xref: /titanic_50/usr/src/uts/common/fs/nfs/nfs_client.c (revision da5577f07f6199b51ea374581248790c288e827b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23  *
24  *  	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
25  *	All rights reserved.
26  */
27 
28 #include <sys/param.h>
29 #include <sys/types.h>
30 #include <sys/systm.h>
31 #include <sys/thread.h>
32 #include <sys/t_lock.h>
33 #include <sys/time.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/errno.h>
37 #include <sys/buf.h>
38 #include <sys/stat.h>
39 #include <sys/cred.h>
40 #include <sys/kmem.h>
41 #include <sys/debug.h>
42 #include <sys/dnlc.h>
43 #include <sys/vmsystm.h>
44 #include <sys/flock.h>
45 #include <sys/share.h>
46 #include <sys/cmn_err.h>
47 #include <sys/tiuser.h>
48 #include <sys/sysmacros.h>
49 #include <sys/callb.h>
50 #include <sys/acl.h>
51 #include <sys/kstat.h>
52 #include <sys/signal.h>
53 #include <sys/list.h>
54 #include <sys/zone.h>
55 
56 #include <rpc/types.h>
57 #include <rpc/xdr.h>
58 #include <rpc/auth.h>
59 #include <rpc/clnt.h>
60 
61 #include <nfs/nfs.h>
62 #include <nfs/nfs_clnt.h>
63 
64 #include <nfs/rnode.h>
65 #include <nfs/nfs_acl.h>
66 #include <nfs/lm.h>
67 
68 #include <vm/hat.h>
69 #include <vm/as.h>
70 #include <vm/page.h>
71 #include <vm/pvn.h>
72 #include <vm/seg.h>
73 #include <vm/seg_map.h>
74 #include <vm/seg_vn.h>
75 
76 static void	nfs3_attr_cache(vnode_t *, vattr_t *, vattr_t *, hrtime_t,
77 			cred_t *);
78 static int	nfs_getattr_cache(vnode_t *, struct vattr *);
79 static int	nfs_remove_locking_id(vnode_t *, int, char *, char *, int *);
80 
81 struct mi_globals {
82 	kmutex_t	mig_lock;  /* lock protecting mig_list */
83 	list_t		mig_list;  /* list of NFS v2 or v3 mounts in zone */
84 	boolean_t	mig_destructor_called;
85 };
86 
87 static zone_key_t mi_list_key;
88 
89 /* Debugging flag for PC file shares. */
90 extern int	share_debug;
91 
92 /*
93  * Attributes caching:
94  *
95  * Attributes are cached in the rnode in struct vattr form.
96  * There is a time associated with the cached attributes (r_attrtime)
97  * which tells whether the attributes are valid. The time is initialized
98  * to the difference between current time and the modify time of the vnode
99  * when new attributes are cached. This allows the attributes for
100  * files that have changed recently to be timed out sooner than for files
101  * that have not changed for a long time. There are minimum and maximum
102  * timeout values that can be set per mount point.
103  */
104 
105 int
106 nfs_waitfor_purge_complete(vnode_t *vp)
107 {
108 	rnode_t *rp;
109 	k_sigset_t smask;
110 
111 	rp = VTOR(vp);
112 	if (rp->r_serial != NULL && rp->r_serial != curthread) {
113 		mutex_enter(&rp->r_statelock);
114 		sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT);
115 		while (rp->r_serial != NULL) {
116 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
117 				sigunintr(&smask);
118 				mutex_exit(&rp->r_statelock);
119 				return (EINTR);
120 			}
121 		}
122 		sigunintr(&smask);
123 		mutex_exit(&rp->r_statelock);
124 	}
125 	return (0);
126 }
127 
128 /*
129  * Validate caches by checking cached attributes. If the cached
130  * attributes have timed out, then get new attributes from the server.
131  * As a side affect, this will do cache invalidation if the attributes
132  * have changed.
133  *
134  * If the attributes have not timed out and if there is a cache
135  * invalidation being done by some other thread, then wait until that
136  * thread has completed the cache invalidation.
137  */
138 int
139 nfs_validate_caches(vnode_t *vp, cred_t *cr)
140 {
141 	int error;
142 	struct vattr va;
143 
144 	if (ATTRCACHE_VALID(vp)) {
145 		error = nfs_waitfor_purge_complete(vp);
146 		if (error)
147 			return (error);
148 		return (0);
149 	}
150 
151 	va.va_mask = AT_ALL;
152 	return (nfs_getattr_otw(vp, &va, cr));
153 }
154 
155 /*
156  * Validate caches by checking cached attributes. If the cached
157  * attributes have timed out, then get new attributes from the server.
158  * As a side affect, this will do cache invalidation if the attributes
159  * have changed.
160  *
161  * If the attributes have not timed out and if there is a cache
162  * invalidation being done by some other thread, then wait until that
163  * thread has completed the cache invalidation.
164  */
165 int
166 nfs3_validate_caches(vnode_t *vp, cred_t *cr)
167 {
168 	int error;
169 	struct vattr va;
170 
171 	if (ATTRCACHE_VALID(vp)) {
172 		error = nfs_waitfor_purge_complete(vp);
173 		if (error)
174 			return (error);
175 		return (0);
176 	}
177 
178 	va.va_mask = AT_ALL;
179 	return (nfs3_getattr_otw(vp, &va, cr));
180 }
181 
182 /*
183  * Purge all of the various NFS `data' caches.
184  */
185 void
186 nfs_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr)
187 {
188 	rnode_t *rp;
189 	char *contents;
190 	int size;
191 	int error;
192 
193 	/*
194 	 * Purge the DNLC for any entries which refer to this file.
195 	 * Avoid recursive entry into dnlc_purge_vp() in case of a directory.
196 	 */
197 	rp = VTOR(vp);
198 	mutex_enter(&rp->r_statelock);
199 	if (vp->v_count > 1 &&
200 	    (vp->v_type == VDIR || purge_dnlc == NFS_PURGE_DNLC) &&
201 	    !(rp->r_flags & RINDNLCPURGE)) {
202 		/*
203 		 * Set the RINDNLCPURGE flag to prevent recursive entry
204 		 * into dnlc_purge_vp()
205 		 */
206 		if (vp->v_type == VDIR)
207 			rp->r_flags |= RINDNLCPURGE;
208 		mutex_exit(&rp->r_statelock);
209 		dnlc_purge_vp(vp);
210 		mutex_enter(&rp->r_statelock);
211 		if (rp->r_flags & RINDNLCPURGE)
212 			rp->r_flags &= ~RINDNLCPURGE;
213 	}
214 
215 	/*
216 	 * Clear any readdir state bits and purge the readlink response cache.
217 	 */
218 	contents = rp->r_symlink.contents;
219 	size = rp->r_symlink.size;
220 	rp->r_symlink.contents = NULL;
221 	mutex_exit(&rp->r_statelock);
222 
223 	if (contents != NULL) {
224 
225 		kmem_free((void *)contents, size);
226 	}
227 
228 	/*
229 	 * Flush the page cache.
230 	 */
231 	if (vn_has_cached_data(vp)) {
232 		error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL);
233 		if (error && (error == ENOSPC || error == EDQUOT)) {
234 			mutex_enter(&rp->r_statelock);
235 			if (!rp->r_error)
236 				rp->r_error = error;
237 			mutex_exit(&rp->r_statelock);
238 		}
239 	}
240 
241 	/*
242 	 * Flush the readdir response cache.
243 	 */
244 	if (HAVE_RDDIR_CACHE(rp))
245 		nfs_purge_rddir_cache(vp);
246 }
247 
248 /*
249  * Purge the readdir cache of all entries
250  */
251 void
252 nfs_purge_rddir_cache(vnode_t *vp)
253 {
254 	rnode_t *rp;
255 	rddir_cache *rdc;
256 	rddir_cache *nrdc;
257 
258 	rp = VTOR(vp);
259 top:
260 	mutex_enter(&rp->r_statelock);
261 	rp->r_direof = NULL;
262 	rp->r_flags &= ~RLOOKUP;
263 	rp->r_flags |= RREADDIRPLUS;
264 	rdc = avl_first(&rp->r_dir);
265 	while (rdc != NULL) {
266 		nrdc = AVL_NEXT(&rp->r_dir, rdc);
267 		avl_remove(&rp->r_dir, rdc);
268 		rddir_cache_rele(rdc);
269 		rdc = nrdc;
270 	}
271 	mutex_exit(&rp->r_statelock);
272 }
273 
274 /*
275  * Do a cache check based on the post-operation attributes.
276  * Then make them the new cached attributes.  If no attributes
277  * were returned, then mark the attributes as timed out.
278  */
279 void
280 nfs3_cache_post_op_attr(vnode_t *vp, post_op_attr *poap, hrtime_t t, cred_t *cr)
281 {
282 	vattr_t attr;
283 
284 	if (!poap->attributes) {
285 		PURGE_ATTRCACHE(vp);
286 		return;
287 	}
288 	(void) nfs3_cache_fattr3(vp, &poap->attr, &attr, t, cr);
289 }
290 
291 /*
292  * Same as above, but using a vattr
293  */
294 void
295 nfs3_cache_post_op_vattr(vnode_t *vp, post_op_vattr *poap, hrtime_t t,
296     cred_t *cr)
297 {
298 	if (!poap->attributes) {
299 		PURGE_ATTRCACHE(vp);
300 		return;
301 	}
302 	nfs_attr_cache(vp, poap->fres.vap, t, cr);
303 }
304 
305 /*
306  * Do a cache check based on the weak cache consistency attributes.
307  * These consist of a small set of pre-operation attributes and the
308  * full set of post-operation attributes.
309  *
310  * If we are given the pre-operation attributes, then use them to
311  * check the validity of the various caches.  Then, if we got the
312  * post-operation attributes, make them the new cached attributes.
313  * If we didn't get the post-operation attributes, then mark the
314  * attribute cache as timed out so that the next reference will
315  * cause a GETATTR to the server to refresh with the current
316  * attributes.
317  *
318  * Otherwise, if we didn't get the pre-operation attributes, but
319  * we did get the post-operation attributes, then use these
320  * attributes to check the validity of the various caches.  This
321  * will probably cause a flush of the caches because if the
322  * operation succeeded, the attributes of the object were changed
323  * in some way from the old post-operation attributes.  This
324  * should be okay because it is the safe thing to do.  After
325  * checking the data caches, then we make these the new cached
326  * attributes.
327  *
328  * Otherwise, we didn't get either the pre- or post-operation
329  * attributes.  Simply mark the attribute cache as timed out so
330  * the next reference will cause a GETATTR to the server to
331  * refresh with the current attributes.
332  *
333  * If an error occurred trying to convert the over the wire
334  * attributes to a vattr, then simply mark the attribute cache as
335  * timed out.
336  */
337 void
338 nfs3_cache_wcc_data(vnode_t *vp, wcc_data *wccp, hrtime_t t, cred_t *cr)
339 {
340 	vattr_t bva;
341 	vattr_t ava;
342 
343 	if (wccp->after.attributes) {
344 		if (fattr3_to_vattr(vp, &wccp->after.attr, &ava)) {
345 			PURGE_ATTRCACHE(vp);
346 			return;
347 		}
348 		if (wccp->before.attributes) {
349 			bva.va_ctime.tv_sec = wccp->before.attr.ctime.seconds;
350 			bva.va_ctime.tv_nsec = wccp->before.attr.ctime.nseconds;
351 			bva.va_mtime.tv_sec = wccp->before.attr.mtime.seconds;
352 			bva.va_mtime.tv_nsec = wccp->before.attr.mtime.nseconds;
353 			bva.va_size = wccp->before.attr.size;
354 			nfs3_attr_cache(vp, &bva, &ava, t, cr);
355 		} else
356 			nfs_attr_cache(vp, &ava, t, cr);
357 	} else {
358 		PURGE_ATTRCACHE(vp);
359 	}
360 }
361 
362 /*
363  * Set attributes cache for given vnode using nfsattr.
364  *
365  * This routine does not do cache validation with the attributes.
366  *
367  * If an error occurred trying to convert the over the wire
368  * attributes to a vattr, then simply mark the attribute cache as
369  * timed out.
370  */
371 void
372 nfs_attrcache(vnode_t *vp, struct nfsfattr *na, hrtime_t t)
373 {
374 	rnode_t *rp;
375 	struct vattr va;
376 
377 	if (!nattr_to_vattr(vp, na, &va)) {
378 		rp = VTOR(vp);
379 		mutex_enter(&rp->r_statelock);
380 		if (rp->r_mtime <= t)
381 			nfs_attrcache_va(vp, &va);
382 		mutex_exit(&rp->r_statelock);
383 	} else {
384 		PURGE_ATTRCACHE(vp);
385 	}
386 }
387 
388 /*
389  * Set attributes cache for given vnode using fattr3.
390  *
391  * This routine does not do cache validation with the attributes.
392  *
393  * If an error occurred trying to convert the over the wire
394  * attributes to a vattr, then simply mark the attribute cache as
395  * timed out.
396  */
397 void
398 nfs3_attrcache(vnode_t *vp, fattr3 *na, hrtime_t t)
399 {
400 	rnode_t *rp;
401 	struct vattr va;
402 
403 	if (!fattr3_to_vattr(vp, na, &va)) {
404 		rp = VTOR(vp);
405 		mutex_enter(&rp->r_statelock);
406 		if (rp->r_mtime <= t)
407 			nfs_attrcache_va(vp, &va);
408 		mutex_exit(&rp->r_statelock);
409 	} else {
410 		PURGE_ATTRCACHE(vp);
411 	}
412 }
413 
414 /*
415  * Do a cache check based on attributes returned over the wire.  The
416  * new attributes are cached.
417  *
418  * If an error occurred trying to convert the over the wire attributes
419  * to a vattr, then just return that error.
420  *
421  * As a side affect, the vattr argument is filled in with the converted
422  * attributes.
423  */
424 int
425 nfs_cache_fattr(vnode_t *vp, struct nfsfattr *na, vattr_t *vap, hrtime_t t,
426     cred_t *cr)
427 {
428 	int error;
429 
430 	error = nattr_to_vattr(vp, na, vap);
431 	if (error)
432 		return (error);
433 	nfs_attr_cache(vp, vap, t, cr);
434 	return (0);
435 }
436 
437 /*
438  * Do a cache check based on attributes returned over the wire.  The
439  * new attributes are cached.
440  *
441  * If an error occurred trying to convert the over the wire attributes
442  * to a vattr, then just return that error.
443  *
444  * As a side affect, the vattr argument is filled in with the converted
445  * attributes.
446  */
447 int
448 nfs3_cache_fattr3(vnode_t *vp, fattr3 *na, vattr_t *vap, hrtime_t t, cred_t *cr)
449 {
450 	int error;
451 
452 	error = fattr3_to_vattr(vp, na, vap);
453 	if (error)
454 		return (error);
455 	nfs_attr_cache(vp, vap, t, cr);
456 	return (0);
457 }
458 
459 /*
460  * Use the passed in virtual attributes to check to see whether the
461  * data and metadata caches are valid, cache the new attributes, and
462  * then do the cache invalidation if required.
463  *
464  * The cache validation and caching of the new attributes is done
465  * atomically via the use of the mutex, r_statelock.  If required,
466  * the cache invalidation is done atomically w.r.t. the cache
467  * validation and caching of the attributes via the pseudo lock,
468  * r_serial.
469  *
470  * This routine is used to do cache validation and attributes caching
471  * for operations with a single set of post operation attributes.
