_signal(&nfs_server_upordown_cv); 338 } 339 } 340 mutex_exit(&nfs_server_upordown_lock); 341 } 342 343 static int 344 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp, 345 rpcvers_t versmin, rpcvers_t versmax) 346 { 347 struct strioctl strioc; 348 struct T_info_ack tinfo; 349 int error, retval; 350 351 /* 352 * Find out what type of transport this is. 353 */ 354 strioc.ic_cmd = TI_GETINFO; 355 strioc.ic_timout = -1; 356 strioc.ic_len = sizeof (tinfo); 357 strioc.ic_dp = (char *)&tinfo; 358 tinfo.PRIM_type = T_INFO_REQ; 359 360 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K, 361 CRED(), &retval); 362 if (error || retval) 363 return (error); 364 365 /* 366 * Based on our query of the transport type... 367 * 368 * Reset the min/max versions based on the caller's request 369 * NOTE: This assumes that NFS_PROGRAM is first in the array!! 370 * And the second entry is the NFS_ACL_PROGRAM. 371 */ 372 switch (tinfo.SERV_type) { 373 case T_CLTS: 374 if (versmax == NFS_V4) 375 return (EINVAL); 376 __nfs_sc_clts[0].sc_versmin = versmin; 377 __nfs_sc_clts[0].sc_versmax = versmax; 378 __nfs_sc_clts[1].sc_versmin = versmin; 379 __nfs_sc_clts[1].sc_versmax = versmax; 380 *sctpp = &nfs_sct_clts; 381 break; 382 case T_COTS: 383 case T_COTS_ORD: 384 __nfs_sc_cots[0].sc_versmin = versmin; 385 __nfs_sc_cots[0].sc_versmax = versmax; 386 /* For the NFS_ACL program, check the max version */ 387 if (versmax > NFS_ACL_VERSMAX) 388 versmax = NFS_ACL_VERSMAX; 389 __nfs_sc_cots[1].sc_versmin = versmin; 390 __nfs_sc_cots[1].sc_versmax = versmax; 391 *sctpp = &nfs_sct_cots; 392 break; 393 default: 394 error = EINVAL; 395 } 396 397 return (error); 398 } 399 400 /* 401 * NFS Server system call. 402 * Does all of the work of running a NFS server. 403 * uap->fd is the fd of an open transport provider 404 */ 405 int 406 nfs_svc(struct nfs_svc_args *arg, model_t model) 407 { 408 file_t *fp; 409 SVCMASTERXPRT *xprt; 410 int error; 411 int readsize; 412 char buf[KNC_STRSIZE]; 413 size_t len; 414 STRUCT_HANDLE(nfs_svc_args, uap); 415 struct netbuf addrmask; 416 SVC_CALLOUT_TABLE *sctp = NULL; 417 418 #ifdef lint 419 model = model; /* STRUCT macros don't always refer to it */ 420 #endif 421 422 STRUCT_SET_HANDLE(uap, model, arg); 423 424 /* Check privileges in nfssys() */ 425 426 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL) 427 return (EBADF); 428 429 /* 430 * Set read buffer size to rsize 431 * and add room for RPC headers. 432 */ 433 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA); 434 if (readsize < RPC_MAXDATASIZE) 435 readsize = RPC_MAXDATASIZE; 436 437 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf, 438 KNC_STRSIZE, &len); 439 if (error) { 440 releasef(STRUCT_FGET(uap, fd)); 441 return (error); 442 } 443 444 addrmask.len = STRUCT_FGET(uap, addrmask.len); 445 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen); 446 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP); 447 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf, 448 addrmask.len); 449 if (error) { 450 releasef(STRUCT_FGET(uap, fd)); 451 kmem_free(addrmask.buf, addrmask.maxlen); 452 return (error); 453 } 454 455 nfs_versmin = STRUCT_FGET(uap, versmin); 456 nfs_versmax = STRUCT_FGET(uap, versmax); 457 458 /* Double check the vers min/max ranges */ 459 if ((nfs_versmin > nfs_versmax) || 460 (nfs_versmin < NFS_VERSMIN) || 461 (nfs_versmax > NFS_VERSMAX)) { 462 nfs_versmin = NFS_VERSMIN_DEFAULT; 463 nfs_versmax = NFS_VERSMAX_DEFAULT; 464 } 465 466 if (error = 467 nfs_srv_set_sc_versions(fp, &sctp, nfs_versmin, nfs_versmax)) { 468 releasef(STRUCT_FGET(uap, fd)); 469 kmem_free(addrmask.buf, addrmask.maxlen); 470 return (error); 471 } 472 473 /* Initialize nfsv4 server */ 474 if (nfs_versmax == (rpcvers_t)NFS_V4) 475 rfs4_server_start(STRUCT_FGET(uap, delegation)); 476 477 /* Create a transport handle. */ 478 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt, 479 sctp, NULL, NFS_SVCPOOL_ID, TRUE); 480 481 if (error) 482 kmem_free(addrmask.buf, addrmask.maxlen); 483 484 releasef(STRUCT_FGET(uap, fd)); 485 486 /* HA-NFSv4: save the cluster nodeid */ 487 if (cluster_bootflags & CLUSTER_BOOTED) 488 lm_global_nlmid = clconf_get_nodeid(); 489 490 return (error); 491 } 492 493 static void 494 rfs4_server_start(int nfs4_srv_delegation) 495 { 496 /* 497 * Determine if the server has previously been "started" and 498 * if not, do the per instance initialization 499 */ 500 mutex_enter(&nfs_server_upordown_lock); 501 502 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 503 /* Do we need to stop and wait on the previous server? */ 504 while (nfs_server_upordown == NFS_SERVER_STOPPING || 505 nfs_server_upordown == NFS_SERVER_OFFLINE) 506 cv_wait(&nfs_server_upordown_cv, 507 &nfs_server_upordown_lock); 508 509 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 510 (void) svc_pool_control(NFS_SVCPOOL_ID, 511 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline); 512 (void) svc_pool_control(NFS_SVCPOOL_ID, 513 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all); 514 515 /* is this an nfsd warm start? */ 516 if (nfs_server_upordown == NFS_SERVER_QUIESCED) { 517 cmn_err(CE_NOTE, "nfs_server: " 518 "server was previously quiesced; " 519 "existing NFSv4 state will be re-used"); 520 521 /* 522 * HA-NFSv4: this is also the signal 523 * that a Resource Group failover has 524 * occurred. 525 */ 526 if (cluster_bootflags & CLUSTER_BOOTED) 527 hanfsv4_failover(); 528 } else { 529 /* cold start */ 530 rfs4_state_init(); 531 nfs4_drc = rfs4_init_drc(nfs4_drc_max, 532 nfs4_drc_hash); 533 } 534 535 /* 536 * Check to see if delegation is to be 537 * enabled at the server 538 */ 539 if (nfs4_srv_delegation != FALSE) 540 rfs4_set_deleg_policy(SRV_NORMAL_DELEGATE); 541 542 nfs_server_upordown = NFS_SERVER_RUNNING; 543 } 544 cv_signal(&nfs_server_upordown_cv); 545 } 546 mutex_exit(&nfs_server_upordown_lock); 547 } 548 549 /* 550 * If RDMA device available, 551 * start RDMA listener. 552 */ 553 int 554 rdma_start(struct rdma_svc_args *rsa) 555 { 556 int error; 557 rdma_xprt_group_t started_rdma_xprts; 558 rdma_stat stat; 559 int svc_state = 0; 560 561 /* Double check the vers min/max ranges */ 562 if ((rsa->nfs_versmin > rsa->nfs_versmax) || 563 (rsa->nfs_versmin < NFS_VERSMIN) || 564 (rsa->nfs_versmax > NFS_VERSMAX)) { 565 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT; 566 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT; 567 } 568 nfs_versmin = rsa->nfs_versmin; 569 nfs_versmax = rsa->nfs_versmax; 570 571 /* Set the versions in the callout table */ 572 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin; 573 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax; 574 /* For the NFS_ACL program, check the max version */ 575 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin; 576 if (rsa->nfs_versmax > NFS_ACL_VERSMAX) 577 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX; 578 else 579 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax; 580 581 /* Initialize nfsv4 server */ 582 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4) 583 rfs4_server_start(rsa->delegation); 584 585 started_rdma_xprts.rtg_count = 0; 586 started_rdma_xprts.rtg_listhead = NULL; 587 started_rdma_xprts.rtg_poolid = rsa->poolid; 588 589 restart: 590 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid, 591 &started_rdma_xprts); 592 593 svc_state = !error; 594 595 while (!error) { 596 597 /* 598 * wait till either interrupted by a signal on 599 * nfs service stop/restart or signalled by a 600 * rdma plugin attach/detatch. 601 */ 602 603 stat = rdma_kwait(); 604 605 /* 606 * stop services if running -- either on a HCA detach event 607 * or if the nfs service is stopped/restarted. 608 */ 609 610 if ((stat == RDMA_HCA_DETACH || stat == RDMA_INTR) && 611 svc_state) { 612 rdma_stop(&started_rdma_xprts); 613 svc_state = 0; 614 } 615 616 /* 617 * nfs service stop/restart, break out of the 618 * wait loop and return; 619 */ 620 if (stat == RDMA_INTR) 621 return (0); 622 623 /* 624 * restart stopped services on a HCA attach event 625 * (if not already running) 626 */ 627 628 if ((stat == RDMA_HCA_ATTACH) && (svc_state == 0)) 629 goto restart; 630 631 /* 632 * loop until a nfs service stop/restart 633 */ 634 } 635 636 return (error); 637 } 638 639 /* ARGSUSED */ 640 void 641 rpc_null(caddr_t *argp, caddr_t *resp) 642 { 643 } 644 645 /* ARGSUSED */ 646 void 647 rpc_null_v3(caddr_t *argp, caddr_t *resp, struct exportinfo *exi, 648 struct svc_req *req, cred_t *cr) 649 { 650 DTRACE_NFSV3_3(op__null__start, struct svc_req *, req, 651 cred_t *, cr, vnode_t *, NULL); 652 DTRACE_NFSV3_3(op__null__done, struct svc_req *, req, 653 cred_t *, cr, vnode_t *, NULL); 654 } 655 656 /* ARGSUSED */ 657 static void 658 rfs_error(caddr_t *argp, caddr_t *resp) 659 { 660 /* return (EOPNOTSUPP); */ 661 } 662 663 static void 664 nullfree(void) 665 { 666 } 667 668 static char *rfscallnames_v2[] = { 669 "RFS2_NULL", 670 "RFS2_GETATTR", 671 "RFS2_SETATTR", 672 "RFS2_ROOT", 673 "RFS2_LOOKUP", 674 "RFS2_READLINK", 675 "RFS2_READ", 676 "RFS2_WRITECACHE", 677 "RFS2_WRITE", 678 "RFS2_CREATE", 679 "RFS2_REMOVE", 680 "RFS2_RENAME", 681 "RFS2_LINK", 682 "RFS2_SYMLINK", 683 "RFS2_MKDIR", 684 "RFS2_RMDIR", 685 "RFS2_READDIR", 686 "RFS2_STATFS" 687 }; 688 689 static struct rpcdisp rfsdisptab_v2[] = { 690 /* 691 * NFS VERSION 2 692 */ 693 694 /* RFS_NULL = 0 */ 695 {rpc_null, 696 xdr_void, NULL_xdrproc_t, 0, 697 xdr_void, NULL_xdrproc_t, 0, 698 nullfree, RPC_IDEMPOTENT, 699 0}, 700 701 /* RFS_GETATTR = 1 */ 702 {rfs_getattr, 703 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 704 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 705 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 706 