1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 /* 32 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 33 * All Rights Reserved 34 */ 35 36 /* 37 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 38 */ 39 40 /* 41 * Copyright (c) 2014, STRATO AG. All rights reserved. 42 */ 43 44 #include <sys/param.h> 45 #include <sys/types.h> 46 #include <sys/systm.h> 47 #include <sys/cred.h> 48 #include <sys/time.h> 49 #include <sys/vnode.h> 50 #include <sys/vfs.h> 51 #include <sys/vfs_opreg.h> 52 #include <sys/file.h> 53 #include <sys/filio.h> 54 #include <sys/uio.h> 55 #include <sys/buf.h> 56 #include <sys/mman.h> 57 #include <sys/pathname.h> 58 #include <sys/dirent.h> 59 #include <sys/debug.h> 60 #include <sys/vmsystm.h> 61 #include <sys/fcntl.h> 62 #include <sys/flock.h> 63 #include <sys/swap.h> 64 #include <sys/errno.h> 65 #include <sys/strsubr.h> 66 #include <sys/sysmacros.h> 67 #include <sys/kmem.h> 68 #include <sys/cmn_err.h> 69 #include <sys/pathconf.h> 70 #include <sys/utsname.h> 71 #include <sys/dnlc.h> 72 #include <sys/acl.h> 73 #include <sys/systeminfo.h> 74 #include <sys/policy.h> 75 #include <sys/sdt.h> 76 #include <sys/list.h> 77 #include <sys/stat.h> 78 #include <sys/zone.h> 79 80 #include <rpc/types.h> 81 #include <rpc/auth.h> 82 #include <rpc/clnt.h> 83 84 #include <nfs/nfs.h> 85 #include <nfs/nfs_clnt.h> 86 #include <nfs/nfs_acl.h> 87 #include <nfs/lm.h> 88 #include <nfs/nfs4.h> 89 #include <nfs/nfs4_kprot.h> 90 #include <nfs/rnode4.h> 91 #include <nfs/nfs4_clnt.h> 92 93 #include <vm/hat.h> 94 #include <vm/as.h> 95 #include <vm/page.h> 96 #include <vm/pvn.h> 97 #include <vm/seg.h> 98 #include <vm/seg_map.h> 99 #include <vm/seg_kpm.h> 100 #include <vm/seg_vn.h> 101 102 #include <fs/fs_subr.h> 103 104 #include <sys/ddi.h> 105 #include <sys/int_fmtio.h> 106 #include <sys/fs/autofs.h> 107 108 typedef struct { 109 nfs4_ga_res_t *di_garp; 110 cred_t *di_cred; 111 hrtime_t di_time_call; 112 } dirattr_info_t; 113 114 typedef enum nfs4_acl_op { 115 NFS4_ACL_GET, 116 NFS4_ACL_SET 117 } nfs4_acl_op_t; 118 119 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi); 120 static int nfs4frlock_get_sysid(struct lm_sysid **, vnode_t *, flock64_t *); 121 122 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 123 char *, dirattr_info_t *); 124 125 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 126 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 127 nfs4_error_t *, int *); 128 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 129 cred_t *); 130 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 131 stable_how4 *); 132 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 133 cred_t *, bool_t, struct uio *); 134 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 135 vsecattr_t *); 136 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 137 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 138 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 139 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 140 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 141 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 142 int, vnode_t **, cred_t *); 143 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 144 cred_t *, int, int, enum createmode4, int); 145 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 146 caller_context_t *); 147 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 148 vnode_t *, char *, cred_t *, nfsstat4 *); 149 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 150 vnode_t *, char *, cred_t *, nfsstat4 *); 151 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 152 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 153 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 154 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 155 page_t *[], size_t, struct seg *, caddr_t, 156 enum seg_rw, cred_t *); 157 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 158 cred_t *); 159 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 160 int, cred_t *); 161 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 162 int, cred_t *); 163 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 164 static void nfs4_set_mod(vnode_t *); 165 static void nfs4_get_commit(vnode_t *); 166 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 167 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 168 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 169 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 170 cred_t *); 171 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 172 cred_t *); 173 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 174 hrtime_t, vnode_t *, cred_t *); 175 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 176 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 177 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 178 static int nfs4_block_and_wait(clock_t *); 179 static cred_t *state_to_cred(nfs4_open_stream_t *); 180 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 181 static pid_t lo_to_pid(lock_owner4 *); 182 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 183 cred_t *, nfs4_lock_owner_t *); 184 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 185 nfs4_lock_owner_t *); 186 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 187 static void nfs4_delmap_callback(struct as *, void *, uint_t); 188 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 189 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 190 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 191 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 192 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 193 uid_t, gid_t, int); 194 195 /* 196 * Routines that implement the setting of v4 args for the misc. ops 197 */ 198 static void nfs4args_lock_free(nfs_argop4 *); 199 static void nfs4args_lockt_free(nfs_argop4 *); 200 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 201 int, rnode4_t *, cred_t *, bitmap4, int *, 202 nfs4_stateid_types_t *); 203 static void nfs4args_setattr_free(nfs_argop4 *); 204 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 205 bitmap4); 206 static void nfs4args_verify_free(nfs_argop4 *); 207 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 208 WRITE4args **, nfs4_stateid_types_t *); 209 210 /* 211 * These are the vnode ops functions that implement the vnode interface to 212 * the networked file system. See more comments below at nfs4_vnodeops. 213 */ 214 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 215 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 216 caller_context_t *); 217 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 218 caller_context_t *); 219 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 220 caller_context_t *); 221 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 222 caller_context_t *); 223 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 224 caller_context_t *); 225 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 226 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 227 caller_context_t *); 228 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 229 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 230 int, vnode_t **, cred_t *, int, caller_context_t *, 231 vsecattr_t *); 232 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 233 int); 234 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 235 caller_context_t *, int); 236 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 237 caller_context_t *, int); 238 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 239 cred_t *, caller_context_t *, int, vsecattr_t *); 240 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 241 caller_context_t *, int); 242 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 243 cred_t *, caller_context_t *, int); 244 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 245 caller_context_t *, int); 246 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 247 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 248 page_t *[], size_t, struct seg *, caddr_t, 249 enum seg_rw, cred_t *, caller_context_t *); 250 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 251 caller_context_t *); 252 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 253 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 254 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 255 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 256 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 257 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 258 struct flk_callback *, cred_t *, caller_context_t *); 259 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 260 cred_t *, caller_context_t *); 261 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 262 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 263 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 264 cred_t *, caller_context_t *); 265 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 266 caller_context_t *); 267 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 268 caller_context_t *); 269 /* 270 * These vnode ops are required to be called from outside this source file, 271 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 272 * as static. 273 */ 274 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 275 caller_context_t *); 276 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 277 int nfs4_lookup(vnode_t *, char *, vnode_t **, 278 struct pathname *, int, vnode_t *, cred_t *, 279 caller_context_t *, int *, pathname_t *); 280 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 281 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 282 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 283 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 284 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 285 caller_context_t *); 286 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 287 caller_context_t *); 288 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 289 caller_context_t *); 290 291 /* 292 * Used for nfs4_commit_vp() to indicate if we should 293 * wait on pending writes. 294 */ 295 #define NFS4_WRITE_NOWAIT 0 296 #define NFS4_WRITE_WAIT 1 297 298 /* 299 * Error flags used to pass information about certain special errors 300 * which need to be handled specially. 301 */ 302 #define NFS_EOF -98 303 #define NFS_VERF_MISMATCH -97 304 305 /* 306 * Flags used to differentiate between which operation drove the 307 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 308 */ 309 #define NFS4_CLOSE_OP 0x1 310 #define NFS4_DELMAP_OP 0x2 311 #define NFS4_INACTIVE_OP 0x3 312 313 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 314 315 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 316 #define ALIGN64(x, ptr, sz) \ 317 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 318 if (x) { \ 319 x = sizeof (uint64_t) - (x); \ 320 sz -= (x); \ 321 ptr += (x); \ 322 } 323 324 #ifdef DEBUG 325 int nfs4_client_attr_debug = 0; 326 int nfs4_client_state_debug = 0; 327 int nfs4_client_shadow_debug = 0; 328 int nfs4_client_lock_debug = 0; 329 int nfs4_seqid_sync = 0; 330 int nfs4_client_map_debug = 0; 331 static int nfs4_pageio_debug = 0; 332 int nfs4_client_inactive_debug = 0; 333 int nfs4_client_recov_debug = 0; 334 int nfs4_client_failover_debug = 0; 335 int nfs4_client_call_debug = 0; 336 int nfs4_client_lookup_debug = 0; 337 int nfs4_client_zone_debug = 0; 338 int nfs4_lost_rqst_debug = 0; 339 int nfs4_rdattrerr_debug = 0; 340 int nfs4_open_stream_debug = 0; 341 342 int nfs4read_error_inject; 343 344 static int nfs4_create_misses = 0; 345 346 static int nfs4_readdir_cache_shorts = 0; 347 static int nfs4_readdir_readahead = 0; 348 349 static int nfs4_bio_do_stop = 0; 350 351 static int nfs4_lostpage = 0; /* number of times we lost original page */ 352 353 int nfs4_mmap_debug = 0; 354 355 static int nfs4_pathconf_cache_hits = 0; 356 static int nfs4_pathconf_cache_misses = 0; 357 358 int nfs4close_all_cnt; 359 int nfs4close_one_debug = 0; 360 int nfs4close_notw_debug = 0; 361 362 int denied_to_flk_debug = 0; 363 void *lockt_denied_debug; 364 365 #endif 366 367 /* 368 * In milliseconds. Should be less than half of the lease time or better, 369 * less than one second. 370 */ 371 int nfs4_base_wait_time = 20; 372 int nfs4_max_base_wait_time = 1 * 1000; /* 1 sec */ 373 374 /* 375 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 376 * or NFS4ERR_RESOURCE. 377 */ 378 static int confirm_retry_sec = 30; 379 380 static int nfs4_lookup_neg_cache = 1; 381 382 /* 383 * number of pages to read ahead 384 * optimized for 100 base-T. 385 */ 386 static int nfs4_nra = 4; 387 388 static int nfs4_do_symlink_cache = 1; 389 390 static int nfs4_pathconf_disable_cache = 0; 391 392 /* 393 * These are the vnode ops routines which implement the vnode interface to 394 * the networked file system. These routines just take their parameters, 395 * make them look networkish by putting the right info into interface structs, 396 * and then calling the appropriate remote routine(s) to do the work. 397 * 398 * Note on directory name lookup cacheing: If we detect a stale fhandle, 399 * we purge the directory cache relative to that vnode. This way, the 400 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 401 * more details on rnode locking. 402 */ 403 404 struct vnodeops *nfs4_vnodeops; 405 406 const fs_operation_def_t nfs4_vnodeops_template[] = { 407 VOPNAME_OPEN, { .vop_open = nfs4_open }, 408 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 409 VOPNAME_READ, { .vop_read = nfs4_read }, 410 VOPNAME_WRITE, { .vop_write = nfs4_write }, 411 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 412 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 413 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 414 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 415 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 416 VOPNAME_CREATE, { .vop_create = nfs4_create }, 417 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 418 VOPNAME_LINK, { .vop_link = nfs4_link }, 419 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 420 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 421 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 422 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 423 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 424 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 425 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 426 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 427 VOPNAME_FID, { .vop_fid = nfs4_fid }, 428 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 429 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 430 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 431 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 432 VOPNAME_SPACE, { .vop_space = nfs4_space }, 433 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 434 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 435 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 436 VOPNAME_MAP, { .vop_map = nfs4_map }, 437 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 438 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 439 /* no separate nfs4_dump */ 440 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 441 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 442 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 443 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 444 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 445 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 446 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 447 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 448 NULL, NULL 449 }; 450 451 /* 452 * The following are subroutines and definitions to set args or get res 453 * for the different nfsv4 ops 454 */ 455 456 void 457 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 458 { 459 int i; 460 461 for (i = 0; i < arglen; i++) { 462 if (argop[i].argop == OP_LOOKUP) { 463 kmem_free( 464 argop[i].nfs_argop4_u.oplookup. 465 objname.utf8string_val, 466 argop[i].nfs_argop4_u.oplookup. 467 objname.utf8string_len); 468 } 469 } 470 } 471 472 static void 473 nfs4args_lock_free(nfs_argop4 *argop) 474 { 475 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 476 477 if (locker->new_lock_owner == TRUE) { 478 open_to_lock_owner4 *open_owner; 479 480 open_owner = &locker->locker4_u.open_owner; 481 if (open_owner->lock_owner.owner_val != NULL) { 482 kmem_free(open_owner->lock_owner.owner_val, 483 open_owner->lock_owner.owner_len); 484 } 485 } 486 } 487 488 static void 489 nfs4args_lockt_free(nfs_argop4 *argop) 490 { 491 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 492 493 if (lowner->owner_val != NULL) { 494 kmem_free(lowner->owner_val, lowner->owner_len); 495 } 496 } 497 498 static void 499 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 500 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 501 nfs4_stateid_types_t *sid_types) 502 { 503 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 504 mntinfo4_t *mi; 505 506 argop->argop = OP_SETATTR; 507 /* 508 * The stateid is set to 0 if client is not modifying the size 509 * and otherwise to whatever nfs4_get_stateid() returns. 510 * 511 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 512 * state struct could be found for the process/file pair. We may 513 * want to change this in the future (by OPENing the file). See 514 * bug # 4474852. 515 */ 516 if (vap->va_mask & AT_SIZE) { 517 518 ASSERT(rp != NULL); 519 mi = VTOMI4(RTOV4(rp)); 520 521 argop->nfs_argop4_u.opsetattr.stateid = 522 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 523 OP_SETATTR, sid_types, FALSE); 524 } else { 525 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 526 sizeof (stateid4)); 527 } 528 529 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 530 if (*error) 531 bzero(attr, sizeof (*attr)); 532 } 533 534 static void 535 nfs4args_setattr_free(nfs_argop4 *argop) 536 { 537 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 538 } 539 540 static int 541 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 542 bitmap4 supp) 543 { 544 fattr4 *attr; 545 int error = 0; 546 547 argop->argop = op; 548 switch (op) { 549 case OP_VERIFY: 550 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 551 break; 552 case OP_NVERIFY: 553 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 554 break; 555 default: 556 return (EINVAL); 557 } 558 if (!error) 559 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 560 if (error) 561 bzero(attr, sizeof (*attr)); 562 return (error); 563 } 564 565 static void 566 nfs4args_verify_free(nfs_argop4 *argop) 567 { 568 switch (argop->argop) { 569 case OP_VERIFY: 570 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 571 break; 572 case OP_NVERIFY: 573 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 574 break; 575 default: 576 break; 577 } 578 } 579 580 static void 581 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 582 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 583 { 584 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 585 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 586 587 argop->argop = OP_WRITE; 588 wargs->stable = stable; 589 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 590 mi, OP_WRITE, sid_tp); 591 wargs->mblk = NULL; 592 *wargs_pp = wargs; 593 } 594 595 void 596 nfs4args_copen_free(OPEN4cargs *open_args) 597 { 598 if (open_args->owner.owner_val) { 599 kmem_free(open_args->owner.owner_val, 600 open_args->owner.owner_len); 601 } 602 if ((open_args->opentype == OPEN4_CREATE) && 603 (open_args->mode != EXCLUSIVE4)) { 604 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 605 } 606 } 607 608 /* 609 * XXX: This is referenced in modstubs.s 610 */ 611 struct vnodeops * 612 nfs4_getvnodeops(void) 613 { 614 return (nfs4_vnodeops); 615 } 616 617 /* 618 * The OPEN operation opens a regular file. 619 */ 620 /*ARGSUSED3*/ 621 static int 622 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 623 { 624 vnode_t *dvp = NULL; 625 rnode4_t *rp, *drp; 626 int error; 627 int just_been_created; 628 char fn[MAXNAMELEN]; 629 630 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 631 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 632 return (EIO); 633 rp = VTOR4(*vpp); 634 635 /* 636 * Check to see if opening something besides a regular file; 637 * if so skip the OTW call 638 */ 639 if ((*vpp)->v_type != VREG) { 640 error = nfs4_open_non_reg_file(vpp, flag, cr); 641 return (error); 642 } 643 644 /* 645 * XXX - would like a check right here to know if the file is 646 * executable or not, so as to skip OTW 647 */ 648 649 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 650 return (error); 651 652 drp = VTOR4(dvp); 653 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 654 return (EINTR); 655 656 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 657 nfs_rw_exit(&drp->r_rwlock); 658 return (error); 659 } 660 661 /* 662 * See if this file has just been CREATEd. 663 * If so, clear the flag and update the dnlc, which was previously 664 * skipped in nfs4_create. 665 * XXX need better serilization on this. 666 * XXX move this into the nf4open_otw call, after we have 667 * XXX acquired the open owner seqid sync. 668 */ 669 mutex_enter(&rp->r_statev4_lock); 670 if (rp->created_v4) { 671 rp->created_v4 = 0; 672 mutex_exit(&rp->r_statev4_lock); 673 674 dnlc_update(dvp, fn, *vpp); 675 /* This is needed so we don't bump the open ref count */ 676 just_been_created = 1; 677 } else { 678 mutex_exit(&rp->r_statev4_lock); 679 just_been_created = 0; 680 } 681 682 /* 683 * If caller specified O_TRUNC/FTRUNC, then be sure to set 684 * FWRITE (to drive successful setattr(size=0) after open) 685 */ 686 if (flag & FTRUNC) 687 flag |= FWRITE; 688 689 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 690 just_been_created); 691 692 if (!error && !((*vpp)->v_flag & VROOT)) 693 dnlc_update(dvp, fn, *vpp); 694 695 nfs_rw_exit(&drp->r_rwlock); 696 697 /* release the hold from vtodv */ 698 VN_RELE(dvp); 699 700 /* exchange the shadow for the master vnode, if needed */ 701 702 if (error == 0 && IS_SHADOW(*vpp, rp)) 703 sv_exchange(vpp); 704 705 return (error); 706 } 707 708 /* 709 * See if there's a "lost open" request to be saved and recovered. 710 */ 711 static void 712 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 713 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 714 vnode_t *dvp, OPEN4cargs *open_args) 715 { 716 vfs_t *vfsp; 717 char *srccfp; 718 719 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 720 721 if (error != ETIMEDOUT && error != EINTR && 722 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 723 lost_rqstp->lr_op = 0; 724 return; 725 } 726 727 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 728 "nfs4open_save_lost_rqst: error %d", error)); 729 730 lost_rqstp->lr_op = OP_OPEN; 731 732 /* 733 * The vp (if it is not NULL) and dvp are held and rele'd via 734 * the recovery code. See nfs4_save_lost_rqst. 735 */ 736 lost_rqstp->lr_vp = vp; 737 lost_rqstp->lr_dvp = dvp; 738 lost_rqstp->lr_oop = oop; 739 lost_rqstp->lr_osp = NULL; 740 lost_rqstp->lr_lop = NULL; 741 lost_rqstp->lr_cr = cr; 742 lost_rqstp->lr_flk = NULL; 743 lost_rqstp->lr_oacc = open_args->share_access; 744 lost_rqstp->lr_odeny = open_args->share_deny; 745 lost_rqstp->lr_oclaim = open_args->claim; 746 if (open_args->claim == CLAIM_DELEGATE_CUR) { 747 lost_rqstp->lr_ostateid = 748 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 749 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 750 } else { 751 srccfp = open_args->open_claim4_u.cfile; 752 } 753 lost_rqstp->lr_ofile.utf8string_len = 0; 754 lost_rqstp->lr_ofile.utf8string_val = NULL; 755 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 756 lost_rqstp->lr_putfirst = FALSE; 757 } 758 759 struct nfs4_excl_time { 760 uint32 seconds; 761 uint32 nseconds; 762 }; 763 764 /* 765 * The OPEN operation creates and/or opens a regular file 766 * 767 * ARGSUSED 768 */ 769 static int 770 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 771 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 772 enum createmode4 createmode, int file_just_been_created) 773 { 774 rnode4_t *rp; 775 rnode4_t *drp = VTOR4(dvp); 776 vnode_t *vp = NULL; 777 vnode_t *vpi = *vpp; 778 bool_t needrecov = FALSE; 779 780 int doqueue = 1; 781 782 COMPOUND4args_clnt args; 783 COMPOUND4res_clnt res; 784 nfs_argop4 *argop; 785 nfs_resop4 *resop; 786 int argoplist_size; 787 int idx_open, idx_fattr; 788 789 GETFH4res *gf_res = NULL; 790 OPEN4res *op_res = NULL; 791 nfs4_ga_res_t *garp; 792 fattr4 *attr = NULL; 793 struct nfs4_excl_time verf; 794 bool_t did_excl_setup = FALSE; 795 int created_osp; 796 797 OPEN4cargs *open_args; 798 nfs4_open_owner_t *oop = NULL; 799 nfs4_open_stream_t *osp = NULL; 800 seqid4 seqid = 0; 801 bool_t retry_open = FALSE; 802 nfs4_recov_state_t recov_state; 803 nfs4_lost_rqst_t lost_rqst; 804 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 805 hrtime_t t; 806 int acc = 0; 807 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 808 cred_t *ncr = NULL; 809 810 nfs4_sharedfh_t *otw_sfh; 811 nfs4_sharedfh_t *orig_sfh; 812 int fh_differs = 0; 813 int numops, setgid_flag; 814 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 815 816 /* 817 * Make sure we properly deal with setting the right gid on 818 * a newly created file to reflect the parent's setgid bit 819 */ 820 setgid_flag = 0; 821 if (create_flag && in_va) { 822 823 /* 824 * If there is grpid mount flag used or 825 * the parent's directory has the setgid bit set 826 * _and_ the client was able to get a valid mapping 827 * for the parent dir's owner_group, we want to 828 * append NVERIFY(owner_group == dva.va_gid) and 829 * SETATTR to the CREATE compound. 830 */ 831 mutex_enter(&drp->r_statelock); 832 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID || 833 drp->r_attr.va_mode & VSGID) && 834 drp->r_attr.va_gid != GID_NOBODY) { 835 in_va->va_mask |= AT_GID; 836 in_va->va_gid = drp->r_attr.va_gid; 837 setgid_flag = 1; 838 } 839 mutex_exit(&drp->r_statelock); 840 } 841 842 /* 843 * Normal/non-create compound: 844 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 845 * 846 * Open(create) compound no setgid: 847 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 848 * RESTOREFH + GETATTR 849 * 850 * Open(create) setgid: 851 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 852 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 853 * NVERIFY(grp) + SETATTR 854 */ 855 if (setgid_flag) { 856 numops = 10; 857 idx_open = 1; 858 idx_fattr = 3; 859 } else if (create_flag) { 860 numops = 7; 861 idx_open = 2; 862 idx_fattr = 4; 863 } else { 864 numops = 4; 865 idx_open = 1; 866 idx_fattr = 3; 867 } 868 869 args.array_len = numops; 870 argoplist_size = numops * sizeof (nfs_argop4); 871 argop = kmem_alloc(argoplist_size, KM_SLEEP); 872 873 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 874 "open %s open flag 0x%x cred %p", file_name, open_flag, 875 (void *)cr)); 876 877 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 878 if (create_flag) { 879 /* 880 * We are to create a file. Initialize the passed in vnode 881 * pointer. 882 */ 883 vpi = NULL; 884 } else { 885 /* 886 * Check to see if the client owns a read delegation and is 887 * trying to open for write. If so, then return the delegation 888 * to avoid the server doing a cb_recall and returning DELAY. 889 * NB - we don't use the statev4_lock here because we'd have 890 * to drop the lock anyway and the result would be stale. 891 */ 892 if ((open_flag & FWRITE) && 893 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 894 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 895 896 /* 897 * If the file has a delegation, then do an access check up 898 * front. This avoids having to an access check later after 899 * we've already done start_op, which could deadlock. 900 */ 901 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 902 if (open_flag & FREAD && 903 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 904 acc |= VREAD; 905 if (open_flag & FWRITE && 906 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 907 acc |= VWRITE; 908 } 909 } 910 911 drp = VTOR4(dvp); 912 913 recov_state.rs_flags = 0; 914 recov_state.rs_num_retry_despite_err = 0; 915 cred_otw = cr; 916 917 recov_retry: 918 fh_differs = 0; 919 nfs4_error_zinit(&e); 920 921 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 922 if (e.error) { 923 if (ncr != NULL) 924 crfree(ncr); 925 kmem_free(argop, argoplist_size); 926 return (e.error); 927 } 928 929 args.ctag = TAG_OPEN; 930 args.array_len = numops; 931 args.array = argop; 932 933 /* putfh directory fh */ 934 argop[0].argop = OP_CPUTFH; 935 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 936 937 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 938 argop[idx_open].argop = OP_COPEN; 939 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 940 open_args->claim = CLAIM_NULL; 941 942 /* name of file */ 943 open_args->open_claim4_u.cfile = file_name; 944 open_args->owner.owner_len = 0; 945 open_args->owner.owner_val = NULL; 946 947 if (create_flag) { 948 /* CREATE a file */ 949 open_args->opentype = OPEN4_CREATE; 950 open_args->mode = createmode; 951 if (createmode == EXCLUSIVE4) { 952 if (did_excl_setup == FALSE) { 953 verf.seconds = zone_get_hostid(NULL); 954 if (verf.seconds != 0) 955 verf.nseconds = newnum(); 956 else { 957 timestruc_t now; 958 959 gethrestime(&now); 960 verf.seconds = now.tv_sec; 961 verf.nseconds = now.tv_nsec; 962 } 963 /* 964 * Since the server will use this value for the 965 * mtime, make sure that it can't overflow. Zero 966 * out the MSB. The actual value does not matter 967 * here, only its uniqeness. 968 */ 969 verf.seconds &= INT32_MAX; 970 did_excl_setup = TRUE; 971 } 972 973 /* Now copy over verifier to OPEN4args. */ 974 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 975 } else { 976 int v_error; 977 bitmap4 supp_attrs; 978 servinfo4_t *svp; 979 980 attr = &open_args->createhow4_u.createattrs; 981 982 svp = drp->r_server; 983 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 984 supp_attrs = svp->sv_supp_attrs; 985 nfs_rw_exit(&svp->sv_lock); 986 987 /* GUARDED4 or UNCHECKED4 */ 988 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 989 supp_attrs); 990 if (v_error) { 991 bzero(attr, sizeof (*attr)); 992 nfs4args_copen_free(open_args); 993 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 994 &recov_state, FALSE); 995 if (ncr != NULL) 996 crfree(ncr); 997 kmem_free(argop, argoplist_size); 998 return (v_error); 999 } 1000 } 1001 } else { 1002 /* NO CREATE */ 1003 open_args->opentype = OPEN4_NOCREATE; 1004 } 1005 1006 if (recov_state.rs_sp != NULL) { 1007 mutex_enter(&recov_state.rs_sp->s_lock); 1008 open_args->owner.clientid = recov_state.rs_sp->clientid; 1009 mutex_exit(&recov_state.rs_sp->s_lock); 1010 } else { 1011 /* XXX should we just fail here? */ 1012 open_args->owner.clientid = 0; 1013 } 1014 1015 /* 1016 * This increments oop's ref count or creates a temporary 'just_created' 1017 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 1018 * completes. 1019 */ 1020 mutex_enter(&VTOMI4(dvp)->mi_lock); 1021 1022 /* See if a permanent or just created open owner exists */ 1023 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1024 if (!oop) { 1025 /* 1026 * This open owner does not exist so create a temporary 1027 * just created one. 1028 */ 1029 oop = create_open_owner(cr, VTOMI4(dvp)); 1030 ASSERT(oop != NULL); 1031 } 1032 mutex_exit(&VTOMI4(dvp)->mi_lock); 1033 1034 /* this length never changes, do alloc before seqid sync */ 1035 open_args->owner.owner_len = sizeof (oop->oo_name); 1036 open_args->owner.owner_val = 1037 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1038 1039 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1040 if (e.error == EAGAIN) { 1041 open_owner_rele(oop); 1042 nfs4args_copen_free(open_args); 1043 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1044 if (ncr != NULL) { 1045 crfree(ncr); 1046 ncr = NULL; 1047 } 1048 goto recov_retry; 1049 } 1050 1051 /* Check to see if we need to do the OTW call */ 1052 if (!create_flag) { 1053 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1054 file_just_been_created, &e.error, acc, &recov_state)) { 1055 1056 /* 1057 * The OTW open is not necessary. Either 1058 * the open can succeed without it (eg. 1059 * delegation, error == 0) or the open 1060 * must fail due to an access failure 1061 * (error != 0). In either case, tidy 1062 * up and return. 1063 */ 1064 1065 nfs4_end_open_seqid_sync(oop); 1066 open_owner_rele(oop); 1067 nfs4args_copen_free(open_args); 1068 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1069 if (ncr != NULL) 1070 crfree(ncr); 1071 kmem_free(argop, argoplist_size); 1072 return (e.error); 1073 } 1074 } 1075 1076 bcopy(&oop->oo_name, open_args->owner.owner_val, 1077 open_args->owner.owner_len); 1078 1079 seqid = nfs4_get_open_seqid(oop) + 1; 1080 open_args->seqid = seqid; 1081 open_args->share_access = 0; 1082 if (open_flag & FREAD) 1083 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1084 if (open_flag & FWRITE) 1085 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1086 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1087 1088 1089 1090 /* 1091 * getfh w/sanity check for idx_open/idx_fattr 1092 */ 1093 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1094 argop[idx_open + 1].argop = OP_GETFH; 1095 1096 /* getattr */ 1097 argop[idx_fattr].argop = OP_GETATTR; 1098 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1099 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1100 1101 if (setgid_flag) { 1102 vattr_t _v; 1103 servinfo4_t *svp; 1104 bitmap4 supp_attrs; 1105 1106 svp = drp->r_server; 1107 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1108 supp_attrs = svp->sv_supp_attrs; 1109 nfs_rw_exit(&svp->sv_lock); 1110 1111 /* 1112 * For setgid case, we need to: 1113 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1114 */ 1115 argop[4].argop = OP_SAVEFH; 1116 1117 argop[5].argop = OP_CPUTFH; 1118 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1119 1120 argop[6].argop = OP_GETATTR; 1121 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1122 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1123 1124 argop[7].argop = OP_RESTOREFH; 1125 1126 /* 1127 * nverify 1128 */ 1129 _v.va_mask = AT_GID; 1130 _v.va_gid = in_va->va_gid; 1131 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1132 supp_attrs))) { 1133 1134 /* 1135 * setattr 1136 * 1137 * We _know_ we're not messing with AT_SIZE or 1138 * AT_XTIME, so no need for stateid or flags. 1139 * Also we specify NULL rp since we're only 1140 * interested in setting owner_group attributes. 1141 */ 1142 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1143 supp_attrs, &e.error, 0); 1144 if (e.error) 1145 nfs4args_verify_free(&argop[8]); 1146 } 1147 1148 if (e.error) { 1149 /* 1150 * XXX - Revisit the last argument to nfs4_end_op() 1151 * once 5020486 is fixed. 1152 */ 1153 nfs4_end_open_seqid_sync(oop); 1154 open_owner_rele(oop); 1155 nfs4args_copen_free(open_args); 1156 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1157 if (ncr != NULL) 1158 crfree(ncr); 1159 kmem_free(argop, argoplist_size); 1160 return (e.error); 1161 } 1162 } else if (create_flag) { 1163 argop[1].argop = OP_SAVEFH; 1164 1165 argop[5].argop = OP_RESTOREFH; 1166 1167 argop[6].argop = OP_GETATTR; 1168 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1169 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1170 } 1171 1172 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1173 "nfs4open_otw: %s call, nm %s, rp %s", 1174 needrecov ? "recov" : "first", file_name, 1175 rnode4info(VTOR4(dvp)))); 1176 1177 t = gethrtime(); 1178 1179 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1180 1181 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1182 nfs4_set_open_seqid(seqid, oop, args.ctag); 1183 1184 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1185 1186 if (e.error || needrecov) { 1187 bool_t abort = FALSE; 1188 1189 if (needrecov) { 1190 nfs4_bseqid_entry_t *bsep = NULL; 1191 1192 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1193 cred_otw, vpi, dvp, open_args); 1194 1195 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1196 bsep = nfs4_create_bseqid_entry(oop, NULL, 1197 vpi, 0, args.ctag, open_args->seqid); 1198 num_bseqid_retry--; 1199 } 1200 1201 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1202 NULL, lost_rqst.lr_op == OP_OPEN ? 1203 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL); 1204 1205 if (bsep) 1206 kmem_free(bsep, sizeof (*bsep)); 1207 /* give up if we keep getting BAD_SEQID */ 1208 if (num_bseqid_retry == 0) 1209 abort = TRUE; 1210 if (abort == TRUE && e.error == 0) 1211 e.error = geterrno4(res.status); 1212 } 1213 nfs4_end_open_seqid_sync(oop); 1214 open_owner_rele(oop); 1215 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1216 nfs4args_copen_free(open_args); 1217 if (setgid_flag) { 1218 nfs4args_verify_free(&argop[8]); 1219 nfs4args_setattr_free(&argop[9]); 1220 } 1221 if (!e.error) 1222 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1223 if (ncr != NULL) { 1224 crfree(ncr); 1225 ncr = NULL; 1226 } 1227 if (!needrecov || abort == TRUE || e.error == EINTR || 1228 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1229 kmem_free(argop, argoplist_size); 1230 return (e.error); 1231 } 1232 goto recov_retry; 1233 } 1234 1235 /* 1236 * Will check and update lease after checking the rflag for 1237 * OPEN_CONFIRM in the successful OPEN call. 1238 */ 1239 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1240 1241 /* 1242 * XXX what if we're crossing mount points from server1:/drp 1243 * to server2:/drp/rp. 1244 */ 1245 1246 /* Signal our end of use of the open seqid */ 1247 nfs4_end_open_seqid_sync(oop); 1248 1249 /* 1250 * This will destroy the open owner if it was just created, 1251 * and no one else has put a reference on it. 1252 */ 1253 open_owner_rele(oop); 1254 if (create_flag && (createmode != EXCLUSIVE4) && 1255 res.status == NFS4ERR_BADOWNER) 1256 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1257 1258 e.error = geterrno4(res.status); 1259 nfs4args_copen_free(open_args); 1260 if (setgid_flag) { 1261 nfs4args_verify_free(&argop[8]); 1262 nfs4args_setattr_free(&argop[9]); 1263 } 1264 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1265 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1266 /* 1267 * If the reply is NFS4ERR_ACCESS, it may be because 1268 * we are root (no root net access). If the real uid 1269 * is not root, then retry with the real uid instead. 1270 */ 1271 if (ncr != NULL) { 1272 crfree(ncr); 1273 ncr = NULL; 1274 } 1275 if (res.status == NFS4ERR_ACCESS && 1276 (ncr = crnetadjust(cred_otw)) != NULL) { 1277 cred_otw = ncr; 1278 goto recov_retry; 1279 } 1280 kmem_free(argop, argoplist_size); 1281 return (e.error); 1282 } 1283 1284 resop = &res.array[idx_open]; /* open res */ 1285 op_res = &resop->nfs_resop4_u.opopen; 1286 1287 #ifdef DEBUG 1288 /* 1289 * verify attrset bitmap 1290 */ 1291 if (create_flag && 1292 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1293 /* make sure attrset returned is what we asked for */ 1294 /* XXX Ignore this 'error' for now */ 1295 if (attr->attrmask != op_res->attrset) 1296 /* EMPTY */; 1297 } 1298 #endif 1299 1300 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1301 mutex_enter(&VTOMI4(dvp)->mi_lock); 1302 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1303 mutex_exit(&VTOMI4(dvp)->mi_lock); 1304 } 1305 1306 resop = &res.array[idx_open + 1]; /* getfh res */ 1307 gf_res = &resop->nfs_resop4_u.opgetfh; 1308 1309 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1310 1311 /* 1312 * The open stateid has been updated on the server but not 1313 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1314 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1315 * WRITE call. That, however, will use the old stateid, so go ahead 1316 * and upate the open stateid now, before any call to makenfs4node. 1317 */ 1318 if (vpi) { 1319 nfs4_open_stream_t *tmp_osp; 1320 rnode4_t *tmp_rp = VTOR4(vpi); 1321 1322 tmp_osp = find_open_stream(oop, tmp_rp); 1323 if (tmp_osp) { 1324 tmp_osp->open_stateid = op_res->stateid; 1325 mutex_exit(&tmp_osp->os_sync_lock); 1326 open_stream_rele(tmp_osp, tmp_rp); 1327 } 1328 1329 /* 1330 * We must determine if the file handle given by the otw open 1331 * is the same as the file handle which was passed in with 1332 * *vpp. This case can be reached if the file we are trying 1333 * to open has been removed and another file has been created 1334 * having the same file name. The passed in vnode is released 1335 * later. 1336 */ 1337 orig_sfh = VTOR4(vpi)->r_fh; 1338 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1339 } 1340 1341 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1342 1343 if (create_flag || fh_differs) { 1344 int rnode_err = 0; 1345 1346 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1347 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh)); 1348 1349 if (e.error) 1350 PURGE_ATTRCACHE4(vp); 1351 /* 1352 * For the newly created vp case, make sure the rnode 1353 * isn't bad before using it. 1354 */ 1355 mutex_enter(&(VTOR4(vp))->r_statelock); 1356 if (VTOR4(vp)->r_flags & R4RECOVERR) 1357 rnode_err = EIO; 1358 mutex_exit(&(VTOR4(vp))->r_statelock); 1359 1360 if (rnode_err) { 1361 nfs4_end_open_seqid_sync(oop); 1362 nfs4args_copen_free(open_args); 1363 if (setgid_flag) { 1364 nfs4args_verify_free(&argop[8]); 1365 nfs4args_setattr_free(&argop[9]); 1366 } 1367 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1368 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1369 needrecov); 1370 open_owner_rele(oop); 1371 VN_RELE(vp); 1372 if (ncr != NULL) 1373 crfree(ncr); 1374 sfh4_rele(&otw_sfh); 1375 kmem_free(argop, argoplist_size); 1376 return (EIO); 1377 } 1378 } else { 1379 vp = vpi; 1380 } 1381 sfh4_rele(&otw_sfh); 1382 1383 /* 1384 * It seems odd to get a full set of attrs and then not update 1385 * the object's attrcache in the non-create case. Create case uses 1386 * the attrs since makenfs4node checks to see if the attrs need to 1387 * be updated (and then updates them). The non-create case should 1388 * update attrs also. 1389 */ 1390 if (! create_flag && ! fh_differs && !e.error) { 1391 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1392 } 1393 1394 nfs4_error_zinit(&e); 1395 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1396 /* This does not do recovery for vp explicitly. */ 1397 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1398 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1399 1400 if (e.error || e.stat) { 1401 nfs4_end_open_seqid_sync(oop); 1402 nfs4args_copen_free(open_args); 1403 if (setgid_flag) { 1404 nfs4args_verify_free(&argop[8]); 1405 nfs4args_setattr_free(&argop[9]); 1406 } 1407 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1408 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1409 needrecov); 1410 open_owner_rele(oop); 1411 if (create_flag || fh_differs) { 1412 /* rele the makenfs4node */ 1413 VN_RELE(vp); 1414 } 1415 if (ncr != NULL) { 1416 crfree(ncr); 1417 ncr = NULL; 1418 } 1419 if (retry_open == TRUE) { 1420 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1421 "nfs4open_otw: retry the open since OPEN " 1422 "CONFIRM failed with error %d stat %d", 1423 e.error, e.stat)); 1424 if (create_flag && createmode == GUARDED4) { 1425 NFS4_DEBUG(nfs4_client_recov_debug, 1426 (CE_NOTE, "nfs4open_otw: switch " 1427 "createmode from GUARDED4 to " 1428 "UNCHECKED4")); 1429 createmode = UNCHECKED4; 1430 } 1431 goto recov_retry; 1432 } 1433 if (!e.error) { 1434 if (create_flag && (createmode != EXCLUSIVE4) && 1435 e.stat == NFS4ERR_BADOWNER) 1436 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1437 1438 e.error = geterrno4(e.stat); 1439 } 1440 kmem_free(argop, argoplist_size); 1441 return (e.error); 1442 } 1443 } 1444 1445 rp = VTOR4(vp); 1446 1447 mutex_enter(&rp->r_statev4_lock); 1448 if (create_flag) 1449 rp->created_v4 = 1; 1450 mutex_exit(&rp->r_statev4_lock); 1451 1452 mutex_enter(&oop->oo_lock); 1453 /* Doesn't matter if 'oo_just_created' already was set as this */ 1454 oop->oo_just_created = NFS4_PERM_CREATED; 1455 if (oop->oo_cred_otw) 1456 crfree(oop->oo_cred_otw); 1457 oop->oo_cred_otw = cred_otw; 1458 crhold(oop->oo_cred_otw); 1459 mutex_exit(&oop->oo_lock); 1460 1461 /* returns with 'os_sync_lock' held */ 1462 osp = find_or_create_open_stream(oop, rp, &created_osp); 1463 if (!osp) { 1464 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1465 "nfs4open_otw: failed to create an open stream")); 1466 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1467 "signal our end of use of the open seqid")); 1468 1469 nfs4_end_open_seqid_sync(oop); 1470 open_owner_rele(oop); 1471 nfs4args_copen_free(open_args); 1472 if (setgid_flag) { 1473 nfs4args_verify_free(&argop[8]); 1474 nfs4args_setattr_free(&argop[9]); 1475 } 1476 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1477 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1478 if (create_flag || fh_differs) 1479 VN_RELE(vp); 1480 if (ncr != NULL) 1481 crfree(ncr); 1482 1483 kmem_free(argop, argoplist_size); 1484 return (EINVAL); 1485 1486 } 1487 1488 osp->open_stateid = op_res->stateid; 1489 1490 if (open_flag & FREAD) 1491 osp->os_share_acc_read++; 1492 if (open_flag & FWRITE) 1493 osp->os_share_acc_write++; 1494 osp->os_share_deny_none++; 1495 1496 /* 1497 * Need to reset this bitfield for the possible case where we were 1498 * going to OTW CLOSE the file, got a non-recoverable error, and before 1499 * we could retry the CLOSE, OPENed the file again. 1500 */ 1501 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1502 osp->os_final_close = 0; 1503 osp->os_force_close = 0; 1504 #ifdef DEBUG 1505 if (osp->os_failed_reopen) 1506 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1507 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1508 (void *)osp, (void *)cr, rnode4info(rp))); 1509 #endif 1510 osp->os_failed_reopen = 0; 1511 1512 mutex_exit(&osp->os_sync_lock); 1513 1514 nfs4_end_open_seqid_sync(oop); 1515 1516 if (created_osp && recov_state.rs_sp != NULL) { 1517 mutex_enter(&recov_state.rs_sp->s_lock); 1518 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1519 mutex_exit(&recov_state.rs_sp->s_lock); 1520 } 1521 1522 /* get rid of our reference to find oop */ 1523 open_owner_rele(oop); 1524 1525 open_stream_rele(osp, rp); 1526 1527 /* accept delegation, if any */ 1528 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1529 1530 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1531 1532 if (createmode == EXCLUSIVE4 && 1533 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1534 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1535 " EXCLUSIVE4: sending a SETATTR")); 1536 /* 1537 * If doing an exclusive create, then generate 1538 * a SETATTR to set the initial attributes. 1539 * Try to set the mtime and the atime to the 1540 * server's current time. It is somewhat 1541 * expected that these fields will be used to 1542 * store the exclusive create cookie. If not, 1543 * server implementors will need to know that 1544 * a SETATTR will follow an exclusive create 1545 * and the cookie should be destroyed if 1546 * appropriate. 1547 * 1548 * The AT_GID and AT_SIZE bits are turned off 1549 * so that the SETATTR request will not attempt 1550 * to process these. The gid will be set 1551 * separately if appropriate. The size is turned 1552 * off because it is assumed that a new file will 1553 * be created empty and if the file wasn't empty, 1554 * then the exclusive create will have failed 1555 * because the file must have existed already. 1556 * Therefore, no truncate operation is needed. 1557 */ 1558 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1559 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1560 1561 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1562 if (e.error) { 1563 nfs4_error_t err; 1564 1565 /* 1566 * Couldn't correct the attributes of 1567 * the newly created file and the 1568 * attributes are wrong. Remove the 1569 * file and return an error to the 1570 * application. 1571 */ 1572 /* XXX will this take care of client state ? */ 1573 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1574 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1575 " remove file", e.error)); 1576 1577 /* 1578 * The file is currently open so try to close it first. 1579 * 1580 * If we do not close the file explicitly here then the 1581 * VN_RELE() would do an (implicit and asynchronous) 1582 * close for us. But such async close could race with 1583 * the nfs4_remove() below. If the async close is 1584 * slower than nfs4_remove() then nfs4_remove() 1585 * wouldn't remove the file but rename it to .nfsXXXX 1586 * instead. 1587 */ 1588 nfs4close_one(vp, NULL, cr, open_flag, NULL, &err, 1589 CLOSE_NORM, 0, 0, 0); 1590 VN_RELE(vp); 1591 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1592 1593 /* 1594 * Since we've reled the vnode and removed 1595 * the file we now need to return the error. 1596 * At this point we don't want to update the 1597 * dircaches, call nfs4_waitfor_purge_complete 1598 * or set vpp to vp so we need to skip these 1599 * as well. 1600 */ 1601 goto skip_update_dircaches; 1602 } 1603 } 1604 1605 /* 1606 * If we created or found the correct vnode, due to create_flag or 1607 * fh_differs being set, then update directory cache attribute, readdir 1608 * and dnlc caches. 1609 */ 1610 if (create_flag || fh_differs) { 1611 dirattr_info_t dinfo, *dinfop; 1612 1613 /* 1614 * Make sure getattr succeeded before using results. 1615 * note: op 7 is getattr(dir) for both flavors of 1616 * open(create). 1617 */ 1618 if (create_flag && res.status == NFS4_OK) { 1619 dinfo.di_time_call = t; 1620 dinfo.di_cred = cr; 1621 dinfo.di_garp = 1622 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1623 dinfop = &dinfo; 1624 } else { 1625 dinfop = NULL; 1626 } 1627 1628 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1629 dinfop); 1630 } 1631 1632 /* 1633 * If the page cache for this file was flushed from actions 1634 * above, it was done asynchronously and if that is true, 1635 * there is a need to wait here for it to complete. This must 1636 * be done outside of start_fop/end_fop. 1637 */ 1638 (void) nfs4_waitfor_purge_complete(vp); 1639 1640 /* 1641 * It is implicit that we are in the open case (create_flag == 0) since 1642 * fh_differs can only be set to a non-zero value in the open case. 1643 */ 1644 if (fh_differs != 0 && vpi != NULL) 1645 VN_RELE(vpi); 1646 1647 /* 1648 * Be sure to set *vpp to the correct value before returning. 1649 */ 1650 *vpp = vp; 1651 1652 skip_update_dircaches: 1653 1654 nfs4args_copen_free(open_args); 1655 if (setgid_flag) { 1656 nfs4args_verify_free(&argop[8]); 1657 nfs4args_setattr_free(&argop[9]); 1658 } 1659 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1660 1661 if (ncr) 1662 crfree(ncr); 1663 kmem_free(argop, argoplist_size); 1664 return (e.error); 1665 } 1666 1667 /* 1668 * Reopen an open instance. cf. nfs4open_otw(). 1669 * 1670 * Errors are returned by the nfs4_error_t parameter. 1671 * - ep->error contains an errno value or zero. 1672 * - if it is zero, ep->stat is set to an NFS status code, if any. 1673 * If the file could not be reopened, but the caller should continue, the 1674 * file is marked dead and no error values are returned. If the caller 1675 * should stop recovering open files and start over, either the ep->error 1676 * value or ep->stat will indicate an error (either something that requires 1677 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1678 * filehandles) may be handled silently by this routine. 1679 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1680 * will be started, so the caller should not do it. 1681 * 1682 * Gotos: 1683 * - kill_file : reopen failed in such a fashion to constitute marking the 1684 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1685 * is for cases where recovery is not possible. 1686 * - failed_reopen : same as above, except that the file has already been 1687 * marked dead, so no need to do it again. 1688 * - bailout : reopen failed but we are able to recover and retry the reopen - 1689 * either within this function immediately or via the calling function. 1690 */ 1691 1692 void 1693 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1694 open_claim_type4 claim, bool_t frc_use_claim_previous, 1695 bool_t is_recov) 1696 { 1697 COMPOUND4args_clnt args; 1698 COMPOUND4res_clnt res; 1699 nfs_argop4 argop[4]; 1700 nfs_resop4 *resop; 1701 OPEN4res *op_res = NULL; 1702 OPEN4cargs *open_args; 1703 GETFH4res *gf_res; 1704 rnode4_t *rp = VTOR4(vp); 1705 int doqueue = 1; 1706 cred_t *cr = NULL, *cred_otw = NULL; 1707 nfs4_open_owner_t *oop = NULL; 1708 seqid4 seqid; 1709 nfs4_ga_res_t *garp; 1710 char fn[MAXNAMELEN]; 1711 nfs4_recov_state_t recov = {NULL, 0}; 1712 nfs4_lost_rqst_t lost_rqst; 1713 mntinfo4_t *mi = VTOMI4(vp); 1714 bool_t abort; 1715 char *failed_msg = ""; 1716 int fh_different; 1717 hrtime_t t; 1718 nfs4_bseqid_entry_t *bsep = NULL; 1719 1720 ASSERT(nfs4_consistent_type(vp)); 1721 ASSERT(nfs_zone() == mi->mi_zone); 1722 1723 nfs4_error_zinit(ep); 1724 1725 /* this is the cred used to find the open owner */ 1726 cr = state_to_cred(osp); 1727 if (cr == NULL) { 1728 failed_msg = "Couldn't reopen: no cred"; 1729 goto kill_file; 1730 } 1731 /* use this cred for OTW operations */ 1732 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1733 1734 top: 1735 nfs4_error_zinit(ep); 1736 1737 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1738 /* File system has been unmounted, quit */ 1739 ep->error = EIO; 1740 failed_msg = "Couldn't reopen: file system has been unmounted"; 1741 goto kill_file; 1742 } 1743 1744 oop = osp->os_open_owner; 1745 1746 ASSERT(oop != NULL); 1747 if (oop == NULL) { /* be defensive in non-DEBUG */ 1748 failed_msg = "can't reopen: no open owner"; 1749 goto kill_file; 1750 } 1751 open_owner_hold(oop); 1752 1753 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1754 if (ep->error) { 1755 open_owner_rele(oop); 1756 oop = NULL; 1757 goto bailout; 1758 } 1759 1760 /* 1761 * If the rnode has a delegation and the delegation has been 1762 * recovered and the server didn't request a recall and the caller 1763 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1764 * recovery) and the rnode hasn't been marked dead, then install 1765 * the delegation stateid in the open stream. Otherwise, proceed 1766 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1767 */ 1768 mutex_enter(&rp->r_statev4_lock); 1769 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1770 !rp->r_deleg_return_pending && 1771 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1772 !rp->r_deleg_needs_recall && 1773 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1774 !(rp->r_flags & R4RECOVERR)) { 1775 mutex_enter(&osp->os_sync_lock); 1776 osp->os_delegation = 1; 1777 osp->open_stateid = rp->r_deleg_stateid; 1778 mutex_exit(&osp->os_sync_lock); 1779 mutex_exit(&rp->r_statev4_lock); 1780 goto bailout; 1781 } 1782 mutex_exit(&rp->r_statev4_lock); 1783 1784 /* 1785 * If the file failed recovery, just quit. This failure need not 1786 * affect other reopens, so don't return an error. 