472  */
473 void
474 nfs_attr_cache(vnode_t *vp, vattr_t *vap, hrtime_t t, cred_t *cr)
475 {
476 	rnode_t *rp;
477 	int mtime_changed = 0;
478 	int ctime_changed = 0;
479 	vsecattr_t *vsp;
480 	int was_serial;
481 	len_t preattr_rsize;
482 	boolean_t writeattr_set = B_FALSE;
483 	boolean_t cachepurge_set = B_FALSE;
484 
485 	rp = VTOR(vp);
486 
487 	mutex_enter(&rp->r_statelock);
488 
489 	if (rp->r_serial != curthread) {
490 		klwp_t *lwp = ttolwp(curthread);
491 
492 		was_serial = 0;
493 		if (lwp != NULL)
494 			lwp->lwp_nostop++;
495 		while (rp->r_serial != NULL) {
496 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
497 				mutex_exit(&rp->r_statelock);
498 				if (lwp != NULL)
499 					lwp->lwp_nostop--;
500 				return;
501 			}
502 		}
503 		if (lwp != NULL)
504 			lwp->lwp_nostop--;
505 	} else
506 		was_serial = 1;
507 
508 	if (rp->r_mtime > t) {
509 		if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size))
510 			PURGE_ATTRCACHE_LOCKED(rp);
511 		mutex_exit(&rp->r_statelock);
512 		return;
513 	}
514 
515 	/*
516 	 * Write thread after writing data to file on remote server,
517 	 * will always set RWRITEATTR to indicate that file on remote
518 	 * server was modified with a WRITE operation and would have
519 	 * marked attribute cache as timed out. If RWRITEATTR
520 	 * is set, then do not check for mtime and ctime change.
521 	 */
522 	if (!(rp->r_flags & RWRITEATTR)) {
523 		if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size))
524 			mtime_changed = 1;
525 
526 		if (rp->r_attr.va_ctime.tv_sec != vap->va_ctime.tv_sec ||
527 		    rp->r_attr.va_ctime.tv_nsec != vap->va_ctime.tv_nsec)
528 			ctime_changed = 1;
529 	} else {
530 		writeattr_set = B_TRUE;
531 	}
532 
533 	preattr_rsize = rp->r_size;
534 
535 	nfs_attrcache_va(vp, vap);
536 
537 	/*
538 	 * If we have updated filesize in nfs_attrcache_va, as soon as we
539 	 * drop statelock we will be in transition of purging all
540 	 * our caches and updating them. It is possible for another
541 	 * thread to pick this new file size and read in zeroed data.
542 	 * stall other threads till cache purge is complete.
543 	 */
544 	if ((vp->v_type == VREG) && (rp->r_size != preattr_rsize)) {
545 		/*
546 		 * If RWRITEATTR was set and we have updated the file
547 		 * size, Server's returned file size need not necessarily
548 		 * be because of this Client's WRITE. We need to purge
549 		 * all caches.
550 		 */
551 		if (writeattr_set)
552 			mtime_changed = 1;
553 
554 		if (mtime_changed && !(rp->r_flags & RINCACHEPURGE)) {
555 			rp->r_flags |= RINCACHEPURGE;
556 			cachepurge_set = B_TRUE;
557 		}
558 	}
559 
560 	if (!mtime_changed && !ctime_changed) {
561 		mutex_exit(&rp->r_statelock);
562 		return;
563 	}
564 
565 	rp->r_serial = curthread;
566 
567 	mutex_exit(&rp->r_statelock);
568 
569 	if (mtime_changed)
570 		nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
571 
572 	if ((rp->r_flags & RINCACHEPURGE) && cachepurge_set) {
573 		mutex_enter(&rp->r_statelock);
574 		rp->r_flags &= ~RINCACHEPURGE;
575 		cv_broadcast(&rp->r_cv);
576 		mutex_exit(&rp->r_statelock);
577 		cachepurge_set = B_FALSE;
578 	}
579 
580 	if (ctime_changed) {
581 		(void) nfs_access_purge_rp(rp);
582 		if (rp->r_secattr != NULL) {
583 			mutex_enter(&rp->r_statelock);
584 			vsp = rp->r_secattr;
585 			rp->r_secattr = NULL;
586 			mutex_exit(&rp->r_statelock);
587 			if (vsp != NULL)
588 				nfs_acl_free(vsp);
589 		}
590 	}
591 
592 	if (!was_serial) {
593 		mutex_enter(&rp->r_statelock);
594 		rp->r_serial = NULL;
595 		cv_broadcast(&rp->r_cv);
596 		mutex_exit(&rp->r_statelock);
597 	}
598 }
599 
600 /*
601  * Use the passed in "before" virtual attributes to check to see
602  * whether the data and metadata caches are valid, cache the "after"
603  * new attributes, and then do the cache invalidation if required.
604  *
605  * The cache validation and caching of the new attributes is done
606  * atomically via the use of the mutex, r_statelock.  If required,
607  * the cache invalidation is done atomically w.r.t. the cache
608  * validation and caching of the attributes via the pseudo lock,
609  * r_serial.
610  *
611  * This routine is used to do cache validation and attributes caching
612  * for operations with both pre operation attributes and post operation
613  * attributes.
614  */
615 static void
616 nfs3_attr_cache(vnode_t *vp, vattr_t *bvap, vattr_t *avap, hrtime_t t,
617     cred_t *cr)
618 {
619 	rnode_t *rp;
620 	int mtime_changed = 0;
621 	int ctime_changed = 0;
622 	vsecattr_t *vsp;
623 	int was_serial;
624 	len_t preattr_rsize;
625 	boolean_t writeattr_set = B_FALSE;
626 	boolean_t cachepurge_set = B_FALSE;
627 
628 	rp = VTOR(vp);
629 
630 	mutex_enter(&rp->r_statelock);
631 
632 	if (rp->r_serial != curthread) {
633 		klwp_t *lwp = ttolwp(curthread);
634 
635 		was_serial = 0;
636 		if (lwp != NULL)
637 			lwp->lwp_nostop++;
638 		while (rp->r_serial != NULL) {
639 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
640 				mutex_exit(&rp->r_statelock);
641 				if (lwp != NULL)
642 					lwp->lwp_nostop--;
643 				return;
644 			}
645 		}
646 		if (lwp != NULL)
647 			lwp->lwp_nostop--;
648 	} else
649 		was_serial = 1;
650 
651 	if (rp->r_mtime > t) {
652 		if (!CACHE_VALID(rp, avap->va_mtime, avap->va_size))
653 			PURGE_ATTRCACHE_LOCKED(rp);
654 		mutex_exit(&rp->r_statelock);
655 		return;
656 	}
657 
658 	/*
659 	 * Write thread after writing data to file on remote server,
660 	 * will always set RWRITEATTR to indicate that file on remote
661 	 * server was modified with a WRITE operation and would have
662 	 * marked attribute cache as timed out. If RWRITEATTR
663 	 * is set, then do not check for mtime and ctime change.
664 	 */
665 	if (!(rp->r_flags & RWRITEATTR)) {
666 		if (!CACHE_VALID(rp, bvap->va_mtime, bvap->va_size))
667 			mtime_changed = 1;
668 
669 		if (rp->r_attr.va_ctime.tv_sec != bvap->va_ctime.tv_sec ||
670 		    rp->r_attr.va_ctime.tv_nsec != bvap->va_ctime.tv_nsec)
671 			ctime_changed = 1;
672 	} else {
673 		writeattr_set = B_TRUE;
674 	}
675 
676 	preattr_rsize = rp->r_size;
677 
678 	nfs_attrcache_va(vp, avap);
679 
680 	/*
681 	 * If we have updated filesize in nfs_attrcache_va, as soon as we
682 	 * drop statelock we will be in transition of purging all
683 	 * our caches and updating them. It is possible for another
684 	 * thread to pick this new file size and read in zeroed data.
685 	 * stall other threads till cache purge is complete.
686 	 */
687 	if ((vp->v_type == VREG) && (rp->r_size != preattr_rsize)) {
688 		/*
689 		 * If RWRITEATTR was set and we have updated the file
690 		 * size, Server's returned file size need not necessarily
691 		 * be because of this Client's WRITE. We need to purge
692 		 * all caches.
693 		 */
694 		if (writeattr_set)
695 			mtime_changed = 1;
696 
697 		if (mtime_changed && !(rp->r_flags & RINCACHEPURGE)) {
698 			rp->r_flags |= RINCACHEPURGE;
699 			cachepurge_set = B_TRUE;
700 		}
701 	}
702 
703 	if (!mtime_changed && !ctime_changed) {
704 		mutex_exit(&rp->r_statelock);
705 		return;
706 	}
707 
708 	rp->r_serial = curthread;
709 
710 	mutex_exit(&rp->r_statelock);
711 
712 	if (mtime_changed)
713 		nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
714 
715 	if ((rp->r_flags & RINCACHEPURGE) && cachepurge_set) {
716 		mutex_enter(&rp->r_statelock);
717 		rp->r_flags &= ~RINCACHEPURGE;
718 		cv_broadcast(&rp->r_cv);
719 		mutex_exit(&rp->r_statelock);
720 		cachepurge_set = B_FALSE;
721 	}
722 
723 	if (ctime_changed) {
724 		(void) nfs_access_purge_rp(rp);
725 		if (rp->r_secattr != NULL) {
726 			mutex_enter(&rp->r_statelock);
727 			vsp = rp->r_secattr;
728 			rp->r_secattr = NULL;
729 			mutex_exit(&rp->r_statelock);
730 			if (vsp != NULL)
731 				nfs_acl_free(vsp);
732 		}
733 	}
734 
735 	if (!was_serial) {
736 		mutex_enter(&rp->r_statelock);
737 		rp->r_serial = NULL;
738 		cv_broadcast(&rp->r_cv);
739 		mutex_exit(&rp->r_statelock);
740 	}
741 }
742 
743 /*
744  * Set attributes cache for given vnode using virtual attributes.
745  *
746  * Set the timeout value on the attribute cache and fill it
747  * with the passed in attributes.
748  *
749  * The caller must be holding r_statelock.
750  */
751 void
752 nfs_attrcache_va(vnode_t *vp, struct vattr *va)
753 {
754 	rnode_t *rp;
755 	mntinfo_t *mi;
756 	hrtime_t delta;
757 	hrtime_t now;
758 
759 	rp = VTOR(vp);
760 
761 	ASSERT(MUTEX_HELD(&rp->r_statelock));
762 
763 	now = gethrtime();
764 
765 	mi = VTOMI(vp);
766 
767 	/*
768 	 * Delta is the number of nanoseconds that we will
769 	 * cache the attributes of the file.  It is based on
770 	 * the number of nanoseconds since the last time that
771 	 * we detected a change.  The assumption is that files
772 	 * that changed recently are likely to change again.
773 	 * There is a minimum and a maximum for regular files
774 	 * and for directories which is enforced though.
775 	 *
776 	 * Using the time since last change was detected
777 	 * eliminates direct comparison or calculation
778 	 * using mixed client and server times.  NFS does
779 	 * not make any assumptions regarding the client
780 	 * and server clocks being synchronized.
781 	 */
782 	if (va->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec ||
783 	    va->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec ||
784 	    va->va_size != rp->r_attr.va_size)
785 		rp->r_mtime = now;
786 
787 	if ((mi->mi_flags & MI_NOAC) || (vp->v_flag & VNOCACHE))
788 		delta = 0;
789 	else {
790 		delta = now - rp->r_mtime;
791 		if (vp->v_type == VDIR) {
792 			if (delta < mi->mi_acdirmin)
793 				delta = mi->mi_acdirmin;
794 			else if (delta > mi->mi_acdirmax)
795 				delta = mi->mi_acdirmax;
796 		} else {
797 			if (delta < mi->mi_acregmin)
798 				delta = mi->mi_acregmin;
799 			else if (delta > mi->mi_acregmax)
800 				delta = mi->mi_acregmax;
801 		}
802 	}
803 	rp->r_attrtime = now + delta;
804 	rp->r_attr = *va;
805 	/*
806 	 * Update the size of the file if there is no cached data or if
807 	 * the cached data is clean and there is no data being written
808 	 * out.
809 	 */
810 	if (rp->r_size != va->va_size &&
811 	    (!vn_has_cached_data(vp) ||
812 	    (!(rp->r_flags & RDIRTY) && rp->r_count == 0)))
813 		rp->r_size = va->va_size;
814 	nfs_setswaplike(vp, va);
815 	rp->r_flags &= ~RWRITEATTR;
816 }
817 
818 /*
819  * Fill in attribute from the cache.
820  * If valid, then return 0 to indicate that no error occurred,
821  * otherwise return 1 to indicate that an error occurred.
822  */
823 static int
824 nfs_getattr_cache(vnode_t *vp, struct vattr *vap)
825 {
826 	rnode_t *rp;
827 	uint_t mask = vap->va_mask;
828 
829 	rp = VTOR(vp);
830 	mutex_enter(&rp->r_statelock);
831 	if (ATTRCACHE_VALID(vp)) {
832 		/*
833 		 * Cached attributes are valid
834 		 */
835 		*vap = rp->r_attr;
836 		/*
837 		 * Set the caller's va_mask to the set of attributes
838 		 * that were requested ANDed with the attributes that
839 		 * are available.  If attributes were requested that
840 		 * are not available, those bits must be turned off
841 		 * in the callers va_mask.
842 		 */
843 		vap->va_mask &= mask;
844 		mutex_exit(&rp->r_statelock);
845 		return (0);
846 	}
847 	mutex_exit(&rp->r_statelock);
848 	return (1);
849 }
850 
851 /*
852  * Get attributes over-the-wire and update attributes cache
853  * if no error occurred in the over-the-wire operation.
854  * Return 0 if successful, otherwise error.
855  */
856 int
857 nfs_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr)
858 {
859 	int error;
860 	struct nfsattrstat ns;
861 	int douprintf;
862 	mntinfo_t *mi;
863 	failinfo_t fi;
864 	hrtime_t t;
865 
866 	mi = VTOMI(vp);
867 	fi.vp = vp;
868 	fi.fhp = NULL;		/* no need to update, filehandle not copied */
869 	fi.copyproc = nfscopyfh;
870 	fi.lookupproc = nfslookup;
871 	fi.xattrdirproc = acl_getxattrdir2;
872 
873 	if (mi->mi_flags & MI_ACL) {
874 		error = acl_getattr2_otw(vp, vap, cr);
875 		if (mi->mi_flags & MI_ACL)
876 			return (error);
877 	}
878 
879 	douprintf = 1;
880 
881 	t = gethrtime();
882 
883 	error = rfs2call(mi, RFS_GETATTR,
884 	    xdr_fhandle, (caddr_t)VTOFH(vp),
885 	    xdr_attrstat, (caddr_t)&ns, cr,
886 	    &douprintf, &ns.ns_status, 0, &fi);
887 
888 	if (!error) {
889 		error = geterrno(ns.ns_status);
890 		if (!error)
891 			error = nfs_cache_fattr(vp, &ns.ns_attr, vap, t, cr);
892 		else {
893 			PURGE_STALE_FH(error, vp, cr);
894 		}
895 	}
896 
897 	return (error);
898 }
899 
900 /*
901  * Return either cached ot remote attributes. If get remote attr
902  * use them to check and invalidate caches, then cache the new attributes.
903  */
904 int
905 nfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
906 {
907 	int error;
908 	rnode_t *rp;
909 
910 	/*
911 	 * If we've got cached attributes, we're done, otherwise go
912 	 * to the server to get attributes, which will update the cache
913 	 * in the process.
914 	 */
915 	error = nfs_getattr_cache(vp, vap);
916 	if (error)
917 		error = nfs_getattr_otw(vp, vap, cr);
918 
919 	/* Return the client's view of file size */
920 	rp = VTOR(vp);
921 	mutex_enter(&rp->r_statelock);
922 	vap->va_size = rp->r_size;
923 	mutex_exit(&rp->r_statelock);
924 
925 	return (error);
926 }
927 
928 /*
929  * Get attributes over-the-wire and update attributes cache
930  * if no error occurred in the over-the-wire operation.
931  * Return 0 if successful, otherwise error.