rfs_getattr_getfh}, 707 708 /* RFS_SETATTR = 2 */ 709 {rfs_setattr, 710 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs), 711 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 712 nullfree, RPC_MAPRESP, 713 rfs_setattr_getfh}, 714 715 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 716 {rfs_error, 717 xdr_void, NULL_xdrproc_t, 0, 718 xdr_void, NULL_xdrproc_t, 0, 719 nullfree, RPC_IDEMPOTENT, 720 0}, 721 722 /* RFS_LOOKUP = 4 */ 723 {rfs_lookup, 724 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 725 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 726 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK, 727 rfs_lookup_getfh}, 728 729 /* RFS_READLINK = 5 */ 730 {rfs_readlink, 731 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 732 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres), 733 rfs_rlfree, RPC_IDEMPOTENT, 734 rfs_readlink_getfh}, 735 736 /* RFS_READ = 6 */ 737 {rfs_read, 738 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs), 739 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult), 740 rfs_rdfree, RPC_IDEMPOTENT, 741 rfs_read_getfh}, 742 743 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 744 {rfs_error, 745 xdr_void, NULL_xdrproc_t, 0, 746 xdr_void, NULL_xdrproc_t, 0, 747 nullfree, RPC_IDEMPOTENT, 748 0}, 749 750 /* RFS_WRITE = 8 */ 751 {rfs_write, 752 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs), 753 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 754 nullfree, RPC_MAPRESP, 755 rfs_write_getfh}, 756 757 /* RFS_CREATE = 9 */ 758 {rfs_create, 759 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 760 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 761 nullfree, RPC_MAPRESP, 762 rfs_create_getfh}, 763 764 /* RFS_REMOVE = 10 */ 765 {rfs_remove, 766 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 767 #ifdef _LITTLE_ENDIAN 768 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 769 #else 770 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 771 #endif 772 nullfree, RPC_MAPRESP, 773 rfs_remove_getfh}, 774 775 /* RFS_RENAME = 11 */ 776 {rfs_rename, 777 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs), 778 #ifdef _LITTLE_ENDIAN 779 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 780 #else 781 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 782 #endif 783 nullfree, RPC_MAPRESP, 784 rfs_rename_getfh}, 785 786 /* RFS_LINK = 12 */ 787 {rfs_link, 788 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs), 789 #ifdef _LITTLE_ENDIAN 790 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 791 #else 792 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 793 #endif 794 nullfree, RPC_MAPRESP, 795 rfs_link_getfh}, 796 797 /* RFS_SYMLINK = 13 */ 798 {rfs_symlink, 799 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs), 800 #ifdef _LITTLE_ENDIAN 801 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 802 #else 803 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 804 #endif 805 nullfree, RPC_MAPRESP, 806 rfs_symlink_getfh}, 807 808 /* RFS_MKDIR = 14 */ 809 {rfs_mkdir, 810 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 811 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 812 nullfree, RPC_MAPRESP, 813 rfs_mkdir_getfh}, 814 815 /* RFS_RMDIR = 15 */ 816 {rfs_rmdir, 817 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 818 #ifdef _LITTLE_ENDIAN 819 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 820 #else 821 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 822 #endif 823 nullfree, RPC_MAPRESP, 824 rfs_rmdir_getfh}, 825 826 /* RFS_READDIR = 16 */ 827 {rfs_readdir, 828 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs), 829 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres), 830 rfs_rddirfree, RPC_IDEMPOTENT, 831 rfs_readdir_getfh}, 832 833 /* RFS_STATFS = 17 */ 834 {rfs_statfs, 835 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 836 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs), 837 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 838 rfs_statfs_getfh}, 839 }; 840 841 static char *rfscallnames_v3[] = { 842 "RFS3_NULL", 843 "RFS3_GETATTR", 844 "RFS3_SETATTR", 845 "RFS3_LOOKUP", 846 "RFS3_ACCESS", 847 "RFS3_READLINK", 848 "RFS3_READ", 849 "RFS3_WRITE", 850 "RFS3_CREATE", 851 "RFS3_MKDIR", 852 "RFS3_SYMLINK", 853 "RFS3_MKNOD", 854 "RFS3_REMOVE", 855 "RFS3_RMDIR", 856 "RFS3_RENAME", 857 "RFS3_LINK", 858 "RFS3_READDIR", 859 "RFS3_READDIRPLUS", 860 "RFS3_FSSTAT", 861 "RFS3_FSINFO", 862 "RFS3_PATHCONF", 863 "RFS3_COMMIT" 864 }; 865 866 static struct rpcdisp rfsdisptab_v3[] = { 867 /* 868 * NFS VERSION 3 869 */ 870 871 /* RFS_NULL = 0 */ 872 {rpc_null_v3, 873 xdr_void, NULL_xdrproc_t, 0, 874 xdr_void, NULL_xdrproc_t, 0, 875 nullfree, RPC_IDEMPOTENT, 876 0}, 877 878 /* RFS3_GETATTR = 1 */ 879 {rfs3_getattr, 880 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args), 881 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res), 882 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON), 883 rfs3_getattr_getfh}, 884 885 /* RFS3_SETATTR = 2 */ 886 {rfs3_setattr, 887 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args), 888 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res), 889 nullfree, 0, 890 rfs3_setattr_getfh}, 891 892 /* RFS3_LOOKUP = 3 */ 893 {rfs3_lookup, 894 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args), 895 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res), 896 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK), 897 rfs3_lookup_getfh}, 898 899 /* RFS3_ACCESS = 4 */ 900 {rfs3_access, 901 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args), 902 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res), 903 nullfree, RPC_IDEMPOTENT, 904 rfs3_access_getfh}, 905 906 /* RFS3_READLINK = 5 */ 907 {rfs3_readlink, 908 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args), 909 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res), 910 rfs3_readlink_free, RPC_IDEMPOTENT, 911 rfs3_readlink_getfh}, 912 913 /* RFS3_READ = 6 */ 914 {rfs3_read, 915 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args), 916 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res), 917 rfs3_read_free, RPC_IDEMPOTENT, 918 rfs3_read_getfh}, 919 920 /* RFS3_WRITE = 7 */ 921 {rfs3_write, 922 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args), 923 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res), 924 nullfree, 0, 925 rfs3_write_getfh}, 926 927 /* RFS3_CREATE = 8 */ 928 {rfs3_create, 929 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args), 930 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res), 931 nullfree, 0, 932 rfs3_create_getfh}, 933 934 /* RFS3_MKDIR = 9 */ 935 {rfs3_mkdir, 936 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args), 937 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res), 938 nullfree, 0, 939 rfs3_mkdir_getfh}, 940 941 /* RFS3_SYMLINK = 10 */ 942 {rfs3_symlink, 943 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args), 944 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res), 945 nullfree, 0, 946 rfs3_symlink_getfh}, 947 948 /* RFS3_MKNOD = 11 */ 949 {rfs3_mknod, 950 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args), 951 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res), 952 nullfree, 0, 953 rfs3_mknod_getfh}, 954 955 /* RFS3_REMOVE = 12 */ 956 {rfs3_remove, 957 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args), 958 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res), 959 nullfree, 0, 960 rfs3_remove_getfh}, 961 962 /* RFS3_RMDIR = 13 */ 963 {rfs3_rmdir, 964 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args), 965 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res), 966 nullfree, 0, 967 rfs3_rmdir_getfh}, 968 969 /* RFS3_RENAME = 14 */ 970 {rfs3_rename, 971 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args), 972 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res), 973 nullfree, 0, 974 rfs3_rename_getfh}, 975 976 /* RFS3_LINK = 15 */ 977 {rfs3_link, 978 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args), 979 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res), 980 nullfree, 0, 981 rfs3_link_getfh}, 982 983 /* RFS3_READDIR = 16 */ 984 {rfs3_readdir, 985 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args), 986 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res), 987 rfs3_readdir_free, RPC_IDEMPOTENT, 988 rfs3_readdir_getfh}, 989 990 /* RFS3_READDIRPLUS = 17 */ 991 {rfs3_readdirplus, 992 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args), 993 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res), 994 rfs3_readdirplus_free, RPC_AVOIDWORK, 995 rfs3_readdirplus_getfh}, 996 997 /* RFS3_FSSTAT = 18 */ 998 {rfs3_fsstat, 999 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args), 1000 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res), 1001 nullfree, RPC_IDEMPOTENT, 1002 rfs3_fsstat_getfh}, 1003 1004 /* RFS3_FSINFO = 19 */ 1005 {rfs3_fsinfo, 1006 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args), 1007 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res), 1008 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON, 1009 rfs3_fsinfo_getfh}, 1010 1011 /* RFS3_PATHCONF = 20 */ 1012 {rfs3_pathconf, 1013 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args), 1014 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res), 1015 nullfree, RPC_IDEMPOTENT, 1016 rfs3_pathconf_getfh}, 1017 1018 /* RFS3_COMMIT = 21 */ 1019 {rfs3_commit, 1020 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args), 1021 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res), 1022 nullfree, RPC_IDEMPOTENT, 1023 rfs3_commit_getfh}, 1024 }; 1025 1026 static char *rfscallnames_v4[] = { 1027 "RFS4_NULL", 1028 "RFS4_COMPOUND", 1029 "RFS4_NULL", 1030 "RFS4_NULL", 1031 "RFS4_NULL", 1032 "RFS4_NULL", 1033 "RFS4_NULL", 1034 "RFS4_NULL", 1035 "RFS4_CREATE" 1036 }; 1037 1038 static struct rpcdisp rfsdisptab_v4[] = { 1039 /* 1040 * NFS VERSION 4 1041 */ 1042 1043 /* RFS_NULL = 0 */ 1044 {rpc_null, 1045 xdr_void, NULL_xdrproc_t, 0, 1046 xdr_void, NULL_xdrproc_t, 0, 1047 nullfree, RPC_IDEMPOTENT, 0}, 1048 1049 /* RFS4_compound = 1 */ 1050 {rfs4_compound, 1051 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args), 1052 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res), 1053 rfs4_compound_free, 0, 0}, 1054 }; 1055 1056 union rfs_args { 1057 /* 1058 * NFS VERSION 2 1059 */ 1060 1061 /* RFS_NULL = 0 */ 1062 1063 /* RFS_GETATTR = 1 */ 1064 fhandle_t nfs2_getattr_args; 1065 1066 /* RFS_SETATTR = 2 */ 1067 struct nfssaargs nfs2_setattr_args; 1068 1069 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1070 1071 /* RFS_LOOKUP = 4 */ 1072 struct nfsdiropargs nfs2_lookup_args; 1073 1074 /* RFS_READLINK = 5 */ 1075 fhandle_t nfs2_readlink_args; 1076 1077 /* RFS_READ = 6 */ 1078 struct nfsreadargs nfs2_read_args; 1079 1080 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1081 1082 /* RFS_WRITE = 8 */ 1083 struct nfswriteargs nfs2_write_args; 1084 1085 /* RFS_CREATE = 9 */ 1086 struct nfscreatargs nfs2_create_args; 1087 1088 /* RFS_REMOVE = 10 */ 1089 struct nfsdiropargs nfs2_remove_args; 1090 1091 /* RFS_RENAME = 11 */ 1092 struct nfsrnmargs nfs2_rename_args; 1093 1094 /* RFS_LINK = 12 */ 1095 struct nfslinkargs nfs2_link_args; 1096 1097 /* RFS_SYMLINK = 13 */ 1098 struct nfsslargs nfs2_symlink_args; 1099 1100 /* RFS_MKDIR = 14 */ 1101 struct nfscreatargs nfs2_mkdir_args; 1102 1103 /* RFS_RMDIR = 15 */ 1104 struct nfsdiropargs nfs2_rmdir_args; 1105 1106 /* RFS_READDIR = 16 */ 1107 struct nfsrddirargs nfs2_readdir_args; 1108 1109 /* RFS_STATFS = 17 */ 1110 fhandle_t nfs2_statfs_args; 1111 1112 /* 1113 * NFS VERSION 3 1114 */ 1115 1116 /* RFS_NULL = 0 */ 1117 1118 /* RFS3_GETATTR = 1 */ 1119 GETATTR3args nfs3_getattr_args; 1120 1121 /* RFS3_SETATTR = 2 */ 1122 SETATTR3args nfs3_setattr_args; 1123 1124 /* RFS3_LOOKUP = 3 */ 1125 LOOKUP3args nfs3_lookup_args; 1126 1127 /* RFS3_ACCESS = 4 */ 1128 ACCESS3args nfs3_access_args; 1129 1130 /* RFS3_READLINK = 5 */ 1131 READLINK3args nfs3_readlink_args; 1132 1133 /* RFS3_READ = 6 */ 1134 READ3args nfs3_read_args; 1135 1136 /* RFS3_WRITE = 7 */ 1137 WRITE3args nfs3_write_args; 1138 1139 /* RFS3_CREATE = 8 */ 1140 CREATE3args nfs3_create_args; 1141 1142 /* RFS3_MKDIR = 9 */ 1143 MKDIR3args nfs3_mkdir_args; 1144 1145 /* RFS3_SYMLINK = 10 */ 1146 SYMLINK3args nfs3_symlink_args; 1147 1148 /* RFS3_MKNOD = 11 */ 1149 MKNOD3args nfs3_mknod_args; 1150 1151 /* RFS3_REMOVE = 12 */ 1152 REMOVE3args nfs3_remove_args; 1153 1154 /* RFS3_RMDIR = 13 */ 1155 RMDIR3args nfs3_rmdir_args; 1156 1157 /* RFS3_RENAME = 14 */ 1158 RENAME3args nfs3_rename_args; 1159 1160 /* RFS3_LINK = 15 */ 1161 LINK3args nfs3_link_args; 1162 1163 /* RFS3_READDIR = 16 */ 1164 READDIR3args nfs3_readdir_args; 1165 1166 /* RFS3_READDIRPLUS = 17 */ 1167 READDIRPLUS3args nfs3_readdirplus_args; 1168 1169 /* RFS3_FSSTAT = 18 */ 1170 FSSTAT3args nfs3_fsstat_args; 1171 1172 /* RFS3_FSINFO = 19 */ 1173 FSINFO3args nfs3_fsinfo_args; 1174 1175 /* RFS3_PATHCONF = 20 */ 1176 PATHCONF3args nfs3_pathconf_args; 1177 1178 /* RFS3_COMMIT = 21 */ 1179 COMMIT3args nfs3_commit_args; 1180 1181 /* 1182 * NFS VERSION 4 1183 */ 1184 1185 /* RFS_NULL = 0 */ 1186 1187 /* COMPUND = 1 */ 1188 COMPOUND4args nfs4_compound_args; 1189 }; 1190 1191 union rfs_res { 1192 /* 1193 * NFS VERSION 2 1194 */ 1195 1196 /* RFS_NULL = 0 */ 1197 1198 /* RFS_GETATTR = 1 */ 1199 struct nfsattrstat nfs2_getattr_res; 1200 1201 /* RFS_SETATTR = 2 */ 1202 struct nfsattrstat nfs2_setattr_res; 1203 1204 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1205 1206 /* RFS_LOOKUP = 4 */ 1207 struct nfsdiropres nfs2_lookup_res; 1208 1209 /* RFS_READLINK = 5 */ 1210 struct nfsrdlnres nfs2_readlink_res; 1211 1212 /* RFS_READ = 6 */ 1213 struct nfsrdresult nfs2_read_res; 1214 1215 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1216 1217 /* RFS_WRITE = 8 */ 1218 struct nfsattrstat nfs2_write_res; 1219 1220 /* RFS_CREATE = 9 */ 1221 struct nfsdiropres nfs2_create_res; 1222 1223 /* RFS_REMOVE = 10 */ 1224 enum nfsstat nfs2_remove_res; 1225 1226 /* RFS_RENAME = 11 */ 1227 enum nfsstat nfs2_rename_res; 1228 1229 /* RFS_LINK = 12 */ 1230 enum nfsstat nfs2_link_res; 1231 1232 /* RFS_SYMLINK = 13 */ 1233 enum nfsstat nfs2_symlink_res; 1234 1235 /* RFS_MKDIR = 14 */ 1236 struct nfsdiropres nfs2_mkdir_res; 1237 1238 /* RFS_RMDIR = 15 */ 1239 enum nfsstat nfs2_rmdir_res; 1240 1241 /* RFS_READDIR = 16 */ 1242 struct nfsrddirres nfs2_readdir_res; 1243 1244 /* RFS_STATFS = 17 */ 1245 struct nfsstatfs nfs2_statfs_res; 1246 1247 /* 1248 * NFS VERSION 3 1249 */ 1250 1251 /* RFS_NULL = 0 */ 1252 1253 /* RFS3_GETATTR = 1 */ 1254 GETATTR3res nfs3_getattr_res; 1255 1256 /* RFS3_SETATTR = 2 */ 1257 SETATTR3res nfs3_setattr_res; 1258 1259 /* RFS3_LOOKUP = 3 */ 1260 LOOKUP3res nfs3_lookup_res; 1261 1262 /* RFS3_ACCESS = 4 */ 1263 ACCESS3res nfs3_access_res; 1264 1265 /* RFS3_READLINK = 5 */ 1266 READLINK3res nfs3_readlink_res; 1267 1268 /* RFS3_READ = 6 */ 1269 READ3res nfs3_read_res; 1270 1271 /* RFS3_WRITE = 7 */ 1272 WRITE3res nfs3_write_res; 1273 1274 /* RFS3_CREATE = 8 */ 1275 CREATE3res nfs3_create_res; 1276 1277 /* RFS3_MKDIR = 9 */ 1278 MKDIR3res nfs3_mkdir_res; 1279 1280 /* RFS3_SYMLINK = 10 */ 1281 SYMLINK3res nfs3_symlink_res; 1282 1283 /* RFS3_MKNOD = 11 */ 1284 MKNOD3res nfs3_mknod_res; 1285 1286 /* RFS3_REMOVE = 12 */ 1287 REMOVE3res nfs3_remove_res; 1288 1289 /* RFS3_RMDIR = 13 */ 1290 RMDIR3res nfs3_rmdir_res; 1291 1292 /* RFS3_RENAME = 14 */ 1293 RENAME3res nfs3_rename_res; 1294 1295 /* RFS3_LINK = 15 */ 1296 LINK3res nfs3_link_res; 1297 1298 /* RFS3_READDIR = 16 */ 1299 READDIR3res nfs3_readdir_res; 1300 1301 /* RFS3_READDIRPLUS = 17 */ 1302 READDIRPLUS3res nfs3_readdirplus_res; 1303 1304 /* RFS3_FSSTAT = 18 */ 1305 FSSTAT3res nfs3_fsstat_res; 1306 1307 /* RFS3_FSINFO = 19 */ 1308 FSINFO3res nfs3_fsinfo_res; 1309 1310 /* RFS3_PATHCONF = 20 */ 1311 PATHCONF3res nfs3_pathconf_res; 1312 1313 /* RFS3_COMMIT = 21 */ 1314 COMMIT3res nfs3_commit_res; 1315 1316 /* 1317 * NFS VERSION 4 1318 */ 1319 1320 /* RFS_NULL = 0 */ 1321 1322 /* RFS4_COMPOUND = 1 */ 1323 COMPOUND4res nfs4_compound_res; 1324 1325 }; 1326 1327 static struct rpc_disptable rfs_disptable[] = { 1328 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]), 1329 rfscallnames_v2, 1330 &rfsproccnt_v2_ptr, rfsdisptab_v2}, 1331 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]), 1332 rfscallnames_v3, 1333 &rfsproccnt_v3_ptr, rfsdisptab_v3}, 1334 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]), 1335 rfscallnames_v4, 1336 &rfsproccnt_v4_ptr, rfsdisptab_v4}, 1337 }; 1338 1339 /* 1340 * If nfs_portmon is set, then clients are required to use privileged 1341 * ports (ports < IPPORT_RESERVED) in order to get NFS services. 1342 * 1343 * N.B.: this attempt to carry forward the already ill-conceived notion 1344 * of privileged ports for TCP/UDP is really quite ineffectual. Not only 1345 * is it transport-dependent, it's laughably easy to spoof. If you're 1346 * really interested in security, you must start with secure RPC instead. 1347 */ 1348 static int nfs_portmon = 0; 1349 1350 #ifdef DEBUG 1351 static int cred_hits = 0; 1352 static int cred_misses = 0; 1353 #endif 1354 1355 1356 #ifdef DEBUG 1357 /* 1358 * Debug code to allow disabling of rfs_dispatch() use of 1359 * fastxdrargs() and fastxdrres() calls for testing purposes. 1360 */ 1361 static int rfs_no_fast_xdrargs = 0; 1362 static int rfs_no_fast_xdrres = 0; 1363 #endif 1364 1365 union acl_args { 1366 /* 1367 * ACL VERSION 2 1368 */ 1369 1370 /* ACL2_NULL = 0 */ 1371 1372 /* ACL2_GETACL = 1 */ 1373 GETACL2args acl2_getacl_args; 1374 1375 /* ACL2_SETACL = 2 */ 1376 SETACL2args acl2_setacl_args; 1377 1378 /* ACL2_GETATTR = 3 */ 1379 GETATTR2args acl2_getattr_args; 1380 1381 /* ACL2_ACCESS = 4 */ 1382 ACCESS2args acl2_access_args; 1383 1384 /* ACL2_GETXATTRDIR = 5 */ 1385 GETXATTRDIR2args acl2_getxattrdir_args; 1386 1387 /* 1388 * ACL VERSION 3 1389 */ 1390 1391 /* ACL3_NULL = 0 */ 1392 1393 /* ACL3_GETACL = 1 */ 1394 GETACL3args acl3_getacl_args; 1395 1396 /* ACL3_SETACL = 2 */ 1397 SETACL3args acl3_setacl; 1398 1399 /* ACL3_GETXATTRDIR = 3 */ 1400 GETXATTRDIR3args acl3_getxattrdir_args; 1401 1402 }; 1403 1404 union acl_res { 1405 /* 1406 * ACL VERSION 2 1407 */ 1408 1409 /* ACL2_NULL = 0 */ 1410 1411 /* ACL2_GETACL = 1 */ 1412 GETACL2res acl2_getacl_res; 1413 1414 /* ACL2_SETACL = 2 */ 1415 SETACL2res acl2_setacl_res; 1416 1417 /* ACL2_GETATTR = 3 */ 1418 GETATTR2res acl2_getattr_res; 1419 1420 /* ACL2_ACCESS = 4 */ 1421 ACCESS2res acl2_access_res; 1422 1423 /* ACL2_GETXATTRDIR = 5 */ 1424 GETXATTRDIR2args acl2_getxattrdir_res; 1425 1426 /* 1427 * ACL VERSION 3 1428 */ 1429 1430 /* ACL3_NULL = 0 */ 1431 1432 /* ACL3_GETACL = 1 */ 1433 GETACL3res acl3_getacl_res; 1434 1435 /* ACL3_SETACL = 2 */ 1436 SETACL3res acl3_setacl_res; 1437 1438 /* ACL3_GETXATTRDIR = 3 */ 1439 GETXATTRDIR3res acl3_getxattrdir_res; 1440 1441 }; 1442 1443 static bool_t 1444 auth_tooweak(struct svc_req *req, char *res) 1445 { 1446 1447 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) { 1448 struct nfsdiropres *dr = (struct nfsdiropres *)res; 1449 if (dr->dr_status == WNFSERR_CLNT_FLAVOR) 1450 return (TRUE); 1451 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) { 1452 LOOKUP3res *resp = (LOOKUP3res *)res; 1453 if (resp->status == WNFSERR_CLNT_FLAVOR) 1454 return (TRUE); 1455 } 1456 return (FALSE); 1457 } 1458 1459 1460 static void 1461 