1787 */ 1788 mutex_enter(&rp->r_statelock); 1789 if (rp->r_flags & R4RECOVERR) { 1790 mutex_exit(&rp->r_statelock); 1791 ep->error = 0; 1792 goto failed_reopen; 1793 } 1794 mutex_exit(&rp->r_statelock); 1795 1796 /* 1797 * argop is empty here 1798 * 1799 * PUTFH, OPEN, GETATTR 1800 */ 1801 args.ctag = TAG_REOPEN; 1802 args.array_len = 4; 1803 args.array = argop; 1804 1805 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1806 "nfs4_reopen: file is type %d, id %s", 1807 vp->v_type, rnode4info(VTOR4(vp)))); 1808 1809 argop[0].argop = OP_CPUTFH; 1810 1811 if (claim != CLAIM_PREVIOUS) { 1812 /* 1813 * if this is a file mount then 1814 * use the mntinfo parentfh 1815 */ 1816 argop[0].nfs_argop4_u.opcputfh.sfh = 1817 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1818 VTOSV(vp)->sv_dfh; 1819 } else { 1820 /* putfh fh to reopen */ 1821 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1822 } 1823 1824 argop[1].argop = OP_COPEN; 1825 open_args = &argop[1].nfs_argop4_u.opcopen; 1826 open_args->claim = claim; 1827 1828 if (claim == CLAIM_NULL) { 1829 1830 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1831 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1832 "failed for vp 0x%p for CLAIM_NULL with %m", 1833 (void *)vp); 1834 failed_msg = "Couldn't reopen: vtoname failed for " 1835 "CLAIM_NULL"; 1836 /* nothing allocated yet */ 1837 goto kill_file; 1838 } 1839 1840 open_args->open_claim4_u.cfile = fn; 1841 } else if (claim == CLAIM_PREVIOUS) { 1842 1843 /* 1844 * We have two cases to deal with here: 1845 * 1) We're being called to reopen files in order to satisfy 1846 * a lock operation request which requires us to explicitly 1847 * reopen files which were opened under a delegation. If 1848 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1849 * that case, frc_use_claim_previous is TRUE and we must 1850 * use the rnode's current delegation type (r_deleg_type). 1851 * 2) We're reopening files during some form of recovery. 1852 * In this case, frc_use_claim_previous is FALSE and we 1853 * use the delegation type appropriate for recovery 1854 * (r_deleg_needs_recovery). 1855 */ 1856 mutex_enter(&rp->r_statev4_lock); 1857 open_args->open_claim4_u.delegate_type = 1858 frc_use_claim_previous ? 1859 rp->r_deleg_type : 1860 rp->r_deleg_needs_recovery; 1861 mutex_exit(&rp->r_statev4_lock); 1862 1863 } else if (claim == CLAIM_DELEGATE_CUR) { 1864 1865 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1866 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1867 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1868 "with %m", (void *)vp); 1869 failed_msg = "Couldn't reopen: vtoname failed for " 1870 "CLAIM_DELEGATE_CUR"; 1871 /* nothing allocated yet */ 1872 goto kill_file; 1873 } 1874 1875 mutex_enter(&rp->r_statev4_lock); 1876 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1877 rp->r_deleg_stateid; 1878 mutex_exit(&rp->r_statev4_lock); 1879 1880 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1881 } 1882 open_args->opentype = OPEN4_NOCREATE; 1883 open_args->owner.clientid = mi2clientid(mi); 1884 open_args->owner.owner_len = sizeof (oop->oo_name); 1885 open_args->owner.owner_val = 1886 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1887 bcopy(&oop->oo_name, open_args->owner.owner_val, 1888 open_args->owner.owner_len); 1889 open_args->share_access = 0; 1890 open_args->share_deny = 0; 1891 1892 mutex_enter(&osp->os_sync_lock); 1893 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1894 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1895 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1896 (void *)osp, (void *)rp, osp->os_share_acc_read, 1897 osp->os_share_acc_write, osp->os_open_ref_count, 1898 osp->os_mmap_read, osp->os_mmap_write, claim)); 1899 1900 if (osp->os_share_acc_read || osp->os_mmap_read) 1901 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1902 if (osp->os_share_acc_write || osp->os_mmap_write) 1903 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1904 if (osp->os_share_deny_read) 1905 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1906 if (osp->os_share_deny_write) 1907 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1908 mutex_exit(&osp->os_sync_lock); 1909 1910 seqid = nfs4_get_open_seqid(oop) + 1; 1911 open_args->seqid = seqid; 1912 1913 /* Construct the getfh part of the compound */ 1914 argop[2].argop = OP_GETFH; 1915 1916 /* Construct the getattr part of the compound */ 1917 argop[3].argop = OP_GETATTR; 1918 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1919 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1920 1921 t = gethrtime(); 1922 1923 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1924 1925 if (ep->error) { 1926 if (!is_recov && !frc_use_claim_previous && 1927 (ep->error == EINTR || ep->error == ETIMEDOUT || 1928 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1929 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1930 cred_otw, vp, NULL, open_args); 1931 abort = nfs4_start_recovery(ep, 1932 VTOMI4(vp), vp, NULL, NULL, 1933 lost_rqst.lr_op == OP_OPEN ? 1934 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL); 1935 nfs4args_copen_free(open_args); 1936 goto bailout; 1937 } 1938 1939 nfs4args_copen_free(open_args); 1940 1941 if (ep->error == EACCES && cred_otw != cr) { 1942 crfree(cred_otw); 1943 cred_otw = cr; 1944 crhold(cred_otw); 1945 nfs4_end_open_seqid_sync(oop); 1946 open_owner_rele(oop); 1947 oop = NULL; 1948 goto top; 1949 } 1950 if (ep->error == ETIMEDOUT) 1951 goto bailout; 1952 failed_msg = "Couldn't reopen: rpc error"; 1953 goto kill_file; 1954 } 1955 1956 if (nfs4_need_to_bump_seqid(&res)) 1957 nfs4_set_open_seqid(seqid, oop, args.ctag); 1958 1959 switch (res.status) { 1960 case NFS4_OK: 1961 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1962 mutex_enter(&rp->r_statelock); 1963 rp->r_delay_interval = 0; 1964 mutex_exit(&rp->r_statelock); 1965 } 1966 break; 1967 case NFS4ERR_BAD_SEQID: 1968 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1969 args.ctag, open_args->seqid); 1970 1971 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1972 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1973 NULL, OP_OPEN, bsep, NULL, NULL); 1974 1975 nfs4args_copen_free(open_args); 1976 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1977 nfs4_end_open_seqid_sync(oop); 1978 open_owner_rele(oop); 1979 oop = NULL; 1980 kmem_free(bsep, sizeof (*bsep)); 1981 1982 goto kill_file; 1983 case NFS4ERR_NO_GRACE: 1984 nfs4args_copen_free(open_args); 1985 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1986 nfs4_end_open_seqid_sync(oop); 1987 open_owner_rele(oop); 1988 oop = NULL; 1989 if (claim == CLAIM_PREVIOUS) { 1990 /* 1991 * Retry as a plain open. We don't need to worry about 1992 * checking the changeinfo: it is acceptable for a 1993 * client to re-open a file and continue processing 1994 * (in the absence of locks). 1995 */ 1996 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1997 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1998 "will retry as CLAIM_NULL")); 1999 claim = CLAIM_NULL; 2000 nfs4_mi_kstat_inc_no_grace(mi); 2001 goto top; 2002 } 2003 failed_msg = 2004 "Couldn't reopen: tried reclaim outside grace period. "; 2005 goto kill_file; 2006 case NFS4ERR_GRACE: 2007 nfs4_set_grace_wait(mi); 2008 nfs4args_copen_free(open_args); 2009 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2010 nfs4_end_open_seqid_sync(oop); 2011 open_owner_rele(oop); 2012 oop = NULL; 2013 ep->error = nfs4_wait_for_grace(mi, &recov); 2014 if (ep->error != 0) 2015 goto bailout; 2016 goto top; 2017 case NFS4ERR_DELAY: 2018 nfs4_set_delay_wait(vp); 2019 nfs4args_copen_free(open_args); 2020 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2021 nfs4_end_open_seqid_sync(oop); 2022 open_owner_rele(oop); 2023 oop = NULL; 2024 ep->error = nfs4_wait_for_delay(vp, &recov); 2025 nfs4_mi_kstat_inc_delay(mi); 2026 if (ep->error != 0) 2027 goto bailout; 2028 goto top; 2029 case NFS4ERR_FHEXPIRED: 2030 /* recover filehandle and retry */ 2031 abort = nfs4_start_recovery(ep, 2032 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL); 2033 nfs4args_copen_free(open_args); 2034 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2035 nfs4_end_open_seqid_sync(oop); 2036 open_owner_rele(oop); 2037 oop = NULL; 2038 if (abort == FALSE) 2039 goto top; 2040 failed_msg = "Couldn't reopen: recovery aborted"; 2041 goto kill_file; 2042 case NFS4ERR_RESOURCE: 2043 case NFS4ERR_STALE_CLIENTID: 2044 case NFS4ERR_WRONGSEC: 2045 case NFS4ERR_EXPIRED: 2046 /* 2047 * Do not mark the file dead and let the calling 2048 * function initiate recovery. 2049 */ 2050 nfs4args_copen_free(open_args); 2051 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2052 nfs4_end_open_seqid_sync(oop); 2053 open_owner_rele(oop); 2054 oop = NULL; 2055 goto bailout; 2056 case NFS4ERR_ACCESS: 2057 if (cred_otw != cr) { 2058 crfree(cred_otw); 2059 cred_otw = cr; 2060 crhold(cred_otw); 2061 nfs4args_copen_free(open_args); 2062 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2063 nfs4_end_open_seqid_sync(oop); 2064 open_owner_rele(oop); 2065 oop = NULL; 2066 goto top; 2067 } 2068 /* fall through */ 2069 default: 2070 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2071 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2072 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2073 rnode4info(VTOR4(vp)))); 2074 failed_msg = "Couldn't reopen: NFSv4 error"; 2075 nfs4args_copen_free(open_args); 2076 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2077 goto kill_file; 2078 } 2079 2080 resop = &res.array[1]; /* open res */ 2081 op_res = &resop->nfs_resop4_u.opopen; 2082 2083 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2084 2085 /* 2086 * Check if the path we reopened really is the same 2087 * file. We could end up in a situation where the file 2088 * was removed and a new file created with the same name. 2089 */ 2090 resop = &res.array[2]; 2091 gf_res = &resop->nfs_resop4_u.opgetfh; 2092 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2093 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2094 if (fh_different) { 2095 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2096 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2097 /* Oops, we don't have the same file */ 2098 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2099 failed_msg = "Couldn't reopen: Persistent " 2100 "file handle changed"; 2101 else 2102 failed_msg = "Couldn't reopen: Volatile " 2103 "(no expire on open) file handle changed"; 2104 2105 nfs4args_copen_free(open_args); 2106 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2107 nfs_rw_exit(&mi->mi_fh_lock); 2108 goto kill_file; 2109 2110 } else { 2111 /* 2112 * We have volatile file handles that don't compare. 2113 * If the fids are the same then we assume that the 2114 * file handle expired but the rnode still refers to 2115 * the same file object. 2116 * 2117 * First check that we have fids or not. 2118 * If we don't we have a dumb server so we will 2119 * just assume every thing is ok for now. 2120 */ 2121 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2122 rp->r_attr.va_mask & AT_NODEID && 2123 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2124 /* 2125 * We have fids, but they don't 2126 * compare. So kill the file. 2127 */ 2128 failed_msg = 2129 "Couldn't reopen: file handle changed" 2130 " due to mismatched fids"; 2131 nfs4args_copen_free(open_args); 2132 (void) xdr_free(xdr_COMPOUND4res_clnt, 2133 (caddr_t)&res); 2134 nfs_rw_exit(&mi->mi_fh_lock); 2135 goto kill_file; 2136 } else { 2137 /* 2138 * We have volatile file handles that refers 2139 * to the same file (at least they have the 2140 * same fid) or we don't have fids so we 2141 * can't tell. :(. We'll be a kind and accepting 2142 * client so we'll update the rnode's file 2143 * handle with the otw handle. 2144 * 2145 * We need to drop mi->mi_fh_lock since 2146 * sh4_update acquires it. Since there is 2147 * only one recovery thread there is no 2148 * race. 2149 */ 2150 nfs_rw_exit(&mi->mi_fh_lock); 2151 sfh4_update(rp->r_fh, &gf_res->object); 2152 } 2153 } 2154 } else { 2155 nfs_rw_exit(&mi->mi_fh_lock); 2156 } 2157 2158 ASSERT(nfs4_consistent_type(vp)); 2159 2160 /* 2161 * If the server wanted an OPEN_CONFIRM but that fails, just start 2162 * over. Presumably if there is a persistent error it will show up 2163 * when we resend the OPEN. 2164 */ 2165 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2166 bool_t retry_open = FALSE; 2167 2168 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2169 cred_otw, is_recov, &retry_open, 2170 oop, FALSE, ep, NULL); 2171 if (ep->error || ep->stat) { 2172 nfs4args_copen_free(open_args); 2173 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2174 nfs4_end_open_seqid_sync(oop); 2175 open_owner_rele(oop); 2176 oop = NULL; 2177 goto top; 2178 } 2179 } 2180 2181 mutex_enter(&osp->os_sync_lock); 2182 osp->open_stateid = op_res->stateid; 2183 osp->os_delegation = 0; 2184 /* 2185 * Need to reset this bitfield for the possible case where we were 2186 * going to OTW CLOSE the file, got a non-recoverable error, and before 2187 * we could retry the CLOSE, OPENed the file again. 2188 */ 2189 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2190 osp->os_final_close = 0; 2191 osp->os_force_close = 0; 2192 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2193 osp->os_dc_openacc = open_args->share_access; 2194 mutex_exit(&osp->os_sync_lock); 2195 2196 nfs4_end_open_seqid_sync(oop); 2197 2198 /* accept delegation, if any */ 2199 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2200 2201 nfs4args_copen_free(open_args); 2202 2203 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2204 2205 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2206 2207 ASSERT(nfs4_consistent_type(vp)); 2208 2209 open_owner_rele(oop); 2210 crfree(cr); 2211 crfree(cred_otw); 2212 return; 2213 2214 kill_file: 2215 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2216 failed_reopen: 2217 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2218 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2219 (void *)osp, (void *)cr, rnode4info(rp))); 2220 mutex_enter(&osp->os_sync_lock); 2221 osp->os_failed_reopen = 1; 2222 mutex_exit(&osp->os_sync_lock); 2223 bailout: 2224 if (oop != NULL) { 2225 nfs4_end_open_seqid_sync(oop); 2226 open_owner_rele(oop); 2227 } 2228 if (cr != NULL) 2229 crfree(cr); 2230 if (cred_otw != NULL) 2231 crfree(cred_otw); 2232 } 2233 2234 /* for . and .. OPENs */ 2235 /* ARGSUSED */ 2236 static int 2237 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2238 { 2239 rnode4_t *rp; 2240 nfs4_ga_res_t gar; 2241 2242 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2243 2244 /* 2245 * If close-to-open consistency checking is turned off or 2246 * if there is no cached data, we can avoid 2247 * the over the wire getattr. Otherwise, force a 2248 * call to the server to get fresh attributes and to 2249 * check caches. This is required for close-to-open 2250 * consistency. 2251 */ 2252 rp = VTOR4(*vpp); 2253 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2254 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2255 return (0); 2256 2257 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2258 } 2259 2260 /* 2261 * CLOSE a file 2262 */ 2263 /* ARGSUSED */ 2264 static int 2265 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2266 caller_context_t *ct) 2267 { 2268 rnode4_t *rp; 2269 int error = 0; 2270 int r_error = 0; 2271 int n4error = 0; 2272 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2273 2274 /* 2275 * Remove client state for this (lockowner, file) pair. 2276 * Issue otw v4 call to have the server do the same. 2277 */ 2278 2279 rp = VTOR4(vp); 2280 2281 /* 2282 * zone_enter(2) prevents processes from changing zones with NFS files 2283 * open; if we happen to get here from the wrong zone we can't do 2284 * anything over the wire. 2285 */ 2286 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2287 /* 2288 * We could attempt to clean up locks, except we're sure 2289 * that the current process didn't acquire any locks on 2290 * the file: any attempt to lock a file belong to another zone 2291 * will fail, and one can't lock an NFS file and then change 2292 * zones, as that fails too. 2293 * 2294 * Returning an error here is the sane thing to do. A 2295 * subsequent call to VN_RELE() which translates to a 2296 * nfs4_inactive() will clean up state: if the zone of the 2297 * vnode's origin is still alive and kicking, the inactive 2298 * thread will handle the request (from the correct zone), and 2299 * everything (minus the OTW close call) should be OK. If the 2300 * zone is going away nfs4_async_inactive() will throw away 2301 * delegations, open streams and cached pages inline. 2302 */ 2303 return (EIO); 2304 } 2305 2306 /* 2307 * If we are using local locking for this filesystem, then 2308 * release all of the SYSV style record locks. Otherwise, 2309 * we are doing network locking and we need to release all 2310 * of the network locks. All of the locks held by this 2311 * process on this file are released no matter what the 2312 * incoming reference count is. 2313 */ 2314 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2315 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2316 cleanshares(vp, ttoproc(curthread)->p_pid); 2317 } else 2318 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2319 2320 if (e.error) { 2321 struct lm_sysid *lmsid; 2322 lmsid = nfs4_find_sysid(VTOMI4(vp)); 2323 if (lmsid == NULL) { 2324 DTRACE_PROBE2(unknown__sysid, int, e.error, 2325 vnode_t *, vp); 2326 } else { 2327 cleanlocks(vp, ttoproc(curthread)->p_pid, 2328 (lm_sysidt(lmsid) | LM_SYSID_CLIENT)); 2329 2330 lm_rel_sysid(lmsid); 2331 } 2332 return (e.error); 2333 } 2334 2335 if (count > 1) 2336 return (0); 2337 2338 /* 2339 * If the file has been `unlinked', then purge the 2340 * DNLC so that this vnode will get reycled quicker 2341 * and the .nfs* file on the server will get removed. 2342 */ 2343 if (rp->r_unldvp != NULL) 2344 dnlc_purge_vp(vp); 2345 2346 /* 2347 * If the file was open for write and there are pages, 2348 * do a synchronous flush and commit of all of the 2349 * dirty and uncommitted pages. 2350 */ 2351 ASSERT(!e.error); 2352 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2353 error = nfs4_putpage_commit(vp, 0, 0, cr); 2354 2355 mutex_enter(&rp->r_statelock); 2356 r_error = rp->r_error; 2357 rp->r_error = 0; 2358 mutex_exit(&rp->r_statelock); 2359 2360 /* 2361 * If this file type is one for which no explicit 'open' was 2362 * done, then bail now (ie. no need for protocol 'close'). If 2363 * there was an error w/the vm subsystem, return _that_ error, 2364 * otherwise, return any errors that may've been reported via 2365 * the rnode. 2366 */ 2367 if (vp->v_type != VREG) 2368 return (error ? error : r_error); 2369 2370 /* 2371 * The sync putpage commit may have failed above, but since 2372 * we're working w/a regular file, we need to do the protocol 2373 * 'close' (nfs4close_one will figure out if an otw close is 2374 * needed or not). Report any errors _after_ doing the protocol 2375 * 'close'. 2376 */ 2377 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2378 n4error = e.error ? e.error : geterrno4(e.stat); 2379 2380 /* 2381 * Error reporting prio (Hi -> Lo) 2382 * 2383 * i) nfs4_putpage_commit (error) 2384 * ii) rnode's (r_error) 2385 * iii) nfs4close_one (n4error) 2386 */ 2387 return (error ? error : (r_error ? r_error : n4error)); 2388 } 2389 2390 /* 2391 * Initialize *lost_rqstp. 2392 */ 2393 2394 static void 2395 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2396 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2397 vnode_t *vp) 2398 { 2399 if (error != ETIMEDOUT && error != EINTR && 2400 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2401 lost_rqstp->lr_op = 0; 2402 return; 2403 } 2404 2405 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2406 "nfs4close_save_lost_rqst: error %d", error)); 2407 2408 lost_rqstp->lr_op = OP_CLOSE; 2409 /* 2410 * The vp is held and rele'd via the recovery code. 2411 * See nfs4_save_lost_rqst. 2412 */ 2413 lost_rqstp->lr_vp = vp; 2414 lost_rqstp->lr_dvp = NULL; 2415 lost_rqstp->lr_oop = oop; 2416 lost_rqstp->lr_osp = osp; 2417 ASSERT(osp != NULL); 2418 ASSERT(mutex_owned(&osp->os_sync_lock)); 2419 osp->os_pending_close = 1; 2420 lost_rqstp->lr_lop = NULL; 2421 lost_rqstp->lr_cr = cr; 2422 lost_rqstp->lr_flk = NULL; 2423 lost_rqstp->lr_putfirst = FALSE; 2424 } 2425 2426 /* 2427 * Assumes you already have the open seqid sync grabbed as well as the 2428 * 'os_sync_lock'. Note: this will release the open seqid sync and 2429 * 'os_sync_lock' if client recovery starts. Calling functions have to 2430 * be prepared to handle this. 2431 * 2432 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2433 * was needed and was started, and that the calling function should retry 2434 * this function; otherwise it is returned as 0. 2435 * 2436 * Errors are returned via the nfs4_error_t parameter. 2437 */ 2438 static void 2439 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2440 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2441 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2442 { 2443 COMPOUND4args_clnt args; 2444 COMPOUND4res_clnt res; 2445 CLOSE4args *close_args; 2446 nfs_resop4 *resop; 2447 nfs_argop4 argop[3]; 2448 int doqueue = 1; 2449 mntinfo4_t *mi; 2450 seqid4 seqid; 2451 vnode_t *vp; 2452 bool_t needrecov = FALSE; 2453 nfs4_lost_rqst_t lost_rqst; 2454 hrtime_t t; 2455 2456 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2457 2458 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2459 2460 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2461 2462 /* Only set this to 1 if recovery is started */ 2463 *recov = 0; 2464 2465 /* do the OTW call to close the file */ 2466 2467 if (close_type == CLOSE_RESEND) 2468 args.ctag = TAG_CLOSE_LOST; 2469 else if (close_type == CLOSE_AFTER_RESEND) 2470 args.ctag = TAG_CLOSE_UNDO; 2471 else 2472 args.ctag = TAG_CLOSE; 2473 2474 args.array_len = 3; 2475 args.array = argop; 2476 2477 vp = RTOV4(rp); 2478 2479 mi = VTOMI4(vp); 2480 2481 /* putfh target fh */ 2482 argop[0].argop = OP_CPUTFH; 2483 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2484 2485 argop[1].argop = OP_GETATTR; 2486 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2487 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2488 2489 argop[2].argop = OP_CLOSE; 2490 close_args = &argop[2].nfs_argop4_u.opclose; 2491 2492 seqid = nfs4_get_open_seqid(oop) + 1; 2493 2494 close_args->seqid = seqid; 2495 close_args->open_stateid = osp->open_stateid; 2496 2497 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2498 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2499 rnode4info(rp))); 2500 2501 t = gethrtime(); 2502 2503 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2504 2505 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2506 nfs4_set_open_seqid(seqid, oop, args.ctag); 2507 } 2508 2509 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2510 if (ep->error && !needrecov) { 2511 /* 2512 * if there was an error and no recovery is to be done 2513 * then then set up the file to flush its cache if 2514 * needed for the next caller. 2515 */ 2516 mutex_enter(&rp->r_statelock); 2517 PURGE_ATTRCACHE4_LOCKED(rp); 2518 rp->r_flags &= ~R4WRITEMODIFIED; 2519 mutex_exit(&rp->r_statelock); 2520 return; 2521 } 2522 2523 if (needrecov) { 2524 bool_t abort; 2525 nfs4_bseqid_entry_t *bsep = NULL; 2526 2527 if (close_type != CLOSE_RESEND) 2528 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2529 osp, cred_otw, vp); 2530 2531 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2532 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2533 0, args.ctag, close_args->seqid); 2534 2535 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2536 "nfs4close_otw: initiating recovery. error %d " 2537 "res.status %d", ep->error, res.status)); 2538 2539 /* 2540 * Drop the 'os_sync_lock' here so we don't hit 2541 * a potential recursive mutex_enter via an 2542 * 'open_stream_hold()'. 2543 */ 2544 mutex_exit(&osp->os_sync_lock); 2545 *have_sync_lockp = 0; 2546 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2547 (close_type != CLOSE_RESEND && 2548 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2549 OP_CLOSE, bsep, NULL, NULL); 2550 2551 /* drop open seq sync, and let the calling function regrab it */ 2552 nfs4_end_open_seqid_sync(oop); 2553 *did_start_seqid_syncp = 0; 2554 2555 if (bsep) 2556 kmem_free(bsep, sizeof (*bsep)); 2557 /* 2558 * For signals, the caller wants to quit, so don't say to 2559 * retry. For forced unmount, if it's a user thread, it 2560 * wants to quit. If it's a recovery thread, the retry 2561 * will happen higher-up on the call stack. Either way, 2562 * don't say to retry. 2563 */ 2564 if (abort == FALSE && ep->error != EINTR && 2565 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2566 close_type != CLOSE_RESEND && 2567 close_type != CLOSE_AFTER_RESEND) 2568 *recov = 1; 2569 else 2570 *recov = 0; 2571 2572 if (!ep->error) 2573 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2574 return; 2575 } 2576 2577 if (res.status) { 2578 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2579 return; 2580 } 2581 2582 mutex_enter(&rp->r_statev4_lock); 2583 rp->created_v4 = 0; 2584 mutex_exit(&rp->r_statev4_lock); 2585 2586 resop = &res.array[2]; 2587 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2588 osp->os_valid = 0; 2589 2590 /* 2591 * This removes the reference obtained at OPEN; ie, when the 2592 * open stream structure was created. 2593 * 2594 * We don't have to worry about calling 'open_stream_rele' 2595 * since we our currently holding a reference to the open 2596 * stream which means the count cannot go to 0 with this 2597 * decrement. 2598 */ 2599 ASSERT(osp->os_ref_count >= 2); 2600 osp->os_ref_count--; 2601 2602 if (ep->error == 0) { 2603 mutex_exit(&osp->os_sync_lock); 2604 *have_sync_lockp = 0; 2605 2606 nfs4_attr_cache(vp, 2607 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2608 t, cred_otw, TRUE, NULL); 2609 } 2610 2611 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2612 " returning %d", ep->error)); 2613 2614 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2615 } 2616 2617 /* ARGSUSED */ 2618 static int 2619 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2620 caller_context_t *ct) 2621 { 2622 rnode4_t *rp; 2623 u_offset_t off; 2624 offset_t diff; 2625 uint_t on; 2626 uint_t n; 2627 caddr_t base; 2628 uint_t flags; 2629 int error; 2630 mntinfo4_t *mi; 2631 2632 rp = VTOR4(vp); 2633 2634 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2635 2636 if (IS_SHADOW(vp, rp)) 2637 vp = RTOV4(rp); 2638 2639 if (vp->v_type != VREG) 2640 return (EISDIR); 2641 2642 mi = VTOMI4(vp); 2643 2644 if (nfs_zone() != mi->mi_zone) 2645 return (EIO); 2646 2647 if (uiop->uio_resid == 0) 2648 return (0); 2649 2650 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2651 return (EINVAL); 2652 2653 mutex_enter(&rp->r_statelock); 2654 if (rp->r_flags & R4RECOVERRP) 2655 error = (rp->r_error ? rp->r_error : EIO); 2656 else 2657 error = 0; 2658 mutex_exit(&rp->r_statelock); 2659 if (error) 2660 return (error); 2661 2662 /* 2663 * Bypass VM if caching has been disabled (e.g., locking) or if 2664 * using client-side direct I/O and the file is not mmap'd and 2665 * there are no cached pages. 2666 */ 2667 if ((vp->v_flag & VNOCACHE) || 2668 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2669 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2670 size_t resid = 0; 2671 2672 return (nfs4read(vp, NULL, uiop->uio_loffset, 2673 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2674 } 2675 2676 error = 0; 2677 2678 do { 2679 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2680 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2681 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2682 2683 if (error = nfs4_validate_caches(vp, cr)) 2684 break; 2685 2686 mutex_enter(&rp->r_statelock); 2687 while (rp->r_flags & R4INCACHEPURGE) { 2688 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2689 mutex_exit(&rp->r_statelock); 2690 return (EINTR); 2691 } 2692 } 2693 diff = rp->r_size - uiop->uio_loffset; 2694 mutex_exit(&rp->r_statelock); 2695 if (diff <= 0) 2696 break; 2697 if (diff < n) 2698 n = (uint_t)diff; 2699 2700 if (vpm_enable) { 2701 /* 2702 * Copy data. 2703 */ 2704 error = vpm_data_copy(vp, off + on, n, uiop, 2705 1, NULL, 0, S_READ); 2706 } else { 2707 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2708 S_READ); 2709 2710 error = uiomove(base + on, n, UIO_READ, uiop); 2711 } 2712 2713 if (!error) { 2714 /* 2715 * If read a whole block or read to eof, 2716 * won't need this buffer again soon. 2717 */ 2718 mutex_enter(&rp->r_statelock); 2719 if (n + on == MAXBSIZE || 2720 uiop->uio_loffset == rp->r_size) 2721 flags = SM_DONTNEED; 2722 else 2723 flags = 0; 2724 mutex_exit(&rp->r_statelock); 2725 if (vpm_enable) { 2726 error = vpm_sync_pages(vp, off, n, flags); 2727 } else { 2728 error = segmap_release(segkmap, base, flags); 2729 } 2730 } else { 2731 if (vpm_enable) { 2732 (void) vpm_sync_pages(vp, off, n, 0); 2733 } else { 2734 (void) segmap_release(segkmap, base, 0); 2735 } 2736 } 2737 } while (!error && uiop->uio_resid > 0); 2738 2739 return (error); 2740 } 2741 2742 /* ARGSUSED */ 2743 static int 2744 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2745 caller_context_t *ct) 2746 { 2747 rlim64_t limit = uiop->uio_llimit; 2748 rnode4_t *rp; 2749 u_offset_t off; 2750 caddr_t base; 2751 uint_t flags; 2752 int remainder; 2753 size_t n; 2754 int on; 2755 int error; 2756 int resid; 2757 u_offset_t offset; 2758 mntinfo4_t *mi; 2759 uint_t bsize; 2760 2761 rp = VTOR4(vp); 2762 2763 if (IS_SHADOW(vp, rp)) 2764 vp = RTOV4(rp); 2765 2766 if (vp->v_type != VREG) 2767 return (EISDIR); 2768 2769 mi = VTOMI4(vp); 2770 2771 if (nfs_zone() != mi->mi_zone) 2772 return (EIO); 2773 2774 if (uiop->uio_resid == 0) 2775 return (0); 2776 2777 mutex_enter(&rp->r_statelock); 2778 if (rp->r_flags & R4RECOVERRP) 2779 error = (rp->r_error ? rp->r_error : EIO); 2780 else 2781 error = 0; 2782 mutex_exit(&rp->r_statelock); 2783 if (error) 2784 return (error); 2785 2786 if (ioflag & FAPPEND) { 2787 struct vattr va; 2788 2789 /* 2790 * Must serialize if appending. 2791 */ 2792 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2793 nfs_rw_exit(&rp->r_rwlock); 2794 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2795 INTR4(vp))) 2796 return (EINTR); 2797 } 2798 2799 va.va_mask = AT_SIZE; 2800 error = nfs4getattr(vp, &va, cr); 2801 if (error) 2802 return (error); 2803 uiop->uio_loffset = va.va_size; 2804 } 2805 2806 offset = uiop->uio_loffset + uiop->uio_resid; 2807 2808 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2809 return (EINVAL); 2810 2811 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2812 limit = MAXOFFSET_T; 2813 2814 /* 2815 * Check to make sure that the process will not exceed 2816 * its limit on file size. It is okay to write up to 2817 * the limit, but not beyond. Thus, the write which 2818 * reaches the limit will be short and the next write 2819 * will return an error. 2820 */ 2821 remainder = 0; 2822 if (offset > uiop->uio_llimit) { 2823 remainder = offset - uiop->uio_llimit; 2824 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2825 if (uiop->uio_resid <= 0) { 2826 proc_t *p = ttoproc(curthread); 2827 2828 uiop->uio_resid += remainder; 2829 mutex_enter(&p->p_lock); 2830 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2831 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2832 mutex_exit(&p->p_lock); 2833 return (EFBIG); 2834 } 2835 } 2836 2837 /* update the change attribute, if we have a write delegation */ 2838 2839 mutex_enter(&rp->r_statev4_lock); 2840 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2841 rp->r_deleg_change++; 2842 2843 mutex_exit(&rp->r_statev4_lock); 2844 2845 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, INTR4(vp))) 2846 return (EINTR); 2847 2848 /* 2849 * Bypass VM if caching has been disabled (e.g., locking) or if 2850 * using client-side direct I/O and the file is not mmap'd and 2851 * there are no cached pages. 2852 */ 2853 if ((vp->v_flag & VNOCACHE) || 2854 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2855 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2856 size_t bufsize; 2857 int count; 2858 u_offset_t org_offset; 2859 stable_how4 stab_comm; 2860 nfs4_fwrite: 2861 if (rp->r_flags & R4STALE) { 2862 resid = uiop->uio_resid; 2863 offset = uiop->uio_loffset; 2864 error = rp->r_error; 2865 /* 2866 * A close may have cleared r_error, if so, 2867 * propagate ESTALE error return properly 2868 */ 2869 if (error == 0) 2870 error = ESTALE; 2871 goto bottom; 2872 } 2873 2874 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2875 base = kmem_alloc(bufsize, KM_SLEEP); 2876 do { 2877 if (ioflag & FDSYNC) 2878 stab_comm = DATA_SYNC4; 2879 else 2880 stab_comm = FILE_SYNC4; 2881 resid = uiop->uio_resid; 2882 offset = uiop->uio_loffset; 2883 count = MIN(uiop->uio_resid, bufsize); 2884 org_offset = uiop->uio_loffset; 2885 error = uiomove(base, count, UIO_WRITE, uiop); 2886 if (!error) { 2887 error = nfs4write(vp, base, org_offset, 2888 count, cr, &stab_comm); 2889 if (!error) { 2890 mutex_enter(&rp->r_statelock); 2891 if (rp->r_size < uiop->uio_loffset) 2892 rp->r_size = uiop->uio_loffset; 2893 mutex_exit(&rp->r_statelock); 2894 } 2895 } 2896 } while (!error && uiop->uio_resid > 0); 2897 kmem_free(base, bufsize); 2898 goto bottom; 2899 } 2900 2901 bsize = vp->v_vfsp->vfs_bsize; 2902 2903 do { 2904 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2905 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2906 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2907 2908 resid = uiop->uio_resid; 2909 offset = uiop->uio_loffset; 2910 2911 if (rp->r_flags & R4STALE) { 2912 error = rp->r_error; 2913 /* 2914 * A close may have cleared r_error, if so, 2915 * propagate ESTALE error return properly 2916 */ 2917 if (error == 0) 2918 error = ESTALE; 2919 break; 2920 } 2921 2922 /* 2923 * Don't create dirty pages faster than they 2924 * can be cleaned so that the system doesn't 2925 * get imbalanced. If the async queue is 2926 * maxed out, then wait for it to drain before 2927 * creating more dirty pages. Also, wait for 2928 * any threads doing pagewalks in the vop_getattr 2929 * entry points so that they don't block for 2930 * long periods. 2931 */ 2932 mutex_enter(&rp->r_statelock); 2933 while ((mi->mi_max_threads != 0 && 2934 rp->r_awcount > 2 * mi->mi_max_threads) || 2935 rp->r_gcount > 0) { 2936 if (INTR4(vp)) { 2937 klwp_t *lwp = ttolwp(curthread); 2938 2939 if (lwp != NULL) 2940 lwp->lwp_nostop++; 2941 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2942 mutex_exit(&rp->r_statelock); 2943 if (lwp != NULL) 2944 lwp->lwp_nostop--; 2945 error = EINTR; 2946 goto bottom; 2947 } 2948 if (lwp != NULL) 2949 lwp->lwp_nostop--; 2950 } else 2951 cv_wait(&rp->r_cv, &rp->r_statelock); 2952 } 2953 mutex_exit(&rp->r_statelock); 2954 2955 /* 2956 * Touch the page and fault it in if it is not in core 2957 * before segmap_getmapflt or vpm_data_copy can lock it. 2958 * This is to avoid the deadlock if the buffer is mapped 2959 * to the same file through mmap which we want to write. 2960 */ 2961 uio_prefaultpages((long)n, uiop); 2962 2963 if (vpm_enable) { 2964 /* 2965 * It will use kpm mappings, so no need to 2966 * pass an address. 2967 */ 2968 error = writerp4(rp, NULL, n, uiop, 0); 2969 } else { 2970 if (segmap_kpm) { 2971 int pon = uiop->uio_loffset & PAGEOFFSET; 2972 size_t pn = MIN(PAGESIZE - pon, 2973 uiop->uio_resid); 2974 int pagecreate; 2975 2976 mutex_enter(&rp->r_statelock); 2977 pagecreate = (pon == 0) && (pn == PAGESIZE || 2978 uiop->uio_loffset + pn >= rp->r_size); 2979 mutex_exit(&rp->r_statelock); 2980 2981 base = segmap_getmapflt(segkmap, vp, off + on, 2982 pn, !pagecreate, S_WRITE); 2983 2984 error = writerp4(rp, base + pon, n, uiop, 2985 pagecreate); 2986 2987 } else { 2988 base = segmap_getmapflt(segkmap, vp, off + on, 2989 n, 0, S_READ); 2990 error = writerp4(rp, base + on, n, uiop, 0); 2991 } 2992 } 2993 2994 if (!error) { 2995 if (mi->mi_flags & MI4_NOAC) 2996 flags = SM_WRITE; 2997 else if ((uiop->uio_loffset % bsize) == 0 || 2998 IS_SWAPVP(vp)) { 2999 /* 3000 * Have written a whole block. 3001 * Start an asynchronous write 3002 * and mark the buffer to 3003 * indicate that it won't be 3004 * needed again soon. 3005 */ 3006 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 3007 } else 3008 flags = 0; 3009 if ((ioflag & (FSYNC|FDSYNC)) || 3010 (rp->r_flags & R4OUTOFSPACE)) { 3011 flags &= ~SM_ASYNC; 3012 flags |= SM_WRITE; 3013 } 3014 if (vpm_enable) { 3015 error = vpm_sync_pages(vp, off, n, flags); 3016 } else { 3017 error = segmap_release(segkmap, base, flags); 3018 } 3019 } else { 3020 if (vpm_enable) { 3021 (void) vpm_sync_pages(vp, off, n, 0); 3022 } else { 3023 (void) segmap_release(segkmap, base, 0); 3024 } 3025 /* 3026 * In the event that we got an access error while 3027 * faulting in a page for a write-only file just 3028 * force a write. 3029 */ 3030 if (error == EACCES) 3031 goto nfs4_fwrite; 3032 } 3033 } while (!error && uiop->uio_resid > 0); 3034 3035 bottom: 3036 if (error) { 3037 uiop->uio_resid = resid + remainder; 3038 uiop->uio_loffset = offset; 3039 } else { 3040 uiop->uio_resid += remainder; 3041 3042 mutex_enter(&rp->r_statev4_lock); 3043 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 3044 gethrestime(&rp->r_attr.va_mtime); 3045 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3046 } 3047 mutex_exit(&rp->r_statev4_lock); 3048 } 3049 3050 nfs_rw_exit(&rp->r_lkserlock); 3051 3052 return (error); 3053 } 3054 3055 /* 3056 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 3057 */ 3058 static int 3059 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 3060 int flags, cred_t *cr) 3061 { 3062 struct buf *bp; 3063 int error; 3064 page_t *savepp; 3065 uchar_t fsdata; 3066 stable_how4 stab_comm; 3067 3068 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3069 bp = pageio_setup(pp, len, vp, flags); 3070 ASSERT(bp != NULL); 3071 3072 /* 3073 * pageio_setup should have set b_addr to 0. This 3074 * is correct since we want to do I/O on a page 3075 * boundary. bp_mapin will use this addr to calculate 3076 * an offset, and then set b_addr to the kernel virtual 3077 * address it allocated for us. 3078 */ 3079 ASSERT(bp->b_un.b_addr == 0); 3080 3081 bp->b_edev = 0; 3082 bp->b_dev = 0; 3083 bp->b_lblkno = lbtodb(off); 3084 bp->b_file = vp; 3085 bp->b_offset = (offset_t)off; 3086 bp_mapin(bp); 3087 3088 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3089 freemem > desfree) 3090 stab_comm = UNSTABLE4; 3091 else 3092 stab_comm = FILE_SYNC4; 3093 3094 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3095 3096 bp_mapout(bp); 3097 pageio_done(bp); 3098 3099 if (stab_comm == UNSTABLE4) 3100 fsdata = C_DELAYCOMMIT; 3101 else 3102 fsdata = C_NOCOMMIT; 3103 3104 savepp = pp; 3105 do { 3106 pp->p_fsdata = fsdata; 3107 } while ((pp = pp->p_next) != savepp); 3108 3109 return (error); 3110 } 3111 3112 /* 3113 */ 3114 static int 3115 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3116 { 3117 nfs4_open_owner_t *oop; 3118 nfs4_open_stream_t *osp; 3119 rnode4_t *rp = VTOR4(vp); 3120 mntinfo4_t *mi = VTOMI4(vp); 3121 int reopen_needed; 3122 3123 ASSERT(nfs_zone() == mi->mi_zone); 3124 3125 3126 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3127 if (!oop) 3128 return (EIO); 3129 3130 /* returns with 'os_sync_lock' held */ 3131 osp = find_open_stream(oop, rp); 3132 if (!osp) { 3133 open_owner_rele(oop); 3134 return (EIO); 3135 } 3136 3137 if (osp->os_failed_reopen) { 3138 mutex_exit(&osp->os_sync_lock); 3139 open_stream_rele(osp, rp); 3140 open_owner_rele(oop); 3141 return (EIO); 3142 } 3143 3144 /* 3145 * Determine whether a reopen is needed. If this 3146 * is a delegation open stream, then the os_delegation bit 3147 * should be set. 3148 */ 3149 3150 reopen_needed = osp->os_delegation; 3151 3152 mutex_exit(&osp->os_sync_lock); 3153 open_owner_rele(oop); 3154 3155 if (reopen_needed) { 3156 nfs4_error_zinit(ep); 3157 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3158 mutex_enter(&osp->os_sync_lock); 3159 if (ep->error || ep->stat || osp->os_failed_reopen) { 3160 mutex_exit(&osp->os_sync_lock); 3161 open_stream_rele(osp, rp); 3162 return (EIO); 3163 } 3164 mutex_exit(&osp->os_sync_lock); 3165 } 3166 open_stream_rele(osp, rp); 3167 3168 return (0); 3169 } 3170 3171 /* 3172 * Write to file. Writes to remote server in largest size 3173 * chunks that the server can handle. Write is synchronous. 3174 */ 3175 static int 3176 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3177 stable_how4 *stab_comm) 3178 { 3179 mntinfo4_t *mi; 3180 COMPOUND4args_clnt args; 3181 COMPOUND4res_clnt res; 3182 WRITE4args *wargs; 3183 WRITE4res *wres; 3184 nfs_argop4 argop[2]; 3185 nfs_resop4 *resop; 3186 int tsize; 3187 stable_how4 stable; 3188 rnode4_t *rp; 3189 int doqueue = 1; 3190 bool_t needrecov; 3191 nfs4_recov_state_t recov_state; 3192 nfs4_stateid_types_t sid_types; 3193 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3194 int recov; 3195 3196 rp = VTOR4(vp); 3197 mi = VTOMI4(vp); 3198 3199 ASSERT(nfs_zone() == mi->mi_zone); 3200 3201 stable = *stab_comm; 3202 *stab_comm = FILE_SYNC4; 3203 3204 needrecov = FALSE; 3205 recov_state.rs_flags = 0; 3206 recov_state.rs_num_retry_despite_err = 0; 3207 nfs4_init_stateid_types(&sid_types); 3208 3209 /* Is curthread the recovery thread? */ 3210 mutex_enter(&mi->mi_lock); 3211 recov = (mi->mi_recovthread == curthread); 3212 mutex_exit(&mi->mi_lock); 3213 3214 recov_retry: 3215 args.ctag = TAG_WRITE; 3216 args.array_len = 2; 3217 args.array = argop; 3218 3219 if (!recov) { 3220 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3221 &recov_state, NULL); 3222 if (e.error) 3223 return (e.error); 3224 } 3225 3226 /* 0. putfh target fh */ 3227 argop[0].argop = OP_CPUTFH; 3228 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3229 3230 /* 1. write */ 3231 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3232 3233 do { 3234 3235 wargs->offset = (offset4)offset; 3236 wargs->data_val = base; 3237 3238 if (mi->mi_io_kstats) { 3239 mutex_enter(&mi->mi_lock); 3240 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3241 mutex_exit(&mi->mi_lock); 3242 } 3243 3244 if ((vp->v_flag & VNOCACHE) || 3245 (rp->r_flags & R4DIRECTIO) || 3246 (mi->mi_flags & MI4_DIRECTIO)) 3247 tsize = MIN(mi->mi_stsize, count); 3248 else 3249 tsize = MIN(mi->mi_curwrite, count); 3250 wargs->data_len = (uint_t)tsize; 3251 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3252 3253 if (mi->mi_io_kstats) { 3254 mutex_enter(&mi->mi_lock); 3255 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3256 mutex_exit(&mi->mi_lock); 3257 } 3258 3259 if (!recov) { 3260 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3261 if (e.error && !needrecov) { 3262 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3263 &recov_state, needrecov); 3264 return (e.error); 3265 } 3266 } else { 3267 if (e.error) 3268 return (e.error); 3269 } 3270 3271 /* 3272 * Do handling of OLD_STATEID outside 3273 * of the normal recovery framework. 3274 * 3275 * If write receives a BAD stateid error while using a 3276 * delegation stateid, retry using the open stateid (if it 3277 * exists). If it doesn't have an open stateid, reopen the 3278 * file first, then retry. 3279 */ 3280 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3281 sid_types.cur_sid_type != SPEC_SID) { 3282 nfs4_save_stateid(&wargs->stateid, &sid_types); 3283 if (!recov) 3284 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3285 &recov_state, needrecov); 3286 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3287 goto recov_retry; 3288 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3289 sid_types.cur_sid_type == DEL_SID) { 3290 nfs4_save_stateid(&wargs->stateid, &sid_types); 3291 mutex_enter(&rp->r_statev4_lock); 3292 rp->r_deleg_return_pending = TRUE; 3293 mutex_exit(&rp->r_statev4_lock); 3294 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3295 if (!recov) 3296 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3297 &recov_state, needrecov); 3298 (void) xdr_free(xdr_COMPOUND4res_clnt, 3299 (caddr_t)&res); 3300 return (EIO); 3301 } 3302 if (!recov) 3303 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3304 &recov_state, needrecov); 3305 /* hold needed for nfs4delegreturn_thread */ 3306 VN_HOLD(vp); 3307 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3308 NFS4_DR_DISCARD), FALSE); 3309 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3310 goto recov_retry; 3311 } 3312 3313 if (needrecov) { 3314 bool_t abort; 3315 3316 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3317 "nfs4write: client got error %d, res.status %d" 3318 ", so start recovery", e.error, res.status)); 3319 3320 abort = nfs4_start_recovery(&e, 3321 VTOMI4(vp), vp, NULL, &wargs->stateid, 3322 NULL, OP_WRITE, NULL, NULL, NULL); 3323 if (!e.error) { 3324 e.error = geterrno4(res.status); 3325 (void) xdr_free(xdr_COMPOUND4res_clnt, 3326 (caddr_t)&res); 3327 } 3328 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3329 &recov_state, needrecov); 3330 if (abort == FALSE) 3331 goto recov_retry; 3332 return (e.error); 3333 } 3334 3335 if (res.status) { 3336 e.error = geterrno4(res.status); 3337 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3338 if (!recov) 3339 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3340 &recov_state, needrecov); 3341 return (e.error); 3342 } 3343 3344 resop = &res.array[1]; /* write res */ 3345 wres = &resop->nfs_resop4_u.opwrite; 3346 3347 if ((int)wres->count > tsize) { 3348 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3349 3350 zcmn_err(getzoneid(), CE_WARN, 3351 "nfs4write: server wrote %u, requested was %u", 3352 (int)wres->count, tsize); 3353 if (!recov) 3354 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3355 &recov_state, needrecov); 3356 return (EIO); 3357 } 3358 if (wres->committed == UNSTABLE4) { 3359 *stab_comm = UNSTABLE4; 3360 if (wargs->stable == DATA_SYNC4 || 3361 wargs->stable == FILE_SYNC4) { 3362 (void) xdr_free(xdr_COMPOUND4res_clnt, 3363 (caddr_t)&res); 3364 zcmn_err(getzoneid(), CE_WARN, 3365 "nfs4write: server %s did not commit " 3366 "to stable storage", 3367 rp->r_server->sv_hostname); 3368 if (!recov) 3369 nfs4_end_fop(VTOMI4(vp), vp, NULL, 3370 OH_WRITE, &recov_state, needrecov); 3371 return (EIO); 3372 } 3373 } 3374 3375 tsize = (int)wres->count; 3376 count -= tsize; 3377 base += tsize; 3378 offset += tsize; 3379 if (mi->mi_io_kstats) { 3380 mutex_enter(&mi->mi_lock); 3381 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3382 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3383 tsize; 3384 mutex_exit(&mi->mi_lock); 3385 } 3386 lwp_stat_update(LWP_STAT_OUBLK, 1); 3387 mutex_enter(&rp->r_statelock); 3388 if (rp->r_flags & R4HAVEVERF) { 3389 if (rp->r_writeverf != wres->writeverf) { 3390 nfs4_set_mod(vp); 3391 rp->r_writeverf = wres->writeverf; 3392 } 3393 } else { 3394 rp->r_writeverf = wres->writeverf; 3395 rp->r_flags |= R4HAVEVERF; 3396 } 3397 PURGE_ATTRCACHE4_LOCKED(rp); 3398 rp->r_flags |= R4WRITEMODIFIED; 3399 gethrestime(&rp->r_attr.va_mtime); 3400 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3401 mutex_exit(&rp->r_statelock); 3402 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3403 } while (count); 3404 3405 if (!recov) 3406 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, 3407 needrecov); 3408 3409 return (e.error); 3410 } 3411 3412 /* 3413 * Read from a file. Reads data in largest chunks our interface can handle. 3414 */ 3415 static int 3416 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3417 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3418 { 3419 mntinfo4_t *mi; 3420 COMPOUND4args_clnt args; 3421 COMPOUND4res_clnt res; 3422 READ4args *rargs; 3423 nfs_argop4 argop[2]; 3424 int tsize; 3425 int doqueue; 3426 rnode4_t *rp; 3427 int data_len; 3428 bool_t is_eof; 3429 bool_t needrecov = FALSE; 3430 nfs4_recov_state_t recov_state; 3431 nfs4_stateid_types_t sid_types; 3432 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3433 3434 rp = VTOR4(vp); 3435 mi = VTOMI4(vp); 3436 doqueue = 1; 3437 3438 ASSERT(nfs_zone() == mi->mi_zone); 3439 3440 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3441 3442 args.array_len = 2; 3443 args.array = argop; 3444 3445 nfs4_init_stateid_types(&sid_types); 3446 3447 recov_state.rs_flags = 0; 3448 recov_state.rs_num_retry_despite_err = 0; 3449 3450 recov_retry: 3451 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3452 &recov_state, NULL); 3453 if (e.error) 3454 return (e.error); 3455 3456 /* putfh target fh */ 3457 argop[0].argop = OP_CPUTFH; 3458 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3459 3460 /* read */ 3461 argop[1].argop = OP_READ; 3462 rargs = &argop[1].nfs_argop4_u.opread; 3463 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3464 OP_READ, &sid_types, async); 3465 3466 do { 3467 if (mi->mi_io_kstats) { 3468 mutex_enter(&mi->mi_lock); 3469 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3470 mutex_exit(&mi->mi_lock); 3471 } 3472 3473 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3474 "nfs4read: %s call, rp %s", 3475 needrecov ? "recov" : "first", 3476 rnode4info(rp))); 3477 3478 if ((vp->v_flag & VNOCACHE) || 3479 (rp->r_flags & R4DIRECTIO) || 3480 (mi->mi_flags & MI4_DIRECTIO)) 3481 tsize = MIN(mi->mi_tsize, count); 3482 else 3483 tsize = MIN(mi->mi_curread, count); 3484 3485 rargs->offset = (offset4)offset; 3486 rargs->count = (count4)tsize; 3487 rargs->res_data_val_alt = NULL; 3488 rargs->res_mblk = NULL; 3489 rargs->res_uiop = NULL; 3490 rargs->res_maxsize = 0; 3491 rargs->wlist = NULL; 3492 3493 if (uiop) 3494 rargs->res_uiop = uiop; 3495 else 3496 rargs->res_data_val_alt = base; 3497 rargs->res_maxsize = tsize; 3498 3499 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3500 #ifdef DEBUG 3501 if (nfs4read_error_inject) { 3502 res.status = nfs4read_error_inject; 3503 nfs4read_error_inject = 0; 3504 } 3505 #endif 3506 3507 if (mi->mi_io_kstats) { 3508 mutex_enter(&mi->mi_lock); 3509 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3510 mutex_exit(&mi->mi_lock); 3511 } 3512 3513 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3514 if (e.error != 0 && !needrecov) { 3515 nfs4_end_fop(mi, vp, NULL, OH_READ, 3516 &recov_state, needrecov); 3517 return (e.error); 3518 } 3519 3520 /* 3521 * Do proper retry for OLD and BAD stateid errors outside 3522 * of the normal recovery framework. There are two differences 3523 * between async and sync reads. The first is that we allow 3524 * retry on BAD_STATEID for async reads, but not sync reads. 3525 * The second is that we mark the file dead for a failed 3526 * attempt with a special stateid for sync reads, but just 3527 * return EIO for async reads. 3528 * 3529 * If a sync read receives a BAD stateid error while using a 3530 * delegation stateid, retry using the open stateid (if it 3531 * exists). If it doesn't have an open stateid, reopen the 3532 * file first, then retry. 3533 */ 3534 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3535 res.status == NFS4ERR_BAD_STATEID) && async) { 3536 nfs4_end_fop(mi, vp, NULL, OH_READ, 3537 &recov_state, needrecov); 3538 if (sid_types.cur_sid_type == SPEC_SID) { 3539 (void) xdr_free(xdr_COMPOUND4res_clnt, 3540 (caddr_t)&res); 3541 return (EIO); 3542 } 3543 nfs4_save_stateid(&rargs->stateid, &sid_types); 3544 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3545 goto recov_retry; 3546 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3547 !async && sid_types.cur_sid_type != SPEC_SID) { 3548 nfs4_save_stateid(&rargs->stateid, &sid_types); 3549 nfs4_end_fop(mi, vp, NULL, OH_READ, 3550 &recov_state, needrecov); 3551 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3552 goto recov_retry; 3553 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3554 sid_types.cur_sid_type == DEL_SID) { 3555 nfs4_save_stateid(&rargs->stateid, &sid_types); 3556 mutex_enter(&rp->r_statev4_lock); 3557 rp->r_deleg_return_pending = TRUE; 3558 mutex_exit(&rp->r_statev4_lock); 3559 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3560 nfs4_end_fop(mi, vp, NULL, OH_READ, 3561 &recov_state, needrecov); 3562 (void) xdr_free(xdr_COMPOUND4res_clnt, 3563 (caddr_t)&res); 3564 return (EIO); 3565 } 3566 nfs4_end_fop(mi, vp, NULL, OH_READ, 3567 &recov_state, needrecov); 3568 /* hold needed for nfs4delegreturn_thread */ 3569 VN_HOLD(vp); 3570 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3571 NFS4_DR_DISCARD), FALSE); 3572 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3573 goto recov_retry; 3574 } 3575 if (needrecov) { 3576 bool_t abort; 3577 3578 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3579 "nfs4read: initiating recovery\n")); 3580 abort = nfs4_start_recovery(&e, 3581 mi, vp, NULL, &rargs->stateid, 3582 NULL, OP_READ, NULL, NULL, NULL); 3583 nfs4_end_fop(mi, vp, NULL, OH_READ, 3584 &recov_state, needrecov); 3585 /* 3586 * Do not retry if we got OLD_STATEID using a special 3587 * stateid. This avoids looping with a broken server. 3588 */ 3589 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3590 sid_types.cur_sid_type == SPEC_SID) 3591 abort = TRUE; 3592 3593 if (abort == FALSE) { 3594 /* 3595 * Need to retry all possible stateids in 3596 * case the recovery error wasn't stateid 3597 * related or the stateids have become 3598 * stale (server reboot). 