932  */
933 int
934 nfs3_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr)
935 {
936 	int error;
937 	GETATTR3args args;
938 	GETATTR3vres res;
939 	int douprintf;
940 	failinfo_t fi;
941 	hrtime_t t;
942 
943 	args.object = *VTOFH3(vp);
944 	fi.vp = vp;
945 	fi.fhp = (caddr_t)&args.object;
946 	fi.copyproc = nfs3copyfh;
947 	fi.lookupproc = nfs3lookup;
948 	fi.xattrdirproc = acl_getxattrdir3;
949 	res.fres.vp = vp;
950 	res.fres.vap = vap;
951 
952 	douprintf = 1;
953 
954 	t = gethrtime();
955 
956 	error = rfs3call(VTOMI(vp), NFSPROC3_GETATTR,
957 	    xdr_nfs_fh3, (caddr_t)&args,
958 	    xdr_GETATTR3vres, (caddr_t)&res, cr,
959 	    &douprintf, &res.status, 0, &fi);
960 
961 	if (error)
962 		return (error);
963 
964 	error = geterrno3(res.status);
965 	if (error) {
966 		PURGE_STALE_FH(error, vp, cr);
967 		return (error);
968 	}
969 
970 	/*
971 	 * Catch status codes that indicate fattr3 to vattr translation failure
972 	 */
973 	if (res.fres.status)
974 		return (res.fres.status);
975 
976 	nfs_attr_cache(vp, vap, t, cr);
977 	return (0);
978 }
979 
980 /*
981  * Return either cached or remote attributes. If get remote attr
982  * use them to check and invalidate caches, then cache the new attributes.
983  */
984 int
985 nfs3getattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
986 {
987 	int error;
988 	rnode_t *rp;
989 
990 	/*
991 	 * If we've got cached attributes, we're done, otherwise go
992 	 * to the server to get attributes, which will update the cache
993 	 * in the process.
994 	 */
995 	error = nfs_getattr_cache(vp, vap);
996 	if (error)
997 		error = nfs3_getattr_otw(vp, vap, cr);
998 
999 	/* Return the client's view of file size */
1000 	rp = VTOR(vp);
1001 	mutex_enter(&rp->r_statelock);
1002 	vap->va_size = rp->r_size;
1003 	mutex_exit(&rp->r_statelock);
1004 
1005 	return (error);
1006 }
1007 
1008 vtype_t nf_to_vt[] = {
1009 	VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK
1010 };
1011 /*
1012  * Convert NFS Version 2 over the network attributes to the local
1013  * virtual attributes.  The mapping between the UID_NOBODY/GID_NOBODY
1014  * network representation and the local representation is done here.
1015  * Returns 0 for success, error if failed due to overflow.
1016  */
1017 int
1018 nattr_to_vattr(vnode_t *vp, struct nfsfattr *na, struct vattr *vap)
1019 {
1020 	/* overflow in time attributes? */
1021 #ifndef _LP64
1022 	if (!NFS2_FATTR_TIME_OK(na))
1023 		return (EOVERFLOW);
1024 #endif
1025 
1026 	vap->va_mask = AT_ALL;
1027 
1028 	if (na->na_type < NFNON || na->na_type > NFSOC)
1029 		vap->va_type = VBAD;
1030 	else
1031 		vap->va_type = nf_to_vt[na->na_type];
1032 	vap->va_mode = na->na_mode;
1033 	vap->va_uid = (na->na_uid == NFS_UID_NOBODY) ? UID_NOBODY : na->na_uid;
1034 	vap->va_gid = (na->na_gid == NFS_GID_NOBODY) ? GID_NOBODY : na->na_gid;
1035 	vap->va_fsid = vp->v_vfsp->vfs_dev;
1036 	vap->va_nodeid = na->na_nodeid;
1037 	vap->va_nlink = na->na_nlink;
1038 	vap->va_size = na->na_size;	/* keep for cache validation */
1039 	/*
1040 	 * nfs protocol defines times as unsigned so don't extend sign,
1041 	 * unless sysadmin set nfs_allow_preepoch_time.
1042 	 */
1043 	NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->na_atime.tv_sec);
1044 	vap->va_atime.tv_nsec = (uint32_t)(na->na_atime.tv_usec * 1000);
1045 	NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->na_mtime.tv_sec);
1046 	vap->va_mtime.tv_nsec = (uint32_t)(na->na_mtime.tv_usec * 1000);
1047 	NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->na_ctime.tv_sec);
1048 	vap->va_ctime.tv_nsec = (uint32_t)(na->na_ctime.tv_usec * 1000);
1049 	/*
1050 	 * Shannon's law - uncompress the received dev_t
1051 	 * if the top half of is zero indicating a response
1052 	 * from an `older style' OS. Except for when it is a
1053 	 * `new style' OS sending the maj device of zero,
1054 	 * in which case the algorithm still works because the
1055 	 * fact that it is a new style server
1056 	 * is hidden by the minor device not being greater
1057 	 * than 255 (a requirement in this case).
1058 	 */
1059 	if ((na->na_rdev & 0xffff0000) == 0)
1060 		vap->va_rdev = nfsv2_expdev(na->na_rdev);
1061 	else
1062 		vap->va_rdev = expldev(na->na_rdev);
1063 
1064 	vap->va_nblocks = na->na_blocks;
1065 	switch (na->na_type) {
1066 	case NFBLK:
1067 		vap->va_blksize = DEV_BSIZE;
1068 		break;
1069 
1070 	case NFCHR:
1071 		vap->va_blksize = MAXBSIZE;
1072 		break;
1073 
1074 	case NFSOC:
1075 	default:
1076 		vap->va_blksize = na->na_blocksize;
1077 		break;
1078 	}
1079 	/*
1080 	 * This bit of ugliness is a hack to preserve the
1081 	 * over-the-wire protocols for named-pipe vnodes.
1082 	 * It remaps the special over-the-wire type to the
1083 	 * VFIFO type. (see note in nfs.h)
1084 	 */
1085 	if (NA_ISFIFO(na)) {
1086 		vap->va_type = VFIFO;
1087 		vap->va_mode = (vap->va_mode & ~S_IFMT) | S_IFIFO;
1088 		vap->va_rdev = 0;
1089 		vap->va_blksize = na->na_blocksize;
1090 	}
1091 	vap->va_seq = 0;
1092 	return (0);
1093 }
1094 
1095 /*
1096  * Convert NFS Version 3 over the network attributes to the local
1097  * virtual attributes.  The mapping between the UID_NOBODY/GID_NOBODY
1098  * network representation and the local representation is done here.
1099  */
1100 vtype_t nf3_to_vt[] = {
1101 	VBAD, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO
1102 };
1103 
1104 int
1105 fattr3_to_vattr(vnode_t *vp, fattr3 *na, struct vattr *vap)
1106 {
1107 
1108 #ifndef _LP64
1109 	/* overflow in time attributes? */
1110 	if (!NFS3_FATTR_TIME_OK(na))
1111 		return (EOVERFLOW);
1112 #endif
1113 	if (!NFS3_SIZE_OK(na->size))
1114 		/* file too big */
1115 		return (EFBIG);
1116 
1117 	vap->va_mask = AT_ALL;
1118 
1119 	if (na->type < NF3REG || na->type > NF3FIFO)
1120 		vap->va_type = VBAD;
1121 	else
1122 		vap->va_type = nf3_to_vt[na->type];
1123 	vap->va_mode = na->mode;
1124 	vap->va_uid = (na->uid == NFS_UID_NOBODY) ? UID_NOBODY : (uid_t)na->uid;
1125 	vap->va_gid = (na->gid == NFS_GID_NOBODY) ? GID_NOBODY : (gid_t)na->gid;
1126 	vap->va_fsid = vp->v_vfsp->vfs_dev;
1127 	vap->va_nodeid = na->fileid;
1128 	vap->va_nlink = na->nlink;
1129 	vap->va_size = na->size;
1130 
1131 	/*
1132 	 * nfs protocol defines times as unsigned so don't extend sign,
1133 	 * unless sysadmin set nfs_allow_preepoch_time.
1134 	 */
1135 	NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->atime.seconds);
1136 	vap->va_atime.tv_nsec = (uint32_t)na->atime.nseconds;
1137 	NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->mtime.seconds);
1138 	vap->va_mtime.tv_nsec = (uint32_t)na->mtime.nseconds;
1139 	NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->ctime.seconds);
1140 	vap->va_ctime.tv_nsec = (uint32_t)na->ctime.nseconds;
1141 
1142 	switch (na->type) {
1143 	case NF3BLK:
1144 		vap->va_rdev = makedevice(na->rdev.specdata1,
1145 		    na->rdev.specdata2);
1146 		vap->va_blksize = DEV_BSIZE;
1147 		vap->va_nblocks = 0;
1148 		break;
1149 	case NF3CHR:
1150 		vap->va_rdev = makedevice(na->rdev.specdata1,
1151 		    na->rdev.specdata2);
1152 		vap->va_blksize = MAXBSIZE;
1153 		vap->va_nblocks = 0;
1154 		break;
1155 	case NF3REG:
1156 	case NF3DIR:
1157 	case NF3LNK:
1158 		vap->va_rdev = 0;
1159 		vap->va_blksize = MAXBSIZE;
1160 		vap->va_nblocks = (u_longlong_t)
1161 		    ((na->used + (size3)DEV_BSIZE - (size3)1) /
1162 		    (size3)DEV_BSIZE);
1163 		break;
1164 	case NF3SOCK:
1165 	case NF3FIFO:
1166 	default:
1167 		vap->va_rdev = 0;
1168 		vap->va_blksize = MAXBSIZE;
1169 		vap->va_nblocks = 0;
1170 		break;
1171 	}
1172 	vap->va_seq = 0;
1173 	return (0);
1174 }
1175 
1176 /*
1177  * Asynchronous I/O parameters.  nfs_async_threads is the high-water mark
1178  * for the demand-based allocation of async threads per-mount.  The
1179  * nfs_async_timeout is the amount of time a thread will live after it
1180  * becomes idle, unless new I/O requests are received before the thread
1181  * dies.  See nfs_async_putpage and nfs_async_start.
1182  */
1183 
1184 int nfs_async_timeout = -1;	/* uninitialized */
1185 
1186 static void	nfs_async_start(struct vfs *);
1187 static void	nfs_async_pgops_start(struct vfs *);
1188 static void	nfs_async_common_start(struct vfs *, int);
1189 
1190 static void
1191 free_async_args(struct nfs_async_reqs *args)
1192 {
1193 	rnode_t *rp;
1194 
1195 	if (args->a_io != NFS_INACTIVE) {
1196 		rp = VTOR(args->a_vp);
1197 		mutex_enter(&rp->r_statelock);
1198 		rp->r_count--;
1199 		if (args->a_io == NFS_PUTAPAGE ||
1200 		    args->a_io == NFS_PAGEIO)
1201 			rp->r_awcount--;
1202 		cv_broadcast(&rp->r_cv);
1203 		mutex_exit(&rp->r_statelock);
1204 		VN_RELE(args->a_vp);
1205 	}
1206 	crfree(args->a_cred);
1207 	kmem_free(args, sizeof (*args));
1208 }
1209 
1210 /*
1211  * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and
1212  * pageout(), running in the global zone, have legitimate reasons to do
1213  * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts.  We avoid the problem by
1214  * use of a a per-mount "asynchronous requests manager thread" which is
1215  * signaled by the various asynchronous work routines when there is
1216  * asynchronous work to be done.  It is responsible for creating new
1217  * worker threads if necessary, and notifying existing worker threads
1218  * that there is work to be done.
1219  *
1220  * In other words, it will "take the specifications from the customers and
1221  * give them to the engineers."
1222  *
1223  * Worker threads die off of their own accord if they are no longer
1224  * needed.
1225  *
1226  * This thread is killed when the zone is going away or the filesystem
1227  * is being unmounted.
1228  */
1229 void
1230 nfs_async_manager(vfs_t *vfsp)
1231 {
1232 	callb_cpr_t cprinfo;
1233 	mntinfo_t *mi;
1234 	uint_t max_threads;
1235 
1236 	mi = VFTOMI(vfsp);
1237 
1238 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1239 	    "nfs_async_manager");
1240 
1241 	mutex_enter(&mi->mi_async_lock);
1242 	/*
1243 	 * We want to stash the max number of threads that this mount was
1244 	 * allowed so we can use it later when the variable is set to zero as
1245 	 * part of the zone/mount going away.
1246 	 *
1247 	 * We want to be able to create at least one thread to handle
1248 	 * asynchronous inactive calls.
1249 	 */
1250 	max_threads = MAX(mi->mi_max_threads, 1);
1251 	/*
1252 	 * We don't want to wait for mi_max_threads to go to zero, since that
1253 	 * happens as part of a failed unmount, but this thread should only
1254 	 * exit when the mount/zone is really going away.
1255 	 *
1256 	 * Once MI_ASYNC_MGR_STOP is set, no more async operations will be
1257 	 * attempted: the various _async_*() functions know to do things
1258 	 * inline if mi_max_threads == 0.  Henceforth we just drain out the
1259 	 * outstanding requests.
1260 	 *
1261 	 * Note that we still create zthreads even if we notice the zone is
1262 	 * shutting down (MI_ASYNC_MGR_STOP is set); this may cause the zone
1263 	 * shutdown sequence to take slightly longer in some cases, but
1264 	 * doesn't violate the protocol, as all threads will exit as soon as
1265 	 * they're done processing the remaining requests.
1266 	 */
1267 	for (;;) {
1268 		while (mi->mi_async_req_count > 0) {
1269 			/*
1270 			 * Paranoia: If the mount started out having
1271 			 * (mi->mi_max_threads == 0), and the value was
1272 			 * later changed (via a debugger or somesuch),
1273 			 * we could be confused since we will think we
1274 			 * can't create any threads, and the calling
1275 			 * code (which looks at the current value of
1276 			 * mi->mi_max_threads, now non-zero) thinks we
1277 			 * can.
1278 			 *
1279 			 * So, because we're paranoid, we create threads
1280 			 * up to the maximum of the original and the
1281 			 * current value. This means that future
1282 			 * (debugger-induced) lowerings of
1283 			 * mi->mi_max_threads are ignored for our
1284 			 * purposes, but who told them they could change
1285 			 * random values on a live kernel anyhow?
1286 			 */
1287 			if (mi->mi_threads[NFS_ASYNC_QUEUE] <
1288 			    MAX(mi->mi_max_threads, max_threads)) {
1289 				mi->mi_threads[NFS_ASYNC_QUEUE]++;
1290 				mutex_exit(&mi->mi_async_lock);
1291 				VFS_HOLD(vfsp);	/* hold for new thread */
1292 				(void) zthread_create(NULL, 0, nfs_async_start,
1293 				    vfsp, 0, minclsyspri);
1294 				mutex_enter(&mi->mi_async_lock);
1295 			} else if (mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE] <
1296 			    NUM_ASYNC_PGOPS_THREADS) {
1297 				mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE]++;
1298 				mutex_exit(&mi->mi_async_lock);
1299 				VFS_HOLD(vfsp); /* hold for new thread */
1300 				(void) zthread_create(NULL, 0,
1301 				    nfs_async_pgops_start, vfsp, 0,
1302 				    minclsyspri);
1303 				mutex_enter(&mi->mi_async_lock);
1304 			}
1305 			NFS_WAKE_ASYNC_WORKER(mi->mi_async_work_cv);
1306 			ASSERT(mi->mi_async_req_count != 0);
1307 			mi->mi_async_req_count--;
1308 		}
1309 
1310 		mutex_enter(&mi->mi_lock);
1311 		if (mi->mi_flags & MI_ASYNC_MGR_STOP) {
1312 			mutex_exit(&mi->mi_lock);
1313 			break;
1314 		}
1315 		mutex_exit(&mi->mi_lock);
1316 
1317 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1318 		cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock);
1319 		CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1320 	}
1321 	/*
1322 	 * Let everyone know we're done.
1323 	 */
1324 	mi->mi_manager_thread = NULL;
1325 	cv_broadcast(&mi->mi_async_cv);
1326 
1327 	/*
1328 	 * There is no explicit call to mutex_exit(&mi->mi_async_lock)
1329 	 * since CALLB_CPR_EXIT is actually responsible for releasing
1330 	 * 'mi_async_lock'.
1331 	 */
1332 	CALLB_CPR_EXIT(&cprinfo);
1333 	VFS_RELE(vfsp);	/* release thread's hold */
1334 	zthread_exit();
1335 }
1336 
1337 /*
1338  * Signal (and wait for) the async manager thread to clean up and go away.
