xref: /titanic_50/usr/src/uts/common/fs/nfs/nfs_client.c (revision c77a61a72b5ecdc507d6cf104142edd371a16c84)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  *
25  *  	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
26  *	All rights reserved.
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 #include <sys/param.h>
32 #include <sys/types.h>
33 #include <sys/systm.h>
34 #include <sys/thread.h>
35 #include <sys/t_lock.h>
36 #include <sys/time.h>
37 #include <sys/vnode.h>
38 #include <sys/vfs.h>
39 #include <sys/errno.h>
40 #include <sys/buf.h>
41 #include <sys/stat.h>
42 #include <sys/cred.h>
43 #include <sys/kmem.h>
44 #include <sys/debug.h>
45 #include <sys/dnlc.h>
46 #include <sys/vmsystm.h>
47 #include <sys/flock.h>
48 #include <sys/share.h>
49 #include <sys/cmn_err.h>
50 #include <sys/tiuser.h>
51 #include <sys/sysmacros.h>
52 #include <sys/callb.h>
53 #include <sys/acl.h>
54 #include <sys/kstat.h>
55 #include <sys/signal.h>
56 #include <sys/list.h>
57 #include <sys/zone.h>
58 
59 #include <rpc/types.h>
60 #include <rpc/xdr.h>
61 #include <rpc/auth.h>
62 #include <rpc/clnt.h>
63 
64 #include <nfs/nfs.h>
65 #include <nfs/nfs_clnt.h>
66 
67 #include <nfs/rnode.h>
68 #include <nfs/nfs_acl.h>
69 #include <nfs/lm.h>
70 
71 #include <vm/hat.h>
72 #include <vm/as.h>
73 #include <vm/page.h>
74 #include <vm/pvn.h>
75 #include <vm/seg.h>
76 #include <vm/seg_map.h>
77 #include <vm/seg_vn.h>
78 
79 static void	nfs3_attr_cache(vnode_t *, vattr_t *, vattr_t *, hrtime_t,
80 			cred_t *);
81 static int	nfs_getattr_cache(vnode_t *, struct vattr *);
82 static int	nfs_remove_locking_id(vnode_t *, int, char *, char *, int *);
83 
84 struct mi_globals {
85 	kmutex_t	mig_lock;  /* lock protecting mig_list */
86 	list_t		mig_list;  /* list of NFS v2 or v3 mounts in zone */
87 	boolean_t	mig_destructor_called;
88 };
89 
90 static zone_key_t mi_list_key;
91 
92 /* Debugging flag for PC file shares. */
93 extern int	share_debug;
94 
95 /*
96  * Attributes caching:
97  *
98  * Attributes are cached in the rnode in struct vattr form.
99  * There is a time associated with the cached attributes (r_attrtime)
100  * which tells whether the attributes are valid. The time is initialized
101  * to the difference between current time and the modify time of the vnode
102  * when new attributes are cached. This allows the attributes for
103  * files that have changed recently to be timed out sooner than for files
104  * that have not changed for a long time. There are minimum and maximum
105  * timeout values that can be set per mount point.
106  */
107 
108 int
109 nfs_waitfor_purge_complete(vnode_t *vp)
110 {
111 	rnode_t *rp;
112 	k_sigset_t smask;
113 
114 	rp = VTOR(vp);
115 	if (rp->r_serial != NULL && rp->r_serial != curthread) {
116 		mutex_enter(&rp->r_statelock);
117 		sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT);
118 		while (rp->r_serial != NULL) {
119 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
120 				sigunintr(&smask);
121 				mutex_exit(&rp->r_statelock);
122 				return (EINTR);
123 			}
124 		}
125 		sigunintr(&smask);
126 		mutex_exit(&rp->r_statelock);
127 	}
128 	return (0);
129 }
130 
131 /*
132  * Validate caches by checking cached attributes. If the cached
133  * attributes have timed out, then get new attributes from the server.
134  * As a side affect, this will do cache invalidation if the attributes
135  * have changed.
136  *
137  * If the attributes have not timed out and if there is a cache
138  * invalidation being done by some other thread, then wait until that
139  * thread has completed the cache invalidation.
140  */
141 int
142 nfs_validate_caches(vnode_t *vp, cred_t *cr)
143 {
144 	int error;
145 	struct vattr va;
146 
147 	if (ATTRCACHE_VALID(vp)) {
148 		error = nfs_waitfor_purge_complete(vp);
149 		if (error)
150 			return (error);
151 		return (0);
152 	}
153 
154 	va.va_mask = AT_ALL;
155 	return (nfs_getattr_otw(vp, &va, cr));
156 }
157 
158 /*
159  * Validate caches by checking cached attributes. If the cached
160  * attributes have timed out, then get new attributes from the server.
161  * As a side affect, this will do cache invalidation if the attributes
162  * have changed.
163  *
164  * If the attributes have not timed out and if there is a cache
165  * invalidation being done by some other thread, then wait until that
166  * thread has completed the cache invalidation.
167  */
168 int
169 nfs3_validate_caches(vnode_t *vp, cred_t *cr)
170 {
171 	int error;
172 	struct vattr va;
173 
174 	if (ATTRCACHE_VALID(vp)) {
175 		error = nfs_waitfor_purge_complete(vp);
176 		if (error)
177 			return (error);
178 		return (0);
179 	}
180 
181 	va.va_mask = AT_ALL;
182 	return (nfs3_getattr_otw(vp, &va, cr));
183 }
184 
185 /*
186  * Purge all of the various NFS `data' caches.
187  */
188 void
189 nfs_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr)
190 {
191 	rnode_t *rp;
192 	char *contents;
193 	int size;
194 	int error;
195 
196 	/*
197 	 * Purge the DNLC for any entries which refer to this file.
198 	 * Avoid recursive entry into dnlc_purge_vp() in case of a directory.
199 	 */
200 	rp = VTOR(vp);
201 	mutex_enter(&rp->r_statelock);
202 	if (vp->v_count > 1 &&
203 	    (vp->v_type == VDIR || purge_dnlc == NFS_PURGE_DNLC) &&
204 	    !(rp->r_flags & RINDNLCPURGE)) {
205 		/*
206 		 * Set the RINDNLCPURGE flag to prevent recursive entry
207 		 * into dnlc_purge_vp()
208 		 */
209 		if (vp->v_type == VDIR)
210 			rp->r_flags |= RINDNLCPURGE;
211 		mutex_exit(&rp->r_statelock);
212 		dnlc_purge_vp(vp);
213 		mutex_enter(&rp->r_statelock);
214 		if (rp->r_flags & RINDNLCPURGE)
215 			rp->r_flags &= ~RINDNLCPURGE;
216 	}
217 
218 	/*
219 	 * Clear any readdir state bits and purge the readlink response cache.
220 	 */
221 	contents = rp->r_symlink.contents;
222 	size = rp->r_symlink.size;
223 	rp->r_symlink.contents = NULL;
224 	mutex_exit(&rp->r_statelock);
225 
226 	if (contents != NULL) {
227 
228 		kmem_free((void *)contents, size);
229 	}
230 
231 	/*
232 	 * Flush the page cache.
233 	 */
234 	if (vn_has_cached_data(vp)) {
235 		error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr);
236 		if (error && (error == ENOSPC || error == EDQUOT)) {
237 			mutex_enter(&rp->r_statelock);
238 			if (!rp->r_error)
239 				rp->r_error = error;
240 			mutex_exit(&rp->r_statelock);
241 		}
242 	}
243 
244 	/*
245 	 * Flush the readdir response cache.
246 	 */
247 	if (HAVE_RDDIR_CACHE(rp))
248 		nfs_purge_rddir_cache(vp);
249 }
250 
251 /*
252  * Purge the readdir cache of all entries
253  */
254 void
255 nfs_purge_rddir_cache(vnode_t *vp)
256 {
257 	rnode_t *rp;
258 	rddir_cache *rdc;
259 	rddir_cache *nrdc;
260 
261 	rp = VTOR(vp);
262 top:
263 	mutex_enter(&rp->r_statelock);
264 	rp->r_direof = NULL;
265 	rp->r_flags &= ~RLOOKUP;
266 	rp->r_flags |= RREADDIRPLUS;
267 	rdc = avl_first(&rp->r_dir);
268 	while (rdc != NULL) {
269 		nrdc = AVL_NEXT(&rp->r_dir, rdc);
270 		avl_remove(&rp->r_dir, rdc);
271 		rddir_cache_rele(rdc);
272 		rdc = nrdc;
273 	}
274 	mutex_exit(&rp->r_statelock);
275 }
276 
277 /*
278  * Do a cache check based on the post-operation attributes.
279  * Then make them the new cached attributes.  If no attributes
280  * were returned, then mark the attributes as timed out.
281  */
282 void
283 nfs3_cache_post_op_attr(vnode_t *vp, post_op_attr *poap, hrtime_t t, cred_t *cr)
284 {
285 	vattr_t attr;
286 
287 	if (!poap->attributes) {
288 		PURGE_ATTRCACHE(vp);
289 		return;
290 	}
291 	(void) nfs3_cache_fattr3(vp, &poap->attr, &attr, t, cr);
292 }
293 
294 /*
295  * Same as above, but using a vattr
296  */
297 void
298 nfs3_cache_post_op_vattr(vnode_t *vp, post_op_vattr *poap, hrtime_t t,
299     cred_t *cr)
300 {
301 	if (!poap->attributes) {
302 		PURGE_ATTRCACHE(vp);
303 		return;
304 	}
305 	nfs_attr_cache(vp, poap->fres.vap, t, cr);
306 }
307 
308 /*
309  * Do a cache check based on the weak cache consistency attributes.
310  * These consist of a small set of pre-operation attributes and the
311  * full set of post-operation attributes.
312  *
313  * If we are given the pre-operation attributes, then use them to
314  * check the validity of the various caches.  Then, if we got the
315  * post-operation attributes, make them the new cached attributes.
316  * If we didn't get the post-operation attributes, then mark the
317  * attribute cache as timed out so that the next reference will
318  * cause a GETATTR to the server to refresh with the current
319  * attributes.
320  *
321  * Otherwise, if we didn't get the pre-operation attributes, but
322  * we did get the post-operation attributes, then use these
323  * attributes to check the validity of the various caches.  This
324  * will probably cause a flush of the caches because if the
325  * operation succeeded, the attributes of the object were changed
326  * in some way from the old post-operation attributes.  This
327  * should be okay because it is the safe thing to do.  After
328  * checking the data caches, then we make these the new cached
329  * attributes.
330  *
331  * Otherwise, we didn't get either the pre- or post-operation
332  * attributes.  Simply mark the attribute cache as timed out so
333  * the next reference will cause a GETATTR to the server to
334  * refresh with the current attributes.
335  *
336  * If an error occurred trying to convert the over the wire
337  * attributes to a vattr, then simply mark the attribute cache as
338  * timed out.
339  */
340 void
341 nfs3_cache_wcc_data(vnode_t *vp, wcc_data *wccp, hrtime_t t, cred_t *cr)
342 {
343 	vattr_t bva;
344 	vattr_t ava;
345 
346 	if (wccp->after.attributes) {
347 		if (fattr3_to_vattr(vp, &wccp->after.attr, &ava)) {
348 			PURGE_ATTRCACHE(vp);
349 			return;
350 		}
351 		if (wccp->before.attributes) {
352 			bva.va_ctime.tv_sec = wccp->before.attr.ctime.seconds;
353 			bva.va_ctime.tv_nsec = wccp->before.attr.ctime.nseconds;
354 			bva.va_mtime.tv_sec = wccp->before.attr.mtime.seconds;
355 			bva.va_mtime.tv_nsec = wccp->before.attr.mtime.nseconds;
356 			bva.va_size = wccp->before.attr.size;
357 			nfs3_attr_cache(vp, &bva, &ava, t, cr);
358 		} else
359 			nfs_attr_cache(vp, &ava, t, cr);
360 	} else {
361 		PURGE_ATTRCACHE(vp);
362 	}
363 }
364 
365 /*
366  * Set attributes cache for given vnode using nfsattr.
367  *
368  * This routine does not do cache validation with the attributes.
369  *
370  * If an error occurred trying to convert the over the wire
371  * attributes to a vattr, then simply mark the attribute cache as
372  * timed out.
373  */
374 void
375 nfs_attrcache(vnode_t *vp, struct nfsfattr *na, hrtime_t t)
376 {
377 	rnode_t *rp;
378 	struct vattr va;
379 
380 	if (!nattr_to_vattr(vp, na, &va)) {
381 		rp = VTOR(vp);
382 		mutex_enter(&rp->r_statelock);
383 		if (rp->r_mtime <= t)
384 			nfs_attrcache_va(vp, &va);
385 		mutex_exit(&rp->r_statelock);
386 	} else {
387 		PURGE_ATTRCACHE(vp);
388 	}
389 }
390 
391 /*
392  * Set attributes cache for given vnode using fattr3.
393  *
394  * This routine does not do cache validation with the attributes.
395  *
396  * If an error occurred trying to convert the over the wire
397  * attributes to a vattr, then simply mark the attribute cache as
398  * timed out.
399  */
400 void
401 nfs3_attrcache(vnode_t *vp, fattr3 *na, hrtime_t t)
402 {
403 	rnode_t *rp;
404 	struct vattr va;
405 
406 	if (!fattr3_to_vattr(vp, na, &va)) {
407 		rp = VTOR(vp);
408 		mutex_enter(&rp->r_statelock);
409 		if (rp->r_mtime <= t)
410 			nfs_attrcache_va(vp, &va);
411 		mutex_exit(&rp->r_statelock);
412 	} else {
413 		PURGE_ATTRCACHE(vp);
414 	}
415 }
416 
417 /*
418  * Do a cache check based on attributes returned over the wire.  The
419  * new attributes are cached.
420  *
421  * If an error occurred trying to convert the over the wire attributes
422  * to a vattr, then just return that error.
423  *
424  * As a side affect, the vattr argument is filled in with the converted
425  * attributes.
426  */
427 int
428 nfs_cache_fattr(vnode_t *vp, struct nfsfattr *na, vattr_t *vap, hrtime_t t,
429     cred_t *cr)
430 {
431 	int error;
432 
433 	error = nattr_to_vattr(vp, na, vap);
434 	if (error)
435 		return (error);
436 	nfs_attr_cache(vp, vap, t, cr);
437 	return (0);
438 }
439 
440 /*
441  * Do a cache check based on attributes returned over the wire.  The
442  * new attributes are cached.
443  *
444  * If an error occurred trying to convert the over the wire attributes
445  * to a vattr, then just return that error.
446  *
447  * As a side affect, the vattr argument is filled in with the converted
448  * attributes.
449  */
450 int
451 nfs3_cache_fattr3(vnode_t *vp, fattr3 *na, vattr_t *vap, hrtime_t t, cred_t *cr)
452 {
453 	int error;
454 
455 	error = fattr3_to_vattr(vp, na, vap);
456 	if (error)
457 		return (error);
458 	nfs_attr_cache(vp, vap, t, cr);
459 	return (0);
460 }
461 
462 /*
463  * Use the passed in virtual attributes to check to see whether the
464  * data and metadata caches are valid, cache the new attributes, and
465  * then do the cache invalidation if required.