3599 */ 3600 nfs4_init_stateid_types(&sid_types); 3601 (void) xdr_free(xdr_COMPOUND4res_clnt, 3602 (caddr_t)&res); 3603 goto recov_retry; 3604 } 3605 3606 if (!e.error) { 3607 e.error = geterrno4(res.status); 3608 (void) xdr_free(xdr_COMPOUND4res_clnt, 3609 (caddr_t)&res); 3610 } 3611 return (e.error); 3612 } 3613 3614 if (res.status) { 3615 e.error = geterrno4(res.status); 3616 nfs4_end_fop(mi, vp, NULL, OH_READ, 3617 &recov_state, needrecov); 3618 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3619 return (e.error); 3620 } 3621 3622 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3623 count -= data_len; 3624 if (base) 3625 base += data_len; 3626 offset += data_len; 3627 if (mi->mi_io_kstats) { 3628 mutex_enter(&mi->mi_lock); 3629 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3630 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3631 mutex_exit(&mi->mi_lock); 3632 } 3633 lwp_stat_update(LWP_STAT_INBLK, 1); 3634 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3635 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3636 3637 } while (count && !is_eof); 3638 3639 *residp = count; 3640 3641 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3642 3643 return (e.error); 3644 } 3645 3646 /* ARGSUSED */ 3647 static int 3648 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3649 caller_context_t *ct) 3650 { 3651 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3652 return (EIO); 3653 switch (cmd) { 3654 case _FIODIRECTIO: 3655 return (nfs4_directio(vp, (int)arg, cr)); 3656 default: 3657 return (ENOTTY); 3658 } 3659 } 3660 3661 /* ARGSUSED */ 3662 int 3663 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3664 caller_context_t *ct) 3665 { 3666 int error; 3667 rnode4_t *rp = VTOR4(vp); 3668 3669 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3670 return (EIO); 3671 /* 3672 * If it has been specified that the return value will 3673 * just be used as a hint, and we are only being asked 3674 * for size, fsid or rdevid, then return the client's 3675 * notion of these values without checking to make sure 3676 * that the attribute cache is up to date. 3677 * The whole point is to avoid an over the wire GETATTR 3678 * call. 3679 */ 3680 if (flags & ATTR_HINT) { 3681 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) { 3682 mutex_enter(&rp->r_statelock); 3683 if (vap->va_mask & AT_SIZE) 3684 vap->va_size = rp->r_size; 3685 if (vap->va_mask & AT_FSID) 3686 vap->va_fsid = rp->r_attr.va_fsid; 3687 if (vap->va_mask & AT_RDEV) 3688 vap->va_rdev = rp->r_attr.va_rdev; 3689 mutex_exit(&rp->r_statelock); 3690 return (0); 3691 } 3692 } 3693 3694 /* 3695 * Only need to flush pages if asking for the mtime 3696 * and if there any dirty pages or any outstanding 3697 * asynchronous (write) requests for this file. 3698 */ 3699 if (vap->va_mask & AT_MTIME) { 3700 rp = VTOR4(vp); 3701 if (nfs4_has_pages(vp)) { 3702 mutex_enter(&rp->r_statev4_lock); 3703 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3704 mutex_exit(&rp->r_statev4_lock); 3705 if (rp->r_flags & R4DIRTY || 3706 rp->r_awcount > 0) { 3707 mutex_enter(&rp->r_statelock); 3708 rp->r_gcount++; 3709 mutex_exit(&rp->r_statelock); 3710 error = 3711 nfs4_putpage(vp, (u_offset_t)0, 3712 0, 0, cr, NULL); 3713 mutex_enter(&rp->r_statelock); 3714 if (error && (error == ENOSPC || 3715 error == EDQUOT)) { 3716 if (!rp->r_error) 3717 rp->r_error = error; 3718 } 3719 if (--rp->r_gcount == 0) 3720 cv_broadcast(&rp->r_cv); 3721 mutex_exit(&rp->r_statelock); 3722 } 3723 } else { 3724 mutex_exit(&rp->r_statev4_lock); 3725 } 3726 } 3727 } 3728 return (nfs4getattr(vp, vap, cr)); 3729 } 3730 3731 int 3732 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3733 { 3734 /* 3735 * If these are the only two bits cleared 3736 * on the server then return 0 (OK) else 3737 * return 1 (BAD). 3738 */ 3739 on_client &= ~(S_ISUID|S_ISGID); 3740 if (on_client == from_server) 3741 return (0); 3742 else 3743 return (1); 3744 } 3745 3746 /*ARGSUSED4*/ 3747 static int 3748 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3749 caller_context_t *ct) 3750 { 3751 int error; 3752 3753 if (vap->va_mask & AT_NOSET) 3754 return (EINVAL); 3755 3756 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3757 return (EIO); 3758 3759 /* 3760 * Don't call secpolicy_vnode_setattr, the client cannot 3761 * use its cached attributes to make security decisions 3762 * as the server may be faking mode bits or mapping uid/gid. 3763 * Always just let the server to the checking. 3764 * If we provide the ability to remove basic priviledges 3765 * to setattr (e.g. basic without chmod) then we will 3766 * need to add a check here before calling the server. 3767 */ 3768 error = nfs4setattr(vp, vap, flags, cr, NULL); 3769 3770 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0) 3771 vnevent_truncate(vp, ct); 3772 3773 return (error); 3774 } 3775 3776 /* 3777 * To replace the "guarded" version 3 setattr, we use two types of compound 3778 * setattr requests: 3779 * 1. The "normal" setattr, used when the size of the file isn't being 3780 * changed - { Putfh <fh>; Setattr; Getattr }/ 3781 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3782 * with only ctime as the argument. If the server ctime differs from 3783 * what is cached on the client, the verify will fail, but we would 3784 * already have the ctime from the preceding getattr, so just set it 3785 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3786 * Setattr; Getattr }. 3787 * 3788 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3789 * this setattr and NULL if they are not. 3790 */ 3791 static int 3792 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3793 vsecattr_t *vsap) 3794 { 3795 COMPOUND4args_clnt args; 3796 COMPOUND4res_clnt res, *resp = NULL; 3797 nfs4_ga_res_t *garp = NULL; 3798 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3799 nfs_argop4 argop[5]; 3800 int verify_argop = -1; 3801 int setattr_argop = 1; 3802 nfs_resop4 *resop; 3803 vattr_t va; 3804 rnode4_t *rp; 3805 int doqueue = 1; 3806 uint_t mask = vap->va_mask; 3807 mode_t omode; 3808 vsecattr_t *vsp; 3809 timestruc_t ctime; 3810 bool_t needrecov = FALSE; 3811 nfs4_recov_state_t recov_state; 3812 nfs4_stateid_types_t sid_types; 3813 stateid4 stateid; 3814 hrtime_t t; 3815 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3816 servinfo4_t *svp; 3817 bitmap4 supp_attrs; 3818 3819 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3820 rp = VTOR4(vp); 3821 nfs4_init_stateid_types(&sid_types); 3822 3823 /* 3824 * Only need to flush pages if there are any pages and 3825 * if the file is marked as dirty in some fashion. The 3826 * file must be flushed so that we can accurately 3827 * determine the size of the file and the cached data 3828 * after the SETATTR returns. A file is considered to 3829 * be dirty if it is either marked with R4DIRTY, has 3830 * outstanding i/o's active, or is mmap'd. In this 3831 * last case, we can't tell whether there are dirty 3832 * pages, so we flush just to be sure. 3833 */ 3834 if (nfs4_has_pages(vp) && 3835 ((rp->r_flags & R4DIRTY) || 3836 rp->r_count > 0 || 3837 rp->r_mapcnt > 0)) { 3838 ASSERT(vp->v_type != VCHR); 3839 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3840 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3841 mutex_enter(&rp->r_statelock); 3842 if (!rp->r_error) 3843 rp->r_error = e.error; 3844 mutex_exit(&rp->r_statelock); 3845 } 3846 } 3847 3848 if (mask & AT_SIZE) { 3849 /* 3850 * Verification setattr compound for non-deleg AT_SIZE: 3851 * { Putfh; Getattr; Verify; Setattr; Getattr } 3852 * Set ctime local here (outside the do_again label) 3853 * so that subsequent retries (after failed VERIFY) 3854 * will use ctime from GETATTR results (from failed 3855 * verify compound) as VERIFY arg. 3856 * If file has delegation, then VERIFY(time_metadata) 3857 * is of little added value, so don't bother. 3858 */ 3859 mutex_enter(&rp->r_statev4_lock); 3860 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3861 rp->r_deleg_return_pending) { 3862 numops = 5; 3863 ctime = rp->r_attr.va_ctime; 3864 } 3865 mutex_exit(&rp->r_statev4_lock); 3866 } 3867 3868 recov_state.rs_flags = 0; 3869 recov_state.rs_num_retry_despite_err = 0; 3870 3871 args.ctag = TAG_SETATTR; 3872 do_again: 3873 recov_retry: 3874 setattr_argop = numops - 2; 3875 3876 args.array = argop; 3877 args.array_len = numops; 3878 3879 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3880 if (e.error) 3881 return (e.error); 3882 3883 3884 /* putfh target fh */ 3885 argop[0].argop = OP_CPUTFH; 3886 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3887 3888 if (numops == 5) { 3889 /* 3890 * We only care about the ctime, but need to get mtime 3891 * and size for proper cache update. 3892 */ 3893 /* getattr */ 3894 argop[1].argop = OP_GETATTR; 3895 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3896 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3897 3898 /* verify - set later in loop */ 3899 verify_argop = 2; 3900 } 3901 3902 /* setattr */ 3903 svp = rp->r_server; 3904 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3905 supp_attrs = svp->sv_supp_attrs; 3906 nfs_rw_exit(&svp->sv_lock); 3907 3908 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3909 supp_attrs, &e.error, &sid_types); 3910 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3911 if (e.error) { 3912 /* req time field(s) overflow - return immediately */ 3913 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3914 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3915 opsetattr.obj_attributes); 3916 return (e.error); 3917 } 3918 omode = rp->r_attr.va_mode; 3919 3920 /* getattr */ 3921 argop[numops-1].argop = OP_GETATTR; 3922 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3923 /* 3924 * If we are setting the ACL (indicated only by vsap != NULL), request 3925 * the ACL in this getattr. The ACL returned from this getattr will be 3926 * used in updating the ACL cache. 3927 */ 3928 if (vsap != NULL) 3929 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3930 FATTR4_ACL_MASK; 3931 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3932 3933 /* 3934 * setattr iterates if the object size is set and the cached ctime 3935 * does not match the file ctime. In that case, verify the ctime first. 3936 */ 3937 3938 do { 3939 if (verify_argop != -1) { 3940 /* 3941 * Verify that the ctime match before doing setattr. 3942 */ 3943 va.va_mask = AT_CTIME; 3944 va.va_ctime = ctime; 3945 svp = rp->r_server; 3946 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3947 supp_attrs = svp->sv_supp_attrs; 3948 nfs_rw_exit(&svp->sv_lock); 3949 e.error = nfs4args_verify(&argop[verify_argop], &va, 3950 OP_VERIFY, supp_attrs); 3951 if (e.error) { 3952 /* req time field(s) overflow - return */ 3953 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3954 needrecov); 3955 break; 3956 } 3957 } 3958 3959 doqueue = 1; 3960 3961 t = gethrtime(); 3962 3963 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3964 3965 /* 3966 * Purge the access cache and ACL cache if changing either the 3967 * owner of the file, the group owner, or the mode. These may 3968 * change the access permissions of the file, so purge old 3969 * information and start over again. 3970 */ 3971 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3972 (void) nfs4_access_purge_rp(rp); 3973 if (rp->r_secattr != NULL) { 3974 mutex_enter(&rp->r_statelock); 3975 vsp = rp->r_secattr; 3976 rp->r_secattr = NULL; 3977 mutex_exit(&rp->r_statelock); 3978 if (vsp != NULL) 3979 nfs4_acl_free_cache(vsp); 3980 } 3981 } 3982 3983 /* 3984 * If res.array_len == numops, then everything succeeded, 3985 * except for possibly the final getattr. If only the 3986 * last getattr failed, give up, and don't try recovery. 3987 */ 3988 if (res.array_len == numops) { 3989 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3990 needrecov); 3991 if (! e.error) 3992 resp = &res; 3993 break; 3994 } 3995 3996 /* 3997 * if either rpc call failed or completely succeeded - done 3998 */ 3999 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4000 if (e.error) { 4001 PURGE_ATTRCACHE4(vp); 4002 if (!needrecov) { 4003 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4004 needrecov); 4005 break; 4006 } 4007 } 4008 4009 /* 4010 * Do proper retry for OLD_STATEID outside of the normal 4011 * recovery framework. 4012 */ 4013 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 4014 sid_types.cur_sid_type != SPEC_SID && 4015 sid_types.cur_sid_type != NO_SID) { 4016 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4017 needrecov); 4018 nfs4_save_stateid(&stateid, &sid_types); 4019 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4020 opsetattr.obj_attributes); 4021 if (verify_argop != -1) { 4022 nfs4args_verify_free(&argop[verify_argop]); 4023 verify_argop = -1; 4024 } 4025 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4026 goto recov_retry; 4027 } 4028 4029 if (needrecov) { 4030 bool_t abort; 4031 4032 abort = nfs4_start_recovery(&e, 4033 VTOMI4(vp), vp, NULL, NULL, NULL, 4034 OP_SETATTR, NULL, NULL, NULL); 4035 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4036 needrecov); 4037 /* 4038 * Do not retry if we failed with OLD_STATEID using 4039 * a special stateid. This is done to avoid looping 4040 * with a broken server. 4041 */ 4042 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 4043 (sid_types.cur_sid_type == SPEC_SID || 4044 sid_types.cur_sid_type == NO_SID)) 4045 abort = TRUE; 4046 if (!e.error) { 4047 if (res.status == NFS4ERR_BADOWNER) 4048 nfs4_log_badowner(VTOMI4(vp), 4049 OP_SETATTR); 4050 4051 e.error = geterrno4(res.status); 4052 (void) xdr_free(xdr_COMPOUND4res_clnt, 4053 (caddr_t)&res); 4054 } 4055 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4056 opsetattr.obj_attributes); 4057 if (verify_argop != -1) { 4058 nfs4args_verify_free(&argop[verify_argop]); 4059 verify_argop = -1; 4060 } 4061 if (abort == FALSE) { 4062 /* 4063 * Need to retry all possible stateids in 4064 * case the recovery error wasn't stateid 4065 * related or the stateids have become 4066 * stale (server reboot). 4067 */ 4068 nfs4_init_stateid_types(&sid_types); 4069 goto recov_retry; 4070 } 4071 return (e.error); 4072 } 4073 4074 /* 4075 * Need to call nfs4_end_op before nfs4getattr to 4076 * avoid potential nfs4_start_op deadlock. See RFE 4077 * 4777612. Calls to nfs4_invalidate_pages() and 4078 * nfs4_purge_stale_fh() might also generate over the 4079 * wire calls which my cause nfs4_start_op() deadlock. 4080 */ 4081 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4082 4083 /* 4084 * Check to update lease. 4085 */ 4086 resp = &res; 4087 if (res.status == NFS4_OK) { 4088 break; 4089 } 4090 4091 /* 4092 * Check if verify failed to see if try again 4093 */ 4094 if ((verify_argop == -1) || (res.array_len != 3)) { 4095 /* 4096 * can't continue... 4097 */ 4098 if (res.status == NFS4ERR_BADOWNER) 4099 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 4100 4101 e.error = geterrno4(res.status); 4102 } else { 4103 /* 4104 * When the verify request fails, the client ctime is 4105 * not in sync with the server. This is the same as 4106 * the version 3 "not synchronized" error, and we 4107 * handle it in a similar manner (XXX do we need to???). 4108 * Use the ctime returned in the first getattr for 4109 * the input to the next verify. 4110 * If we couldn't get the attributes, then we give up 4111 * because we can't complete the operation as required. 4112 */ 4113 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4114 } 4115 if (e.error) { 4116 PURGE_ATTRCACHE4(vp); 4117 nfs4_purge_stale_fh(e.error, vp, cr); 4118 } else { 4119 /* 4120 * retry with a new verify value 4121 */ 4122 ctime = garp->n4g_va.va_ctime; 4123 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4124 resp = NULL; 4125 } 4126 if (!e.error) { 4127 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4128 opsetattr.obj_attributes); 4129 if (verify_argop != -1) { 4130 nfs4args_verify_free(&argop[verify_argop]); 4131 verify_argop = -1; 4132 } 4133 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4134 goto do_again; 4135 } 4136 } while (!e.error); 4137 4138 if (e.error) { 4139 /* 4140 * If we are here, rfs4call has an irrecoverable error - return 4141 */ 4142 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4143 opsetattr.obj_attributes); 4144 if (verify_argop != -1) { 4145 nfs4args_verify_free(&argop[verify_argop]); 4146 verify_argop = -1; 4147 } 4148 if (resp) 4149 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4150 return (e.error); 4151 } 4152 4153 4154 4155 /* 4156 * If changing the size of the file, invalidate 4157 * any local cached data which is no longer part 4158 * of the file. We also possibly invalidate the 4159 * last page in the file. We could use 4160 * pvn_vpzero(), but this would mark the page as 4161 * modified and require it to be written back to 4162 * the server for no particularly good reason. 4163 * This way, if we access it, then we bring it 4164 * back in. A read should be cheaper than a 4165 * write. 4166 */ 4167 if (mask & AT_SIZE) { 4168 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4169 } 4170 4171 /* either no error or one of the postop getattr failed */ 4172 4173 /* 4174 * XXX Perform a simplified version of wcc checking. Instead of 4175 * have another getattr to get pre-op, just purge cache if 4176 * any of the ops prior to and including the getattr failed. 4177 * If the getattr succeeded then update the attrcache accordingly. 4178 */ 4179 4180 garp = NULL; 4181 if (res.status == NFS4_OK) { 4182 /* 4183 * Last getattr 4184 */ 4185 resop = &res.array[numops - 1]; 4186 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4187 } 4188 /* 4189 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4190 * rather than filling it. See the function itself for details. 4191 */ 4192 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4193 if (garp != NULL) { 4194 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4195 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4196 vs_ace4_destroy(&garp->n4g_vsa); 4197 } else { 4198 if (vsap != NULL) { 4199 /* 4200 * The ACL was supposed to be set and to be 4201 * returned in the last getattr of this 4202 * compound, but for some reason the getattr 4203 * result doesn't contain the ACL. In this 4204 * case, purge the ACL cache. 4205 */ 4206 if (rp->r_secattr != NULL) { 4207 mutex_enter(&rp->r_statelock); 4208 vsp = rp->r_secattr; 4209 rp->r_secattr = NULL; 4210 mutex_exit(&rp->r_statelock); 4211 if (vsp != NULL) 4212 nfs4_acl_free_cache(vsp); 4213 } 4214 } 4215 } 4216 } 4217 4218 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4219 /* 4220 * Set the size, rather than relying on getting it updated 4221 * via a GETATTR. With delegations the client tries to 4222 * suppress GETATTR calls. 4223 */ 4224 mutex_enter(&rp->r_statelock); 4225 rp->r_size = vap->va_size; 4226 mutex_exit(&rp->r_statelock); 4227 } 4228 4229 /* 4230 * Can free up request args and res 4231 */ 4232 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4233 opsetattr.obj_attributes); 4234 if (verify_argop != -1) { 4235 nfs4args_verify_free(&argop[verify_argop]); 4236 verify_argop = -1; 4237 } 4238 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4239 4240 /* 4241 * Some servers will change the mode to clear the setuid 4242 * and setgid bits when changing the uid or gid. The 4243 * client needs to compensate appropriately. 4244 */ 4245 if (mask & (AT_UID | AT_GID)) { 4246 int terror, do_setattr; 4247 4248 do_setattr = 0; 4249 va.va_mask = AT_MODE; 4250 terror = nfs4getattr(vp, &va, cr); 4251 if (!terror && 4252 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4253 (!(mask & AT_MODE) && va.va_mode != omode))) { 4254 va.va_mask = AT_MODE; 4255 if (mask & AT_MODE) { 4256 /* 4257 * We asked the mode to be changed and what 4258 * we just got from the server in getattr is 4259 * not what we wanted it to be, so set it now. 4260 */ 4261 va.va_mode = vap->va_mode; 4262 do_setattr = 1; 4263 } else { 4264 /* 4265 * We did not ask the mode to be changed, 4266 * Check to see that the server just cleared 4267 * I_SUID and I_GUID from it. If not then 4268 * set mode to omode with UID/GID cleared. 4269 */ 4270 if (nfs4_compare_modes(va.va_mode, omode)) { 4271 omode &= ~(S_ISUID|S_ISGID); 4272 va.va_mode = omode; 4273 do_setattr = 1; 4274 } 4275 } 4276 4277 if (do_setattr) 4278 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4279 } 4280 } 4281 4282 return (e.error); 4283 } 4284 4285 /* ARGSUSED */ 4286 static int 4287 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4288 { 4289 COMPOUND4args_clnt args; 4290 COMPOUND4res_clnt res; 4291 int doqueue; 4292 uint32_t acc, resacc, argacc; 4293 rnode4_t *rp; 4294 cred_t *cred, *ncr, *ncrfree = NULL; 4295 nfs4_access_type_t cacc; 4296 int num_ops; 4297 nfs_argop4 argop[3]; 4298 nfs_resop4 *resop; 4299 bool_t needrecov = FALSE, do_getattr; 4300 nfs4_recov_state_t recov_state; 4301 int rpc_error; 4302 hrtime_t t; 4303 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4304 mntinfo4_t *mi = VTOMI4(vp); 4305 4306 if (nfs_zone() != mi->mi_zone) 4307 return (EIO); 4308 4309 acc = 0; 4310 if (mode & VREAD) 4311 acc |= ACCESS4_READ; 4312 if (mode & VWRITE) { 4313 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4314 return (EROFS); 4315 if (vp->v_type == VDIR) 4316 acc |= ACCESS4_DELETE; 4317 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4318 } 4319 if (mode & VEXEC) { 4320 if (vp->v_type == VDIR) 4321 acc |= ACCESS4_LOOKUP; 4322 else 4323 acc |= ACCESS4_EXECUTE; 4324 } 4325 4326 if (VTOR4(vp)->r_acache != NULL) { 4327 e.error = nfs4_validate_caches(vp, cr); 4328 if (e.error) 4329 return (e.error); 4330 } 4331 4332 rp = VTOR4(vp); 4333 if (vp->v_type == VDIR) 4334 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4335 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4336 else 4337 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4338 ACCESS4_EXECUTE; 4339 recov_state.rs_flags = 0; 4340 recov_state.rs_num_retry_despite_err = 0; 4341 4342 cred = cr; 4343 /* 4344 * ncr and ncrfree both initially 4345 * point to the memory area returned 4346 * by crnetadjust(); 4347 * ncrfree not NULL when exiting means 4348 * that we need to release it 4349 */ 4350 ncr = crnetadjust(cred); 4351 ncrfree = ncr; 4352 4353 tryagain: 4354 cacc = nfs4_access_check(rp, acc, cred); 4355 if (cacc == NFS4_ACCESS_ALLOWED) { 4356 if (ncrfree != NULL) 4357 crfree(ncrfree); 4358 return (0); 4359 } 4360 if (cacc == NFS4_ACCESS_DENIED) { 4361 /* 4362 * If the cred can be adjusted, try again 4363 * with the new cred. 4364 */ 4365 if (ncr != NULL) { 4366 cred = ncr; 4367 ncr = NULL; 4368 goto tryagain; 4369 } 4370 if (ncrfree != NULL) 4371 crfree(ncrfree); 4372 return (EACCES); 4373 } 4374 4375 recov_retry: 4376 /* 4377 * Don't take with r_statev4_lock here. r_deleg_type could 4378 * change as soon as lock is released. Since it is an int, 4379 * there is no atomicity issue. 4380 */ 4381 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4382 num_ops = do_getattr ? 3 : 2; 4383 4384 args.ctag = TAG_ACCESS; 4385 4386 args.array_len = num_ops; 4387 args.array = argop; 4388 4389 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4390 &recov_state, NULL)) { 4391 if (ncrfree != NULL) 4392 crfree(ncrfree); 4393 return (e.error); 4394 } 4395 4396 /* putfh target fh */ 4397 argop[0].argop = OP_CPUTFH; 4398 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4399 4400 /* access */ 4401 argop[1].argop = OP_ACCESS; 4402 argop[1].nfs_argop4_u.opaccess.access = argacc; 4403 4404 /* getattr */ 4405 if (do_getattr) { 4406 argop[2].argop = OP_GETATTR; 4407 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4408 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4409 } 4410 4411 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4412 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4413 rnode4info(VTOR4(vp)))); 4414 4415 doqueue = 1; 4416 t = gethrtime(); 4417 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4418 rpc_error = e.error; 4419 4420 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4421 if (needrecov) { 4422 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4423 "nfs4_access: initiating recovery\n")); 4424 4425 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4426 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) { 4427 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4428 &recov_state, needrecov); 4429 if (!e.error) 4430 (void) xdr_free(xdr_COMPOUND4res_clnt, 4431 (caddr_t)&res); 4432 goto recov_retry; 4433 } 4434 } 4435 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4436 4437 if (e.error) 4438 goto out; 4439 4440 if (res.status) { 4441 e.error = geterrno4(res.status); 4442 /* 4443 * This might generate over the wire calls throught 4444 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4445 * here to avoid a deadlock. 4446 */ 4447 nfs4_purge_stale_fh(e.error, vp, cr); 4448 goto out; 4449 } 4450 resop = &res.array[1]; /* access res */ 4451 4452 resacc = resop->nfs_resop4_u.opaccess.access; 4453 4454 if (do_getattr) { 4455 resop++; /* getattr res */ 4456 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4457 t, cr, FALSE, NULL); 4458 } 4459 4460 if (!e.error) { 4461 nfs4_access_cache(rp, argacc, resacc, cred); 4462 /* 4463 * we just cached results with cred; if cred is the 4464 * adjusted credentials from crnetadjust, we do not want 4465 * to release them before exiting: hence setting ncrfree 4466 * to NULL 4467 */ 4468 if (cred != cr) 4469 ncrfree = NULL; 4470 /* XXX check the supported bits too? */ 4471 if ((acc & resacc) != acc) { 4472 /* 4473 * The following code implements the semantic 4474 * that a setuid root program has *at least* the 4475 * permissions of the user that is running the 4476 * program. See rfs3call() for more portions 4477 * of the implementation of this functionality. 4478 */ 4479 /* XXX-LP */ 4480 if (ncr != NULL) { 4481 (void) xdr_free(xdr_COMPOUND4res_clnt, 4482 (caddr_t)&res); 4483 cred = ncr; 4484 ncr = NULL; 4485 goto tryagain; 4486 } 4487 e.error = EACCES; 4488 } 4489 } 4490 4491 out: 4492 if (!rpc_error) 4493 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4494 4495 if (ncrfree != NULL) 4496 crfree(ncrfree); 4497 4498 return (e.error); 4499 } 4500 4501 /* ARGSUSED */ 4502 static int 4503 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4504 { 4505 COMPOUND4args_clnt args; 4506 COMPOUND4res_clnt res; 4507 int doqueue; 4508 rnode4_t *rp; 4509 nfs_argop4 argop[3]; 4510 nfs_resop4 *resop; 4511 READLINK4res *lr_res; 4512 nfs4_ga_res_t *garp; 4513 uint_t len; 4514 char *linkdata; 4515 bool_t needrecov = FALSE; 4516 nfs4_recov_state_t recov_state; 4517 hrtime_t t; 4518 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4519 4520 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4521 return (EIO); 4522 /* 4523 * Can't readlink anything other than a symbolic link. 4524 */ 4525 if (vp->v_type != VLNK) 4526 return (EINVAL); 4527 4528 rp = VTOR4(vp); 4529 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4530 e.error = nfs4_validate_caches(vp, cr); 4531 if (e.error) 4532 return (e.error); 4533 mutex_enter(&rp->r_statelock); 4534 if (rp->r_symlink.contents != NULL) { 4535 e.error = uiomove(rp->r_symlink.contents, 4536 rp->r_symlink.len, UIO_READ, uiop); 4537 mutex_exit(&rp->r_statelock); 4538 return (e.error); 4539 } 4540 mutex_exit(&rp->r_statelock); 4541 } 4542 recov_state.rs_flags = 0; 4543 recov_state.rs_num_retry_despite_err = 0; 4544 4545 recov_retry: 4546 args.array_len = 3; 4547 args.array = argop; 4548 args.ctag = TAG_READLINK; 4549 4550 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4551 if (e.error) { 4552 return (e.error); 4553 } 4554 4555 /* 0. putfh symlink fh */ 4556 argop[0].argop = OP_CPUTFH; 4557 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4558 4559 /* 1. readlink */ 4560 argop[1].argop = OP_READLINK; 4561 4562 /* 2. getattr */ 4563 argop[2].argop = OP_GETATTR; 4564 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4565 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4566 4567 doqueue = 1; 4568 4569 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4570 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4571 rnode4info(VTOR4(vp)))); 4572 4573 t = gethrtime(); 4574 4575 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4576 4577 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4578 if (needrecov) { 4579 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4580 "nfs4_readlink: initiating recovery\n")); 4581 4582 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4583 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) { 4584 if (!e.error) 4585 (void) xdr_free(xdr_COMPOUND4res_clnt, 4586 (caddr_t)&res); 4587 4588 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4589 needrecov); 4590 goto recov_retry; 4591 } 4592 } 4593 4594 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4595 4596 if (e.error) 4597 return (e.error); 4598 4599 /* 4600 * There is an path in the code below which calls 4601 * nfs4_purge_stale_fh(), which may generate otw calls through 4602 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4603 * here to avoid nfs4_start_op() deadlock. 4604 */ 4605 4606 if (res.status && (res.array_len < args.array_len)) { 4607 /* 4608 * either Putfh or Link failed 4609 */ 4610 e.error = geterrno4(res.status); 4611 nfs4_purge_stale_fh(e.error, vp, cr); 4612 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4613 return (e.error); 4614 } 4615 4616 resop = &res.array[1]; /* readlink res */ 4617 lr_res = &resop->nfs_resop4_u.opreadlink; 4618 4619 /* 4620 * treat symlink names as data 4621 */ 4622 linkdata = utf8_to_str((utf8string *)&lr_res->link, &len, NULL); 4623 if (linkdata != NULL) { 4624 int uio_len = len - 1; 4625 /* len includes null byte, which we won't uiomove */ 4626 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4627 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4628 mutex_enter(&rp->r_statelock); 4629 if (rp->r_symlink.contents == NULL) { 4630 rp->r_symlink.contents = linkdata; 4631 rp->r_symlink.len = uio_len; 4632 rp->r_symlink.size = len; 4633 mutex_exit(&rp->r_statelock); 4634 } else { 4635 mutex_exit(&rp->r_statelock); 4636 kmem_free(linkdata, len); 4637 } 4638 } else { 4639 kmem_free(linkdata, len); 4640 } 4641 } 4642 if (res.status == NFS4_OK) { 4643 resop++; /* getattr res */ 4644 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4645 } 4646 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4647 4648 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4649 4650 /* 4651 * The over the wire error for attempting to readlink something 4652 * other than a symbolic link is ENXIO. However, we need to 4653 * return EINVAL instead of ENXIO, so we map it here. 4654 */ 4655 return (e.error == ENXIO ? EINVAL : e.error); 4656 } 4657 4658 /* 4659 * Flush local dirty pages to stable storage on the server. 4660 * 4661 * If FNODSYNC is specified, then there is nothing to do because 4662 * metadata changes are not cached on the client before being 4663 * sent to the server. 4664 */ 4665 /* ARGSUSED */ 4666 static int 4667 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4668 { 4669 int error; 4670 4671 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4672 return (0); 4673 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4674 return (EIO); 4675 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4676 if (!error) 4677 error = VTOR4(vp)->r_error; 4678 return (error); 4679 } 4680 4681 /* 4682 * Weirdness: if the file was removed or the target of a rename 4683 * operation while it was open, it got renamed instead. Here we 4684 * remove the renamed file. 4685 */ 4686 /* ARGSUSED */ 4687 void 4688 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4689 { 4690 rnode4_t *rp; 4691 4692 ASSERT(vp != DNLC_NO_VNODE); 4693 4694 rp = VTOR4(vp); 4695 4696 if (IS_SHADOW(vp, rp)) { 4697 sv_inactive(vp); 4698 return; 4699 } 4700 4701 /* 4702 * If this is coming from the wrong zone, we let someone in the right 4703 * zone take care of it asynchronously. We can get here due to 4704 * VN_RELE() being called from pageout() or fsflush(). This call may 4705 * potentially turn into an expensive no-op if, for instance, v_count 4706 * gets incremented in the meantime, but it's still correct. 4707 */ 4708 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4709 nfs4_async_inactive(vp, cr); 4710 return; 4711 } 4712 4713 /* 4714 * Some of the cleanup steps might require over-the-wire 4715 * operations. Since VOP_INACTIVE can get called as a result of 4716 * other over-the-wire operations (e.g., an attribute cache update 4717 * can lead to a DNLC purge), doing those steps now would lead to a 4718 * nested call to the recovery framework, which can deadlock. So 4719 * do any over-the-wire cleanups asynchronously, in a separate 4720 * thread. 4721 */ 4722 4723 mutex_enter(&rp->r_os_lock); 4724 mutex_enter(&rp->r_statelock); 4725 mutex_enter(&rp->r_statev4_lock); 4726 4727 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4728 mutex_exit(&rp->r_statev4_lock); 4729 mutex_exit(&rp->r_statelock); 4730 mutex_exit(&rp->r_os_lock); 4731 nfs4_async_inactive(vp, cr); 4732 return; 4733 } 4734 4735 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4736 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4737 mutex_exit(&rp->r_statev4_lock); 4738 mutex_exit(&rp->r_statelock); 4739 mutex_exit(&rp->r_os_lock); 4740 nfs4_async_inactive(vp, cr); 4741 return; 4742 } 4743 4744 if (rp->r_unldvp != NULL) { 4745 mutex_exit(&rp->r_statev4_lock); 4746 mutex_exit(&rp->r_statelock); 4747 mutex_exit(&rp->r_os_lock); 4748 nfs4_async_inactive(vp, cr); 4749 return; 4750 } 4751 mutex_exit(&rp->r_statev4_lock); 4752 mutex_exit(&rp->r_statelock); 4753 mutex_exit(&rp->r_os_lock); 4754 4755 rp4_addfree(rp, cr); 4756 } 4757 4758 /* 4759 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4760 * various bits of state. The caller must not refer to vp after this call. 4761 */ 4762 4763 void 4764 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4765 { 4766 rnode4_t *rp = VTOR4(vp); 4767 nfs4_recov_state_t recov_state; 4768 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4769 vnode_t *unldvp; 4770 char *unlname; 4771 cred_t *unlcred; 4772 COMPOUND4args_clnt args; 4773 COMPOUND4res_clnt res, *resp; 4774 nfs_argop4 argop[2]; 4775 int doqueue; 4776 #ifdef DEBUG 4777 char *name; 4778 #endif 4779 4780 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4781 ASSERT(!IS_SHADOW(vp, rp)); 4782 4783 #ifdef DEBUG 4784 name = fn_name(VTOSV(vp)->sv_name); 4785 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4786 "release vnode %s", name)); 4787 kmem_free(name, MAXNAMELEN); 4788 #endif 4789 4790 if (vp->v_type == VREG) { 4791 bool_t recov_failed = FALSE; 4792 4793 e.error = nfs4close_all(vp, cr); 4794 if (e.error) { 4795 /* Check to see if recovery failed */ 4796 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4797 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4798 recov_failed = TRUE; 4799 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4800 if (!recov_failed) { 4801 mutex_enter(&rp->r_statelock); 4802 if (rp->r_flags & R4RECOVERR) 4803 recov_failed = TRUE; 4804 mutex_exit(&rp->r_statelock); 4805 } 4806 if (recov_failed) { 4807 NFS4_DEBUG(nfs4_client_recov_debug, 4808 (CE_NOTE, "nfs4_inactive_otw: " 4809 "close failed (recovery failure)")); 4810 } 4811 } 4812 } 4813 4814 redo: 4815 if (rp->r_unldvp == NULL) { 4816 rp4_addfree(rp, cr); 4817 return; 4818 } 4819 4820 /* 4821 * Save the vnode pointer for the directory where the 4822 * unlinked-open file got renamed, then set it to NULL 4823 * to prevent another thread from getting here before 4824 * we're done with the remove. While we have the 4825 * statelock, make local copies of the pertinent rnode 4826 * fields. If we weren't to do this in an atomic way, the 4827 * the unl* fields could become inconsistent with respect 4828 * to each other due to a race condition between this 4829 * code and nfs_remove(). See bug report 1034328. 4830 */ 4831 mutex_enter(&rp->r_statelock); 4832 if (rp->r_unldvp == NULL) { 4833 mutex_exit(&rp->r_statelock); 4834 rp4_addfree(rp, cr); 4835 return; 4836 } 4837 4838 unldvp = rp->r_unldvp; 4839 rp->r_unldvp = NULL; 4840 unlname = rp->r_unlname; 4841 rp->r_unlname = NULL; 4842 unlcred = rp->r_unlcred; 4843 rp->r_unlcred = NULL; 4844 mutex_exit(&rp->r_statelock); 4845 4846 /* 4847 * If there are any dirty pages left, then flush 4848 * them. This is unfortunate because they just 4849 * may get thrown away during the remove operation, 4850 * but we have to do this for correctness. 4851 */ 4852 if (nfs4_has_pages(vp) && 4853 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4854 ASSERT(vp->v_type != VCHR); 4855 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4856 if (e.error) { 4857 mutex_enter(&rp->r_statelock); 4858 if (!rp->r_error) 4859 rp->r_error = e.error; 4860 mutex_exit(&rp->r_statelock); 4861 } 4862 } 4863 4864 recov_state.rs_flags = 0; 4865 recov_state.rs_num_retry_despite_err = 0; 4866 recov_retry_remove: 4867 /* 4868 * Do the remove operation on the renamed file 4869 */ 4870 args.ctag = TAG_INACTIVE; 4871 4872 /* 4873 * Remove ops: putfh dir; remove 4874 */ 4875 args.array_len = 2; 4876 args.array = argop; 4877 4878 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4879 if (e.error) { 4880 kmem_free(unlname, MAXNAMELEN); 4881 crfree(unlcred); 4882 VN_RELE(unldvp); 4883 /* 4884 * Try again; this time around r_unldvp will be NULL, so we'll 4885 * just call rp4_addfree() and return. 4886 */ 4887 goto redo; 4888 } 4889 4890 /* putfh directory */ 4891 argop[0].argop = OP_CPUTFH; 4892 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4893 4894 /* remove */ 4895 argop[1].argop = OP_CREMOVE; 4896 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4897 4898 doqueue = 1; 4899 resp = &res; 4900 4901 #if 0 /* notyet */ 4902 /* 4903 * Can't do this yet. We may be being called from 4904 * dnlc_purge_XXX while that routine is holding a 4905 * mutex lock to the nc_rele list. The calls to 4906 * nfs3_cache_wcc_data may result in calls to 4907 * dnlc_purge_XXX. This will result in a deadlock. 4908 */ 4909 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4910 if (e.error) { 4911 PURGE_ATTRCACHE4(unldvp); 4912 resp = NULL; 4913 } else if (res.status) { 4914 e.error = geterrno4(res.status); 4915 PURGE_ATTRCACHE4(unldvp); 4916 /* 4917 * This code is inactive right now 4918 * but if made active there should 4919 * be a nfs4_end_op() call before 4920 * nfs4_purge_stale_fh to avoid start_op() 4921 * deadlock. See BugId: 4948726 4922 */ 4923 nfs4_purge_stale_fh(error, unldvp, cr); 4924 } else { 4925 nfs_resop4 *resop; 4926 REMOVE4res *rm_res; 4927 4928 resop = &res.array[1]; 4929 rm_res = &resop->nfs_resop4_u.opremove; 4930 /* 4931 * Update directory cache attribute, 4932 * readdir and dnlc caches. 4933 */ 4934 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4935 } 4936 #else 4937 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4938 4939 PURGE_ATTRCACHE4(unldvp); 4940 #endif 4941 4942 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4943 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4944 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 4945 if (!e.error) 4946 (void) xdr_free(xdr_COMPOUND4res_clnt, 4947 (caddr_t)&res); 4948 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4949 &recov_state, TRUE); 4950 goto recov_retry_remove; 4951 } 4952 } 4953 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4954 4955 /* 4956 * Release stuff held for the remove 4957 */ 4958 VN_RELE(unldvp); 4959 if (!e.error && resp) 4960 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4961 4962 kmem_free(unlname, MAXNAMELEN); 4963 crfree(unlcred); 4964 goto redo; 4965 } 4966 4967 /* 4968 * Remote file system operations having to do with directory manipulation. 4969 */ 4970 /* ARGSUSED3 */ 4971 int 4972 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4973 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4974 int *direntflags, pathname_t *realpnp) 4975 { 4976 int error; 4977 vnode_t *vp, *avp = NULL; 4978 rnode4_t *drp; 4979 4980 *vpp = NULL; 4981 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4982 return (EPERM); 4983 /* 4984 * if LOOKUP_XATTR, must replace dvp (object) with 4985 * object's attrdir before continuing with lookup 4986 */ 4987 if (flags & LOOKUP_XATTR) { 4988 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4989 if (error) 4990 return (error); 4991 4992 dvp = avp; 4993 4994 /* 4995 * If lookup is for "", just return dvp now. The attrdir 4996 * has already been activated (from nfs4lookup_xattr), and 4997 * the caller will RELE the original dvp -- not 4998 * the attrdir. So, set vpp and return. 4999 * Currently, when the LOOKUP_XATTR flag is 5000 * passed to VOP_LOOKUP, the name is always empty, and 5001 * shortcircuiting here avoids 3 unneeded lock/unlock 5002 * pairs. 5003 * 5004 * If a non-empty name was provided, then it is the 5005 * attribute name, and it will be looked up below. 5006 */ 5007 if (*nm == '\0') { 5008 *vpp = dvp; 5009 return (0); 5010 } 5011 5012 /* 5013 * The vfs layer never sends a name when asking for the 5014 * attrdir, so we should never get here (unless of course 5015 * name is passed at some time in future -- at which time 5016 * we'll blow up here). 5017 */ 5018 ASSERT(0); 5019 } 5020 5021 drp = VTOR4(dvp); 5022 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5023 return (EINTR); 5024 5025 error = nfs4lookup(dvp, nm, vpp, cr, 0); 5026 nfs_rw_exit(&drp->r_rwlock); 5027 5028 /* 5029 * If vnode is a device, create special vnode. 5030 */ 5031 if (!error && ISVDEV((*vpp)->v_type)) { 5032 vp = *vpp; 5033 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 5034 VN_RELE(vp); 5035 } 5036 5037 return (error); 5038 } 5039 5040 /* ARGSUSED */ 5041 static int 5042 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 5043 { 5044 int error; 5045 rnode4_t *drp; 5046 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 5047 mntinfo4_t *mi; 5048 5049 mi = VTOMI4(dvp); 5050 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 5051 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS)) 5052 return (EINVAL); 5053 5054 drp = VTOR4(dvp); 5055 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5056 return (EINTR); 5057 5058 mutex_enter(&drp->r_statelock); 5059 /* 5060 * If the server doesn't support xattrs just return EINVAL 5061 */ 5062 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 5063 mutex_exit(&drp->r_statelock); 5064 nfs_rw_exit(&drp->r_rwlock); 5065 return (EINVAL); 5066 } 5067 5068 /* 5069 * If there is a cached xattr directory entry, 5070 * use it as long as the attributes are valid. If the 5071 * attributes are not valid, take the simple approach and 5072 * free the cached value and re-fetch a new value. 5073 * 5074 * We don't negative entry cache for now, if we did we 5075 * would need to check if the file has changed on every 5076 * lookup. But xattrs don't exist very often and failing 5077 * an openattr is not much more expensive than and NVERIFY or GETATTR 5078 * so do an openattr over the wire for now. 5079 */ 5080 if (drp->r_xattr_dir != NULL) { 5081 if (ATTRCACHE4_VALID(dvp)) { 5082 VN_HOLD(drp->r_xattr_dir); 5083 *vpp = drp->r_xattr_dir; 5084 mutex_exit(&drp->r_statelock); 5085 nfs_rw_exit(&drp->r_rwlock); 5086 return (0); 5087 } 5088 VN_RELE(drp->r_xattr_dir); 5089 drp->r_xattr_dir = NULL; 5090 } 5091 mutex_exit(&drp->r_statelock); 5092 5093 error = nfs4openattr(dvp, vpp, cflag, cr); 5094 5095 nfs_rw_exit(&drp->r_rwlock); 5096 5097 return (error); 5098 } 5099 5100 static int 5101 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 5102 { 5103 int error; 5104 rnode4_t *drp; 5105 5106 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5107 5108 /* 5109 * If lookup is for "", just return dvp. Don't need 5110 * to send it over the wire, look it up in the dnlc, 5111 * or perform any access checks. 5112 */ 5113 if (*nm == '\0') { 5114 VN_HOLD(dvp); 5115 *vpp = dvp; 5116 return (0); 5117 } 5118 5119 /* 5120 * Can't do lookups in non-directories. 5121 */ 5122 if (dvp->v_type != VDIR) 5123 return (ENOTDIR); 5124 5125 /* 5126 * If lookup is for ".", just return dvp. Don't need 5127 * to send it over the wire or look it up in the dnlc, 5128 * just need to check access. 5129 */ 5130 if (nm[0] == '.' && nm[1] == '\0') { 5131 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5132 if (error) 5133 return (error); 5134 VN_HOLD(dvp); 5135 *vpp = dvp; 5136 return (0); 5137 } 5138 5139 drp = VTOR4(dvp); 5140 if (!(drp->r_flags & R4LOOKUP)) { 5141 mutex_enter(&drp->r_statelock); 5142 drp->r_flags |= R4LOOKUP; 5143 mutex_exit(&drp->r_statelock); 5144 } 5145 5146 *vpp = NULL; 5147 /* 5148 * Lookup this name in the DNLC. If there is no entry 5149 * lookup over the wire. 5150 */ 5151 if (!skipdnlc) 5152 *vpp = dnlc_lookup(dvp, nm); 5153 if (*vpp == NULL) { 5154 /* 5155 * We need to go over the wire to lookup the name. 5156 */ 5157 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5158 } 5159 5160 /* 5161 * We hit on the dnlc 5162 */ 5163 if (*vpp != DNLC_NO_VNODE || 5164 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5165 /* 5166 * But our attrs may not be valid. 5167 */ 5168 if (ATTRCACHE4_VALID(dvp)) { 5169 error = nfs4_waitfor_purge_complete(dvp); 5170 if (error) { 5171 VN_RELE(*vpp); 5172 *vpp = NULL; 5173 return (error); 5174 } 5175 5176 /* 5177 * If after the purge completes, check to make sure 5178 * our attrs are still valid. 5179 */ 5180 if (ATTRCACHE4_VALID(dvp)) { 5181 /* 5182 * If we waited for a purge we may have 5183 * lost our vnode so look it up again. 5184 */ 5185 VN_RELE(*vpp); 5186 *vpp = dnlc_lookup(dvp, nm); 5187 if (*vpp == NULL) 5188 return (nfs4lookupnew_otw(dvp, 5189 nm, vpp, cr)); 5190 5191 /* 5192 * The access cache should almost always hit 5193 */ 5194 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5195 5196 if (error) { 5197 VN_RELE(*vpp); 5198 *vpp = NULL; 5199 return (error); 5200 } 5201 if (*vpp == DNLC_NO_VNODE) { 5202 VN_RELE(*vpp); 5203 *vpp = NULL; 5204 return (ENOENT); 5205 } 5206 return (0); 5207 } 5208 } 5209 } 5210 5211 ASSERT(*vpp != NULL); 5212 5213 /* 5214 * We may have gotten here we have one of the following cases: 5215 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5216 * need to validate them. 5217 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5218 * must validate. 5219 * 5220 * Go to the server and check if the directory has changed, if 5221 * it hasn't we are done and can use the dnlc entry. 5222 */ 5223 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5224 } 5225 5226 /* 5227 * Go to the server and check if the directory has changed, if 5228 * it hasn't we are done and can use the dnlc entry. If it 5229 * has changed we get a new copy of its attributes and check 5230 * the access for VEXEC, then relookup the filename and 5231 * get its filehandle and attributes. 5232 * 5233 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5234 * if the NVERIFY failed we must 5235 * purge the caches 5236 * cache new attributes (will set r_time_attr_inval) 5237 * cache new access 5238 * recheck VEXEC access 5239 * add name to dnlc, possibly negative 5240 * if LOOKUP succeeded 5241 * cache new attributes 5242 * else 5243 * set a new r_time_attr_inval for dvp 5244 * check to make sure we have access 5245 * 5246 * The vpp returned is the vnode passed in if the directory is valid, 5247 * a new vnode if successful lookup, or NULL on error. 5248 */ 5249 static int 5250 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5251 { 5252 COMPOUND4args_clnt args; 5253 COMPOUND4res_clnt res; 5254 fattr4 *ver_fattr; 5255 fattr4_change dchange; 5256 int32_t *ptr; 5257 int argoplist_size = 7 * sizeof (nfs_argop4); 5258 nfs_argop4 *argop; 5259 int doqueue; 5260 mntinfo4_t *mi; 5261 nfs4_recov_state_t recov_state; 5262 hrtime_t t; 5263 int isdotdot; 5264 vnode_t *nvp; 5265 nfs_fh4 *fhp; 5266 nfs4_sharedfh_t *sfhp; 5267 nfs4_access_type_t cacc; 5268 rnode4_t *nrp; 5269 rnode4_t *drp = VTOR4(dvp); 5270 nfs4_ga_res_t *garp = NULL; 5271 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5272 5273 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5274 ASSERT(nm != NULL); 5275 ASSERT(nm[0] != '\0'); 5276 ASSERT(dvp->v_type == VDIR); 5277 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5278 ASSERT(*vpp != NULL); 5279 5280 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5281 isdotdot = 1; 5282 args.ctag = TAG_LOOKUP_VPARENT; 5283 } else { 5284 /* 5285 * If dvp were a stub, it should have triggered and caused 5286 * a mount for us to get this far. 5287 */ 5288 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5289 5290 isdotdot = 0; 5291 args.ctag = TAG_LOOKUP_VALID; 5292 } 5293 5294 mi = VTOMI4(dvp); 5295 recov_state.rs_flags = 0; 5296 recov_state.rs_num_retry_despite_err = 0; 5297 5298 nvp = NULL; 5299 5300 /* Save the original mount point security information */ 5301 (void) save_mnt_secinfo(mi->mi_curr_serv); 5302 5303 recov_retry: 5304 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5305 &recov_state, NULL); 5306 if (e.error) { 5307 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5308 VN_RELE(*vpp); 5309 *vpp = NULL; 5310 return (e.error); 5311 } 5312 5313 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5314 5315 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5316 args.array_len = 7; 5317 args.array = argop; 5318 5319 /* 0. putfh file */ 5320 argop[0].argop = OP_CPUTFH; 5321 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5322 5323 /* 1. nverify the change info */ 5324 argop[1].argop = OP_NVERIFY; 5325 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5326 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5327 ver_fattr->attrlist4 = (char *)&dchange; 5328 ptr = (int32_t *)&dchange; 5329 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5330 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5331 5332 /* 2. getattr directory */ 5333 argop[2].argop = OP_GETATTR; 5334 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5335 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5336 5337 /* 3. access directory */ 5338 argop[3].argop = OP_ACCESS; 5339 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5340 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5341 5342 /* 4. lookup name */ 5343 if (isdotdot) { 5344 argop[4].argop = OP_LOOKUPP; 5345 } else { 5346 argop[4].argop = OP_CLOOKUP; 5347 argop[4].nfs_argop4_u.opclookup.cname = nm; 5348 } 5349 5350 /* 5. resulting file handle */ 5351 argop[5].argop = OP_GETFH; 5352 5353 /* 6. resulting file attributes */ 5354 argop[6].argop = OP_GETATTR; 5355 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5356 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5357 5358 doqueue = 1; 5359 t = gethrtime(); 5360 5361 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5362 5363 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5364 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5365 if (e.error != 0 && *vpp != NULL) 5366 VN_RELE(*vpp); 5367 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5368 &recov_state, FALSE); 5369 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5370 kmem_free(argop, argoplist_size); 5371 return (e.error); 5372 } 5373 5374 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5375 /* 5376 * For WRONGSEC of a non-dotdot case, send secinfo directly 5377 * from this thread, do not go thru the recovery thread since 5378 * we need the nm information. 5379 * 5380 * Not doing dotdot case because there is no specification 5381 * for (PUTFH, SECINFO "..") yet. 5382 */ 5383 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5384 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5385 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5386 &recov_state, FALSE); 5387 else 5388 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5389 &recov_state, TRUE); 5390 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5391 kmem_free(argop, argoplist_size); 5392 if (!e.error) 5393 goto recov_retry; 5394 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5395 VN_RELE(*vpp); 5396 *vpp = NULL; 5397 return (e.error); 5398 } 5399 5400 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5401 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5402 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5403 &recov_state, TRUE); 5404 5405 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5406 kmem_free(argop, argoplist_size); 5407 goto recov_retry; 5408 } 5409 } 5410 5411 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5412 5413 if (e.error || res.array_len == 0) { 5414 /* 5415 * If e.error isn't set, then reply has no ops (or we couldn't 5416 * be here). The only legal way to reply without an op array 5417 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5418 * be in the reply for all other status values. 5419 * 5420 * For valid replies without an ops array, return ENOTSUP 5421 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5422 * return EIO -- don't trust status. 5423 */ 5424 if (e.error == 0) 5425 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5426 ENOTSUP : EIO; 5427 VN_RELE(*vpp); 5428 *vpp = NULL; 5429 kmem_free(argop, argoplist_size); 5430 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5431 return (e.error); 5432 } 5433 5434 if (res.status != NFS4ERR_SAME) { 5435 e.error = geterrno4(res.status); 5436 5437 /* 5438 * The NVERIFY "failed" so the directory has changed 5439 * First make sure PUTFH succeeded and NVERIFY "failed" 5440 * cleanly. 5441 */ 5442 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5443 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5444 nfs4_purge_stale_fh(e.error, dvp, cr); 5445 VN_RELE(*vpp); 5446 *vpp = NULL; 5447 goto exit; 5448 } 5449 5450 /* 5451 * We know the NVERIFY "failed" so we must: 5452 * purge the caches (access and indirectly dnlc if needed) 5453 */ 5454 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5455 5456 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5457 nfs4_purge_stale_fh(e.error, dvp, cr); 5458 VN_RELE(*vpp); 5459 *vpp = NULL; 5460 goto exit; 5461 } 5462 5463 /* 5464 * Install new cached attributes for the directory 5465 */ 5466 nfs4_attr_cache(dvp, 5467 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5468 t, cr, FALSE, NULL); 5469 5470 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5471 nfs4_purge_stale_fh(e.error, dvp, cr); 5472 VN_RELE(*vpp); 5473 *vpp = NULL; 5474 e.error = geterrno4(res.status); 5475 goto exit; 5476 } 5477 5478 /* 5479 * Now we know the directory is valid, 5480 * cache new directory access 5481 */ 5482 nfs4_access_cache(drp, 5483 args.array[3].nfs_argop4_u.opaccess.access, 5484 res.array[3].nfs_resop4_u.opaccess.access, cr); 5485 5486 /* 5487 * recheck VEXEC access 5488 */ 5489 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5490 if (cacc != NFS4_ACCESS_ALLOWED) { 5491 /* 5492 * Directory permissions might have been revoked 5493 */ 5494 if (cacc == NFS4_ACCESS_DENIED) { 5495 e.error = EACCES; 5496 VN_RELE(*vpp); 5497 *vpp = NULL; 5498 goto exit; 5499 } 5500 5501 /* 5502 * Somehow we must not have asked for enough 5503 * so try a singleton ACCESS, should never happen. 5504 */ 5505 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5506 if (e.error) { 5507 VN_RELE(*vpp); 5508 *vpp = NULL; 5509 goto exit; 5510 } 5511 } 5512 5513 e.error = geterrno4(res.status); 5514 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5515 /* 5516 * The lookup failed, probably no entry 5517 */ 5518 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5519 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5520 } else { 5521 /* 5522 * Might be some other error, so remove 5523 * the dnlc entry to make sure we start all 5524 * over again, next time. 5525 */ 5526 dnlc_remove(dvp, nm); 5527 } 5528 VN_RELE(*vpp); 5529 *vpp = NULL; 5530 goto exit; 5531 } 5532 5533 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5534 /* 5535 * The file exists but we can't get its fh for 5536 * some unknown reason. Remove it from the dnlc 5537 * and error out to be safe. 5538 */ 5539 dnlc_remove(dvp, nm); 5540 VN_RELE(*vpp); 5541 *vpp = NULL; 5542 goto exit; 5543 } 5544 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5545 if (fhp->nfs_fh4_len == 0) { 5546 /* 5547 * The file exists but a bogus fh 5548 * some unknown reason. Remove it from the dnlc 5549 * and error out to be safe. 5550 */ 5551 e.error = ENOENT; 5552 dnlc_remove(dvp, nm); 5553 VN_RELE(*vpp); 5554 *vpp = NULL; 5555 goto exit; 5556 } 5557 sfhp = sfh4_get(fhp, mi); 5558 5559 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5560 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5561 5562 /* 5563 * Make the new rnode 5564 */ 5565 if (isdotdot) { 5566 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5567 if (e.error) { 5568 sfh4_rele(&sfhp); 5569 VN_RELE(*vpp); 5570 *vpp = NULL; 5571 goto exit; 5572 } 5573 /* 5574 * XXX if nfs4_make_dotdot uses an existing rnode 5575 * XXX it doesn't update the attributes. 