1339  */
1340 void
1341 nfs_async_manager_stop(vfs_t *vfsp)
1342 {
1343 	mntinfo_t *mi = VFTOMI(vfsp);
1344 
1345 	mutex_enter(&mi->mi_async_lock);
1346 	mutex_enter(&mi->mi_lock);
1347 	mi->mi_flags |= MI_ASYNC_MGR_STOP;
1348 	mutex_exit(&mi->mi_lock);
1349 	cv_broadcast(&mi->mi_async_reqs_cv);
1350 	while (mi->mi_manager_thread != NULL)
1351 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1352 	mutex_exit(&mi->mi_async_lock);
1353 }
1354 
1355 int
1356 nfs_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr,
1357     struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *,
1358     u_offset_t, caddr_t, struct seg *, cred_t *))
1359 {
1360 	rnode_t *rp;
1361 	mntinfo_t *mi;
1362 	struct nfs_async_reqs *args;
1363 
1364 	rp = VTOR(vp);
1365 	ASSERT(rp->r_freef == NULL);
1366 
1367 	mi = VTOMI(vp);
1368 
1369 	/*
1370 	 * If addr falls in a different segment, don't bother doing readahead.
1371 	 */
1372 	if (addr >= seg->s_base + seg->s_size)
1373 		return (-1);
1374 
1375 	/*
1376 	 * If we can't allocate a request structure, punt on the readahead.
1377 	 */
1378 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1379 		return (-1);
1380 
1381 	/*
1382 	 * If a lock operation is pending, don't initiate any new
1383 	 * readaheads.  Otherwise, bump r_count to indicate the new
1384 	 * asynchronous I/O.
1385 	 */
1386 	if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) {
1387 		kmem_free(args, sizeof (*args));
1388 		return (-1);
1389 	}
1390 	mutex_enter(&rp->r_statelock);
1391 	rp->r_count++;
1392 	mutex_exit(&rp->r_statelock);
1393 	nfs_rw_exit(&rp->r_lkserlock);
1394 
1395 	args->a_next = NULL;
1396 #ifdef DEBUG
1397 	args->a_queuer = curthread;
1398 #endif
1399 	VN_HOLD(vp);
1400 	args->a_vp = vp;
1401 	ASSERT(cr != NULL);
1402 	crhold(cr);
1403 	args->a_cred = cr;
1404 	args->a_io = NFS_READ_AHEAD;
1405 	args->a_nfs_readahead = readahead;
1406 	args->a_nfs_blkoff = blkoff;
1407 	args->a_nfs_seg = seg;
1408 	args->a_nfs_addr = addr;
1409 
1410 	mutex_enter(&mi->mi_async_lock);
1411 
1412 	/*
1413 	 * If asyncio has been disabled, don't bother readahead.
1414 	 */
1415 	if (mi->mi_max_threads == 0) {
1416 		mutex_exit(&mi->mi_async_lock);
1417 		goto noasync;
1418 	}
1419 
1420 	/*
1421 	 * Link request structure into the async list and
1422 	 * wakeup async thread to do the i/o.
1423 	 */
1424 	if (mi->mi_async_reqs[NFS_READ_AHEAD] == NULL) {
1425 		mi->mi_async_reqs[NFS_READ_AHEAD] = args;
1426 		mi->mi_async_tail[NFS_READ_AHEAD] = args;
1427 	} else {
1428 		mi->mi_async_tail[NFS_READ_AHEAD]->a_next = args;
1429 		mi->mi_async_tail[NFS_READ_AHEAD] = args;
1430 	}
1431 
1432 	if (mi->mi_io_kstats) {
1433 		mutex_enter(&mi->mi_lock);
1434 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1435 		mutex_exit(&mi->mi_lock);
1436 	}
1437 
1438 	mi->mi_async_req_count++;
1439 	ASSERT(mi->mi_async_req_count != 0);
1440 	cv_signal(&mi->mi_async_reqs_cv);
1441 	mutex_exit(&mi->mi_async_lock);
1442 	return (0);
1443 
1444 noasync:
1445 	mutex_enter(&rp->r_statelock);
1446 	rp->r_count--;
1447 	cv_broadcast(&rp->r_cv);
1448 	mutex_exit(&rp->r_statelock);
1449 	VN_RELE(vp);
1450 	crfree(cr);
1451 	kmem_free(args, sizeof (*args));
1452 	return (-1);
1453 }
1454 
1455 int
1456 nfs_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
1457     int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *,
1458     u_offset_t, size_t, int, cred_t *))
1459 {
1460 	rnode_t *rp;
1461 	mntinfo_t *mi;
1462 	struct nfs_async_reqs *args;
1463 
1464 	ASSERT(flags & B_ASYNC);
1465 	ASSERT(vp->v_vfsp != NULL);
1466 
1467 	rp = VTOR(vp);
1468 	ASSERT(rp->r_count > 0);
1469 
1470 	mi = VTOMI(vp);
1471 
1472 	/*
1473 	 * If we can't allocate a request structure, do the putpage
1474 	 * operation synchronously in this thread's context.
1475 	 */
1476 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1477 		goto noasync;
1478 
1479 	args->a_next = NULL;
1480 #ifdef DEBUG
1481 	args->a_queuer = curthread;
1482 #endif
1483 	VN_HOLD(vp);
1484 	args->a_vp = vp;
1485 	ASSERT(cr != NULL);
1486 	crhold(cr);
1487 	args->a_cred = cr;
1488 	args->a_io = NFS_PUTAPAGE;
1489 	args->a_nfs_putapage = putapage;
1490 	args->a_nfs_pp = pp;
1491 	args->a_nfs_off = off;
1492 	args->a_nfs_len = (uint_t)len;
1493 	args->a_nfs_flags = flags;
1494 
1495 	mutex_enter(&mi->mi_async_lock);
1496 
1497 	/*
1498 	 * If asyncio has been disabled, then make a synchronous request.
1499 	 * This check is done a second time in case async io was diabled
1500 	 * while this thread was blocked waiting for memory pressure to
1501 	 * reduce or for the queue to drain.
1502 	 */
1503 	if (mi->mi_max_threads == 0) {
1504 		mutex_exit(&mi->mi_async_lock);
1505 		goto noasync;
1506 	}
1507 
1508 	/*
1509 	 * Link request structure into the async list and
1510 	 * wakeup async thread to do the i/o.
1511 	 */
1512 	if (mi->mi_async_reqs[NFS_PUTAPAGE] == NULL) {
1513 		mi->mi_async_reqs[NFS_PUTAPAGE] = args;
1514 		mi->mi_async_tail[NFS_PUTAPAGE] = args;
1515 	} else {
1516 		mi->mi_async_tail[NFS_PUTAPAGE]->a_next = args;
1517 		mi->mi_async_tail[NFS_PUTAPAGE] = args;
1518 	}
1519 
1520 	mutex_enter(&rp->r_statelock);
1521 	rp->r_count++;
1522 	rp->r_awcount++;
1523 	mutex_exit(&rp->r_statelock);
1524 
1525 	if (mi->mi_io_kstats) {
1526 		mutex_enter(&mi->mi_lock);
1527 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1528 		mutex_exit(&mi->mi_lock);
1529 	}
1530 
1531 	mi->mi_async_req_count++;
1532 	ASSERT(mi->mi_async_req_count != 0);
1533 	cv_signal(&mi->mi_async_reqs_cv);
1534 	mutex_exit(&mi->mi_async_lock);
1535 	return (0);
1536 
1537 noasync:
1538 	if (args != NULL) {
1539 		VN_RELE(vp);
1540 		crfree(cr);
1541 		kmem_free(args, sizeof (*args));
1542 	}
1543 
1544 	if (curproc == proc_pageout || curproc == proc_fsflush) {
1545 		/*
1546 		 * If we get here in the context of the pageout/fsflush,
1547 		 * we refuse to do a sync write, because this may hang
1548 		 * pageout (and the machine). In this case, we just
1549 		 * re-mark the page as dirty and punt on the page.
1550 		 *
1551 		 * Make sure B_FORCE isn't set.  We can re-mark the
1552 		 * pages as dirty and unlock the pages in one swoop by
1553 		 * passing in B_ERROR to pvn_write_done().  However,
1554 		 * we should make sure B_FORCE isn't set - we don't
1555 		 * want the page tossed before it gets written out.
1556 		 */
1557 		if (flags & B_FORCE)
1558 			flags &= ~(B_INVAL | B_FORCE);
1559 		pvn_write_done(pp, flags | B_ERROR);
1560 		return (0);
1561 	}
1562 	if (nfs_zone() != mi->mi_zone) {
1563 		/*
1564 		 * So this was a cross-zone sync putpage.  We pass in B_ERROR
1565 		 * to pvn_write_done() to re-mark the pages as dirty and unlock
1566 		 * them.
1567 		 *
1568 		 * We don't want to clear B_FORCE here as the caller presumably
1569 		 * knows what they're doing if they set it.
1570 		 */
1571 		pvn_write_done(pp, flags | B_ERROR);
1572 		return (EPERM);
1573 	}
1574 	return ((*putapage)(vp, pp, off, len, flags, cr));
1575 }
1576 
1577 int
1578 nfs_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
1579     int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
1580     size_t, int, cred_t *))
1581 {
1582 	rnode_t *rp;
1583 	mntinfo_t *mi;
1584 	struct nfs_async_reqs *args;
1585 
1586 	ASSERT(flags & B_ASYNC);
1587 	ASSERT(vp->v_vfsp != NULL);
1588 
1589 	rp = VTOR(vp);
1590 	ASSERT(rp->r_count > 0);
1591 
1592 	mi = VTOMI(vp);
1593 
1594 	/*
1595 	 * If we can't allocate a request structure, do the pageio
1596 	 * request synchronously in this thread's context.
1597 	 */
1598 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1599 		goto noasync;
1600 
1601 	args->a_next = NULL;
1602 #ifdef DEBUG
1603 	args->a_queuer = curthread;
1604 #endif
1605 	VN_HOLD(vp);
1606 	args->a_vp = vp;
1607 	ASSERT(cr != NULL);
1608 	crhold(cr);
1609 	args->a_cred = cr;
1610 	args->a_io = NFS_PAGEIO;
1611 	args->a_nfs_pageio = pageio;
1612 	args->a_nfs_pp = pp;
1613 	args->a_nfs_off = io_off;
1614 	args->a_nfs_len = (uint_t)io_len;
1615 	args->a_nfs_flags = flags;
1616 
1617 	mutex_enter(&mi->mi_async_lock);
1618 
1619 	/*
1620 	 * If asyncio has been disabled, then make a synchronous request.
1621 	 * This check is done a second time in case async io was diabled
1622 	 * while this thread was blocked waiting for memory pressure to
1623 	 * reduce or for the queue to drain.
1624 	 */
1625 	if (mi->mi_max_threads == 0) {
1626 		mutex_exit(&mi->mi_async_lock);
1627 		goto noasync;
1628 	}
1629 
1630 	/*
1631 	 * Link request structure into the async list and
1632 	 * wakeup async thread to do the i/o.
1633 	 */
1634 	if (mi->mi_async_reqs[NFS_PAGEIO] == NULL) {
1635 		mi->mi_async_reqs[NFS_PAGEIO] = args;
1636 		mi->mi_async_tail[NFS_PAGEIO] = args;
1637 	} else {
1638 		mi->mi_async_tail[NFS_PAGEIO]->a_next = args;
1639 		mi->mi_async_tail[NFS_PAGEIO] = args;
1640 	}
1641 
1642 	mutex_enter(&rp->r_statelock);
1643 	rp->r_count++;
1644 	rp->r_awcount++;
1645 	mutex_exit(&rp->r_statelock);
1646 
1647 	if (mi->mi_io_kstats) {
1648 		mutex_enter(&mi->mi_lock);
1649 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1650 		mutex_exit(&mi->mi_lock);
1651 	}
1652 
1653 	mi->mi_async_req_count++;
1654 	ASSERT(mi->mi_async_req_count != 0);
1655 	cv_signal(&mi->mi_async_reqs_cv);
1656 	mutex_exit(&mi->mi_async_lock);
1657 	return (0);
1658 
1659 noasync:
1660 	if (args != NULL) {
1661 		VN_RELE(vp);
1662 		crfree(cr);
1663 		kmem_free(args, sizeof (*args));
1664 	}
1665 
1666 	/*
1667 	 * If we can't do it ASYNC, for reads we do nothing (but cleanup
1668 	 * the page list), for writes we do it synchronously, except for
1669 	 * proc_pageout/proc_fsflush as described below.
1670 	 */
1671 	if (flags & B_READ) {
1672 		pvn_read_done(pp, flags | B_ERROR);
1673 		return (0);
1674 	}
1675 
1676 	if (curproc == proc_pageout || curproc == proc_fsflush) {
1677 		/*
1678 		 * If we get here in the context of the pageout/fsflush,
1679 		 * we refuse to do a sync write, because this may hang
1680 		 * pageout/fsflush (and the machine). In this case, we just
1681 		 * re-mark the page as dirty and punt on the page.
1682 		 *
1683 		 * Make sure B_FORCE isn't set.  We can re-mark the
1684 		 * pages as dirty and unlock the pages in one swoop by
1685 		 * passing in B_ERROR to pvn_write_done().  However,
1686 		 * we should make sure B_FORCE isn't set - we don't
1687 		 * want the page tossed before it gets written out.
1688 		 */
1689 		if (flags & B_FORCE)
1690 			flags &= ~(B_INVAL | B_FORCE);
1691 		pvn_write_done(pp, flags | B_ERROR);
1692 		return (0);
1693 	}
1694 
1695 	if (nfs_zone() != mi->mi_zone) {
1696 		/*
1697 		 * So this was a cross-zone sync pageio.  We pass in B_ERROR
1698 		 * to pvn_write_done() to re-mark the pages as dirty and unlock
1699 		 * them.
1700 		 *
1701 		 * We don't want to clear B_FORCE here as the caller presumably
1702 		 * knows what they're doing if they set it.
1703 		 */
1704 		pvn_write_done(pp, flags | B_ERROR);
1705 		return (EPERM);
1706 	}
1707 	return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
1708 }
1709 
1710 void
1711 nfs_async_readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr,
1712     int (*readdir)(vnode_t *, rddir_cache *, cred_t *))
1713 {
1714 	rnode_t *rp;
1715 	mntinfo_t *mi;
1716 	struct nfs_async_reqs *args;
1717 
1718 	rp = VTOR(vp);
1719 	ASSERT(rp->r_freef == NULL);
1720 
1721 	mi = VTOMI(vp);
1722 
1723 	/*
1724 	 * If we can't allocate a request structure, do the readdir
1725 	 * operation synchronously in this thread's context.
1726 	 */
1727 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1728 		goto noasync;
1729 
1730 	args->a_next = NULL;
1731 #ifdef DEBUG
1732 	args->a_queuer = curthread;
1733 #endif
1734 	VN_HOLD(vp);
1735 	args->a_vp = vp;
1736 	ASSERT(cr != NULL);
1737 	crhold(cr);
1738 	args->a_cred = cr;
1739 	args->a_io = NFS_READDIR;
1740 	args->a_nfs_readdir = readdir;
1741 	args->a_nfs_rdc = rdc;
1742 
1743 	mutex_enter(&mi->mi_async_lock);
1744 
1745 	/*
1746 	 * If asyncio has been disabled, then make a synchronous request.
1747 	 */
1748 	if (mi->mi_max_threads == 0) {
1749 		mutex_exit(&mi->mi_async_lock);
1750 		goto noasync;
1751 	}
1752 
1753 	/*
1754 	 * Link request structure into the async list and
1755 	 * wakeup async thread to do the i/o.