466  *
467  * The cache validation and caching of the new attributes is done
468  * atomically via the use of the mutex, r_statelock.  If required,
469  * the cache invalidation is done atomically w.r.t. the cache
470  * validation and caching of the attributes via the pseudo lock,
471  * r_serial.
472  *
473  * This routine is used to do cache validation and attributes caching
474  * for operations with a single set of post operation attributes.
475  */
476 void
477 nfs_attr_cache(vnode_t *vp, vattr_t *vap, hrtime_t t, cred_t *cr)
478 {
479 	rnode_t *rp;
480 	int mtime_changed;
481 	int ctime_changed;
482 	vsecattr_t *vsp;
483 	int was_serial;
484 
485 	rp = VTOR(vp);
486 
487 	mutex_enter(&rp->r_statelock);
488 
489 	if (rp->r_serial != curthread) {
490 		klwp_t *lwp = ttolwp(curthread);
491 
492 		was_serial = 0;
493 		if (lwp != NULL)
494 			lwp->lwp_nostop++;
495 		while (rp->r_serial != NULL) {
496 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
497 				mutex_exit(&rp->r_statelock);
498 				if (lwp != NULL)
499 					lwp->lwp_nostop--;
500 				return;
501 			}
502 		}
503 		if (lwp != NULL)
504 			lwp->lwp_nostop--;
505 	} else
506 		was_serial = 1;
507 
508 	if (rp->r_mtime > t) {
509 		if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size))
510 			PURGE_ATTRCACHE_LOCKED(rp);
511 		mutex_exit(&rp->r_statelock);
512 		return;
513 	}
514 
515 	if (!(rp->r_flags & RWRITEATTR)) {
516 		if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size))
517 			mtime_changed = 1;
518 		else
519 			mtime_changed = 0;
520 		if (rp->r_attr.va_ctime.tv_sec != vap->va_ctime.tv_sec ||
521 		    rp->r_attr.va_ctime.tv_nsec != vap->va_ctime.tv_nsec)
522 			ctime_changed = 1;
523 		else
524 			ctime_changed = 0;
525 	} else if (rp->r_size != vap->va_size &&
526 		    (!vn_has_cached_data(vp) ||
527 		    (!(rp->r_flags & RDIRTY) && rp->r_count == 0))) {
528 		mtime_changed = 1;
529 		ctime_changed = 0;
530 	} else {
531 		mtime_changed = 0;
532 		ctime_changed = 0;
533 	}
534 
535 	nfs_attrcache_va(vp, vap);
536 
537 	if (!mtime_changed && !ctime_changed) {
538 		mutex_exit(&rp->r_statelock);
539 		return;
540 	}
541 
542 	rp->r_serial = curthread;
543 
544 	mutex_exit(&rp->r_statelock);
545 
546 	if (mtime_changed)
547 		nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
548 
549 	if (ctime_changed) {
550 		(void) nfs_access_purge_rp(rp);
551 		if (rp->r_secattr != NULL) {
552 			mutex_enter(&rp->r_statelock);
553 			vsp = rp->r_secattr;
554 			rp->r_secattr = NULL;
555 			mutex_exit(&rp->r_statelock);
556 			if (vsp != NULL)
557 				nfs_acl_free(vsp);
558 		}
559 	}
560 
561 	if (!was_serial) {
562 		mutex_enter(&rp->r_statelock);
563 		rp->r_serial = NULL;
564 		cv_broadcast(&rp->r_cv);
565 		mutex_exit(&rp->r_statelock);
566 	}
567 }
568 
569 /*
570  * Use the passed in "before" virtual attributes to check to see
571  * whether the data and metadata caches are valid, cache the "after"
572  * new attributes, and then do the cache invalidation if required.
573  *
574  * The cache validation and caching of the new attributes is done
575  * atomically via the use of the mutex, r_statelock.  If required,
576  * the cache invalidation is done atomically w.r.t. the cache
577  * validation and caching of the attributes via the pseudo lock,
578  * r_serial.
579  *
580  * This routine is used to do cache validation and attributes caching
581  * for operations with both pre operation attributes and post operation
582  * attributes.
583  */
584 static void
585 nfs3_attr_cache(vnode_t *vp, vattr_t *bvap, vattr_t *avap, hrtime_t t,
586     cred_t *cr)
587 {
588 	rnode_t *rp;
589 	int mtime_changed;
590 	int ctime_changed;
591 	vsecattr_t *vsp;
592 	int was_serial;
593 
594 	rp = VTOR(vp);
595 
596 	mutex_enter(&rp->r_statelock);
597 
598 	if (rp->r_serial != curthread) {
599 		klwp_t *lwp = ttolwp(curthread);
600 
601 		was_serial = 0;
602 		if (lwp != NULL)
603 			lwp->lwp_nostop++;
604 		while (rp->r_serial != NULL) {
605 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
606 				mutex_exit(&rp->r_statelock);
607 				if (lwp != NULL)
608 					lwp->lwp_nostop--;
609 				return;
610 			}
611 		}
612 		if (lwp != NULL)
613 			lwp->lwp_nostop--;
614 	} else
615 		was_serial = 1;
616 
617 	if (rp->r_mtime > t) {
618 		if (!CACHE_VALID(rp, avap->va_mtime, avap->va_size))
619 			PURGE_ATTRCACHE_LOCKED(rp);
620 		mutex_exit(&rp->r_statelock);
621 		return;
622 	}
623 
624 	if (!(rp->r_flags & RWRITEATTR)) {
625 		if (!CACHE_VALID(rp, bvap->va_mtime, bvap->va_size))
626 			mtime_changed = 1;
627 		else
628 			mtime_changed = 0;
629 		if (rp->r_attr.va_ctime.tv_sec != bvap->va_ctime.tv_sec ||
630 		    rp->r_attr.va_ctime.tv_nsec != bvap->va_ctime.tv_nsec)
631 			ctime_changed = 1;
632 		else
633 			ctime_changed = 0;
634 	} else {
635 		mtime_changed = 0;
636 		ctime_changed = 0;
637 	}
638 
639 	nfs_attrcache_va(vp, avap);
640 
641 	if (!mtime_changed && !ctime_changed) {
642 		mutex_exit(&rp->r_statelock);
643 		return;
644 	}
645 
646 	rp->r_serial = curthread;
647 
648 	mutex_exit(&rp->r_statelock);
649 
650 	if (mtime_changed)
651 		nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
652 
653 	if (ctime_changed) {
654 		(void) nfs_access_purge_rp(rp);
655 		if (rp->r_secattr != NULL) {
656 			mutex_enter(&rp->r_statelock);
657 			vsp = rp->r_secattr;
658 			rp->r_secattr = NULL;
659 			mutex_exit(&rp->r_statelock);
660 			if (vsp != NULL)
661 				nfs_acl_free(vsp);
662 		}
663 	}
664 
665 	if (!was_serial) {
666 		mutex_enter(&rp->r_statelock);
667 		rp->r_serial = NULL;
668 		cv_broadcast(&rp->r_cv);
669 		mutex_exit(&rp->r_statelock);
670 	}
671 }
672 
673 /*
674  * Set attributes cache for given vnode using virtual attributes.
675  *
676  * Set the timeout value on the attribute cache and fill it
677  * with the passed in attributes.
678  *
679  * The caller must be holding r_statelock.
680  */
681 void
682 nfs_attrcache_va(vnode_t *vp, struct vattr *va)
683 {
684 	rnode_t *rp;
685 	mntinfo_t *mi;
686 	hrtime_t delta;
687 	hrtime_t now;
688 
689 	rp = VTOR(vp);
690 
691 	ASSERT(MUTEX_HELD(&rp->r_statelock));
692 
693 	now = gethrtime();
694 
695 	mi = VTOMI(vp);
696 
697 	/*
698 	 * Delta is the number of nanoseconds that we will
699 	 * cache the attributes of the file.  It is based on
700 	 * the number of nanoseconds since the last time that
701 	 * we detected a change.  The assumption is that files
702 	 * that changed recently are likely to change again.
703 	 * There is a minimum and a maximum for regular files
704 	 * and for directories which is enforced though.
705 	 *
706 	 * Using the time since last change was detected
707 	 * eliminates direct comparison or calculation
708 	 * using mixed client and server times.  NFS does
709 	 * not make any assumptions regarding the client
710 	 * and server clocks being synchronized.
711 	 */
712 	if (va->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec ||
713 	    va->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec ||
714 	    va->va_size != rp->r_attr.va_size)
715 		rp->r_mtime = now;
716 
717 	if ((mi->mi_flags & MI_NOAC) || (vp->v_flag & VNOCACHE))
718 		delta = 0;
719 	else {
720 		delta = now - rp->r_mtime;
721 		if (vp->v_type == VDIR) {
722 			if (delta < mi->mi_acdirmin)
723 				delta = mi->mi_acdirmin;
724 			else if (delta > mi->mi_acdirmax)
725 				delta = mi->mi_acdirmax;
726 		} else {
727 			if (delta < mi->mi_acregmin)
728 				delta = mi->mi_acregmin;
729 			else if (delta > mi->mi_acregmax)
730 				delta = mi->mi_acregmax;
731 		}
732 	}
733 	rp->r_attrtime = now + delta;
734 	rp->r_attr = *va;
735 	/*
736 	 * Update the size of the file if there is no cached data or if
737 	 * the cached data is clean and there is no data being written
738 	 * out.
739 	 */
740 	if (rp->r_size != va->va_size &&
741 	    (!vn_has_cached_data(vp) ||
742 	    (!(rp->r_flags & RDIRTY) && rp->r_count == 0)))
743 		rp->r_size = va->va_size;
744 	nfs_setswaplike(vp, va);
745 	rp->r_flags &= ~RWRITEATTR;
746 }
747 
748 /*
749  * Fill in attribute from the cache.
750  * If valid, then return 0 to indicate that no error occurred,
751  * otherwise return 1 to indicate that an error occurred.
752  */
753 static int
754 nfs_getattr_cache(vnode_t *vp, struct vattr *vap)
755 {
756 	rnode_t *rp;
757 
758 	rp = VTOR(vp);
759 	mutex_enter(&rp->r_statelock);
760 	if (ATTRCACHE_VALID(vp)) {
761 		/*
762 		 * Cached attributes are valid
763 		 */
764 		*vap = rp->r_attr;
765 		mutex_exit(&rp->r_statelock);
766 		return (0);
767 	}
768 	mutex_exit(&rp->r_statelock);
769 	return (1);
770 }
771 
772 /*
773  * Get attributes over-the-wire and update attributes cache
774  * if no error occurred in the over-the-wire operation.
775  * Return 0 if successful, otherwise error.
776  */
777 int
778 nfs_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr)
779 {
780 	int error;
781 	struct nfsattrstat ns;
782 	int douprintf;
783 	mntinfo_t *mi;
784 	failinfo_t fi;
785 	hrtime_t t;
786 
787 	mi = VTOMI(vp);
788 	fi.vp = vp;
789 	fi.fhp = NULL;		/* no need to update, filehandle not copied */
790 	fi.copyproc = nfscopyfh;
791 	fi.lookupproc = nfslookup;
792 	fi.xattrdirproc = acl_getxattrdir2;
793 
794 	if (mi->mi_flags & MI_ACL) {
795 		error = acl_getattr2_otw(vp, vap, cr);
796 		if (mi->mi_flags & MI_ACL)
797 			return (error);
798 	}
799 
800 	douprintf = 1;
801 
802 	t = gethrtime();
803 
804 	error = rfs2call(mi, RFS_GETATTR,
805 			xdr_fhandle, (caddr_t)VTOFH(vp),
806 			xdr_attrstat, (caddr_t)&ns, cr,
807 			&douprintf, &ns.ns_status, 0, &fi);
808 
809 	if (!error) {
810 		error = geterrno(ns.ns_status);
811 		if (!error)
812 			error = nfs_cache_fattr(vp, &ns.ns_attr, vap, t, cr);
813 		else {
814 			PURGE_STALE_FH(error, vp, cr);
815 		}
816 	}
817 
818 	return (error);
819 }
820 
821 /*
822  * Return either cached ot remote attributes. If get remote attr
823  * use them to check and invalidate caches, then cache the new attributes.
824  */
825 int
826 nfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
827 {
828 	int error;
829 	rnode_t *rp;
830 
831 	/*
832 	 * If we've got cached attributes, we're done, otherwise go
833 	 * to the server to get attributes, which will update the cache
834 	 * in the process.
835 	 */
836 	error = nfs_getattr_cache(vp, vap);
837 	if (error)
838 		error = nfs_getattr_otw(vp, vap, cr);
839 
840 	/* Return the client's view of file size */
841 	rp = VTOR(vp);
842 	mutex_enter(&rp->r_statelock);
843 	vap->va_size = rp->r_size;
844 	mutex_exit(&rp->r_statelock);
845 
846 	return (error);
847 }
848 
849 /*
850  * Get attributes over-the-wire and update attributes cache
851  * if no error occurred in the over-the-wire operation.
852  * Return 0 if successful, otherwise error.
853  */
854 int
855 nfs3_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr)
856 {
857 	int error;
858 	GETATTR3args args;
859 	GETATTR3vres res;
860 	int douprintf;
861 	failinfo_t fi;
862 	hrtime_t t;
863 
864 	args.object = *VTOFH3(vp);
865 	fi.vp = vp;
866 	fi.fhp = (caddr_t)&args.object;
867 	fi.copyproc = nfs3copyfh;
868 	fi.lookupproc = nfs3lookup;
869 	fi.xattrdirproc = acl_getxattrdir3;
870 	res.fres.vp = vp;
871 	res.fres.vap = vap;
872 
873 	douprintf = 1;
874 
875 	t = gethrtime();
876 
877 	error = rfs3call(VTOMI(vp), NFSPROC3_GETATTR,
878 	    xdr_nfs_fh3, (caddr_t)&args,
879 	    xdr_GETATTR3vres, (caddr_t)&res, cr,
880 	    &douprintf, &res.status, 0, &fi);
881 
882 	if (error)
883 		return (error);
884 
885 	error = geterrno3(res.status);
886 	if (error) {
887 		PURGE_STALE_FH(error, vp, cr);
888 		return (error);
889 	}
890 
891 	/*
892 	 * Catch status codes that indicate fattr3 to vattr translation failure
893 	 */
894 	if (res.fres.status)
895 		return (res.fres.status);
896 
897 	nfs_attr_cache(vp, vap, t, cr);
898 	return (0);
899 }
900 
901 /*
902  * Return either cached or remote attributes. If get remote attr
903  * use them to check and invalidate caches, then cache the new attributes.
904  */
905 int
906 nfs3getattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
907 {
908 	int error;
909 	rnode_t *rp;
910 
911 	/*
912 	 * If we've got cached attributes, we're done, otherwise go
913 	 * to the server to get attributes, which will update the cache
914 	 * in the process.
915 	 */
916 	error = nfs_getattr_cache(vp, vap);
917 	if (error)
918 		error = nfs3_getattr_otw(vp, vap, cr);
919 
920 	/* Return the client's view of file size */
921 	rp = VTOR(vp);
922 	mutex_enter(&rp->r_statelock);
923 	vap->va_size = rp->r_size;
924 	mutex_exit(&rp->r_statelock);
925 
926 	return (error);
927 }
928 
929 vtype_t nf_to_vt[] = {
930 	VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK
931 };
932 /*
933  * Convert NFS Version 2 over the network attributes to the local
934  * virtual attributes.  The mapping between the UID_NOBODY/GID_NOBODY
935  * network representation and the local representation is done here.