5576 * XXX for now just save them again to save an OTW 5577 */ 5578 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5579 } else { 5580 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5581 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 5582 /* 5583 * If v_type == VNON, then garp was NULL because 5584 * the last op in the compound failed and makenfs4node 5585 * could not find the vnode for sfhp. It created 5586 * a new vnode, so we have nothing to purge here. 5587 */ 5588 if (nvp->v_type == VNON) { 5589 vattr_t vattr; 5590 5591 vattr.va_mask = AT_TYPE; 5592 /* 5593 * N.B. We've already called nfs4_end_fop above. 5594 */ 5595 e.error = nfs4getattr(nvp, &vattr, cr); 5596 if (e.error) { 5597 sfh4_rele(&sfhp); 5598 VN_RELE(*vpp); 5599 *vpp = NULL; 5600 VN_RELE(nvp); 5601 goto exit; 5602 } 5603 nvp->v_type = vattr.va_type; 5604 } 5605 } 5606 sfh4_rele(&sfhp); 5607 5608 nrp = VTOR4(nvp); 5609 mutex_enter(&nrp->r_statev4_lock); 5610 if (!nrp->created_v4) { 5611 mutex_exit(&nrp->r_statev4_lock); 5612 dnlc_update(dvp, nm, nvp); 5613 } else 5614 mutex_exit(&nrp->r_statev4_lock); 5615 5616 VN_RELE(*vpp); 5617 *vpp = nvp; 5618 } else { 5619 hrtime_t now; 5620 hrtime_t delta = 0; 5621 5622 e.error = 0; 5623 5624 /* 5625 * Because the NVERIFY "succeeded" we know that the 5626 * directory attributes are still valid 5627 * so update r_time_attr_inval 5628 */ 5629 now = gethrtime(); 5630 mutex_enter(&drp->r_statelock); 5631 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5632 delta = now - drp->r_time_attr_saved; 5633 if (delta < mi->mi_acdirmin) 5634 delta = mi->mi_acdirmin; 5635 else if (delta > mi->mi_acdirmax) 5636 delta = mi->mi_acdirmax; 5637 } 5638 drp->r_time_attr_inval = now + delta; 5639 mutex_exit(&drp->r_statelock); 5640 dnlc_update(dvp, nm, *vpp); 5641 5642 /* 5643 * Even though we have a valid directory attr cache 5644 * and dnlc entry, we may not have access. 5645 * This should almost always hit the cache. 5646 */ 5647 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5648 if (e.error) { 5649 VN_RELE(*vpp); 5650 *vpp = NULL; 5651 } 5652 5653 if (*vpp == DNLC_NO_VNODE) { 5654 VN_RELE(*vpp); 5655 *vpp = NULL; 5656 e.error = ENOENT; 5657 } 5658 } 5659 5660 exit: 5661 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5662 kmem_free(argop, argoplist_size); 5663 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5664 return (e.error); 5665 } 5666 5667 /* 5668 * We need to go over the wire to lookup the name, but 5669 * while we are there verify the directory has not 5670 * changed but if it has, get new attributes and check access 5671 * 5672 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5673 * NVERIFY GETATTR ACCESS 5674 * 5675 * With the results: 5676 * if the NVERIFY failed we must purge the caches, add new attributes, 5677 * and cache new access. 5678 * set a new r_time_attr_inval 5679 * add name to dnlc, possibly negative 5680 * if LOOKUP succeeded 5681 * cache new attributes 5682 */ 5683 static int 5684 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5685 { 5686 COMPOUND4args_clnt args; 5687 COMPOUND4res_clnt res; 5688 fattr4 *ver_fattr; 5689 fattr4_change dchange; 5690 int32_t *ptr; 5691 nfs4_ga_res_t *garp = NULL; 5692 int argoplist_size = 9 * sizeof (nfs_argop4); 5693 nfs_argop4 *argop; 5694 int doqueue; 5695 mntinfo4_t *mi; 5696 nfs4_recov_state_t recov_state; 5697 hrtime_t t; 5698 int isdotdot; 5699 vnode_t *nvp; 5700 nfs_fh4 *fhp; 5701 nfs4_sharedfh_t *sfhp; 5702 nfs4_access_type_t cacc; 5703 rnode4_t *nrp; 5704 rnode4_t *drp = VTOR4(dvp); 5705 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5706 5707 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5708 ASSERT(nm != NULL); 5709 ASSERT(nm[0] != '\0'); 5710 ASSERT(dvp->v_type == VDIR); 5711 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5712 ASSERT(*vpp == NULL); 5713 5714 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5715 isdotdot = 1; 5716 args.ctag = TAG_LOOKUP_PARENT; 5717 } else { 5718 /* 5719 * If dvp were a stub, it should have triggered and caused 5720 * a mount for us to get this far. 5721 */ 5722 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5723 5724 isdotdot = 0; 5725 args.ctag = TAG_LOOKUP; 5726 } 5727 5728 mi = VTOMI4(dvp); 5729 recov_state.rs_flags = 0; 5730 recov_state.rs_num_retry_despite_err = 0; 5731 5732 nvp = NULL; 5733 5734 /* Save the original mount point security information */ 5735 (void) save_mnt_secinfo(mi->mi_curr_serv); 5736 5737 recov_retry: 5738 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5739 &recov_state, NULL); 5740 if (e.error) { 5741 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5742 return (e.error); 5743 } 5744 5745 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5746 5747 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5748 args.array_len = 9; 5749 args.array = argop; 5750 5751 /* 0. putfh file */ 5752 argop[0].argop = OP_CPUTFH; 5753 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5754 5755 /* 1. savefh for the nverify */ 5756 argop[1].argop = OP_SAVEFH; 5757 5758 /* 2. lookup name */ 5759 if (isdotdot) { 5760 argop[2].argop = OP_LOOKUPP; 5761 } else { 5762 argop[2].argop = OP_CLOOKUP; 5763 argop[2].nfs_argop4_u.opclookup.cname = nm; 5764 } 5765 5766 /* 3. resulting file handle */ 5767 argop[3].argop = OP_GETFH; 5768 5769 /* 4. resulting file attributes */ 5770 argop[4].argop = OP_GETATTR; 5771 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5772 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5773 5774 /* 5. restorefh back the directory for the nverify */ 5775 argop[5].argop = OP_RESTOREFH; 5776 5777 /* 6. nverify the change info */ 5778 argop[6].argop = OP_NVERIFY; 5779 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5780 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5781 ver_fattr->attrlist4 = (char *)&dchange; 5782 ptr = (int32_t *)&dchange; 5783 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5784 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5785 5786 /* 7. getattr directory */ 5787 argop[7].argop = OP_GETATTR; 5788 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5789 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5790 5791 /* 8. access directory */ 5792 argop[8].argop = OP_ACCESS; 5793 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5794 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5795 5796 doqueue = 1; 5797 t = gethrtime(); 5798 5799 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5800 5801 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5802 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5803 if (e.error != 0 && *vpp != NULL) 5804 VN_RELE(*vpp); 5805 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5806 &recov_state, FALSE); 5807 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5808 kmem_free(argop, argoplist_size); 5809 return (e.error); 5810 } 5811 5812 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5813 /* 5814 * For WRONGSEC of a non-dotdot case, send secinfo directly 5815 * from this thread, do not go thru the recovery thread since 5816 * we need the nm information. 5817 * 5818 * Not doing dotdot case because there is no specification 5819 * for (PUTFH, SECINFO "..") yet. 5820 */ 5821 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5822 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5823 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5824 &recov_state, FALSE); 5825 else 5826 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5827 &recov_state, TRUE); 5828 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5829 kmem_free(argop, argoplist_size); 5830 if (!e.error) 5831 goto recov_retry; 5832 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5833 return (e.error); 5834 } 5835 5836 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5837 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5838 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5839 &recov_state, TRUE); 5840 5841 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5842 kmem_free(argop, argoplist_size); 5843 goto recov_retry; 5844 } 5845 } 5846 5847 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5848 5849 if (e.error || res.array_len == 0) { 5850 /* 5851 * If e.error isn't set, then reply has no ops (or we couldn't 5852 * be here). The only legal way to reply without an op array 5853 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5854 * be in the reply for all other status values. 5855 * 5856 * For valid replies without an ops array, return ENOTSUP 5857 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5858 * return EIO -- don't trust status. 5859 */ 5860 if (e.error == 0) 5861 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5862 ENOTSUP : EIO; 5863 5864 kmem_free(argop, argoplist_size); 5865 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5866 return (e.error); 5867 } 5868 5869 e.error = geterrno4(res.status); 5870 5871 /* 5872 * The PUTFH and SAVEFH may have failed. 5873 */ 5874 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5875 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5876 nfs4_purge_stale_fh(e.error, dvp, cr); 5877 goto exit; 5878 } 5879 5880 /* 5881 * Check if the file exists, if it does delay entering 5882 * into the dnlc until after we update the directory 5883 * attributes so we don't cause it to get purged immediately. 5884 */ 5885 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5886 /* 5887 * The lookup failed, probably no entry 5888 */ 5889 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5890 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5891 goto exit; 5892 } 5893 5894 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5895 /* 5896 * The file exists but we can't get its fh for 5897 * some unknown reason. Error out to be safe. 5898 */ 5899 goto exit; 5900 } 5901 5902 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5903 if (fhp->nfs_fh4_len == 0) { 5904 /* 5905 * The file exists but a bogus fh 5906 * some unknown reason. Error out to be safe. 5907 */ 5908 e.error = EIO; 5909 goto exit; 5910 } 5911 sfhp = sfh4_get(fhp, mi); 5912 5913 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5914 sfh4_rele(&sfhp); 5915 goto exit; 5916 } 5917 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5918 5919 /* 5920 * The RESTOREFH may have failed 5921 */ 5922 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5923 sfh4_rele(&sfhp); 5924 e.error = EIO; 5925 goto exit; 5926 } 5927 5928 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5929 /* 5930 * First make sure the NVERIFY failed as we expected, 5931 * if it didn't then be conservative and error out 5932 * as we can't trust the directory. 5933 */ 5934 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5935 sfh4_rele(&sfhp); 5936 e.error = EIO; 5937 goto exit; 5938 } 5939 5940 /* 5941 * We know the NVERIFY "failed" so the directory has changed, 5942 * so we must: 5943 * purge the caches (access and indirectly dnlc if needed) 5944 */ 5945 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5946 5947 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5948 sfh4_rele(&sfhp); 5949 goto exit; 5950 } 5951 nfs4_attr_cache(dvp, 5952 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5953 t, cr, FALSE, NULL); 5954 5955 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5956 nfs4_purge_stale_fh(e.error, dvp, cr); 5957 sfh4_rele(&sfhp); 5958 e.error = geterrno4(res.status); 5959 goto exit; 5960 } 5961 5962 /* 5963 * Now we know the directory is valid, 5964 * cache new directory access 5965 */ 5966 nfs4_access_cache(drp, 5967 args.array[8].nfs_argop4_u.opaccess.access, 5968 res.array[8].nfs_resop4_u.opaccess.access, cr); 5969 5970 /* 5971 * recheck VEXEC access 5972 */ 5973 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5974 if (cacc != NFS4_ACCESS_ALLOWED) { 5975 /* 5976 * Directory permissions might have been revoked 5977 */ 5978 if (cacc == NFS4_ACCESS_DENIED) { 5979 sfh4_rele(&sfhp); 5980 e.error = EACCES; 5981 goto exit; 5982 } 5983 5984 /* 5985 * Somehow we must not have asked for enough 5986 * so try a singleton ACCESS should never happen 5987 */ 5988 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5989 if (e.error) { 5990 sfh4_rele(&sfhp); 5991 goto exit; 5992 } 5993 } 5994 5995 e.error = geterrno4(res.status); 5996 } else { 5997 hrtime_t now; 5998 hrtime_t delta = 0; 5999 6000 e.error = 0; 6001 6002 /* 6003 * Because the NVERIFY "succeeded" we know that the 6004 * directory attributes are still valid 6005 * so update r_time_attr_inval 6006 */ 6007 now = gethrtime(); 6008 mutex_enter(&drp->r_statelock); 6009 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 6010 delta = now - drp->r_time_attr_saved; 6011 if (delta < mi->mi_acdirmin) 6012 delta = mi->mi_acdirmin; 6013 else if (delta > mi->mi_acdirmax) 6014 delta = mi->mi_acdirmax; 6015 } 6016 drp->r_time_attr_inval = now + delta; 6017 mutex_exit(&drp->r_statelock); 6018 6019 /* 6020 * Even though we have a valid directory attr cache, 6021 * we may not have access. 6022 * This should almost always hit the cache. 6023 */ 6024 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 6025 if (e.error) { 6026 sfh4_rele(&sfhp); 6027 goto exit; 6028 } 6029 } 6030 6031 /* 6032 * Now we have successfully completed the lookup, if the 6033 * directory has changed we now have the valid attributes. 6034 * We also know we have directory access. 6035 * Create the new rnode and insert it in the dnlc. 6036 */ 6037 if (isdotdot) { 6038 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 6039 if (e.error) { 6040 sfh4_rele(&sfhp); 6041 goto exit; 6042 } 6043 /* 6044 * XXX if nfs4_make_dotdot uses an existing rnode 6045 * XXX it doesn't update the attributes. 6046 * XXX for now just save them again to save an OTW 6047 */ 6048 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 6049 } else { 6050 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 6051 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 6052 } 6053 sfh4_rele(&sfhp); 6054 6055 nrp = VTOR4(nvp); 6056 mutex_enter(&nrp->r_statev4_lock); 6057 if (!nrp->created_v4) { 6058 mutex_exit(&nrp->r_statev4_lock); 6059 dnlc_update(dvp, nm, nvp); 6060 } else 6061 mutex_exit(&nrp->r_statev4_lock); 6062 6063 *vpp = nvp; 6064 6065 exit: 6066 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6067 kmem_free(argop, argoplist_size); 6068 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 6069 return (e.error); 6070 } 6071 6072 #ifdef DEBUG 6073 void 6074 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 6075 { 6076 uint_t i, len; 6077 zoneid_t zoneid = getzoneid(); 6078 char *s; 6079 6080 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 6081 for (i = 0; i < argcnt; i++) { 6082 nfs_argop4 *op = &argbase[i]; 6083 switch (op->argop) { 6084 case OP_CPUTFH: 6085 case OP_PUTFH: 6086 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 6087 break; 6088 case OP_PUTROOTFH: 6089 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 6090 break; 6091 case OP_CLOOKUP: 6092 s = op->nfs_argop4_u.opclookup.cname; 6093 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6094 break; 6095 case OP_LOOKUP: 6096 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 6097 &len, NULL); 6098 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6099 kmem_free(s, len); 6100 break; 6101 case OP_LOOKUPP: 6102 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 6103 break; 6104 case OP_GETFH: 6105 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 6106 break; 6107 case OP_GETATTR: 6108 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 6109 break; 6110 case OP_OPENATTR: 6111 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 6112 break; 6113 default: 6114 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 6115 op->argop); 6116 break; 6117 } 6118 } 6119 } 6120 #endif 6121 6122 /* 6123 * nfs4lookup_setup - constructs a multi-lookup compound request. 6124 * 6125 * Given the path "nm1/nm2/.../nmn", the following compound requests 6126 * may be created: 6127 * 6128 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 6129 * is faster, for now. 6130 * 6131 * l4_getattrs indicates the type of compound requested. 6132 * 6133 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6134 * 6135 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6136 * 6137 * total number of ops is n + 1. 6138 * 6139 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6140 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6141 * before the last component, and only get attributes 6142 * for the last component. Note that the second-to-last 6143 * pathname component is XATTR_RPATH, which does NOT go 6144 * over-the-wire as a lookup. 6145 * 6146 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6147 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6148 * 6149 * and total number of ops is n + 5. 6150 * 6151 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6152 * attribute directory: create lookups plus an OPENATTR 6153 * replacing the last lookup. Note that the last pathname 6154 * component is XATTR_RPATH, which does NOT go over-the-wire 6155 * as a lookup. 6156 * 6157 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6158 * Openattr; Getfh; Getattr } 6159 * 6160 * and total number of ops is n + 5. 6161 * 6162 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6163 * nodes too. 6164 * 6165 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6166 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6167 * 6168 * and total number of ops is 3*n + 1. 6169 * 6170 * All cases: returns the index in the arg array of the final LOOKUP op, or 6171 * -1 if no LOOKUPs were used. 6172 */ 6173 int 6174 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6175 { 6176 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6177 nfs_argop4 *argbase, *argop; 6178 int arglen, argcnt; 6179 int n = 1; /* number of components */ 6180 int nga = 1; /* number of Getattr's in request */ 6181 char c = '\0', *s, *p; 6182 int lookup_idx = -1; 6183 int argoplist_size; 6184 6185 /* set lookuparg response result to 0 */ 6186 lookupargp->resp->status = NFS4_OK; 6187 6188 /* skip leading "/" or "." e.g. ".//./" if there is */ 6189 for (; ; nm++) { 6190 if (*nm != '/' && *nm != '.') 6191 break; 6192 6193 /* ".." is counted as 1 component */ 6194 if (*nm == '.' && *(nm + 1) != '/') 6195 break; 6196 } 6197 6198 /* 6199 * Find n = number of components - nm must be null terminated 6200 * Skip "." components. 6201 */ 6202 if (*nm != '\0') 6203 for (n = 1, s = nm; *s != '\0'; s++) { 6204 if ((*s == '/') && (*(s + 1) != '/') && 6205 (*(s + 1) != '\0') && 6206 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6207 *(s + 2) == '\0'))) 6208 n++; 6209 } 6210 else 6211 n = 0; 6212 6213 /* 6214 * nga is number of components that need Getfh+Getattr 6215 */ 6216 switch (l4_getattrs) { 6217 case LKP4_NO_ATTRIBUTES: 6218 nga = 0; 6219 break; 6220 case LKP4_ALL_ATTRIBUTES: 6221 nga = n; 6222 /* 6223 * Always have at least 1 getfh, getattr pair 6224 */ 6225 if (nga == 0) 6226 nga++; 6227 break; 6228 case LKP4_LAST_ATTRDIR: 6229 case LKP4_LAST_NAMED_ATTR: 6230 nga = n+1; 6231 break; 6232 } 6233 6234 /* 6235 * If change to use the filehandle attr instead of getfh 6236 * the following line can be deleted. 6237 */ 6238 nga *= 2; 6239 6240 /* 6241 * calculate number of ops in request as 6242 * header + trailer + lookups + getattrs 6243 */ 6244 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6245 6246 argoplist_size = arglen * sizeof (nfs_argop4); 6247 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6248 lookupargp->argsp->array = argop; 6249 6250 argcnt = lookupargp->header_len; 6251 argop += argcnt; 6252 6253 /* 6254 * loop and create a lookup op and possibly getattr/getfh for 6255 * each component. Skip "." components. 6256 */ 6257 for (s = nm; *s != '\0'; s = p) { 6258 /* 6259 * Set up a pathname struct for each component if needed 6260 */ 6261 while (*s == '/') 6262 s++; 6263 if (*s == '\0') 6264 break; 6265 6266 for (p = s; (*p != '/') && (*p != '\0'); p++) 6267 ; 6268 c = *p; 6269 *p = '\0'; 6270 6271 if (s[0] == '.' && s[1] == '\0') { 6272 *p = c; 6273 continue; 6274 } 6275 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6276 strcmp(s, XATTR_RPATH) == 0) { 6277 /* getfh XXX may not be needed in future */ 6278 argop->argop = OP_GETFH; 6279 argop++; 6280 argcnt++; 6281 6282 /* getattr */ 6283 argop->argop = OP_GETATTR; 6284 argop->nfs_argop4_u.opgetattr.attr_request = 6285 lookupargp->ga_bits; 6286 argop->nfs_argop4_u.opgetattr.mi = 6287 lookupargp->mi; 6288 argop++; 6289 argcnt++; 6290 6291 /* openattr */ 6292 argop->argop = OP_OPENATTR; 6293 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6294 strcmp(s, XATTR_RPATH) == 0) { 6295 /* openattr */ 6296 argop->argop = OP_OPENATTR; 6297 argop++; 6298 argcnt++; 6299 6300 /* getfh XXX may not be needed in future */ 6301 argop->argop = OP_GETFH; 6302 argop++; 6303 argcnt++; 6304 6305 /* getattr */ 6306 argop->argop = OP_GETATTR; 6307 argop->nfs_argop4_u.opgetattr.attr_request = 6308 lookupargp->ga_bits; 6309 argop->nfs_argop4_u.opgetattr.mi = 6310 lookupargp->mi; 6311 argop++; 6312 argcnt++; 6313 *p = c; 6314 continue; 6315 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6316 /* lookupp */ 6317 argop->argop = OP_LOOKUPP; 6318 } else { 6319 /* lookup */ 6320 argop->argop = OP_LOOKUP; 6321 (void) str_to_utf8(s, 6322 &argop->nfs_argop4_u.oplookup.objname); 6323 } 6324 lookup_idx = argcnt; 6325 argop++; 6326 argcnt++; 6327 6328 *p = c; 6329 6330 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6331 /* getfh XXX may not be needed in future */ 6332 argop->argop = OP_GETFH; 6333 argop++; 6334 argcnt++; 6335 6336 /* getattr */ 6337 argop->argop = OP_GETATTR; 6338 argop->nfs_argop4_u.opgetattr.attr_request = 6339 lookupargp->ga_bits; 6340 argop->nfs_argop4_u.opgetattr.mi = 6341 lookupargp->mi; 6342 argop++; 6343 argcnt++; 6344 } 6345 } 6346 6347 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6348 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6349 if (needgetfh) { 6350 /* stick in a post-lookup getfh */ 6351 argop->argop = OP_GETFH; 6352 argcnt++; 6353 argop++; 6354 } 6355 /* post-lookup getattr */ 6356 argop->argop = OP_GETATTR; 6357 argop->nfs_argop4_u.opgetattr.attr_request = 6358 lookupargp->ga_bits; 6359 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6360 argcnt++; 6361 } 6362 argcnt += lookupargp->trailer_len; /* actual op count */ 6363 lookupargp->argsp->array_len = argcnt; 6364 lookupargp->arglen = arglen; 6365 6366 #ifdef DEBUG 6367 if (nfs4_client_lookup_debug) 6368 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6369 #endif 6370 6371 return (lookup_idx); 6372 } 6373 6374 static int 6375 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6376 { 6377 COMPOUND4args_clnt args; 6378 COMPOUND4res_clnt res; 6379 GETFH4res *gf_res = NULL; 6380 nfs_argop4 argop[4]; 6381 nfs_resop4 *resop = NULL; 6382 nfs4_sharedfh_t *sfhp; 6383 hrtime_t t; 6384 nfs4_error_t e; 6385 6386 rnode4_t *drp; 6387 int doqueue = 1; 6388 vnode_t *vp; 6389 int needrecov = 0; 6390 nfs4_recov_state_t recov_state; 6391 6392 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6393 6394 *avp = NULL; 6395 recov_state.rs_flags = 0; 6396 recov_state.rs_num_retry_despite_err = 0; 6397 6398 recov_retry: 6399 /* COMPOUND: putfh, openattr, getfh, getattr */ 6400 args.array_len = 4; 6401 args.array = argop; 6402 args.ctag = TAG_OPENATTR; 6403 6404 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6405 if (e.error) 6406 return (e.error); 6407 6408 drp = VTOR4(dvp); 6409 6410 /* putfh */ 6411 argop[0].argop = OP_CPUTFH; 6412 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6413 6414 /* openattr */ 6415 argop[1].argop = OP_OPENATTR; 6416 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6417 6418 /* getfh */ 6419 argop[2].argop = OP_GETFH; 6420 6421 /* getattr */ 6422 argop[3].argop = OP_GETATTR; 6423 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6424 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6425 6426 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6427 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6428 rnode4info(drp))); 6429 6430 t = gethrtime(); 6431 6432 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6433 6434 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6435 if (needrecov) { 6436 bool_t abort; 6437 6438 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6439 "nfs4openattr: initiating recovery\n")); 6440 6441 abort = nfs4_start_recovery(&e, 6442 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6443 OP_OPENATTR, NULL, NULL, NULL); 6444 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6445 if (!e.error) { 6446 e.error = geterrno4(res.status); 6447 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6448 } 6449 if (abort == FALSE) 6450 goto recov_retry; 6451 return (e.error); 6452 } 6453 6454 if (e.error) { 6455 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6456 return (e.error); 6457 } 6458 6459 if (res.status) { 6460 /* 6461 * If OTW errro is NOTSUPP, then it should be 6462 * translated to EINVAL. All Solaris file system 6463 * implementations return EINVAL to the syscall layer 6464 * when the attrdir cannot be created due to an 6465 * implementation restriction or noxattr mount option. 6466 */ 6467 if (res.status == NFS4ERR_NOTSUPP) { 6468 mutex_enter(&drp->r_statelock); 6469 if (drp->r_xattr_dir) 6470 VN_RELE(drp->r_xattr_dir); 6471 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6472 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6473 mutex_exit(&drp->r_statelock); 6474 6475 e.error = EINVAL; 6476 } else { 6477 e.error = geterrno4(res.status); 6478 } 6479 6480 if (e.error) { 6481 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6482 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6483 needrecov); 6484 return (e.error); 6485 } 6486 } 6487 6488 resop = &res.array[0]; /* putfh res */ 6489 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6490 6491 resop = &res.array[1]; /* openattr res */ 6492 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6493 6494 resop = &res.array[2]; /* getfh res */ 6495 gf_res = &resop->nfs_resop4_u.opgetfh; 6496 if (gf_res->object.nfs_fh4_len == 0) { 6497 *avp = NULL; 6498 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6499 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6500 return (ENOENT); 6501 } 6502 6503 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6504 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6505 dvp->v_vfsp, t, cr, dvp, 6506 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp)); 6507 sfh4_rele(&sfhp); 6508 6509 if (e.error) 6510 PURGE_ATTRCACHE4(vp); 6511 6512 mutex_enter(&vp->v_lock); 6513 vp->v_flag |= V_XATTRDIR; 6514 mutex_exit(&vp->v_lock); 6515 6516 *avp = vp; 6517 6518 mutex_enter(&drp->r_statelock); 6519 if (drp->r_xattr_dir) 6520 VN_RELE(drp->r_xattr_dir); 6521 VN_HOLD(vp); 6522 drp->r_xattr_dir = vp; 6523 6524 /* 6525 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6526 * NULL. xattrs could be created at any time, and we have no 6527 * way to update pc4_xattr_exists in the base object if/when 6528 * it happens. 6529 */ 6530 drp->r_pathconf.pc4_xattr_valid = 0; 6531 6532 mutex_exit(&drp->r_statelock); 6533 6534 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6535 6536 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6537 6538 return (0); 6539 } 6540 6541 /* ARGSUSED */ 6542 static int 6543 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6544 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6545 vsecattr_t *vsecp) 6546 { 6547 int error; 6548 vnode_t *vp = NULL; 6549 rnode4_t *rp; 6550 struct vattr vattr; 6551 rnode4_t *drp; 6552 vnode_t *tempvp; 6553 enum createmode4 createmode; 6554 bool_t must_trunc = FALSE; 6555 int truncating = 0; 6556 6557 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6558 return (EPERM); 6559 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6560 return (EINVAL); 6561 } 6562 6563 /* . and .. have special meaning in the protocol, reject them. */ 6564 6565 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6566 return (EISDIR); 6567 6568 drp = VTOR4(dvp); 6569 6570 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6571 return (EINTR); 6572 6573 top: 6574 /* 6575 * We make a copy of the attributes because the caller does not 6576 * expect us to change what va points to. 6577 */ 6578 vattr = *va; 6579 6580 /* 6581 * If the pathname is "", then dvp is the root vnode of 6582 * a remote file mounted over a local directory. 6583 * All that needs to be done is access 6584 * checking and truncation. Note that we avoid doing 6585 * open w/ create because the parent directory might 6586 * be in pseudo-fs and the open would fail. 6587 */ 6588 if (*nm == '\0') { 6589 error = 0; 6590 VN_HOLD(dvp); 6591 vp = dvp; 6592 must_trunc = TRUE; 6593 } else { 6594 /* 6595 * We need to go over the wire, just to be sure whether the 6596 * file exists or not. Using the DNLC can be dangerous in 6597 * this case when making a decision regarding existence. 6598 */ 6599 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6600 } 6601 6602 if (exclusive) 6603 createmode = EXCLUSIVE4; 6604 else 6605 createmode = GUARDED4; 6606 6607 /* 6608 * error would be set if the file does not exist on the 6609 * server, so lets go create it. 6610 */ 6611 if (error) { 6612 goto create_otw; 6613 } 6614 6615 /* 6616 * File does exist on the server 6617 */ 6618 if (exclusive == EXCL) 6619 error = EEXIST; 6620 else if (vp->v_type == VDIR && (mode & VWRITE)) 6621 error = EISDIR; 6622 else { 6623 /* 6624 * If vnode is a device, create special vnode. 6625 */ 6626 if (ISVDEV(vp->v_type)) { 6627 tempvp = vp; 6628 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6629 VN_RELE(tempvp); 6630 } 6631 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6632 if ((vattr.va_mask & AT_SIZE) && 6633 vp->v_type == VREG) { 6634 rp = VTOR4(vp); 6635 /* 6636 * Check here for large file handled 6637 * by LF-unaware process (as 6638 * ufs_create() does) 6639 */ 6640 if (!(flags & FOFFMAX)) { 6641 mutex_enter(&rp->r_statelock); 6642 if (rp->r_size > MAXOFF32_T) 6643 error = EOVERFLOW; 6644 mutex_exit(&rp->r_statelock); 6645 } 6646 6647 /* if error is set then we need to return */ 6648 if (error) { 6649 nfs_rw_exit(&drp->r_rwlock); 6650 VN_RELE(vp); 6651 return (error); 6652 } 6653 6654 if (must_trunc) { 6655 vattr.va_mask = AT_SIZE; 6656 error = nfs4setattr(vp, &vattr, 0, cr, 6657 NULL); 6658 } else { 6659 /* 6660 * we know we have a regular file that already 6661 * exists and we may end up truncating the file 6662 * as a result of the open_otw, so flush out 6663 * any dirty pages for this file first. 6664 */ 6665 if (nfs4_has_pages(vp) && 6666 ((rp->r_flags & R4DIRTY) || 6667 rp->r_count > 0 || 6668 rp->r_mapcnt > 0)) { 6669 error = nfs4_putpage(vp, 6670 (offset_t)0, 0, 0, cr, ct); 6671 if (error && (error == ENOSPC || 6672 error == EDQUOT)) { 6673 mutex_enter( 6674 &rp->r_statelock); 6675 if (!rp->r_error) 6676 rp->r_error = 6677 error; 6678 mutex_exit( 6679 &rp->r_statelock); 6680 } 6681 } 6682 vattr.va_mask = (AT_SIZE | 6683 AT_TYPE | AT_MODE); 6684 vattr.va_type = VREG; 6685 createmode = UNCHECKED4; 6686 truncating = 1; 6687 goto create_otw; 6688 } 6689 } 6690 } 6691 } 6692 nfs_rw_exit(&drp->r_rwlock); 6693 if (error) { 6694 VN_RELE(vp); 6695 } else { 6696 vnode_t *tvp; 6697 rnode4_t *trp; 6698 tvp = vp; 6699 if (vp->v_type == VREG) { 6700 trp = VTOR4(vp); 6701 if (IS_SHADOW(vp, trp)) 6702 tvp = RTOV4(trp); 6703 } 6704 6705 if (must_trunc) { 6706 /* 6707 * existing file got truncated, notify. 6708 */ 6709 vnevent_create(tvp, ct); 6710 } 6711 6712 *vpp = vp; 6713 } 6714 return (error); 6715 6716 create_otw: 6717 dnlc_remove(dvp, nm); 6718 6719 ASSERT(vattr.va_mask & AT_TYPE); 6720 6721 /* 6722 * If not a regular file let nfs4mknod() handle it. 6723 */ 6724 if (vattr.va_type != VREG) { 6725 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6726 nfs_rw_exit(&drp->r_rwlock); 6727 return (error); 6728 } 6729 6730 /* 6731 * It _is_ a regular file. 6732 */ 6733 ASSERT(vattr.va_mask & AT_MODE); 6734 if (MANDMODE(vattr.va_mode)) { 6735 nfs_rw_exit(&drp->r_rwlock); 6736 return (EACCES); 6737 } 6738 6739 /* 6740 * If this happens to be a mknod of a regular file, then flags will 6741 * have neither FREAD or FWRITE. However, we must set at least one 6742 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6743 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6744 * set (based on openmode specified by app). 6745 */ 6746 if ((flags & (FREAD|FWRITE)) == 0) 6747 flags |= (FREAD|FWRITE); 6748 6749 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6750 6751 if (vp != NULL) { 6752 /* if create was successful, throw away the file's pages */ 6753 if (!error && (vattr.va_mask & AT_SIZE)) 6754 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6755 cr); 6756 /* release the lookup hold */ 6757 VN_RELE(vp); 6758 vp = NULL; 6759 } 6760 6761 /* 6762 * validate that we opened a regular file. This handles a misbehaving 6763 * server that returns an incorrect FH. 6764 */ 6765 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6766 error = EISDIR; 6767 VN_RELE(*vpp); 6768 } 6769 6770 /* 6771 * If this is not an exclusive create, then the CREATE 6772 * request will be made with the GUARDED mode set. This 6773 * means that the server will return EEXIST if the file 6774 * exists. The file could exist because of a retransmitted 6775 * request. In this case, we recover by starting over and 6776 * checking to see whether the file exists. This second 6777 * time through it should and a CREATE request will not be 6778 * sent. 6779 * 6780 * This handles the problem of a dangling CREATE request 6781 * which contains attributes which indicate that the file 6782 * should be truncated. This retransmitted request could 6783 * possibly truncate valid data in the file if not caught 6784 * by the duplicate request mechanism on the server or if 6785 * not caught by other means. The scenario is: 6786 * 6787 * Client transmits CREATE request with size = 0 6788 * Client times out, retransmits request. 6789 * Response to the first request arrives from the server 6790 * and the client proceeds on. 6791 * Client writes data to the file. 6792 * The server now processes retransmitted CREATE request 6793 * and truncates file. 6794 * 6795 * The use of the GUARDED CREATE request prevents this from 6796 * happening because the retransmitted CREATE would fail 6797 * with EEXIST and would not truncate the file. 6798 */ 6799 if (error == EEXIST && exclusive == NONEXCL) { 6800 #ifdef DEBUG 6801 nfs4_create_misses++; 6802 #endif 6803 goto top; 6804 } 6805 nfs_rw_exit(&drp->r_rwlock); 6806 if (truncating && !error && *vpp) { 6807 vnode_t *tvp; 6808 rnode4_t *trp; 6809 /* 6810 * existing file got truncated, notify. 6811 */ 6812 tvp = *vpp; 6813 trp = VTOR4(tvp); 6814 if (IS_SHADOW(tvp, trp)) 6815 tvp = RTOV4(trp); 6816 vnevent_create(tvp, ct); 6817 } 6818 return (error); 6819 } 6820 6821 /* 6822 * Create compound (for mkdir, mknod, symlink): 6823 * { Putfh <dfh>; Create; Getfh; Getattr } 6824 * It's okay if setattr failed to set gid - this is not considered 6825 * an error, but purge attrs in that case. 6826 */ 6827 static int 6828 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6829 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6830 { 6831 int need_end_op = FALSE; 6832 COMPOUND4args_clnt args; 6833 COMPOUND4res_clnt res, *resp = NULL; 6834 nfs_argop4 *argop; 6835 nfs_resop4 *resop; 6836 int doqueue; 6837 mntinfo4_t *mi; 6838 rnode4_t *drp = VTOR4(dvp); 6839 change_info4 *cinfo; 6840 GETFH4res *gf_res; 6841 struct vattr vattr; 6842 vnode_t *vp; 6843 fattr4 *crattr; 6844 bool_t needrecov = FALSE; 6845 nfs4_recov_state_t recov_state; 6846 nfs4_sharedfh_t *sfhp = NULL; 6847 hrtime_t t; 6848 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6849 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6850 dirattr_info_t dinfo, *dinfop; 6851 servinfo4_t *svp; 6852 bitmap4 supp_attrs; 6853 6854 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6855 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6856 6857 mi = VTOMI4(dvp); 6858 6859 /* 6860 * Make sure we properly deal with setting the right gid 6861 * on a new directory to reflect the parent's setgid bit 6862 */ 6863 setgid_flag = 0; 6864 if (type == NF4DIR) { 6865 struct vattr dva; 6866 6867 va->va_mode &= ~VSGID; 6868 dva.va_mask = AT_MODE | AT_GID; 6869 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6870 6871 /* 6872 * If the parent's directory has the setgid bit set 6873 * _and_ the client was able to get a valid mapping 6874 * for the parent dir's owner_group, we want to 6875 * append NVERIFY(owner_group == dva.va_gid) and 6876 * SETTATTR to the CREATE compound. 6877 */ 6878 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6879 setgid_flag = 1; 6880 va->va_mode |= VSGID; 6881 if (dva.va_gid != GID_NOBODY) { 6882 va->va_mask |= AT_GID; 6883 va->va_gid = dva.va_gid; 6884 } 6885 } 6886 } 6887 } 6888 6889 /* 6890 * Create ops: 6891 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6892 * 5:restorefh(dir) 6:getattr(dir) 6893 * 6894 * if (setgid) 6895 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6896 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6897 * 8:nverify 9:setattr 6898 */ 6899 if (setgid_flag) { 6900 numops = 10; 6901 idx_create = 1; 6902 idx_fattr = 3; 6903 } else { 6904 numops = 7; 6905 idx_create = 2; 6906 idx_fattr = 4; 6907 } 6908 6909 ASSERT(nfs_zone() == mi->mi_zone); 6910 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6911 return (EINTR); 6912 } 6913 recov_state.rs_flags = 0; 6914 recov_state.rs_num_retry_despite_err = 0; 6915 6916 argoplist_size = numops * sizeof (nfs_argop4); 6917 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6918 6919 recov_retry: 6920 if (type == NF4LNK) 6921 args.ctag = TAG_SYMLINK; 6922 else if (type == NF4DIR) 6923 args.ctag = TAG_MKDIR; 6924 else 6925 args.ctag = TAG_MKNOD; 6926 6927 args.array_len = numops; 6928 args.array = argop; 6929 6930 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6931 nfs_rw_exit(&drp->r_rwlock); 6932 kmem_free(argop, argoplist_size); 6933 return (e.error); 6934 } 6935 need_end_op = TRUE; 6936 6937 6938 /* 0: putfh directory */ 6939 argop[0].argop = OP_CPUTFH; 6940 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6941 6942 /* 1/2: Create object */ 6943 argop[idx_create].argop = OP_CCREATE; 6944 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6945 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6946 if (type == NF4LNK) { 6947 /* 6948 * symlink, treat name as data 6949 */ 6950 ASSERT(data != NULL); 6951 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6952 (char *)data; 6953 } 6954 if (type == NF4BLK || type == NF4CHR) { 6955 ASSERT(data != NULL); 6956 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6957 *((specdata4 *)data); 6958 } 6959 6960 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6961 6962 svp = drp->r_server; 6963 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6964 supp_attrs = svp->sv_supp_attrs; 6965 nfs_rw_exit(&svp->sv_lock); 6966 6967 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6968 nfs_rw_exit(&drp->r_rwlock); 6969 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6970 e.error = EINVAL; 6971 kmem_free(argop, argoplist_size); 6972 return (e.error); 6973 } 6974 6975 /* 2/3: getfh fh of created object */ 6976 ASSERT(idx_create + 1 == idx_fattr - 1); 6977 argop[idx_create + 1].argop = OP_GETFH; 6978 6979 /* 3/4: getattr of new object */ 6980 argop[idx_fattr].argop = OP_GETATTR; 6981 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6982 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6983 6984 if (setgid_flag) { 6985 vattr_t _v; 6986 6987 argop[4].argop = OP_SAVEFH; 6988 6989 argop[5].argop = OP_CPUTFH; 6990 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6991 6992 argop[6].argop = OP_GETATTR; 6993 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6994 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6995 6996 argop[7].argop = OP_RESTOREFH; 6997 6998 /* 6999 * nverify 7000 * 7001 * XXX - Revisit the last argument to nfs4_end_op() 7002 * once 5020486 is fixed. 7003 */ 7004 _v.va_mask = AT_GID; 7005 _v.va_gid = va->va_gid; 7006 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 7007 supp_attrs)) { 7008 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 7009 nfs_rw_exit(&drp->r_rwlock); 7010 nfs4_fattr4_free(crattr); 7011 kmem_free(argop, argoplist_size); 7012 return (e.error); 7013 } 7014 7015 /* 7016 * setattr 7017 * 7018 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 7019 * so no need for stateid or flags. Also we specify NULL 7020 * rp since we're only interested in setting owner_group 7021 * attributes. 7022 */ 7023 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 7024 &e.error, 0); 7025 7026 if (e.error) { 7027 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 7028 nfs_rw_exit(&drp->r_rwlock); 7029 nfs4_fattr4_free(crattr); 7030 nfs4args_verify_free(&argop[8]); 7031 kmem_free(argop, argoplist_size); 7032 return (e.error); 7033 } 7034 } else { 7035 argop[1].argop = OP_SAVEFH; 7036 7037 argop[5].argop = OP_RESTOREFH; 7038 7039 argop[6].argop = OP_GETATTR; 7040 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7041 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7042 } 7043 7044 dnlc_remove(dvp, nm); 7045 7046 doqueue = 1; 7047 t = gethrtime(); 7048 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7049 7050 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7051 if (e.error) { 7052 PURGE_ATTRCACHE4(dvp); 7053 if (!needrecov) 7054 goto out; 7055 } 7056 7057 if (needrecov) { 7058 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 7059 OP_CREATE, NULL, NULL, NULL) == FALSE) { 7060 nfs4_end_op(mi, dvp, NULL, &recov_state, 7061 needrecov); 7062 need_end_op = FALSE; 7063 nfs4_fattr4_free(crattr); 7064 if (setgid_flag) { 7065 nfs4args_verify_free(&argop[8]); 7066 nfs4args_setattr_free(&argop[9]); 7067 } 7068 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 7069 goto recov_retry; 7070 } 7071 } 7072 7073 resp = &res; 7074 7075 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 7076 7077 if (res.status == NFS4ERR_BADOWNER) 7078 nfs4_log_badowner(mi, OP_CREATE); 7079 7080 e.error = geterrno4(res.status); 7081 7082 /* 7083 * This check is left over from when create was implemented 7084 * using a setattr op (instead of createattrs). If the 7085 * putfh/create/getfh failed, the error was returned. If 7086 * setattr/getattr failed, we keep going. 7087 * 7088 * It might be better to get rid of the GETFH also, and just 7089 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 7090 * Then if any of the operations failed, we could return the 7091 * error now, and remove much of the error code below. 7092 */ 7093 if (res.array_len <= idx_fattr) { 7094 /* 7095 * Either Putfh, Create or Getfh failed. 7096 */ 7097 PURGE_ATTRCACHE4(dvp); 7098 /* 7099 * nfs4_purge_stale_fh() may generate otw calls through 7100 * nfs4_invalidate_pages. Hence the need to call 7101 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 7102 */ 7103 nfs4_end_op(mi, dvp, NULL, &recov_state, 7104 needrecov); 7105 need_end_op = FALSE; 7106 nfs4_purge_stale_fh(e.error, dvp, cr); 7107 goto out; 7108 } 7109 } 7110 7111 resop = &res.array[idx_create]; /* create res */ 7112 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 7113 7114 resop = &res.array[idx_create + 1]; /* getfh res */ 7115 gf_res = &resop->nfs_resop4_u.opgetfh; 7116 7117 sfhp = sfh4_get(&gf_res->object, mi); 7118 if (e.error) { 7119 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 7120 fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7121 if (vp->v_type == VNON) { 7122 vattr.va_mask = AT_TYPE; 7123 /* 7124 * Need to call nfs4_end_op before nfs4getattr to avoid 7125 * potential nfs4_start_op deadlock. See RFE 4777612. 7126 */ 7127 nfs4_end_op(mi, dvp, NULL, &recov_state, 7128 needrecov); 7129 need_end_op = FALSE; 7130 e.error = nfs4getattr(vp, &vattr, cr); 7131 if (e.error) { 7132 VN_RELE(vp); 7133 *vpp = NULL; 7134 goto out; 7135 } 7136 vp->v_type = vattr.va_type; 7137 } 7138 e.error = 0; 7139 } else { 7140 *vpp = vp = makenfs4node(sfhp, 7141 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7142 dvp->v_vfsp, t, cr, 7143 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7144 } 7145 7146 /* 7147 * If compound succeeded, then update dir attrs 7148 */ 7149 if (res.status == NFS4_OK) { 7150 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7151 dinfo.di_cred = cr; 7152 dinfo.di_time_call = t; 7153 dinfop = &dinfo; 7154 } else 7155 dinfop = NULL; 7156 7157 /* Update directory cache attribute, readdir and dnlc caches */ 7158 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7159 7160 out: 7161 if (sfhp != NULL) 7162 sfh4_rele(&sfhp); 7163 nfs_rw_exit(&drp->r_rwlock); 7164 nfs4_fattr4_free(crattr); 7165 if (setgid_flag) { 7166 nfs4args_verify_free(&argop[8]); 7167 nfs4args_setattr_free(&argop[9]); 7168 } 7169 if (resp) 7170 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7171 if (need_end_op) 7172 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7173 7174 kmem_free(argop, argoplist_size); 7175 return (e.error); 7176 } 7177 7178 /* ARGSUSED */ 7179 static int 7180 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7181 int mode, vnode_t **vpp, cred_t *cr) 7182 { 7183 int error; 7184 vnode_t *vp; 7185 nfs_ftype4 type; 7186 specdata4 spec, *specp = NULL; 7187 7188 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7189 7190 switch (va->va_type) { 7191 case VCHR: 7192 case VBLK: 7193 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7194 spec.specdata1 = getmajor(va->va_rdev); 7195 spec.specdata2 = getminor(va->va_rdev); 7196 specp = &spec; 7197 break; 7198 7199 case VFIFO: 7200 type = NF4FIFO; 7201 break; 7202 case VSOCK: 7203 type = NF4SOCK; 7204 break; 7205 7206 default: 7207 return (EINVAL); 7208 } 7209 7210 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7211 if (error) { 7212 return (error); 7213 } 7214 7215 /* 7216 * This might not be needed any more; special case to deal 7217 * with problematic v2/v3 servers. Since create was unable 7218 * to set group correctly, not sure what hope setattr has. 7219 */ 7220 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7221 va->va_mask = AT_GID; 7222 (void) nfs4setattr(vp, va, 0, cr, NULL); 7223 } 7224 7225 /* 7226 * If vnode is a device create special vnode 7227 */ 7228 if (ISVDEV(vp->v_type)) { 7229 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7230 VN_RELE(vp); 7231 } else { 7232 *vpp = vp; 7233 } 7234 return (error); 7235 } 7236 7237 /* 7238 * Remove requires that the current fh be the target directory. 7239 * After the operation, the current fh is unchanged. 7240 * The compound op structure is: 7241 * PUTFH(targetdir), REMOVE 7242 * 7243 * Weirdness: if the vnode to be removed is open 7244 * we rename it instead of removing it and nfs_inactive 7245 * will remove the new name. 7246 */ 7247 /* ARGSUSED */ 7248 static int 7249 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7250 { 7251 COMPOUND4args_clnt args; 7252 COMPOUND4res_clnt res, *resp = NULL; 7253 REMOVE4res *rm_res; 7254 nfs_argop4 argop[3]; 7255 nfs_resop4 *resop; 7256 vnode_t *vp; 7257 char *tmpname; 7258 int doqueue; 7259 mntinfo4_t *mi; 7260 rnode4_t *rp; 7261 rnode4_t *drp; 7262 int needrecov = 0; 7263 nfs4_recov_state_t recov_state; 7264 int isopen; 7265 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7266 dirattr_info_t dinfo; 7267 7268 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7269 return (EPERM); 7270 drp = VTOR4(dvp); 7271 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7272 return (EINTR); 7273 7274 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7275 if (e.error) { 7276 nfs_rw_exit(&drp->r_rwlock); 7277 return (e.error); 7278 } 7279 7280 if (vp->v_type == VDIR) { 7281 VN_RELE(vp); 7282 nfs_rw_exit(&drp->r_rwlock); 7283 return (EISDIR); 7284 } 7285 7286 /* 7287 * First just remove the entry from the name cache, as it 7288 * is most likely the only entry for this vp. 7289 */ 7290 dnlc_remove(dvp, nm); 7291 7292 rp = VTOR4(vp); 7293 7294 /* 7295 * For regular file types, check to see if the file is open by looking 7296 * at the open streams. 7297 * For all other types, check the reference count on the vnode. Since 7298 * they are not opened OTW they never have an open stream. 7299 * 7300 * If the file is open, rename it to .nfsXXXX. 7301 */ 7302 if (vp->v_type != VREG) { 7303 /* 7304 * If the file has a v_count > 1 then there may be more than one 7305 * entry in the name cache due multiple links or an open file, 7306 * but we don't have the real reference count so flush all 7307 * possible entries. 7308 */ 7309 if (vp->v_count > 1) 7310 dnlc_purge_vp(vp); 7311 7312 /* 7313 * Now we have the real reference count. 7314 */ 7315 isopen = vp->v_count > 1; 7316 } else { 7317 mutex_enter(&rp->r_os_lock); 7318 isopen = list_head(&rp->r_open_streams) != NULL; 7319 mutex_exit(&rp->r_os_lock); 7320 } 7321 7322 mutex_enter(&rp->r_statelock); 7323 if (isopen && 7324 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7325 mutex_exit(&rp->r_statelock); 7326 tmpname = newname(); 7327 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7328 if (e.error) 7329 kmem_free(tmpname, MAXNAMELEN); 7330 else { 7331 mutex_enter(&rp->r_statelock); 7332 if (rp->r_unldvp == NULL) { 7333 VN_HOLD(dvp); 7334 rp->r_unldvp = dvp; 7335 if (rp->r_unlcred != NULL) 7336 crfree(rp->r_unlcred); 7337 crhold(cr); 7338 rp->r_unlcred = cr; 7339 rp->r_unlname = tmpname; 7340 } else { 7341 kmem_free(rp->r_unlname, MAXNAMELEN); 7342 rp->r_unlname = tmpname; 7343 } 7344 mutex_exit(&rp->r_statelock); 7345 } 7346 VN_RELE(vp); 7347 nfs_rw_exit(&drp->r_rwlock); 7348 return (e.error); 7349 } 7350 /* 7351 * Actually remove the file/dir 7352 */ 7353 mutex_exit(&rp->r_statelock); 7354 7355 /* 7356 * We need to flush any dirty pages which happen to 7357 * be hanging around before removing the file. 7358 * This shouldn't happen very often since in NFSv4 7359 * we should be close to open consistent. 7360 */ 7361 if (nfs4_has_pages(vp) && 7362 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7363 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7364 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7365 mutex_enter(&rp->r_statelock); 7366 if (!rp->r_error) 7367 rp->r_error = e.error; 7368 mutex_exit(&rp->r_statelock); 7369 } 7370 } 7371 7372 mi = VTOMI4(dvp); 7373 7374 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7375 recov_state.rs_flags = 0; 7376 recov_state.rs_num_retry_despite_err = 0; 7377 7378 recov_retry: 7379 /* 7380 * Remove ops: putfh dir; remove 7381 */ 7382 args.ctag = TAG_REMOVE; 7383 args.array_len = 3; 7384 args.array = argop; 7385 7386 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7387 if (e.error) { 7388 nfs_rw_exit(&drp->r_rwlock); 7389 VN_RELE(vp); 7390 return (e.error); 7391 } 7392 7393 /* putfh directory */ 7394 argop[0].argop = OP_CPUTFH; 7395 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7396 7397 /* remove */ 7398 argop[1].argop = OP_CREMOVE; 7399 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7400 7401 /* getattr dir */ 7402 argop[2].argop = OP_GETATTR; 7403 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7404 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7405 7406 doqueue = 1; 7407 dinfo.di_time_call = gethrtime(); 7408 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7409 7410 PURGE_ATTRCACHE4(vp); 7411 7412 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7413 if (e.error) 7414 PURGE_ATTRCACHE4(dvp); 7415 7416 if (needrecov) { 7417 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7418 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 7419 if (!e.error) 7420 (void) xdr_free(xdr_COMPOUND4res_clnt, 7421 (caddr_t)&res); 7422 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7423 needrecov); 7424 goto recov_retry; 7425 } 7426 } 7427 7428 /* 7429 * Matching nfs4_end_op() for start_op() above. 7430 * There is a path in the code below which calls 7431 * nfs4_purge_stale_fh(), which may generate otw calls through 7432 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7433 * here to avoid nfs4_start_op() deadlock. 7434 */ 7435 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7436 7437 if (!e.error) { 7438 resp = &res; 7439 7440 if (res.status) { 7441 e.error = geterrno4(res.status); 7442 PURGE_ATTRCACHE4(dvp); 7443 nfs4_purge_stale_fh(e.error, dvp, cr); 7444 } else { 7445 resop = &res.array[1]; /* remove res */ 7446 rm_res = &resop->nfs_resop4_u.opremove; 7447 7448 dinfo.di_garp = 7449 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7450 dinfo.di_cred = cr; 7451 7452 /* Update directory attr, readdir and dnlc caches */ 7453 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7454 &dinfo); 7455 } 7456 } 7457 nfs_rw_exit(&drp->r_rwlock); 7458 if (resp) 7459 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7460 7461 if (e.error == 0) { 7462 vnode_t *tvp; 7463 rnode4_t *trp; 7464 trp = VTOR4(vp); 7465 tvp = vp; 7466 if (IS_SHADOW(vp, trp)) 7467 tvp = RTOV4(trp); 7468 vnevent_remove(tvp, dvp, nm, ct); 7469 } 7470 VN_RELE(vp); 7471 return (e.error); 7472 } 7473 7474 /* 7475 * Link requires that the current fh be the target directory and the 7476 * saved fh be the source fh. After the operation, the current fh is unchanged. 7477 * Thus the compound op structure is: 7478 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7479 * GETATTR(file) 7480 */ 7481 /* ARGSUSED */ 7482 static int 7483 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7484 caller_context_t *ct, int flags) 7485 { 7486 COMPOUND4args_clnt args; 7487 COMPOUND4res_clnt res, *resp = NULL; 7488 LINK4res *ln_res; 7489 int argoplist_size = 7 * sizeof (nfs_argop4); 7490 nfs_argop4 *argop; 7491 nfs_resop4 *resop; 7492 vnode_t *realvp, *nvp; 7493 int doqueue; 7494 mntinfo4_t *mi; 7495 rnode4_t *tdrp; 7496 bool_t needrecov = FALSE; 7497 nfs4_recov_state_t recov_state; 7498 hrtime_t t; 7499 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7500 dirattr_info_t dinfo; 7501 7502 ASSERT(*tnm != '\0'); 7503 ASSERT(tdvp->v_type == VDIR); 7504 ASSERT(nfs4_consistent_type(tdvp)); 7505 ASSERT(nfs4_consistent_type(svp)); 7506 7507 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7508 return (EPERM); 7509 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7510 svp = realvp; 7511 ASSERT(nfs4_consistent_type(svp)); 7512 } 7513 7514 tdrp = VTOR4(tdvp); 7515 mi = VTOMI4(svp); 7516 7517 if (!