1756 	 */
1757 	if (mi->mi_async_reqs[NFS_READDIR] == NULL) {
1758 		mi->mi_async_reqs[NFS_READDIR] = args;
1759 		mi->mi_async_tail[NFS_READDIR] = args;
1760 	} else {
1761 		mi->mi_async_tail[NFS_READDIR]->a_next = args;
1762 		mi->mi_async_tail[NFS_READDIR] = args;
1763 	}
1764 
1765 	mutex_enter(&rp->r_statelock);
1766 	rp->r_count++;
1767 	mutex_exit(&rp->r_statelock);
1768 
1769 	if (mi->mi_io_kstats) {
1770 		mutex_enter(&mi->mi_lock);
1771 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1772 		mutex_exit(&mi->mi_lock);
1773 	}
1774 
1775 	mi->mi_async_req_count++;
1776 	ASSERT(mi->mi_async_req_count != 0);
1777 	cv_signal(&mi->mi_async_reqs_cv);
1778 	mutex_exit(&mi->mi_async_lock);
1779 	return;
1780 
1781 noasync:
1782 	if (args != NULL) {
1783 		VN_RELE(vp);
1784 		crfree(cr);
1785 		kmem_free(args, sizeof (*args));
1786 	}
1787 
1788 	rdc->entries = NULL;
1789 	mutex_enter(&rp->r_statelock);
1790 	ASSERT(rdc->flags & RDDIR);
1791 	rdc->flags &= ~RDDIR;
1792 	rdc->flags |= RDDIRREQ;
1793 	/*
1794 	 * Check the flag to see if RDDIRWAIT is set. If RDDIRWAIT
1795 	 * is set, wakeup the thread sleeping in cv_wait_sig().
1796 	 * The woken up thread will reset the flag to RDDIR and will
1797 	 * continue with the readdir opeartion.
1798 	 */
1799 	if (rdc->flags & RDDIRWAIT) {
1800 		rdc->flags &= ~RDDIRWAIT;
1801 		cv_broadcast(&rdc->cv);
1802 	}
1803 	mutex_exit(&rp->r_statelock);
1804 	rddir_cache_rele(rdc);
1805 }
1806 
1807 void
1808 nfs_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
1809     cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3, cred_t *))
1810 {
1811 	rnode_t *rp;
1812 	mntinfo_t *mi;
1813 	struct nfs_async_reqs *args;
1814 	page_t *pp;
1815 
1816 	rp = VTOR(vp);
1817 	mi = VTOMI(vp);
1818 
1819 	/*
1820 	 * If we can't allocate a request structure, do the commit
1821 	 * operation synchronously in this thread's context.
1822 	 */
1823 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1824 		goto noasync;
1825 
1826 	args->a_next = NULL;
1827 #ifdef DEBUG
1828 	args->a_queuer = curthread;
1829 #endif
1830 	VN_HOLD(vp);
1831 	args->a_vp = vp;
1832 	ASSERT(cr != NULL);
1833 	crhold(cr);
1834 	args->a_cred = cr;
1835 	args->a_io = NFS_COMMIT;
1836 	args->a_nfs_commit = commit;
1837 	args->a_nfs_plist = plist;
1838 	args->a_nfs_offset = offset;
1839 	args->a_nfs_count = count;
1840 
1841 	mutex_enter(&mi->mi_async_lock);
1842 
1843 	/*
1844 	 * If asyncio has been disabled, then make a synchronous request.
1845 	 * This check is done a second time in case async io was diabled
1846 	 * while this thread was blocked waiting for memory pressure to
1847 	 * reduce or for the queue to drain.
1848 	 */
1849 	if (mi->mi_max_threads == 0) {
1850 		mutex_exit(&mi->mi_async_lock);
1851 		goto noasync;
1852 	}
1853 
1854 	/*
1855 	 * Link request structure into the async list and
1856 	 * wakeup async thread to do the i/o.
1857 	 */
1858 	if (mi->mi_async_reqs[NFS_COMMIT] == NULL) {
1859 		mi->mi_async_reqs[NFS_COMMIT] = args;
1860 		mi->mi_async_tail[NFS_COMMIT] = args;
1861 	} else {
1862 		mi->mi_async_tail[NFS_COMMIT]->a_next = args;
1863 		mi->mi_async_tail[NFS_COMMIT] = args;
1864 	}
1865 
1866 	mutex_enter(&rp->r_statelock);
1867 	rp->r_count++;
1868 	mutex_exit(&rp->r_statelock);
1869 
1870 	if (mi->mi_io_kstats) {
1871 		mutex_enter(&mi->mi_lock);
1872 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1873 		mutex_exit(&mi->mi_lock);
1874 	}
1875 
1876 	mi->mi_async_req_count++;
1877 	ASSERT(mi->mi_async_req_count != 0);
1878 	cv_signal(&mi->mi_async_reqs_cv);
1879 	mutex_exit(&mi->mi_async_lock);
1880 	return;
1881 
1882 noasync:
1883 	if (args != NULL) {
1884 		VN_RELE(vp);
1885 		crfree(cr);
1886 		kmem_free(args, sizeof (*args));
1887 	}
1888 
1889 	if (curproc == proc_pageout || curproc == proc_fsflush ||
1890 	    nfs_zone() != mi->mi_zone) {
1891 		while (plist != NULL) {
1892 			pp = plist;
1893 			page_sub(&plist, pp);
1894 			pp->p_fsdata = C_COMMIT;
1895 			page_unlock(pp);
1896 		}
1897 		return;
1898 	}
1899 	(*commit)(vp, plist, offset, count, cr);
1900 }
1901 
1902 void
1903 nfs_async_inactive(vnode_t *vp, cred_t *cr,
1904     void (*inactive)(vnode_t *, cred_t *, caller_context_t *))
1905 {
1906 	mntinfo_t *mi;
1907 	struct nfs_async_reqs *args;
1908 
1909 	mi = VTOMI(vp);
1910 
1911 	args = kmem_alloc(sizeof (*args), KM_SLEEP);
1912 	args->a_next = NULL;
1913 #ifdef DEBUG
1914 	args->a_queuer = curthread;
1915 #endif
1916 	args->a_vp = vp;
1917 	ASSERT(cr != NULL);
1918 	crhold(cr);
1919 	args->a_cred = cr;
1920 	args->a_io = NFS_INACTIVE;
1921 	args->a_nfs_inactive = inactive;
1922 
1923 	/*
1924 	 * Note that we don't check mi->mi_max_threads here, since we
1925 	 * *need* to get rid of this vnode regardless of whether someone
1926 	 * set nfs3_max_threads/nfs_max_threads to zero in /etc/system.
1927 	 *
1928 	 * The manager thread knows about this and is willing to create
1929 	 * at least one thread to accommodate us.
1930 	 */
1931 	mutex_enter(&mi->mi_async_lock);
1932 	if (mi->mi_manager_thread == NULL) {
1933 		rnode_t *rp = VTOR(vp);
1934 
1935 		mutex_exit(&mi->mi_async_lock);
1936 		crfree(cr);	/* drop our reference */
1937 		kmem_free(args, sizeof (*args));
1938 		/*
1939 		 * We can't do an over-the-wire call since we're in the wrong
1940 		 * zone, so we need to clean up state as best we can and then
1941 		 * throw away the vnode.
1942 		 */
1943 		mutex_enter(&rp->r_statelock);
1944 		if (rp->r_unldvp != NULL) {
1945 			vnode_t *unldvp;
1946 			char *unlname;
1947 			cred_t *unlcred;
1948 
1949 			unldvp = rp->r_unldvp;
1950 			rp->r_unldvp = NULL;
1951 			unlname = rp->r_unlname;
1952 			rp->r_unlname = NULL;
1953 			unlcred = rp->r_unlcred;
1954 			rp->r_unlcred = NULL;
1955 			mutex_exit(&rp->r_statelock);
1956 
1957 			VN_RELE(unldvp);
1958 			kmem_free(unlname, MAXNAMELEN);
1959 			crfree(unlcred);
1960 		} else {
1961 			mutex_exit(&rp->r_statelock);
1962 		}
1963 		/*
1964 		 * No need to explicitly throw away any cached pages.  The
1965 		 * eventual rinactive() will attempt a synchronous
1966 		 * VOP_PUTPAGE() which will immediately fail since the request
1967 		 * is coming from the wrong zone, and then will proceed to call
1968 		 * nfs_invalidate_pages() which will clean things up for us.
1969 		 */
1970 		rp_addfree(VTOR(vp), cr);
1971 		return;
1972 	}
1973 
1974 	if (mi->mi_async_reqs[NFS_INACTIVE] == NULL) {
1975 		mi->mi_async_reqs[NFS_INACTIVE] = args;
1976 	} else {
1977 		mi->mi_async_tail[NFS_INACTIVE]->a_next = args;
1978 	}
1979 	mi->mi_async_tail[NFS_INACTIVE] = args;
1980 	/*
1981 	 * Don't increment r_count, since we're trying to get rid of the vnode.
1982 	 */
1983 
1984 	mi->mi_async_req_count++;
1985 	ASSERT(mi->mi_async_req_count != 0);
1986 	cv_signal(&mi->mi_async_reqs_cv);
1987 	mutex_exit(&mi->mi_async_lock);
1988 }
1989 
1990 static void
1991 nfs_async_start(struct vfs *vfsp)
1992 {
1993 	nfs_async_common_start(vfsp, NFS_ASYNC_QUEUE);
1994 }
1995 
1996 static void
1997 nfs_async_pgops_start(struct vfs *vfsp)
1998 {
1999 	nfs_async_common_start(vfsp, NFS_ASYNC_PGOPS_QUEUE);
2000 }
2001 
2002 /*
2003  * The async queues for each mounted file system are arranged as a
2004  * set of queues, one for each async i/o type.  Requests are taken
2005  * from the queues in a round-robin fashion.  A number of consecutive
2006  * requests are taken from each queue before moving on to the next
2007  * queue.  This functionality may allow the NFS Version 2 server to do
2008  * write clustering, even if the client is mixing writes and reads
2009  * because it will take multiple write requests from the queue
2010  * before processing any of the other async i/o types.
2011  *
2012  * XXX The nfs_async_common_start thread is unsafe in the light of the present
2013  * model defined by cpr to suspend the system. Specifically over the
2014  * wire calls are cpr-unsafe. The thread should be reevaluated in
2015  * case of future updates to the cpr model.
2016  */
2017 static void
2018 nfs_async_common_start(struct vfs *vfsp, int async_queue)
2019 {
2020 	struct nfs_async_reqs *args;
2021 	mntinfo_t *mi = VFTOMI(vfsp);
2022 	clock_t time_left = 1;
2023 	callb_cpr_t cprinfo;
2024 	int i;
2025 	int async_types;
2026 	kcondvar_t *async_work_cv;
2027 
2028 	if (async_queue == NFS_ASYNC_QUEUE) {
2029 		async_types = NFS_ASYNC_TYPES;
2030 		async_work_cv = &mi->mi_async_work_cv[NFS_ASYNC_QUEUE];
2031 	} else {
2032 		async_types = NFS_ASYNC_PGOPS_TYPES;
2033 		async_work_cv = &mi->mi_async_work_cv[NFS_ASYNC_PGOPS_QUEUE];
2034 	}
2035 
2036 	/*
2037 	 * Dynamic initialization of nfs_async_timeout to allow nfs to be
2038 	 * built in an implementation independent manner.
2039 	 */
2040 	if (nfs_async_timeout == -1)
2041 		nfs_async_timeout = NFS_ASYNC_TIMEOUT;
2042 
2043 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas");
2044 
2045 	mutex_enter(&mi->mi_async_lock);
2046 	for (;;) {
2047 		/*
2048 		 * Find the next queue containing an entry.  We start
2049 		 * at the current queue pointer and then round robin
2050 		 * through all of them until we either find a non-empty
2051 		 * queue or have looked through all of them.
2052 		 */
2053 		for (i = 0; i < async_types; i++) {
2054 			args = *mi->mi_async_curr[async_queue];
2055 			if (args != NULL)
2056 				break;
2057 			mi->mi_async_curr[async_queue]++;
2058 			if (mi->mi_async_curr[async_queue] ==
2059 			    &mi->mi_async_reqs[async_types]) {
2060 				mi->mi_async_curr[async_queue] =
2061 				    &mi->mi_async_reqs[0];
2062 			}
2063 		}
2064 		/*
2065 		 * If we didn't find a entry, then block until woken up
2066 		 * again and then look through the queues again.
2067 		 */
2068 		if (args == NULL) {
2069 			/*
2070 			 * Exiting is considered to be safe for CPR as well
2071 			 */
2072 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2073 
2074 			/*
2075 			 * Wakeup thread waiting to unmount the file
2076 			 * system only if all async threads are inactive.
2077 			 *
2078 			 * If we've timed-out and there's nothing to do,
2079 			 * then get rid of this thread.
2080 			 */
2081 			if (mi->mi_max_threads == 0 || time_left <= 0) {
2082 				--mi->mi_threads[async_queue];
2083 
2084 				if (mi->mi_threads[NFS_ASYNC_QUEUE] == 0 &&
2085 				    mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE] == 0)
2086 					cv_signal(&mi->mi_async_cv);
2087 				CALLB_CPR_EXIT(&cprinfo);
2088 				VFS_RELE(vfsp);	/* release thread's hold */
2089 				zthread_exit();
2090 				/* NOTREACHED */
2091 			}
2092 			time_left = cv_reltimedwait(async_work_cv,
2093 			    &mi->mi_async_lock, nfs_async_timeout,
2094 			    TR_CLOCK_TICK);
2095 
2096 			CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
2097 
2098 			continue;
2099 		}
2100 		time_left = 1;
2101 
2102 		/*
2103 		 * Remove the request from the async queue and then
2104 		 * update the current async request queue pointer.  If
2105 		 * the current queue is empty or we have removed enough
2106 		 * consecutive entries from it, then reset the counter
2107 		 * for this queue and then move the current pointer to
2108 		 * the next queue.
2109 		 */
2110 		*mi->mi_async_curr[async_queue] = args->a_next;
2111 		if (*mi->mi_async_curr[async_queue] == NULL ||
2112 		    --mi->mi_async_clusters[args->a_io] == 0) {
2113 			mi->mi_async_clusters[args->a_io] =
2114 			    mi->mi_async_init_clusters;
2115 			mi->mi_async_curr[async_queue]++;
2116 			if (mi->mi_async_curr[async_queue] ==
2117 			    &mi->mi_async_reqs[async_types]) {
2118 				mi->mi_async_curr[async_queue] =
2119 				    &mi->mi_async_reqs[0];
2120 			}
2121 		}
2122 
2123 		if (args->a_io != NFS_INACTIVE && mi->mi_io_kstats) {
2124 			mutex_enter(&mi->mi_lock);
2125 			kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
2126 			mutex_exit(&mi->mi_lock);
2127 		}
2128 
2129 		mutex_exit(&mi->mi_async_lock);
2130 
2131 		/*
2132 		 * Obtain arguments from the async request structure.
2133 		 */
2134 		if (args->a_io == NFS_READ_AHEAD && mi->mi_max_threads > 0) {
2135 			(*args->a_nfs_readahead)(args->a_vp, args->a_nfs_blkoff,
2136 			    args->a_nfs_addr, args->a_nfs_seg,
2137 			    args->a_cred);
2138 		} else if (args->a_io == NFS_PUTAPAGE) {
2139 			(void) (*args->a_nfs_putapage)(args->a_vp,
2140 			    args->a_nfs_pp, args->a_nfs_off,
2141 			    args->a_nfs_len, args->a_nfs_flags,
2142 			    args->a_cred);
2143 		} else if (args->a_io == NFS_PAGEIO) {
2144 			(void) (*args->a_nfs_pageio)(args->a_vp,
2145 			    args->a_nfs_pp, args->a_nfs_off,
2146 			    args->a_nfs_len, args->a_nfs_flags,
2147 			    args->a_cred);
2148 		} else if (args->a_io == NFS_READDIR) {
2149 			(void) ((*args->a_nfs_readdir)(args->a_vp,
2150 			    args->a_nfs_rdc, args->a_cred));
2151 		} else if (args->a_io == NFS_COMMIT) {
2152 			(*args->a_nfs_commit)(args->a_vp, args->a_nfs_plist,
2153 			    args->a_nfs_offset, args->a_nfs_count,
2154 			    args->a_cred);
2155 		} else if (args->a_io == NFS_INACTIVE) {
2156 			(*args->a_nfs_inactive)(args->a_vp, args->a_cred, NULL);
2157 		}
2158 
2159 		/*
2160 		 * Now, release the vnode and free the credentials
2161 		 * structure.