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers, 1462 rpcvers_t max_vers, char *pgmname, 1463 struct rpc_disptable *disptable) 1464 { 1465 int which; 1466 rpcvers_t vers; 1467 char *args; 1468 union { 1469 union rfs_args ra; 1470 union acl_args aa; 1471 } args_buf; 1472 char *res; 1473 union { 1474 union rfs_res rr; 1475 union acl_res ar; 1476 } res_buf; 1477 struct rpcdisp *disp = NULL; 1478 int dis_flags = 0; 1479 cred_t *cr; 1480 int error = 0; 1481 int anon_ok; 1482 struct exportinfo *exi = NULL; 1483 unsigned int nfslog_rec_id; 1484 int dupstat; 1485 struct dupreq *dr; 1486 int authres; 1487 bool_t publicfh_ok = FALSE; 1488 enum_t auth_flavor; 1489 bool_t dupcached = FALSE; 1490 struct netbuf nb; 1491 bool_t logging_enabled = FALSE; 1492 struct exportinfo *nfslog_exi = NULL; 1493 char **procnames; 1494 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 1495 1496 vers = req->rq_vers; 1497 1498 if (vers < min_vers || vers > max_vers) { 1499 svcerr_progvers(req->rq_xprt, min_vers, max_vers); 1500 error++; 1501 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers); 1502 goto done; 1503 } 1504 vers -= min_vers; 1505 1506 which = req->rq_proc; 1507 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) { 1508 svcerr_noproc(req->rq_xprt); 1509 error++; 1510 goto done; 1511 } 1512 1513 (*(disptable[(int)vers].dis_proccntp))[which].value.ui64++; 1514 1515 disp = &disptable[(int)vers].dis_table[which]; 1516 procnames = disptable[(int)vers].dis_procnames; 1517 1518 auth_flavor = req->rq_cred.oa_flavor; 1519 1520 /* 1521 * Deserialize into the args struct. 1522 */ 1523 args = (char *)&args_buf; 1524 1525 #ifdef DEBUG 1526 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) || 1527 disp->dis_fastxdrargs == NULL_xdrproc_t || 1528 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1529 #else 1530 if ((auth_flavor == RPCSEC_GSS) || 1531 disp->dis_fastxdrargs == NULL_xdrproc_t || 1532 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1533 #endif 1534 { 1535 bzero(args, disp->dis_argsz); 1536 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) { 1537 error++; 1538 /* 1539 * Check if we are outside our capabilities. 1540 */ 1541 if (rfs4_minorvers_mismatch(req, xprt, (void *)args)) 1542 goto done; 1543 1544 svcerr_decode(xprt); 1545 cmn_err(CE_NOTE, 1546 "Failed to decode arguments for %s version %u " 1547 "procedure %s client %s%s", 1548 pgmname, vers + min_vers, procnames[which], 1549 client_name(req), client_addr(req, cbuf)); 1550 goto done; 1551 } 1552 } 1553 1554 /* 1555 * If Version 4 use that specific dispatch function. 1556 */ 1557 if (req->rq_vers == 4) { 1558 error += rfs4_dispatch(disp, req, xprt, args); 1559 goto done; 1560 } 1561 1562 dis_flags = disp->dis_flags; 1563 1564 /* 1565 * Find export information and check authentication, 1566 * setting the credential if everything is ok. 1567 */ 1568 if (disp->dis_getfh != NULL) { 1569 void *fh; 1570 fsid_t *fsid; 1571 fid_t *fid, *xfid; 1572 fhandle_t *fh2; 1573 nfs_fh3 *fh3; 1574 1575 fh = (*disp->dis_getfh)(args); 1576 switch (req->rq_vers) { 1577 case NFS_VERSION: 1578 fh2 = (fhandle_t *)fh; 1579 fsid = &fh2->fh_fsid; 1580 fid = (fid_t *)&fh2->fh_len; 1581 xfid = (fid_t *)&fh2->fh_xlen; 1582 break; 1583 case NFS_V3: 1584 fh3 = (nfs_fh3 *)fh; 1585 fsid = &fh3->fh3_fsid; 1586 fid = FH3TOFIDP(fh3); 1587 xfid = FH3TOXFIDP(fh3); 1588 break; 1589 } 1590 1591 /* 1592 * Fix for bug 1038302 - corbin 1593 * There is a problem here if anonymous access is 1594 * disallowed. If the current request is part of the 1595 * client's mount process for the requested filesystem, 1596 * then it will carry root (uid 0) credentials on it, and 1597 * will be denied by checkauth if that client does not 1598 * have explicit root=0 permission. This will cause the 1599 * client's mount operation to fail. As a work-around, 1600 * we check here to see if the request is a getattr or 1601 * statfs operation on the exported vnode itself, and 1602 * pass a flag to checkauth with the result of this test. 1603 * 1604 * The filehandle refers to the mountpoint itself if 1605 * the fh_data and fh_xdata portions of the filehandle 1606 * are equal. 1607 * 1608 * Added anon_ok argument to checkauth(). 1609 */ 1610 1611 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid)) 1612 anon_ok = 1; 1613 else 1614 anon_ok = 0; 1615 1616 cr = xprt->xp_cred; 1617 ASSERT(cr != NULL); 1618 #ifdef DEBUG 1619 if (crgetref(cr) != 1) { 1620 crfree(cr); 1621 cr = crget(); 1622 xprt->xp_cred = cr; 1623 cred_misses++; 1624 } else 1625 cred_hits++; 1626 #else 1627 if (crgetref(cr) != 1) { 1628 crfree(cr); 1629 cr = crget(); 1630 xprt->xp_cred = cr; 1631 } 1632 #endif 1633 1634 exi = checkexport(fsid, xfid); 1635 1636 if (exi != NULL) { 1637 publicfh_ok = PUBLICFH_CHECK(disp, exi, fsid, xfid); 1638 1639 /* 1640 * Don't allow non-V4 clients access 1641 * to pseudo exports 1642 */ 1643 if (PSEUDO(exi)) { 1644 svcerr_weakauth(xprt); 1645 error++; 1646 goto done; 1647 } 1648 1649 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok); 1650 /* 1651 * authres > 0: authentication OK - proceed 1652 * authres == 0: authentication weak - return error 1653 * authres < 0: authentication timeout - drop 1654 */ 1655 if (authres <= 0) { 1656 if (authres == 0) { 1657 svcerr_weakauth(xprt); 1658 error++; 1659 } 1660 goto done; 1661 } 1662 1663 /* check to see if we might need charmap */ 1664 if (exi->exi_export.ex_flags & EX_CHARMAP) { 1665 struct sockaddr *ca; 1666 ca = (struct sockaddr *) 1667 svc_getrpccaller(req->rq_xprt)->buf; 1668 (void) nfscmd_charmap(exi, ca); 1669 } 1670 } 1671 } else 1672 cr = NULL; 1673 1674 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) { 1675 res = (char *)SVC_GETRES(xprt, disp->dis_ressz); 1676 if (res == NULL) 1677 res = (char *)&res_buf; 1678 } else 1679 res = (char *)&res_buf; 1680 1681 if (!(dis_flags & RPC_IDEMPOTENT)) { 1682 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr, 1683 &dupcached); 1684 1685 switch (dupstat) { 1686 case DUP_ERROR: 1687 svcerr_systemerr(xprt); 1688 error++; 1689 goto done; 1690 /* NOTREACHED */ 1691 case DUP_INPROGRESS: 1692 if (res != (char *)&res_buf) 1693 SVC_FREERES(xprt); 1694 error++; 1695 goto done; 1696 /* NOTREACHED */ 1697 case DUP_NEW: 1698 case DUP_DROP: 1699 curthread->t_flag |= T_DONTPEND; 1700 1701 (*disp->dis_proc)(args, res, exi, req, cr); 1702 1703 curthread->t_flag &= ~T_DONTPEND; 1704 if (curthread->t_flag & T_WOULDBLOCK) { 1705 curthread->t_flag &= ~T_WOULDBLOCK; 1706 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1707 disp->dis_ressz, DUP_DROP); 1708 if (res != (char *)&res_buf) 1709 SVC_FREERES(xprt); 1710 error++; 1711 goto done; 1712 } 1713 if (dis_flags & RPC_AVOIDWORK) { 1714 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1715 disp->dis_ressz, DUP_DROP); 1716 } else { 1717 SVC_DUPDONE_EXT(xprt, dr, res, 1718 disp->dis_resfree == nullfree ? NULL : 1719 disp->dis_resfree, 1720 disp->dis_ressz, DUP_DONE); 1721 dupcached = TRUE; 1722 } 1723 break; 1724 case DUP_DONE: 1725 break; 1726 } 1727 1728 } else { 1729 curthread->t_flag |= T_DONTPEND; 1730 1731 (*disp->dis_proc)(args, res, exi, req, cr); 1732 1733 curthread->t_flag &= ~T_DONTPEND; 1734 if (curthread->t_flag & T_WOULDBLOCK) { 1735 curthread->t_flag &= ~T_WOULDBLOCK; 1736 if (res != (char *)&res_buf) 1737 SVC_FREERES(xprt); 1738 error++; 1739 goto done; 1740 } 1741 } 1742 1743 if (auth_tooweak(req, res)) { 1744 svcerr_weakauth(xprt); 1745 error++; 1746 goto done; 1747 } 1748 1749 /* 1750 * Check to see if logging has been enabled on the server. 1751 * If so, then obtain the export info struct to be used for 1752 * the later writing of the log record. This is done for 1753 * the case that a lookup is done across a non-logged public 1754 * file system. 1755 */ 1756 if (nfslog_buffer_list != NULL) { 1757 nfslog_exi = nfslog_get_exi(exi, req, res, &nfslog_rec_id); 1758 /* 1759 * Is logging enabled? 1760 */ 1761 logging_enabled = (nfslog_exi != NULL); 1762 1763 /* 1764 * Copy the netbuf for logging purposes, before it is 1765 * freed by svc_sendreply(). 1766 */ 1767 if (logging_enabled) { 1768 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb); 1769 /* 1770 * If RPC_MAPRESP flag set (i.e. in V2 ops) the 1771 * res gets copied directly into the mbuf and 1772 * may be freed soon after the sendreply. So we 1773 * must copy it here to a safe place... 1774 */ 1775 if (res != (char *)&res_buf) { 1776 bcopy(res, (char *)&res_buf, disp->dis_ressz); 1777 } 1778 } 1779 } 1780 1781 /* 1782 * Serialize and send results struct 1783 */ 1784 #ifdef DEBUG 1785 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf) 1786 #else 1787 if (res != (char *)&res_buf) 1788 #endif 1789 { 1790 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) { 1791 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1792 error++; 1793 } 1794 } else { 1795 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) { 1796 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1797 error++; 1798 } 1799 } 1800 1801 /* 1802 * Log if needed 1803 */ 1804 if (logging_enabled) { 1805 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf, 1806 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER); 1807 exi_rele(nfslog_exi); 1808 kmem_free((&nb)->buf, (&nb)->len); 1809 } 1810 1811 /* 1812 * Free results struct. With the addition of NFS V4 we can 1813 * have non-idempotent procedures with functions. 