(mi->mi_flags & MI4_LINK)) { 7518 return (EOPNOTSUPP); 7519 } 7520 recov_state.rs_flags = 0; 7521 recov_state.rs_num_retry_despite_err = 0; 7522 7523 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7524 return (EINTR); 7525 7526 recov_retry: 7527 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7528 7529 args.ctag = TAG_LINK; 7530 7531 /* 7532 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7533 * restorefh; getattr(fl) 7534 */ 7535 args.array_len = 7; 7536 args.array = argop; 7537 7538 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7539 if (e.error) { 7540 kmem_free(argop, argoplist_size); 7541 nfs_rw_exit(&tdrp->r_rwlock); 7542 return (e.error); 7543 } 7544 7545 /* 0. putfh file */ 7546 argop[0].argop = OP_CPUTFH; 7547 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7548 7549 /* 1. save current fh to free up the space for the dir */ 7550 argop[1].argop = OP_SAVEFH; 7551 7552 /* 2. putfh targetdir */ 7553 argop[2].argop = OP_CPUTFH; 7554 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7555 7556 /* 3. link: current_fh is targetdir, saved_fh is source */ 7557 argop[3].argop = OP_CLINK; 7558 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7559 7560 /* 4. Get attributes of dir */ 7561 argop[4].argop = OP_GETATTR; 7562 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7563 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7564 7565 /* 5. If link was successful, restore current vp to file */ 7566 argop[5].argop = OP_RESTOREFH; 7567 7568 /* 6. Get attributes of linked object */ 7569 argop[6].argop = OP_GETATTR; 7570 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7571 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7572 7573 dnlc_remove(tdvp, tnm); 7574 7575 doqueue = 1; 7576 t = gethrtime(); 7577 7578 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7579 7580 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7581 if (e.error != 0 && !needrecov) { 7582 PURGE_ATTRCACHE4(tdvp); 7583 PURGE_ATTRCACHE4(svp); 7584 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7585 goto out; 7586 } 7587 7588 if (needrecov) { 7589 bool_t abort; 7590 7591 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7592 NULL, NULL, OP_LINK, NULL, NULL, NULL); 7593 if (abort == FALSE) { 7594 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7595 needrecov); 7596 kmem_free(argop, argoplist_size); 7597 if (!e.error) 7598 (void) xdr_free(xdr_COMPOUND4res_clnt, 7599 (caddr_t)&res); 7600 goto recov_retry; 7601 } else { 7602 if (e.error != 0) { 7603 PURGE_ATTRCACHE4(tdvp); 7604 PURGE_ATTRCACHE4(svp); 7605 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7606 &recov_state, needrecov); 7607 goto out; 7608 } 7609 /* fall through for res.status case */ 7610 } 7611 } 7612 7613 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7614 7615 resp = &res; 7616 if (res.status) { 7617 /* If link succeeded, then don't return error */ 7618 e.error = geterrno4(res.status); 7619 if (res.array_len <= 4) { 7620 /* 7621 * Either Putfh, Savefh, Putfh dir, or Link failed 7622 */ 7623 PURGE_ATTRCACHE4(svp); 7624 PURGE_ATTRCACHE4(tdvp); 7625 if (e.error == EOPNOTSUPP) { 7626 mutex_enter(&mi->mi_lock); 7627 mi->mi_flags &= ~MI4_LINK; 7628 mutex_exit(&mi->mi_lock); 7629 } 7630 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7631 /* XXX-LP */ 7632 if (e.error == EISDIR && crgetuid(cr) != 0) 7633 e.error = EPERM; 7634 goto out; 7635 } 7636 } 7637 7638 /* either no error or one of the postop getattr failed */ 7639 7640 /* 7641 * XXX - if LINK succeeded, but no attrs were returned for link 7642 * file, purge its cache. 7643 * 7644 * XXX Perform a simplified version of wcc checking. Instead of 7645 * have another getattr to get pre-op, just purge cache if 7646 * any of the ops prior to and including the getattr failed. 7647 * If the getattr succeeded then update the attrcache accordingly. 7648 */ 7649 7650 /* 7651 * update cache with link file postattrs. 7652 * Note: at this point resop points to link res. 7653 */ 7654 resop = &res.array[3]; /* link res */ 7655 ln_res = &resop->nfs_resop4_u.oplink; 7656 if (res.status == NFS4_OK) 7657 e.error = nfs4_update_attrcache(res.status, 7658 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7659 t, svp, cr); 7660 7661 /* 7662 * Call makenfs4node to create the new shadow vp for tnm. 7663 * We pass NULL attrs because we just cached attrs for 7664 * the src object. All we're trying to accomplish is to 7665 * to create the new shadow vnode. 7666 */ 7667 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7668 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh)); 7669 7670 /* Update target cache attribute, readdir and dnlc caches */ 7671 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7672 dinfo.di_time_call = t; 7673 dinfo.di_cred = cr; 7674 7675 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7676 ASSERT(nfs4_consistent_type(tdvp)); 7677 ASSERT(nfs4_consistent_type(svp)); 7678 ASSERT(nfs4_consistent_type(nvp)); 7679 VN_RELE(nvp); 7680 7681 if (!e.error) { 7682 vnode_t *tvp; 7683 rnode4_t *trp; 7684 /* 7685 * Notify the source file of this link operation. 7686 */ 7687 trp = VTOR4(svp); 7688 tvp = svp; 7689 if (IS_SHADOW(svp, trp)) 7690 tvp = RTOV4(trp); 7691 vnevent_link(tvp, ct); 7692 } 7693 out: 7694 kmem_free(argop, argoplist_size); 7695 if (resp) 7696 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7697 7698 nfs_rw_exit(&tdrp->r_rwlock); 7699 7700 return (e.error); 7701 } 7702 7703 /* ARGSUSED */ 7704 static int 7705 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7706 caller_context_t *ct, int flags) 7707 { 7708 vnode_t *realvp; 7709 7710 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7711 return (EPERM); 7712 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7713 ndvp = realvp; 7714 7715 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7716 } 7717 7718 /* 7719 * nfs4rename does the real work of renaming in NFS Version 4. 7720 * 7721 * A file handle is considered volatile for renaming purposes if either 7722 * of the volatile bits are turned on. However, the compound may differ 7723 * based on the likelihood of the filehandle to change during rename. 7724 */ 7725 static int 7726 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7727 caller_context_t *ct) 7728 { 7729 int error; 7730 mntinfo4_t *mi; 7731 vnode_t *nvp = NULL; 7732 vnode_t *ovp = NULL; 7733 char *tmpname = NULL; 7734 rnode4_t *rp; 7735 rnode4_t *odrp; 7736 rnode4_t *ndrp; 7737 int did_link = 0; 7738 int do_link = 1; 7739 nfsstat4 stat = NFS4_OK; 7740 7741 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7742 ASSERT(nfs4_consistent_type(odvp)); 7743 ASSERT(nfs4_consistent_type(ndvp)); 7744 7745 if (onm[0] == '.' && (onm[1] == '\0' || 7746 (onm[1] == '.' && onm[2] == '\0'))) 7747 return (EINVAL); 7748 7749 if (nnm[0] == '.' && (nnm[1] == '\0' || 7750 (nnm[1] == '.' && nnm[2] == '\0'))) 7751 return (EINVAL); 7752 7753 odrp = VTOR4(odvp); 7754 ndrp = VTOR4(ndvp); 7755 if ((intptr_t)odrp < (intptr_t)ndrp) { 7756 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7757 return (EINTR); 7758 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7759 nfs_rw_exit(&odrp->r_rwlock); 7760 return (EINTR); 7761 } 7762 } else { 7763 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7764 return (EINTR); 7765 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7766 nfs_rw_exit(&ndrp->r_rwlock); 7767 return (EINTR); 7768 } 7769 } 7770 7771 /* 7772 * Lookup the target file. If it exists, it needs to be 7773 * checked to see whether it is a mount point and whether 7774 * it is active (open). 7775 */ 7776 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7777 if (!error) { 7778 int isactive; 7779 7780 ASSERT(nfs4_consistent_type(nvp)); 7781 /* 7782 * If this file has been mounted on, then just 7783 * return busy because renaming to it would remove 7784 * the mounted file system from the name space. 7785 */ 7786 if (vn_ismntpt(nvp)) { 7787 VN_RELE(nvp); 7788 nfs_rw_exit(&odrp->r_rwlock); 7789 nfs_rw_exit(&ndrp->r_rwlock); 7790 return (EBUSY); 7791 } 7792 7793 /* 7794 * First just remove the entry from the name cache, as it 7795 * is most likely the only entry for this vp. 7796 */ 7797 dnlc_remove(ndvp, nnm); 7798 7799 rp = VTOR4(nvp); 7800 7801 if (nvp->v_type != VREG) { 7802 /* 7803 * Purge the name cache of all references to this vnode 7804 * so that we can check the reference count to infer 7805 * whether it is active or not. 7806 */ 7807 if (nvp->v_count > 1) 7808 dnlc_purge_vp(nvp); 7809 7810 isactive = nvp->v_count > 1; 7811 } else { 7812 mutex_enter(&rp->r_os_lock); 7813 isactive = list_head(&rp->r_open_streams) != NULL; 7814 mutex_exit(&rp->r_os_lock); 7815 } 7816 7817 /* 7818 * If the vnode is active and is not a directory, 7819 * arrange to rename it to a 7820 * temporary file so that it will continue to be 7821 * accessible. This implements the "unlink-open-file" 7822 * semantics for the target of a rename operation. 7823 * Before doing this though, make sure that the 7824 * source and target files are not already the same. 7825 */ 7826 if (isactive && nvp->v_type != VDIR) { 7827 /* 7828 * Lookup the source name. 7829 */ 7830 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7831 7832 /* 7833 * The source name *should* already exist. 7834 */ 7835 if (error) { 7836 VN_RELE(nvp); 7837 nfs_rw_exit(&odrp->r_rwlock); 7838 nfs_rw_exit(&ndrp->r_rwlock); 7839 return (error); 7840 } 7841 7842 ASSERT(nfs4_consistent_type(ovp)); 7843 7844 /* 7845 * Compare the two vnodes. If they are the same, 7846 * just release all held vnodes and return success. 7847 */ 7848 if (VN_CMP(ovp, nvp)) { 7849 VN_RELE(ovp); 7850 VN_RELE(nvp); 7851 nfs_rw_exit(&odrp->r_rwlock); 7852 nfs_rw_exit(&ndrp->r_rwlock); 7853 return (0); 7854 } 7855 7856 /* 7857 * Can't mix and match directories and non- 7858 * directories in rename operations. We already 7859 * know that the target is not a directory. If 7860 * the source is a directory, return an error. 7861 */ 7862 if (ovp->v_type == VDIR) { 7863 VN_RELE(ovp); 7864 VN_RELE(nvp); 7865 nfs_rw_exit(&odrp->r_rwlock); 7866 nfs_rw_exit(&ndrp->r_rwlock); 7867 return (ENOTDIR); 7868 } 7869 link_call: 7870 /* 7871 * The target file exists, is not the same as 7872 * the source file, and is active. We first 7873 * try to Link it to a temporary filename to 7874 * avoid having the server removing the file 7875 * completely (which could cause data loss to 7876 * the user's POV in the event the Rename fails 7877 * -- see bug 1165874). 7878 */ 7879 /* 7880 * The do_link and did_link booleans are 7881 * introduced in the event we get NFS4ERR_FILE_OPEN 7882 * returned for the Rename. Some servers can 7883 * not Rename over an Open file, so they return 7884 * this error. The client needs to Remove the 7885 * newly created Link and do two Renames, just 7886 * as if the server didn't support LINK. 7887 */ 7888 tmpname = newname(); 7889 error = 0; 7890 7891 if (do_link) { 7892 error = nfs4_link(ndvp, nvp, tmpname, cr, 7893 NULL, 0); 7894 } 7895 if (error == EOPNOTSUPP || !do_link) { 7896 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7897 cr, NULL, 0); 7898 did_link = 0; 7899 } else { 7900 did_link = 1; 7901 } 7902 if (error) { 7903 kmem_free(tmpname, MAXNAMELEN); 7904 VN_RELE(ovp); 7905 VN_RELE(nvp); 7906 nfs_rw_exit(&odrp->r_rwlock); 7907 nfs_rw_exit(&ndrp->r_rwlock); 7908 return (error); 7909 } 7910 7911 mutex_enter(&rp->r_statelock); 7912 if (rp->r_unldvp == NULL) { 7913 VN_HOLD(ndvp); 7914 rp->r_unldvp = ndvp; 7915 if (rp->r_unlcred != NULL) 7916 crfree(rp->r_unlcred); 7917 crhold(cr); 7918 rp->r_unlcred = cr; 7919 rp->r_unlname = tmpname; 7920 } else { 7921 if (rp->r_unlname) 7922 kmem_free(rp->r_unlname, MAXNAMELEN); 7923 rp->r_unlname = tmpname; 7924 } 7925 mutex_exit(&rp->r_statelock); 7926 } 7927 7928 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7929 7930 ASSERT(nfs4_consistent_type(nvp)); 7931 } 7932 7933 if (ovp == NULL) { 7934 /* 7935 * When renaming directories to be a subdirectory of a 7936 * different parent, the dnlc entry for ".." will no 7937 * longer be valid, so it must be removed. 7938 * 7939 * We do a lookup here to determine whether we are renaming 7940 * a directory and we need to check if we are renaming 7941 * an unlinked file. This might have already been done 7942 * in previous code, so we check ovp == NULL to avoid 7943 * doing it twice. 7944 */ 7945 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7946 /* 7947 * The source name *should* already exist. 7948 */ 7949 if (error) { 7950 nfs_rw_exit(&odrp->r_rwlock); 7951 nfs_rw_exit(&ndrp->r_rwlock); 7952 if (nvp) { 7953 VN_RELE(nvp); 7954 } 7955 return (error); 7956 } 7957 ASSERT(ovp != NULL); 7958 ASSERT(nfs4_consistent_type(ovp)); 7959 } 7960 7961 /* 7962 * Is the object being renamed a dir, and if so, is 7963 * it being renamed to a child of itself? The underlying 7964 * fs should ultimately return EINVAL for this case; 7965 * however, buggy beta non-Solaris NFSv4 servers at 7966 * interop testing events have allowed this behavior, 7967 * and it caused our client to panic due to a recursive 7968 * mutex_enter in fn_move. 7969 * 7970 * The tedious locking in fn_move could be changed to 7971 * deal with this case, and the client could avoid the 7972 * panic; however, the client would just confuse itself 7973 * later and misbehave. A better way to handle the broken 7974 * server is to detect this condition and return EINVAL 7975 * without ever sending the the bogus rename to the server. 7976 * We know the rename is invalid -- just fail it now. 7977 */ 7978 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7979 VN_RELE(ovp); 7980 nfs_rw_exit(&odrp->r_rwlock); 7981 nfs_rw_exit(&ndrp->r_rwlock); 7982 if (nvp) { 7983 VN_RELE(nvp); 7984 } 7985 return (EINVAL); 7986 } 7987 7988 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7989 7990 /* 7991 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7992 * possible for the filehandle to change due to the rename. 7993 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7994 * the fh will not change because of the rename, but we still need 7995 * to update its rnode entry with the new name for 7996 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7997 * has no effect on these for now, but for future improvements, 7998 * we might want to use it too to simplify handling of files 7999 * that are open with that flag on. (XXX) 8000 */ 8001 mi = VTOMI4(odvp); 8002 if (NFS4_VOLATILE_FH(mi)) 8003 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 8004 &stat); 8005 else 8006 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 8007 &stat); 8008 8009 ASSERT(nfs4_consistent_type(odvp)); 8010 ASSERT(nfs4_consistent_type(ndvp)); 8011 ASSERT(nfs4_consistent_type(ovp)); 8012 8013 if (stat == NFS4ERR_FILE_OPEN && did_link) { 8014 do_link = 0; 8015 /* 8016 * Before the 'link_call' code, we did a nfs4_lookup 8017 * that puts a VN_HOLD on nvp. After the nfs4_link 8018 * call we call VN_RELE to match that hold. We need 8019 * to place an additional VN_HOLD here since we will 8020 * be hitting that VN_RELE again. 8021 */ 8022 VN_HOLD(nvp); 8023 8024 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 8025 8026 /* Undo the unlinked file naming stuff we just did */ 8027 mutex_enter(&rp->r_statelock); 8028 if (rp->r_unldvp) { 8029 VN_RELE(ndvp); 8030 rp->r_unldvp = NULL; 8031 if (rp->r_unlcred != NULL) 8032 crfree(rp->r_unlcred); 8033 rp->r_unlcred = NULL; 8034 /* rp->r_unlanme points to tmpname */ 8035 if (rp->r_unlname) 8036 kmem_free(rp->r_unlname, MAXNAMELEN); 8037 rp->r_unlname = NULL; 8038 } 8039 mutex_exit(&rp->r_statelock); 8040 8041 if (nvp) { 8042 VN_RELE(nvp); 8043 } 8044 goto link_call; 8045 } 8046 8047 if (error) { 8048 VN_RELE(ovp); 8049 nfs_rw_exit(&odrp->r_rwlock); 8050 nfs_rw_exit(&ndrp->r_rwlock); 8051 if (nvp) { 8052 VN_RELE(nvp); 8053 } 8054 return (error); 8055 } 8056 8057 /* 8058 * when renaming directories to be a subdirectory of a 8059 * different parent, the dnlc entry for ".." will no 8060 * longer be valid, so it must be removed 8061 */ 8062 rp = VTOR4(ovp); 8063 if (ndvp != odvp) { 8064 if (ovp->v_type == VDIR) { 8065 dnlc_remove(ovp, ".."); 8066 if (rp->r_dir != NULL) 8067 nfs4_purge_rddir_cache(ovp); 8068 } 8069 } 8070 8071 /* 8072 * If we are renaming the unlinked file, update the 8073 * r_unldvp and r_unlname as needed. 8074 */ 8075 mutex_enter(&rp->r_statelock); 8076 if (rp->r_unldvp != NULL) { 8077 if (strcmp(rp->r_unlname, onm) == 0) { 8078 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 8079 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 8080 if (ndvp != rp->r_unldvp) { 8081 VN_RELE(rp->r_unldvp); 8082 rp->r_unldvp = ndvp; 8083 VN_HOLD(ndvp); 8084 } 8085 } 8086 } 8087 mutex_exit(&rp->r_statelock); 8088 8089 /* 8090 * Notify the rename vnevents to source vnode, and to the target 8091 * vnode if it already existed. 8092 */ 8093 if (error == 0) { 8094 vnode_t *tvp; 8095 rnode4_t *trp; 8096 /* 8097 * Notify the vnode. Each links is represented by 8098 * a different vnode, in nfsv4. 8099 */ 8100 if (nvp) { 8101 trp = VTOR4(nvp); 8102 tvp = nvp; 8103 if (IS_SHADOW(nvp, trp)) 8104 tvp = RTOV4(trp); 8105 vnevent_rename_dest(tvp, ndvp, nnm, ct); 8106 } 8107 8108 /* 8109 * if the source and destination directory are not the 8110 * same notify the destination directory. 8111 */ 8112 if (VTOR4(odvp) != VTOR4(ndvp)) { 8113 trp = VTOR4(ndvp); 8114 tvp = ndvp; 8115 if (IS_SHADOW(ndvp, trp)) 8116 tvp = RTOV4(trp); 8117 vnevent_rename_dest_dir(tvp, ct); 8118 } 8119 8120 trp = VTOR4(ovp); 8121 tvp = ovp; 8122 if (IS_SHADOW(ovp, trp)) 8123 tvp = RTOV4(trp); 8124 vnevent_rename_src(tvp, odvp, onm, ct); 8125 } 8126 8127 if (nvp) { 8128 VN_RELE(nvp); 8129 } 8130 VN_RELE(ovp); 8131 8132 nfs_rw_exit(&odrp->r_rwlock); 8133 nfs_rw_exit(&ndrp->r_rwlock); 8134 8135 return (error); 8136 } 8137 8138 /* 8139 * When the parent directory has changed, sv_dfh must be updated 8140 */ 8141 static void 8142 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp) 8143 { 8144 svnode_t *sv = VTOSV(vp); 8145 nfs4_sharedfh_t *old_dfh = sv->sv_dfh; 8146 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh; 8147 8148 sfh4_hold(new_dfh); 8149 sv->sv_dfh = new_dfh; 8150 sfh4_rele(&old_dfh); 8151 } 8152 8153 /* 8154 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8155 * when it is known that the filehandle is persistent through rename. 8156 * 8157 * Rename requires that the current fh be the target directory and the 8158 * saved fh be the source directory. After the operation, the current fh 8159 * is unchanged. 8160 * The compound op structure for persistent fh rename is: 8161 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8162 * Rather than bother with the directory postop args, we'll simply 8163 * update that a change occurred in the cache, so no post-op getattrs. 8164 */ 8165 static int 8166 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8167 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8168 { 8169 COMPOUND4args_clnt args; 8170 COMPOUND4res_clnt res, *resp = NULL; 8171 nfs_argop4 *argop; 8172 nfs_resop4 *resop; 8173 int doqueue, argoplist_size; 8174 mntinfo4_t *mi; 8175 rnode4_t *odrp = VTOR4(odvp); 8176 rnode4_t *ndrp = VTOR4(ndvp); 8177 RENAME4res *rn_res; 8178 bool_t needrecov; 8179 nfs4_recov_state_t recov_state; 8180 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8181 dirattr_info_t dinfo, *dinfop; 8182 8183 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8184 8185 recov_state.rs_flags = 0; 8186 recov_state.rs_num_retry_despite_err = 0; 8187 8188 /* 8189 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8190 * 8191 * If source/target are different dirs, then append putfh(src); getattr 8192 */ 8193 args.array_len = (odvp == ndvp) ? 5 : 7; 8194 argoplist_size = args.array_len * sizeof (nfs_argop4); 8195 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8196 8197 recov_retry: 8198 *statp = NFS4_OK; 8199 8200 /* No need to Lookup the file, persistent fh */ 8201 args.ctag = TAG_RENAME; 8202 8203 mi = VTOMI4(odvp); 8204 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8205 if (e.error) { 8206 kmem_free(argop, argoplist_size); 8207 return (e.error); 8208 } 8209 8210 /* 0: putfh source directory */ 8211 argop[0].argop = OP_CPUTFH; 8212 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8213 8214 /* 1: Save source fh to free up current for target */ 8215 argop[1].argop = OP_SAVEFH; 8216 8217 /* 2: putfh targetdir */ 8218 argop[2].argop = OP_CPUTFH; 8219 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8220 8221 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8222 argop[3].argop = OP_CRENAME; 8223 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8224 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8225 8226 /* 4: getattr (targetdir) */ 8227 argop[4].argop = OP_GETATTR; 8228 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8229 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8230 8231 if (ndvp != odvp) { 8232 8233 /* 5: putfh (sourcedir) */ 8234 argop[5].argop = OP_CPUTFH; 8235 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8236 8237 /* 6: getattr (sourcedir) */ 8238 argop[6].argop = OP_GETATTR; 8239 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8240 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8241 } 8242 8243 dnlc_remove(odvp, onm); 8244 dnlc_remove(ndvp, nnm); 8245 8246 doqueue = 1; 8247 dinfo.di_time_call = gethrtime(); 8248 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8249 8250 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8251 if (e.error) { 8252 PURGE_ATTRCACHE4(odvp); 8253 PURGE_ATTRCACHE4(ndvp); 8254 } else { 8255 *statp = res.status; 8256 } 8257 8258 if (needrecov) { 8259 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8260 OP_RENAME, NULL, NULL, NULL) == FALSE) { 8261 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8262 if (!e.error) 8263 (void) xdr_free(xdr_COMPOUND4res_clnt, 8264 (caddr_t)&res); 8265 goto recov_retry; 8266 } 8267 } 8268 8269 if (!e.error) { 8270 resp = &res; 8271 /* 8272 * as long as OP_RENAME 8273 */ 8274 if (res.status != NFS4_OK && res.array_len <= 4) { 8275 e.error = geterrno4(res.status); 8276 PURGE_ATTRCACHE4(odvp); 8277 PURGE_ATTRCACHE4(ndvp); 8278 /* 8279 * System V defines rename to return EEXIST, not 8280 * ENOTEMPTY if the target directory is not empty. 8281 * Over the wire, the error is NFSERR_ENOTEMPTY 8282 * which geterrno4 maps to ENOTEMPTY. 8283 */ 8284 if (e.error == ENOTEMPTY) 8285 e.error = EEXIST; 8286 } else { 8287 8288 resop = &res.array[3]; /* rename res */ 8289 rn_res = &resop->nfs_resop4_u.oprename; 8290 8291 if (res.status == NFS4_OK) { 8292 /* 8293 * Update target attribute, readdir and dnlc 8294 * caches. 8295 */ 8296 dinfo.di_garp = 8297 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8298 dinfo.di_cred = cr; 8299 dinfop = &dinfo; 8300 } else 8301 dinfop = NULL; 8302 8303 nfs4_update_dircaches(&rn_res->target_cinfo, 8304 ndvp, NULL, NULL, dinfop); 8305 8306 /* 8307 * Update source attribute, readdir and dnlc caches 8308 * 8309 */ 8310 if (ndvp != odvp) { 8311 update_parentdir_sfh(renvp, ndvp); 8312 8313 if (dinfop) 8314 dinfo.di_garp = 8315 &(res.array[6].nfs_resop4_u. 8316 opgetattr.ga_res); 8317 8318 nfs4_update_dircaches(&rn_res->source_cinfo, 8319 odvp, NULL, NULL, dinfop); 8320 } 8321 8322 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8323 nnm); 8324 } 8325 } 8326 8327 if (resp) 8328 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8329 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8330 kmem_free(argop, argoplist_size); 8331 8332 return (e.error); 8333 } 8334 8335 /* 8336 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8337 * it is possible for the filehandle to change due to the rename. 8338 * 8339 * The compound req in this case includes a post-rename lookup and getattr 8340 * to ensure that we have the correct fh and attributes for the object. 8341 * 8342 * Rename requires that the current fh be the target directory and the 8343 * saved fh be the source directory. After the operation, the current fh 8344 * is unchanged. 8345 * 8346 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8347 * update the filehandle for the renamed object. We also get the old 8348 * filehandle for historical reasons; this should be taken out sometime. 8349 * This results in a rather cumbersome compound... 8350 * 8351 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8352 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8353 * 8354 */ 8355 static int 8356 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8357 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8358 { 8359 COMPOUND4args_clnt args; 8360 COMPOUND4res_clnt res, *resp = NULL; 8361 int argoplist_size; 8362 nfs_argop4 *argop; 8363 nfs_resop4 *resop; 8364 int doqueue; 8365 mntinfo4_t *mi; 8366 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8367 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8368 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8369 RENAME4res *rn_res; 8370 GETFH4res *ngf_res; 8371 bool_t needrecov; 8372 nfs4_recov_state_t recov_state; 8373 hrtime_t t; 8374 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8375 dirattr_info_t dinfo, *dinfop = &dinfo; 8376 8377 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8378 8379 recov_state.rs_flags = 0; 8380 recov_state.rs_num_retry_despite_err = 0; 8381 8382 recov_retry: 8383 *statp = NFS4_OK; 8384 8385 /* 8386 * There is a window between the RPC and updating the path and 8387 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8388 * code, so that it doesn't try to use the old path during that 8389 * window. 8390 */ 8391 mutex_enter(&orp->r_statelock); 8392 while (orp->r_flags & R4RECEXPFH) { 8393 klwp_t *lwp = ttolwp(curthread); 8394 8395 if (lwp != NULL) 8396 lwp->lwp_nostop++; 8397 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8398 mutex_exit(&orp->r_statelock); 8399 if (lwp != NULL) 8400 lwp->lwp_nostop--; 8401 return (EINTR); 8402 } 8403 if (lwp != NULL) 8404 lwp->lwp_nostop--; 8405 } 8406 orp->r_flags |= R4RECEXPFH; 8407 mutex_exit(&orp->r_statelock); 8408 8409 mi = VTOMI4(odvp); 8410 8411 args.ctag = TAG_RENAME_VFH; 8412 args.array_len = (odvp == ndvp) ? 10 : 12; 8413 argoplist_size = args.array_len * sizeof (nfs_argop4); 8414 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8415 8416 /* 8417 * Rename ops: 8418 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8419 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8420 * LOOKUP(trgt), GETFH(new), GETATTR, 8421 * 8422 * if (odvp != ndvp) 8423 * add putfh(sourcedir), getattr(sourcedir) } 8424 */ 8425 args.array = argop; 8426 8427 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8428 &recov_state, NULL); 8429 if (e.error) { 8430 kmem_free(argop, argoplist_size); 8431 mutex_enter(&orp->r_statelock); 8432 orp->r_flags &= ~R4RECEXPFH; 8433 cv_broadcast(&orp->r_cv); 8434 mutex_exit(&orp->r_statelock); 8435 return (e.error); 8436 } 8437 8438 /* 0: putfh source directory */ 8439 argop[0].argop = OP_CPUTFH; 8440 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8441 8442 /* 1: Save source fh to free up current for target */ 8443 argop[1].argop = OP_SAVEFH; 8444 8445 /* 2: Lookup pre-rename fh of renamed object */ 8446 argop[2].argop = OP_CLOOKUP; 8447 argop[2].nfs_argop4_u.opclookup.cname = onm; 8448 8449 /* 3: getfh fh of renamed object (before rename) */ 8450 argop[3].argop = OP_GETFH; 8451 8452 /* 4: putfh targetdir */ 8453 argop[4].argop = OP_CPUTFH; 8454 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8455 8456 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8457 argop[5].argop = OP_CRENAME; 8458 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8459 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8460 8461 /* 6: getattr of target dir (post op attrs) */ 8462 argop[6].argop = OP_GETATTR; 8463 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8464 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8465 8466 /* 7: Lookup post-rename fh of renamed object */ 8467 argop[7].argop = OP_CLOOKUP; 8468 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8469 8470 /* 8: getfh fh of renamed object (after rename) */ 8471 argop[8].argop = OP_GETFH; 8472 8473 /* 9: getattr of renamed object */ 8474 argop[9].argop = OP_GETATTR; 8475 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8476 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8477 8478 /* 8479 * If source/target dirs are different, then get new post-op 8480 * attrs for source dir also. 8481 */ 8482 if (ndvp != odvp) { 8483 /* 10: putfh (sourcedir) */ 8484 argop[10].argop = OP_CPUTFH; 8485 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8486 8487 /* 11: getattr (sourcedir) */ 8488 argop[11].argop = OP_GETATTR; 8489 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8490 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8491 } 8492 8493 dnlc_remove(odvp, onm); 8494 dnlc_remove(ndvp, nnm); 8495 8496 doqueue = 1; 8497 t = gethrtime(); 8498 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8499 8500 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8501 if (e.error) { 8502 PURGE_ATTRCACHE4(odvp); 8503 PURGE_ATTRCACHE4(ndvp); 8504 if (!needrecov) { 8505 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8506 &recov_state, needrecov); 8507 goto out; 8508 } 8509 } else { 8510 *statp = res.status; 8511 } 8512 8513 if (needrecov) { 8514 bool_t abort; 8515 8516 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8517 OP_RENAME, NULL, NULL, NULL); 8518 if (abort == FALSE) { 8519 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8520 &recov_state, needrecov); 8521 kmem_free(argop, argoplist_size); 8522 if (!e.error) 8523 (void) xdr_free(xdr_COMPOUND4res_clnt, 8524 (caddr_t)&res); 8525 mutex_enter(&orp->r_statelock); 8526 orp->r_flags &= ~R4RECEXPFH; 8527 cv_broadcast(&orp->r_cv); 8528 mutex_exit(&orp->r_statelock); 8529 goto recov_retry; 8530 } else { 8531 if (e.error != 0) { 8532 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8533 &recov_state, needrecov); 8534 goto out; 8535 } 8536 /* fall through for res.status case */ 8537 } 8538 } 8539 8540 resp = &res; 8541 /* 8542 * If OP_RENAME (or any prev op) failed, then return an error. 8543 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8544 */ 8545 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8546 /* 8547 * Error in an op other than last Getattr 8548 */ 8549 e.error = geterrno4(res.status); 8550 PURGE_ATTRCACHE4(odvp); 8551 PURGE_ATTRCACHE4(ndvp); 8552 /* 8553 * System V defines rename to return EEXIST, not 8554 * ENOTEMPTY if the target directory is not empty. 8555 * Over the wire, the error is NFSERR_ENOTEMPTY 8556 * which geterrno4 maps to ENOTEMPTY. 8557 */ 8558 if (e.error == ENOTEMPTY) 8559 e.error = EEXIST; 8560 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8561 needrecov); 8562 goto out; 8563 } 8564 8565 /* rename results */ 8566 rn_res = &res.array[5].nfs_resop4_u.oprename; 8567 8568 if (res.status == NFS4_OK) { 8569 /* Update target attribute, readdir and dnlc caches */ 8570 dinfo.di_garp = 8571 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8572 dinfo.di_cred = cr; 8573 dinfo.di_time_call = t; 8574 } else 8575 dinfop = NULL; 8576 8577 /* Update source cache attribute, readdir and dnlc caches */ 8578 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8579 8580 /* Update source cache attribute, readdir and dnlc caches */ 8581 if (ndvp != odvp) { 8582 update_parentdir_sfh(ovp, ndvp); 8583 8584 /* 8585 * If dinfop is non-NULL, then compound succeded, so 8586 * set di_garp to attrs for source dir. dinfop is only 8587 * set to NULL when compound fails. 8588 */ 8589 if (dinfop) 8590 dinfo.di_garp = 8591 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8592 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8593 dinfop); 8594 } 8595 8596 /* 8597 * Update the rnode with the new component name and args, 8598 * and if the file handle changed, also update it with the new fh. 8599 * This is only necessary if the target object has an rnode 8600 * entry and there is no need to create one for it. 8601 */ 8602 resop = &res.array[8]; /* getfh new res */ 8603 ngf_res = &resop->nfs_resop4_u.opgetfh; 8604 8605 /* 8606 * Update the path and filehandle for the renamed object. 8607 */ 8608 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8609 8610 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8611 8612 if (res.status == NFS4_OK) { 8613 resop++; /* getattr res */ 8614 e.error = nfs4_update_attrcache(res.status, 8615 &resop->nfs_resop4_u.opgetattr.ga_res, 8616 t, ovp, cr); 8617 } 8618 8619 out: 8620 kmem_free(argop, argoplist_size); 8621 if (resp) 8622 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8623 mutex_enter(&orp->r_statelock); 8624 orp->r_flags &= ~R4RECEXPFH; 8625 cv_broadcast(&orp->r_cv); 8626 mutex_exit(&orp->r_statelock); 8627 8628 return (e.error); 8629 } 8630 8631 /* ARGSUSED */ 8632 static int 8633 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8634 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8635 { 8636 int error; 8637 vnode_t *vp; 8638 8639 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8640 return (EPERM); 8641 /* 8642 * As ".." has special meaning and rather than send a mkdir 8643 * over the wire to just let the server freak out, we just 8644 * short circuit it here and return EEXIST 8645 */ 8646 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8647 return (EEXIST); 8648 8649 /* 8650 * Decision to get the right gid and setgid bit of the 8651 * new directory is now made in call_nfs4_create_req. 8652 */ 8653 va->va_mask |= AT_MODE; 8654 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8655 if (error) 8656 return (error); 8657 8658 *vpp = vp; 8659 return (0); 8660 } 8661 8662 8663 /* 8664 * rmdir is using the same remove v4 op as does remove. 8665 * Remove requires that the current fh be the target directory. 8666 * After the operation, the current fh is unchanged. 8667 * The compound op structure is: 8668 * PUTFH(targetdir), REMOVE 8669 */ 8670 /*ARGSUSED4*/ 8671 static int 8672 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8673 caller_context_t *ct, int flags) 8674 { 8675 int need_end_op = FALSE; 8676 COMPOUND4args_clnt args; 8677 COMPOUND4res_clnt res, *resp = NULL; 8678 REMOVE4res *rm_res; 8679 nfs_argop4 argop[3]; 8680 nfs_resop4 *resop; 8681 vnode_t *vp; 8682 int doqueue; 8683 mntinfo4_t *mi; 8684 rnode4_t *drp; 8685 bool_t needrecov = FALSE; 8686 nfs4_recov_state_t recov_state; 8687 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8688 dirattr_info_t dinfo, *dinfop; 8689 8690 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8691 return (EPERM); 8692 /* 8693 * As ".." has special meaning and rather than send a rmdir 8694 * over the wire to just let the server freak out, we just 8695 * short circuit it here and return EEXIST 8696 */ 8697 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8698 return (EEXIST); 8699 8700 drp = VTOR4(dvp); 8701 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8702 return (EINTR); 8703 8704 /* 8705 * Attempt to prevent a rmdir(".") from succeeding. 8706 */ 8707 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8708 if (e.error) { 8709 nfs_rw_exit(&drp->r_rwlock); 8710 return (e.error); 8711 } 8712 if (vp == cdir) { 8713 VN_RELE(vp); 8714 nfs_rw_exit(&drp->r_rwlock); 8715 return (EINVAL); 8716 } 8717 8718 /* 8719 * Since nfsv4 remove op works on both files and directories, 8720 * check that the removed object is indeed a directory. 8721 */ 8722 if (vp->v_type != VDIR) { 8723 VN_RELE(vp); 8724 nfs_rw_exit(&drp->r_rwlock); 8725 return (ENOTDIR); 8726 } 8727 8728 /* 8729 * First just remove the entry from the name cache, as it 8730 * is most likely an entry for this vp. 8731 */ 8732 dnlc_remove(dvp, nm); 8733 8734 /* 8735 * If there vnode reference count is greater than one, then 8736 * there may be additional references in the DNLC which will 8737 * need to be purged. First, trying removing the entry for 8738 * the parent directory and see if that removes the additional 8739 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8740 * to completely remove any references to the directory which 8741 * might still exist in the DNLC. 8742 */ 8743 if (vp->v_count > 1) { 8744 dnlc_remove(vp, ".."); 8745 if (vp->v_count > 1) 8746 dnlc_purge_vp(vp); 8747 } 8748 8749 mi = VTOMI4(dvp); 8750 recov_state.rs_flags = 0; 8751 recov_state.rs_num_retry_despite_err = 0; 8752 8753 recov_retry: 8754 args.ctag = TAG_RMDIR; 8755 8756 /* 8757 * Rmdir ops: putfh dir; remove 8758 */ 8759 args.array_len = 3; 8760 args.array = argop; 8761 8762 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8763 if (e.error) { 8764 nfs_rw_exit(&drp->r_rwlock); 8765 return (e.error); 8766 } 8767 need_end_op = TRUE; 8768 8769 /* putfh directory */ 8770 argop[0].argop = OP_CPUTFH; 8771 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8772 8773 /* remove */ 8774 argop[1].argop = OP_CREMOVE; 8775 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8776 8777 /* getattr (postop attrs for dir that contained removed dir) */ 8778 argop[2].argop = OP_GETATTR; 8779 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8780 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8781 8782 dinfo.di_time_call = gethrtime(); 8783 doqueue = 1; 8784 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8785 8786 PURGE_ATTRCACHE4(vp); 8787 8788 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8789 if (e.error) { 8790 PURGE_ATTRCACHE4(dvp); 8791 } 8792 8793 if (needrecov) { 8794 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8795 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 8796 if (!e.error) 8797 (void) xdr_free(xdr_COMPOUND4res_clnt, 8798 (caddr_t)&res); 8799 8800 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8801 needrecov); 8802 need_end_op = FALSE; 8803 goto recov_retry; 8804 } 8805 } 8806 8807 if (!e.error) { 8808 resp = &res; 8809 8810 /* 8811 * Only return error if first 2 ops (OP_REMOVE or earlier) 8812 * failed. 8813 */ 8814 if (res.status != NFS4_OK && res.array_len <= 2) { 8815 e.error = geterrno4(res.status); 8816 PURGE_ATTRCACHE4(dvp); 8817 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8818 &recov_state, needrecov); 8819 need_end_op = FALSE; 8820 nfs4_purge_stale_fh(e.error, dvp, cr); 8821 /* 8822 * System V defines rmdir to return EEXIST, not 8823 * ENOTEMPTY if the directory is not empty. Over 8824 * the wire, the error is NFSERR_ENOTEMPTY which 8825 * geterrno4 maps to ENOTEMPTY. 8826 */ 8827 if (e.error == ENOTEMPTY) 8828 e.error = EEXIST; 8829 } else { 8830 resop = &res.array[1]; /* remove res */ 8831 rm_res = &resop->nfs_resop4_u.opremove; 8832 8833 if (res.status == NFS4_OK) { 8834 resop = &res.array[2]; /* dir attrs */ 8835 dinfo.di_garp = 8836 &resop->nfs_resop4_u.opgetattr.ga_res; 8837 dinfo.di_cred = cr; 8838 dinfop = &dinfo; 8839 } else 8840 dinfop = NULL; 8841 8842 /* Update dir attribute, readdir and dnlc caches */ 8843 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8844 dinfop); 8845 8846 /* destroy rddir cache for dir that was removed */ 8847 if (VTOR4(vp)->r_dir != NULL) 8848 nfs4_purge_rddir_cache(vp); 8849 } 8850 } 8851 8852 if (need_end_op) 8853 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8854 8855 nfs_rw_exit(&drp->r_rwlock); 8856 8857 if (resp) 8858 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8859 8860 if (e.error == 0) { 8861 vnode_t *tvp; 8862 rnode4_t *trp; 8863 trp = VTOR4(vp); 8864 tvp = vp; 8865 if (IS_SHADOW(vp, trp)) 8866 tvp = RTOV4(trp); 8867 vnevent_rmdir(tvp, dvp, nm, ct); 8868 } 8869 8870 VN_RELE(vp); 8871 8872 return (e.error); 8873 } 8874 8875 /* ARGSUSED */ 8876 static int 8877 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8878 caller_context_t *ct, int flags) 8879 { 8880 int error; 8881 vnode_t *vp; 8882 rnode4_t *rp; 8883 char *contents; 8884 mntinfo4_t *mi = VTOMI4(dvp); 8885 8886 if (nfs_zone() != mi->mi_zone) 8887 return (EPERM); 8888 if (!(mi->mi_flags & MI4_SYMLINK)) 8889 return (EOPNOTSUPP); 8890 8891 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8892 if (error) 8893 return (error); 8894 8895 ASSERT(nfs4_consistent_type(vp)); 8896 rp = VTOR4(vp); 8897 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8898 8899 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8900 8901 if (contents != NULL) { 8902 mutex_enter(&rp->r_statelock); 8903 if (rp->r_symlink.contents == NULL) { 8904 rp->r_symlink.len = strlen(tnm); 8905 bcopy(tnm, contents, rp->r_symlink.len); 8906 rp->r_symlink.contents = contents; 8907 rp->r_symlink.size = MAXPATHLEN; 8908 mutex_exit(&rp->r_statelock); 8909 } else { 8910 mutex_exit(&rp->r_statelock); 8911 kmem_free((void *)contents, MAXPATHLEN); 8912 } 8913 } 8914 } 8915 VN_RELE(vp); 8916 8917 return (error); 8918 } 8919 8920 8921 /* 8922 * Read directory entries. 8923 * There are some weird things to look out for here. The uio_loffset 8924 * field is either 0 or it is the offset returned from a previous 8925 * readdir. It is an opaque value used by the server to find the 8926 * correct directory block to read. The count field is the number 8927 * of blocks to read on the server. This is advisory only, the server 8928 * may return only one block's worth of entries. Entries may be compressed 8929 * on the server. 8930 */ 8931 /* ARGSUSED */ 8932 static int 8933 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8934 caller_context_t *ct, int flags) 8935 { 8936 int error; 8937 uint_t count; 8938 rnode4_t *rp; 8939 rddir4_cache *rdc; 8940 rddir4_cache *rrdc; 8941 8942 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8943 return (EIO); 8944 rp = VTOR4(vp); 8945 8946 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8947 8948 /* 8949 * Make sure that the directory cache is valid. 8950 */ 8951 if (rp->r_dir != NULL) { 8952 if (nfs_disable_rddir_cache != 0) { 8953 /* 8954 * Setting nfs_disable_rddir_cache in /etc/system 8955 * allows interoperability with servers that do not 8956 * properly update the attributes of directories. 8957 * Any cached information gets purged before an 8958 * access is made to it. 8959 */ 8960 nfs4_purge_rddir_cache(vp); 8961 } 8962 8963 error = nfs4_validate_caches(vp, cr); 8964 if (error) 8965 return (error); 8966 } 8967 8968 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8969 8970 /* 8971 * Short circuit last readdir which always returns 0 bytes. 8972 * This can be done after the directory has been read through 8973 * completely at least once. This will set r_direof which 8974 * can be used to find the value of the last cookie. 8975 */ 8976 mutex_enter(&rp->r_statelock); 8977 if (rp->r_direof != NULL && 8978 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8979 mutex_exit(&rp->r_statelock); 8980 #ifdef DEBUG 8981 nfs4_readdir_cache_shorts++; 8982 #endif 8983 if (eofp) 8984 *eofp = 1; 8985 return (0); 8986 } 8987 8988 /* 8989 * Look for a cache entry. Cache entries are identified 8990 * by the NFS cookie value and the byte count requested. 8991 */ 8992 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8993 8994 /* 8995 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8996 */ 8997 if (rdc == NULL) { 8998 mutex_exit(&rp->r_statelock); 8999 return (EINTR); 9000 } 9001 9002 /* 9003 * Check to see if we need to fill this entry in. 9004 */ 9005 if (rdc->flags & RDDIRREQ) { 9006 rdc->flags &= ~RDDIRREQ; 9007 rdc->flags |= RDDIR; 9008 mutex_exit(&rp->r_statelock); 9009 9010 /* 9011 * Do the readdir. 9012 */ 9013 nfs4readdir(vp, rdc, cr); 9014 9015 /* 9016 * Reacquire the lock, so that we can continue 9017 */ 9018 mutex_enter(&rp->r_statelock); 9019 /* 9020 * The entry is now complete 9021 */ 9022 rdc->flags &= ~RDDIR; 9023 } 9024 9025 ASSERT(!(rdc->flags & RDDIR)); 9026 9027 /* 9028 * If an error occurred while attempting 9029 * to fill the cache entry, mark the entry invalid and 9030 * just return the error. 9031 */ 9032 if (rdc->error) { 9033 error = rdc->error; 9034 rdc->flags |= RDDIRREQ; 9035 rddir4_cache_rele(rp, rdc); 9036 mutex_exit(&rp->r_statelock); 9037 return (error); 9038 } 9039 9040 /* 9041 * The cache entry is complete and good, 9042 * copyout the dirent structs to the calling 9043 * thread. 9044 */ 9045 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 9046 9047 /* 9048 * If no error occurred during the copyout, 9049 * update the offset in the uio struct to 9050 * contain the value of the next NFS 4 cookie 9051 * and set the eof value appropriately. 9052 */ 9053 if (!error) { 9054 uiop->uio_loffset = rdc->nfs4_ncookie; 9055 if (eofp) 9056 *eofp = rdc->eof; 9057 } 9058 9059 /* 9060 * Decide whether to do readahead. Don't if we 9061 * have already read to the end of directory. 9062 */ 9063 if (rdc->eof) { 9064 /* 9065 * Make the entry the direof only if it is cached 9066 */ 9067 if (rdc->flags & RDDIRCACHED) 9068 rp->r_direof = rdc; 9069 rddir4_cache_rele(rp, rdc); 9070 mutex_exit(&rp->r_statelock); 9071 return (error); 9072 } 9073 9074 /* Determine if a readdir readahead should be done */ 9075 if (!(rp->r_flags & R4LOOKUP)) { 9076 rddir4_cache_rele(rp, rdc); 9077 mutex_exit(&rp->r_statelock); 9078 return (error); 9079 } 9080 9081 /* 9082 * Now look for a readahead entry. 9083 * 9084 * Check to see whether we found an entry for the readahead. 9085 * If so, we don't need to do anything further, so free the new 9086 * entry if one was allocated. Otherwise, allocate a new entry, add 9087 * it to the cache, and then initiate an asynchronous readdir 9088 * operation to fill it. 9089 */ 9090 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 9091 9092 /* 9093 * A readdir cache entry could not be obtained for the readahead. In 9094 * this case we skip the readahead and return. 9095 */ 9096 if (rrdc == NULL) { 9097 rddir4_cache_rele(rp, rdc); 9098 mutex_exit(&rp->r_statelock); 9099 return (error); 9100 } 9101 9102 /* 9103 * Check to see if we need to fill this entry in. 9104 */ 9105 if (rrdc->flags & RDDIRREQ) { 9106 rrdc->flags &= ~RDDIRREQ; 9107 rrdc->flags |= RDDIR; 9108 rddir4_cache_rele(rp, rdc); 9109 mutex_exit(&rp->r_statelock); 9110 #ifdef DEBUG 9111 nfs4_readdir_readahead++; 9112 #endif 9113 /* 9114 * Do the readdir. 9115 */ 9116 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 9117 return (error); 9118 } 9119 9120 rddir4_cache_rele(rp, rrdc); 9121 rddir4_cache_rele(rp, rdc); 9122 mutex_exit(&rp->r_statelock); 9123 return (error); 9124 } 9125 9126 static int 9127 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9128 { 9129 int error; 9130 rnode4_t *rp; 9131 9132 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9133 9134 rp = VTOR4(vp); 9135 9136 /* 9137 * Obtain the readdir results for the caller. 9138 */ 9139 nfs4readdir(vp, rdc, cr); 9140 9141 mutex_enter(&rp->r_statelock); 9142 /* 9143 * The entry is now complete 9144 */ 9145 rdc->flags &= ~RDDIR; 9146 9147 error = rdc->error; 9148 if (error) 9149 rdc->flags |= RDDIRREQ; 9150 rddir4_cache_rele(rp, rdc); 9151 mutex_exit(&rp->r_statelock); 9152 9153 return (error); 9154 } 9155 9156 /* 9157 * Read directory entries. 9158 * There are some weird things to look out for here. The uio_loffset 9159 * field is either 0 or it is the offset returned from a previous 9160 * readdir. It is an opaque value used by the server to find the 9161 * correct directory block to read. The count field is the number 9162 * of blocks to read on the server. This is advisory only, the server 9163 * may return only one block's worth of entries. Entries may be compressed 9164 * on the server. 9165 * 9166 * Generates the following compound request: 9167 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9168 * must include a Lookupp as well. In this case, send: 9169 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9170 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9171 * 9172 * Get complete attributes and filehandles for entries if this is the 9173 * first read of the directory. Otherwise, just get fileid's. 9174 */ 9175 static void 9176 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9177 { 9178 COMPOUND4args_clnt args; 9179 COMPOUND4res_clnt res; 9180 READDIR4args *rargs; 9181 READDIR4res_clnt *rd_res; 9182 bitmap4 rd_bitsval; 9183 nfs_argop4 argop[5]; 9184 nfs_resop4 *resop; 9185 rnode4_t *rp = VTOR4(vp); 9186 mntinfo4_t *mi = VTOMI4(vp); 9187 int doqueue; 9188 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9189 vnode_t *dvp; 9190 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9191 int num_ops, res_opcnt; 9192 bool_t needrecov = FALSE; 9193 nfs4_recov_state_t recov_state; 9194 hrtime_t t; 9195 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9196 9197 ASSERT(nfs_zone() == mi->mi_zone); 9198 ASSERT(rdc->flags & RDDIR); 9199 ASSERT(rdc->entries == NULL); 9200 9201 /* 9202 * If rp were a stub, it should have triggered and caused 9203 * a mount for us to get this far. 9204 */ 9205 ASSERT(!RP_ISSTUB(rp)); 9206 9207 num_ops = 2; 9208 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9209 /* 9210 * Since nfsv4 readdir may not return entries for "." and "..", 9211 * the client must recreate them: 9212 * To find the correct nodeid, do the following: 9213 * For current node, get nodeid from dnlc. 9214 * - if current node is rootvp, set pnodeid to nodeid. 9215 * - else if parent is in the dnlc, get its nodeid from there. 9216 * - else add LOOKUPP+GETATTR to compound. 9217 */ 9218 nodeid = rp->r_attr.va_nodeid; 9219 if (vp->v_flag & VROOT) { 9220 pnodeid = nodeid; /* root of mount point */ 9221 } else { 9222 dvp = dnlc_lookup(vp, ".."); 9223 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9224 /* parent in dnlc cache - no need for otw */ 9225 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9226 } else { 9227 /* 9228 * parent not in dnlc cache, 9229 * do lookupp to get its id 9230 */ 9231 num_ops = 5; 9232 pnodeid = 0; /* set later by getattr parent */ 9233 } 9234 if (dvp) 9235 VN_RELE(dvp); 9236 } 9237 } 9238 recov_state.rs_flags = 0; 9239 recov_state.rs_num_retry_despite_err = 0; 9240 9241 /* Save the original mount point security flavor */ 9242 (void) save_mnt_secinfo(mi->mi_curr_serv); 9243 9244 recov_retry: 9245 args.ctag = TAG_READDIR; 9246 9247 args.array = argop; 9248 args.array_len = num_ops; 9249 9250 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9251 &recov_state, NULL)) { 9252 /* 9253 * If readdir a node that is a stub for a crossed mount point, 9254 * keep the original secinfo flavor for the current file 9255 * system, not the crossed one. 9256 */ 9257 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9258 rdc->error = e.error; 9259 return; 9260 } 9261 9262 /* 9263 * Determine which attrs to request for dirents. This code 9264 * must be protected by nfs4_start/end_fop because of r_server 9265 * (which will change during failover recovery). 9266 * 9267 */ 9268 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9269 /* 9270 * Get all vattr attrs plus filehandle and rdattr_error 9271 */ 9272 rd_bitsval = NFS4_VATTR_MASK | 9273 FATTR4_RDATTR_ERROR_MASK | 9274 FATTR4_FILEHANDLE_MASK; 9275 9276 if (rp->r_flags & R4READDIRWATTR) { 9277 mutex_enter(&rp->r_statelock); 9278 rp->r_flags &= ~R4READDIRWATTR; 9279 mutex_exit(&rp->r_statelock); 9280 } 9281 } else { 9282 servinfo4_t *svp = rp->r_server; 9283 9284 /* 9285 * Already read directory. Use readdir with 9286 * no attrs (except for mounted_on_fileid) for updates. 9287 */ 9288 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9289 9290 /* 9291 * request mounted on fileid if supported, else request 9292 * fileid. maybe we should verify that fileid is supported 9293 * and request something else if not. 9294 */ 9295 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9296 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9297 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9298 nfs_rw_exit(&svp->sv_lock); 9299 } 9300 9301 /* putfh directory fh */ 9302 argop[0].argop = OP_CPUTFH; 9303 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9304 9305 argop[1].argop = OP_READDIR; 9306 rargs = &argop[1].nfs_argop4_u.opreaddir; 9307 /* 9308 * 1 and 2 are reserved for client "." and ".." entry offset. 9309 * cookie 0 should be used over-the-wire to start reading at 9310 * the beginning of the directory excluding "." and "..". 9311 */ 9312 if (rdc->nfs4_cookie == 0 || 9313 rdc->nfs4_cookie == 1 || 9314 rdc->nfs4_cookie == 2) { 9315 rargs->cookie = (nfs_cookie4)0; 9316 rargs->cookieverf = 0; 9317 } else { 9318 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9319 mutex_enter(&rp->r_statelock); 9320 rargs->cookieverf = rp->r_cookieverf4; 9321 mutex_exit(&rp->r_statelock); 9322 } 9323 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9324 rargs->maxcount = mi->mi_tsize; 9325 rargs->attr_request = rd_bitsval; 9326 rargs->rdc = rdc; 9327 rargs->dvp = vp; 9328 rargs->mi = mi; 9329 rargs->cr = cr; 9330 9331 9332 /* 9333 * If count < than the minimum required, we return no entries 9334 * and fail with EINVAL 9335 */ 9336 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9337 rdc->error = EINVAL; 9338 goto out; 9339 } 9340 9341 if (args.array_len == 5) { 9342 /* 9343 * Add lookupp and getattr for parent nodeid. 9344 */ 9345 argop[2].argop = OP_LOOKUPP; 9346 9347 argop[3].argop = OP_GETFH; 9348 9349 /* getattr parent */ 9350 argop[4].argop = OP_GETATTR; 9351 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9352 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9353 } 9354 9355 doqueue = 1; 9356 9357 if (mi->mi_io_kstats) { 9358 mutex_enter(&mi->mi_lock); 9359 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9360 mutex_exit(&mi->mi_lock); 9361 } 9362 9363 /* capture the time of this call */ 9364 rargs->t = t = gethrtime(); 9365 9366 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9367 9368 if (mi->mi_io_kstats) { 9369 mutex_enter(&mi->mi_lock); 9370 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9371 mutex_exit(&mi->mi_lock); 9372 } 9373 9374 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9375 9376 /* 9377 * If RPC error occurred and it isn't an error that 9378 * triggers recovery, then go ahead and fail now. 9379 */ 9380 if (e.error != 0 && !needrecov) { 9381 rdc->error = e.error; 9382 goto out; 9383 } 9384 9385 if (needrecov) { 9386 bool_t abort; 9387 9388 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9389 "nfs4readdir: initiating recovery.\n")); 9390 9391 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9392 NULL, OP_READDIR, NULL, NULL, NULL); 9393 if (abort == FALSE) { 9394 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9395 &recov_state, needrecov); 9396 if (!e.error) 9397 (void) xdr_free(xdr_COMPOUND4res_clnt, 9398 (caddr_t)&res); 9399 if (rdc->entries != NULL) { 9400 kmem_free(rdc->entries, rdc->entlen); 9401 rdc->entries = NULL; 9402 } 9403 goto recov_retry; 9404 } 9405 9406 if (e.error != 0) { 9407 rdc->error = e.error; 9408 goto out; 9409 } 9410 9411 /* fall through for res.status case */ 9412 } 9413 9414 res_opcnt = res.array_len; 9415 9416 /* 9417 * If compound failed first 2 ops (PUTFH+READDIR), then return 9418 * failure here. Subsequent ops are for filling out dot-dot 9419 * dirent, and if they fail, we still want to give the caller 9420 * the dirents returned by (the successful) READDIR op, so we need 9421 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9422 * 9423 * One example where PUTFH+READDIR ops would succeed but 9424 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9425 * but lacks x. In this case, a POSIX server's VOP_READDIR 9426 * would succeed; however, VOP_LOOKUP(..) would fail since no 9427 * x perm. We need to come up with a non-vendor-specific way 9428 * for a POSIX server to return d_ino from dotdot's dirent if 9429 * client only requests mounted_on_fileid, and just say the 9430 * LOOKUPP succeeded and fill out the GETATTR. However, if 9431 * client requested any mandatory attrs, server would be required 9432 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9433 * for dotdot. 