2162 		 */
2163 		free_async_args(args);
2164 		/*
2165 		 * Reacquire the mutex because it will be needed above.
2166 		 */
2167 		mutex_enter(&mi->mi_async_lock);
2168 	}
2169 }
2170 
2171 void
2172 nfs_async_stop(struct vfs *vfsp)
2173 {
2174 	mntinfo_t *mi = VFTOMI(vfsp);
2175 
2176 	/*
2177 	 * Wait for all outstanding async operations to complete and for the
2178 	 * worker threads to exit.
2179 	 */
2180 	mutex_enter(&mi->mi_async_lock);
2181 	mi->mi_max_threads = 0;
2182 	NFS_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
2183 	while (mi->mi_threads[NFS_ASYNC_QUEUE] != 0 ||
2184 	    mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE] != 0)
2185 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
2186 	mutex_exit(&mi->mi_async_lock);
2187 }
2188 
2189 /*
2190  * nfs_async_stop_sig:
2191  * Wait for all outstanding putpage operation to complete. If a signal
2192  * is deliver we will abort and return non-zero. If we can put all the
2193  * pages we will return 0. This routine is called from nfs_unmount and
2194  * nfs3_unmount to make these operations interruptible.
2195  */
2196 int
2197 nfs_async_stop_sig(struct vfs *vfsp)
2198 {
2199 	mntinfo_t *mi = VFTOMI(vfsp);
2200 	ushort_t omax;
2201 	int rval;
2202 
2203 	/*
2204 	 * Wait for all outstanding async operations to complete and for the
2205 	 * worker threads to exit.
2206 	 */
2207 	mutex_enter(&mi->mi_async_lock);
2208 	omax = mi->mi_max_threads;
2209 	mi->mi_max_threads = 0;
2210 	/*
2211 	 * Tell all the worker threads to exit.
2212 	 */
2213 	NFS_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
2214 	while (mi->mi_threads[NFS_ASYNC_QUEUE] != 0 ||
2215 	    mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE] != 0) {
2216 		if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock))
2217 			break;
2218 	}
2219 	rval = (mi->mi_threads[NFS_ASYNC_QUEUE] != 0 ||
2220 	    mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE]  != 0); /* Interrupted */
2221 	if (rval)
2222 		mi->mi_max_threads = omax;
2223 	mutex_exit(&mi->mi_async_lock);
2224 
2225 	return (rval);
2226 }
2227 
2228 int
2229 writerp(rnode_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
2230 {
2231 	int pagecreate;
2232 	int n;
2233 	int saved_n;
2234 	caddr_t saved_base;
2235 	u_offset_t offset;
2236 	int error;
2237 	int sm_error;
2238 	vnode_t *vp = RTOV(rp);
2239 
2240 	ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid);
2241 	ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER));
2242 	if (!vpm_enable) {
2243 		ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE);
2244 	}
2245 
2246 	/*
2247 	 * Move bytes in at most PAGESIZE chunks. We must avoid
2248 	 * spanning pages in uiomove() because page faults may cause
2249 	 * the cache to be invalidated out from under us. The r_size is not
2250 	 * updated until after the uiomove. If we push the last page of a
2251 	 * file before r_size is correct, we will lose the data written past
2252 	 * the current (and invalid) r_size.
2253 	 */
2254 	do {
2255 		offset = uio->uio_loffset;
2256 		pagecreate = 0;
2257 
2258 		/*
2259 		 * n is the number of bytes required to satisfy the request
2260 		 *   or the number of bytes to fill out the page.
2261 		 */
2262 		n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount);
2263 
2264 		/*
2265 		 * Check to see if we can skip reading in the page
2266 		 * and just allocate the memory.  We can do this
2267 		 * if we are going to rewrite the entire mapping
2268 		 * or if we are going to write to or beyond the current
2269 		 * end of file from the beginning of the mapping.
2270 		 *
2271 		 * The read of r_size is now protected by r_statelock.
2272 		 */
2273 		mutex_enter(&rp->r_statelock);
2274 		/*
2275 		 * When pgcreated is nonzero the caller has already done
2276 		 * a segmap_getmapflt with forcefault 0 and S_WRITE. With
2277 		 * segkpm this means we already have at least one page
2278 		 * created and mapped at base.
2279 		 */
2280 		pagecreate = pgcreated ||
2281 		    ((offset & PAGEOFFSET) == 0 &&
2282 		    (n == PAGESIZE || ((offset + n) >= rp->r_size)));
2283 
2284 		mutex_exit(&rp->r_statelock);
2285 		if (!vpm_enable && pagecreate) {
2286 			/*
2287 			 * The last argument tells segmap_pagecreate() to
2288 			 * always lock the page, as opposed to sometimes
2289 			 * returning with the page locked. This way we avoid a
2290 			 * fault on the ensuing uiomove(), but also
2291 			 * more importantly (to fix bug 1094402) we can
2292 			 * call segmap_fault() to unlock the page in all
2293 			 * cases. An alternative would be to modify
2294 			 * segmap_pagecreate() to tell us when it is
2295 			 * locking a page, but that's a fairly major
2296 			 * interface change.
2297 			 */
2298 			if (pgcreated == 0)
2299 				(void) segmap_pagecreate(segkmap, base,
2300 				    (uint_t)n, 1);
2301 			saved_base = base;
2302 			saved_n = n;
2303 		}
2304 
2305 		/*
2306 		 * The number of bytes of data in the last page can not
2307 		 * be accurately be determined while page is being
2308 		 * uiomove'd to and the size of the file being updated.
2309 		 * Thus, inform threads which need to know accurately
2310 		 * how much data is in the last page of the file.  They
2311 		 * will not do the i/o immediately, but will arrange for
2312 		 * the i/o to happen later when this modify operation
2313 		 * will have finished.
2314 		 */
2315 		ASSERT(!(rp->r_flags & RMODINPROGRESS));
2316 		mutex_enter(&rp->r_statelock);
2317 		rp->r_flags |= RMODINPROGRESS;
2318 		rp->r_modaddr = (offset & MAXBMASK);
2319 		mutex_exit(&rp->r_statelock);
2320 
2321 		if (vpm_enable) {
2322 			/*
2323 			 * Copy data. If new pages are created, part of
2324 			 * the page that is not written will be initizliazed
2325 			 * with zeros.
2326 			 */
2327 			error = vpm_data_copy(vp, offset, n, uio,
2328 			    !pagecreate, NULL, 0, S_WRITE);
2329 		} else {
2330 			error = uiomove(base, n, UIO_WRITE, uio);
2331 		}
2332 
2333 		/*
2334 		 * r_size is the maximum number of
2335 		 * bytes known to be in the file.
2336 		 * Make sure it is at least as high as the
2337 		 * first unwritten byte pointed to by uio_loffset.
2338 		 */
2339 		mutex_enter(&rp->r_statelock);
2340 		if (rp->r_size < uio->uio_loffset)
2341 			rp->r_size = uio->uio_loffset;
2342 		rp->r_flags &= ~RMODINPROGRESS;
2343 		rp->r_flags |= RDIRTY;
2344 		mutex_exit(&rp->r_statelock);
2345 
2346 		/* n = # of bytes written */
2347 		n = (int)(uio->uio_loffset - offset);
2348 
2349 		if (!vpm_enable) {
2350 			base += n;
2351 		}
2352 		tcount -= n;
2353 		/*
2354 		 * If we created pages w/o initializing them completely,
2355 		 * we need to zero the part that wasn't set up.
2356 		 * This happens on a most EOF write cases and if
2357 		 * we had some sort of error during the uiomove.
2358 		 */
2359 		if (!vpm_enable && pagecreate) {
2360 			if ((uio->uio_loffset & PAGEOFFSET) || n == 0)
2361 				(void) kzero(base, PAGESIZE - n);
2362 
2363 			if (pgcreated) {
2364 				/*
2365 				 * Caller is responsible for this page,
2366 				 * it was not created in this loop.
2367 				 */
2368 				pgcreated = 0;
2369 			} else {
2370 				/*
2371 				 * For bug 1094402: segmap_pagecreate locks
2372 				 * page. Unlock it. This also unlocks the
2373 				 * pages allocated by page_create_va() in
2374 				 * segmap_pagecreate().
2375 				 */
2376 				sm_error = segmap_fault(kas.a_hat, segkmap,
2377 				    saved_base, saved_n,
2378 				    F_SOFTUNLOCK, S_WRITE);
2379 				if (error == 0)
2380 					error = sm_error;
2381 			}
2382 		}
2383 	} while (tcount > 0 && error == 0);
2384 
2385 	return (error);
2386 }
2387 
2388 int
2389 nfs_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
2390 {
2391 	rnode_t *rp;
2392 	page_t *pp;
2393 	u_offset_t eoff;
2394 	u_offset_t io_off;
2395 	size_t io_len;
2396 	int error;
2397 	int rdirty;
2398 	int err;
2399 
2400 	rp = VTOR(vp);
2401 	ASSERT(rp->r_count > 0);
2402 
2403 	if (!vn_has_cached_data(vp))
2404 		return (0);
2405 
2406 	ASSERT(vp->v_type != VCHR);
2407 
2408 	/*
2409 	 * If ROUTOFSPACE is set, then all writes turn into B_INVAL
2410 	 * writes.  B_FORCE is set to force the VM system to actually
2411 	 * invalidate the pages, even if the i/o failed.  The pages
2412 	 * need to get invalidated because they can't be written out
2413 	 * because there isn't any space left on either the server's
2414 	 * file system or in the user's disk quota.  The B_FREE bit
2415 	 * is cleared to avoid confusion as to whether this is a
2416 	 * request to place the page on the freelist or to destroy
2417 	 * it.
2418 	 */
2419 	if ((rp->r_flags & ROUTOFSPACE) ||
2420 	    (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
2421 		flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;
2422 
2423 	if (len == 0) {
2424 		/*
2425 		 * If doing a full file synchronous operation, then clear
2426 		 * the RDIRTY bit.  If a page gets dirtied while the flush
2427 		 * is happening, then RDIRTY will get set again.  The
2428 		 * RDIRTY bit must get cleared before the flush so that
2429 		 * we don't lose this information.
2430 		 *
2431 		 * If there are no full file async write operations
2432 		 * pending and RDIRTY bit is set, clear it.
2433 		 */
2434 		if (off == (u_offset_t)0 &&
2435 		    !(flags & B_ASYNC) &&
2436 		    (rp->r_flags & RDIRTY)) {
2437 			mutex_enter(&rp->r_statelock);
2438 			rdirty = (rp->r_flags & RDIRTY);
2439 			rp->r_flags &= ~RDIRTY;
2440 			mutex_exit(&rp->r_statelock);
2441 		} else if (flags & B_ASYNC && off == (u_offset_t)0) {
2442 			mutex_enter(&rp->r_statelock);
2443 			if (rp->r_flags & RDIRTY && rp->r_awcount == 0) {
2444 				rdirty = (rp->r_flags & RDIRTY);
2445 				rp->r_flags &= ~RDIRTY;
2446 			}
2447 			mutex_exit(&rp->r_statelock);
2448 		} else
2449 			rdirty = 0;
2450 
2451 		/*
2452 		 * Search the entire vp list for pages >= off, and flush
2453 		 * the dirty pages.
2454 		 */
2455 		error = pvn_vplist_dirty(vp, off, rp->r_putapage,
2456 		    flags, cr);
2457 
2458 		/*
2459 		 * If an error occurred and the file was marked as dirty
2460 		 * before and we aren't forcibly invalidating pages, then
2461 		 * reset the RDIRTY flag.
2462 		 */
2463 		if (error && rdirty &&
2464 		    (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {
2465 			mutex_enter(&rp->r_statelock);
2466 			rp->r_flags |= RDIRTY;
2467 			mutex_exit(&rp->r_statelock);
2468 		}
2469 	} else {
2470 		/*
2471 		 * Do a range from [off...off + len) looking for pages
2472 		 * to deal with.
2473 		 */
2474 		error = 0;
2475 #ifdef lint
2476 		io_len = 0;
2477 #endif
2478 		eoff = off + len;
2479 		mutex_enter(&rp->r_statelock);
2480 		for (io_off = off; io_off < eoff && io_off < rp->r_size;
2481 		    io_off += io_len) {
2482 			mutex_exit(&rp->r_statelock);
2483 			/*
2484 			 * If we are not invalidating, synchronously
2485 			 * freeing or writing pages use the routine
2486 			 * page_lookup_nowait() to prevent reclaiming
2487 			 * them from the free list.
2488 			 */
2489 			if ((flags & B_INVAL) || !(flags & B_ASYNC)) {
2490 				pp = page_lookup(vp, io_off,
2491 				    (flags & (B_INVAL | B_FREE)) ?
2492 				    SE_EXCL : SE_SHARED);
2493 			} else {
2494 				pp = page_lookup_nowait(vp, io_off,
2495 				    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2496 			}
2497 
2498 			if (pp == NULL || !pvn_getdirty(pp, flags))
2499 				io_len = PAGESIZE;
2500 			else {
2501 				err = (*rp->r_putapage)(vp, pp, &io_off,
2502 				    &io_len, flags, cr);
2503 				if (!error)
2504 					error = err;
2505 				/*
2506 				 * "io_off" and "io_len" are returned as
2507 				 * the range of pages we actually wrote.
2508 				 * This allows us to skip ahead more quickly
2509 				 * since several pages may've been dealt
2510 				 * with by this iteration of the loop.
2511 				 */
2512 			}
2513 			mutex_enter(&rp->r_statelock);
2514 		}
2515 		mutex_exit(&rp->r_statelock);
2516 	}
2517 
2518 	return (error);
2519 }
2520 
2521 void
2522 nfs_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr)
2523 {
2524 	rnode_t *rp;
2525 
2526 	rp = VTOR(vp);
2527 	mutex_enter(&rp->r_statelock);
2528 	while (rp->r_flags & RTRUNCATE)
2529 		cv_wait(&rp->r_cv, &rp->r_statelock);
2530 	rp->r_flags |= RTRUNCATE;
2531 	if (off == (u_offset_t)0) {
2532 		rp->r_flags &= ~RDIRTY;
2533 		if (!(rp->r_flags & RSTALE))
2534 			rp->r_error = 0;
2535 	}
2536 	rp->r_truncaddr = off;
2537 	mutex_exit(&rp->r_statelock);
2538 	(void) pvn_vplist_dirty(vp, off, rp->r_putapage,
2539 	    B_INVAL | B_TRUNC, cr);
2540 	mutex_enter(&rp->r_statelock);
2541 	rp->r_flags &= ~RTRUNCATE;
2542 	cv_broadcast(&rp->r_cv);
2543 	mutex_exit(&rp->r_statelock);
2544 }
2545 
2546 static int nfs_write_error_to_cons_only = 0;
2547 #define	MSG(x)	(nfs_write_error_to_cons_only ? (x) : (x) + 1)
2548 
2549 /*
2550  * Print a file handle
2551  */
2552 void
2553 nfs_printfhandle(nfs_fhandle *fhp)
2554 {
2555 	int *ip;
2556 	char *buf;
2557 	size_t bufsize;
2558 	char *cp;
2559 
2560 	/*
2561 	 * 13 == "(file handle:"
2562 	 * maximum of NFS_FHANDLE / sizeof (*ip) elements in fh_buf times
2563 	 *	1 == ' '
2564 	 *	8 == maximum strlen of "%x"
2565 	 * 3 == ")\n\0"
2566 	 */
2567 	bufsize = 13 + ((NFS_FHANDLE_LEN / sizeof (*ip)) * (1 + 8)) + 3;
2568 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
2569 	if (buf == NULL)
2570 		return;
2571 
2572 	cp = buf;
2573 	(void) strcpy(cp, "(file handle:");
2574 	while (*cp != '\0')
2575 		cp++;
2576 	for (ip = (int *)fhp->fh_buf;
2577 	    ip < (int *)&fhp->fh_buf[fhp->fh_len];
2578 	    ip++) {
2579 		(void) sprintf(cp, " %x", *ip);
2580 		while (*cp != '\0')
2581 			cp++;
2582 	}
2583 	(void) strcpy(cp, ")\n");
2584 
2585 	zcmn_err(getzoneid(), CE_CONT, MSG("^%s"), buf);
2586 
2587 	kmem_free(buf, bufsize);
2588 }
2589 
2590 /*
2591  * Notify the system administrator that an NFS write error has
2592  * occurred.