1814 */ 1815 if (disp->dis_resfree != nullfree && dupcached == FALSE) { 1816 (*disp->dis_resfree)(res); 1817 } 1818 1819 done: 1820 /* 1821 * Free arguments struct 1822 */ 1823 if (disp) { 1824 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) { 1825 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1826 error++; 1827 } 1828 } else { 1829 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) { 1830 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1831 error++; 1832 } 1833 } 1834 1835 if (exi != NULL) 1836 exi_rele(exi); 1837 1838 global_svstat_ptr[req->rq_vers][NFS_BADCALLS].value.ui64 += error; 1839 1840 global_svstat_ptr[req->rq_vers][NFS_CALLS].value.ui64++; 1841 } 1842 1843 static void 1844 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt) 1845 { 1846 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX, 1847 "NFS", rfs_disptable); 1848 } 1849 1850 static char *aclcallnames_v2[] = { 1851 "ACL2_NULL", 1852 "ACL2_GETACL", 1853 "ACL2_SETACL", 1854 "ACL2_GETATTR", 1855 "ACL2_ACCESS", 1856 "ACL2_GETXATTRDIR" 1857 }; 1858 1859 static struct rpcdisp acldisptab_v2[] = { 1860 /* 1861 * ACL VERSION 2 1862 */ 1863 1864 /* ACL2_NULL = 0 */ 1865 {rpc_null, 1866 xdr_void, NULL_xdrproc_t, 0, 1867 xdr_void, NULL_xdrproc_t, 0, 1868 nullfree, RPC_IDEMPOTENT, 1869 0}, 1870 1871 /* ACL2_GETACL = 1 */ 1872 {acl2_getacl, 1873 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args), 1874 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res), 1875 acl2_getacl_free, RPC_IDEMPOTENT, 1876 acl2_getacl_getfh}, 1877 1878 /* ACL2_SETACL = 2 */ 1879 {acl2_setacl, 1880 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args), 1881 #ifdef _LITTLE_ENDIAN 1882 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res), 1883 #else 1884 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res), 1885 #endif 1886 nullfree, RPC_MAPRESP, 1887 acl2_setacl_getfh}, 1888 1889 /* ACL2_GETATTR = 3 */ 1890 {acl2_getattr, 1891 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args), 1892 #ifdef _LITTLE_ENDIAN 1893 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res), 1894 #else 1895 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res), 1896 #endif 1897 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 1898 acl2_getattr_getfh}, 1899 1900 /* ACL2_ACCESS = 4 */ 1901 {acl2_access, 1902 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args), 1903 #ifdef _LITTLE_ENDIAN 1904 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res), 1905 #else 1906 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res), 1907 #endif 1908 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP, 1909 acl2_access_getfh}, 1910 1911 /* ACL2_GETXATTRDIR = 5 */ 1912 {acl2_getxattrdir, 1913 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args), 1914 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res), 1915 nullfree, RPC_IDEMPOTENT, 1916 acl2_getxattrdir_getfh}, 1917 }; 1918 1919 static char *aclcallnames_v3[] = { 1920 "ACL3_NULL", 1921 "ACL3_GETACL", 1922 "ACL3_SETACL", 1923 "ACL3_GETXATTRDIR" 1924 }; 1925 1926 static struct rpcdisp acldisptab_v3[] = { 1927 /* 1928 * ACL VERSION 3 1929 */ 1930 1931 /* ACL3_NULL = 0 */ 1932 {rpc_null, 1933 xdr_void, NULL_xdrproc_t, 0, 1934 xdr_void, NULL_xdrproc_t, 0, 1935 nullfree, RPC_IDEMPOTENT, 1936 0}, 1937 1938 /* ACL3_GETACL = 1 */ 1939 {acl3_getacl, 1940 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args), 1941 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res), 1942 acl3_getacl_free, RPC_IDEMPOTENT, 1943 acl3_getacl_getfh}, 1944 1945 /* ACL3_SETACL = 2 */ 1946 {acl3_setacl, 1947 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args), 1948 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res), 1949 nullfree, 0, 1950 acl3_setacl_getfh}, 1951 1952 /* ACL3_GETXATTRDIR = 3 */ 1953 {acl3_getxattrdir, 1954 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args), 1955 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res), 1956 nullfree, RPC_IDEMPOTENT, 1957 acl3_getxattrdir_getfh}, 1958 }; 1959 1960 static struct rpc_disptable acl_disptable[] = { 1961 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]), 1962 aclcallnames_v2, 1963 &aclproccnt_v2_ptr, acldisptab_v2}, 1964 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]), 1965 aclcallnames_v3, 1966 &aclproccnt_v3_ptr, acldisptab_v3}, 1967 }; 1968 1969 static void 1970 acl_dispatch(struct svc_req *req, SVCXPRT *xprt) 1971 { 1972 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, 1973 "ACL", acl_disptable); 1974 } 1975 1976 int 1977 checkwin(int flavor, int window, struct svc_req *req) 1978 { 1979 struct authdes_cred *adc; 1980 1981 switch (flavor) { 1982 case AUTH_DES: 1983 adc = (struct authdes_cred *)req->rq_clntcred; 1984 if (adc->adc_fullname.window > window) 1985 return (0); 1986 break; 1987 1988 default: 1989 break; 1990 } 1991 return (1); 1992 } 1993 1994 1995 /* 1996 * checkauth() will check the access permission against the export 1997 * information. Then map root uid/gid to appropriate uid/gid. 1998 * 1999 * This routine is used by NFS V3 and V2 code. 2000 */ 2001 static int 2002 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok, 2003 bool_t publicfh_ok) 2004 { 2005 int i, nfsflavor, rpcflavor, stat, access; 2006 struct secinfo *secp; 2007 caddr_t principal; 2008 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 2009 int anon_res = 0; 2010 2011 /* 2012 * Check for privileged port number 2013 * N.B.: this assumes that we know the format of a netbuf. 2014 */ 2015 if (nfs_portmon) { 2016 struct sockaddr *ca; 2017 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2018 2019 if (ca == NULL) 2020 return (0); 2021 2022 if ((ca->sa_family == AF_INET && 2023 ntohs(((struct sockaddr_in *)ca)->sin_port) >= 2024 IPPORT_RESERVED) || 2025 (ca->sa_family == AF_INET6 && 2026 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >= 2027 IPPORT_RESERVED)) { 2028 cmn_err(CE_NOTE, 2029 "nfs_server: client %s%ssent NFS request from " 2030 "unprivileged port", 2031 client_name(req), client_addr(req, buf)); 2032 return (0); 2033 } 2034 } 2035 2036 /* 2037 * return 1 on success or 0 on failure 2038 */ 2039 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor); 2040 2041 /* 2042 * A failed AUTH_UNIX svc_get_cred() implies we couldn't set 2043 * the credentials; below we map that to anonymous. 2044 */ 2045 if (!stat && nfsflavor != AUTH_UNIX) { 2046 cmn_err(CE_NOTE, 2047 "nfs_server: couldn't get unix cred for %s", 2048 client_name(req)); 2049 return (0); 2050 } 2051 2052 /* 2053 * Short circuit checkauth() on operations that support the 2054 * public filehandle, and if the request for that operation 2055 * is using the public filehandle. Note that we must call 2056 * sec_svc_getcred() first so that xp_cookie is set to the 2057 * right value. Normally xp_cookie is just the RPC flavor 2058 * of the the request, but in the case of RPCSEC_GSS it 2059 * could be a pseudo flavor. 2060 */ 2061 if (publicfh_ok) 2062 return (1); 2063 2064 rpcflavor = req->rq_cred.oa_flavor; 2065 /* 2066 * Check if the auth flavor is valid for this export 2067 */ 2068 access = nfsauth_access(exi, req); 2069 if (access & NFSAUTH_DROP) 2070 return (-1); /* drop the request */ 2071 2072 if (access & NFSAUTH_DENIED) { 2073 /* 2074 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was 2075 * probably due to the flavor not matching during the 2076 * the mount attempt. So map the flavor to AUTH_NONE 2077 * so that the credentials get mapped to the anonymous 2078 * user. 2079 */ 2080 if (anon_ok == 1) 2081 rpcflavor = AUTH_NONE; 2082 else 2083 return (0); /* deny access */ 2084 2085 } else if (access & NFSAUTH_MAPNONE) { 2086 /* 2087 * Access was granted even though the flavor mismatched 2088 * because AUTH_NONE was one of the exported flavors. 2089 */ 2090 rpcflavor = AUTH_NONE; 2091 2092 } else if (access & NFSAUTH_WRONGSEC) { 2093 /* 2094 * NFSAUTH_WRONGSEC is used for NFSv4. If we get here, 2095 * it means a client ignored the list of allowed flavors 2096 * returned via the MOUNT protocol. So we just disallow it! 2097 */ 2098 return (0); 2099 } 2100 2101 switch (rpcflavor) { 2102 case AUTH_NONE: 2103 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2104 exi->exi_export.ex_anon); 2105 (void) crsetgroups(cr, 0, NULL); 2106 break; 2107 2108 case AUTH_UNIX: 2109 if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) { 2110 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2111 exi->exi_export.ex_anon); 2112 (void) crsetgroups(cr, 0, NULL); 2113 } else if (!stat || crgetuid(cr) == 0 && 2114 access & NFSAUTH_ROOT) { 2115 /* 2116 * It is root, so apply rootid to get real UID 2117 * Find the secinfo structure. We should be able 2118 * to find it by the time we reach here. 2119 * nfsauth_access() has done the checking. 2120 */ 2121 secp = NULL; 2122 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2123 struct secinfo *sptr; 2124 sptr = &exi->exi_export.ex_secinfo[i]; 2125 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) { 2126 secp = sptr; 2127 break; 2128 } 2129 } 2130 if (secp != NULL) { 2131 (void) crsetugid(cr, secp->s_rootid, 2132 secp->s_rootid); 2133 (void) crsetgroups(cr, 0, NULL); 2134 } 2135 } 2136 break; 2137 2138 case AUTH_DES: 2139 case RPCSEC_GSS: 2140 /* 2141 * Find the secinfo structure. We should be able 2142 * to find it by the time we reach here. 2143 * nfsauth_access() has done the checking. 