936  * Returns 0 for success, error if failed due to overflow.
937  */
938 int
939 nattr_to_vattr(vnode_t *vp, struct nfsfattr *na, struct vattr *vap)
940 {
941 	/* overflow in time attributes? */
942 #ifndef _LP64
943 	if (!NFS2_FATTR_TIME_OK(na))
944 		return (EOVERFLOW);
945 #endif
946 
947 	if (na->na_type < NFNON || na->na_type > NFSOC)
948 		vap->va_type = VBAD;
949 	else
950 		vap->va_type = nf_to_vt[na->na_type];
951 	vap->va_mode = na->na_mode;
952 	vap->va_uid = (na->na_uid == NFS_UID_NOBODY) ? UID_NOBODY : na->na_uid;
953 	vap->va_gid = (na->na_gid == NFS_GID_NOBODY) ? GID_NOBODY : na->na_gid;
954 	vap->va_fsid = vp->v_vfsp->vfs_dev;
955 	vap->va_nodeid = na->na_nodeid;
956 	vap->va_nlink = na->na_nlink;
957 	vap->va_size = na->na_size;	/* keep for cache validation */
958 	/*
959 	 * nfs protocol defines times as unsigned so don't extend sign,
960 	 * unless sysadmin set nfs_allow_preepoch_time.
961 	 */
962 	NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->na_atime.tv_sec);
963 	vap->va_atime.tv_nsec = (uint32_t)(na->na_atime.tv_usec * 1000);
964 	NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->na_mtime.tv_sec);
965 	vap->va_mtime.tv_nsec = (uint32_t)(na->na_mtime.tv_usec * 1000);
966 	NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->na_ctime.tv_sec);
967 	vap->va_ctime.tv_nsec = (uint32_t)(na->na_ctime.tv_usec * 1000);
968 	/*
969 	 * Shannon's law - uncompress the received dev_t
970 	 * if the top half of is zero indicating a response
971 	 * from an `older style' OS. Except for when it is a
972 	 * `new style' OS sending the maj device of zero,
973 	 * in which case the algorithm still works because the
974 	 * fact that it is a new style server
975 	 * is hidden by the minor device not being greater
976 	 * than 255 (a requirement in this case).
977 	 */
978 	if ((na->na_rdev & 0xffff0000) == 0)
979 		vap->va_rdev = nfsv2_expdev(na->na_rdev);
980 	else
981 		vap->va_rdev = expldev(na->na_rdev);
982 
983 	vap->va_nblocks = na->na_blocks;
984 	switch (na->na_type) {
985 	case NFBLK:
986 		vap->va_blksize = DEV_BSIZE;
987 		break;
988 
989 	case NFCHR:
990 		vap->va_blksize = MAXBSIZE;
991 		break;
992 
993 	case NFSOC:
994 	default:
995 		vap->va_blksize = na->na_blocksize;
996 		break;
997 	}
998 	/*
999 	 * This bit of ugliness is a hack to preserve the
1000 	 * over-the-wire protocols for named-pipe vnodes.
1001 	 * It remaps the special over-the-wire type to the
1002 	 * VFIFO type. (see note in nfs.h)
1003 	 */
1004 	if (NA_ISFIFO(na)) {
1005 		vap->va_type = VFIFO;
1006 		vap->va_mode = (vap->va_mode & ~S_IFMT) | S_IFIFO;
1007 		vap->va_rdev = 0;
1008 		vap->va_blksize = na->na_blocksize;
1009 	}
1010 	vap->va_seq = 0;
1011 	return (0);
1012 }
1013 
1014 /*
1015  * Convert NFS Version 3 over the network attributes to the local
1016  * virtual attributes.  The mapping between the UID_NOBODY/GID_NOBODY
1017  * network representation and the local representation is done here.
1018  */
1019 vtype_t nf3_to_vt[] = {
1020 	VBAD, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO
1021 };
1022 
1023 int
1024 fattr3_to_vattr(vnode_t *vp, fattr3 *na, struct vattr *vap)
1025 {
1026 
1027 #ifndef _LP64
1028 	/* overflow in time attributes? */
1029 	if (!NFS3_FATTR_TIME_OK(na))
1030 		return (EOVERFLOW);
1031 #endif
1032 	if (!NFS3_SIZE_OK(na->size))
1033 		/* file too big */
1034 		return (EFBIG);
1035 
1036 	vap->va_mask = AT_ALL;
1037 
1038 	if (na->type < NF3REG || na->type > NF3FIFO)
1039 		vap->va_type = VBAD;
1040 	else
1041 		vap->va_type = nf3_to_vt[na->type];
1042 	vap->va_mode = na->mode;
1043 	vap->va_uid = (na->uid == NFS_UID_NOBODY) ? UID_NOBODY : (uid_t)na->uid;
1044 	vap->va_gid = (na->gid == NFS_GID_NOBODY) ? GID_NOBODY : (gid_t)na->gid;
1045 	vap->va_fsid = vp->v_vfsp->vfs_dev;
1046 	vap->va_nodeid = na->fileid;
1047 	vap->va_nlink = na->nlink;
1048 	vap->va_size = na->size;
1049 
1050 	/*
1051 	 * nfs protocol defines times as unsigned so don't extend sign,
1052 	 * unless sysadmin set nfs_allow_preepoch_time.
1053 	 */
1054 	NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->atime.seconds);
1055 	vap->va_atime.tv_nsec = (uint32_t)na->atime.nseconds;
1056 	NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->mtime.seconds);
1057 	vap->va_mtime.tv_nsec = (uint32_t)na->mtime.nseconds;
1058 	NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->ctime.seconds);
1059 	vap->va_ctime.tv_nsec = (uint32_t)na->ctime.nseconds;
1060 
1061 	switch (na->type) {
1062 	case NF3BLK:
1063 		vap->va_rdev = makedevice(na->rdev.specdata1,
1064 					na->rdev.specdata2);
1065 		vap->va_blksize = DEV_BSIZE;
1066 		vap->va_nblocks = 0;
1067 		break;
1068 	case NF3CHR:
1069 		vap->va_rdev = makedevice(na->rdev.specdata1,
1070 					na->rdev.specdata2);
1071 		vap->va_blksize = MAXBSIZE;
1072 		vap->va_nblocks = 0;
1073 		break;
1074 	case NF3REG:
1075 	case NF3DIR:
1076 	case NF3LNK:
1077 		vap->va_rdev = 0;
1078 		vap->va_blksize = MAXBSIZE;
1079 		vap->va_nblocks = (u_longlong_t)
1080 		    ((na->used + (size3)DEV_BSIZE - (size3)1) /
1081 		    (size3)DEV_BSIZE);
1082 		break;
1083 	case NF3SOCK:
1084 	case NF3FIFO:
1085 	default:
1086 		vap->va_rdev = 0;
1087 		vap->va_blksize = MAXBSIZE;
1088 		vap->va_nblocks = 0;
1089 		break;
1090 	}
1091 	vap->va_seq = 0;
1092 	return (0);
1093 }
1094 
1095 /*
1096  * Asynchronous I/O parameters.  nfs_async_threads is the high-water mark
1097  * for the demand-based allocation of async threads per-mount.  The
1098  * nfs_async_timeout is the amount of time a thread will live after it
1099  * becomes idle, unless new I/O requests are received before the thread
1100  * dies.  See nfs_async_putpage and nfs_async_start.
1101  */
1102 
1103 int nfs_async_timeout = -1;	/* uninitialized */
1104 
1105 static void	nfs_async_start(struct vfs *);
1106 
1107 static void
1108 free_async_args(struct nfs_async_reqs *args)
1109 {
1110 	rnode_t *rp;
1111 
1112 	if (args->a_io != NFS_INACTIVE) {
1113 		rp = VTOR(args->a_vp);
1114 		mutex_enter(&rp->r_statelock);
1115 		rp->r_count--;
1116 		if (args->a_io == NFS_PUTAPAGE ||
1117 		    args->a_io == NFS_PAGEIO)
1118 			rp->r_awcount--;
1119 		cv_broadcast(&rp->r_cv);
1120 		mutex_exit(&rp->r_statelock);
1121 		VN_RELE(args->a_vp);
1122 	}
1123 	crfree(args->a_cred);
1124 	kmem_free(args, sizeof (*args));
1125 }
1126 
1127 /*
1128  * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and
1129  * pageout(), running in the global zone, have legitimate reasons to do
1130  * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts.  We avoid the problem by
1131  * use of a a per-mount "asynchronous requests manager thread" which is
1132  * signaled by the various asynchronous work routines when there is
1133  * asynchronous work to be done.  It is responsible for creating new
1134  * worker threads if necessary, and notifying existing worker threads
1135  * that there is work to be done.
1136  *
1137  * In other words, it will "take the specifications from the customers and
1138  * give them to the engineers."
1139  *
1140  * Worker threads die off of their own accord if they are no longer
1141  * needed.
1142  *
1143  * This thread is killed when the zone is going away or the filesystem
1144  * is being unmounted.
1145  */
1146 void
1147 nfs_async_manager(vfs_t *vfsp)
1148 {
1149 	callb_cpr_t cprinfo;
1150 	mntinfo_t *mi;
1151 	uint_t max_threads;
1152 
1153 	mi = VFTOMI(vfsp);
1154 
1155 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1156 		    "nfs_async_manager");
1157 
1158 	mutex_enter(&mi->mi_async_lock);
1159 	/*
1160 	 * We want to stash the max number of threads that this mount was
1161 	 * allowed so we can use it later when the variable is set to zero as
1162 	 * part of the zone/mount going away.
1163 	 *
1164 	 * We want to be able to create at least one thread to handle
1165 	 * asyncrhonous inactive calls.
1166 	 */
1167 	max_threads = MAX(mi->mi_max_threads, 1);
1168 	mutex_enter(&mi->mi_lock);
1169 	/*
1170 	 * We don't want to wait for mi_max_threads to go to zero, since that
1171 	 * happens as part of a failed unmount, but this thread should only
1172 	 * exit when the mount/zone is really going away.
1173 	 *
1174 	 * Once MI_ASYNC_MGR_STOP is set, no more async operations will be
1175 	 * attempted: the various _async_*() functions know to do things
1176 	 * inline if mi_max_threads == 0.  Henceforth we just drain out the
1177 	 * outstanding requests.
1178 	 *
1179 	 * Note that we still create zthreads even if we notice the zone is
1180 	 * shutting down (MI_ASYNC_MGR_STOP is set); this may cause the zone
1181 	 * shutdown sequence to take slightly longer in some cases, but
1182 	 * doesn't violate the protocol, as all threads will exit as soon as
1183 	 * they're done processing the remaining requests.
1184 	 */
1185 	while (!(mi->mi_flags & MI_ASYNC_MGR_STOP) ||
1186 	    mi->mi_async_req_count > 0) {
1187 		mutex_exit(&mi->mi_lock);
1188 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1189 		cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock);
1190 		CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1191 		while (mi->mi_async_req_count > 0) {
1192 			/*
1193 			 * Paranoia: If the mount started out having
1194 			 * (mi->mi_max_threads == 0), and the value was
1195 			 * later changed (via a debugger or somesuch),
1196 			 * we could be confused since we will think we
1197 			 * can't create any threads, and the calling
1198 			 * code (which looks at the current value of
1199 			 * mi->mi_max_threads, now non-zero) thinks we
1200 			 * can.
1201 			 *
1202 			 * So, because we're paranoid, we create threads
1203 			 * up to the maximum of the original and the
1204 			 * current value. This means that future
1205 			 * (debugger-induced) lowerings of
1206 			 * mi->mi_max_threads are ignored for our
1207 			 * purposes, but who told them they could change
1208 			 * random values on a live kernel anyhow?
1209 			 */
1210 			if (mi->mi_threads <
1211 			    MAX(mi->mi_max_threads, max_threads)) {
1212 				mi->mi_threads++;
1213 				mutex_exit(&mi->mi_async_lock);
1214 				VFS_HOLD(vfsp);	/* hold for new thread */
1215 				(void) zthread_create(NULL, 0, nfs_async_start,
1216 				    vfsp, 0, minclsyspri);
1217 				mutex_enter(&mi->mi_async_lock);
1218 			}
1219 			cv_signal(&mi->mi_async_work_cv);
1220 			ASSERT(mi->mi_async_req_count != 0);
1221 			mi->mi_async_req_count--;
1222 		}
1223 		mutex_enter(&mi->mi_lock);
1224 	}
1225 	mutex_exit(&mi->mi_lock);
1226 	/*
1227 	 * Let everyone know we're done.
1228 	 */
1229 	mi->mi_manager_thread = NULL;
1230 	cv_broadcast(&mi->mi_async_cv);
1231 
1232 	/*
1233 	 * There is no explicit call to mutex_exit(&mi->mi_async_lock)
1234 	 * since CALLB_CPR_EXIT is actually responsible for releasing
1235 	 * 'mi_async_lock'.
1236 	 */
1237 	CALLB_CPR_EXIT(&cprinfo);
1238 	VFS_RELE(vfsp);	/* release thread's hold */
1239 	zthread_exit();
1240 }
1241 
1242 /*
1243  * Signal (and wait for) the async manager thread to clean up and go away.
1244  */
1245 void
1246 nfs_async_manager_stop(vfs_t *vfsp)
1247 {
1248 	mntinfo_t *mi = VFTOMI(vfsp);
1249 
1250 	mutex_enter(&mi->mi_async_lock);
1251 	mutex_enter(&mi->mi_lock);
1252 	mi->mi_flags |= MI_ASYNC_MGR_STOP;
1253 	mutex_exit(&mi->mi_lock);
1254 	cv_broadcast(&mi->mi_async_reqs_cv);
1255 	while (mi->mi_manager_thread != NULL)
1256 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1257 	mutex_exit(&mi->mi_async_lock);
1258 }
1259 
1260 int
1261 nfs_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr,
1262 	struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *,
1263 	u_offset_t, caddr_t, struct seg *, cred_t *))
1264 {
1265 	rnode_t *rp;
1266 	mntinfo_t *mi;
1267 	struct nfs_async_reqs *args;
1268 
1269 	rp = VTOR(vp);
1270 	ASSERT(rp->r_freef == NULL);
1271 
1272 	mi = VTOMI(vp);
1273 
1274 	/*
1275 	 * If addr falls in a different segment, don't bother doing readahead.
1276 	 */
1277 	if (addr >= seg->s_base + seg->s_size)
1278 		return (-1);
1279 
1280 	/*
1281 	 * If we can't allocate a request structure, punt on the readahead.
1282 	 */
1283 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1284 		return (-1);
1285 
1286 	/*
1287 	 * If a lock operation is pending, don't initiate any new
1288 	 * readaheads.  Otherwise, bump r_count to indicate the new
1289 	 * asynchronous I/O.