9434 */ 9435 9436 if (res.status) { 9437 if (res_opcnt <= 2) { 9438 e.error = geterrno4(res.status); 9439 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9440 &recov_state, needrecov); 9441 nfs4_purge_stale_fh(e.error, vp, cr); 9442 rdc->error = e.error; 9443 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9444 if (rdc->entries != NULL) { 9445 kmem_free(rdc->entries, rdc->entlen); 9446 rdc->entries = NULL; 9447 } 9448 /* 9449 * If readdir a node that is a stub for a 9450 * crossed mount point, keep the original 9451 * secinfo flavor for the current file system, 9452 * not the crossed one. 9453 */ 9454 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9455 return; 9456 } 9457 } 9458 9459 resop = &res.array[1]; /* readdir res */ 9460 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9461 9462 mutex_enter(&rp->r_statelock); 9463 rp->r_cookieverf4 = rd_res->cookieverf; 9464 mutex_exit(&rp->r_statelock); 9465 9466 /* 9467 * For "." and ".." entries 9468 * e.g. 9469 * seek(cookie=0) -> "." entry with d_off = 1 9470 * seek(cookie=1) -> ".." entry with d_off = 2 9471 */ 9472 if (cookie == (nfs_cookie4) 0) { 9473 if (rd_res->dotp) 9474 rd_res->dotp->d_ino = nodeid; 9475 if (rd_res->dotdotp) 9476 rd_res->dotdotp->d_ino = pnodeid; 9477 } 9478 if (cookie == (nfs_cookie4) 1) { 9479 if (rd_res->dotdotp) 9480 rd_res->dotdotp->d_ino = pnodeid; 9481 } 9482 9483 9484 /* LOOKUPP+GETATTR attemped */ 9485 if (args.array_len == 5 && rd_res->dotdotp) { 9486 if (res.status == NFS4_OK && res_opcnt == 5) { 9487 nfs_fh4 *fhp; 9488 nfs4_sharedfh_t *sfhp; 9489 vnode_t *pvp; 9490 nfs4_ga_res_t *garp; 9491 9492 resop++; /* lookupp */ 9493 resop++; /* getfh */ 9494 fhp = &resop->nfs_resop4_u.opgetfh.object; 9495 9496 resop++; /* getattr of parent */ 9497 9498 /* 9499 * First, take care of finishing the 9500 * readdir results. 9501 */ 9502 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9503 /* 9504 * The d_ino of .. must be the inode number 9505 * of the mounted filesystem. 9506 */ 9507 if (garp->n4g_va.va_mask & AT_NODEID) 9508 rd_res->dotdotp->d_ino = 9509 garp->n4g_va.va_nodeid; 9510 9511 9512 /* 9513 * Next, create the ".." dnlc entry 9514 */ 9515 sfhp = sfh4_get(fhp, mi); 9516 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9517 dnlc_update(vp, "..", pvp); 9518 VN_RELE(pvp); 9519 } 9520 sfh4_rele(&sfhp); 9521 } 9522 } 9523 9524 if (mi->mi_io_kstats) { 9525 mutex_enter(&mi->mi_lock); 9526 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9527 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9528 mutex_exit(&mi->mi_lock); 9529 } 9530 9531 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9532 9533 out: 9534 /* 9535 * If readdir a node that is a stub for a crossed mount point, 9536 * keep the original secinfo flavor for the current file system, 9537 * not the crossed one. 9538 */ 9539 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9540 9541 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9542 } 9543 9544 9545 static int 9546 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9547 { 9548 rnode4_t *rp = VTOR4(bp->b_vp); 9549 int count; 9550 int error; 9551 cred_t *cred_otw = NULL; 9552 offset_t offset; 9553 nfs4_open_stream_t *osp = NULL; 9554 bool_t first_time = TRUE; /* first time getting otw cred */ 9555 bool_t last_time = FALSE; /* last time getting otw cred */ 9556 9557 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9558 9559 DTRACE_IO1(start, struct buf *, bp); 9560 offset = ldbtob(bp->b_lblkno); 9561 9562 if (bp->b_flags & B_READ) { 9563 read_again: 9564 /* 9565 * Releases the osp, if it is provided. 9566 * Puts a hold on the cred_otw and the new osp (if found). 9567 */ 9568 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9569 &first_time, &last_time); 9570 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9571 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9572 readahead, NULL); 9573 crfree(cred_otw); 9574 if (!error) { 9575 if (bp->b_resid) { 9576 /* 9577 * Didn't get it all because we hit EOF, 9578 * zero all the memory beyond the EOF. 9579 */ 9580 /* bzero(rdaddr + */ 9581 bzero(bp->b_un.b_addr + 9582 bp->b_bcount - bp->b_resid, bp->b_resid); 9583 } 9584 mutex_enter(&rp->r_statelock); 9585 if (bp->b_resid == bp->b_bcount && 9586 offset >= rp->r_size) { 9587 /* 9588 * We didn't read anything at all as we are 9589 * past EOF. Return an error indicator back 9590 * but don't destroy the pages (yet). 9591 */ 9592 error = NFS_EOF; 9593 } 9594 mutex_exit(&rp->r_statelock); 9595 } else if (error == EACCES && last_time == FALSE) { 9596 goto read_again; 9597 } 9598 } else { 9599 if (!(rp->r_flags & R4STALE)) { 9600 write_again: 9601 /* 9602 * Releases the osp, if it is provided. 9603 * Puts a hold on the cred_otw and the new 9604 * osp (if found). 9605 */ 9606 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9607 &first_time, &last_time); 9608 mutex_enter(&rp->r_statelock); 9609 count = MIN(bp->b_bcount, rp->r_size - offset); 9610 mutex_exit(&rp->r_statelock); 9611 if (count < 0) 9612 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9613 #ifdef DEBUG 9614 if (count == 0) { 9615 zoneid_t zoneid = getzoneid(); 9616 9617 zcmn_err(zoneid, CE_WARN, 9618 "nfs4_bio: zero length write at %lld", 9619 offset); 9620 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9621 "b_bcount=%ld, file size=%lld", 9622 rp->r_flags, (long)bp->b_bcount, 9623 rp->r_size); 9624 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9625 if (nfs4_bio_do_stop) 9626 debug_enter("nfs4_bio"); 9627 } 9628 #endif 9629 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9630 count, cred_otw, stab_comm); 9631 if (error == EACCES && last_time == FALSE) { 9632 crfree(cred_otw); 9633 goto write_again; 9634 } 9635 bp->b_error = error; 9636 if (error && error != EINTR && 9637 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9638 /* 9639 * Don't print EDQUOT errors on the console. 9640 * Don't print asynchronous EACCES errors. 9641 * Don't print EFBIG errors. 9642 * Print all other write errors. 9643 */ 9644 if (error != EDQUOT && error != EFBIG && 9645 (error != EACCES || 9646 !(bp->b_flags & B_ASYNC))) 9647 nfs4_write_error(bp->b_vp, 9648 error, cred_otw); 9649 /* 9650 * Update r_error and r_flags as appropriate. 9651 * If the error was ESTALE, then mark the 9652 * rnode as not being writeable and save 9653 * the error status. Otherwise, save any 9654 * errors which occur from asynchronous 9655 * page invalidations. Any errors occurring 9656 * from other operations should be saved 9657 * by the caller. 9658 */ 9659 mutex_enter(&rp->r_statelock); 9660 if (error == ESTALE) { 9661 rp->r_flags |= R4STALE; 9662 if (!rp->r_error) 9663 rp->r_error = error; 9664 } else if (!rp->r_error && 9665 (bp->b_flags & 9666 (B_INVAL|B_FORCE|B_ASYNC)) == 9667 (B_INVAL|B_FORCE|B_ASYNC)) { 9668 rp->r_error = error; 9669 } 9670 mutex_exit(&rp->r_statelock); 9671 } 9672 crfree(cred_otw); 9673 } else { 9674 error = rp->r_error; 9675 /* 9676 * A close may have cleared r_error, if so, 9677 * propagate ESTALE error return properly 9678 */ 9679 if (error == 0) 9680 error = ESTALE; 9681 } 9682 } 9683 9684 if (error != 0 && error != NFS_EOF) 9685 bp->b_flags |= B_ERROR; 9686 9687 if (osp) 9688 open_stream_rele(osp, rp); 9689 9690 DTRACE_IO1(done, struct buf *, bp); 9691 9692 return (error); 9693 } 9694 9695 /* ARGSUSED */ 9696 int 9697 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9698 { 9699 return (EREMOTE); 9700 } 9701 9702 /* ARGSUSED2 */ 9703 int 9704 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9705 { 9706 rnode4_t *rp = VTOR4(vp); 9707 9708 if (!write_lock) { 9709 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9710 return (V_WRITELOCK_FALSE); 9711 } 9712 9713 if ((rp->r_flags & R4DIRECTIO) || 9714 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9715 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9716 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9717 return (V_WRITELOCK_FALSE); 9718 nfs_rw_exit(&rp->r_rwlock); 9719 } 9720 9721 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9722 return (V_WRITELOCK_TRUE); 9723 } 9724 9725 /* ARGSUSED */ 9726 void 9727 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9728 { 9729 rnode4_t *rp = VTOR4(vp); 9730 9731 nfs_rw_exit(&rp->r_rwlock); 9732 } 9733 9734 /* ARGSUSED */ 9735 static int 9736 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9737 { 9738 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9739 return (EIO); 9740 9741 /* 9742 * Because we stuff the readdir cookie into the offset field 9743 * someone may attempt to do an lseek with the cookie which 9744 * we want to succeed. 9745 */ 9746 if (vp->v_type == VDIR) 9747 return (0); 9748 if (*noffp < 0) 9749 return (EINVAL); 9750 return (0); 9751 } 9752 9753 9754 /* 9755 * Return all the pages from [off..off+len) in file 9756 */ 9757 /* ARGSUSED */ 9758 static int 9759 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9760 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9761 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9762 { 9763 rnode4_t *rp; 9764 int error; 9765 mntinfo4_t *mi; 9766 9767 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9768 return (EIO); 9769 rp = VTOR4(vp); 9770 if (IS_SHADOW(vp, rp)) 9771 vp = RTOV4(rp); 9772 9773 if (vp->v_flag & VNOMAP) 9774 return (ENOSYS); 9775 9776 if (protp != NULL) 9777 *protp = PROT_ALL; 9778 9779 /* 9780 * Now validate that the caches are up to date. 9781 */ 9782 if (error = nfs4_validate_caches(vp, cr)) 9783 return (error); 9784 9785 mi = VTOMI4(vp); 9786 retry: 9787 mutex_enter(&rp->r_statelock); 9788 9789 /* 9790 * Don't create dirty pages faster than they 9791 * can be cleaned so that the system doesn't 9792 * get imbalanced. If the async queue is 9793 * maxed out, then wait for it to drain before 9794 * creating more dirty pages. Also, wait for 9795 * any threads doing pagewalks in the vop_getattr 9796 * entry points so that they don't block for 9797 * long periods. 9798 */ 9799 if (rw == S_CREATE) { 9800 while ((mi->mi_max_threads != 0 && 9801 rp->r_awcount > 2 * mi->mi_max_threads) || 9802 rp->r_gcount > 0) 9803 cv_wait(&rp->r_cv, &rp->r_statelock); 9804 } 9805 9806 /* 9807 * If we are getting called as a side effect of an nfs_write() 9808 * operation the local file size might not be extended yet. 9809 * In this case we want to be able to return pages of zeroes. 9810 */ 9811 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9812 NFS4_DEBUG(nfs4_pageio_debug, 9813 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9814 "len=%llu, size=%llu, attrsize =%llu", off, 9815 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9816 mutex_exit(&rp->r_statelock); 9817 return (EFAULT); /* beyond EOF */ 9818 } 9819 9820 mutex_exit(&rp->r_statelock); 9821 9822 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9823 pl, plsz, seg, addr, rw, cr); 9824 NFS4_DEBUG(nfs4_pageio_debug && error, 9825 (CE_NOTE, "getpages error %d; off=%lld, len=%lld", 9826 error, off, (u_longlong_t)len)); 9827 9828 switch (error) { 9829 case NFS_EOF: 9830 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9831 goto retry; 9832 case ESTALE: 9833 nfs4_purge_stale_fh(error, vp, cr); 9834 } 9835 9836 return (error); 9837 } 9838 9839 /* 9840 * Called from pvn_getpages to get a particular page. 9841 */ 9842 /* ARGSUSED */ 9843 static int 9844 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9845 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9846 enum seg_rw rw, cred_t *cr) 9847 { 9848 rnode4_t *rp; 9849 uint_t bsize; 9850 struct buf *bp; 9851 page_t *pp; 9852 u_offset_t lbn; 9853 u_offset_t io_off; 9854 u_offset_t blkoff; 9855 u_offset_t rablkoff; 9856 size_t io_len; 9857 uint_t blksize; 9858 int error; 9859 int readahead; 9860 int readahead_issued = 0; 9861 int ra_window; /* readahead window */ 9862 page_t *pagefound; 9863 page_t *savepp; 9864 9865 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9866 return (EIO); 9867 9868 rp = VTOR4(vp); 9869 ASSERT(!IS_SHADOW(vp, rp)); 9870 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9871 9872 reread: 9873 bp = NULL; 9874 pp = NULL; 9875 pagefound = NULL; 9876 9877 if (pl != NULL) 9878 pl[0] = NULL; 9879 9880 error = 0; 9881 lbn = off / bsize; 9882 blkoff = lbn * bsize; 9883 9884 /* 9885 * Queueing up the readahead before doing the synchronous read 9886 * results in a significant increase in read throughput because 9887 * of the increased parallelism between the async threads and 9888 * the process context. 9889 */ 9890 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9891 rw != S_CREATE && 9892 !(vp->v_flag & VNOCACHE)) { 9893 mutex_enter(&rp->r_statelock); 9894 9895 /* 9896 * Calculate the number of readaheads to do. 9897 * a) No readaheads at offset = 0. 9898 * b) Do maximum(nfs4_nra) readaheads when the readahead 9899 * window is closed. 9900 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9901 * upon how far the readahead window is open or close. 9902 * d) No readaheads if rp->r_nextr is not within the scope 9903 * of the readahead window (random i/o). 9904 */ 9905 9906 if (off == 0) 9907 readahead = 0; 9908 else if (blkoff == rp->r_nextr) 9909 readahead = nfs4_nra; 9910 else if (rp->r_nextr > blkoff && 9911 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9912 <= (nfs4_nra - 1))) 9913 readahead = nfs4_nra - ra_window; 9914 else 9915 readahead = 0; 9916 9917 rablkoff = rp->r_nextr; 9918 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9919 mutex_exit(&rp->r_statelock); 9920 if (nfs4_async_readahead(vp, rablkoff + bsize, 9921 addr + (rablkoff + bsize - off), 9922 seg, cr, nfs4_readahead) < 0) { 9923 mutex_enter(&rp->r_statelock); 9924 break; 9925 } 9926 readahead--; 9927 rablkoff += bsize; 9928 /* 9929 * Indicate that we did a readahead so 9930 * readahead offset is not updated 9931 * by the synchronous read below. 9932 */ 9933 readahead_issued = 1; 9934 mutex_enter(&rp->r_statelock); 9935 /* 9936 * set readahead offset to 9937 * offset of last async readahead 9938 * request. 9939 */ 9940 rp->r_nextr = rablkoff; 9941 } 9942 mutex_exit(&rp->r_statelock); 9943 } 9944 9945 again: 9946 if ((pagefound = page_exists(vp, off)) == NULL) { 9947 if (pl == NULL) { 9948 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9949 nfs4_readahead); 9950 } else if (rw == S_CREATE) { 9951 /* 9952 * Block for this page is not allocated, or the offset 9953 * is beyond the current allocation size, or we're 9954 * allocating a swap slot and the page was not found, 9955 * so allocate it and return a zero page. 9956 */ 9957 if ((pp = page_create_va(vp, off, 9958 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9959 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9960 io_len = PAGESIZE; 9961 mutex_enter(&rp->r_statelock); 9962 rp->r_nextr = off + PAGESIZE; 9963 mutex_exit(&rp->r_statelock); 9964 } else { 9965 /* 9966 * Need to go to server to get a block 9967 */ 9968 mutex_enter(&rp->r_statelock); 9969 if (blkoff < rp->r_size && 9970 blkoff + bsize > rp->r_size) { 9971 /* 9972 * If less than a block left in 9973 * file read less than a block. 9974 */ 9975 if (rp->r_size <= off) { 9976 /* 9977 * Trying to access beyond EOF, 9978 * set up to get at least one page. 9979 */ 9980 blksize = off + PAGESIZE - blkoff; 9981 } else 9982 blksize = rp->r_size - blkoff; 9983 } else if ((off == 0) || 9984 (off != rp->r_nextr && !readahead_issued)) { 9985 blksize = PAGESIZE; 9986 blkoff = off; /* block = page here */ 9987 } else 9988 blksize = bsize; 9989 mutex_exit(&rp->r_statelock); 9990 9991 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9992 &io_len, blkoff, blksize, 0); 9993 9994 /* 9995 * Some other thread has entered the page, 9996 * so just use it. 9997 */ 9998 if (pp == NULL) 9999 goto again; 10000 10001 /* 10002 * Now round the request size up to page boundaries. 10003 * This ensures that the entire page will be 10004 * initialized to zeroes if EOF is encountered. 10005 */ 10006 io_len = ptob(btopr(io_len)); 10007 10008 bp = pageio_setup(pp, io_len, vp, B_READ); 10009 ASSERT(bp != NULL); 10010 10011 /* 10012 * pageio_setup should have set b_addr to 0. This 10013 * is correct since we want to do I/O on a page 10014 * boundary. bp_mapin will use this addr to calculate 10015 * an offset, and then set b_addr to the kernel virtual 10016 * address it allocated for us. 10017 */ 10018 ASSERT(bp->b_un.b_addr == 0); 10019 10020 bp->b_edev = 0; 10021 bp->b_dev = 0; 10022 bp->b_lblkno = lbtodb(io_off); 10023 bp->b_file = vp; 10024 bp->b_offset = (offset_t)off; 10025 bp_mapin(bp); 10026 10027 /* 10028 * If doing a write beyond what we believe is EOF, 10029 * don't bother trying to read the pages from the 10030 * server, we'll just zero the pages here. We 10031 * don't check that the rw flag is S_WRITE here 10032 * because some implementations may attempt a 10033 * read access to the buffer before copying data. 10034 */ 10035 mutex_enter(&rp->r_statelock); 10036 if (io_off >= rp->r_size && seg == segkmap) { 10037 mutex_exit(&rp->r_statelock); 10038 bzero(bp->b_un.b_addr, io_len); 10039 } else { 10040 mutex_exit(&rp->r_statelock); 10041 error = nfs4_bio(bp, NULL, cr, FALSE); 10042 } 10043 10044 /* 10045 * Unmap the buffer before freeing it. 10046 */ 10047 bp_mapout(bp); 10048 pageio_done(bp); 10049 10050 savepp = pp; 10051 do { 10052 pp->p_fsdata = C_NOCOMMIT; 10053 } while ((pp = pp->p_next) != savepp); 10054 10055 if (error == NFS_EOF) { 10056 /* 10057 * If doing a write system call just return 10058 * zeroed pages, else user tried to get pages 10059 * beyond EOF, return error. We don't check 10060 * that the rw flag is S_WRITE here because 10061 * some implementations may attempt a read 10062 * access to the buffer before copying data. 10063 */ 10064 if (seg == segkmap) 10065 error = 0; 10066 else 10067 error = EFAULT; 10068 } 10069 10070 if (!readahead_issued && !error) { 10071 mutex_enter(&rp->r_statelock); 10072 rp->r_nextr = io_off + io_len; 10073 mutex_exit(&rp->r_statelock); 10074 } 10075 } 10076 } 10077 10078 out: 10079 if (pl == NULL) 10080 return (error); 10081 10082 if (error) { 10083 if (pp != NULL) 10084 pvn_read_done(pp, B_ERROR); 10085 return (error); 10086 } 10087 10088 if (pagefound) { 10089 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 10090 10091 /* 10092 * Page exists in the cache, acquire the appropriate lock. 10093 * If this fails, start all over again. 10094 */ 10095 if ((pp = page_lookup(vp, off, se)) == NULL) { 10096 #ifdef DEBUG 10097 nfs4_lostpage++; 10098 #endif 10099 goto reread; 10100 } 10101 pl[0] = pp; 10102 pl[1] = NULL; 10103 return (0); 10104 } 10105 10106 if (pp != NULL) 10107 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 10108 10109 return (error); 10110 } 10111 10112 static void 10113 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 10114 cred_t *cr) 10115 { 10116 int error; 10117 page_t *pp; 10118 u_offset_t io_off; 10119 size_t io_len; 10120 struct buf *bp; 10121 uint_t bsize, blksize; 10122 rnode4_t *rp = VTOR4(vp); 10123 page_t *savepp; 10124 10125 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10126 10127 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10128 10129 mutex_enter(&rp->r_statelock); 10130 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 10131 /* 10132 * If less than a block left in file read less 10133 * than a block. 10134 */ 10135 blksize = rp->r_size - blkoff; 10136 } else 10137 blksize = bsize; 10138 mutex_exit(&rp->r_statelock); 10139 10140 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 10141 &io_off, &io_len, blkoff, blksize, 1); 10142 /* 10143 * The isra flag passed to the kluster function is 1, we may have 10144 * gotten a return value of NULL for a variety of reasons (# of free 10145 * pages < minfree, someone entered the page on the vnode etc). In all 10146 * cases, we want to punt on the readahead. 10147 */ 10148 if (pp == NULL) 10149 return; 10150 10151 /* 10152 * Now round the request size up to page boundaries. 10153 * This ensures that the entire page will be 10154 * initialized to zeroes if EOF is encountered. 10155 */ 10156 io_len = ptob(btopr(io_len)); 10157 10158 bp = pageio_setup(pp, io_len, vp, B_READ); 10159 ASSERT(bp != NULL); 10160 10161 /* 10162 * pageio_setup should have set b_addr to 0. This is correct since 10163 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10164 * to calculate an offset, and then set b_addr to the kernel virtual 10165 * address it allocated for us. 10166 */ 10167 ASSERT(bp->b_un.b_addr == 0); 10168 10169 bp->b_edev = 0; 10170 bp->b_dev = 0; 10171 bp->b_lblkno = lbtodb(io_off); 10172 bp->b_file = vp; 10173 bp->b_offset = (offset_t)blkoff; 10174 bp_mapin(bp); 10175 10176 /* 10177 * If doing a write beyond what we believe is EOF, don't bother trying 10178 * to read the pages from the server, we'll just zero the pages here. 10179 * We don't check that the rw flag is S_WRITE here because some 10180 * implementations may attempt a read access to the buffer before 10181 * copying data. 10182 */ 10183 mutex_enter(&rp->r_statelock); 10184 if (io_off >= rp->r_size && seg == segkmap) { 10185 mutex_exit(&rp->r_statelock); 10186 bzero(bp->b_un.b_addr, io_len); 10187 error = 0; 10188 } else { 10189 mutex_exit(&rp->r_statelock); 10190 error = nfs4_bio(bp, NULL, cr, TRUE); 10191 if (error == NFS_EOF) 10192 error = 0; 10193 } 10194 10195 /* 10196 * Unmap the buffer before freeing it. 10197 */ 10198 bp_mapout(bp); 10199 pageio_done(bp); 10200 10201 savepp = pp; 10202 do { 10203 pp->p_fsdata = C_NOCOMMIT; 10204 } while ((pp = pp->p_next) != savepp); 10205 10206 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10207 10208 /* 10209 * In case of error set readahead offset 10210 * to the lowest offset. 10211 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10212 */ 10213 if (error && rp->r_nextr > io_off) { 10214 mutex_enter(&rp->r_statelock); 10215 if (rp->r_nextr > io_off) 10216 rp->r_nextr = io_off; 10217 mutex_exit(&rp->r_statelock); 10218 } 10219 } 10220 10221 /* 10222 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10223 * If len == 0, do from off to EOF. 10224 * 10225 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10226 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10227 * (from pageout). 10228 */ 10229 /* ARGSUSED */ 10230 static int 10231 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10232 caller_context_t *ct) 10233 { 10234 int error; 10235 rnode4_t *rp; 10236 10237 ASSERT(cr != NULL); 10238 10239 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10240 return (EIO); 10241 10242 rp = VTOR4(vp); 10243 if (IS_SHADOW(vp, rp)) 10244 vp = RTOV4(rp); 10245 10246 /* 10247 * XXX - Why should this check be made here? 10248 */ 10249 if (vp->v_flag & VNOMAP) 10250 return (ENOSYS); 10251 10252 if (len == 0 && !(flags & B_INVAL) && 10253 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10254 return (0); 10255 10256 mutex_enter(&rp->r_statelock); 10257 rp->r_count++; 10258 mutex_exit(&rp->r_statelock); 10259 error = nfs4_putpages(vp, off, len, flags, cr); 10260 mutex_enter(&rp->r_statelock); 10261 rp->r_count--; 10262 cv_broadcast(&rp->r_cv); 10263 mutex_exit(&rp->r_statelock); 10264 10265 return (error); 10266 } 10267 10268 /* 10269 * Write out a single page, possibly klustering adjacent dirty pages. 10270 */ 10271 int 10272 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10273 int flags, cred_t *cr) 10274 { 10275 u_offset_t io_off; 10276 u_offset_t lbn_off; 10277 u_offset_t lbn; 10278 size_t io_len; 10279 uint_t bsize; 10280 int error; 10281 rnode4_t *rp; 10282 10283 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10284 ASSERT(pp != NULL); 10285 ASSERT(cr != NULL); 10286 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10287 10288 rp = VTOR4(vp); 10289 ASSERT(rp->r_count > 0); 10290 ASSERT(!IS_SHADOW(vp, rp)); 10291 10292 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10293 lbn = pp->p_offset / bsize; 10294 lbn_off = lbn * bsize; 10295 10296 /* 10297 * Find a kluster that fits in one block, or in 10298 * one page if pages are bigger than blocks. If 10299 * there is less file space allocated than a whole 10300 * page, we'll shorten the i/o request below. 10301 */ 10302 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10303 roundup(bsize, PAGESIZE), flags); 10304 10305 /* 10306 * pvn_write_kluster shouldn't have returned a page with offset 10307 * behind the original page we were given. Verify that. 10308 */ 10309 ASSERT((pp->p_offset / bsize) >= lbn); 10310 10311 /* 10312 * Now pp will have the list of kept dirty pages marked for 10313 * write back. It will also handle invalidation and freeing 10314 * of pages that are not dirty. Check for page length rounding 10315 * problems. 10316 */ 10317 if (io_off + io_len > lbn_off + bsize) { 10318 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10319 io_len = lbn_off + bsize - io_off; 10320 } 10321 /* 10322 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10323 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10324 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10325 * progress and the r_size has not been made consistent with the 10326 * new size of the file. When the uiomove() completes the r_size is 10327 * updated and the R4MODINPROGRESS flag is cleared. 10328 * 10329 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10330 * consistent value of r_size. Without this handshaking, it is 10331 * possible that nfs4_bio() picks up the old value of r_size 10332 * before the uiomove() in writerp4() completes. This will result 10333 * in the write through nfs4_bio() being dropped. 10334 * 10335 * More precisely, there is a window between the time the uiomove() 10336 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10337 * operation intervenes in this window, the page will be picked up, 10338 * because it is dirty (it will be unlocked, unless it was 10339 * pagecreate'd). When the page is picked up as dirty, the dirty 10340 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10341 * checked. This will still be the old size. Therefore the page will 10342 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10343 * the page will be found to be clean and the write will be dropped. 10344 */ 10345 if (rp->r_flags & R4MODINPROGRESS) { 10346 mutex_enter(&rp->r_statelock); 10347 if ((rp->r_flags & R4MODINPROGRESS) && 10348 rp->r_modaddr + MAXBSIZE > io_off && 10349 rp->r_modaddr < io_off + io_len) { 10350 page_t *plist; 10351 /* 10352 * A write is in progress for this region of the file. 10353 * If we did not detect R4MODINPROGRESS here then this 10354 * path through nfs_putapage() would eventually go to 10355 * nfs4_bio() and may not write out all of the data 10356 * in the pages. We end up losing data. So we decide 10357 * to set the modified bit on each page in the page 10358 * list and mark the rnode with R4DIRTY. This write 10359 * will be restarted at some later time. 10360 */ 10361 plist = pp; 10362 while (plist != NULL) { 10363 pp = plist; 10364 page_sub(&plist, pp); 10365 hat_setmod(pp); 10366 page_io_unlock(pp); 10367 page_unlock(pp); 10368 } 10369 rp->r_flags |= R4DIRTY; 10370 mutex_exit(&rp->r_statelock); 10371 if (offp) 10372 *offp = io_off; 10373 if (lenp) 10374 *lenp = io_len; 10375 return (0); 10376 } 10377 mutex_exit(&rp->r_statelock); 10378 } 10379 10380 if (flags & B_ASYNC) { 10381 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10382 nfs4_sync_putapage); 10383 } else 10384 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10385 10386 if (offp) 10387 *offp = io_off; 10388 if (lenp) 10389 *lenp = io_len; 10390 return (error); 10391 } 10392 10393 static int 10394 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10395 int flags, cred_t *cr) 10396 { 10397 int error; 10398 rnode4_t *rp; 10399 10400 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10401 10402 flags |= B_WRITE; 10403 10404 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10405 10406 rp = VTOR4(vp); 10407 10408 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10409 error == EACCES) && 10410 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10411 if (!(rp->r_flags & R4OUTOFSPACE)) { 10412 mutex_enter(&rp->r_statelock); 10413 rp->r_flags |= R4OUTOFSPACE; 10414 mutex_exit(&rp->r_statelock); 10415 } 10416 flags |= B_ERROR; 10417 pvn_write_done(pp, flags); 10418 /* 10419 * If this was not an async thread, then try again to 10420 * write out the pages, but this time, also destroy 10421 * them whether or not the write is successful. This 10422 * will prevent memory from filling up with these 10423 * pages and destroying them is the only alternative 10424 * if they can't be written out. 10425 * 10426 * Don't do this if this is an async thread because 10427 * when the pages are unlocked in pvn_write_done, 10428 * some other thread could have come along, locked 10429 * them, and queued for an async thread. It would be 10430 * possible for all of the async threads to be tied 10431 * up waiting to lock the pages again and they would 10432 * all already be locked and waiting for an async 10433 * thread to handle them. Deadlock. 10434 */ 10435 if (!(flags & B_ASYNC)) { 10436 error = nfs4_putpage(vp, io_off, io_len, 10437 B_INVAL | B_FORCE, cr, NULL); 10438 } 10439 } else { 10440 if (error) 10441 flags |= B_ERROR; 10442 else if (rp->r_flags & R4OUTOFSPACE) { 10443 mutex_enter(&rp->r_statelock); 10444 rp->r_flags &= ~R4OUTOFSPACE; 10445 mutex_exit(&rp->r_statelock); 10446 } 10447 pvn_write_done(pp, flags); 10448 if (freemem < desfree) 10449 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10450 NFS4_WRITE_NOWAIT); 10451 } 10452 10453 return (error); 10454 } 10455 10456 #ifdef DEBUG 10457 int nfs4_force_open_before_mmap = 0; 10458 #endif 10459 10460 /* ARGSUSED */ 10461 static int 10462 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10463 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10464 caller_context_t *ct) 10465 { 10466 struct segvn_crargs vn_a; 10467 int error = 0; 10468 rnode4_t *rp = VTOR4(vp); 10469 mntinfo4_t *mi = VTOMI4(vp); 10470 10471 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10472 return (EIO); 10473 10474 if (vp->v_flag & VNOMAP) 10475 return (ENOSYS); 10476 10477 if (off < 0 || (off + len) < 0) 10478 return (ENXIO); 10479 10480 if (vp->v_type != VREG) 10481 return (ENODEV); 10482 10483 /* 10484 * If the file is delegated to the client don't do anything. 10485 * If the file is not delegated, then validate the data cache. 10486 */ 10487 mutex_enter(&rp->r_statev4_lock); 10488 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10489 mutex_exit(&rp->r_statev4_lock); 10490 error = nfs4_validate_caches(vp, cr); 10491 if (error) 10492 return (error); 10493 } else { 10494 mutex_exit(&rp->r_statev4_lock); 10495 } 10496 10497 /* 10498 * Check to see if the vnode is currently marked as not cachable. 10499 * This means portions of the file are locked (through VOP_FRLOCK). 10500 * In this case the map request must be refused. We use 10501 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10502 * 10503 * Atomically increment r_inmap after acquiring r_rwlock. The 10504 * idea here is to acquire r_rwlock to block read/write and 10505 * not to protect r_inmap. r_inmap will inform nfs4_read/write() 10506 * that we are in nfs4_map(). Now, r_rwlock is acquired in order 10507 * and we can prevent the deadlock that would have occurred 10508 * when nfs4_addmap() would have acquired it out of order. 10509 * 10510 * Since we are not protecting r_inmap by any lock, we do not 10511 * hold any lock when we decrement it. We atomically decrement 10512 * r_inmap after we release r_lkserlock. 10513 */ 10514 10515 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp))) 10516 return (EINTR); 10517 atomic_inc_uint(&rp->r_inmap); 10518 nfs_rw_exit(&rp->r_rwlock); 10519 10520 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) { 10521 atomic_dec_uint(&rp->r_inmap); 10522 return (EINTR); 10523 } 10524 10525 10526 if (vp->v_flag & VNOCACHE) { 10527 error = EAGAIN; 10528 goto done; 10529 } 10530 10531 /* 10532 * Don't allow concurrent locks and mapping if mandatory locking is 10533 * enabled. 10534 */ 10535 if (flk_has_remote_locks(vp)) { 10536 struct vattr va; 10537 va.va_mask = AT_MODE; 10538 error = nfs4getattr(vp, &va, cr); 10539 if (error != 0) 10540 goto done; 10541 if (MANDLOCK(vp, va.va_mode)) { 10542 error = EAGAIN; 10543 goto done; 10544 } 10545 } 10546 10547 /* 10548 * It is possible that the rnode has a lost lock request that we 10549 * are still trying to recover, and that the request conflicts with 10550 * this map request. 10551 * 10552 * An alternative approach would be for nfs4_safemap() to consider 10553 * queued lock requests when deciding whether to set or clear 10554 * VNOCACHE. This would require the frlock code path to call 10555 * nfs4_safemap() after enqueing a lost request. 10556 */ 10557 if (nfs4_map_lost_lock_conflict(vp)) { 10558 error = EAGAIN; 10559 goto done; 10560 } 10561 10562 as_rangelock(as); 10563 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 10564 if (error != 0) { 10565 as_rangeunlock(as); 10566 goto done; 10567 } 10568 10569 if (vp->v_type == VREG) { 10570 /* 10571 * We need to retrieve the open stream 10572 */ 10573 nfs4_open_stream_t *osp = NULL; 10574 nfs4_open_owner_t *oop = NULL; 10575 10576 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10577 if (oop != NULL) { 10578 /* returns with 'os_sync_lock' held */ 10579 osp = find_open_stream(oop, rp); 10580 open_owner_rele(oop); 10581 } 10582 if (osp == NULL) { 10583 #ifdef DEBUG 10584 if (nfs4_force_open_before_mmap) { 10585 error = EIO; 10586 goto done; 10587 } 10588 #endif 10589 /* returns with 'os_sync_lock' held */ 10590 error = open_and_get_osp(vp, cr, &osp); 10591 if (osp == NULL) { 10592 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10593 "nfs4_map: we tried to OPEN the file " 10594 "but again no osp, so fail with EIO")); 10595 goto done; 10596 } 10597 } 10598 10599 if (osp->os_failed_reopen) { 10600 mutex_exit(&osp->os_sync_lock); 10601 open_stream_rele(osp, rp); 10602 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10603 "nfs4_map: os_failed_reopen set on " 10604 "osp %p, cr %p, rp %s", (void *)osp, 10605 (void *)cr, rnode4info(rp))); 10606 error = EIO; 10607 goto done; 10608 } 10609 mutex_exit(&osp->os_sync_lock); 10610 open_stream_rele(osp, rp); 10611 } 10612 10613 vn_a.vp = vp; 10614 vn_a.offset = off; 10615 vn_a.type = (flags & MAP_TYPE); 10616 vn_a.prot = (uchar_t)prot; 10617 vn_a.maxprot = (uchar_t)maxprot; 10618 vn_a.flags = (flags & ~MAP_TYPE); 10619 vn_a.cred = cr; 10620 vn_a.amp = NULL; 10621 vn_a.szc = 0; 10622 vn_a.lgrp_mem_policy_flags = 0; 10623 10624 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10625 as_rangeunlock(as); 10626 10627 done: 10628 nfs_rw_exit(&rp->r_lkserlock); 10629 atomic_dec_uint(&rp->r_inmap); 10630 return (error); 10631 } 10632 10633 /* 10634 * We're most likely dealing with a kernel module that likes to READ 10635 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10636 * officially OPEN the file to create the necessary client state 10637 * for bookkeeping of os_mmap_read/write counts. 10638 * 10639 * Since VOP_MAP only passes in a pointer to the vnode rather than 10640 * a double pointer, we can't handle the case where nfs4open_otw() 10641 * returns a different vnode than the one passed into VOP_MAP (since 10642 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10643 * we return NULL and let nfs4_map() fail. Note: the only case where 10644 * this should happen is if the file got removed and replaced with the 10645 * same name on the server (in addition to the fact that we're trying 10646 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10647 */ 10648 static int 10649 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10650 { 10651 rnode4_t *rp, *drp; 10652 vnode_t *dvp, *open_vp; 10653 char file_name[MAXNAMELEN]; 10654 int just_created; 10655 nfs4_open_stream_t *osp; 10656 nfs4_open_owner_t *oop; 10657 int error; 10658 10659 *ospp = NULL; 10660 open_vp = map_vp; 10661 10662 rp = VTOR4(open_vp); 10663 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10664 return (error); 10665 drp = VTOR4(dvp); 10666 10667 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10668 VN_RELE(dvp); 10669 return (EINTR); 10670 } 10671 10672 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10673 nfs_rw_exit(&drp->r_rwlock); 10674 VN_RELE(dvp); 10675 return (error); 10676 } 10677 10678 mutex_enter(&rp->r_statev4_lock); 10679 if (rp->created_v4) { 10680 rp->created_v4 = 0; 10681 mutex_exit(&rp->r_statev4_lock); 10682 10683 dnlc_update(dvp, file_name, open_vp); 10684 /* This is needed so we don't bump the open ref count */ 10685 just_created = 1; 10686 } else { 10687 mutex_exit(&rp->r_statev4_lock); 10688 just_created = 0; 10689 } 10690 10691 VN_HOLD(map_vp); 10692 10693 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10694 just_created); 10695 if (error) { 10696 nfs_rw_exit(&drp->r_rwlock); 10697 VN_RELE(dvp); 10698 VN_RELE(map_vp); 10699 return (error); 10700 } 10701 10702 nfs_rw_exit(&drp->r_rwlock); 10703 VN_RELE(dvp); 10704 10705 /* 10706 * If nfs4open_otw() returned a different vnode then "undo" 10707 * the open and return failure to the caller. 10708 */ 10709 if (!VN_CMP(open_vp, map_vp)) { 10710 nfs4_error_t e; 10711 10712 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10713 "open returned a different vnode")); 10714 /* 10715 * If there's an error, ignore it, 10716 * and let VOP_INACTIVE handle it. 10717 */ 10718 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10719 CLOSE_NORM, 0, 0, 0); 10720 VN_RELE(map_vp); 10721 return (EIO); 10722 } 10723 10724 VN_RELE(map_vp); 10725 10726 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10727 if (!oop) { 10728 nfs4_error_t e; 10729 10730 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10731 "no open owner")); 10732 /* 10733 * If there's an error, ignore it, 10734 * and let VOP_INACTIVE handle it. 10735 */ 10736 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10737 CLOSE_NORM, 0, 0, 0); 10738 return (EIO); 10739 } 10740 osp = find_open_stream(oop, rp); 10741 open_owner_rele(oop); 10742 *ospp = osp; 10743 return (0); 10744 } 10745 10746 /* 10747 * Please be aware that when this function is called, the address space write 10748 * a_lock is held. Do not put over the wire calls in this function. 10749 */ 10750 /* ARGSUSED */ 10751 static int 10752 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10753 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10754 caller_context_t *ct) 10755 { 10756 rnode4_t *rp; 10757 int error = 0; 10758 mntinfo4_t *mi; 10759 10760 mi = VTOMI4(vp); 10761 rp = VTOR4(vp); 10762 10763 if (nfs_zone() != mi->mi_zone) 10764 return (EIO); 10765 if (vp->v_flag & VNOMAP) 10766 return (ENOSYS); 10767 10768 /* 10769 * Don't need to update the open stream first, since this 10770 * mmap can't add any additional share access that isn't 10771 * already contained in the open stream (for the case where we 10772 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10773 * take into account os_mmap_read[write] counts). 10774 */ 10775 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10776 10777 if (vp->v_type == VREG) { 10778 /* 10779 * We need to retrieve the open stream and update the counts. 10780 * If there is no open stream here, something is wrong. 10781 */ 10782 nfs4_open_stream_t *osp = NULL; 10783 nfs4_open_owner_t *oop = NULL; 10784 10785 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10786 if (oop != NULL) { 10787 /* returns with 'os_sync_lock' held */ 10788 osp = find_open_stream(oop, rp); 10789 open_owner_rele(oop); 10790 } 10791 if (osp == NULL) { 10792 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10793 "nfs4_addmap: we should have an osp" 10794 "but we don't, so fail with EIO")); 10795 error = EIO; 10796 goto out; 10797 } 10798 10799 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10800 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10801 10802 /* 10803 * Update the map count in the open stream. 10804 * This is necessary in the case where we 10805 * open/mmap/close/, then the server reboots, and we 10806 * attempt to reopen. If the mmap doesn't add share 10807 * access then we send an invalid reopen with 10808 * access = NONE. 10809 * 10810 * We need to specifically check each PROT_* so a mmap 10811 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10812 * read and write access. A simple comparison of prot 10813 * to ~PROT_WRITE to determine read access is insufficient 10814 * since prot can be |= with PROT_USER, etc. 10815 */ 10816 10817 /* 10818 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10819 */ 10820 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10821 osp->os_mmap_write += btopr(len); 10822 if (maxprot & PROT_READ) 10823 osp->os_mmap_read += btopr(len); 10824 if (maxprot & PROT_EXEC) 10825 osp->os_mmap_read += btopr(len); 10826 /* 10827 * Ensure that os_mmap_read gets incremented, even if 10828 * maxprot were to look like PROT_NONE. 10829 */ 10830 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10831 !(maxprot & PROT_EXEC)) 10832 osp->os_mmap_read += btopr(len); 10833 osp->os_mapcnt += btopr(len); 10834 mutex_exit(&osp->os_sync_lock); 10835 open_stream_rele(osp, rp); 10836 } 10837 10838 out: 10839 /* 10840 * If we got an error, then undo our 10841 * incrementing of 'r_mapcnt'. 10842 */ 10843 10844 if (error) { 10845 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10846 ASSERT(rp->r_mapcnt >= 0); 10847 } 10848 return (error); 10849 } 10850 10851 /* ARGSUSED */ 10852 static int 10853 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10854 { 10855 10856 return (VTOR4(vp1) == VTOR4(vp2)); 10857 } 10858 10859 /* 10860 * Data structure for nfs4_lkserlock_callback() function. 10861 */ 10862 struct nfs4_lkserlock_callback_data { 10863 vnode_t *vp; 10864 int rc; 10865 }; 10866 10867 /* 10868 * Callback function for reclock(). 10869 */ 10870 static callb_cpr_t * 10871 nfs4_lkserlock_callback(flk_cb_when_t when, void *infop) 10872 { 10873 struct nfs4_lkserlock_callback_data *dp = 10874 (struct nfs4_lkserlock_callback_data *)infop; 10875 rnode4_t *rp = VTOR4(dp->vp); 10876 10877 if (when == FLK_BEFORE_SLEEP) 10878 nfs_rw_exit(&rp->r_lkserlock); 10879 else 10880 dp->rc = nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, 10881 INTR4(dp->vp)); 10882 10883 return (NULL); 10884 } 10885 10886 /* ARGSUSED */ 10887 static int 10888 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10889 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10890 caller_context_t *ct) 10891 { 10892 int rc = 0; 10893 rnode4_t *rp; 10894 int intr = INTR4(vp); 10895 nfs4_error_t e; 10896 int frcmd; 10897 struct lm_sysid *ls = NULL; 10898 10899 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10900 return (EIO); 10901 10902 /* check for valid cmd parameter and set frcmd appropriately */ 10903 switch (cmd) { 10904 case F_GETLK: 10905 frcmd = 0; 10906 break; 10907 case F_SETLK: 10908 frcmd = SETFLCK; 10909 break; 10910 case F_SETLKW: 10911 frcmd = SETFLCK | SLPFLCK; 10912 break; 10913 default: 10914 return (EINVAL); 10915 } 10916 10917 /* 10918 * If lock is relative to EOF, we need the newest length of the file. 10919 * Therefore invalidate the ATTR_CACHE. 10920 */ 10921 if (bfp->l_whence == 2) /* SEEK_END */ 10922 PURGE_ATTRCACHE4(vp); 10923 10924 /* 10925 * If the filesystem is mounted using local locking, pass the 10926 * request off to the local locking code. 10927 */ 10928 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10929 if (cmd == F_SETLK || cmd == F_SETLKW) { 10930 /* 10931 * For complete safety, we should be holding 10932 * r_lkserlock. However, we can't call 10933 * nfs4_safelock and then fs_frlock while 10934 * holding r_lkserlock, so just invoke 10935 * nfs4_safelock and expect that this will 10936 * catch enough of the cases. 10937 */ 10938 if (!nfs4_safelock(vp, bfp, cr)) 10939 return (EAGAIN); 10940 } 10941 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10942 } 10943 10944 /* 10945 * Convert the offset. We need to do this to make sure our view of the 10946 * locking range is always the same through the rest of this function. 10947 * This is especially needed for bfp->l_whence == SEEK_END, because the 10948 * length of the file could change anytime and thus the locking range 10949 * would be a moving target for us. 10950 * 10951 * For the bfp->l_whence == SEEK_CUR case this is just a convenient 10952 * conversion to make the life easier for nfs4frlock(). 10953 */ 10954 rc = convoff(vp, bfp, 0, offset); 10955 if (rc != 0) 10956 return (rc); 10957 10958 if (bfp->l_type == F_UNLCK) { 10959 u_offset_t start, end; 10960 10961 /* 10962 * Shortcut for trivial case. 10963 */ 10964 if (cmd == F_GETLK) 10965 return (rc); 10966 10967 /* 10968 * For every lock or unlock request we need to do two steps: 10969 * (un)register the local lock, and (un)register the lock at 10970 * the NFSv4 server. It is essential to make sure the lock 10971 * status registered at the server and registered locally is 10972 * same and never goes out of sync. This means that if one 10973 * step fails, the other one needs to be either skipped, or 10974 * reverted. 10975 * 10976 * For lock requests the situation is easy since a lock 10977 * registration can be reverted without any risk of data 10978 * corruption. 10979 * 10980 * The unlock requests cannot be reverted because once a lock 10981 * is unregistered the race window is open and some other 10982 * process could grab a conflicting lock. This means that once 10983 * the first step (the first lock unregistration) succeeded, 10984 * the second step cannot fail. The second step for the unlock 10985 * request is the local lock unregistration by the reclock() 10986 * call. 10987 * 10988 * The only way how the reclock() call for an unlock request 10989 * could fail is the invalid unlock range so we check it here, 10990 * before the lock is unregistered at NFSv4 server. This 10991 * duplicates the check done in the reclock() function. 10992 */ 10993 rc = flk_convert_lock_data(vp, bfp, &start, &end, offset); 10994 if (rc != 0) 10995 return (rc); 10996 rc = flk_check_lock_data(start, end, MAXEND); 10997 if (rc != 0) 10998 return (rc); 10999 11000 intr = 0; 11001 } 11002 11003 /* 11004 * For F_SETLK and F_SETLKW we need to set sysid. 11005 */ 11006 if (cmd == F_SETLK || cmd == F_SETLKW) { 11007 rc = nfs4frlock_get_sysid(&ls, vp, bfp); 11008 if (rc != 0) 11009 return (rc); 11010 11011 /* 11012 * Client locks are registerred locally by oring the sysid with 11013 * LM_SYSID_CLIENT. The server registers locks locally using 11014 * just the sysid. We need to distinguish between the two to 11015 * avoid collision in a case one machine is used as both client 11016 * and server. 11017 */ 11018 bfp->l_sysid |= LM_SYSID_CLIENT; 11019 } 11020 11021 bfp->l_pid = curproc->p_pid; 11022 11023 rp = VTOR4(vp); 11024 11025 /* 11026 * Check whether the given lock request can proceed, given the 11027 * current file mappings. 11028 */ 11029 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) { 11030 if (ls != NULL) 11031 lm_rel_sysid(ls); 11032 return (EINTR); 11033 } 11034 if (cmd == F_SETLK || cmd == F_SETLKW) { 11035 if (!nfs4_safelock(vp, bfp, cr)) { 11036 rc = EAGAIN; 11037 goto done; 11038 } 11039 } 11040 11041 /* 11042 * For query we will try to find a conflicting local lock first by 11043 * calling reclock(). 11044 * 11045 * In a case this is a lock request we need to register it locally 11046 * first before we consult the NFSv4 server. 11047 */ 11048 if (cmd == F_GETLK || bfp->l_type != F_UNLCK) { 11049 /* 11050 * If we might sleep in reclock() we need to register a 11051 * callback to release the r_lkserlock during the sleep. 11052 */ 11053 if ((frcmd & SLPFLCK) == 0) { 11054 rc = reclock(vp, bfp, frcmd, flag, 0, flk_cbp); 11055 } else { 11056 flk_callback_t callback; 11057 struct nfs4_lkserlock_callback_data callback_data = 11058 {vp, 0}; 11059 11060 flk_add_callback(&callback, nfs4_lkserlock_callback, 11061 &callback_data, flk_cbp); 11062 rc = reclock(vp, bfp, frcmd, flag, 0, &callback); 11063 flk_del_callback(&callback); 11064 11065 if (callback_data.rc != 0) { 11066 /* 11067 * The nfs_rw_enter_sig() call in 11068 * nfs4_lkserlock_callback() failed. 11069 */ 11070 11071 if (rc == 0) { 11072 /* 11073 * The reclock() call above succeeded 11074 * so we need to revert it. 11075 */ 11076 bfp->l_type = F_UNLCK; 11077 rc = reclock(vp, bfp, frcmd, flag, 0, 11078 flk_cbp); 11079 /* The unlock cannot fail */ 11080 ASSERT(rc == 0); 11081 11082 /* 11083 * We are here because we failed to 11084 * acquire r_lkserlock in 11085 * nfs4_lkserlock_callback() due to a 11086 * signal. Return the appropriate 11087 * error. 11088 */ 11089 rc = EINTR; 11090 } 11091 11092 ASSERT(ls != NULL); 11093 lm_rel_sysid(ls); 11094 11095 return (rc); 11096 } 11097 11098 /* 11099 * We possibly released r_lkserlock in reclock() so 11100 * make sure it is still safe to lock the file. 11101 */ 11102 if (!nfs4_safelock(vp, bfp, cr)) { 11103 rc = EAGAIN; 11104 goto revert; 11105 } 11106 11107 } 11108 11109 /* 11110 * If the reclock() call failed we are done and we will return 11111 * an error to the caller. Similarly, if we found a 11112 * conflicting lock registered locally we are done too. We do 11113 * not need to consult the server. 11114 */ 11115 if ((rc != 0) || (cmd == F_GETLK && bfp->l_type != F_UNLCK)) 11116 goto done; 11117 } 11118 11119 /* 11120 * Flush the cache after waiting for async I/O to finish. For new 11121 * locks, this is so that the process gets the latest bits from the 11122 * server. For unlocks, this is so that other clients see the 11123 * latest bits once the file has been unlocked. If currently dirty 11124 * pages can't be flushed, then don't allow a lock to be set. But 11125 * allow unlocks to succeed, to avoid having orphan locks on the 11126 * server. 11127 */ 11128 if (cmd != F_GETLK) { 11129 mutex_enter(&rp->r_statelock); 11130 while (rp->r_count > 0) { 11131 if (intr) { 11132 klwp_t *lwp = ttolwp(curthread); 11133 11134 if (lwp != NULL) 11135 lwp->lwp_nostop++; 11136 if (cv_wait_sig(&rp->r_cv, 11137 &rp->r_statelock) == 0) { 11138 if (lwp != NULL) 11139 lwp->lwp_nostop--; 11140 rc = EINTR; 11141 break; 11142 } 11143 if (lwp != NULL) 11144 lwp->lwp_nostop--; 11145 } else 11146 cv_wait(&rp->r_cv, &rp->r_statelock); 11147 } 11148 mutex_exit(&rp->r_statelock); 11149 if (rc != 0) { 11150 ASSERT(bfp->l_type != F_UNLCK); 11151 11152 goto revert; 11153 } 11154 11155 rc = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 11156 if (rc != 0) { 11157 if (rc == ENOSPC || rc == EDQUOT) { 11158 mutex_enter(&rp->r_statelock); 11159 if (!rp->r_error) 11160 rp->r_error = rc; 11161 mutex_exit(&rp->r_statelock); 11162 } 11163 11164 /* 11165 * If this was a lock request, make sure it is 11166 * reverted. 11167 */ 11168 if (bfp->l_type != F_UNLCK) { 11169 rc = ENOLCK; 11170 goto revert; 11171 } 11172 } 11173 } 11174 11175 /* 11176 * Call the lock manager to do the real work of contacting 11177 * the server and obtaining the lock. 11178 */ 11179 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, cr, &e, NULL, NULL); 11180 rc = e.error; 11181 11182 if (rc == 0) 11183 nfs4_lockcompletion(vp, cmd); 11184 11185 revert: 11186 /* 11187 * If this is either successful unlock request or a lock request that 11188 * failed we should unregister/revert the local lock now. 11189 */ 11190 if ((rc == 0 && cmd != F_GETLK && bfp->l_type == F_UNLCK) || 11191 (rc != 0 && cmd != F_GETLK && bfp->l_type != F_UNLCK)) { 11192 int r; 11193 11194 bfp->l_type = F_UNLCK; 11195 r = reclock(vp, bfp, frcmd, flag, 0, flk_cbp); 11196 /* The unlock cannot fail */ 11197 ASSERT(r == 0); 11198 } 11199 11200 done: 11201 nfs_rw_exit(&rp->r_lkserlock); 11202 if (ls != NULL) 11203 lm_rel_sysid(ls); 11204 11205 return (rc); 11206 } 11207 11208 /* 11209 * Free storage space associated with the specified vnode. The portion 11210 * to be freed is specified by bfp->l_start and bfp->l_len (already 11211 * normalized to a "whence" of 0). 11212 * 11213 * This is an experimental facility whose continued existence is not 11214 * guaranteed. Currently, we only support the special case 11215 * of l_len == 0, meaning free to end of file. 11216 */ 11217 /* ARGSUSED */ 11218 static int 11219 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 11220 offset_t offset, cred_t *cr, caller_context_t *ct) 11221 { 11222 int error; 11223 11224 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11225 return (EIO); 11226 ASSERT(vp->v_type == VREG); 11227 if (cmd != F_FREESP) 11228 return (EINVAL); 11229 11230 error = convoff(vp, bfp, 0, offset); 11231 if (!error) { 11232 ASSERT(bfp->l_start >= 0); 11233 if (bfp->l_len == 0) { 11234 struct vattr va; 11235 11236 va.va_mask = AT_SIZE; 11237 va.va_size = bfp->l_start; 11238 error = nfs4setattr(vp, &va, 0, cr, NULL); 11239 11240 if (error == 0 && bfp->l_start == 0) 11241 vnevent_truncate(vp, ct); 11242 } else 11243 error = EINVAL; 11244 } 11245 11246 return (error); 11247 } 11248 11249 /* ARGSUSED */ 11250 int 11251 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 11252 { 11253 rnode4_t *rp; 11254 rp = VTOR4(vp); 11255 11256 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 11257 vp = RTOV4(rp); 11258 } 11259 *vpp = vp; 11260 return (0); 11261 } 11262 11263 /* 11264 * Setup and add an address space callback to do the work of the delmap call. 11265 * The callback will (and must be) deleted in the actual callback function. 11266 * 11267 * This is done in order to take care of the problem that we have with holding 11268 * the address space's a_lock for a long period of time (e.g. if the NFS server 11269 * is down). Callbacks will be executed in the address space code while the 11270 * a_lock is not held. Holding the address space's a_lock causes things such 11271 * as ps and fork to hang because they are trying to acquire this lock as well. 11272 */ 11273 /* ARGSUSED */ 11274 static int 11275 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 11276 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 11277 caller_context_t *ct) 11278 { 11279 int caller_found; 11280 int error; 11281 rnode4_t *rp; 11282 nfs4_delmap_args_t *dmapp; 11283 nfs4_delmapcall_t *delmap_call; 11284 11285 if (vp->v_flag & VNOMAP) 11286 return (ENOSYS); 11287 11288 /* 11289 * A process may not change zones if it has NFS pages mmap'ed 11290 * in, so we can't legitimately get here from the wrong zone. 11291 */ 11292 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11293 11294 rp = VTOR4(vp); 11295 11296 /* 11297 * The way that the address space of this process deletes its mapping 11298 * of this file is via the following call chains: 11299 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11300 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11301 * 11302 * With the use of address space callbacks we are allowed to drop the 11303 * address space lock, a_lock, while executing the NFS operations that 11304 * need to go over the wire. Returning EAGAIN to the caller of this 11305 * function is what drives the execution of the callback that we add 11306 * below. The callback will be executed by the address space code 11307 * after dropping the a_lock. When the callback is finished, since 11308 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 11309 * is called again on the same segment to finish the rest of the work 11310 * that needs to happen during unmapping. 