2144 */ 2145 secp = NULL; 2146 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2147 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2148 nfsflavor) { 2149 secp = &exi->exi_export.ex_secinfo[i]; 2150 break; 2151 } 2152 } 2153 2154 if (!secp) { 2155 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2156 "no secinfo data for flavor %d", 2157 client_name(req), client_addr(req, buf), 2158 nfsflavor); 2159 return (0); 2160 } 2161 2162 if (!checkwin(rpcflavor, secp->s_window, req)) { 2163 cmn_err(CE_NOTE, 2164 "nfs_server: client %s%sused invalid " 2165 "auth window value", 2166 client_name(req), client_addr(req, buf)); 2167 return (0); 2168 } 2169 2170 /* 2171 * Map root principals listed in the share's root= list to root, 2172 * and map any others principals that were mapped to root by RPC 2173 * to anon. 2174 */ 2175 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2176 secp->s_rootcnt, secp->s_rootnames)) { 2177 if (crgetuid(cr) == 0 && secp->s_rootid == 0) 2178 return (1); 2179 2180 2181 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid); 2182 2183 /* 2184 * NOTE: If and when kernel-land privilege tracing is 2185 * added this may have to be replaced with code that 2186 * retrieves root's supplementary groups (e.g., using 2187 * kgss_get_group_info(). In the meantime principals 2188 * mapped to uid 0 get all privileges, so setting cr's 2189 * supplementary groups for them does nothing. 2190 */ 2191 (void) crsetgroups(cr, 0, NULL); 2192 2193 return (1); 2194 } 2195 2196 /* 2197 * Not a root princ, or not in root list, map UID 0/nobody to 2198 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2199 * UID_NOBODY and GID_NOBODY, respectively.) 2200 */ 2201 if (crgetuid(cr) != 0 && 2202 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2203 return (1); 2204 2205 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2206 exi->exi_export.ex_anon); 2207 (void) crsetgroups(cr, 0, NULL); 2208 break; 2209 default: 2210 return (0); 2211 } /* switch on rpcflavor */ 2212 2213 /* 2214 * Even if anon access is disallowed via ex_anon == -1, we allow 2215 * this access if anon_ok is set. So set creds to the default 2216 * "nobody" id. 2217 */ 2218 if (anon_res != 0) { 2219 if (anon_ok == 0) { 2220 cmn_err(CE_NOTE, 2221 "nfs_server: client %s%ssent wrong " 2222 "authentication for %s", 2223 client_name(req), client_addr(req, buf), 2224 exi->exi_export.ex_path ? 2225 exi->exi_export.ex_path : "?"); 2226 return (0); 2227 } 2228 2229 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0) 2230 return (0); 2231 } 2232 2233 return (1); 2234 } 2235 2236 /* 2237 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor, 2238 * and 1 on success 2239 */ 2240 int 2241 checkauth4(struct compound_state *cs, struct svc_req *req) 2242 { 2243 int i, rpcflavor, access; 2244 struct secinfo *secp; 2245 char buf[MAXHOST + 1]; 2246 int anon_res = 0, nfsflavor; 2247 struct exportinfo *exi; 2248 cred_t *cr; 2249 caddr_t principal; 2250 2251 exi = cs->exi; 2252 cr = cs->cr; 2253 principal = cs->principal; 2254 nfsflavor = cs->nfsflavor; 2255 2256 ASSERT(cr != NULL); 2257 2258 rpcflavor = req->rq_cred.oa_flavor; 2259 cs->access &= ~CS_ACCESS_LIMITED; 2260 2261 /* 2262 * Check the access right per auth flavor on the vnode of 2263 * this export for the given request. 2264 */ 2265 access = nfsauth4_access(cs->exi, cs->vp, req); 2266 2267 if (access & NFSAUTH_WRONGSEC) 2268 return (-2); /* no access for this security flavor */ 2269 2270 if (access & NFSAUTH_DROP) 2271 return (-1); /* drop the request */ 2272 2273 if (access & NFSAUTH_DENIED) { 2274 2275 if (exi->exi_export.ex_seccnt > 0) 2276 return (0); /* deny access */ 2277 2278 } else if (access & NFSAUTH_LIMITED) { 2279 2280 cs->access |= CS_ACCESS_LIMITED; 2281 2282 } else if (access & NFSAUTH_MAPNONE) { 2283 /* 2284 * Access was granted even though the flavor mismatched 2285 * because AUTH_NONE was one of the exported flavors. 2286 */ 2287 rpcflavor = AUTH_NONE; 2288 } 2289 2290 /* 2291 * XXX probably need to redo some of it for nfsv4? 2292 * return 1 on success or 0 on failure 2293 */ 2294 2295 switch (rpcflavor) { 2296 case AUTH_NONE: 2297 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2298 exi->exi_export.ex_anon); 2299 (void) crsetgroups(cr, 0, NULL); 2300 break; 2301 2302 case AUTH_UNIX: 2303 if (crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) { 2304 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2305 exi->exi_export.ex_anon); 2306 (void) crsetgroups(cr, 0, NULL); 2307 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) { 2308 /* 2309 * It is root, so apply rootid to get real UID 2310 * Find the secinfo structure. We should be able 2311 * to find it by the time we reach here. 2312 * nfsauth_access() has done the checking. 2313 */ 2314 secp = NULL; 2315 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2316 struct secinfo *sptr; 2317 sptr = &exi->exi_export.ex_secinfo[i]; 2318 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) { 2319 secp = &exi->exi_export.ex_secinfo[i]; 2320 break; 2321 } 2322 } 2323 if (secp != NULL) { 2324 (void) crsetugid(cr, secp->s_rootid, 2325 secp->s_rootid); 2326 (void) crsetgroups(cr, 0, NULL); 2327 } 2328 } 2329 break; 2330 2331 default: 2332 /* 2333 * Find the secinfo structure. We should be able 2334 * to find it by the time we reach here. 2335 * nfsauth_access() has done the checking. 2336 */ 2337 secp = NULL; 2338 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2339 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2340 nfsflavor) { 2341 secp = &exi->exi_export.ex_secinfo[i]; 2342 break; 2343 } 2344 } 2345 2346 if (!secp) { 2347 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2348 "no secinfo data for flavor %d", 2349 client_name(req), client_addr(req, buf), 2350 nfsflavor); 2351 return (0); 2352 } 2353 2354 if (!checkwin(rpcflavor, secp->s_window, req)) { 2355 cmn_err(CE_NOTE, 2356 "nfs_server: client %s%sused invalid " 2357 "auth window value", 2358 client_name(req), client_addr(req, buf)); 2359 return (0); 2360 } 2361 2362 /* 2363 * Map root principals listed in the share's root= list to root, 2364 * and map any others principals that were mapped to root by RPC 2365 * to anon. If not going to anon, set to rootid (root_mapping). 2366 */ 2367 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2368 secp->s_rootcnt, secp->s_rootnames)) { 2369 if (crgetuid(cr) == 0 && secp->s_rootid == 0) 2370 return (1); 2371 2372 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid); 2373 2374 /* 2375 * NOTE: If and when kernel-land privilege tracing is 2376 * added this may have to be replaced with code that 2377 * retrieves root's supplementary groups (e.g., using 2378 * kgss_get_group_info(). In the meantime principals 2379 * mapped to uid 0 get all privileges, so setting cr's 2380 * supplementary groups for them does nothing. 2381 */ 2382 (void) crsetgroups(cr, 0, NULL); 2383 2384 return (1); 2385 } 2386 2387 /* 2388 * Not a root princ, or not in root list, map UID 0/nobody to 2389 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2390 * UID_NOBODY and GID_NOBODY, respectively.) 2391 */ 2392 if (crgetuid(cr) != 0 && 2393 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2394 return (1); 2395 2396 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2397 exi->exi_export.ex_anon); 2398 (void) crsetgroups(cr, 0, NULL); 2399 break; 2400 } /* switch on rpcflavor */ 2401 2402 /* 2403 * Even if anon access is disallowed via ex_anon == -1, we allow 2404 * this access if anon_ok is set. So set creds to the default 2405 * "nobody" id. 2406 */ 2407 2408 if (anon_res != 0) { 2409 cmn_err(CE_NOTE, 2410 "nfs_server: client %s%ssent wrong " 2411 "authentication for %s", 2412 client_name(req), client_addr(req, buf), 2413 exi->exi_export.ex_path ? 2414 exi->exi_export.ex_path : "?"); 2415 return (0); 2416 } 2417 2418 return (1); 2419 } 2420 2421 2422 static char * 2423 client_name(struct svc_req *req) 2424 { 2425 char *hostname = NULL; 2426 2427 /* 2428 * If it's a Unix cred then use the 2429 * hostname from the credential. 2430 */ 2431 if (req->rq_cred.oa_flavor == AUTH_UNIX) { 2432 hostname = ((struct authunix_parms *) 2433 req->rq_clntcred)->aup_machname; 2434 } 2435 if (hostname == NULL) 2436 hostname = ""; 2437 2438 return (hostname); 2439 } 2440 2441 static char * 2442 client_addr(struct svc_req *req, char *buf) 2443 { 2444 struct sockaddr *ca; 2445 uchar_t *b; 2446 char *frontspace = ""; 2447 2448 /* 2449 * We assume we are called in tandem with client_name and the 2450 * format string looks like "...client %s%sblah blah..." 2451 * 2452 * If it's a Unix cred then client_name returned 2453 * a host name, so we need insert a space between host name 2454 * and IP address. 2455 */ 2456 if (req->rq_cred.oa_flavor == AUTH_UNIX) 2457 frontspace = " "; 2458 2459 /* 2460 * Convert the caller's IP address to a dotted string 2461 */ 2462 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2463 2464 if (ca->sa_family == AF_INET) { 2465 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr; 2466 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace, 2467 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF); 2468 } else if (ca->sa_family == AF_INET6) { 2469 struct sockaddr_in6 *sin6; 2470 sin6 = (struct sockaddr_in6 *)ca; 2471 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, 2472 buf, INET6_ADDRSTRLEN); 2473 2474 } else { 2475 2476 /* 2477 * No IP address to print. If there was a host name 2478 * printed, then we print a space. 2479 */ 2480 (void) sprintf(buf, frontspace); 2481 } 2482 2483 return (buf); 2484 } 2485 2486 /* 2487 * NFS Server initialization routine. This routine should only be called 2488 * once. It performs the following tasks: 2489 * - Call sub-initialization routines (localize access to variables) 2490 * - Initialize all locks 2491 * - initialize the version 3 write verifier 2492 */ 2493 int 2494 nfs_srvinit(void) 2495 { 2496 int error; 2497 2498 error = nfs_exportinit(); 2499 if (error != 0) 2500 return (error); 2501 error = rfs4_srvrinit(); 2502 if (error != 0) { 2503 nfs_exportfini(); 2504 return (error); 2505 } 2506 rfs_srvrinit(); 2507 rfs3_srvrinit(); 2508 nfsauth_init(); 2509 2510 /* Init the stuff to control start/stop */ 2511 nfs_server_upordown = NFS_SERVER_STOPPED; 2512 mutex_init(&nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL); 2513 cv_init(&nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL); 2514 mutex_init(&rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL); 2515 cv_init(&rdma_wait_cv, NULL, CV_DEFAULT, NULL); 2516 2517 return (0); 2518 } 2519 2520 /* 2521 * NFS Server finalization routine. This routine is called to cleanup the 2522 * initialization work previously performed if the NFS server module could 2523 * not be loaded correctly. 