1290 	 */
1291 	if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) {
1292 		kmem_free(args, sizeof (*args));
1293 		return (-1);
1294 	}
1295 	mutex_enter(&rp->r_statelock);
1296 	rp->r_count++;
1297 	mutex_exit(&rp->r_statelock);
1298 	nfs_rw_exit(&rp->r_lkserlock);
1299 
1300 	args->a_next = NULL;
1301 #ifdef DEBUG
1302 	args->a_queuer = curthread;
1303 #endif
1304 	VN_HOLD(vp);
1305 	args->a_vp = vp;
1306 	ASSERT(cr != NULL);
1307 	crhold(cr);
1308 	args->a_cred = cr;
1309 	args->a_io = NFS_READ_AHEAD;
1310 	args->a_nfs_readahead = readahead;
1311 	args->a_nfs_blkoff = blkoff;
1312 	args->a_nfs_seg = seg;
1313 	args->a_nfs_addr = addr;
1314 
1315 	mutex_enter(&mi->mi_async_lock);
1316 
1317 	/*
1318 	 * If asyncio has been disabled, don't bother readahead.
1319 	 */
1320 	if (mi->mi_max_threads == 0) {
1321 		mutex_exit(&mi->mi_async_lock);
1322 		goto noasync;
1323 	}
1324 
1325 	/*
1326 	 * Link request structure into the async list and
1327 	 * wakeup async thread to do the i/o.
1328 	 */
1329 	if (mi->mi_async_reqs[NFS_READ_AHEAD] == NULL) {
1330 		mi->mi_async_reqs[NFS_READ_AHEAD] = args;
1331 		mi->mi_async_tail[NFS_READ_AHEAD] = args;
1332 	} else {
1333 		mi->mi_async_tail[NFS_READ_AHEAD]->a_next = args;
1334 		mi->mi_async_tail[NFS_READ_AHEAD] = args;
1335 	}
1336 
1337 	if (mi->mi_io_kstats) {
1338 		mutex_enter(&mi->mi_lock);
1339 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1340 		mutex_exit(&mi->mi_lock);
1341 	}
1342 
1343 	mi->mi_async_req_count++;
1344 	ASSERT(mi->mi_async_req_count != 0);
1345 	cv_signal(&mi->mi_async_reqs_cv);
1346 	mutex_exit(&mi->mi_async_lock);
1347 	return (0);
1348 
1349 noasync:
1350 	mutex_enter(&rp->r_statelock);
1351 	rp->r_count--;
1352 	cv_broadcast(&rp->r_cv);
1353 	mutex_exit(&rp->r_statelock);
1354 	VN_RELE(vp);
1355 	crfree(cr);
1356 	kmem_free(args, sizeof (*args));
1357 	return (-1);
1358 }
1359 
1360 int
1361 nfs_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
1362 	int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *,
1363 	u_offset_t, size_t, int, cred_t *))
1364 {
1365 	rnode_t *rp;
1366 	mntinfo_t *mi;
1367 	struct nfs_async_reqs *args;
1368 
1369 	ASSERT(flags & B_ASYNC);
1370 	ASSERT(vp->v_vfsp != NULL);
1371 
1372 	rp = VTOR(vp);
1373 	ASSERT(rp->r_count > 0);
1374 
1375 	mi = VTOMI(vp);
1376 
1377 	/*
1378 	 * If we can't allocate a request structure, do the putpage
1379 	 * operation synchronously in this thread's context.
1380 	 */
1381 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1382 		goto noasync;
1383 
1384 	args->a_next = NULL;
1385 #ifdef DEBUG
1386 	args->a_queuer = curthread;
1387 #endif
1388 	VN_HOLD(vp);
1389 	args->a_vp = vp;
1390 	ASSERT(cr != NULL);
1391 	crhold(cr);
1392 	args->a_cred = cr;
1393 	args->a_io = NFS_PUTAPAGE;
1394 	args->a_nfs_putapage = putapage;
1395 	args->a_nfs_pp = pp;
1396 	args->a_nfs_off = off;
1397 	args->a_nfs_len = (uint_t)len;
1398 	args->a_nfs_flags = flags;
1399 
1400 	mutex_enter(&mi->mi_async_lock);
1401 
1402 	/*
1403 	 * If asyncio has been disabled, then make a synchronous request.
1404 	 * This check is done a second time in case async io was diabled
1405 	 * while this thread was blocked waiting for memory pressure to
1406 	 * reduce or for the queue to drain.
1407 	 */
1408 	if (mi->mi_max_threads == 0) {
1409 		mutex_exit(&mi->mi_async_lock);
1410 		goto noasync;
1411 	}
1412 
1413 	/*
1414 	 * Link request structure into the async list and
1415 	 * wakeup async thread to do the i/o.
1416 	 */
1417 	if (mi->mi_async_reqs[NFS_PUTAPAGE] == NULL) {
1418 		mi->mi_async_reqs[NFS_PUTAPAGE] = args;
1419 		mi->mi_async_tail[NFS_PUTAPAGE] = args;
1420 	} else {
1421 		mi->mi_async_tail[NFS_PUTAPAGE]->a_next = args;
1422 		mi->mi_async_tail[NFS_PUTAPAGE] = args;
1423 	}
1424 
1425 	mutex_enter(&rp->r_statelock);
1426 	rp->r_count++;
1427 	rp->r_awcount++;
1428 	mutex_exit(&rp->r_statelock);
1429 
1430 	if (mi->mi_io_kstats) {
1431 		mutex_enter(&mi->mi_lock);
1432 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1433 		mutex_exit(&mi->mi_lock);
1434 	}
1435 
1436 	mi->mi_async_req_count++;
1437 	ASSERT(mi->mi_async_req_count != 0);
1438 	cv_signal(&mi->mi_async_reqs_cv);
1439 	mutex_exit(&mi->mi_async_lock);
1440 	return (0);
1441 
1442 noasync:
1443 	if (args != NULL) {
1444 		VN_RELE(vp);
1445 		crfree(cr);
1446 		kmem_free(args, sizeof (*args));
1447 	}
1448 
1449 	if (curproc == proc_pageout || curproc == proc_fsflush) {
1450 		/*
1451 		 * If we get here in the context of the pageout/fsflush,
1452 		 * we refuse to do a sync write, because this may hang
1453 		 * pageout (and the machine). In this case, we just
1454 		 * re-mark the page as dirty and punt on the page.
1455 		 *
1456 		 * Make sure B_FORCE isn't set.  We can re-mark the
1457 		 * pages as dirty and unlock the pages in one swoop by
1458 		 * passing in B_ERROR to pvn_write_done().  However,
1459 		 * we should make sure B_FORCE isn't set - we don't
1460 		 * want the page tossed before it gets written out.
1461 		 */
1462 		if (flags & B_FORCE)
1463 			flags &= ~(B_INVAL | B_FORCE);
1464 		pvn_write_done(pp, flags | B_ERROR);
1465 		return (0);
1466 	}
1467 	if (nfs_zone() != mi->mi_zone) {
1468 		/*
1469 		 * So this was a cross-zone sync putpage.  We pass in B_ERROR
1470 		 * to pvn_write_done() to re-mark the pages as dirty and unlock
1471 		 * them.
1472 		 *
1473 		 * We don't want to clear B_FORCE here as the caller presumably
1474 		 * knows what they're doing if they set it.
1475 		 */
1476 		pvn_write_done(pp, flags | B_ERROR);
1477 		return (EPERM);
1478 	}
1479 	return ((*putapage)(vp, pp, off, len, flags, cr));
1480 }
1481 
1482 int
1483 nfs_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
1484 	int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
1485 	size_t, int, cred_t *))
1486 {
1487 	rnode_t *rp;
1488 	mntinfo_t *mi;
1489 	struct nfs_async_reqs *args;
1490 
1491 	ASSERT(flags & B_ASYNC);
1492 	ASSERT(vp->v_vfsp != NULL);
1493 
1494 	rp = VTOR(vp);
1495 	ASSERT(rp->r_count > 0);
1496 
1497 	mi = VTOMI(vp);
1498 
1499 	/*
1500 	 * If we can't allocate a request structure, do the pageio
1501 	 * request synchronously in this thread's context.
1502 	 */
1503 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1504 		goto noasync;
1505 
1506 	args->a_next = NULL;
1507 #ifdef DEBUG
1508 	args->a_queuer = curthread;
1509 #endif
1510 	VN_HOLD(vp);
1511 	args->a_vp = vp;
1512 	ASSERT(cr != NULL);
1513 	crhold(cr);
1514 	args->a_cred = cr;
1515 	args->a_io = NFS_PAGEIO;
1516 	args->a_nfs_pageio = pageio;
1517 	args->a_nfs_pp = pp;
1518 	args->a_nfs_off = io_off;
1519 	args->a_nfs_len = (uint_t)io_len;
1520 	args->a_nfs_flags = flags;
1521 
1522 	mutex_enter(&mi->mi_async_lock);
1523 
1524 	/*
1525 	 * If asyncio has been disabled, then make a synchronous request.
1526 	 * This check is done a second time in case async io was diabled
1527 	 * while this thread was blocked waiting for memory pressure to
1528 	 * reduce or for the queue to drain.
1529 	 */
1530 	if (mi->mi_max_threads == 0) {
1531 		mutex_exit(&mi->mi_async_lock);
1532 		goto noasync;
1533 	}
1534 
1535 	/*
1536 	 * Link request structure into the async list and
1537 	 * wakeup async thread to do the i/o.
1538 	 */
1539 	if (mi->mi_async_reqs[NFS_PAGEIO] == NULL) {
1540 		mi->mi_async_reqs[NFS_PAGEIO] = args;
1541 		mi->mi_async_tail[NFS_PAGEIO] = args;
1542 	} else {
1543 		mi->mi_async_tail[NFS_PAGEIO]->a_next = args;
1544 		mi->mi_async_tail[NFS_PAGEIO] = args;
1545 	}
1546 
1547 	mutex_enter(&rp->r_statelock);
1548 	rp->r_count++;
1549 	rp->r_awcount++;
1550 	mutex_exit(&rp->r_statelock);
1551 
1552 	if (mi->mi_io_kstats) {
1553 		mutex_enter(&mi->mi_lock);
1554 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1555 		mutex_exit(&mi->mi_lock);
1556 	}
1557 
1558 	mi->mi_async_req_count++;
1559 	ASSERT(mi->mi_async_req_count != 0);
1560 	cv_signal(&mi->mi_async_reqs_cv);
1561 	mutex_exit(&mi->mi_async_lock);
1562 	return (0);
1563 
1564 noasync:
1565 	if (args != NULL) {
1566 		VN_RELE(vp);
1567 		crfree(cr);
1568 		kmem_free(args, sizeof (*args));
1569 	}
1570 
1571 	/*
1572 	 * If we can't do it ASYNC, for reads we do nothing (but cleanup
1573 	 * the page list), for writes we do it synchronously, except for
1574 	 * proc_pageout/proc_fsflush as described below.
1575 	 */
1576 	if (flags & B_READ) {
1577 		pvn_read_done(pp, flags | B_ERROR);
1578 		return (0);
1579 	}
1580 
1581 	if (curproc == proc_pageout || curproc == proc_fsflush) {
1582 		/*
1583 		 * If we get here in the context of the pageout/fsflush,
1584 		 * we refuse to do a sync write, because this may hang
1585 		 * pageout/fsflush (and the machine). In this case, we just
1586 		 * re-mark the page as dirty and punt on the page.
1587 		 *
1588 		 * Make sure B_FORCE isn't set.  We can re-mark the
1589 		 * pages as dirty and unlock the pages in one swoop by
1590 		 * passing in B_ERROR to pvn_write_done().  However,
1591 		 * we should make sure B_FORCE isn't set - we don't
1592 		 * want the page tossed before it gets written out.
1593 		 */
1594 		if (flags & B_FORCE)
1595 			flags &= ~(B_INVAL | B_FORCE);
1596 		pvn_write_done(pp, flags | B_ERROR);
1597 		return (0);
1598 	}
1599 
1600 	if (nfs_zone() != mi->mi_zone) {
1601 		/*
1602 		 * So this was a cross-zone sync pageio.  We pass in B_ERROR
1603 		 * to pvn_write_done() to re-mark the pages as dirty and unlock
1604 		 * them.
1605 		 *
1606 		 * We don't want to clear B_FORCE here as the caller presumably
1607 		 * knows what they're doing if they set it.
1608 		 */
1609 		pvn_write_done(pp, flags | B_ERROR);
1610 		return (EPERM);
1611 	}
1612 	return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
1613 }
1614 
1615 void
1616 nfs_async_readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr,
1617 	int (*readdir)(vnode_t *, rddir_cache *, cred_t *))
1618 {
1619 	rnode_t *rp;
1620 	mntinfo_t *mi;
1621 	struct nfs_async_reqs *args;
1622 
1623 	rp = VTOR(vp);
1624 	ASSERT(rp->r_freef == NULL);
1625 
1626 	mi = VTOMI(vp);
1627 
1628 	/*
1629 	 * If we can't allocate a request structure, do the readdir
1630 	 * operation synchronously in this thread's context.
1631 	 */
1632 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1633 		goto noasync;
1634 
1635 	args->a_next = NULL;
1636 #ifdef DEBUG
1637 	args->a_queuer = curthread;
1638 #endif
1639 	VN_HOLD(vp);
1640 	args->a_vp = vp;
1641 	ASSERT(cr != NULL);
1642 	crhold(cr);
1643 	args->a_cred = cr;
1644 	args->a_io = NFS_READDIR;
1645 	args->a_nfs_readdir = readdir;
1646 	args->a_nfs_rdc = rdc;
1647 
1648 	mutex_enter(&mi->mi_async_lock);
1649 
1650 	/*
1651 	 * If asyncio has been disabled, then make a synchronous request.
1652 	 */
1653 	if (mi->mi_max_threads == 0) {
1654 		mutex_exit(&mi->mi_async_lock);
1655 		goto noasync;
1656 	}
1657 
1658 	/*
1659 	 * Link request structure into the async list and
1660 	 * wakeup async thread to do the i/o.
1661 	 */
1662 	if (mi->mi_async_reqs[NFS_READDIR] == NULL) {
1663 		mi->mi_async_reqs[NFS_READDIR] = args;
1664 		mi->mi_async_tail[NFS_READDIR] = args;
1665 	} else {
1666 		mi->mi_async_tail[NFS_READDIR]->a_next = args;
1667 		mi->mi_async_tail[NFS_READDIR] = args;
1668 	}
1669 
1670 	mutex_enter(&rp->r_statelock);
1671 	rp->r_count++;
1672 	mutex_exit(&rp->r_statelock);
1673 
1674 	if (mi->mi_io_kstats) {
1675 		mutex_enter(&mi->mi_lock);
1676 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1677 		mutex_exit(&mi->mi_lock);
1678 	}
1679 
1680 	mi->mi_async_req_count++;
1681 	ASSERT(mi->mi_async_req_count != 0);
1682 	cv_signal(&mi->mi_async_reqs_cv);
1683 	mutex_exit(&mi->mi_async_lock);
1684 	return;
1685 
1686 noasync:
1687 	if (args != NULL) {
1688 		VN_RELE(vp);
1689 		crfree(cr);
1690 		kmem_free(args, sizeof (*args));
1691 	}
1692 
1693 	rdc->entries = NULL;
1694 	mutex_enter(&rp->r_statelock);
1695 	ASSERT(rdc->flags & RDDIR);
1696 	rdc->flags &= ~RDDIR;
1697 	rdc->flags |= RDDIRREQ;
1698 	/*
1699 	 * Check the flag to see if RDDIRWAIT is set. If RDDIRWAIT
1700 	 * is set, wakeup the thread sleeping in cv_wait_sig().