11311 * 11312 * This action of calling back into the segment driver causes 11313 * nfs4_delmap() to get called again, but since the callback was 11314 * already executed at this point, it already did the work and there 11315 * is nothing left for us to do. 11316 * 11317 * To Summarize: 11318 * - The first time nfs4_delmap is called by the current thread is when 11319 * we add the caller associated with this delmap to the delmap caller 11320 * list, add the callback, and return EAGAIN. 11321 * - The second time in this call chain when nfs4_delmap is called we 11322 * will find this caller in the delmap caller list and realize there 11323 * is no more work to do thus removing this caller from the list and 11324 * returning the error that was set in the callback execution. 11325 */ 11326 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 11327 if (caller_found) { 11328 /* 11329 * 'error' is from the actual delmap operations. To avoid 11330 * hangs, we need to handle the return of EAGAIN differently 11331 * since this is what drives the callback execution. 11332 * In this case, we don't want to return EAGAIN and do the 11333 * callback execution because there are none to execute. 11334 */ 11335 if (error == EAGAIN) 11336 return (0); 11337 else 11338 return (error); 11339 } 11340 11341 /* current caller was not in the list */ 11342 delmap_call = nfs4_init_delmapcall(); 11343 11344 mutex_enter(&rp->r_statelock); 11345 list_insert_tail(&rp->r_indelmap, delmap_call); 11346 mutex_exit(&rp->r_statelock); 11347 11348 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 11349 11350 dmapp->vp = vp; 11351 dmapp->off = off; 11352 dmapp->addr = addr; 11353 dmapp->len = len; 11354 dmapp->prot = prot; 11355 dmapp->maxprot = maxprot; 11356 dmapp->flags = flags; 11357 dmapp->cr = cr; 11358 dmapp->caller = delmap_call; 11359 11360 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 11361 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 11362 11363 return (error ? error : EAGAIN); 11364 } 11365 11366 static nfs4_delmapcall_t * 11367 nfs4_init_delmapcall() 11368 { 11369 nfs4_delmapcall_t *delmap_call; 11370 11371 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11372 delmap_call->call_id = curthread; 11373 delmap_call->error = 0; 11374 11375 return (delmap_call); 11376 } 11377 11378 static void 11379 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11380 { 11381 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11382 } 11383 11384 /* 11385 * Searches for the current delmap caller (based on curthread) in the list of 11386 * callers. If it is found, we remove it and free the delmap caller. 11387 * Returns: 11388 * 0 if the caller wasn't found 11389 * 1 if the caller was found, removed and freed. *errp will be set 11390 * to what the result of the delmap was. 11391 */ 11392 static int 11393 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11394 { 11395 nfs4_delmapcall_t *delmap_call; 11396 11397 /* 11398 * If the list doesn't exist yet, we create it and return 11399 * that the caller wasn't found. No list = no callers. 11400 */ 11401 mutex_enter(&rp->r_statelock); 11402 if (!(rp->r_flags & R4DELMAPLIST)) { 11403 /* The list does not exist */ 11404 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11405 offsetof(nfs4_delmapcall_t, call_node)); 11406 rp->r_flags |= R4DELMAPLIST; 11407 mutex_exit(&rp->r_statelock); 11408 return (0); 11409 } else { 11410 /* The list exists so search it */ 11411 for (delmap_call = list_head(&rp->r_indelmap); 11412 delmap_call != NULL; 11413 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11414 if (delmap_call->call_id == curthread) { 11415 /* current caller is in the list */ 11416 *errp = delmap_call->error; 11417 list_remove(&rp->r_indelmap, delmap_call); 11418 mutex_exit(&rp->r_statelock); 11419 nfs4_free_delmapcall(delmap_call); 11420 return (1); 11421 } 11422 } 11423 } 11424 mutex_exit(&rp->r_statelock); 11425 return (0); 11426 } 11427 11428 /* 11429 * Remove some pages from an mmap'd vnode. Just update the 11430 * count of pages. If doing close-to-open, then flush and 11431 * commit all of the pages associated with this file. 11432 * Otherwise, start an asynchronous page flush to write out 11433 * any dirty pages. This will also associate a credential 11434 * with the rnode which can be used to write the pages. 11435 */ 11436 /* ARGSUSED */ 11437 static void 11438 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11439 { 11440 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11441 rnode4_t *rp; 11442 mntinfo4_t *mi; 11443 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11444 11445 rp = VTOR4(dmapp->vp); 11446 mi = VTOMI4(dmapp->vp); 11447 11448 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11449 ASSERT(rp->r_mapcnt >= 0); 11450 11451 /* 11452 * Initiate a page flush and potential commit if there are 11453 * pages, the file system was not mounted readonly, the segment 11454 * was mapped shared, and the pages themselves were writeable. 11455 */ 11456 if (nfs4_has_pages(dmapp->vp) && 11457 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11458 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11459 mutex_enter(&rp->r_statelock); 11460 rp->r_flags |= R4DIRTY; 11461 mutex_exit(&rp->r_statelock); 11462 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11463 dmapp->len, dmapp->cr); 11464 if (!e.error) { 11465 mutex_enter(&rp->r_statelock); 11466 e.error = rp->r_error; 11467 rp->r_error = 0; 11468 mutex_exit(&rp->r_statelock); 11469 } 11470 } else 11471 e.error = 0; 11472 11473 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11474 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11475 B_INVAL, dmapp->cr, NULL); 11476 11477 if (e.error) { 11478 e.stat = puterrno4(e.error); 11479 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11480 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11481 dmapp->caller->error = e.error; 11482 } 11483 11484 /* Check to see if we need to close the file */ 11485 11486 if (dmapp->vp->v_type == VREG) { 11487 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11488 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11489 11490 if (e.error != 0 || e.stat != NFS4_OK) { 11491 /* 11492 * Since it is possible that e.error == 0 and 11493 * e.stat != NFS4_OK (and vice versa), 11494 * we do the proper checking in order to get both 11495 * e.error and e.stat reporting the correct info. 11496 */ 11497 if (e.stat == NFS4_OK) 11498 e.stat = puterrno4(e.error); 11499 if (e.error == 0) 11500 e.error = geterrno4(e.stat); 11501 11502 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11503 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11504 dmapp->caller->error = e.error; 11505 } 11506 } 11507 11508 (void) as_delete_callback(as, arg); 11509 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11510 } 11511 11512 11513 static uint_t 11514 fattr4_maxfilesize_to_bits(uint64_t ll) 11515 { 11516 uint_t l = 1; 11517 11518 if (ll == 0) { 11519 return (0); 11520 } 11521 11522 if (ll & 0xffffffff00000000) { 11523 l += 32; ll >>= 32; 11524 } 11525 if (ll & 0xffff0000) { 11526 l += 16; ll >>= 16; 11527 } 11528 if (ll & 0xff00) { 11529 l += 8; ll >>= 8; 11530 } 11531 if (ll & 0xf0) { 11532 l += 4; ll >>= 4; 11533 } 11534 if (ll & 0xc) { 11535 l += 2; ll >>= 2; 11536 } 11537 if (ll & 0x2) { 11538 l += 1; 11539 } 11540 return (l); 11541 } 11542 11543 static int 11544 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr) 11545 { 11546 vnode_t *avp = NULL; 11547 int error; 11548 11549 if ((error = nfs4lookup_xattr(vp, "", &avp, 11550 LOOKUP_XATTR, cr)) == 0) 11551 error = do_xattr_exists_check(avp, valp, cr); 11552 if (avp) 11553 VN_RELE(avp); 11554 11555 return (error); 11556 } 11557 11558 /* ARGSUSED */ 11559 int 11560 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11561 caller_context_t *ct) 11562 { 11563 int error; 11564 hrtime_t t; 11565 rnode4_t *rp; 11566 nfs4_ga_res_t gar; 11567 nfs4_ga_ext_res_t ger; 11568 11569 gar.n4g_ext_res = &ger; 11570 11571 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11572 return (EIO); 11573 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11574 *valp = MAXPATHLEN; 11575 return (0); 11576 } 11577 if (cmd == _PC_ACL_ENABLED) { 11578 *valp = _ACL_ACE_ENABLED; 11579 return (0); 11580 } 11581 11582 rp = VTOR4(vp); 11583 if (cmd == _PC_XATTR_EXISTS) { 11584 /* 11585 * The existence of the xattr directory is not sufficient 11586 * for determining whether generic user attributes exists. 11587 * The attribute directory could only be a transient directory 11588 * used for Solaris sysattr support. Do a small readdir 11589 * to verify if the only entries are sysattrs or not. 11590 * 11591 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11592 * is NULL. Once the xadir vp exists, we can create xattrs, 11593 * and we don't have any way to update the "base" object's 11594 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11595 * could help out. 11596 */ 11597 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11598 rp->r_xattr_dir == NULL) { 11599 return (nfs4_have_xattrs(vp, valp, cr)); 11600 } 11601 } else { /* OLD CODE */ 11602 if (ATTRCACHE4_VALID(vp)) { 11603 mutex_enter(&rp->r_statelock); 11604 if (rp->r_pathconf.pc4_cache_valid) { 11605 error = 0; 11606 switch (cmd) { 11607 case _PC_FILESIZEBITS: 11608 *valp = 11609 rp->r_pathconf.pc4_filesizebits; 11610 break; 11611 case _PC_LINK_MAX: 11612 *valp = 11613 rp->r_pathconf.pc4_link_max; 11614 break; 11615 case _PC_NAME_MAX: 11616 *valp = 11617 rp->r_pathconf.pc4_name_max; 11618 break; 11619 case _PC_CHOWN_RESTRICTED: 11620 *valp = 11621 rp->r_pathconf.pc4_chown_restricted; 11622 break; 11623 case _PC_NO_TRUNC: 11624 *valp = 11625 rp->r_pathconf.pc4_no_trunc; 11626 break; 11627 default: 11628 error = EINVAL; 11629 break; 11630 } 11631 mutex_exit(&rp->r_statelock); 11632 #ifdef DEBUG 11633 nfs4_pathconf_cache_hits++; 11634 #endif 11635 return (error); 11636 } 11637 mutex_exit(&rp->r_statelock); 11638 } 11639 } 11640 #ifdef DEBUG 11641 nfs4_pathconf_cache_misses++; 11642 #endif 11643 11644 t = gethrtime(); 11645 11646 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11647 11648 if (error) { 11649 mutex_enter(&rp->r_statelock); 11650 rp->r_pathconf.pc4_cache_valid = FALSE; 11651 rp->r_pathconf.pc4_xattr_valid = FALSE; 11652 mutex_exit(&rp->r_statelock); 11653 return (error); 11654 } 11655 11656 /* interpret the max filesize */ 11657 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11658 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11659 11660 /* Store the attributes we just received */ 11661 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11662 11663 switch (cmd) { 11664 case _PC_FILESIZEBITS: 11665 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11666 break; 11667 case _PC_LINK_MAX: 11668 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11669 break; 11670 case _PC_NAME_MAX: 11671 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11672 break; 11673 case _PC_CHOWN_RESTRICTED: 11674 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11675 break; 11676 case _PC_NO_TRUNC: 11677 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11678 break; 11679 case _PC_XATTR_EXISTS: 11680 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) { 11681 if (error = nfs4_have_xattrs(vp, valp, cr)) 11682 return (error); 11683 } 11684 break; 11685 default: 11686 return (EINVAL); 11687 } 11688 11689 return (0); 11690 } 11691 11692 /* 11693 * Called by async thread to do synchronous pageio. Do the i/o, wait 11694 * for it to complete, and cleanup the page list when done. 11695 */ 11696 static int 11697 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11698 int flags, cred_t *cr) 11699 { 11700 int error; 11701 11702 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11703 11704 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11705 if (flags & B_READ) 11706 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11707 else 11708 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11709 return (error); 11710 } 11711 11712 /* ARGSUSED */ 11713 static int 11714 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11715 int flags, cred_t *cr, caller_context_t *ct) 11716 { 11717 int error; 11718 rnode4_t *rp; 11719 11720 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11721 return (EIO); 11722 11723 if (pp == NULL) 11724 return (EINVAL); 11725 11726 rp = VTOR4(vp); 11727 mutex_enter(&rp->r_statelock); 11728 rp->r_count++; 11729 mutex_exit(&rp->r_statelock); 11730 11731 if (flags & B_ASYNC) { 11732 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11733 nfs4_sync_pageio); 11734 } else 11735 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11736 mutex_enter(&rp->r_statelock); 11737 rp->r_count--; 11738 cv_broadcast(&rp->r_cv); 11739 mutex_exit(&rp->r_statelock); 11740 return (error); 11741 } 11742 11743 /* ARGSUSED */ 11744 static void 11745 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11746 caller_context_t *ct) 11747 { 11748 int error; 11749 rnode4_t *rp; 11750 page_t *plist; 11751 page_t *pptr; 11752 offset3 offset; 11753 count3 len; 11754 k_sigset_t smask; 11755 11756 /* 11757 * We should get called with fl equal to either B_FREE or 11758 * B_INVAL. Any other value is illegal. 11759 * 11760 * The page that we are either supposed to free or destroy 11761 * should be exclusive locked and its io lock should not 11762 * be held. 11763 */ 11764 ASSERT(fl == B_FREE || fl == B_INVAL); 11765 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11766 11767 rp = VTOR4(vp); 11768 11769 /* 11770 * If the page doesn't need to be committed or we shouldn't 11771 * even bother attempting to commit it, then just make sure 11772 * that the p_fsdata byte is clear and then either free or 11773 * destroy the page as appropriate. 11774 */ 11775 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11776 pp->p_fsdata = C_NOCOMMIT; 11777 if (fl == B_FREE) 11778 page_free(pp, dn); 11779 else 11780 page_destroy(pp, dn); 11781 return; 11782 } 11783 11784 /* 11785 * If there is a page invalidation operation going on, then 11786 * if this is one of the pages being destroyed, then just 11787 * clear the p_fsdata byte and then either free or destroy 11788 * the page as appropriate. 11789 */ 11790 mutex_enter(&rp->r_statelock); 11791 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11792 mutex_exit(&rp->r_statelock); 11793 pp->p_fsdata = C_NOCOMMIT; 11794 if (fl == B_FREE) 11795 page_free(pp, dn); 11796 else 11797 page_destroy(pp, dn); 11798 return; 11799 } 11800 11801 /* 11802 * If we are freeing this page and someone else is already 11803 * waiting to do a commit, then just unlock the page and 11804 * return. That other thread will take care of commiting 11805 * this page. The page can be freed sometime after the 11806 * commit has finished. Otherwise, if the page is marked 11807 * as delay commit, then we may be getting called from 11808 * pvn_write_done, one page at a time. This could result 11809 * in one commit per page, so we end up doing lots of small 11810 * commits instead of fewer larger commits. This is bad, 11811 * we want do as few commits as possible. 11812 */ 11813 if (fl == B_FREE) { 11814 if (rp->r_flags & R4COMMITWAIT) { 11815 page_unlock(pp); 11816 mutex_exit(&rp->r_statelock); 11817 return; 11818 } 11819 if (pp->p_fsdata == C_DELAYCOMMIT) { 11820 pp->p_fsdata = C_COMMIT; 11821 page_unlock(pp); 11822 mutex_exit(&rp->r_statelock); 11823 return; 11824 } 11825 } 11826 11827 /* 11828 * Check to see if there is a signal which would prevent an 11829 * attempt to commit the pages from being successful. If so, 11830 * then don't bother with all of the work to gather pages and 11831 * generate the unsuccessful RPC. Just return from here and 11832 * let the page be committed at some later time. 11833 */ 11834 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11835 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11836 sigunintr(&smask); 11837 page_unlock(pp); 11838 mutex_exit(&rp->r_statelock); 11839 return; 11840 } 11841 sigunintr(&smask); 11842 11843 /* 11844 * We are starting to need to commit pages, so let's try 11845 * to commit as many as possible at once to reduce the 11846 * overhead. 11847 * 11848 * Set the `commit inprogress' state bit. We must 11849 * first wait until any current one finishes. Then 11850 * we initialize the c_pages list with this page. 11851 */ 11852 while (rp->r_flags & R4COMMIT) { 11853 rp->r_flags |= R4COMMITWAIT; 11854 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11855 rp->r_flags &= ~R4COMMITWAIT; 11856 } 11857 rp->r_flags |= R4COMMIT; 11858 mutex_exit(&rp->r_statelock); 11859 ASSERT(rp->r_commit.c_pages == NULL); 11860 rp->r_commit.c_pages = pp; 11861 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11862 rp->r_commit.c_commlen = PAGESIZE; 11863 11864 /* 11865 * Gather together all other pages which can be committed. 11866 * They will all be chained off r_commit.c_pages. 11867 */ 11868 nfs4_get_commit(vp); 11869 11870 /* 11871 * Clear the `commit inprogress' status and disconnect 11872 * the list of pages to be committed from the rnode. 11873 * At this same time, we also save the starting offset 11874 * and length of data to be committed on the server. 11875 */ 11876 plist = rp->r_commit.c_pages; 11877 rp->r_commit.c_pages = NULL; 11878 offset = rp->r_commit.c_commbase; 11879 len = rp->r_commit.c_commlen; 11880 mutex_enter(&rp->r_statelock); 11881 rp->r_flags &= ~R4COMMIT; 11882 cv_broadcast(&rp->r_commit.c_cv); 11883 mutex_exit(&rp->r_statelock); 11884 11885 if (curproc == proc_pageout || curproc == proc_fsflush || 11886 nfs_zone() != VTOMI4(vp)->mi_zone) { 11887 nfs4_async_commit(vp, plist, offset, len, 11888 cr, do_nfs4_async_commit); 11889 return; 11890 } 11891 11892 /* 11893 * Actually generate the COMMIT op over the wire operation. 11894 */ 11895 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11896 11897 /* 11898 * If we got an error during the commit, just unlock all 11899 * of the pages. The pages will get retransmitted to the 11900 * server during a putpage operation. 11901 */ 11902 if (error) { 11903 while (plist != NULL) { 11904 pptr = plist; 11905 page_sub(&plist, pptr); 11906 page_unlock(pptr); 11907 } 11908 return; 11909 } 11910 11911 /* 11912 * We've tried as hard as we can to commit the data to stable 11913 * storage on the server. We just unlock the rest of the pages 11914 * and clear the commit required state. They will be put 11915 * onto the tail of the cachelist if they are nolonger 11916 * mapped. 11917 */ 11918 while (plist != pp) { 11919 pptr = plist; 11920 page_sub(&plist, pptr); 11921 pptr->p_fsdata = C_NOCOMMIT; 11922 page_unlock(pptr); 11923 } 11924 11925 /* 11926 * It is possible that nfs4_commit didn't return error but 11927 * some other thread has modified the page we are going 11928 * to free/destroy. 11929 * In this case we need to rewrite the page. Do an explicit check 11930 * before attempting to free/destroy the page. If modified, needs to 11931 * be rewritten so unlock the page and return. 11932 */ 11933 if (hat_ismod(pp)) { 11934 pp->p_fsdata = C_NOCOMMIT; 11935 page_unlock(pp); 11936 return; 11937 } 11938 11939 /* 11940 * Now, as appropriate, either free or destroy the page 11941 * that we were called with. 11942 */ 11943 pp->p_fsdata = C_NOCOMMIT; 11944 if (fl == B_FREE) 11945 page_free(pp, dn); 11946 else 11947 page_destroy(pp, dn); 11948 } 11949 11950 /* 11951 * Commit requires that the current fh be the file written to. 11952 * The compound op structure is: 11953 * PUTFH(file), COMMIT 11954 */ 11955 static int 11956 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11957 { 11958 COMPOUND4args_clnt args; 11959 COMPOUND4res_clnt res; 11960 COMMIT4res *cm_res; 11961 nfs_argop4 argop[2]; 11962 nfs_resop4 *resop; 11963 int doqueue; 11964 mntinfo4_t *mi; 11965 rnode4_t *rp; 11966 cred_t *cred_otw = NULL; 11967 bool_t needrecov = FALSE; 11968 nfs4_recov_state_t recov_state; 11969 nfs4_open_stream_t *osp = NULL; 11970 bool_t first_time = TRUE; /* first time getting OTW cred */ 11971 bool_t last_time = FALSE; /* last time getting OTW cred */ 11972 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11973 11974 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11975 11976 rp = VTOR4(vp); 11977 11978 mi = VTOMI4(vp); 11979 recov_state.rs_flags = 0; 11980 recov_state.rs_num_retry_despite_err = 0; 11981 get_commit_cred: 11982 /* 11983 * Releases the osp, if a valid open stream is provided. 11984 * Puts a hold on the cred_otw and the new osp (if found). 11985 */ 11986 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11987 &first_time, &last_time); 11988 args.ctag = TAG_COMMIT; 11989 recov_retry: 11990 /* 11991 * Commit ops: putfh file; commit 11992 */ 11993 args.array_len = 2; 11994 args.array = argop; 11995 11996 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11997 &recov_state, NULL); 11998 if (e.error) { 11999 crfree(cred_otw); 12000 if (osp != NULL) 12001 open_stream_rele(osp, rp); 12002 return (e.error); 12003 } 12004 12005 /* putfh directory */ 12006 argop[0].argop = OP_CPUTFH; 12007 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 12008 12009 /* commit */ 12010 argop[1].argop = OP_COMMIT; 12011 argop[1].nfs_argop4_u.opcommit.offset = offset; 12012 argop[1].nfs_argop4_u.opcommit.count = count; 12013 12014 doqueue = 1; 12015 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 12016 12017 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 12018 if (!needrecov && e.error) { 12019 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 12020 needrecov); 12021 crfree(cred_otw); 12022 if (e.error == EACCES && last_time == FALSE) 12023 goto get_commit_cred; 12024 if (osp != NULL) 12025 open_stream_rele(osp, rp); 12026 return (e.error); 12027 } 12028 12029 if (needrecov) { 12030 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 12031 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) { 12032 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 12033 &recov_state, needrecov); 12034 if (!e.error) 12035 (void) xdr_free(xdr_COMPOUND4res_clnt, 12036 (caddr_t)&res); 12037 goto recov_retry; 12038 } 12039 if (e.error) { 12040 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 12041 &recov_state, needrecov); 12042 crfree(cred_otw); 12043 if (osp != NULL) 12044 open_stream_rele(osp, rp); 12045 return (e.error); 12046 } 12047 /* fall through for res.status case */ 12048 } 12049 12050 if (res.status) { 12051 e.error = geterrno4(res.status); 12052 if (e.error == EACCES && last_time == FALSE) { 12053 crfree(cred_otw); 12054 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 12055 &recov_state, needrecov); 12056 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12057 goto get_commit_cred; 12058 } 12059 /* 12060 * Can't do a nfs4_purge_stale_fh here because this 12061 * can cause a deadlock. nfs4_commit can 12062 * be called from nfs4_dispose which can be called 12063 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 12064 * can call back to pvn_vplist_dirty. 12065 */ 12066 if (e.error == ESTALE) { 12067 mutex_enter(&rp->r_statelock); 12068 rp->r_flags |= R4STALE; 12069 if (!rp->r_error) 12070 rp->r_error = e.error; 12071 mutex_exit(&rp->r_statelock); 12072 PURGE_ATTRCACHE4(vp); 12073 } else { 12074 mutex_enter(&rp->r_statelock); 12075 if (!rp->r_error) 12076 rp->r_error = e.error; 12077 mutex_exit(&rp->r_statelock); 12078 } 12079 } else { 12080 ASSERT(rp->r_flags & R4HAVEVERF); 12081 resop = &res.array[1]; /* commit res */ 12082 cm_res = &resop->nfs_resop4_u.opcommit; 12083 mutex_enter(&rp->r_statelock); 12084 if (cm_res->writeverf == rp->r_writeverf) { 12085 mutex_exit(&rp->r_statelock); 12086 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12087 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 12088 &recov_state, needrecov); 12089 crfree(cred_otw); 12090 if (osp != NULL) 12091 open_stream_rele(osp, rp); 12092 return (0); 12093 } 12094 nfs4_set_mod(vp); 12095 rp->r_writeverf = cm_res->writeverf; 12096 mutex_exit(&rp->r_statelock); 12097 e.error = NFS_VERF_MISMATCH; 12098 } 12099 12100 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12101 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 12102 crfree(cred_otw); 12103 if (osp != NULL) 12104 open_stream_rele(osp, rp); 12105 12106 return (e.error); 12107 } 12108 12109 static void 12110 nfs4_set_mod(vnode_t *vp) 12111 { 12112 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12113 12114 /* make sure we're looking at the master vnode, not a shadow */ 12115 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check); 12116 } 12117 12118 /* 12119 * This function is used to gather a page list of the pages which 12120 * can be committed on the server. 12121 * 12122 * The calling thread must have set R4COMMIT. This bit is used to 12123 * serialize access to the commit structure in the rnode. As long 12124 * as the thread has set R4COMMIT, then it can manipulate the commit 12125 * structure without requiring any other locks. 12126 * 12127 * When this function is called from nfs4_dispose() the page passed 12128 * into nfs4_dispose() will be SE_EXCL locked, and so this function 12129 * will skip it. This is not a problem since we initially add the 12130 * page to the r_commit page list. 12131 * 12132 */ 12133 static void 12134 nfs4_get_commit(vnode_t *vp) 12135 { 12136 rnode4_t *rp; 12137 page_t *pp; 12138 kmutex_t *vphm; 12139 12140 rp = VTOR4(vp); 12141 12142 ASSERT(rp->r_flags & R4COMMIT); 12143 12144 /* make sure we're looking at the master vnode, not a shadow */ 12145 12146 if (IS_SHADOW(vp, rp)) 12147 vp = RTOV4(rp); 12148 12149 vphm = page_vnode_mutex(vp); 12150 mutex_enter(vphm); 12151 12152 /* 12153 * If there are no pages associated with this vnode, then 12154 * just return. 12155 */ 12156 if ((pp = vp->v_pages) == NULL) { 12157 mutex_exit(vphm); 12158 return; 12159 } 12160 12161 /* 12162 * Step through all of the pages associated with this vnode 12163 * looking for pages which need to be committed. 12164 */ 12165 do { 12166 /* Skip marker pages. */ 12167 if (pp->p_hash == PVN_VPLIST_HASH_TAG) 12168 continue; 12169 12170 /* 12171 * First short-cut everything (without the page_lock) 12172 * and see if this page does not need to be committed 12173 * or is modified if so then we'll just skip it. 12174 */ 12175 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 12176 continue; 12177 12178 /* 12179 * Attempt to lock the page. If we can't, then 12180 * someone else is messing with it or we have been 12181 * called from nfs4_dispose and this is the page that 12182 * nfs4_dispose was called with.. anyway just skip it. 12183 */ 12184 if (!page_trylock(pp, SE_EXCL)) 12185 continue; 12186 12187 /* 12188 * Lets check again now that we have the page lock. 12189 */ 12190 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 12191 page_unlock(pp); 12192 continue; 12193 } 12194 12195 /* this had better not be a free page */ 12196 ASSERT(PP_ISFREE(pp) == 0); 12197 12198 /* 12199 * The page needs to be committed and we locked it. 12200 * Update the base and length parameters and add it 12201 * to r_pages. 12202 */ 12203 if (rp->r_commit.c_pages == NULL) { 12204 rp->r_commit.c_commbase = (offset3)pp->p_offset; 12205 rp->r_commit.c_commlen = PAGESIZE; 12206 } else if (pp->p_offset < rp->r_commit.c_commbase) { 12207 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 12208 (offset3)pp->p_offset + rp->r_commit.c_commlen; 12209 rp->r_commit.c_commbase = (offset3)pp->p_offset; 12210 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 12211 <= pp->p_offset) { 12212 rp->r_commit.c_commlen = (offset3)pp->p_offset - 12213 rp->r_commit.c_commbase + PAGESIZE; 12214 } 12215 page_add(&rp->r_commit.c_pages, pp); 12216 } while ((pp = pp->p_vpnext) != vp->v_pages); 12217 12218 mutex_exit(vphm); 12219 } 12220 12221 /* 12222 * This routine is used to gather together a page list of the pages 12223 * which are to be committed on the server. This routine must not 12224 * be called if the calling thread holds any locked pages. 12225 * 12226 * The calling thread must have set R4COMMIT. This bit is used to 12227 * serialize access to the commit structure in the rnode. As long 12228 * as the thread has set R4COMMIT, then it can manipulate the commit 12229 * structure without requiring any other locks. 12230 */ 12231 static void 12232 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 12233 { 12234 12235 rnode4_t *rp; 12236 page_t *pp; 12237 u_offset_t end; 12238 u_offset_t off; 12239 ASSERT(len != 0); 12240 rp = VTOR4(vp); 12241 ASSERT(rp->r_flags & R4COMMIT); 12242 12243 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12244 12245 /* make sure we're looking at the master vnode, not a shadow */ 12246 12247 if (IS_SHADOW(vp, rp)) 12248 vp = RTOV4(rp); 12249 12250 /* 12251 * If there are no pages associated with this vnode, then 12252 * just return. 12253 */ 12254 if ((pp = vp->v_pages) == NULL) 12255 return; 12256 /* 12257 * Calculate the ending offset. 12258 */ 12259 end = soff + len; 12260 for (off = soff; off < end; off += PAGESIZE) { 12261 /* 12262 * Lookup each page by vp, offset. 12263 */ 12264 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 12265 continue; 12266 /* 12267 * If this page does not need to be committed or is 12268 * modified, then just skip it. 12269 */ 12270 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 12271 page_unlock(pp); 12272 continue; 12273 } 12274 12275 ASSERT(PP_ISFREE(pp) == 0); 12276 /* 12277 * The page needs to be committed and we locked it. 12278 * Update the base and length parameters and add it 12279 * to r_pages. 12280 */ 12281 if (rp->r_commit.c_pages == NULL) { 12282 rp->r_commit.c_commbase = (offset3)pp->p_offset; 12283 rp->r_commit.c_commlen = PAGESIZE; 12284 } else { 12285 rp->r_commit.c_commlen = (offset3)pp->p_offset - 12286 rp->r_commit.c_commbase + PAGESIZE; 12287 } 12288 page_add(&rp->r_commit.c_pages, pp); 12289 } 12290 } 12291 12292 /* 12293 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 12294 * Flushes and commits data to the server. 12295 */ 12296 static int 12297 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 12298 { 12299 int error; 12300 verifier4 write_verf; 12301 rnode4_t *rp = VTOR4(vp); 12302 12303 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12304 12305 /* 12306 * Flush the data portion of the file and then commit any 12307 * portions which need to be committed. This may need to 12308 * be done twice if the server has changed state since 12309 * data was last written. The data will need to be 12310 * rewritten to the server and then a new commit done. 12311 * 12312 * In fact, this may need to be done several times if the 12313 * server is having problems and crashing while we are 12314 * attempting to do this. 12315 */ 12316 12317 top: 12318 /* 12319 * Do a flush based on the poff and plen arguments. This 12320 * will synchronously write out any modified pages in the 12321 * range specified by (poff, plen). This starts all of the 12322 * i/o operations which will be waited for in the next 12323 * call to nfs4_putpage 12324 */ 12325 12326 mutex_enter(&rp->r_statelock); 12327 write_verf = rp->r_writeverf; 12328 mutex_exit(&rp->r_statelock); 12329 12330 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 12331 if (error == EAGAIN) 12332 error = 0; 12333 12334 /* 12335 * Do a flush based on the poff and plen arguments. This 12336 * will synchronously write out any modified pages in the 12337 * range specified by (poff, plen) and wait until all of 12338 * the asynchronous i/o's in that range are done as well. 12339 */ 12340 if (!error) 12341 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 12342 12343 if (error) 12344 return (error); 12345 12346 mutex_enter(&rp->r_statelock); 12347 if (rp->r_writeverf != write_verf) { 12348 mutex_exit(&rp->r_statelock); 12349 goto top; 12350 } 12351 mutex_exit(&rp->r_statelock); 12352 12353 /* 12354 * Now commit any pages which might need to be committed. 12355 * If the error, NFS_VERF_MISMATCH, is returned, then 12356 * start over with the flush operation. 12357 */ 12358 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 12359 12360 if (error == NFS_VERF_MISMATCH) 12361 goto top; 12362 12363 return (error); 12364 } 12365 12366 /* 12367 * nfs4_commit_vp() will wait for other pending commits and 12368 * will either commit the whole file or a range, plen dictates 12369 * if we commit whole file. a value of zero indicates the whole 12370 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12371 */ 12372 static int 12373 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12374 cred_t *cr, int wait_on_writes) 12375 { 12376 rnode4_t *rp; 12377 page_t *plist; 12378 offset3 offset; 12379 count3 len; 12380 12381 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12382 12383 rp = VTOR4(vp); 12384 12385 /* 12386 * before we gather commitable pages make 12387 * sure there are no outstanding async writes 12388 */ 12389 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12390 mutex_enter(&rp->r_statelock); 12391 while (rp->r_count > 0) { 12392 cv_wait(&rp->r_cv, &rp->r_statelock); 12393 } 12394 mutex_exit(&rp->r_statelock); 12395 } 12396 12397 /* 12398 * Set the `commit inprogress' state bit. We must 12399 * first wait until any current one finishes. 12400 */ 12401 mutex_enter(&rp->r_statelock); 12402 while (rp->r_flags & R4COMMIT) { 12403 rp->r_flags |= R4COMMITWAIT; 12404 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12405 rp->r_flags &= ~R4COMMITWAIT; 12406 } 12407 rp->r_flags |= R4COMMIT; 12408 mutex_exit(&rp->r_statelock); 12409 12410 /* 12411 * Gather all of the pages which need to be 12412 * committed. 12413 */ 12414 if (plen == 0) 12415 nfs4_get_commit(vp); 12416 else 12417 nfs4_get_commit_range(vp, poff, plen); 12418 12419 /* 12420 * Clear the `commit inprogress' bit and disconnect the 12421 * page list which was gathered by nfs4_get_commit. 12422 */ 12423 plist = rp->r_commit.c_pages; 12424 rp->r_commit.c_pages = NULL; 12425 offset = rp->r_commit.c_commbase; 12426 len = rp->r_commit.c_commlen; 12427 mutex_enter(&rp->r_statelock); 12428 rp->r_flags &= ~R4COMMIT; 12429 cv_broadcast(&rp->r_commit.c_cv); 12430 mutex_exit(&rp->r_statelock); 12431 12432 /* 12433 * If any pages need to be committed, commit them and 12434 * then unlock them so that they can be freed some 12435 * time later. 12436 */ 12437 if (plist == NULL) 12438 return (0); 12439 12440 /* 12441 * No error occurred during the flush portion 12442 * of this operation, so now attempt to commit 12443 * the data to stable storage on the server. 12444 * 12445 * This will unlock all of the pages on the list. 12446 */ 12447 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12448 } 12449 12450 static int 12451 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12452 cred_t *cr) 12453 { 12454 int error; 12455 page_t *pp; 12456 12457 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12458 12459 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12460 12461 /* 12462 * If we got an error, then just unlock all of the pages 12463 * on the list. 12464 */ 12465 if (error) { 12466 while (plist != NULL) { 12467 pp = plist; 12468 page_sub(&plist, pp); 12469 page_unlock(pp); 12470 } 12471 return (error); 12472 } 12473 /* 12474 * We've tried as hard as we can to commit the data to stable 12475 * storage on the server. We just unlock the pages and clear 12476 * the commit required state. They will get freed later. 12477 */ 12478 while (plist != NULL) { 12479 pp = plist; 12480 page_sub(&plist, pp); 12481 pp->p_fsdata = C_NOCOMMIT; 12482 page_unlock(pp); 12483 } 12484 12485 return (error); 12486 } 12487 12488 static void 12489 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12490 cred_t *cr) 12491 { 12492 12493 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12494 } 12495 12496 /*ARGSUSED*/ 12497 static int 12498 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12499 caller_context_t *ct) 12500 { 12501 int error = 0; 12502 mntinfo4_t *mi; 12503 vattr_t va; 12504 vsecattr_t nfsace4_vsap; 12505 12506 mi = VTOMI4(vp); 12507 if (nfs_zone() != mi->mi_zone) 12508 return (EIO); 12509 if (mi->mi_flags & MI4_ACL) { 12510 /* if we have a delegation, return it */ 12511 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12512 (void) nfs4delegreturn(VTOR4(vp), 12513 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12514 12515 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12516 NFS4_ACL_SET); 12517 if (error) /* EINVAL */ 12518 return (error); 12519 12520 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12521 /* 12522 * These are aclent_t type entries. 12523 */ 12524 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12525 vp->v_type == VDIR, FALSE); 12526 if (error) 12527 return (error); 12528 } else { 12529 /* 12530 * These are ace_t type entries. 12531 */ 12532 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12533 FALSE); 12534 if (error) 12535 return (error); 12536 } 12537 bzero(&va, sizeof (va)); 12538 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12539 vs_ace4_destroy(&nfsace4_vsap); 12540 return (error); 12541 } 12542 return (ENOSYS); 12543 } 12544 12545 /* ARGSUSED */ 12546 int 12547 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12548 caller_context_t *ct) 12549 { 12550 int error; 12551 mntinfo4_t *mi; 12552 nfs4_ga_res_t gar; 12553 rnode4_t *rp = VTOR4(vp); 12554 12555 mi = VTOMI4(vp); 12556 if (nfs_zone() != mi->mi_zone) 12557 return (EIO); 12558 12559 bzero(&gar, sizeof (gar)); 12560 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12561 12562 /* 12563 * vsecattr->vsa_mask holds the original acl request mask. 12564 * This is needed when determining what to return. 12565 * (See: nfs4_create_getsecattr_return()) 12566 */ 12567 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12568 if (error) /* EINVAL */ 12569 return (error); 12570 12571 /* 12572 * If this is a referral stub, don't try to go OTW for an ACL 12573 */ 12574 if (RP_ISSTUB_REFERRAL(VTOR4(vp))) 12575 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 12576 12577 if (mi->mi_flags & MI4_ACL) { 12578 /* 12579 * Check if the data is cached and the cache is valid. If it 12580 * is we don't go over the wire. 12581 */ 12582 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12583 mutex_enter(&rp->r_statelock); 12584 if (rp->r_secattr != NULL) { 12585 error = nfs4_create_getsecattr_return( 12586 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12587 rp->r_attr.va_gid, 12588 vp->v_type == VDIR); 12589 if (!error) { /* error == 0 - Success! */ 12590 mutex_exit(&rp->r_statelock); 12591 return (error); 12592 } 12593 } 12594 mutex_exit(&rp->r_statelock); 12595 } 12596 12597 /* 12598 * The getattr otw call will always get both the acl, in 12599 * the form of a list of nfsace4's, and the number of acl 12600 * entries; independent of the value of gar.n4g_va.va_mask. 12601 */ 12602 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12603 if (error) { 12604 vs_ace4_destroy(&gar.n4g_vsa); 12605 if (error == ENOTSUP || error == EOPNOTSUPP) 12606 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12607 return (error); 12608 } 12609 12610 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12611 /* 12612 * No error was returned, but according to the response 12613 * bitmap, neither was an acl. 12614 */ 12615 vs_ace4_destroy(&gar.n4g_vsa); 12616 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12617 return (error); 12618 } 12619 12620 /* 12621 * Update the cache with the ACL. 12622 */ 12623 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12624 12625 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12626 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12627 vp->v_type == VDIR); 12628 vs_ace4_destroy(&gar.n4g_vsa); 12629 if ((error) && (vsecattr->vsa_mask & 12630 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12631 (error != EACCES)) { 12632 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12633 } 12634 return (error); 12635 } 12636 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12637 return (error); 12638 } 12639 12640 /* 12641 * The function returns: 12642 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12643 * - EINVAL if the passed in "acl_mask" is an invalid request. 12644 * 12645 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12646 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12647 * 12648 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12649 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12650 * - We have a count field set without the corresponding acl field set. (e.g. - 12651 * VSA_ACECNT is set, but VSA_ACE is not) 12652 */ 12653 static int 12654 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12655 { 12656 /* Shortcut the masks that are always valid. */ 12657 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12658 return (0); 12659 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12660 return (0); 12661 12662 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12663 /* 12664 * We can't have any VSA_ACL type stuff in the mask now. 12665 */ 12666 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12667 VSA_DFACLCNT)) 12668 return (EINVAL); 12669 12670 if (op == NFS4_ACL_SET) { 12671 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12672 return (EINVAL); 12673 } 12674 } 12675 12676 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12677 /* 12678 * We can't have any VSA_ACE type stuff in the mask now. 12679 */ 12680 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12681 return (EINVAL); 12682 12683 if (op == NFS4_ACL_SET) { 12684 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12685 return (EINVAL); 12686 12687 if ((acl_mask & VSA_DFACLCNT) && 12688 !(acl_mask & VSA_DFACL)) 12689 return (EINVAL); 12690 } 12691 } 12692 return (0); 12693 } 12694 12695 /* 12696 * The theory behind creating the correct getsecattr return is simply this: 12697 * "Don't return anything that the caller is not expecting to have to free." 12698 */ 12699 static int 12700 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12701 uid_t uid, gid_t gid, int isdir) 12702 { 12703 int error = 0; 12704 /* Save the mask since the translators modify it. */ 12705 uint_t orig_mask = vsap->vsa_mask; 12706 12707 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12708 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE); 12709 12710 if (error) 12711 return (error); 12712 12713 /* 12714 * If the caller only asked for the ace count (VSA_ACECNT) 12715 * don't give them the full acl (VSA_ACE), free it. 12716 */ 12717 if (!orig_mask & VSA_ACE) { 12718 if (vsap->vsa_aclentp != NULL) { 12719 kmem_free(vsap->vsa_aclentp, 12720 vsap->vsa_aclcnt * sizeof (ace_t)); 12721 vsap->vsa_aclentp = NULL; 12722 } 12723 } 12724 vsap->vsa_mask = orig_mask; 12725 12726 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12727 VSA_DFACLCNT)) { 12728 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12729 isdir, FALSE); 12730 12731 if (error) 12732 return (error); 12733 12734 /* 12735 * If the caller only asked for the acl count (VSA_ACLCNT) 12736 * and/or the default acl count (VSA_DFACLCNT) don't give them 12737 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12738 */ 12739 if (!orig_mask & VSA_ACL) { 12740 if (vsap->vsa_aclentp != NULL) { 12741 kmem_free(vsap->vsa_aclentp, 12742 vsap->vsa_aclcnt * sizeof (aclent_t)); 12743 vsap->vsa_aclentp = NULL; 12744 } 12745 } 12746 12747 if (!orig_mask & VSA_DFACL) { 12748 if (vsap->vsa_dfaclentp != NULL) { 12749 kmem_free(vsap->vsa_dfaclentp, 12750 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12751 vsap->vsa_dfaclentp = NULL; 12752 } 12753 } 12754 vsap->vsa_mask = orig_mask; 12755 } 12756 return (0); 12757 } 12758 12759 /* ARGSUSED */ 12760 int 12761 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12762 caller_context_t *ct) 12763 { 12764 int error; 12765 12766 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12767 return (EIO); 12768 /* 12769 * check for valid cmd parameter 12770 */ 12771 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12772 return (EINVAL); 12773 12774 /* 12775 * Check access permissions 12776 */ 12777 if ((cmd & F_SHARE) && 12778 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12779 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12780 return (EBADF); 12781 12782 /* 12783 * If the filesystem is mounted using local locking, pass the 12784 * request off to the local share code. 12785 */ 12786 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12787 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12788 12789 switch (cmd) { 12790 case F_SHARE: 12791 case F_UNSHARE: 12792 /* 12793 * This will be properly implemented later, 12794 * see RFE: 4823948 . 12795 */ 12796 error = EAGAIN; 12797 break; 12798 12799 case F_HASREMOTELOCKS: 12800 /* 12801 * NFS client can't store remote locks itself 12802 */ 12803 shr->s_access = 0; 12804 error = 0; 12805 break; 12806 12807 default: 12808 error = EINVAL; 12809 break; 12810 } 12811 12812 return (error); 12813 } 12814 12815 /* 12816 * Common code called by directory ops to update the attrcache 12817 */ 12818 static int 12819 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12820 hrtime_t t, vnode_t *vp, cred_t *cr) 12821 { 12822 int error = 0; 12823 12824 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12825 12826 if (status != NFS4_OK) { 12827 /* getattr not done or failed */ 12828 PURGE_ATTRCACHE4(vp); 12829 return (error); 12830 } 12831 12832 if (garp) { 12833 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12834 } else { 12835 PURGE_ATTRCACHE4(vp); 12836 } 12837 return (error); 12838 } 12839 12840 /* 12841 * Update directory caches for directory modification ops (link, rename, etc.) 12842 * When dinfo is NULL, manage dircaches in the old way. 12843 */ 12844 static void 12845 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12846 dirattr_info_t *dinfo) 12847 { 12848 rnode4_t *drp = VTOR4(dvp); 12849 12850 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12851 12852 /* Purge rddir cache for dir since it changed */ 12853 if (drp->r_dir != NULL) 12854 nfs4_purge_rddir_cache(dvp); 12855 12856 /* 12857 * If caller provided dinfo, then use it to manage dir caches. 12858 */ 12859 if (dinfo != NULL) { 12860 if (vp != NULL) { 12861 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12862 if (!VTOR4(vp)->created_v4) { 12863 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12864 dnlc_update(dvp, nm, vp); 12865 } else { 12866 /* 12867 * XXX don't update if the created_v4 flag is 12868 * set 12869 */ 12870 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12871 NFS4_DEBUG(nfs4_client_state_debug, 12872 (CE_NOTE, "nfs4_update_dircaches: " 12873 "don't update dnlc: created_v4 flag")); 12874 } 12875 } 12876 12877 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12878 dinfo->di_cred, FALSE, cinfo); 12879 12880 return; 12881 } 12882 12883 /* 12884 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12885 * Since caller modified dir but didn't receive post-dirmod-op dir 12886 * attrs, the dir's attrs must be purged. 12887 * 12888 * XXX this check and dnlc update/purge should really be atomic, 12889 * XXX but can't use rnode statelock because it'll deadlock in 12890 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12891 * XXX does occur. 12892 * 12893 * XXX We also may want to check that atomic is true in the 12894 * XXX change_info struct. If it is not, the change_info may 12895 * XXX reflect changes by more than one clients which means that 12896 * XXX our cache may not be valid. 12897 */ 12898 PURGE_ATTRCACHE4(dvp); 12899 if (drp->r_change == cinfo->before) { 12900 /* no changes took place in the directory prior to our link */ 12901 if (vp != NULL) { 12902 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12903 if (!VTOR4(vp)->created_v4) { 12904 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12905 dnlc_update(dvp, nm, vp); 12906 } else { 12907 /* 12908 * XXX dont' update if the created_v4 flag 12909 * is set 12910 */ 12911 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12912 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12913 "nfs4_update_dircaches: don't" 12914 " update dnlc: created_v4 flag")); 12915 } 12916 } 12917 } else { 12918 /* Another client modified directory - purge its dnlc cache */ 12919 dnlc_purge_vp(dvp); 12920 } 12921 } 12922 12923 /* 12924 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12925 * file. 12926 * 12927 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12928 * file (ie: client recovery) and otherwise set to FALSE. 12929 * 12930 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12931 * initiated) calling functions. 12932 * 12933 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12934 * of resending a 'lost' open request. 12935 * 12936 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12937 * server that hands out BAD_SEQID on open confirm. 12938 * 12939 * Errors are returned via the nfs4_error_t parameter. 12940 */ 12941 void 12942 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12943 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12944 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12945 { 12946 COMPOUND4args_clnt args; 12947 COMPOUND4res_clnt res; 12948 nfs_argop4 argop[2]; 12949 nfs_resop4 *resop; 12950 int doqueue = 1; 12951 mntinfo4_t *mi; 12952 OPEN_CONFIRM4args *open_confirm_args; 12953 int needrecov; 12954 12955 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12956 #if DEBUG 12957 mutex_enter(&oop->oo_lock); 12958 ASSERT(oop->oo_seqid_inuse); 12959 mutex_exit(&oop->oo_lock); 12960 #endif 12961 12962 recov_retry_confirm: 12963 nfs4_error_zinit(ep); 12964 *retry_open = FALSE; 12965 12966 if (resend) 12967 args.ctag = TAG_OPEN_CONFIRM_LOST; 12968 else 12969 args.ctag = TAG_OPEN_CONFIRM; 12970 12971 args.array_len = 2; 12972 args.array = argop; 12973 12974 /* putfh target fh */ 12975 argop[0].argop = OP_CPUTFH; 12976 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12977 12978 argop[1].argop = OP_OPEN_CONFIRM; 12979 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12980 12981 (*seqid) += 1; 12982 open_confirm_args->seqid = *seqid; 12983 open_confirm_args->open_stateid = *stateid; 12984 12985 mi = VTOMI4(vp); 12986 12987 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12988 12989 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12990 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12991 } 12992 12993 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12994 if (!needrecov && ep->error) 12995 return; 12996 12997 if (needrecov) { 12998 bool_t abort = FALSE; 12999 13000 if (reopening_file == FALSE) { 13001 nfs4_bseqid_entry_t *bsep = NULL; 13002 13003 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 13004 bsep = nfs4_create_bseqid_entry(oop, NULL, 13005 vp, 0, args.ctag, 13006 open_confirm_args->seqid); 13007 13008 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 13009 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL); 13010 if (bsep) { 13011 kmem_free(bsep, sizeof (*bsep)); 13012 if (num_bseqid_retryp && 13013 --(*num_bseqid_retryp) == 0) 13014 abort = TRUE; 13015 } 13016 } 13017 if ((ep->error == ETIMEDOUT || 13018 res.status == NFS4ERR_RESOURCE) && 13019 abort == FALSE && resend == FALSE) { 13020 if (!ep->error) 13021 (void) xdr_free(xdr_COMPOUND4res_clnt, 13022 (caddr_t)&res); 13023 13024 delay(SEC_TO_TICK(confirm_retry_sec)); 13025 goto recov_retry_confirm; 13026 } 13027 /* State may have changed so retry the entire OPEN op */ 13028 if (abort == FALSE) 13029 *retry_open = TRUE; 13030 else 13031 *retry_open = FALSE; 13032 if (!ep->error) 13033 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 13034 return; 13035 } 13036 13037 if (res.status) { 13038 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 13039 return; 13040 } 13041 13042 resop = &res.array[1]; /* open confirm res */ 13043 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 13044 stateid, sizeof (*stateid)); 13045 13046 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 13047 } 13048 13049 /* 13050 * Return the credentials associated with a client state object. The 13051 * caller is responsible for freeing the credentials. 13052 */ 13053 13054 static cred_t * 13055 state_to_cred(nfs4_open_stream_t *osp) 13056 { 13057 cred_t *cr; 13058 13059 /* 13060 * It's ok to not lock the open stream and open owner to get 13061 * the oo_cred since this is only written once (upon creation) 13062 * and will not change. 13063 */ 13064 cr = osp->os_open_owner->oo_cred; 13065 crhold(cr); 13066 13067 return (cr); 13068 } 13069 13070 /* 13071 * nfs4_find_sysid 13072 * 13073 * Find the sysid for the knetconfig associated with the given mi. 13074 */ 13075 static struct lm_sysid * 13076 nfs4_find_sysid(mntinfo4_t *mi) 13077 { 13078 ASSERT(nfs_zone() == mi->mi_zone); 13079 13080 /* 13081 * Switch from RDMA knconf to original mount knconf 13082 */ 13083 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 13084 mi->mi_curr_serv->sv_hostname, NULL)); 13085 } 13086 13087 #ifdef DEBUG 13088 /* 13089 * Return a string version of the call type for easy reading. 13090 */ 13091 static char * 13092 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 13093 { 13094 switch (ctype) { 13095 case NFS4_LCK_CTYPE_NORM: 13096 return ("NORMAL"); 13097 case NFS4_LCK_CTYPE_RECLAIM: 13098 return ("RECLAIM"); 13099 case NFS4_LCK_CTYPE_RESEND: 13100 return ("RESEND"); 13101 case NFS4_LCK_CTYPE_REINSTATE: 13102 return ("REINSTATE"); 13103 default: 13104 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 13105 "type %d", ctype); 13106 return (""); 13107 } 13108 } 13109 #endif 13110 13111 /* 13112 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 13113 * Unlock requests don't have an over-the-wire locktype, so we just return 13114 * something non-threatening. 13115 */ 13116 13117 static nfs_lock_type4 13118 flk_to_locktype(int cmd, int l_type) 13119 { 13120 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 13121 13122 switch (l_type) { 13123 case F_UNLCK: 13124 return (READ_LT); 13125 case F_RDLCK: 13126 if (cmd == F_SETLK) 13127 return (READ_LT); 13128 else 13129 return (READW_LT); 13130 case F_WRLCK: 13131 if (cmd == F_SETLK) 13132 return (WRITE_LT); 13133 else 13134 return (WRITEW_LT); 13135 } 13136 panic("flk_to_locktype"); 13137 /*NOTREACHED*/ 13138 } 13139 13140 /* 13141 * Set the flock64's lm_sysid for nfs4frlock. 