2593  */
2594 
2595 /* seconds between ENOSPC/EDQUOT messages */
2596 clock_t nfs_write_error_interval = 5;
2597 
2598 void
2599 nfs_write_error(vnode_t *vp, int error, cred_t *cr)
2600 {
2601 	mntinfo_t *mi;
2602 	clock_t now;
2603 
2604 	mi = VTOMI(vp);
2605 	/*
2606 	 * In case of forced unmount or zone shutdown, do not print any
2607 	 * messages since it can flood the console with error messages.
2608 	 */
2609 	if (FS_OR_ZONE_GONE(mi->mi_vfsp))
2610 		return;
2611 
2612 	/*
2613 	 * No use in flooding the console with ENOSPC
2614 	 * messages from the same file system.
2615 	 */
2616 	now = ddi_get_lbolt();
2617 	if ((error != ENOSPC && error != EDQUOT) ||
2618 	    now - mi->mi_printftime > 0) {
2619 		zoneid_t zoneid = mi->mi_zone->zone_id;
2620 
2621 #ifdef DEBUG
2622 		nfs_perror(error, "NFS%ld write error on host %s: %m.\n",
2623 		    mi->mi_vers, VTOR(vp)->r_server->sv_hostname, NULL);
2624 #else
2625 		nfs_perror(error, "NFS write error on host %s: %m.\n",
2626 		    VTOR(vp)->r_server->sv_hostname, NULL);
2627 #endif
2628 		if (error == ENOSPC || error == EDQUOT) {
2629 			zcmn_err(zoneid, CE_CONT,
2630 			    MSG("^File: userid=%d, groupid=%d\n"),
2631 			    crgetuid(cr), crgetgid(cr));
2632 			if (crgetuid(CRED()) != crgetuid(cr) ||
2633 			    crgetgid(CRED()) != crgetgid(cr)) {
2634 				zcmn_err(zoneid, CE_CONT,
2635 				    MSG("^User: userid=%d, groupid=%d\n"),
2636 				    crgetuid(CRED()), crgetgid(CRED()));
2637 			}
2638 			mi->mi_printftime = now +
2639 			    nfs_write_error_interval * hz;
2640 		}
2641 		nfs_printfhandle(&VTOR(vp)->r_fh);
2642 #ifdef DEBUG
2643 		if (error == EACCES) {
2644 			zcmn_err(zoneid, CE_CONT,
2645 			    MSG("^nfs_bio: cred is%s kcred\n"),
2646 			    cr == kcred ? "" : " not");
2647 		}
2648 #endif
2649 	}
2650 }
2651 
2652 /* ARGSUSED */
2653 static void *
2654 nfs_mi_init(zoneid_t zoneid)
2655 {
2656 	struct mi_globals *mig;
2657 
2658 	mig = kmem_alloc(sizeof (*mig), KM_SLEEP);
2659 	mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL);
2660 	list_create(&mig->mig_list, sizeof (mntinfo_t),
2661 	    offsetof(mntinfo_t, mi_zone_node));
2662 	mig->mig_destructor_called = B_FALSE;
2663 	return (mig);
2664 }
2665 
2666 /*
2667  * Callback routine to tell all NFS mounts in the zone to stop creating new
2668  * threads.  Existing threads should exit.
2669  */
2670 /* ARGSUSED */
2671 static void
2672 nfs_mi_shutdown(zoneid_t zoneid, void *data)
2673 {
2674 	struct mi_globals *mig = data;
2675 	mntinfo_t *mi;
2676 
2677 	ASSERT(mig != NULL);
2678 again:
2679 	mutex_enter(&mig->mig_lock);
2680 	for (mi = list_head(&mig->mig_list); mi != NULL;
2681 	    mi = list_next(&mig->mig_list, mi)) {
2682 
2683 		/*
2684 		 * If we've done the shutdown work for this FS, skip.
2685 		 * Once we go off the end of the list, we're done.
2686 		 */
2687 		if (mi->mi_flags & MI_DEAD)
2688 			continue;
2689 
2690 		/*
2691 		 * We will do work, so not done.  Get a hold on the FS.
2692 		 */
2693 		VFS_HOLD(mi->mi_vfsp);
2694 
2695 		/*
2696 		 * purge the DNLC for this filesystem
2697 		 */
2698 		(void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
2699 
2700 		mutex_enter(&mi->mi_async_lock);
2701 		/*
2702 		 * Tell existing async worker threads to exit.
2703 		 */
2704 		mi->mi_max_threads = 0;
2705 		NFS_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
2706 		/*
2707 		 * Set MI_ASYNC_MGR_STOP so the async manager thread starts
2708 		 * getting ready to exit when it's done with its current work.
2709 		 * Also set MI_DEAD to note we've acted on this FS.
2710 		 */
2711 		mutex_enter(&mi->mi_lock);
2712 		mi->mi_flags |= (MI_ASYNC_MGR_STOP|MI_DEAD);
2713 		mutex_exit(&mi->mi_lock);
2714 		/*
2715 		 * Wake up the async manager thread.
2716 		 */
2717 		cv_broadcast(&mi->mi_async_reqs_cv);
2718 		mutex_exit(&mi->mi_async_lock);
2719 
2720 		/*
2721 		 * Drop lock and release FS, which may change list, then repeat.
2722 		 * We're done when every mi has been done or the list is empty.
2723 		 */
2724 		mutex_exit(&mig->mig_lock);
2725 		VFS_RELE(mi->mi_vfsp);
2726 		goto again;
2727 	}
2728 	mutex_exit(&mig->mig_lock);
2729 }
2730 
2731 static void
2732 nfs_mi_free_globals(struct mi_globals *mig)
2733 {
2734 	list_destroy(&mig->mig_list);	/* makes sure the list is empty */
2735 	mutex_destroy(&mig->mig_lock);
2736 	kmem_free(mig, sizeof (*mig));
2737 
2738 }
2739 
2740 /* ARGSUSED */
2741 static void
2742 nfs_mi_destroy(zoneid_t zoneid, void *data)
2743 {
2744 	struct mi_globals *mig = data;
2745 
2746 	ASSERT(mig != NULL);
2747 	mutex_enter(&mig->mig_lock);
2748 	if (list_head(&mig->mig_list) != NULL) {
2749 		/* Still waiting for VFS_FREEVFS() */
2750 		mig->mig_destructor_called = B_TRUE;
2751 		mutex_exit(&mig->mig_lock);
2752 		return;
2753 	}
2754 	nfs_mi_free_globals(mig);
2755 }
2756 
2757 /*
2758  * Add an NFS mount to the per-zone list of NFS mounts.
2759  */
2760 void
2761 nfs_mi_zonelist_add(mntinfo_t *mi)
2762 {
2763 	struct mi_globals *mig;
2764 
2765 	mig = zone_getspecific(mi_list_key, mi->mi_zone);
2766 	mutex_enter(&mig->mig_lock);
2767 	list_insert_head(&mig->mig_list, mi);
2768 	mutex_exit(&mig->mig_lock);
2769 }
2770 
2771 /*
2772  * Remove an NFS mount from the per-zone list of NFS mounts.
2773  */
2774 static void
2775 nfs_mi_zonelist_remove(mntinfo_t *mi)
2776 {
2777 	struct mi_globals *mig;
2778 
2779 	mig = zone_getspecific(mi_list_key, mi->mi_zone);
2780 	mutex_enter(&mig->mig_lock);
2781 	list_remove(&mig->mig_list, mi);
2782 	/*
2783 	 * We can be called asynchronously by VFS_FREEVFS() after the zone
2784 	 * shutdown/destroy callbacks have executed; if so, clean up the zone's
2785 	 * mi globals.
2786 	 */
2787 	if (list_head(&mig->mig_list) == NULL &&
2788 	    mig->mig_destructor_called == B_TRUE) {
2789 		nfs_mi_free_globals(mig);
2790 		return;
2791 	}
2792 	mutex_exit(&mig->mig_lock);
2793 }
2794 
2795 /*
2796  * NFS Client initialization routine.  This routine should only be called
2797  * once.  It performs the following tasks:
2798  *	- Initalize all global locks
2799  * 	- Call sub-initialization routines (localize access to variables)
2800  */
2801 int
2802 nfs_clntinit(void)
2803 {
2804 #ifdef DEBUG
2805 	static boolean_t nfs_clntup = B_FALSE;
2806 #endif
2807 	int error;
2808 
2809 #ifdef DEBUG
2810 	ASSERT(nfs_clntup == B_FALSE);
2811 #endif
2812 
2813 	error = nfs_subrinit();
2814 	if (error)
2815 		return (error);
2816 
2817 	error = nfs_vfsinit();
2818 	if (error) {
2819 		/*
2820 		 * Cleanup nfs_subrinit() work
2821 		 */
2822 		nfs_subrfini();
2823 		return (error);
2824 	}
2825 	zone_key_create(&mi_list_key, nfs_mi_init, nfs_mi_shutdown,
2826 	    nfs_mi_destroy);
2827 
2828 	nfs4_clnt_init();
2829 
2830 #ifdef DEBUG
2831 	nfs_clntup = B_TRUE;
2832 #endif
2833 
2834 	return (0);
2835 }
2836 
2837 /*
2838  * This routine is only called if the NFS Client has been initialized but
2839  * the module failed to be installed. This routine will cleanup the previously
2840  * allocated/initialized work.
2841  */
2842 void
2843 nfs_clntfini(void)
2844 {
2845 	(void) zone_key_delete(mi_list_key);
2846 	nfs_subrfini();
2847 	nfs_vfsfini();
2848 	nfs4_clnt_fini();
2849 }
2850 
2851 /*
2852  * nfs_lockrelease:
2853  *
2854  * Release any locks on the given vnode that are held by the current
2855  * process.
2856  */
2857 void
2858 nfs_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr)
2859 {
2860 	flock64_t ld;
2861 	struct shrlock shr;
2862 	char *buf;
2863 	int remote_lock_possible;
2864 	int ret;
2865 
2866 	ASSERT((uintptr_t)vp > KERNELBASE);
2867 
2868 	/*
2869 	 * Generate an explicit unlock operation for the entire file.  As a
2870 	 * partial optimization, only generate the unlock if there is a
2871 	 * lock registered for the file.  We could check whether this
2872 	 * particular process has any locks on the file, but that would
2873 	 * require the local locking code to provide yet another query
2874 	 * routine.  Note that no explicit synchronization is needed here.
2875 	 * At worst, flk_has_remote_locks() will return a false positive,
2876 	 * in which case the unlock call wastes time but doesn't harm
2877 	 * correctness.
2878 	 *
2879 	 * In addition, an unlock request is generated if the process
2880 	 * is listed as possibly having a lock on the file because the
2881 	 * server and client lock managers may have gotten out of sync.
2882 	 * N.B. It is important to make sure nfs_remove_locking_id() is
2883 	 * called here even if flk_has_remote_locks(vp) reports true.
2884 	 * If it is not called and there is an entry on the process id
2885 	 * list, that entry will never get removed.
2886 	 */
2887 	remote_lock_possible = nfs_remove_locking_id(vp, RLMPL_PID,
2888 	    (char *)&(ttoproc(curthread)->p_pid), NULL, NULL);
2889 	if (remote_lock_possible || flk_has_remote_locks(vp)) {
2890 		ld.l_type = F_UNLCK;	/* set to unlock entire file */
2891 		ld.l_whence = 0;	/* unlock from start of file */
2892 		ld.l_start = 0;
2893 		ld.l_len = 0;		/* do entire file */
2894 		ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, cr,
2895 		    NULL);
2896 
2897 		if (ret != 0) {
2898 			/*
2899 			 * If VOP_FRLOCK fails, make sure we unregister
2900 			 * local locks before we continue.
2901 			 */
2902 			ld.l_pid = ttoproc(curthread)->p_pid;
2903 			lm_register_lock_locally(vp, NULL, &ld, flag, offset);
2904 #ifdef DEBUG
2905 			nfs_perror(ret,
2906 			    "NFS lock release error on vp %p: %m.\n",
2907 			    (void *)vp, NULL);
2908 #endif
2909 		}
2910 
2911 		/*
2912 		 * The call to VOP_FRLOCK may put the pid back on the
2913 		 * list.  We need to remove it.
2914 		 */
2915 		(void) nfs_remove_locking_id(vp, RLMPL_PID,
2916 		    (char *)&(ttoproc(curthread)->p_pid), NULL, NULL);
2917 	}
2918 
2919 	/*
2920 	 * As long as the vp has a share matching our pid,
2921 	 * pluck it off and unshare it.  There are circumstances in
2922 	 * which the call to nfs_remove_locking_id() may put the
2923 	 * owner back on the list, in which case we simply do a
2924 	 * redundant and harmless unshare.
2925 	 */
2926 	buf = kmem_alloc(MAX_SHR_OWNER_LEN, KM_SLEEP);
2927 	while (nfs_remove_locking_id(vp, RLMPL_OWNER,
2928 	    (char *)NULL, buf, &shr.s_own_len)) {
2929 		shr.s_owner = buf;
2930 		shr.s_access = 0;
2931 		shr.s_deny = 0;
2932 		shr.s_sysid = 0;
2933 		shr.s_pid = curproc->p_pid;
2934 
2935 		ret = VOP_SHRLOCK(vp, F_UNSHARE, &shr, flag, cr, NULL);
2936 #ifdef DEBUG
2937 		if (ret != 0) {
2938 			nfs_perror(ret,
2939 			    "NFS share release error on vp %p: %m.\n",
2940 			    (void *)vp, NULL);
2941 		}
2942 #endif
2943 	}
2944 	kmem_free(buf, MAX_SHR_OWNER_LEN);
2945 }
2946 
2947 /*
2948  * nfs_lockcompletion:
2949  *
2950  * If the vnode has a lock that makes it unsafe to cache the file, mark it
2951  * as non cachable (set VNOCACHE bit).
2952  */
2953 
2954 void
2955 nfs_lockcompletion(vnode_t *vp, int cmd)
2956 {
2957 #ifdef DEBUG
2958 	rnode_t *rp = VTOR(vp);
2959 
2960 	ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2961 #endif
2962 
2963 	if (cmd == F_SETLK || cmd == F_SETLKW) {
2964 		if (!lm_safemap(vp)) {
2965 			mutex_enter(&vp->v_lock);
2966 			vp->v_flag |= VNOCACHE;
2967 			mutex_exit(&vp->v_lock);
2968 		} else {
2969 			mutex_enter(&vp->v_lock);
2970 			vp->v_flag &= ~VNOCACHE;
2971 			mutex_exit(&vp->v_lock);
2972 		}
2973 	}
2974 	/*
2975 	 * The cached attributes of the file are stale after acquiring
2976 	 * the lock on the file. They were updated when the file was
2977 	 * opened, but not updated when the lock was acquired. Therefore the
2978 	 * cached attributes are invalidated after the lock is obtained.
2979 	 */
2980 	PURGE_ATTRCACHE(vp);
2981 }
2982 
2983 /*
2984  * The lock manager holds state making it possible for the client
2985  * and server to be out of sync.  For example, if the response from
2986  * the server granting a lock request is lost, the server will think
2987  * the lock is granted and the client will think the lock is lost.
2988  * The client can tell when it is not positive if it is in sync with
2989  * the server.
2990  *
2991  * To deal with this, a list of processes for which the client is
2992  * not sure if the server holds a lock is attached to the rnode.
2993  * When such a process closes the rnode, an unlock request is sent
2994  * to the server to unlock the entire file.