1701 	 * The woken up thread will reset the flag to RDDIR and will
1702 	 * continue with the readdir opeartion.
1703 	 */
1704 	if (rdc->flags & RDDIRWAIT) {
1705 		rdc->flags &= ~RDDIRWAIT;
1706 		cv_broadcast(&rdc->cv);
1707 	}
1708 	mutex_exit(&rp->r_statelock);
1709 	rddir_cache_rele(rdc);
1710 }
1711 
1712 void
1713 nfs_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
1714 	cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3,
1715 	cred_t *))
1716 {
1717 	rnode_t *rp;
1718 	mntinfo_t *mi;
1719 	struct nfs_async_reqs *args;
1720 	page_t *pp;
1721 
1722 	rp = VTOR(vp);
1723 	mi = VTOMI(vp);
1724 
1725 	/*
1726 	 * If we can't allocate a request structure, do the commit
1727 	 * operation synchronously in this thread's context.
1728 	 */
1729 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1730 		goto noasync;
1731 
1732 	args->a_next = NULL;
1733 #ifdef DEBUG
1734 	args->a_queuer = curthread;
1735 #endif
1736 	VN_HOLD(vp);
1737 	args->a_vp = vp;
1738 	ASSERT(cr != NULL);
1739 	crhold(cr);
1740 	args->a_cred = cr;
1741 	args->a_io = NFS_COMMIT;
1742 	args->a_nfs_commit = commit;
1743 	args->a_nfs_plist = plist;
1744 	args->a_nfs_offset = offset;
1745 	args->a_nfs_count = count;
1746 
1747 	mutex_enter(&mi->mi_async_lock);
1748 
1749 	/*
1750 	 * If asyncio has been disabled, then make a synchronous request.
1751 	 * This check is done a second time in case async io was diabled
1752 	 * while this thread was blocked waiting for memory pressure to
1753 	 * reduce or for the queue to drain.
1754 	 */
1755 	if (mi->mi_max_threads == 0) {
1756 		mutex_exit(&mi->mi_async_lock);
1757 		goto noasync;
1758 	}
1759 
1760 	/*
1761 	 * Link request structure into the async list and
1762 	 * wakeup async thread to do the i/o.
1763 	 */
1764 	if (mi->mi_async_reqs[NFS_COMMIT] == NULL) {
1765 		mi->mi_async_reqs[NFS_COMMIT] = args;
1766 		mi->mi_async_tail[NFS_COMMIT] = args;
1767 	} else {
1768 		mi->mi_async_tail[NFS_COMMIT]->a_next = args;
1769 		mi->mi_async_tail[NFS_COMMIT] = args;
1770 	}
1771 
1772 	mutex_enter(&rp->r_statelock);
1773 	rp->r_count++;
1774 	mutex_exit(&rp->r_statelock);
1775 
1776 	if (mi->mi_io_kstats) {
1777 		mutex_enter(&mi->mi_lock);
1778 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1779 		mutex_exit(&mi->mi_lock);
1780 	}
1781 
1782 	mi->mi_async_req_count++;
1783 	ASSERT(mi->mi_async_req_count != 0);
1784 	cv_signal(&mi->mi_async_reqs_cv);
1785 	mutex_exit(&mi->mi_async_lock);
1786 	return;
1787 
1788 noasync:
1789 	if (args != NULL) {
1790 		VN_RELE(vp);
1791 		crfree(cr);
1792 		kmem_free(args, sizeof (*args));
1793 	}
1794 
1795 	if (curproc == proc_pageout || curproc == proc_fsflush ||
1796 	    nfs_zone() != mi->mi_zone) {
1797 		while (plist != NULL) {
1798 			pp = plist;
1799 			page_sub(&plist, pp);
1800 			pp->p_fsdata = C_COMMIT;
1801 			page_unlock(pp);
1802 		}
1803 		return;
1804 	}
1805 	(*commit)(vp, plist, offset, count, cr);
1806 }
1807 
1808 void
1809 nfs_async_inactive(vnode_t *vp, cred_t *cr,
1810     void (*inactive)(vnode_t *, cred_t *))
1811 {
1812 	mntinfo_t *mi;
1813 	struct nfs_async_reqs *args;
1814 
1815 	mi = VTOMI(vp);
1816 
1817 	args = kmem_alloc(sizeof (*args), KM_SLEEP);
1818 	args->a_next = NULL;
1819 #ifdef DEBUG
1820 	args->a_queuer = curthread;
1821 #endif
1822 	args->a_vp = vp;
1823 	ASSERT(cr != NULL);
1824 	crhold(cr);
1825 	args->a_cred = cr;
1826 	args->a_io = NFS_INACTIVE;
1827 	args->a_nfs_inactive = inactive;
1828 
1829 	/*
1830 	 * Note that we don't check mi->mi_max_threads here, since we
1831 	 * *need* to get rid of this vnode regardless of whether someone
1832 	 * set nfs3_max_threads/nfs_max_threads to zero in /etc/system.
1833 	 *
1834 	 * The manager thread knows about this and is willing to create
1835 	 * at least one thread to accomodate us.
1836 	 */
1837 	mutex_enter(&mi->mi_async_lock);
1838 	if (mi->mi_manager_thread == NULL) {
1839 		rnode_t *rp = VTOR(vp);
1840 
1841 		mutex_exit(&mi->mi_async_lock);
1842 		crfree(cr);	/* drop our reference */
1843 		kmem_free(args, sizeof (*args));
1844 		/*
1845 		 * We can't do an over-the-wire call since we're in the wrong
1846 		 * zone, so we need to clean up state as best we can and then
1847 		 * throw away the vnode.
1848 		 */
1849 		mutex_enter(&rp->r_statelock);
1850 		if (rp->r_unldvp != NULL) {
1851 			vnode_t *unldvp;
1852 			char *unlname;
1853 			cred_t *unlcred;
1854 
1855 			unldvp = rp->r_unldvp;
1856 			rp->r_unldvp = NULL;
1857 			unlname = rp->r_unlname;
1858 			rp->r_unlname = NULL;
1859 			unlcred = rp->r_unlcred;
1860 			rp->r_unlcred = NULL;
1861 			mutex_exit(&rp->r_statelock);
1862 
1863 			VN_RELE(unldvp);
1864 			kmem_free(unlname, MAXNAMELEN);
1865 			crfree(unlcred);
1866 		} else {
1867 			mutex_exit(&rp->r_statelock);
1868 		}
1869 		/*
1870 		 * No need to explicitly throw away any cached pages.  The
1871 		 * eventual rinactive() will attempt a synchronous
1872 		 * VOP_PUTPAGE() which will immediately fail since the request
1873 		 * is coming from the wrong zone, and then will proceed to call
1874 		 * nfs_invalidate_pages() which will clean things up for us.
1875 		 */
1876 		rp_addfree(VTOR(vp), cr);
1877 		return;
1878 	}
1879 
1880 	if (mi->mi_async_reqs[NFS_INACTIVE] == NULL) {
1881 		mi->mi_async_reqs[NFS_INACTIVE] = args;
1882 	} else {
1883 		mi->mi_async_tail[NFS_INACTIVE]->a_next = args;
1884 	}
1885 	mi->mi_async_tail[NFS_INACTIVE] = args;
1886 	/*
1887 	 * Don't increment r_count, since we're trying to get rid of the vnode.
1888 	 */
1889 
1890 	mi->mi_async_req_count++;
1891 	ASSERT(mi->mi_async_req_count != 0);
1892 	cv_signal(&mi->mi_async_reqs_cv);
1893 	mutex_exit(&mi->mi_async_lock);
1894 }
1895 
1896 /*
1897  * The async queues for each mounted file system are arranged as a
1898  * set of queues, one for each async i/o type.  Requests are taken
1899  * from the queues in a round-robin fashion.  A number of consecutive
1900  * requests are taken from each queue before moving on to the next
1901  * queue.  This functionality may allow the NFS Version 2 server to do
1902  * write clustering, even if the client is mixing writes and reads
1903  * because it will take multiple write requests from the queue
1904  * before processing any of the other async i/o types.
1905  *
1906  * XXX The nfs_async_start thread is unsafe in the light of the present
1907  * model defined by cpr to suspend the system. Specifically over the
1908  * wire calls are cpr-unsafe. The thread should be reevaluated in
1909  * case of future updates to the cpr model.
1910  */
1911 static void
1912 nfs_async_start(struct vfs *vfsp)
1913 {
1914 	struct nfs_async_reqs *args;
1915 	mntinfo_t *mi = VFTOMI(vfsp);
1916 	clock_t time_left = 1;
1917 	callb_cpr_t cprinfo;
1918 	int i;
1919 
1920 	/*
1921 	 * Dynamic initialization of nfs_async_timeout to allow nfs to be
1922 	 * built in an implementation independent manner.
1923 	 */
1924 	if (nfs_async_timeout == -1)
1925 		nfs_async_timeout = NFS_ASYNC_TIMEOUT;
1926 
1927 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas");
1928 
1929 	mutex_enter(&mi->mi_async_lock);
1930 	for (;;) {
1931 		/*
1932 		 * Find the next queue containing an entry.  We start
1933 		 * at the current queue pointer and then round robin
1934 		 * through all of them until we either find a non-empty
1935 		 * queue or have looked through all of them.
1936 		 */
1937 		for (i = 0; i < NFS_ASYNC_TYPES; i++) {
1938 			args = *mi->mi_async_curr;
1939 			if (args != NULL)
1940 				break;
1941 			mi->mi_async_curr++;
1942 			if (mi->mi_async_curr ==
1943 			    &mi->mi_async_reqs[NFS_ASYNC_TYPES])
1944 				mi->mi_async_curr = &mi->mi_async_reqs[0];
1945 		}
1946 		/*
1947 		 * If we didn't find a entry, then block until woken up
1948 		 * again and then look through the queues again.
1949 		 */
1950 		if (args == NULL) {
1951 			/*
1952 			 * Exiting is considered to be safe for CPR as well
1953 			 */
1954 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
1955 
1956 			/*
1957 			 * Wakeup thread waiting to unmount the file
1958 			 * system only if all async threads are inactive.
1959 			 *
1960 			 * If we've timed-out and there's nothing to do,
1961 			 * then get rid of this thread.
1962 			 */
1963 			if (mi->mi_max_threads == 0 || time_left <= 0) {
1964 				if (--mi->mi_threads == 0)
1965 					cv_signal(&mi->mi_async_cv);
1966 				CALLB_CPR_EXIT(&cprinfo);
1967 				VFS_RELE(vfsp);	/* release thread's hold */
1968 				zthread_exit();
1969 				/* NOTREACHED */
1970 			}
1971 			time_left = cv_timedwait(&mi->mi_async_work_cv,
1972 			    &mi->mi_async_lock, nfs_async_timeout + lbolt);
1973 
1974 			CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1975 
1976 			continue;
1977 		}
1978 		time_left = 1;
1979 
1980 		/*
1981 		 * Remove the request from the async queue and then
1982 		 * update the current async request queue pointer.  If
1983 		 * the current queue is empty or we have removed enough
1984 		 * consecutive entries from it, then reset the counter
1985 		 * for this queue and then move the current pointer to
1986 		 * the next queue.
1987 		 */
1988 		*mi->mi_async_curr = args->a_next;
1989 		if (*mi->mi_async_curr == NULL ||
1990 		    --mi->mi_async_clusters[args->a_io] == 0) {
1991 			mi->mi_async_clusters[args->a_io] =
1992 						mi->mi_async_init_clusters;
1993 			mi->mi_async_curr++;
1994 			if (mi->mi_async_curr ==
1995 			    &mi->mi_async_reqs[NFS_ASYNC_TYPES])
1996 				mi->mi_async_curr = &mi->mi_async_reqs[0];
1997 		}
1998 
1999 		if (args->a_io != NFS_INACTIVE && mi->mi_io_kstats) {
2000 			mutex_enter(&mi->mi_lock);
2001 			kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
2002 			mutex_exit(&mi->mi_lock);
2003 		}
2004 
2005 		mutex_exit(&mi->mi_async_lock);
2006 
2007 		/*
2008 		 * Obtain arguments from the async request structure.
2009 		 */
2010 		if (args->a_io == NFS_READ_AHEAD && mi->mi_max_threads > 0) {
2011 			(*args->a_nfs_readahead)(args->a_vp, args->a_nfs_blkoff,
2012 					args->a_nfs_addr, args->a_nfs_seg,
2013 					args->a_cred);
2014 		} else if (args->a_io == NFS_PUTAPAGE) {
2015 			(void) (*args->a_nfs_putapage)(args->a_vp,
2016 					args->a_nfs_pp, args->a_nfs_off,
2017 					args->a_nfs_len, args->a_nfs_flags,
2018 					args->a_cred);
2019 		} else if (args->a_io == NFS_PAGEIO) {
2020 			(void) (*args->a_nfs_pageio)(args->a_vp,
2021 					args->a_nfs_pp, args->a_nfs_off,
2022 					args->a_nfs_len, args->a_nfs_flags,
2023 					args->a_cred);
2024 		} else if (args->a_io == NFS_READDIR) {
2025 			(void) ((*args->a_nfs_readdir)(args->a_vp,
2026 					args->a_nfs_rdc, args->a_cred));
2027 		} else if (args->a_io == NFS_COMMIT) {
2028 			(*args->a_nfs_commit)(args->a_vp, args->a_nfs_plist,
2029 					args->a_nfs_offset, args->a_nfs_count,
2030 					args->a_cred);
2031 		} else if (args->a_io == NFS_INACTIVE) {
2032 			(*args->a_nfs_inactive)(args->a_vp, args->a_cred);
2033 		}
2034 
2035 		/*
2036 		 * Now, release the vnode and free the credentials
2037 		 * structure.
2038 		 */
2039 		free_async_args(args);
2040 		/*
2041 		 * Reacquire the mutex because it will be needed above.
2042 		 */
2043 		mutex_enter(&mi->mi_async_lock);
2044 	}
2045 }
2046 
2047 void
2048 nfs_async_stop(struct vfs *vfsp)
2049 {
2050 	mntinfo_t *mi = VFTOMI(vfsp);
2051 
2052 	/*
2053 	 * Wait for all outstanding async operations to complete and for the
2054 	 * worker threads to exit.
2055 	 */
2056 	mutex_enter(&mi->mi_async_lock);
2057 	mi->mi_max_threads = 0;
2058 	cv_broadcast(&mi->mi_async_work_cv);
2059 	while (mi->mi_threads != 0)
2060 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
2061 	mutex_exit(&mi->mi_async_lock);
2062 }
2063 
2064 /*
2065  * nfs_async_stop_sig:
2066  * Wait for all outstanding putpage operation to complete. If a signal
2067  * is deliver we will abort and return non-zero. If we can put all the
2068  * pages we will return 0. This routine is called from nfs_unmount and
2069  * nfs3_unmount to make these operations interruptable.
2070  */
2071 int
2072 nfs_async_stop_sig(struct vfs *vfsp)
2073 {
2074 	mntinfo_t *mi = VFTOMI(vfsp);
2075 	ushort_t omax;
2076 	int rval;
2077 
2078 	/*
2079 	 * Wait for all outstanding async operations to complete and for the
2080 	 * worker threads to exit.