2524 */ 2525 void 2526 nfs_srvfini(void) 2527 { 2528 nfsauth_fini(); 2529 rfs3_srvrfini(); 2530 rfs_srvrfini(); 2531 nfs_exportfini(); 2532 2533 mutex_destroy(&nfs_server_upordown_lock); 2534 cv_destroy(&nfs_server_upordown_cv); 2535 mutex_destroy(&rdma_wait_mutex); 2536 cv_destroy(&rdma_wait_cv); 2537 } 2538 2539 /* 2540 * Set up an iovec array of up to cnt pointers. 2541 */ 2542 2543 void 2544 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp) 2545 { 2546 while (m != NULL && cnt-- > 0) { 2547 iovp->iov_base = (caddr_t)m->b_rptr; 2548 iovp->iov_len = (m->b_wptr - m->b_rptr); 2549 iovp++; 2550 m = m->b_cont; 2551 } 2552 } 2553 2554 /* 2555 * Common code between NFS Version 2 and NFS Version 3 for the public 2556 * filehandle multicomponent lookups. 2557 */ 2558 2559 /* 2560 * Public filehandle evaluation of a multi-component lookup, following 2561 * symbolic links, if necessary. This may result in a vnode in another 2562 * filesystem, which is OK as long as the other filesystem is exported. 2563 * 2564 * Note that the exi will be set either to NULL or a new reference to the 2565 * exportinfo struct that corresponds to the vnode of the multi-component path. 2566 * It is the callers responsibility to release this reference. 2567 */ 2568 int 2569 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp, 2570 struct exportinfo **exi, struct sec_ol *sec) 2571 { 2572 int pathflag; 2573 vnode_t *mc_dvp = NULL; 2574 vnode_t *realvp; 2575 int error; 2576 2577 *exi = NULL; 2578 2579 /* 2580 * check if the given path is a url or native path. Since p is 2581 * modified by MCLpath(), it may be empty after returning from 2582 * there, and should be checked. 2583 */ 2584 if ((pathflag = MCLpath(&p)) == -1) 2585 return (EIO); 2586 2587 /* 2588 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit 2589 * on in sec->sec_flags. This bit will later serve as an 2590 * indication in makefh_ol() or makefh3_ol() to overload the 2591 * filehandle to contain the sec modes used by the server for 2592 * the path. 2593 */ 2594 if (pathflag == SECURITY_QUERY) { 2595 if ((sec->sec_index = (uint_t)(*p)) > 0) { 2596 sec->sec_flags |= SEC_QUERY; 2597 p++; 2598 if ((pathflag = MCLpath(&p)) == -1) 2599 return (EIO); 2600 } else { 2601 cmn_err(CE_NOTE, 2602 "nfs_server: invalid security index %d, " 2603 "violating WebNFS SNEGO protocol.", sec->sec_index); 2604 return (EIO); 2605 } 2606 } 2607 2608 if (p[0] == '\0') { 2609 error = ENOENT; 2610 goto publicfh_done; 2611 } 2612 2613 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag); 2614 2615 /* 2616 * If name resolves to "/" we get EINVAL since we asked for 2617 * the vnode of the directory that the file is in. Try again 2618 * with NULL directory vnode. 2619 */ 2620 if (error == EINVAL) { 2621 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag); 2622 if (!error) { 2623 ASSERT(*vpp != NULL); 2624 if ((*vpp)->v_type == VDIR) { 2625 VN_HOLD(*vpp); 2626 mc_dvp = *vpp; 2627 } else { 2628 /* 2629 * This should not happen, the filesystem is 2630 * in an inconsistent state. Fail the lookup 2631 * at this point. 2632 */ 2633 VN_RELE(*vpp); 2634 error = EINVAL; 2635 } 2636 } 2637 } 2638 2639 if (error) 2640 goto publicfh_done; 2641 2642 if (*vpp == NULL) { 2643 error = ENOENT; 2644 goto publicfh_done; 2645 } 2646 2647 ASSERT(mc_dvp != NULL); 2648 ASSERT(*vpp != NULL); 2649 2650 if ((*vpp)->v_type == VDIR) { 2651 do { 2652 /* 2653 * *vpp may be an AutoFS node, so we perform 2654 * a VOP_ACCESS() to trigger the mount of the intended 2655 * filesystem, so we can perform the lookup in the 2656 * intended filesystem. 2657 */ 2658 (void) VOP_ACCESS(*vpp, 0, 0, cr, NULL); 2659 2660 /* 2661 * If vnode is covered, get the 2662 * the topmost vnode. 2663 */ 2664 if (vn_mountedvfs(*vpp) != NULL) { 2665 error = traverse(vpp); 2666 if (error) { 2667 VN_RELE(*vpp); 2668 goto publicfh_done; 2669 } 2670 } 2671 2672 if (VOP_REALVP(*vpp, &realvp, NULL) == 0 && 2673 realvp != *vpp) { 2674 /* 2675 * If realvp is different from *vpp 2676 * then release our reference on *vpp, so that 2677 * the export access check be performed on the 2678 * real filesystem instead. 2679 */ 2680 VN_HOLD(realvp); 2681 VN_RELE(*vpp); 2682 *vpp = realvp; 2683 } else { 2684 break; 2685 } 2686 /* LINTED */ 2687 } while (TRUE); 2688 2689 /* 2690 * Let nfs_vptexi() figure what the real parent is. 2691 */ 2692 VN_RELE(mc_dvp); 2693 mc_dvp = NULL; 2694 2695 } else { 2696 /* 2697 * If vnode is covered, get the 2698 * the topmost vnode. 2699 */ 2700 if (vn_mountedvfs(mc_dvp) != NULL) { 2701 error = traverse(&mc_dvp); 2702 if (error) { 2703 VN_RELE(*vpp); 2704 goto publicfh_done; 2705 } 2706 } 2707 2708 if (VOP_REALVP(mc_dvp, &realvp, NULL) == 0 && 2709 realvp != mc_dvp) { 2710 /* 2711 * *vpp is a file, obtain realvp of the parent 2712 * directory vnode. 2713 */ 2714 VN_HOLD(realvp); 2715 VN_RELE(mc_dvp); 2716 mc_dvp = realvp; 2717 } 2718 } 2719 2720 /* 2721 * The pathname may take us from the public filesystem to another. 2722 * If that's the case then just set the exportinfo to the new export 2723 * and build filehandle for it. Thanks to per-access checking there's 2724 * no security issues with doing this. If the client is not allowed 2725 * access to this new export then it will get an access error when it 2726 * tries to use the filehandle 2727 */ 2728 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2729 VN_RELE(*vpp); 2730 goto publicfh_done; 2731 } 2732 2733 /* 2734 * Not allowed access to pseudo exports. 2735 */ 2736 if (PSEUDO(*exi)) { 2737 error = ENOENT; 2738 VN_RELE(*vpp); 2739 goto publicfh_done; 2740 } 2741 2742 /* 2743 * Do a lookup for the index file. We know the index option doesn't 2744 * allow paths through handling in the share command, so mc_dvp will 2745 * be the parent for the index file vnode, if its present. Use 2746 * temporary pointers to preserve and reuse the vnode pointers of the 2747 * original directory in case there's no index file. Note that the 2748 * index file is a native path, and should not be interpreted by 2749 * the URL parser in rfs_pathname() 2750 */ 2751 if (((*exi)->exi_export.ex_flags & EX_INDEX) && 2752 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) { 2753 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */ 2754 2755 tmc_dvp = mc_dvp; 2756 mc_dvp = tvp = *vpp; 2757 2758 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp, 2759 mc_dvp, cr, NATIVEPATH); 2760 2761 if (error == ENOENT) { 2762 *vpp = tvp; 2763 mc_dvp = tmc_dvp; 2764 error = 0; 2765 } else { /* ok or error other than ENOENT */ 2766 if (tmc_dvp) 2767 VN_RELE(tmc_dvp); 2768 if (error) 2769 goto publicfh_done; 2770 2771 /* 2772 * Found a valid vp for index "filename". Sanity check 2773 * for odd case where a directory is provided as index 2774 * option argument and leads us to another filesystem 2775 */ 2776 2777 /* Release the reference on the old exi value */ 2778 ASSERT(*exi != NULL); 2779 exi_rele(*exi); 2780 2781 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2782 VN_RELE(*vpp); 2783 goto publicfh_done; 2784 } 2785 } 2786 } 2787 2788 publicfh_done: 2789 if (mc_dvp) 2790 VN_RELE(mc_dvp); 2791 2792 return (error); 2793 } 2794 2795 /* 2796 * Evaluate a multi-component path 2797 */ 2798 int 2799 rfs_pathname( 2800 char *path, /* pathname to evaluate */ 2801 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */ 2802 vnode_t **compvpp, /* ret for ptr to component vnode */ 2803 vnode_t *startdvp, /* starting vnode */ 2804 cred_t *cr, /* user's credential */ 2805 int pathflag) /* flag to identify path, e.g. URL */ 2806 { 2807 char namebuf[TYPICALMAXPATHLEN]; 2808 struct pathname pn; 2809 int error; 2810 2811 /* 2812 * If pathname starts with '/', then set startdvp to root. 2813 */ 2814 if (*path == '/') { 2815 while (*path == '/') 2816 path++; 2817 2818 startdvp = rootdir; 2819 } 2820 2821 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf)); 2822 if (error == 0) { 2823 /* 2824 * Call the URL parser for URL paths to modify the original 2825 * string to handle any '%' encoded characters that exist. 2826 * Done here to avoid an extra bcopy in the lookup. 2827 * We need to be careful about pathlen's. We know that 2828 * rfs_pathname() is called with a non-empty path. However, 2829 * it could be emptied due to the path simply being all /'s, 2830 * which is valid to proceed with the lookup, or due to the 2831 * URL parser finding an encoded null character at the 2832 * beginning of path which should not proceed with the lookup. 2833 */ 2834 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2835 URLparse(pn.pn_path); 2836 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) 2837 return (ENOENT); 2838 } 2839 VN_HOLD(startdvp); 2840 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2841 rootdir, startdvp, cr); 2842 } 2843 if (error == ENAMETOOLONG) { 2844 /* 2845 * This thread used a pathname > TYPICALMAXPATHLEN bytes long. 2846 */ 2847 if (error = pn_get(path, UIO_SYSSPACE, &pn)) 2848 return (error); 2849 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2850 URLparse(pn.pn_path); 2851 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) { 2852 pn_free(&pn); 2853 return (ENOENT); 2854 } 2855 } 2856 VN_HOLD(startdvp); 2857 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2858 rootdir, startdvp, cr); 2859 pn_free(&pn); 2860 } 2861 2862 return (error); 2863 } 2864 2865 /* 2866 * Adapt the multicomponent lookup path depending on the pathtype 2867 */ 2868 static int 2869 MCLpath(char **path) 2870 { 2871 unsigned char c = (unsigned char)**path; 2872 2873 /* 2874 * If the MCL path is between 0x20 and 0x7E (graphic printable 2875 * character of the US-ASCII coded character set), its a URL path, 2876 * per RFC 1738. 