2995  *
2996  * The list is kept as a singularly linked NULL terminated list.
2997  * Because it is only added to under extreme error conditions, the
2998  * list shouldn't get very big.  DEBUG kernels print a message if
2999  * the list gets bigger than nfs_lmpl_high_water.  This is arbitrarily
3000  * choosen to be 8, but can be tuned at runtime.
3001  */
3002 #ifdef DEBUG
3003 /* int nfs_lmpl_high_water = 8; */
3004 int nfs_lmpl_high_water = 128;
3005 int nfs_cnt_add_locking_id = 0;
3006 int nfs_len_add_locking_id = 0;
3007 #endif /* DEBUG */
3008 
3009 /*
3010  * Record that the nfs lock manager server may be holding a lock on
3011  * a vnode for a process.
3012  *
3013  * Because the nfs lock manager server holds state, it is possible
3014  * for the server to get out of sync with the client.  This routine is called
3015  * from the client when it is no longer sure if the server is in sync
3016  * with the client.  nfs_lockrelease() will then notice this and send
3017  * an unlock request when the file is closed
3018  */
3019 void
3020 nfs_add_locking_id(vnode_t *vp, pid_t pid, int type, char *id, int len)
3021 {
3022 	rnode_t *rp;
3023 	lmpl_t *new;
3024 	lmpl_t *cur;
3025 	lmpl_t **lmplp;
3026 #ifdef DEBUG
3027 	int list_len = 1;
3028 #endif /* DEBUG */
3029 
3030 #ifdef DEBUG
3031 	++nfs_cnt_add_locking_id;
3032 #endif /* DEBUG */
3033 	/*
3034 	 * allocate new lmpl_t now so we don't sleep
3035 	 * later after grabbing mutexes
3036 	 */
3037 	ASSERT(len < MAX_SHR_OWNER_LEN);
3038 	new = kmem_alloc(sizeof (*new), KM_SLEEP);
3039 	new->lmpl_type = type;
3040 	new->lmpl_pid = pid;
3041 	new->lmpl_owner = kmem_alloc(len, KM_SLEEP);
3042 	bcopy(id, new->lmpl_owner, len);
3043 	new->lmpl_own_len = len;
3044 	new->lmpl_next = (lmpl_t *)NULL;
3045 #ifdef DEBUG
3046 	if (type == RLMPL_PID) {
3047 		ASSERT(len == sizeof (pid_t));
3048 		ASSERT(pid == *(pid_t *)new->lmpl_owner);
3049 	} else {
3050 		ASSERT(type == RLMPL_OWNER);
3051 	}
3052 #endif
3053 
3054 	rp = VTOR(vp);
3055 	mutex_enter(&rp->r_statelock);
3056 
3057 	/*
3058 	 * Add this id to the list for this rnode only if the
3059 	 * rnode is active and the id is not already there.
3060 	 */
3061 	ASSERT(rp->r_flags & RHASHED);
3062 	lmplp = &(rp->r_lmpl);
3063 	for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) {
3064 		if (cur->lmpl_pid == pid &&
3065 		    cur->lmpl_type == type &&
3066 		    cur->lmpl_own_len == len &&
3067 		    bcmp(cur->lmpl_owner, new->lmpl_owner, len) == 0) {
3068 			kmem_free(new->lmpl_owner, len);
3069 			kmem_free(new, sizeof (*new));
3070 			break;
3071 		}
3072 		lmplp = &cur->lmpl_next;
3073 #ifdef DEBUG
3074 		++list_len;
3075 #endif /* DEBUG */
3076 	}
3077 	if (cur == (lmpl_t *)NULL) {
3078 		*lmplp = new;
3079 #ifdef DEBUG
3080 		if (list_len > nfs_len_add_locking_id) {
3081 			nfs_len_add_locking_id = list_len;
3082 		}
3083 		if (list_len > nfs_lmpl_high_water) {
3084 			cmn_err(CE_WARN, "nfs_add_locking_id: long list "
3085 			    "vp=%p is %d", (void *)vp, list_len);
3086 		}
3087 #endif /* DEBUG */
3088 	}
3089 
3090 #ifdef DEBUG
3091 	if (share_debug) {
3092 		int nitems = 0;
3093 		int npids = 0;
3094 		int nowners = 0;
3095 
3096 		/*
3097 		 * Count the number of things left on r_lmpl after the remove.
3098 		 */
3099 		for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL;
3100 		    cur = cur->lmpl_next) {
3101 			nitems++;
3102 			if (cur->lmpl_type == RLMPL_PID) {
3103 				npids++;
3104 			} else if (cur->lmpl_type == RLMPL_OWNER) {
3105 				nowners++;
3106 			} else {
3107 				cmn_err(CE_PANIC, "nfs_add_locking_id: "
3108 				    "unrecognized lmpl_type %d",
3109 				    cur->lmpl_type);
3110 			}
3111 		}
3112 
3113 		cmn_err(CE_CONT, "nfs_add_locking_id(%s): %d PIDs + %d "
3114 		    "OWNs = %d items left on r_lmpl\n",
3115 		    (type == RLMPL_PID) ? "P" : "O", npids, nowners, nitems);
3116 	}
3117 #endif
3118 
3119 	mutex_exit(&rp->r_statelock);
3120 }
3121 
3122 /*
3123  * Remove an id from the lock manager id list.
3124  *
3125  * If the id is not in the list return 0.  If it was found and
3126  * removed, return 1.
3127  */
3128 static int
3129 nfs_remove_locking_id(vnode_t *vp, int type, char *id, char *rid, int *rlen)
3130 {
3131 	lmpl_t *cur;
3132 	lmpl_t **lmplp;
3133 	rnode_t *rp;
3134 	int rv = 0;
3135 
3136 	ASSERT(type == RLMPL_PID || type == RLMPL_OWNER);
3137 
3138 	rp = VTOR(vp);
3139 
3140 	mutex_enter(&rp->r_statelock);
3141 	ASSERT(rp->r_flags & RHASHED);
3142 	lmplp = &(rp->r_lmpl);
3143 
3144 	/*
3145 	 * Search through the list and remove the entry for this id
3146 	 * if it is there.  The special case id == NULL allows removal
3147 	 * of the first share on the r_lmpl list belonging to the
3148 	 * current process (if any), without regard to further details
3149 	 * of its identity.
3150 	 */
3151 	for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) {
3152 		if (cur->lmpl_type == type &&
3153 		    cur->lmpl_pid == curproc->p_pid &&
3154 		    (id == (char *)NULL ||
3155 		    bcmp(cur->lmpl_owner, id, cur->lmpl_own_len) == 0)) {
3156 			*lmplp = cur->lmpl_next;
3157 			ASSERT(cur->lmpl_own_len < MAX_SHR_OWNER_LEN);
3158 			if (rid != NULL) {
3159 				bcopy(cur->lmpl_owner, rid, cur->lmpl_own_len);
3160 				*rlen = cur->lmpl_own_len;
3161 			}
3162 			kmem_free(cur->lmpl_owner, cur->lmpl_own_len);
3163 			kmem_free(cur, sizeof (*cur));
3164 			rv = 1;
3165 			break;
3166 		}
3167 		lmplp = &cur->lmpl_next;
3168 	}
3169 
3170 #ifdef DEBUG
3171 	if (share_debug) {
3172 		int nitems = 0;
3173 		int npids = 0;
3174 		int nowners = 0;
3175 
3176 		/*
3177 		 * Count the number of things left on r_lmpl after the remove.
3178 		 */
3179 		for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL;
3180 		    cur = cur->lmpl_next) {
3181 			nitems++;
3182 			if (cur->lmpl_type == RLMPL_PID) {
3183 				npids++;
3184 			} else if (cur->lmpl_type == RLMPL_OWNER) {
3185 				nowners++;
3186 			} else {
3187 				cmn_err(CE_PANIC,
3188 				    "nrli: unrecognized lmpl_type %d",
3189 				    cur->lmpl_type);
3190 			}
3191 		}
3192 
3193 		cmn_err(CE_CONT,
3194 		"nrli(%s): %d PIDs + %d OWNs = %d items left on r_lmpl\n",
3195 		    (type == RLMPL_PID) ? "P" : "O",
3196 		    npids,
3197 		    nowners,
3198 		    nitems);
3199 	}
3200 #endif
3201 
3202 	mutex_exit(&rp->r_statelock);
3203 	return (rv);
3204 }
3205 
3206 void
3207 nfs_free_mi(mntinfo_t *mi)
3208 {
3209 	ASSERT(mi->mi_flags & MI_ASYNC_MGR_STOP);
3210 	ASSERT(mi->mi_manager_thread == NULL);
3211 	ASSERT(mi->mi_threads[NFS_ASYNC_QUEUE] == 0 &&
3212 	    mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE] == 0);
3213 
3214 	/*
3215 	 * Remove the node from the global list before we start tearing it down.
3216 	 */
3217 	nfs_mi_zonelist_remove(mi);
3218 	if (mi->mi_klmconfig) {
3219 		lm_free_config(mi->mi_klmconfig);
3220 		kmem_free(mi->mi_klmconfig, sizeof (struct knetconfig));
3221 	}
3222 	mutex_destroy(&mi->mi_lock);
3223 	mutex_destroy(&mi->mi_remap_lock);
3224 	mutex_destroy(&mi->mi_async_lock);
3225 	mutex_destroy(&mi->mi_rnodes_lock);
3226 	cv_destroy(&mi->mi_failover_cv);
3227 	cv_destroy(&mi->mi_async_work_cv[NFS_ASYNC_QUEUE]);
3228 	cv_destroy(&mi->mi_async_work_cv[NFS_ASYNC_PGOPS_QUEUE]);
3229 	cv_destroy(&mi->mi_async_reqs_cv);
3230 	cv_destroy(&mi->mi_async_cv);
3231 	list_destroy(&mi->mi_rnodes);
3232 	zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFS);
3233 	kmem_free(mi, sizeof (*mi));
3234 }
3235 
3236 static int
3237 mnt_kstat_update(kstat_t *ksp, int rw)
3238 {
3239 	mntinfo_t *mi;
3240 	struct mntinfo_kstat *mik;
3241 	vfs_t *vfsp;
3242 	int i;
3243 
3244 	/* this is a read-only kstat. Bail out on a write */
3245 	if (rw == KSTAT_WRITE)
3246 		return (EACCES);
3247 
3248 	/*
3249 	 * We don't want to wait here as kstat_chain_lock could be held by
3250 	 * dounmount(). dounmount() takes vfs_reflock before the chain lock
3251 	 * and thus could lead to a deadlock.
3252 	 */
3253 	vfsp = (struct vfs *)ksp->ks_private;
3254 
3255 
3256 	mi = VFTOMI(vfsp);
3257 
3258 	mik = (struct mntinfo_kstat *)ksp->ks_data;
3259 
3260 	(void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto);
3261 	mik->mik_vers = (uint32_t)mi->mi_vers;
3262 	mik->mik_flags = mi->mi_flags;
3263 	mik->mik_secmod = mi->mi_curr_serv->sv_secdata->secmod;
3264 	mik->mik_curread = (uint32_t)mi->mi_curread;
3265 	mik->mik_curwrite = (uint32_t)mi->mi_curwrite;
3266 	mik->mik_retrans = mi->mi_retrans;
3267 	mik->mik_timeo = mi->mi_timeo;
3268 	mik->mik_acregmin = HR2SEC(mi->mi_acregmin);
3269 	mik->mik_acregmax = HR2SEC(mi->mi_acregmax);
3270 	mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin);
3271 	mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax);
3272 	for (i = 0; i < NFS_CALLTYPES + 1; i++) {
3273 		mik->mik_timers[i].srtt = (uint32_t)mi->mi_timers[i].rt_srtt;
3274 		mik->mik_timers[i].deviate =
3275 		    (uint32_t)mi->mi_timers[i].rt_deviate;
3276 		mik->mik_timers[i].rtxcur =
3277 		    (uint32_t)mi->mi_timers[i].rt_rtxcur;
3278 	}
3279 	mik->mik_noresponse = (uint32_t)mi->mi_noresponse;
3280 	mik->mik_failover = (uint32_t)mi->mi_failover;
3281 	mik->mik_remap = (uint32_t)mi->mi_remap;
3282 	(void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname);
3283 
3284 	return (0);
3285 }
3286 
3287 void
3288 nfs_mnt_kstat_init(struct vfs *vfsp)
3289 {
3290 	mntinfo_t *mi = VFTOMI(vfsp);
3291 
3292 	/*
3293 	 * Create the version specific kstats.
3294 	 *
3295 	 * PSARC 2001/697 Contract Private Interface
3296 	 * All nfs kstats are under SunMC contract
3297 	 * Please refer to the PSARC listed above and contact
3298 	 * SunMC before making any changes!
3299 	 *
3300 	 * Changes must be reviewed by Solaris File Sharing
3301 	 * Changes must be communicated to contract-2001-697@sun.com
3302 	 *
3303 	 */
3304 
3305 	mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev),
3306 	    NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id);
3307 	if (mi->mi_io_kstats) {
3308 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
3309 			kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID);
3310 		mi->mi_io_kstats->ks_lock = &mi->mi_lock;
3311 		kstat_install(mi->mi_io_kstats);
3312 	}
3313 
3314 	if ((mi->mi_ro_kstats = kstat_create_zone("nfs",
3315 	    getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW,
3316 	    sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) {
3317 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
3318 			kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID);
3319 		mi->mi_ro_kstats->ks_update = mnt_kstat_update;
3320 		mi->mi_ro_kstats->ks_private = (void *)vfsp;
3321 		kstat_install(mi->mi_ro_kstats);
3322 	}
3323 }
3324 
3325 nfs_delmapcall_t *
3326 nfs_init_delmapcall()
3327 {
3328 	nfs_delmapcall_t	*delmap_call;
3329 
3330 	delmap_call = kmem_alloc(sizeof (nfs_delmapcall_t), KM_SLEEP);
3331 	delmap_call->call_id = curthread;
3332 	delmap_call->error = 0;
3333 
3334 	return (delmap_call);
3335 }
3336 
3337 void
3338 nfs_free_delmapcall(nfs_delmapcall_t *delmap_call)
3339 {
3340 	kmem_free(delmap_call, sizeof (nfs_delmapcall_t));
3341 }
3342 
3343 /*
3344  * Searches for the current delmap caller (based on curthread) in the list of
3345  * callers.  If it is found, we remove it and free the delmap caller.
3346  * Returns:
3347  *	0 if the caller wasn't found
3348  *	1 if the caller was found, removed and freed.  *errp is set to what
3349  * 	the result of the delmap was.
3350  */
3351 int
3352 nfs_find_and_delete_delmapcall(rnode_t *rp, int *errp)
3353 {
3354 	nfs_delmapcall_t	*delmap_call;
3355 
3356 	/*
3357 	 * If the list doesn't exist yet, we create it and return
3358 	 * that the caller wasn't found.  No list = no callers.
3359 	 */
3360 	mutex_enter(&rp->r_statelock);
3361 	if (!(rp->r_flags & RDELMAPLIST)) {
3362 		/* The list does not exist */
3363 		list_create(&rp->r_indelmap, sizeof (nfs_delmapcall_t),
3364 		    offsetof(nfs_delmapcall_t, call_node));
3365 		rp->r_flags |= RDELMAPLIST;
3366 		mutex_exit(&rp->r_statelock);
3367 		return (0);
3368 	} else {
3369 		/* The list exists so search it */
3370 		for (delmap_call = list_head(&rp->r_indelmap);
3371 		    delmap_call != NULL;
3372 		    delmap_call = list_next(&rp->r_indelmap, delmap_call)) {
3373 			if (delmap_call->call_id == curthread) {
3374 				/* current caller is in the list */
3375 				*errp = delmap_call->error;
3376 				list_remove(&rp->r_indelmap, delmap_call);
3377 				mutex_exit(&rp->r_statelock);
3378 				nfs_free_delmapcall(delmap_call);
3379 				return (1);
3380 			}
3381 		}
3382 	}
3383 	mutex_exit(&rp->r_statelock);
3384 	return (0);
3385 }
3386