2081 	 */
2082 	mutex_enter(&mi->mi_async_lock);
2083 	omax = mi->mi_max_threads;
2084 	mi->mi_max_threads = 0;
2085 	/*
2086 	 * Tell all the worker threads to exit.
2087 	 */
2088 	cv_broadcast(&mi->mi_async_work_cv);
2089 	while (mi->mi_threads != 0) {
2090 		if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock))
2091 			break;
2092 	}
2093 	rval = (mi->mi_threads != 0);	/* Interrupted */
2094 	if (rval)
2095 		mi->mi_max_threads = omax;
2096 	mutex_exit(&mi->mi_async_lock);
2097 
2098 	return (rval);
2099 }
2100 
2101 int
2102 writerp(rnode_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
2103 {
2104 	int pagecreate;
2105 	int n;
2106 	int saved_n;
2107 	caddr_t saved_base;
2108 	u_offset_t offset;
2109 	int error;
2110 	int sm_error;
2111 	vnode_t *vp = RTOV(rp);
2112 
2113 	ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid);
2114 	ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER));
2115 	if (!vpm_enable) {
2116 		ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE);
2117 	}
2118 
2119 	/*
2120 	 * Move bytes in at most PAGESIZE chunks. We must avoid
2121 	 * spanning pages in uiomove() because page faults may cause
2122 	 * the cache to be invalidated out from under us. The r_size is not
2123 	 * updated until after the uiomove. If we push the last page of a
2124 	 * file before r_size is correct, we will lose the data written past
2125 	 * the current (and invalid) r_size.
2126 	 */
2127 	do {
2128 		offset = uio->uio_loffset;
2129 		pagecreate = 0;
2130 
2131 		/*
2132 		 * n is the number of bytes required to satisfy the request
2133 		 *   or the number of bytes to fill out the page.
2134 		 */
2135 		n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount);
2136 
2137 		/*
2138 		 * Check to see if we can skip reading in the page
2139 		 * and just allocate the memory.  We can do this
2140 		 * if we are going to rewrite the entire mapping
2141 		 * or if we are going to write to or beyond the current
2142 		 * end of file from the beginning of the mapping.
2143 		 *
2144 		 * The read of r_size is now protected by r_statelock.
2145 		 */
2146 		mutex_enter(&rp->r_statelock);
2147 		/*
2148 		 * When pgcreated is nonzero the caller has already done
2149 		 * a segmap_getmapflt with forcefault 0 and S_WRITE. With
2150 		 * segkpm this means we already have at least one page
2151 		 * created and mapped at base.
2152 		 */
2153 		pagecreate = pgcreated ||
2154 			((offset & PAGEOFFSET) == 0 &&
2155 			(n == PAGESIZE || ((offset + n) >= rp->r_size)));
2156 
2157 		mutex_exit(&rp->r_statelock);
2158 		if (!vpm_enable && pagecreate) {
2159 			/*
2160 			 * The last argument tells segmap_pagecreate() to
2161 			 * always lock the page, as opposed to sometimes
2162 			 * returning with the page locked. This way we avoid a
2163 			 * fault on the ensuing uiomove(), but also
2164 			 * more importantly (to fix bug 1094402) we can
2165 			 * call segmap_fault() to unlock the page in all
2166 			 * cases. An alternative would be to modify
2167 			 * segmap_pagecreate() to tell us when it is
2168 			 * locking a page, but that's a fairly major
2169 			 * interface change.
2170 			 */
2171 			if (pgcreated == 0)
2172 				(void) segmap_pagecreate(segkmap, base,
2173 							(uint_t)n, 1);
2174 			saved_base = base;
2175 			saved_n = n;
2176 		}
2177 
2178 		/*
2179 		 * The number of bytes of data in the last page can not
2180 		 * be accurately be determined while page is being
2181 		 * uiomove'd to and the size of the file being updated.
2182 		 * Thus, inform threads which need to know accurately
2183 		 * how much data is in the last page of the file.  They
2184 		 * will not do the i/o immediately, but will arrange for
2185 		 * the i/o to happen later when this modify operation
2186 		 * will have finished.
2187 		 */
2188 		ASSERT(!(rp->r_flags & RMODINPROGRESS));
2189 		mutex_enter(&rp->r_statelock);
2190 		rp->r_flags |= RMODINPROGRESS;
2191 		rp->r_modaddr = (offset & MAXBMASK);
2192 		mutex_exit(&rp->r_statelock);
2193 
2194 		if (vpm_enable) {
2195 			/*
2196 			 * Copy data. If new pages are created, part of
2197 			 * the page that is not written will be initizliazed
2198 			 * with zeros.
2199 			 */
2200 			error = vpm_data_copy(vp, offset, n, uio,
2201 				!pagecreate, NULL, 0, S_WRITE);
2202 		} else {
2203 			error = uiomove(base, n, UIO_WRITE, uio);
2204 		}
2205 
2206 		/*
2207 		 * r_size is the maximum number of
2208 		 * bytes known to be in the file.
2209 		 * Make sure it is at least as high as the
2210 		 * first unwritten byte pointed to by uio_loffset.
2211 		 */
2212 		mutex_enter(&rp->r_statelock);
2213 		if (rp->r_size < uio->uio_loffset)
2214 			rp->r_size = uio->uio_loffset;
2215 		rp->r_flags &= ~RMODINPROGRESS;
2216 		rp->r_flags |= RDIRTY;
2217 		mutex_exit(&rp->r_statelock);
2218 
2219 		/* n = # of bytes written */
2220 		n = (int)(uio->uio_loffset - offset);
2221 
2222 		if (!vpm_enable) {
2223 			base += n;
2224 		}
2225 		tcount -= n;
2226 		/*
2227 		 * If we created pages w/o initializing them completely,
2228 		 * we need to zero the part that wasn't set up.
2229 		 * This happens on a most EOF write cases and if
2230 		 * we had some sort of error during the uiomove.
2231 		 */
2232 		if (!vpm_enable && pagecreate) {
2233 			if ((uio->uio_loffset & PAGEOFFSET) || n == 0)
2234 				(void) kzero(base, PAGESIZE - n);
2235 
2236 			if (pgcreated) {
2237 				/*
2238 				 * Caller is responsible for this page,
2239 				 * it was not created in this loop.
2240 				 */
2241 				pgcreated = 0;
2242 			} else {
2243 				/*
2244 				 * For bug 1094402: segmap_pagecreate locks
2245 				 * page. Unlock it. This also unlocks the
2246 				 * pages allocated by page_create_va() in
2247 				 * segmap_pagecreate().
2248 				 */
2249 				sm_error = segmap_fault(kas.a_hat, segkmap,
2250 					saved_base, saved_n,
2251 					F_SOFTUNLOCK, S_WRITE);
2252 				if (error == 0)
2253 					error = sm_error;
2254 			}
2255 		}
2256 	} while (tcount > 0 && error == 0);
2257 
2258 	return (error);
2259 }
2260 
2261 int
2262 nfs_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
2263 {
2264 	rnode_t *rp;
2265 	page_t *pp;
2266 	u_offset_t eoff;
2267 	u_offset_t io_off;
2268 	size_t io_len;
2269 	int error;
2270 	int rdirty;
2271 	int err;
2272 
2273 	rp = VTOR(vp);
2274 	ASSERT(rp->r_count > 0);
2275 
2276 	if (!vn_has_cached_data(vp))
2277 		return (0);
2278 
2279 	ASSERT(vp->v_type != VCHR);
2280 
2281 	/*
2282 	 * If ROUTOFSPACE is set, then all writes turn into B_INVAL
2283 	 * writes.  B_FORCE is set to force the VM system to actually
2284 	 * invalidate the pages, even if the i/o failed.  The pages
2285 	 * need to get invalidated because they can't be written out
2286 	 * because there isn't any space left on either the server's
2287 	 * file system or in the user's disk quota.  The B_FREE bit
2288 	 * is cleared to avoid confusion as to whether this is a
2289 	 * request to place the page on the freelist or to destroy
2290 	 * it.
2291 	 */
2292 	if ((rp->r_flags & ROUTOFSPACE) ||
2293 	    (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
2294 		flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;
2295 
2296 	if (len == 0) {
2297 		/*
2298 		 * If doing a full file synchronous operation, then clear
2299 		 * the RDIRTY bit.  If a page gets dirtied while the flush
2300 		 * is happening, then RDIRTY will get set again.  The
2301 		 * RDIRTY bit must get cleared before the flush so that
2302 		 * we don't lose this information.
2303 		 *
2304 		 * If there are no full file async write operations
2305 		 * pending and RDIRTY bit is set, clear it.
2306 		 */
2307 		if (off == (u_offset_t)0 &&
2308 		    !(flags & B_ASYNC) &&
2309 		    (rp->r_flags & RDIRTY)) {
2310 			mutex_enter(&rp->r_statelock);
2311 			rdirty = (rp->r_flags & RDIRTY);
2312 			rp->r_flags &= ~RDIRTY;
2313 			mutex_exit(&rp->r_statelock);
2314 		} else if (flags & B_ASYNC && off == (u_offset_t)0) {
2315 			mutex_enter(&rp->r_statelock);
2316 			if (rp->r_flags & RDIRTY && rp->r_awcount == 0) {
2317 				rdirty = (rp->r_flags & RDIRTY);
2318 				rp->r_flags &= ~RDIRTY;
2319 			}
2320 			mutex_exit(&rp->r_statelock);
2321 		} else
2322 			rdirty = 0;
2323 
2324 		/*
2325 		 * Search the entire vp list for pages >= off, and flush
2326 		 * the dirty pages.
2327 		 */
2328 		error = pvn_vplist_dirty(vp, off, rp->r_putapage,
2329 					flags, cr);
2330 
2331 		/*
2332 		 * If an error occured and the file was marked as dirty
2333 		 * before and we aren't forcibly invalidating pages, then
2334 		 * reset the RDIRTY flag.
2335 		 */
2336 		if (error && rdirty &&
2337 		    (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {
2338 			mutex_enter(&rp->r_statelock);
2339 			rp->r_flags |= RDIRTY;
2340 			mutex_exit(&rp->r_statelock);
2341 		}
2342 	} else {
2343 		/*
2344 		 * Do a range from [off...off + len) looking for pages
2345 		 * to deal with.
2346 		 */
2347 		error = 0;
2348 #ifdef lint
2349 		io_len = 0;
2350 #endif
2351 		eoff = off + len;
2352 		mutex_enter(&rp->r_statelock);
2353 		for (io_off = off; io_off < eoff && io_off < rp->r_size;
2354 		    io_off += io_len) {
2355 			mutex_exit(&rp->r_statelock);
2356 			/*
2357 			 * If we are not invalidating, synchronously
2358 			 * freeing or writing pages use the routine
2359 			 * page_lookup_nowait() to prevent reclaiming
2360 			 * them from the free list.
2361 			 */
2362 			if ((flags & B_INVAL) || !(flags & B_ASYNC)) {
2363 				pp = page_lookup(vp, io_off,
2364 				    (flags & (B_INVAL | B_FREE)) ?
2365 				    SE_EXCL : SE_SHARED);
2366 			} else {
2367 				pp = page_lookup_nowait(vp, io_off,
2368 				    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2369 			}
2370 
2371 			if (pp == NULL || !pvn_getdirty(pp, flags))
2372 				io_len = PAGESIZE;
2373 			else {
2374 				err = (*rp->r_putapage)(vp, pp, &io_off,
2375 				    &io_len, flags, cr);
2376 				if (!error)
2377 					error = err;
2378 				/*
2379 				 * "io_off" and "io_len" are returned as
2380 				 * the range of pages we actually wrote.
2381 				 * This allows us to skip ahead more quickly
2382 				 * since several pages may've been dealt
2383 				 * with by this iteration of the loop.
2384 				 */
2385 			}
2386 			mutex_enter(&rp->r_statelock);
2387 		}
2388 		mutex_exit(&rp->r_statelock);
2389 	}
2390 
2391 	return (error);
2392 }
2393 
2394 void
2395 nfs_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr)
2396 {
2397 	rnode_t *rp;
2398 
2399 	rp = VTOR(vp);
2400 	mutex_enter(&rp->r_statelock);
2401 	while (rp->r_flags & RTRUNCATE)
2402 		cv_wait(&rp->r_cv, &rp->r_statelock);
2403 	rp->r_flags |= RTRUNCATE;
2404 	if (off == (u_offset_t)0) {
2405 		rp->r_flags &= ~RDIRTY;
2406 		if (!(rp->r_flags & RSTALE))
2407 			rp->r_error = 0;
2408 	}
2409 	rp->r_truncaddr = off;
2410 	mutex_exit(&rp->r_statelock);
2411 	(void) pvn_vplist_dirty(vp, off, rp->r_putapage,
2412 		B_INVAL | B_TRUNC, cr);
2413 	mutex_enter(&rp->r_statelock);
2414 	rp->r_flags &= ~RTRUNCATE;
2415 	cv_broadcast(&rp->r_cv);
2416 	mutex_exit(&rp->r_statelock);
2417 }
2418 
2419 static int nfs_write_error_to_cons_only = 0;
2420 #define	MSG(x)	(nfs_write_error_to_cons_only ? (x) : (x) + 1)
2421 
2422 /*
2423  * Print a file handle
2424  */
2425 void
2426 nfs_printfhandle(nfs_fhandle *fhp)
2427 {
2428 	int *ip;
2429 	char *buf;
2430 	size_t bufsize;
2431 	char *cp;
2432 
2433 	/*
2434 	 * 13 == "(file handle:"
2435 	 * maximum of NFS_FHANDLE / sizeof (*ip) elements in fh_buf times
2436 	 *	1 == ' '
2437 	 *	8 == maximum strlen of "%x"
2438 	 * 3 == ")\n\0"
2439 	 */
2440 	bufsize = 13 + ((NFS_FHANDLE_LEN / sizeof (*ip)) * (1 + 8)) + 3;
2441 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
2442 	if (buf == NULL)
2443 		return;
2444 
2445 	cp = buf;
2446 	(void) strcpy(cp, "(file handle:");
2447 	while (*cp != '\0')
2448 		cp++;
2449 	for (ip = (int *)fhp->fh_buf;
2450 	    ip < (int *)&fhp->fh_buf[fhp->fh_len];
2451 	    ip++) {
2452 		(void) sprintf(cp, " %x", *ip);
2453 		while (*cp != '\0')
2454 			cp++;
2455 	}
2456 	(void) strcpy(cp, ")\n");
2457 
2458 	zcmn_err(getzoneid(), CE_CONT, MSG("^%s"), buf);
2459 
2460 	kmem_free(buf, bufsize);
2461 }
2462 
2463 /*
2464  * Notify the system administrator that an NFS write error has
2465  * occurred.
2466  */
2467 
2468 /* seconds between ENOSPC/EDQUOT messages */
2469 clock_t nfs_write_error_interval = 5;
2470 
2471 void
2472 nfs_write_error(vnode_t *vp, int error, cred_t *cr)
2473 {
2474 	mntinfo_t *mi;
2475 
2476 	mi = VTOMI(vp);
2477 	/*
2478 	 * In case of forced unmount or zone shutdown, do not print any
2479 	 * messages since it can flood the console with error messages.