2877 */ 2878 if (c >= 0x20 && c <= 0x7E) 2879 return (URLPATH); 2880 2881 /* 2882 * If the first octet of the MCL path is not an ASCII character 2883 * then it must be interpreted as a tag value that describes the 2884 * format of the remaining octets of the MCL path. 2885 * 2886 * If the first octet of the MCL path is 0x81 it is a query 2887 * for the security info. 2888 */ 2889 switch (c) { 2890 case 0x80: /* native path, i.e. MCL via mount protocol */ 2891 (*path)++; 2892 return (NATIVEPATH); 2893 case 0x81: /* security query */ 2894 (*path)++; 2895 return (SECURITY_QUERY); 2896 default: 2897 return (-1); 2898 } 2899 } 2900 2901 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \ 2902 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\ 2903 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0))) 2904 2905 /* 2906 * The implementation of URLparse guarantees that the final string will 2907 * fit in the original one. Replaces '%' occurrences followed by 2 characters 2908 * with its corresponding hexadecimal character. 2909 */ 2910 static void 2911 URLparse(char *str) 2912 { 2913 char *p, *q; 2914 2915 p = q = str; 2916 while (*p) { 2917 *q = *p; 2918 if (*p++ == '%') { 2919 if (*p) { 2920 *q = fromhex(*p) * 16; 2921 p++; 2922 if (*p) { 2923 *q += fromhex(*p); 2924 p++; 2925 } 2926 } 2927 } 2928 q++; 2929 } 2930 *q = '\0'; 2931 } 2932 2933 2934 /* 2935 * Get the export information for the lookup vnode, and verify its 2936 * useable. 2937 */ 2938 int 2939 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr, 2940 struct exportinfo **exi) 2941 { 2942 int walk; 2943 int error = 0; 2944 2945 *exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE); 2946 if (*exi == NULL) 2947 error = EACCES; 2948 else { 2949 /* 2950 * If nosub is set for this export then 2951 * a lookup relative to the public fh 2952 * must not terminate below the 2953 * exported directory. 2954 */ 2955 if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0) 2956 error = EACCES; 2957 } 2958 2959 return (error); 2960 } 2961 2962 /* 2963 * Do the main work of handling HA-NFSv4 Resource Group failover on 2964 * Sun Cluster. 2965 * We need to detect whether any RG admin paths have been added or removed, 2966 * and adjust resources accordingly. 2967 * Currently we're using a very inefficient algorithm, ~ 2 * O(n**2). In 2968 * order to scale, the list and array of paths need to be held in more 2969 * suitable data structures. 2970 */ 2971 static void 2972 hanfsv4_failover(void) 2973 { 2974 int i, start_grace, numadded_paths = 0; 2975 char **added_paths = NULL; 2976 rfs4_dss_path_t *dss_path; 2977 2978 /* 2979 * Note: currently, rfs4_dss_pathlist cannot be NULL, since 2980 * it will always include an entry for NFS4_DSS_VAR_DIR. If we 2981 * make the latter dynamically specified too, the following will 2982 * need to be adjusted. 2983 */ 2984 2985 /* 2986 * First, look for removed paths: RGs that have been failed-over 2987 * away from this node. 2988 * Walk the "currently-serving" rfs4_dss_pathlist and, for each 2989 * path, check if it is on the "passed-in" rfs4_dss_newpaths array 2990 * from nfsd. If not, that RG path has been removed. 2991 * 2992 * Note that nfsd has sorted rfs4_dss_newpaths for us, and removed 2993 * any duplicates. 2994 */ 2995 dss_path = rfs4_dss_pathlist; 2996 do { 2997 int found = 0; 2998 char *path = dss_path->path; 2999 3000 /* used only for non-HA so may not be removed */ 3001 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 3002 dss_path = dss_path->next; 3003 continue; 3004 } 3005 3006 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 3007 int cmpret; 3008 char *newpath = rfs4_dss_newpaths[i]; 3009 3010 /* 3011 * Since nfsd has sorted rfs4_dss_newpaths for us, 3012 * once the return from strcmp is negative we know 3013 * we've passed the point where "path" should be, 3014 * and can stop searching: "path" has been removed. 3015 */ 3016 cmpret = strcmp(path, newpath); 3017 if (cmpret < 0) 3018 break; 3019 if (cmpret == 0) { 3020 found = 1; 3021 break; 3022 } 3023 } 3024 3025 if (found == 0) { 3026 unsigned index = dss_path->index; 3027 rfs4_servinst_t *sip = dss_path->sip; 3028 rfs4_dss_path_t *path_next = dss_path->next; 3029 3030 /* 3031 * This path has been removed. 3032 * We must clear out the servinst reference to 3033 * it, since it's now owned by another 3034 * node: we should not attempt to touch it. 3035 */ 3036 ASSERT(dss_path == sip->dss_paths[index]); 3037 sip->dss_paths[index] = NULL; 3038 3039 /* remove from "currently-serving" list, and destroy */ 3040 remque(dss_path); 3041 /* allow for NUL */ 3042 kmem_free(dss_path->path, strlen(dss_path->path) + 1); 3043 kmem_free(dss_path, sizeof (rfs4_dss_path_t)); 3044 3045 dss_path = path_next; 3046 } else { 3047 /* path was found; not removed */ 3048 dss_path = dss_path->next; 3049 } 3050 } while (dss_path != rfs4_dss_pathlist); 3051 3052 /* 3053 * Now, look for added paths: RGs that have been failed-over 3054 * to this node. 3055 * Walk the "passed-in" rfs4_dss_newpaths array from nfsd and, 3056 * for each path, check if it is on the "currently-serving" 3057 * rfs4_dss_pathlist. If not, that RG path has been added. 3058 * 3059 * Note: we don't do duplicate detection here; nfsd does that for us. 3060 * 3061 * Note: numadded_paths <= rfs4_dss_numnewpaths, which gives us 3062 * an upper bound for the size needed for added_paths[numadded_paths]. 3063 */ 3064 3065 /* probably more space than we need, but guaranteed to be enough */ 3066 if (rfs4_dss_numnewpaths > 0) { 3067 size_t sz = rfs4_dss_numnewpaths * sizeof (char *); 3068 added_paths = kmem_zalloc(sz, KM_SLEEP); 3069 } 3070 3071 /* walk the "passed-in" rfs4_dss_newpaths array from nfsd */ 3072 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 3073 int found = 0; 3074 char *newpath = rfs4_dss_newpaths[i]; 3075 3076 dss_path = rfs4_dss_pathlist; 3077 do { 3078 char *path = dss_path->path; 3079 3080 /* used only for non-HA */ 3081 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 3082 dss_path = dss_path->next; 3083 continue; 3084 } 3085 3086 if (strncmp(path, newpath, strlen(path)) == 0) { 3087 found = 1; 3088 break; 3089 } 3090 3091 dss_path = dss_path->next; 3092 } while (dss_path != rfs4_dss_pathlist); 3093 3094 if (found == 0) { 3095 added_paths[numadded_paths] = newpath; 3096 numadded_paths++; 3097 } 3098 } 3099 3100 /* did we find any added paths? */ 3101 if (numadded_paths > 0) { 3102 /* create a new server instance, and start its grace period */ 3103 start_grace = 1; 3104 rfs4_servinst_create(start_grace, numadded_paths, added_paths); 3105 3106 /* read in the stable storage state from these paths */ 3107 rfs4_dss_readstate(numadded_paths, added_paths); 3108 3109 /* 3110 * Multiple failovers during a grace period will cause 3111 * clients of the same resource group to be partitioned 3112 * into different server instances, with different 3113 * grace periods. Since clients of the same resource 3114 * group must be subject to the same grace period, 3115 * we need to reset all currently active grace periods. 3116 */ 3117 rfs4_grace_reset_all(); 3118 } 3119 3120 if (rfs4_dss_numnewpaths > 0) 3121 kmem_free(added_paths, rfs4_dss_numnewpaths * sizeof (char *)); 3122 } 3123 3124 /* 3125 * Used by NFSv3 and NFSv4 server to query label of 3126 * a pathname component during lookup/access ops. 3127 */ 3128 ts_label_t * 3129 nfs_getflabel(vnode_t *vp, struct exportinfo *exi) 3130 { 3131 zone_t *zone; 3132 ts_label_t *zone_label; 3133 char *path; 3134 3135 mutex_enter(&vp->v_lock); 3136 if (vp->v_path != NULL) { 3137 zone = zone_find_by_any_path(vp->v_path, B_FALSE); 3138 mutex_exit(&vp->v_lock); 3139 } else { 3140 /* 3141 * v_path not cached. Fall back on pathname of exported 3142 * file system as we rely on pathname from which we can 3143 * derive a label. The exported file system portion of 3144 * path is sufficient to obtain a label. 3145 */ 3146 path = exi->exi_export.ex_path; 3147 if (path == NULL) { 3148 mutex_exit(&vp->v_lock); 3149 return (NULL); 3150 } 3151 zone = zone_find_by_any_path(path, B_FALSE); 3152 mutex_exit(&vp->v_lock); 3153 } 3154 /* 3155 * Caller has verified that the file is either 3156 * exported or visible. So if the path falls in 3157 * global zone, admin_low is returned; otherwise 3158 * the zone's label is returned. 3159 */ 3160 zone_label = zone->zone_slabel; 3161 label_hold(zone_label); 3162 zone_rele(zone); 3163 return (zone_label); 3164 } 3165 3166 /* 3167 * TX NFS routine used by NFSv3 and NFSv4 to do label check 3168 * on client label and server's file object lable. 3169 */ 3170 boolean_t 3171 do_rfs_label_check(bslabel_t *clabel, vnode_t *vp, int flag, 3172 struct exportinfo *exi) 3173 { 3174 bslabel_t *slabel; 3175 ts_label_t *tslabel; 3176 boolean_t result; 3177 3178 if ((tslabel = nfs_getflabel(vp, exi)) == NULL) { 3179 return (B_FALSE); 3180 } 3181 slabel = label2bslabel(tslabel); 3182 DTRACE_PROBE4(tx__rfs__log__info__labelcheck, char *, 3183 "comparing server's file label(1) with client label(2) (vp(3))", 3184 bslabel_t *, slabel, bslabel_t *, clabel, vnode_t *, vp); 3185 3186 if (flag == EQUALITY_CHECK) 3187 result = blequal(clabel, slabel); 3188 else 3189 result = bldominates(clabel, slabel); 3190 label_rele(tslabel); 3191 return (result); 3192 } 3193