2480 	 */
2481 	if (FS_OR_ZONE_GONE(mi->mi_vfsp))
2482 		return;
2483 
2484 	/*
2485 	 * No use in flooding the console with ENOSPC
2486 	 * messages from the same file system.
2487 	 */
2488 	if ((error != ENOSPC && error != EDQUOT) ||
2489 	    lbolt - mi->mi_printftime > 0) {
2490 		zoneid_t zoneid = mi->mi_zone->zone_id;
2491 
2492 #ifdef DEBUG
2493 		nfs_perror(error, "NFS%ld write error on host %s: %m.\n",
2494 		    mi->mi_vers, VTOR(vp)->r_server->sv_hostname, NULL);
2495 #else
2496 		nfs_perror(error, "NFS write error on host %s: %m.\n",
2497 		    VTOR(vp)->r_server->sv_hostname, NULL);
2498 #endif
2499 		if (error == ENOSPC || error == EDQUOT) {
2500 			zcmn_err(zoneid, CE_CONT,
2501 			    MSG("^File: userid=%d, groupid=%d\n"),
2502 			    crgetuid(cr), crgetgid(cr));
2503 			if (crgetuid(CRED()) != crgetuid(cr) ||
2504 			    crgetgid(CRED()) != crgetgid(cr)) {
2505 				zcmn_err(zoneid, CE_CONT,
2506 				    MSG("^User: userid=%d, groupid=%d\n"),
2507 				    crgetuid(CRED()), crgetgid(CRED()));
2508 			}
2509 			mi->mi_printftime = lbolt +
2510 			    nfs_write_error_interval * hz;
2511 		}
2512 		nfs_printfhandle(&VTOR(vp)->r_fh);
2513 #ifdef DEBUG
2514 		if (error == EACCES) {
2515 			zcmn_err(zoneid, CE_CONT,
2516 			    MSG("^nfs_bio: cred is%s kcred\n"),
2517 			    cr == kcred ? "" : " not");
2518 		}
2519 #endif
2520 	}
2521 }
2522 
2523 /* ARGSUSED */
2524 static void *
2525 nfs_mi_init(zoneid_t zoneid)
2526 {
2527 	struct mi_globals *mig;
2528 
2529 	mig = kmem_alloc(sizeof (*mig), KM_SLEEP);
2530 	mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL);
2531 	list_create(&mig->mig_list, sizeof (mntinfo_t),
2532 	    offsetof(mntinfo_t, mi_zone_node));
2533 	mig->mig_destructor_called = B_FALSE;
2534 	return (mig);
2535 }
2536 
2537 /*
2538  * Callback routine to tell all NFS mounts in the zone to stop creating new
2539  * threads.  Existing threads should exit.
2540  */
2541 /* ARGSUSED */
2542 static void
2543 nfs_mi_shutdown(zoneid_t zoneid, void *data)
2544 {
2545 	struct mi_globals *mig = data;
2546 	mntinfo_t *mi;
2547 
2548 	ASSERT(mig != NULL);
2549 again:
2550 	mutex_enter(&mig->mig_lock);
2551 	for (mi = list_head(&mig->mig_list); mi != NULL;
2552 	    mi = list_next(&mig->mig_list, mi)) {
2553 
2554 		/*
2555 		 * If we've done the shutdown work for this FS, skip.
2556 		 * Once we go off the end of the list, we're done.
2557 		 */
2558 		if (mi->mi_flags & MI_DEAD)
2559 			continue;
2560 
2561 		/*
2562 		 * We will do work, so not done.  Get a hold on the FS.
2563 		 */
2564 		VFS_HOLD(mi->mi_vfsp);
2565 
2566 		/*
2567 		 * purge the DNLC for this filesystem
2568 		 */
2569 		(void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
2570 
2571 		mutex_enter(&mi->mi_async_lock);
2572 		/*
2573 		 * Tell existing async worker threads to exit.
2574 		 */
2575 		mi->mi_max_threads = 0;
2576 		cv_broadcast(&mi->mi_async_work_cv);
2577 		/*
2578 		 * Set MI_ASYNC_MGR_STOP so the async manager thread starts
2579 		 * getting ready to exit when it's done with its current work.
2580 		 * Also set MI_DEAD to note we've acted on this FS.
2581 		 */
2582 		mutex_enter(&mi->mi_lock);
2583 		mi->mi_flags |= (MI_ASYNC_MGR_STOP|MI_DEAD);
2584 		mutex_exit(&mi->mi_lock);
2585 		/*
2586 		 * Wake up the async manager thread.
2587 		 */
2588 		cv_broadcast(&mi->mi_async_reqs_cv);
2589 		mutex_exit(&mi->mi_async_lock);
2590 
2591 		/*
2592 		 * Drop lock and release FS, which may change list, then repeat.
2593 		 * We're done when every mi has been done or the list is empty.
2594 		 */
2595 		mutex_exit(&mig->mig_lock);
2596 		VFS_RELE(mi->mi_vfsp);
2597 		goto again;
2598 	}
2599 	mutex_exit(&mig->mig_lock);
2600 }
2601 
2602 static void
2603 nfs_mi_free_globals(struct mi_globals *mig)
2604 {
2605 	list_destroy(&mig->mig_list);	/* makes sure the list is empty */
2606 	mutex_destroy(&mig->mig_lock);
2607 	kmem_free(mig, sizeof (*mig));
2608 
2609 }
2610 
2611 /* ARGSUSED */
2612 static void
2613 nfs_mi_destroy(zoneid_t zoneid, void *data)
2614 {
2615 	struct mi_globals *mig = data;
2616 
2617 	ASSERT(mig != NULL);
2618 	mutex_enter(&mig->mig_lock);
2619 	if (list_head(&mig->mig_list) != NULL) {
2620 		/* Still waiting for VFS_FREEVFS() */
2621 		mig->mig_destructor_called = B_TRUE;
2622 		mutex_exit(&mig->mig_lock);
2623 		return;
2624 	}
2625 	nfs_mi_free_globals(mig);
2626 }
2627 
2628 /*
2629  * Add an NFS mount to the per-zone list of NFS mounts.
2630  */
2631 void
2632 nfs_mi_zonelist_add(mntinfo_t *mi)
2633 {
2634 	struct mi_globals *mig;
2635 
2636 	mig = zone_getspecific(mi_list_key, mi->mi_zone);
2637 	mutex_enter(&mig->mig_lock);
2638 	list_insert_head(&mig->mig_list, mi);
2639 	mutex_exit(&mig->mig_lock);
2640 }
2641 
2642 /*
2643  * Remove an NFS mount from the per-zone list of NFS mounts.
2644  */
2645 static void
2646 nfs_mi_zonelist_remove(mntinfo_t *mi)
2647 {
2648 	struct mi_globals *mig;
2649 
2650 	mig = zone_getspecific(mi_list_key, mi->mi_zone);
2651 	mutex_enter(&mig->mig_lock);
2652 	list_remove(&mig->mig_list, mi);
2653 	/*
2654 	 * We can be called asynchronously by VFS_FREEVFS() after the zone
2655 	 * shutdown/destroy callbacks have executed; if so, clean up the zone's
2656 	 * mi globals.
2657 	 */
2658 	if (list_head(&mig->mig_list) == NULL &&
2659 	    mig->mig_destructor_called == B_TRUE) {
2660 		nfs_mi_free_globals(mig);
2661 		return;
2662 	}
2663 	mutex_exit(&mig->mig_lock);
2664 }
2665 
2666 /*
2667  * NFS Client initialization routine.  This routine should only be called
2668  * once.  It performs the following tasks:
2669  *	- Initalize all global locks
2670  * 	- Call sub-initialization routines (localize access to variables)
2671  */
2672 int
2673 nfs_clntinit(void)
2674 {
2675 #ifdef DEBUG
2676 	static boolean_t nfs_clntup = B_FALSE;
2677 #endif
2678 	int error;
2679 
2680 #ifdef DEBUG
2681 	ASSERT(nfs_clntup == B_FALSE);
2682 #endif
2683 
2684 	error = nfs_subrinit();
2685 	if (error)
2686 		return (error);
2687 
2688 	error = nfs_vfsinit();
2689 	if (error) {
2690 		/*
2691 		 * Cleanup nfs_subrinit() work
2692 		 */
2693 		nfs_subrfini();
2694 		return (error);
2695 	}
2696 	zone_key_create(&mi_list_key, nfs_mi_init, nfs_mi_shutdown,
2697 	    nfs_mi_destroy);
2698 
2699 	nfs4_clnt_init();
2700 
2701 #ifdef DEBUG
2702 	nfs_clntup = B_TRUE;
2703 #endif
2704 
2705 	return (0);
2706 }
2707 
2708 /*
2709  * This routine is only called if the NFS Client has been initialized but
2710  * the module failed to be installed. This routine will cleanup the previously
2711  * allocated/initialized work.
2712  */
2713 void
2714 nfs_clntfini(void)
2715 {
2716 	(void) zone_key_delete(mi_list_key);
2717 	nfs_subrfini();
2718 	nfs_vfsfini();
2719 	nfs4_clnt_fini();
2720 }
2721 
2722 /*
2723  * nfs_lockrelease:
2724  *
2725  * Release any locks on the given vnode that are held by the current
2726  * process.
2727  */
2728 void
2729 nfs_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr)
2730 {
2731 	flock64_t ld;
2732 	struct shrlock shr;
2733 	char *buf;
2734 	int remote_lock_possible;
2735 	int ret;
2736 
2737 	ASSERT((uintptr_t)vp > KERNELBASE);
2738 
2739 	/*
2740 	 * Generate an explicit unlock operation for the entire file.  As a
2741 	 * partial optimization, only generate the unlock if there is a
2742 	 * lock registered for the file.  We could check whether this
2743 	 * particular process has any locks on the file, but that would
2744 	 * require the local locking code to provide yet another query
2745 	 * routine.  Note that no explicit synchronization is needed here.
2746 	 * At worst, flk_has_remote_locks() will return a false positive,
2747 	 * in which case the unlock call wastes time but doesn't harm
2748 	 * correctness.
2749 	 *
2750 	 * In addition, an unlock request is generated if the process
2751 	 * is listed as possibly having a lock on the file because the
2752 	 * server and client lock managers may have gotten out of sync.
2753 	 * N.B. It is important to make sure nfs_remove_locking_id() is
2754 	 * called here even if flk_has_remote_locks(vp) reports true.
2755 	 * If it is not called and there is an entry on the process id
2756 	 * list, that entry will never get removed.
2757 	 */
2758 	remote_lock_possible = nfs_remove_locking_id(vp, RLMPL_PID,
2759 	    (char *)&(ttoproc(curthread)->p_pid), NULL, NULL);
2760 	if (remote_lock_possible || flk_has_remote_locks(vp)) {
2761 		ld.l_type = F_UNLCK;	/* set to unlock entire file */
2762 		ld.l_whence = 0;	/* unlock from start of file */
2763 		ld.l_start = 0;
2764 		ld.l_len = 0;		/* do entire file */
2765 		ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, cr);
2766 
2767 		if (ret != 0) {
2768 			/*
2769 			 * If VOP_FRLOCK fails, make sure we unregister
2770 			 * local locks before we continue.
2771 			 */
2772 			ld.l_pid = ttoproc(curthread)->p_pid;
2773 			lm_register_lock_locally(vp, NULL, &ld, flag, offset);
2774 #ifdef DEBUG
2775 			nfs_perror(ret,
2776 			    "NFS lock release error on vp %p: %m.\n",
2777 			    (void *)vp, NULL);
2778 #endif
2779 		}
2780 
2781 		/*
2782 		 * The call to VOP_FRLOCK may put the pid back on the
2783 		 * list.  We need to remove it.
2784 		 */
2785 		(void) nfs_remove_locking_id(vp, RLMPL_PID,
2786 		    (char *)&(ttoproc(curthread)->p_pid), NULL, NULL);
2787 	}
2788 
2789 	/*
2790 	 * As long as the vp has a share matching our pid,
2791 	 * pluck it off and unshare it.  There are circumstances in
2792 	 * which the call to nfs_remove_locking_id() may put the
2793 	 * owner back on the list, in which case we simply do a
2794 	 * redundant and harmless unshare.
2795 	 */
2796 	buf = kmem_alloc(MAX_SHR_OWNER_LEN, KM_SLEEP);
2797 	while (nfs_remove_locking_id(vp, RLMPL_OWNER,
2798 	    (char *)NULL, buf, &shr.s_own_len)) {
2799 		shr.s_owner = buf;
2800 		shr.s_access = 0;
2801 		shr.s_deny = 0;
2802 		shr.s_sysid = 0;
2803 		shr.s_pid = curproc->p_pid;
2804 
2805 		ret = VOP_SHRLOCK(vp, F_UNSHARE, &shr, flag, cr);
2806 #ifdef DEBUG
2807 		if (ret != 0) {
2808 			nfs_perror(ret,
2809 			    "NFS share release error on vp %p: %m.\n",
2810 			    (void *)vp, NULL);
2811 		}
2812 #endif
2813 	}
2814 	kmem_free(buf, MAX_SHR_OWNER_LEN);
2815 }
2816 
2817 /*
2818  * nfs_lockcompletion:
2819  *
2820  * If the vnode has a lock that makes it unsafe to cache the file, mark it
2821  * as non cachable (set VNOCACHE bit).
2822  */
2823 
2824 void
2825 nfs_lockcompletion(vnode_t *vp, int cmd)
2826 {
2827 #ifdef DEBUG
2828 	rnode_t *rp = VTOR(vp);
2829 
2830 	ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2831 #endif
2832 
2833 	if (cmd == F_SETLK || cmd == F_SETLKW) {
2834 		if (!lm_safemap(vp)) {
2835 			mutex_enter(&vp->v_lock);
2836 			vp->v_flag |= VNOCACHE;
2837 			mutex_exit(&vp->v_lock);
2838 		} else {
2839 			mutex_enter(&vp->v_lock);
2840 			vp->v_flag &= ~VNOCACHE;
2841 			mutex_exit(&vp->v_lock);
2842 		}
2843 	}
2844 	/*
2845 	 * The cached attributes of the file are stale after acquiring
2846 	 * the lock on the file. They were updated when the file was
2847 	 * opened, but not updated when the lock was acquired. Therefore the
2848 	 * cached attributes are invalidated after the lock is obtained.
2849 	 */
2850 	PURGE_ATTRCACHE(vp);
2851 }
2852 
2853 /*
2854  * The lock manager holds state making it possible for the client
2855  * and server to be out of sync.  For example, if the response from
2856  * the server granting a lock request is lost, the server will think
2857  * the lock is granted and the client will think the lock is lost.
2858  * The client can tell when it is not positive if it is in sync with
2859  * the server.
2860  *
2861  * To deal with this, a list of processes for which the client is
2862  * not sure if the server holds a lock is attached to the rnode.
2863  * When such a process closes the rnode, an unlock request is sent
2864  * to the server to unlock the entire file.
2865  *
2866  * The list is kept as a singularly linked NULL terminated list.
2867  * Because it is only added to under extreme error conditions, the
2868  * list shouldn't get very big.  DEBUG kernels print a message if
2869  * the list gets bigger than nfs_lmpl_high_water.  This is arbitrarily
2870  * choosen to be 8, but can be tuned at runtime.
2871  */
2872 #ifdef DEBUG
2873 /* int nfs_lmpl_high_water = 8; */
2874 int nfs_lmpl_high_water = 128;
2875 int nfs_cnt_add_locking_id = 0;
2876 int nfs_len_add_locking_id = 0;
2877 #endif /* DEBUG */
2878 
2879 /*
2880  * Record that the nfs lock manager server may be holding a lock on
2881  * a vnode for a process.
2882  *
2883  * Because the nfs lock manager server holds state, it is possible
2884  * for the server to get out of sync with the client.  This routine is called
2885  * from the client when it is no longer sure if the server is in sync
2886  * with the client.  nfs_lockrelease() will then notice this and send
2887  * an unlock request when the file is closed
2888  */
2889 void
2890 nfs_add_locking_id(vnode_t *vp, pid_t pid, int type, char *id, int len)
2891 {
2892 	rnode_t *rp;
2893 	lmpl_t *new;
2894 	lmpl_t *cur;
2895 	lmpl_t **lmplp;
2896 #ifdef DEBUG
2897 	int list_len = 1;
2898 #endif /* DEBUG */
2899 
2900 #ifdef DEBUG
2901 	++nfs_cnt_add_locking_id;
2902 #endif /* DEBUG */
2903 	/*
2904 	 * allocate new lmpl_t now so we don't sleep
2905 	 * later after grabbing mutexes
2906 	 */
2907 	ASSERT(len < MAX_SHR_OWNER_LEN);
2908 	new = kmem_alloc(sizeof (*new), KM_SLEEP);
2909 	new->lmpl_type = type;
2910 	new->lmpl_pid = pid;
2911 	new->lmpl_owner = kmem_alloc(len, KM_SLEEP);
2912 	bcopy(id, new->lmpl_owner, len);
2913 	new->lmpl_own_len = len;
2914 	new->lmpl_next = (lmpl_t *)NULL;
2915 #ifdef DEBUG
2916 	if (type == RLMPL_PID) {
2917 		ASSERT(len == sizeof (pid_t));
2918 		ASSERT(pid == *(pid_t *)new->lmpl_owner);
2919 	} else {
2920 		ASSERT(type == RLMPL_OWNER);
2921 	}
2922 #endif
2923 
2924 	rp = VTOR(vp);
2925 	mutex_enter(&rp->r_statelock);
2926 
2927 	/*
2928 	 * Add this id to the list for this rnode only if the
2929 	 * rnode is active and the id is not already there.
2930 	 */
2931 	ASSERT(rp->r_flags & RHASHED);
2932 	lmplp = &(rp->r_lmpl);
2933 	for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) {
2934 		if (cur->lmpl_pid == pid &&
2935 		    cur->lmpl_type == type &&
2936 		    cur->lmpl_own_len == len &&
2937 		    bcmp(cur->lmpl_owner, new->lmpl_owner, len) == 0) {
2938 			kmem_free(new->lmpl_owner, len);
2939 			kmem_free(new, sizeof (*new));
2940 			break;
2941 		}
2942 		lmplp = &cur->lmpl_next;
2943 #ifdef DEBUG
2944 		++list_len;
2945 #endif /* DEBUG */
2946 	}
2947 	if (cur == (lmpl_t *)NULL) {
2948 		*lmplp = new;
2949 #ifdef DEBUG
2950 		if (list_len > nfs_len_add_locking_id) {
2951 			nfs_len_add_locking_id = list_len;
2952 		}
2953 		if (list_len > nfs_lmpl_high_water) {
2954 			cmn_err(CE_WARN, "nfs_add_locking_id: long list "
2955 			    "vp=%p is %d", (void *)vp, list_len);
2956 		}
2957 #endif /* DEBUG */
2958 	}
2959 
2960 #ifdef DEBUG
2961 	if (share_debug) {
2962 		int nitems = 0;
2963 		int npids = 0;
2964 		int nowners = 0;
2965 
2966 		/*
2967 		 * Count the number of things left on r_lmpl after the remove.
2968 		 */
2969 		for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL;
2970 		    cur = cur->lmpl_next) {
2971 			nitems++;
2972 			if (cur->lmpl_type == RLMPL_PID) {
2973 				npids++;
2974 			} else if (cur->lmpl_type == RLMPL_OWNER) {
2975 				nowners++;
2976 			} else {
2977 				cmn_err(CE_PANIC, "nfs_add_locking_id: "
2978 				    "unrecognised lmpl_type %d",
2979 				    cur->lmpl_type);
2980 			}
2981 		}
2982 
2983 		cmn_err(CE_CONT, "nfs_add_locking_id(%s): %d PIDs + %d "
2984 		    "OWNs = %d items left on r_lmpl\n",
2985 		    (type == RLMPL_PID) ? "P" : "O", npids, nowners, nitems);
2986 	}
2987 #endif
2988 
2989 	mutex_exit(&rp->r_statelock);
2990 }
2991 
2992 /*
2993  * Remove an id from the lock manager id list.
2994  *
2995  * If the id is not in the list return 0.  If it was found and
2996  * removed, return 1.
2997  */
2998 static int
2999 nfs_remove_locking_id(vnode_t *vp, int type, char *id, char *rid, int *rlen)
3000 {
3001 	lmpl_t *cur;
3002 	lmpl_t **lmplp;
3003 	rnode_t *rp;
3004 	int rv = 0;
3005 
3006 	ASSERT(type == RLMPL_PID || type == RLMPL_OWNER);
3007 
3008 	rp = VTOR(vp);
3009 
3010 	mutex_enter(&rp->r_statelock);
3011 	ASSERT(rp->r_flags & RHASHED);
3012 	lmplp = &(rp->r_lmpl);
3013 
3014 	/*
3015 	 * Search through the list and remove the entry for this id
3016 	 * if it is there.  The special case id == NULL allows removal
3017 	 * of the first share on the r_lmpl list belonging to the
3018 	 * current process (if any), without regard to further details
3019 	 * of its identity.
3020 	 */
3021 	for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) {
3022 		if (cur->lmpl_type == type &&
3023 		    cur->lmpl_pid == curproc->p_pid &&
3024 		    (id == (char *)NULL ||
3025 		    bcmp(cur->lmpl_owner, id, cur->lmpl_own_len) == 0)) {
3026 			*lmplp = cur->lmpl_next;
3027 			ASSERT(cur->lmpl_own_len < MAX_SHR_OWNER_LEN);
3028 			if (rid != NULL) {
3029 				bcopy(cur->lmpl_owner, rid, cur->lmpl_own_len);
3030 				*rlen = cur->lmpl_own_len;
3031 			}
3032 			kmem_free(cur->lmpl_owner, cur->lmpl_own_len);
3033 			kmem_free(cur, sizeof (*cur));
3034 			rv = 1;
3035 			break;
3036 		}
3037 		lmplp = &cur->lmpl_next;
3038 	}
3039 
3040 #ifdef DEBUG
3041 	if (share_debug) {
3042 		int nitems = 0;
3043 		int npids = 0;
3044 		int nowners = 0;
3045 
3046 		/*
3047 		 * Count the number of things left on r_lmpl after the remove.
3048 		 */
3049 		for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL;
3050 				cur = cur->lmpl_next) {
3051 			nitems++;
3052 			if (cur->lmpl_type == RLMPL_PID) {
3053 				npids++;
3054 			} else if (cur->lmpl_type == RLMPL_OWNER) {
3055 				nowners++;
3056 			} else {
3057 				cmn_err(CE_PANIC,
3058 					"nrli: unrecognised lmpl_type %d",
3059 					cur->lmpl_type);
3060 			}
3061 		}
3062 
3063 		cmn_err(CE_CONT,
3064 		"nrli(%s): %d PIDs + %d OWNs = %d items left on r_lmpl\n",
3065 			(type == RLMPL_PID) ? "P" : "O",
3066 			npids,
3067 			nowners,
3068 			nitems);
3069 	}
3070 #endif
3071 
3072 	mutex_exit(&rp->r_statelock);
3073 	return (rv);
3074 }
3075 
3076 void
3077 nfs_free_mi(mntinfo_t *mi)
3078 {
3079 	ASSERT(mi->mi_flags & MI_ASYNC_MGR_STOP);
3080 	ASSERT(mi->mi_manager_thread == NULL);
3081 	ASSERT(mi->mi_threads == 0);
3082 
3083 	/*
3084 	 * Remove the node from the global list before we start tearing it down.
3085 	 */
3086 	nfs_mi_zonelist_remove(mi);
3087 	if (mi->mi_klmconfig) {
3088 		lm_free_config(mi->mi_klmconfig);
3089 		kmem_free(mi->mi_klmconfig, sizeof (struct knetconfig));
3090 	}
3091 	mutex_destroy(&mi->mi_lock);
3092 	mutex_destroy(&mi->mi_remap_lock);
3093 	mutex_destroy(&mi->mi_async_lock);
3094 	cv_destroy(&mi->mi_failover_cv);
3095 	cv_destroy(&mi->mi_async_work_cv);
3096 	cv_destroy(&mi->mi_async_reqs_cv);
3097 	cv_destroy(&mi->mi_async_cv);
3098 	zone_rele(mi->mi_zone);
3099 	kmem_free(mi, sizeof (*mi));
3100 }
3101 
3102 static int
3103 mnt_kstat_update(kstat_t *ksp, int rw)
3104 {
3105 	mntinfo_t *mi;
3106 	struct mntinfo_kstat *mik;
3107 	vfs_t *vfsp;
3108 	int i;
3109 
3110 	/* this is a read-only kstat. Bail out on a write */
3111 	if (rw == KSTAT_WRITE)
3112 		return (EACCES);
3113 
3114 	/*
3115 	 * We don't want to wait here as kstat_chain_lock could be held by
3116 	 * dounmount(). dounmount() takes vfs_reflock before the chain lock
3117 	 * and thus could lead to a deadlock.
3118 	 */
3119 	vfsp = (struct vfs *)ksp->ks_private;
3120 
3121 
3122 	mi = VFTOMI(vfsp);
3123 
3124 	mik = (struct mntinfo_kstat *)ksp->ks_data;
3125 
3126 	(void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto);
3127 	mik->mik_vers = (uint32_t)mi->mi_vers;
3128 	mik->mik_flags = mi->mi_flags;
3129 	mik->mik_secmod = mi->mi_curr_serv->sv_secdata->secmod;
3130 	mik->mik_curread = (uint32_t)mi->mi_curread;
3131 	mik->mik_curwrite = (uint32_t)mi->mi_curwrite;
3132 	mik->mik_retrans = mi->mi_retrans;
3133 	mik->mik_timeo = mi->mi_timeo;
3134 	mik->mik_acregmin = HR2SEC(mi->mi_acregmin);
3135 	mik->mik_acregmax = HR2SEC(mi->mi_acregmax);
3136 	mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin);
3137 	mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax);
3138 	for (i = 0; i < NFS_CALLTYPES + 1; i++) {
3139 		mik->mik_timers[i].srtt = (uint32_t)mi->mi_timers[i].rt_srtt;
3140 		mik->mik_timers[i].deviate =
3141 		    (uint32_t)mi->mi_timers[i].rt_deviate;
3142 		mik->mik_timers[i].rtxcur =
3143 		    (uint32_t)mi->mi_timers[i].rt_rtxcur;
3144 	}
3145 	mik->mik_noresponse = (uint32_t)mi->mi_noresponse;
3146 	mik->mik_failover = (uint32_t)mi->mi_failover;
3147 	mik->mik_remap = (uint32_t)mi->mi_remap;
3148 	(void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname);
3149 
3150 	return (0);
3151 }
3152 
3153 void
3154 nfs_mnt_kstat_init(struct vfs *vfsp)
3155 {
3156 	mntinfo_t *mi = VFTOMI(vfsp);
3157 
3158 	/*
3159 	 * Create the version specific kstats.
3160 	 *
3161 	 * PSARC 2001/697 Contract Private Interface
3162 	 * All nfs kstats are under SunMC contract
3163 	 * Please refer to the PSARC listed above and contact
3164 	 * SunMC before making any changes!
3165 	 *
3166 	 * Changes must be reviewed by Solaris File Sharing
3167 	 * Changes must be communicated to contract-2001-697@sun.com
3168 	 *
3169 	 */
3170 
3171 	mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev),
3172 	    NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id);
3173 	if (mi->mi_io_kstats) {
3174 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
3175 			kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID);
3176 		mi->mi_io_kstats->ks_lock = &mi->mi_lock;
3177 		kstat_install(mi->mi_io_kstats);
3178 	}
3179 
3180 	if ((mi->mi_ro_kstats = kstat_create_zone("nfs",
3181 	    getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW,
3182 	    sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) {
3183 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
3184 			kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID);
3185 		mi->mi_ro_kstats->ks_update = mnt_kstat_update;
3186 		mi->mi_ro_kstats->ks_private = (void *)vfsp;
3187 		kstat_install(mi->mi_ro_kstats);
3188 	}
3189 }
3190 
3191 nfs_delmapcall_t *
3192 nfs_init_delmapcall()
3193 {
3194 	nfs_delmapcall_t	*delmap_call;
3195 
3196 	delmap_call = kmem_alloc(sizeof (nfs_delmapcall_t), KM_SLEEP);
3197 	delmap_call->call_id = curthread;
3198 	delmap_call->error = 0;
3199 
3200 	return (delmap_call);
3201 }
3202 
3203 void
3204 nfs_free_delmapcall(nfs_delmapcall_t *delmap_call)
3205 {
3206 	kmem_free(delmap_call, sizeof (nfs_delmapcall_t));
3207 }
3208 
3209 /*
3210  * Searches for the current delmap caller (based on curthread) in the list of
3211  * callers.  If it is found, we remove it and free the delmap caller.
3212  * Returns:
3213  *	0 if the caller wasn't found
3214  *	1 if the caller was found, removed and freed.  *errp is set to what
3215  * 	the result of the delmap was.
3216  */
3217 int
3218 nfs_find_and_delete_delmapcall(rnode_t *rp, int *errp)
3219 {
3220 	nfs_delmapcall_t	*delmap_call;
3221 
3222 	/*
3223 	 * If the list doesn't exist yet, we create it and return
3224 	 * that the caller wasn't found.  No list = no callers.
3225 	 */
3226 	mutex_enter(&rp->r_statelock);
3227 	if (!(rp->r_flags & RDELMAPLIST)) {
3228 		/* The list does not exist */
3229 		list_create(&rp->r_indelmap, sizeof (nfs_delmapcall_t),
3230 		    offsetof(nfs_delmapcall_t, call_node));
3231 		rp->r_flags |= RDELMAPLIST;
3232 		mutex_exit(&rp->r_statelock);
3233 		return (0);
3234 	} else {
3235 		/* The list exists so search it */
3236 		for (delmap_call = list_head(&rp->r_indelmap);
3237 		    delmap_call != NULL;
3238 		    delmap_call = list_next(&rp->r_indelmap, delmap_call)) {
3239 			if (delmap_call->call_id == curthread) {
3240 				/* current caller is in the list */
3241 				*errp = delmap_call->error;
3242 				list_remove(&rp->r_indelmap, delmap_call);
3243 				mutex_exit(&rp->r_statelock);
3244 				nfs_free_delmapcall(delmap_call);
3245 				return (1);
3246 			}
3247 		}
3248 	}
3249 	mutex_exit(&rp->r_statelock);
3250 	return (0);
3251 }
3252