13142 */ 13143 static int 13144 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 13145 { 13146 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13147 13148 /* Find the lm_sysid */ 13149 *lspp = nfs4_find_sysid(VTOMI4(vp)); 13150 13151 if (*lspp == NULL) { 13152 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13153 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 13154 return (ENOLCK); 13155 } 13156 13157 flk->l_sysid = lm_sysidt(*lspp); 13158 13159 return (0); 13160 } 13161 13162 /* 13163 * Do the remaining preliminary setup for nfs4frlock. 13164 */ 13165 static void 13166 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 13167 vnode_t *vp, cred_t *search_cr, cred_t **cred_otw) 13168 { 13169 /* 13170 * set tick_delay to the base delay time. 13171 * (nfs4_base_wait_time is in msecs) 13172 */ 13173 13174 *tick_delayp = drv_usectohz(nfs4_base_wait_time * 1000); 13175 13176 recov_statep->rs_flags = 0; 13177 recov_statep->rs_num_retry_despite_err = 0; 13178 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 13179 } 13180 13181 /* 13182 * Initialize and allocate the data structures necessary for 13183 * the nfs4frlock call. 13184 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 13185 */ 13186 static void 13187 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 13188 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 13189 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 13190 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 13191 { 13192 int argoplist_size; 13193 int num_ops = 2; 13194 13195 *retry = FALSE; 13196 *did_start_fop = FALSE; 13197 *skip_get_err = FALSE; 13198 lost_rqstp->lr_op = 0; 13199 argoplist_size = num_ops * sizeof (nfs_argop4); 13200 /* fill array with zero */ 13201 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 13202 13203 *argspp = argsp; 13204 *respp = NULL; 13205 13206 argsp->array_len = num_ops; 13207 argsp->array = *argopp; 13208 13209 /* initialize in case of error; will get real value down below */ 13210 argsp->ctag = TAG_NONE; 13211 13212 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 13213 *op_hintp = OH_LOCKU; 13214 else 13215 *op_hintp = OH_OTHER; 13216 } 13217 13218 /* 13219 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 13220 * the proper nfs4_server_t for this instance of nfs4frlock. 13221 * Returns 0 (success) or an errno value. 13222 */ 13223 static int 13224 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 13225 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 13226 bool_t *did_start_fop, bool_t *startrecovp) 13227 { 13228 int error = 0; 13229 rnode4_t *rp; 13230 13231 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13232 13233 if (ctype == NFS4_LCK_CTYPE_NORM) { 13234 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 13235 recov_statep, startrecovp); 13236 if (error) 13237 return (error); 13238 *did_start_fop = TRUE; 13239 } else { 13240 *did_start_fop = FALSE; 13241 *startrecovp = FALSE; 13242 } 13243 13244 if (!error) { 13245 rp = VTOR4(vp); 13246 13247 /* If the file failed recovery, just quit. */ 13248 mutex_enter(&rp->r_statelock); 13249 if (rp->r_flags & R4RECOVERR) { 13250 error = EIO; 13251 } 13252 mutex_exit(&rp->r_statelock); 13253 } 13254 13255 return (error); 13256 } 13257 13258 /* 13259 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 13260 * resend nfs4frlock call is initiated by the recovery framework. 13261 * Acquires the lop and oop seqid synchronization. 13262 */ 13263 static void 13264 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 13265 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 13266 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13267 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 13268 { 13269 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 13270 int error; 13271 13272 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 13273 (CE_NOTE, 13274 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 13275 ASSERT(resend_rqstp != NULL); 13276 ASSERT(resend_rqstp->lr_op == OP_LOCK || 13277 resend_rqstp->lr_op == OP_LOCKU); 13278 13279 *oopp = resend_rqstp->lr_oop; 13280 if (resend_rqstp->lr_oop) { 13281 open_owner_hold(resend_rqstp->lr_oop); 13282 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 13283 ASSERT(error == 0); /* recov thread always succeeds */ 13284 } 13285 13286 /* Must resend this lost lock/locku request. */ 13287 ASSERT(resend_rqstp->lr_lop != NULL); 13288 *lopp = resend_rqstp->lr_lop; 13289 lock_owner_hold(resend_rqstp->lr_lop); 13290 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 13291 ASSERT(error == 0); /* recov thread always succeeds */ 13292 13293 *ospp = resend_rqstp->lr_osp; 13294 if (*ospp) 13295 open_stream_hold(resend_rqstp->lr_osp); 13296 13297 if (resend_rqstp->lr_op == OP_LOCK) { 13298 LOCK4args *lock_args; 13299 13300 argop->argop = OP_LOCK; 13301 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 13302 lock_args->locktype = resend_rqstp->lr_locktype; 13303 lock_args->reclaim = 13304 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 13305 lock_args->offset = resend_rqstp->lr_flk->l_start; 13306 lock_args->length = resend_rqstp->lr_flk->l_len; 13307 if (lock_args->length == 0) 13308 lock_args->length = ~lock_args->length; 13309 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 13310 mi2clientid(mi), &lock_args->locker); 13311 13312 switch (resend_rqstp->lr_ctype) { 13313 case NFS4_LCK_CTYPE_RESEND: 13314 argsp->ctag = TAG_LOCK_RESEND; 13315 break; 13316 case NFS4_LCK_CTYPE_REINSTATE: 13317 argsp->ctag = TAG_LOCK_REINSTATE; 13318 break; 13319 case NFS4_LCK_CTYPE_RECLAIM: 13320 argsp->ctag = TAG_LOCK_RECLAIM; 13321 break; 13322 default: 13323 argsp->ctag = TAG_LOCK_UNKNOWN; 13324 break; 13325 } 13326 } else { 13327 LOCKU4args *locku_args; 13328 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13329 13330 argop->argop = OP_LOCKU; 13331 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13332 locku_args->locktype = READ_LT; 13333 locku_args->seqid = lop->lock_seqid + 1; 13334 mutex_enter(&lop->lo_lock); 13335 locku_args->lock_stateid = lop->lock_stateid; 13336 mutex_exit(&lop->lo_lock); 13337 locku_args->offset = resend_rqstp->lr_flk->l_start; 13338 locku_args->length = resend_rqstp->lr_flk->l_len; 13339 if (locku_args->length == 0) 13340 locku_args->length = ~locku_args->length; 13341 13342 switch (resend_rqstp->lr_ctype) { 13343 case NFS4_LCK_CTYPE_RESEND: 13344 argsp->ctag = TAG_LOCKU_RESEND; 13345 break; 13346 case NFS4_LCK_CTYPE_REINSTATE: 13347 argsp->ctag = TAG_LOCKU_REINSTATE; 13348 break; 13349 default: 13350 argsp->ctag = TAG_LOCK_UNKNOWN; 13351 break; 13352 } 13353 } 13354 } 13355 13356 /* 13357 * Setup the LOCKT4 arguments. 13358 */ 13359 static void 13360 nfs4frlock_setup_lockt_args(nfs_argop4 *argop, LOCKT4args **lockt_argsp, 13361 COMPOUND4args_clnt *argsp, flock64_t *flk, rnode4_t *rp) 13362 { 13363 LOCKT4args *lockt_args; 13364 13365 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13366 argop->argop = OP_LOCKT; 13367 argsp->ctag = TAG_LOCKT; 13368 lockt_args = &argop->nfs_argop4_u.oplockt; 13369 13370 /* 13371 * The locktype will be READ_LT unless it's 13372 * a write lock. We do this because the Solaris 13373 * system call allows the combination of 13374 * F_UNLCK and F_GETLK* and so in that case the 13375 * unlock is mapped to a read. 13376 */ 13377 if (flk->l_type == F_WRLCK) 13378 lockt_args->locktype = WRITE_LT; 13379 else 13380 lockt_args->locktype = READ_LT; 13381 13382 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13383 /* set the lock owner4 args */ 13384 nfs4_setlockowner_args(&lockt_args->owner, rp, flk->l_pid); 13385 lockt_args->offset = flk->l_start; 13386 lockt_args->length = flk->l_len; 13387 if (flk->l_len == 0) 13388 lockt_args->length = ~lockt_args->length; 13389 13390 *lockt_argsp = lockt_args; 13391 } 13392 13393 /* 13394 * If the client is holding a delegation, and the open stream to be used 13395 * with this lock request is a delegation open stream, then re-open the stream. 13396 * Sets the nfs4_error_t to all zeros unless the open stream has already 13397 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13398 * means the caller should retry (like a recovery retry). 13399 */ 13400 static void 13401 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13402 { 13403 open_delegation_type4 dt; 13404 bool_t reopen_needed, force; 13405 nfs4_open_stream_t *osp; 13406 open_claim_type4 oclaim; 13407 rnode4_t *rp = VTOR4(vp); 13408 mntinfo4_t *mi = VTOMI4(vp); 13409 13410 ASSERT(nfs_zone() == mi->mi_zone); 13411 13412 nfs4_error_zinit(ep); 13413 13414 mutex_enter(&rp->r_statev4_lock); 13415 dt = rp->r_deleg_type; 13416 mutex_exit(&rp->r_statev4_lock); 13417 13418 if (dt != OPEN_DELEGATE_NONE) { 13419 nfs4_open_owner_t *oop; 13420 13421 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13422 if (!oop) { 13423 ep->stat = NFS4ERR_IO; 13424 return; 13425 } 13426 /* returns with 'os_sync_lock' held */ 13427 osp = find_open_stream(oop, rp); 13428 if (!osp) { 13429 open_owner_rele(oop); 13430 ep->stat = NFS4ERR_IO; 13431 return; 13432 } 13433 13434 if (osp->os_failed_reopen) { 13435 NFS4_DEBUG((nfs4_open_stream_debug || 13436 nfs4_client_lock_debug), (CE_NOTE, 13437 "nfs4frlock_check_deleg: os_failed_reopen set " 13438 "for osp %p, cr %p, rp %s", (void *)osp, 13439 (void *)cr, rnode4info(rp))); 13440 mutex_exit(&osp->os_sync_lock); 13441 open_stream_rele(osp, rp); 13442 open_owner_rele(oop); 13443 ep->stat = NFS4ERR_IO; 13444 return; 13445 } 13446 13447 /* 13448 * Determine whether a reopen is needed. If this 13449 * is a delegation open stream, then send the open 13450 * to the server to give visibility to the open owner. 13451 * Even if it isn't a delegation open stream, we need 13452 * to check if the previous open CLAIM_DELEGATE_CUR 13453 * was sufficient. 13454 */ 13455 13456 reopen_needed = osp->os_delegation || 13457 ((lt == F_RDLCK && 13458 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13459 (lt == F_WRLCK && 13460 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13461 13462 mutex_exit(&osp->os_sync_lock); 13463 open_owner_rele(oop); 13464 13465 if (reopen_needed) { 13466 /* 13467 * Always use CLAIM_PREVIOUS after server reboot. 13468 * The server will reject CLAIM_DELEGATE_CUR if 13469 * it is used during the grace period. 13470 */ 13471 mutex_enter(&mi->mi_lock); 13472 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13473 oclaim = CLAIM_PREVIOUS; 13474 force = TRUE; 13475 } else { 13476 oclaim = CLAIM_DELEGATE_CUR; 13477 force = FALSE; 13478 } 13479 mutex_exit(&mi->mi_lock); 13480 13481 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13482 if (ep->error == EAGAIN) { 13483 nfs4_error_zinit(ep); 13484 ep->stat = NFS4ERR_DELAY; 13485 } 13486 } 13487 open_stream_rele(osp, rp); 13488 osp = NULL; 13489 } 13490 } 13491 13492 /* 13493 * Setup the LOCKU4 arguments. 13494 * Returns errors via the nfs4_error_t. 13495 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13496 * over-the-wire. The caller must release the 13497 * reference on *lopp. 13498 * NFS4ERR_DELAY caller should retry (like recovery retry) 13499 * (other) unrecoverable error. 13500 */ 13501 static void 13502 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13503 LOCKU4args **locku_argsp, flock64_t *flk, 13504 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13505 vnode_t *vp, cred_t *cr, bool_t *skip_get_err, bool_t *go_otwp) 13506 { 13507 nfs4_lock_owner_t *lop = NULL; 13508 LOCKU4args *locku_args; 13509 pid_t pid = flk->l_pid; 13510 bool_t is_spec = FALSE; 13511 rnode4_t *rp = VTOR4(vp); 13512 13513 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13514 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13515 13516 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13517 if (ep->error || ep->stat) 13518 return; 13519 13520 argop->argop = OP_LOCKU; 13521 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13522 argsp->ctag = TAG_LOCKU_REINSTATE; 13523 else 13524 argsp->ctag = TAG_LOCKU; 13525 locku_args = &argop->nfs_argop4_u.oplocku; 13526 *locku_argsp = locku_args; 13527 13528 /* 13529 * XXX what should locku_args->locktype be? 13530 * setting to ALWAYS be READ_LT so at least 13531 * it is a valid locktype. 13532 */ 13533 13534 locku_args->locktype = READ_LT; 13535 13536 /* 13537 * Get the lock owner stateid. If no lock owner 13538 * exists, return success. 13539 */ 13540 lop = find_lock_owner(rp, pid, LOWN_ANY); 13541 *lopp = lop; 13542 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13543 is_spec = TRUE; 13544 if (!lop || is_spec) { 13545 /* 13546 * No lock owner so no locks to unlock. 13547 * Return success. 13548 * 13549 * If the lockowner is using a special stateid, 13550 * then the original lock request (that created 13551 * this lockowner) was never successful, so we 13552 * have no lock to undo OTW. 13553 */ 13554 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13555 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13556 "(%ld) so return success", (long)pid)); 13557 13558 /* 13559 * Release our hold and NULL out so final_cleanup 13560 * doesn't try to end a lock seqid sync we 13561 * never started. 13562 */ 13563 if (is_spec) { 13564 lock_owner_rele(lop); 13565 *lopp = NULL; 13566 } 13567 *skip_get_err = TRUE; 13568 *go_otwp = FALSE; 13569 return; 13570 } 13571 13572 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13573 if (ep->error == EAGAIN) { 13574 lock_owner_rele(lop); 13575 *lopp = NULL; 13576 return; 13577 } 13578 13579 mutex_enter(&lop->lo_lock); 13580 locku_args->lock_stateid = lop->lock_stateid; 13581 mutex_exit(&lop->lo_lock); 13582 locku_args->seqid = lop->lock_seqid + 1; 13583 13584 /* leave the ref count on lop, rele after RPC call */ 13585 13586 locku_args->offset = flk->l_start; 13587 locku_args->length = flk->l_len; 13588 if (flk->l_len == 0) 13589 locku_args->length = ~locku_args->length; 13590 13591 *go_otwp = TRUE; 13592 } 13593 13594 /* 13595 * Setup the LOCK4 arguments. 13596 * 13597 * Returns errors via the nfs4_error_t. 13598 * NFS4_OK no problems 13599 * NFS4ERR_DELAY caller should retry (like recovery retry) 13600 * (other) unrecoverable error 13601 */ 13602 static void 13603 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13604 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13605 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13606 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13607 { 13608 LOCK4args *lock_args; 13609 nfs4_open_owner_t *oop = NULL; 13610 nfs4_open_stream_t *osp = NULL; 13611 nfs4_lock_owner_t *lop = NULL; 13612 pid_t pid = flk->l_pid; 13613 rnode4_t *rp = VTOR4(vp); 13614 13615 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13616 13617 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13618 if (ep->error || ep->stat != NFS4_OK) 13619 return; 13620 13621 argop->argop = OP_LOCK; 13622 if (ctype == NFS4_LCK_CTYPE_NORM) 13623 argsp->ctag = TAG_LOCK; 13624 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13625 argsp->ctag = TAG_RELOCK; 13626 else 13627 argsp->ctag = TAG_LOCK_REINSTATE; 13628 lock_args = &argop->nfs_argop4_u.oplock; 13629 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13630 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13631 /* 13632 * Get the lock owner. If no lock owner exists, 13633 * create a 'temporary' one and grab the open seqid 13634 * synchronization (which puts a hold on the open 13635 * owner and open stream). 13636 * This also grabs the lock seqid synchronization. 13637 */ 13638 ep->stat = 13639 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13640 13641 if (ep->stat != NFS4_OK) 13642 goto out; 13643 13644 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13645 &lock_args->locker); 13646 13647 lock_args->offset = flk->l_start; 13648 lock_args->length = flk->l_len; 13649 if (flk->l_len == 0) 13650 lock_args->length = ~lock_args->length; 13651 *lock_argsp = lock_args; 13652 out: 13653 *oopp = oop; 13654 *ospp = osp; 13655 *lopp = lop; 13656 } 13657 13658 /* 13659 * After we get the reply from the server, record the proper information 13660 * for possible resend lock requests. 13661 * 13662 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13663 */ 13664 static void 13665 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13666 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13667 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13668 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13669 { 13670 bool_t unlock = (flk->l_type == F_UNLCK); 13671 13672 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13673 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13674 ctype == NFS4_LCK_CTYPE_REINSTATE); 13675 13676 if (error != 0 && !unlock) { 13677 NFS4_DEBUG((nfs4_lost_rqst_debug || 13678 nfs4_client_lock_debug), (CE_NOTE, 13679 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13680 " for lop %p", (void *)lop)); 13681 ASSERT(lop != NULL); 13682 mutex_enter(&lop->lo_lock); 13683 lop->lo_pending_rqsts = 1; 13684 mutex_exit(&lop->lo_lock); 13685 } 13686 13687 lost_rqstp->lr_putfirst = FALSE; 13688 lost_rqstp->lr_op = 0; 13689 13690 /* 13691 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13692 * recovery purposes so that the lock request that was sent 13693 * can be saved and re-issued later. Ditto for EIO from a forced 13694 * unmount. This is done to have the client's local locking state 13695 * match the v4 server's state; that is, the request was 13696 * potentially received and accepted by the server but the client 13697 * thinks it was not. 13698 */ 13699 if (error == ETIMEDOUT || error == EINTR || 13700 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13701 NFS4_DEBUG((nfs4_lost_rqst_debug || 13702 nfs4_client_lock_debug), (CE_NOTE, 13703 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13704 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13705 (void *)lop, (void *)oop, (void *)osp)); 13706 if (unlock) 13707 lost_rqstp->lr_op = OP_LOCKU; 13708 else { 13709 lost_rqstp->lr_op = OP_LOCK; 13710 lost_rqstp->lr_locktype = locktype; 13711 } 13712 /* 13713 * Objects are held and rele'd via the recovery code. 13714 * See nfs4_save_lost_rqst. 13715 */ 13716 lost_rqstp->lr_vp = vp; 13717 lost_rqstp->lr_dvp = NULL; 13718 lost_rqstp->lr_oop = oop; 13719 lost_rqstp->lr_osp = osp; 13720 lost_rqstp->lr_lop = lop; 13721 lost_rqstp->lr_cr = cr; 13722 switch (ctype) { 13723 case NFS4_LCK_CTYPE_NORM: 13724 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13725 break; 13726 case NFS4_LCK_CTYPE_REINSTATE: 13727 lost_rqstp->lr_putfirst = TRUE; 13728 lost_rqstp->lr_ctype = ctype; 13729 break; 13730 default: 13731 break; 13732 } 13733 lost_rqstp->lr_flk = flk; 13734 } 13735 } 13736 13737 /* 13738 * Update lop's seqid. Also update the seqid stored in a resend request, 13739 * if any. (Some recovery errors increment the seqid, and we may have to 13740 * send the resend request again.) 13741 */ 13742 13743 static void 13744 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13745 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13746 { 13747 if (lock_args) { 13748 if (lock_args->locker.new_lock_owner == TRUE) 13749 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13750 else { 13751 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13752 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13753 } 13754 } else if (locku_args) { 13755 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13756 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13757 } 13758 } 13759 13760 /* 13761 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13762 * COMPOUND4 args/res for calls that need to retry. 13763 * Switches the *cred_otwp to base_cr. 13764 */ 13765 static void 13766 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13767 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13768 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13769 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13770 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13771 { 13772 nfs4_open_owner_t *oop = *oopp; 13773 nfs4_open_stream_t *osp = *ospp; 13774 nfs4_lock_owner_t *lop = *lopp; 13775 nfs_argop4 *argop = (*argspp)->array; 13776 13777 if (*did_start_fop) { 13778 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13779 needrecov); 13780 *did_start_fop = FALSE; 13781 } 13782 ASSERT((*argspp)->array_len == 2); 13783 if (argop[1].argop == OP_LOCK) 13784 nfs4args_lock_free(&argop[1]); 13785 else if (argop[1].argop == OP_LOCKT) 13786 nfs4args_lockt_free(&argop[1]); 13787 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13788 if (!error) 13789 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13790 *argspp = NULL; 13791 *respp = NULL; 13792 13793 if (lop) { 13794 nfs4_end_lock_seqid_sync(lop); 13795 lock_owner_rele(lop); 13796 *lopp = NULL; 13797 } 13798 13799 /* need to free up the reference on osp for lock args */ 13800 if (osp != NULL) { 13801 open_stream_rele(osp, VTOR4(vp)); 13802 *ospp = NULL; 13803 } 13804 13805 /* need to free up the reference on oop for lock args */ 13806 if (oop != NULL) { 13807 nfs4_end_open_seqid_sync(oop); 13808 open_owner_rele(oop); 13809 *oopp = NULL; 13810 } 13811 13812 crfree(*cred_otwp); 13813 *cred_otwp = base_cr; 13814 crhold(*cred_otwp); 13815 } 13816 13817 /* 13818 * Function to process the client's recovery for nfs4frlock. 13819 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13820 * 13821 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13822 * COMPOUND4 args/res for calls that need to retry. 13823 * 13824 * Note: the rp's r_lkserlock is *not* dropped during this path. 13825 */ 13826 static bool_t 13827 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13828 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13829 LOCK4args *lock_args, LOCKU4args *locku_args, 13830 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13831 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13832 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13833 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13834 { 13835 nfs4_open_owner_t *oop = *oopp; 13836 nfs4_open_stream_t *osp = *ospp; 13837 nfs4_lock_owner_t *lop = *lopp; 13838 13839 bool_t abort, retry; 13840 13841 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13842 ASSERT((*argspp) != NULL); 13843 ASSERT((*respp) != NULL); 13844 if (lock_args || locku_args) 13845 ASSERT(lop != NULL); 13846 13847 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13848 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13849 13850 retry = TRUE; 13851 abort = FALSE; 13852 if (needrecov) { 13853 nfs4_bseqid_entry_t *bsep = NULL; 13854 nfs_opnum4 op; 13855 13856 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13857 13858 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13859 seqid4 seqid; 13860 13861 if (lock_args) { 13862 if (lock_args->locker.new_lock_owner == TRUE) 13863 seqid = lock_args->locker.locker4_u. 13864 open_owner.open_seqid; 13865 else 13866 seqid = lock_args->locker.locker4_u. 13867 lock_owner.lock_seqid; 13868 } else if (locku_args) { 13869 seqid = locku_args->seqid; 13870 } else { 13871 seqid = 0; 13872 } 13873 13874 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13875 flk->l_pid, (*argspp)->ctag, seqid); 13876 } 13877 13878 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13879 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13880 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13881 NULL, op, bsep, NULL, NULL); 13882 13883 if (bsep) 13884 kmem_free(bsep, sizeof (*bsep)); 13885 } 13886 13887 /* 13888 * Return that we do not want to retry the request for 3 cases: 13889 * 1. If we received EINTR or are bailing out because of a forced 13890 * unmount, we came into this code path just for the sake of 13891 * initiating recovery, we now need to return the error. 13892 * 2. If we have aborted recovery. 13893 * 3. We received NFS4ERR_BAD_SEQID. 13894 */ 13895 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13896 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13897 retry = FALSE; 13898 13899 if (*did_start_fop == TRUE) { 13900 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13901 needrecov); 13902 *did_start_fop = FALSE; 13903 } 13904 13905 if (retry == TRUE) { 13906 nfs_argop4 *argop; 13907 13908 argop = (*argspp)->array; 13909 ASSERT((*argspp)->array_len == 2); 13910 13911 if (argop[1].argop == OP_LOCK) 13912 nfs4args_lock_free(&argop[1]); 13913 else if (argop[1].argop == OP_LOCKT) 13914 nfs4args_lockt_free(&argop[1]); 13915 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13916 if (!ep->error) 13917 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13918 *respp = NULL; 13919 *argspp = NULL; 13920 } 13921 13922 if (lop != NULL) { 13923 nfs4_end_lock_seqid_sync(lop); 13924 lock_owner_rele(lop); 13925 } 13926 13927 *lopp = NULL; 13928 13929 /* need to free up the reference on osp for lock args */ 13930 if (osp != NULL) { 13931 open_stream_rele(osp, rp); 13932 *ospp = NULL; 13933 } 13934 13935 /* need to free up the reference on oop for lock args */ 13936 if (oop != NULL) { 13937 nfs4_end_open_seqid_sync(oop); 13938 open_owner_rele(oop); 13939 *oopp = NULL; 13940 } 13941 13942 return (retry); 13943 } 13944 13945 /* 13946 * Handle the DENIED reply from the server for nfs4frlock. 13947 * Returns TRUE if we should retry the request; FALSE otherwise. 13948 * 13949 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13950 * COMPOUND4 args/res for calls that need to retry. Can also 13951 * drop and regrab the r_lkserlock. 13952 */ 13953 static bool_t 13954 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13955 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13956 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13957 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13958 nfs4_recov_state_t *recov_statep, int needrecov, 13959 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13960 clock_t *tick_delayp, int *errorp, 13961 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13962 bool_t *skip_get_err) 13963 { 13964 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13965 13966 if (lock_args) { 13967 nfs4_open_owner_t *oop = *oopp; 13968 nfs4_open_stream_t *osp = *ospp; 13969 nfs4_lock_owner_t *lop = *lopp; 13970 int intr; 13971 13972 /* 13973 * Blocking lock needs to sleep and retry from the request. 13974 * 13975 * Do not block and wait for 'resend' or 'reinstate' 13976 * lock requests, just return the error. 13977 * 13978 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13979 */ 13980 if (cmd == F_SETLKW) { 13981 rnode4_t *rp = VTOR4(vp); 13982 nfs_argop4 *argop = (*argspp)->array; 13983 13984 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13985 13986 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13987 recov_statep, needrecov); 13988 *did_start_fop = FALSE; 13989 ASSERT((*argspp)->array_len == 2); 13990 if (argop[1].argop == OP_LOCK) 13991 nfs4args_lock_free(&argop[1]); 13992 else if (argop[1].argop == OP_LOCKT) 13993 nfs4args_lockt_free(&argop[1]); 13994 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13995 if (*respp) 13996 (void) xdr_free(xdr_COMPOUND4res_clnt, 13997 (caddr_t)*respp); 13998 *argspp = NULL; 13999 *respp = NULL; 14000 nfs4_end_lock_seqid_sync(lop); 14001 lock_owner_rele(lop); 14002 *lopp = NULL; 14003 if (osp != NULL) { 14004 open_stream_rele(osp, rp); 14005 *ospp = NULL; 14006 } 14007 if (oop != NULL) { 14008 nfs4_end_open_seqid_sync(oop); 14009 open_owner_rele(oop); 14010 *oopp = NULL; 14011 } 14012 14013 nfs_rw_exit(&rp->r_lkserlock); 14014 14015 intr = nfs4_block_and_wait(tick_delayp); 14016 14017 (void) nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, 14018 FALSE); 14019 14020 if (intr) { 14021 *errorp = EINTR; 14022 return (FALSE); 14023 } 14024 14025 /* 14026 * Make sure we are still safe to lock with 14027 * regards to mmapping. 14028 */ 14029 if (!nfs4_safelock(vp, flk, cr)) { 14030 *errorp = EAGAIN; 14031 return (FALSE); 14032 } 14033 14034 return (TRUE); 14035 } 14036 if (ctype == NFS4_LCK_CTYPE_NORM) 14037 *errorp = EAGAIN; 14038 *skip_get_err = TRUE; 14039 flk->l_whence = 0; 14040 return (FALSE); 14041 } else if (lockt_args) { 14042 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14043 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 14044 14045 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 14046 flk, lockt_args); 14047 14048 /* according to NLM code */ 14049 *errorp = 0; 14050 *skip_get_err = TRUE; 14051 return (FALSE); 14052 } 14053 return (FALSE); 14054 } 14055 14056 /* 14057 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 14058 */ 14059 static void 14060 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 14061 { 14062 switch (resp->status) { 14063 case NFS4ERR_ACCESS: 14064 case NFS4ERR_ADMIN_REVOKED: 14065 case NFS4ERR_BADHANDLE: 14066 case NFS4ERR_BAD_RANGE: 14067 case NFS4ERR_BAD_SEQID: 14068 case NFS4ERR_BAD_STATEID: 14069 case NFS4ERR_BADXDR: 14070 case NFS4ERR_DEADLOCK: 14071 case NFS4ERR_DELAY: 14072 case NFS4ERR_EXPIRED: 14073 case NFS4ERR_FHEXPIRED: 14074 case NFS4ERR_GRACE: 14075 case NFS4ERR_INVAL: 14076 case NFS4ERR_ISDIR: 14077 case NFS4ERR_LEASE_MOVED: 14078 case NFS4ERR_LOCK_NOTSUPP: 14079 case NFS4ERR_LOCK_RANGE: 14080 case NFS4ERR_MOVED: 14081 case NFS4ERR_NOFILEHANDLE: 14082 case NFS4ERR_NO_GRACE: 14083 case NFS4ERR_OLD_STATEID: 14084 case NFS4ERR_OPENMODE: 14085 case NFS4ERR_RECLAIM_BAD: 14086 case NFS4ERR_RECLAIM_CONFLICT: 14087 case NFS4ERR_RESOURCE: 14088 case NFS4ERR_SERVERFAULT: 14089 case NFS4ERR_STALE: 14090 case NFS4ERR_STALE_CLIENTID: 14091 case NFS4ERR_STALE_STATEID: 14092 return; 14093 default: 14094 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14095 "nfs4frlock_results_default: got unrecognizable " 14096 "res.status %d", resp->status)); 14097 *errorp = NFS4ERR_INVAL; 14098 } 14099 } 14100 14101 /* 14102 * The lock request was successful, so update the client's state. 14103 */ 14104 static void 14105 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 14106 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 14107 vnode_t *vp, flock64_t *flk, cred_t *cr, 14108 nfs4_lost_rqst_t *resend_rqstp) 14109 { 14110 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14111 14112 if (lock_args) { 14113 LOCK4res *lock_res; 14114 14115 lock_res = &resop->nfs_resop4_u.oplock; 14116 /* update the stateid with server's response */ 14117 14118 if (lock_args->locker.new_lock_owner == TRUE) { 14119 mutex_enter(&lop->lo_lock); 14120 lop->lo_just_created = NFS4_PERM_CREATED; 14121 mutex_exit(&lop->lo_lock); 14122 } 14123 14124 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 14125 14126 /* 14127 * If the lock was the result of a resending a lost 14128 * request, we've synched up the stateid and seqid 14129 * with the server, but now the server might be out of sync 14130 * with what the application thinks it has for locks. 14131 * Clean that up here. It's unclear whether we should do 14132 * this even if the filesystem has been forcibly unmounted. 14133 * For most servers, it's probably wasted effort, but 14134 * RFC3530 lets servers require that unlocks exactly match 14135 * the locks that are held. 14136 */ 14137 if (resend_rqstp != NULL && 14138 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 14139 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 14140 } else { 14141 flk->l_whence = 0; 14142 } 14143 } else if (locku_args) { 14144 LOCKU4res *locku_res; 14145 14146 locku_res = &resop->nfs_resop4_u.oplocku; 14147 14148 /* Update the stateid with the server's response */ 14149 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 14150 } else if (lockt_args) { 14151 /* Switch the lock type to express success, see fcntl */ 14152 flk->l_type = F_UNLCK; 14153 flk->l_whence = 0; 14154 } 14155 } 14156 14157 /* 14158 * Do final cleanup before exiting nfs4frlock. 14159 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 14160 * COMPOUND4 args/res for calls that haven't already. 14161 */ 14162 static void 14163 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 14164 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 14165 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 14166 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, 14167 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 14168 bool_t did_start_fop, bool_t skip_get_err, 14169 cred_t *cred_otw, cred_t *cred) 14170 { 14171 mntinfo4_t *mi = VTOMI4(vp); 14172 rnode4_t *rp = VTOR4(vp); 14173 int error = *errorp; 14174 nfs_argop4 *argop; 14175 int do_flush_pages = 0; 14176 14177 ASSERT(nfs_zone() == mi->mi_zone); 14178 /* 14179 * The client recovery code wants the raw status information, 14180 * so don't map the NFS status code to an errno value for 14181 * non-normal call types. 14182 */ 14183 if (ctype == NFS4_LCK_CTYPE_NORM) { 14184 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 14185 *errorp = geterrno4(resp->status); 14186 if (did_start_fop == TRUE) 14187 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 14188 needrecov); 14189 14190 /* 14191 * We've established a new lock on the server, so invalidate 14192 * the pages associated with the vnode to get the most up to 14193 * date pages from the server after acquiring the lock. We 14194 * want to be sure that the read operation gets the newest data. 14195 * 14196 * We flush the pages below after calling nfs4_end_fop above. 14197 * 14198 * The flush of the page cache must be done after 14199 * nfs4_end_open_seqid_sync() to avoid a 4-way hang. 14200 */ 14201 if (!error && resp && resp->status == NFS4_OK) 14202 do_flush_pages = 1; 14203 } 14204 if (argsp) { 14205 ASSERT(argsp->array_len == 2); 14206 argop = argsp->array; 14207 if (argop[1].argop == OP_LOCK) 14208 nfs4args_lock_free(&argop[1]); 14209 else if (argop[1].argop == OP_LOCKT) 14210 nfs4args_lockt_free(&argop[1]); 14211 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14212 if (resp) 14213 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 14214 } 14215 14216 /* free the reference on the lock owner */ 14217 if (lop != NULL) { 14218 nfs4_end_lock_seqid_sync(lop); 14219 lock_owner_rele(lop); 14220 } 14221 14222 /* need to free up the reference on osp for lock args */ 14223 if (osp != NULL) 14224 open_stream_rele(osp, rp); 14225 14226 /* need to free up the reference on oop for lock args */ 14227 if (oop != NULL) { 14228 nfs4_end_open_seqid_sync(oop); 14229 open_owner_rele(oop); 14230 } 14231 14232 if (do_flush_pages) 14233 nfs4_flush_pages(vp, cred); 14234 14235 /* 14236 * Record debug information in the event we get EINVAL. 14237 */ 14238 mutex_enter(&mi->mi_lock); 14239 if (*errorp == EINVAL && (lock_args || locku_args) && 14240 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 14241 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 14242 zcmn_err(getzoneid(), CE_NOTE, 14243 "%s operation failed with " 14244 "EINVAL probably since the server, %s," 14245 " doesn't support POSIX style locking", 14246 lock_args ? "LOCK" : "LOCKU", 14247 mi->mi_curr_serv->sv_hostname); 14248 mi->mi_flags |= MI4_LOCK_DEBUG; 14249 } 14250 } 14251 mutex_exit(&mi->mi_lock); 14252 14253 if (cred_otw) 14254 crfree(cred_otw); 14255 } 14256 14257 /* 14258 * This calls the server. 14259 * 14260 * Blocking lock requests will continually retry to acquire the lock 14261 * forever. 14262 * 14263 * The ctype is defined as follows: 14264 * NFS4_LCK_CTYPE_NORM: normal lock request. 14265 * 14266 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14267 * recovery. 14268 * 14269 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14270 * that we will use the information passed in via resend_rqstp to setup the 14271 * lock/locku request. This resend is the exact same request as the 'lost 14272 * lock', and is initiated by the recovery framework. A successful resend 14273 * request can initiate one or more reinstate requests. 14274 * 14275 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14276 * does not trigger additional reinstate requests. This lock call type is 14277 * set for setting the v4 server's locking state back to match what the 14278 * client's local locking state is in the event of a received 'lost lock'. 14279 * 14280 * Errors are returned via the nfs4_error_t parameter. 14281 */ 14282 void 14283 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14284 cred_t *cr, nfs4_error_t *ep, nfs4_lost_rqst_t *resend_rqstp, 14285 int *did_reclaimp) 14286 { 14287 COMPOUND4args_clnt args, *argsp = NULL; 14288 COMPOUND4res_clnt res, *resp = NULL; 14289 nfs_argop4 *argop; 14290 nfs_resop4 *resop; 14291 rnode4_t *rp; 14292 int doqueue = 1; 14293 clock_t tick_delay; /* delay in clock ticks */ 14294 LOCK4args *lock_args = NULL; 14295 LOCKU4args *locku_args = NULL; 14296 LOCKT4args *lockt_args = NULL; 14297 nfs4_open_owner_t *oop = NULL; 14298 nfs4_open_stream_t *osp = NULL; 14299 nfs4_lock_owner_t *lop = NULL; 14300 bool_t needrecov = FALSE; 14301 nfs4_recov_state_t recov_state; 14302 nfs4_op_hint_t op_hint; 14303 nfs4_lost_rqst_t lost_rqst; 14304 bool_t retry = FALSE; 14305 bool_t did_start_fop = FALSE; 14306 bool_t skip_get_err = FALSE; 14307 cred_t *cred_otw = NULL; 14308 bool_t recovonly; /* just queue request */ 14309 int frc_no_reclaim = 0; 14310 #ifdef DEBUG 14311 char *name; 14312 #endif 14313 14314 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14315 14316 #ifdef DEBUG 14317 name = fn_name(VTOSV(vp)->sv_name); 14318 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14319 "%s: cmd %d, type %d, start %"PRIx64", " 14320 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14321 "resend request %s", name, cmd, flk->l_type, flk->l_start, 14322 flk->l_len, flk->l_pid, flk->l_sysid, 14323 nfs4frlock_get_call_type(ctype), 14324 resend_rqstp ? "TRUE" : "FALSE")); 14325 kmem_free(name, MAXNAMELEN); 14326 #endif 14327 14328 nfs4_error_zinit(ep); 14329 14330 nfs4frlock_pre_setup(&tick_delay, &recov_state, vp, cr, &cred_otw); 14331 14332 rp = VTOR4(vp); 14333 14334 recov_retry: 14335 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14336 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14337 14338 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14339 &did_start_fop, &recovonly); 14340 14341 if (ep->error) 14342 goto out; 14343 14344 if (recovonly) { 14345 /* 14346 * Leave the request for the recovery system to deal with. 14347 */ 14348 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14349 ASSERT(cmd != F_GETLK); 14350 ASSERT(flk->l_type == F_UNLCK); 14351 14352 nfs4_error_init(ep, EINTR); 14353 needrecov = TRUE; 14354 lop = find_lock_owner(rp, flk->l_pid, LOWN_ANY); 14355 if (lop != NULL) { 14356 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14357 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14358 (void) nfs4_start_recovery(ep, 14359 VTOMI4(vp), vp, NULL, NULL, 14360 (lost_rqst.lr_op == OP_LOCK || 14361 lost_rqst.lr_op == OP_LOCKU) ? 14362 &lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL); 14363 lock_owner_rele(lop); 14364 lop = NULL; 14365 } 14366 goto out; 14367 } 14368 14369 /* putfh directory fh */ 14370 argop[0].argop = OP_CPUTFH; 14371 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14372 14373 /* 14374 * Set up the over-the-wire arguments and get references to the 14375 * open owner, etc. 14376 */ 14377 14378 if (ctype == NFS4_LCK_CTYPE_RESEND || 14379 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14380 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14381 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14382 } else { 14383 bool_t go_otw = TRUE; 14384 14385 ASSERT(resend_rqstp == NULL); 14386 14387 switch (cmd) { 14388 case F_GETLK: 14389 case F_O_GETLK: 14390 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14391 nfs4frlock_setup_lockt_args(&argop[1], &lockt_args, 14392 argsp, flk, rp); 14393 break; 14394 case F_SETLKW: 14395 case F_SETLK: 14396 if (flk->l_type == F_UNLCK) 14397 nfs4frlock_setup_locku_args(ctype, 14398 &argop[1], &locku_args, flk, 14399 &lop, ep, argsp, vp, cr, 14400 &skip_get_err, &go_otw); 14401 else 14402 nfs4frlock_setup_lock_args(ctype, 14403 &lock_args, &oop, &osp, &lop, &argop[1], 14404 argsp, flk, cmd, vp, cr, ep); 14405 14406 if (ep->error) 14407 goto out; 14408 14409 switch (ep->stat) { 14410 case NFS4_OK: 14411 break; 14412 case NFS4ERR_DELAY: 14413 /* recov thread never gets this error */ 14414 ASSERT(resend_rqstp == NULL); 14415 ASSERT(did_start_fop); 14416 14417 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14418 &recov_state, TRUE); 14419 did_start_fop = FALSE; 14420 if (argop[1].argop == OP_LOCK) 14421 nfs4args_lock_free(&argop[1]); 14422 else if (argop[1].argop == OP_LOCKT) 14423 nfs4args_lockt_free(&argop[1]); 14424 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14425 argsp = NULL; 14426 goto recov_retry; 14427 default: 14428 ep->error = EIO; 14429 goto out; 14430 } 14431 break; 14432 default: 14433 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14434 "nfs4_frlock: invalid cmd %d", cmd)); 14435 ep->error = EINVAL; 14436 goto out; 14437 } 14438 14439 if (!go_otw) 14440 goto out; 14441 } 14442 14443 /* 14444 * Send the server the lock request. Continually loop with a delay 14445 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14446 */ 14447 resp = &res; 14448 14449 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14450 (CE_NOTE, 14451 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14452 rnode4info(rp))); 14453 14454 if (lock_args && frc_no_reclaim) { 14455 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14456 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14457 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14458 lock_args->reclaim = FALSE; 14459 if (did_reclaimp) 14460 *did_reclaimp = 0; 14461 } 14462 14463 /* 14464 * Do the OTW call. 14465 */ 14466 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14467 14468 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14469 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14470 14471 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14472 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14473 "nfs4frlock: needrecov %d", needrecov)); 14474 14475 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14476 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14477 args.ctag); 14478 14479 /* 14480 * Check if one of these mutually exclusive error cases has 14481 * happened: 14482 * need to swap credentials due to access error 14483 * recovery is needed 14484 * different error (only known case is missing Kerberos ticket) 14485 */ 14486 14487 if ((ep->error == EACCES || 14488 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14489 cred_otw != cr) { 14490 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14491 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14492 cr, &cred_otw); 14493 goto recov_retry; 14494 } 14495 14496 if (needrecov) { 14497 /* 14498 * LOCKT requests don't need to recover from lost 14499 * requests since they don't create/modify state. 14500 */ 14501 if ((ep->error == EINTR || 14502 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14503 lockt_args) 14504 goto out; 14505 /* 14506 * Do not attempt recovery for requests initiated by 14507 * the recovery framework. Let the framework redrive them. 14508 */ 14509 if (ctype != NFS4_LCK_CTYPE_NORM) 14510 goto out; 14511 else { 14512 ASSERT(resend_rqstp == NULL); 14513 } 14514 14515 nfs4frlock_save_lost_rqst(ctype, ep->error, 14516 flk_to_locktype(cmd, flk->l_type), 14517 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14518 14519 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14520 &resp, lock_args, locku_args, &oop, &osp, &lop, 14521 rp, vp, &recov_state, op_hint, &did_start_fop, 14522 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14523 14524 if (retry) { 14525 ASSERT(oop == NULL); 14526 ASSERT(osp == NULL); 14527 ASSERT(lop == NULL); 14528 goto recov_retry; 14529 } 14530 goto out; 14531 } 14532 14533 /* 14534 * Bail out if have reached this point with ep->error set. Can 14535 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14536 * This happens if Kerberos ticket has expired or has been 14537 * destroyed. 14538 */ 14539 if (ep->error != 0) 14540 goto out; 14541 14542 /* 14543 * Process the reply. 14544 */ 14545 switch (resp->status) { 14546 case NFS4_OK: 14547 resop = &resp->array[1]; 14548 /* 14549 * Have a successful lock operation, now update state. 14550 */ 14551 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14552 resop, lop, vp, flk, cr, resend_rqstp); 14553 break; 14554 14555 case NFS4ERR_DENIED: 14556 resop = &resp->array[1]; 14557 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14558 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14559 &recov_state, needrecov, &argsp, &resp, 14560 &tick_delay, &ep->error, resop, cr, 14561 &did_start_fop, &skip_get_err); 14562 14563 if (retry) { 14564 ASSERT(oop == NULL); 14565 ASSERT(osp == NULL); 14566 ASSERT(lop == NULL); 14567 goto recov_retry; 14568 } 14569 break; 14570 /* 14571 * If the server won't let us reclaim, fall-back to trying to lock 14572 * the file from scratch. Code elsewhere will check the changeinfo 14573 * to ensure the file hasn't been changed. 14574 */ 14575 case NFS4ERR_NO_GRACE: 14576 if (lock_args && lock_args->reclaim == TRUE) { 14577 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14578 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14579 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14580 frc_no_reclaim = 1; 14581 /* clean up before retrying */ 14582 needrecov = 0; 14583 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14584 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14585 &recov_state, op_hint, &did_start_fop, NULL, flk); 14586 goto recov_retry; 14587 } 14588 /* FALLTHROUGH */ 14589 14590 default: 14591 nfs4frlock_results_default(resp, &ep->error); 14592 break; 14593 } 14594 out: 14595 /* 14596 * Process and cleanup from error. Make interrupted unlock 14597 * requests look successful, since they will be handled by the 14598 * client recovery code. 14599 */ 14600 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14601 needrecov, oop, osp, lop, &ep->error, 14602 lock_args, locku_args, did_start_fop, 14603 skip_get_err, cred_otw, cr); 14604 14605 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14606 (cmd == F_SETLK || cmd == F_SETLKW)) 14607 ep->error = 0; 14608 } 14609 14610 /* 14611 * nfs4_safelock: 14612 * 14613 * Return non-zero if the given lock request can be handled without 14614 * violating the constraints on concurrent mapping and locking. 14615 */ 14616 14617 static int 14618 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14619 { 14620 rnode4_t *rp = VTOR4(vp); 14621 struct vattr va; 14622 int error; 14623 14624 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14625 ASSERT(rp->r_mapcnt >= 0); 14626 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14627 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14628 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14629 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14630 14631 if (rp->r_mapcnt == 0) 14632 return (1); /* always safe if not mapped */ 14633 14634 /* 14635 * If the file is already mapped and there are locks, then they 14636 * should be all safe locks. So adding or removing a lock is safe 14637 * as long as the new request is safe (i.e., whole-file, meaning 14638 * length and starting offset are both zero). 14639 */ 14640 14641 if (bfp->l_start != 0 || bfp->l_len != 0) { 14642 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14643 "cannot lock a memory mapped file unless locking the " 14644 "entire file: start %"PRIx64", len %"PRIx64, 14645 bfp->l_start, bfp->l_len)); 14646 return (0); 14647 } 14648 14649 /* mandatory locking and mapping don't mix */ 14650 va.va_mask = AT_MODE; 14651 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14652 if (error != 0) { 14653 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14654 "getattr error %d", error)); 14655 return (0); /* treat errors conservatively */ 14656 } 14657 if (MANDLOCK(vp, va.va_mode)) { 14658 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14659 "cannot mandatory lock and mmap a file")); 14660 return (0); 14661 } 14662 14663 return (1); 14664 } 14665 14666 /* 14667 * nfs4_lockrelease: 14668 * 14669 * Release any locks on the given vnode that are held by the current 14670 * process. Also removes the lock owner (if one exists) from the rnode's 14671 * list. 14672 */ 14673 static int 14674 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14675 { 14676 flock64_t ld; 14677 int ret, error; 14678 rnode4_t *rp; 14679 nfs4_lock_owner_t *lop; 14680 nfs4_recov_state_t recov_state; 14681 mntinfo4_t *mi; 14682 bool_t possible_orphan = FALSE; 14683 bool_t recovonly; 14684 14685 ASSERT((uintptr_t)vp > KERNELBASE); 14686 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14687 14688 rp = VTOR4(vp); 14689 mi = VTOMI4(vp); 14690 14691 /* 14692 * If we have not locked anything then we can 14693 * just return since we have no work to do. 14694 */ 14695 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14696 return (0); 14697 } 14698 14699 /* 14700 * We need to comprehend that another thread may 14701 * kick off recovery and the lock_owner we have stashed 14702 * in lop might be invalid so we should NOT cache it 14703 * locally! 14704 */ 14705 recov_state.rs_flags = 0; 14706 recov_state.rs_num_retry_despite_err = 0; 14707 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14708 &recovonly); 14709 if (error) { 14710 mutex_enter(&rp->r_statelock); 14711 rp->r_flags |= R4LODANGLERS; 14712 mutex_exit(&rp->r_statelock); 14713 return (error); 14714 } 14715 14716 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14717 14718 /* 14719 * Check if the lock owner might have a lock (request was sent but 14720 * no response was received). Also check if there are any remote 14721 * locks on the file. (In theory we shouldn't have to make this 14722 * second check if there's no lock owner, but for now we'll be 14723 * conservative and do it anyway.) If either condition is true, 14724 * send an unlock for the entire file to the server. 14725 * 14726 * Note that no explicit synchronization is needed here. At worst, 14727 * flk_has_remote_locks() will return a false positive, in which case 14728 * the unlock call wastes time but doesn't harm correctness. 14729 */ 14730 14731 if (lop) { 14732 mutex_enter(&lop->lo_lock); 14733 possible_orphan = lop->lo_pending_rqsts; 14734 mutex_exit(&lop->lo_lock); 14735 lock_owner_rele(lop); 14736 } 14737 14738 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14739 14740 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14741 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14742 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14743 (void *)lop)); 14744 14745 if (possible_orphan || flk_has_remote_locks(vp)) { 14746 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14747 ld.l_whence = 0; /* unlock from start of file */ 14748 ld.l_start = 0; 14749 ld.l_len = 0; /* do entire file */ 14750 14751 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14752 cr, NULL); 14753 14754 if (ret != 0) { 14755 /* 14756 * If VOP_FRLOCK fails, make sure we unregister 14757 * local locks before we continue. 14758 */ 14759 struct lm_sysid *lmsid = nfs4_find_sysid(VTOMI4(vp)); 14760 14761 if (lmsid != NULL) { 14762 cleanlocks(vp, curproc->p_pid, 14763 lm_sysidt(lmsid) | LM_SYSID_CLIENT); 14764 lm_rel_sysid(lmsid); 14765 } 14766 14767 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14768 "nfs4_lockrelease: lock release error on vp" 14769 " %p: error %d.\n", (void *)vp, ret)); 14770 } 14771 } 14772 14773 recov_state.rs_flags = 0; 14774 recov_state.rs_num_retry_despite_err = 0; 14775 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14776 &recovonly); 14777 if (error) { 14778 mutex_enter(&rp->r_statelock); 14779 rp->r_flags |= R4LODANGLERS; 14780 mutex_exit(&rp->r_statelock); 14781 return (error); 14782 } 14783 14784 /* 14785 * So, here we're going to need to retrieve the lock-owner 14786 * again (in case recovery has done a switch-a-roo) and 14787 * remove it because we can. 14788 */ 14789 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14790 14791 if (lop) { 14792 nfs4_rnode_remove_lock_owner(rp, lop); 14793 lock_owner_rele(lop); 14794 } 14795 14796 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14797 return (0); 14798 } 14799 14800 /* 14801 * Wait for 'tick_delay' clock ticks. 14802 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14803 * 14804 * The client should retry to acquire the lock faster than the lease period. 14805 * We use roughly half of the lease time to use a similar calculation as it is 14806 * used in nfs4_renew_lease_thread(). 14807 * 14808 * XXX For future improvements, should implement a waiting queue scheme. 14809 */ 14810 static int 14811 nfs4_block_and_wait(clock_t *tick_delay) 14812 { 14813 /* wait tick_delay clock ticks or siginteruptus */ 14814 if (delay_sig(*tick_delay)) { 14815 return (EINTR); 14816 } 14817 14818 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14819 "reissue the lock request: blocked for %ld clock ticks: %ld " 14820 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14821 14822 *tick_delay = MIN(drv_usectohz(nfs4_max_base_wait_time * 1000), 14823 *tick_delay * 1.5); 14824 return (0); 14825 } 14826 14827 void 14828 nfs4_vnops_init(void) 14829 { 14830 } 14831 14832 void 14833 nfs4_vnops_fini(void) 14834 { 14835 } 14836 14837 /* 14838 * Return a reference to the directory (parent) vnode for a given vnode, 14839 * using the saved pathname information and the directory file handle. The 14840 * caller is responsible for disposing of the reference. 14841 * Returns zero or an errno value. 14842 * 14843 * Caller should set need_start_op to FALSE if it is the recovery 14844 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14845 */ 14846 int 14847 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14848 { 14849 svnode_t *svnp; 14850 vnode_t *dvp = NULL; 14851 servinfo4_t *svp; 14852 nfs4_fname_t *mfname; 14853 int error; 14854 14855 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14856 14857 if (vp->v_flag & VROOT) { 14858 nfs4_sharedfh_t *sfh; 14859 nfs_fh4 fh; 14860 mntinfo4_t *mi; 14861 14862 ASSERT(vp->v_type == VREG); 14863 14864 mi = VTOMI4(vp); 14865 svp = mi->mi_curr_serv; 14866 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14867 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14868 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14869 sfh = sfh4_get(&fh, VTOMI4(vp)); 14870 nfs_rw_exit(&svp->sv_lock); 14871 mfname = mi->mi_fname; 14872 fn_hold(mfname); 14873 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14874 sfh4_rele(&sfh); 14875 14876 if (dvp->v_type == VNON) 14877 dvp->v_type = VDIR; 14878 *dvpp = dvp; 14879 return (0); 14880 } 14881 14882 svnp = VTOSV(vp); 14883 14884 if (svnp == NULL) { 14885 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14886 "shadow node is NULL")); 14887 return (EINVAL); 14888 } 14889 14890 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14891 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14892 "shadow node name or dfh val == NULL")); 14893 return (EINVAL); 14894 } 14895 14896 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14897 (int)need_start_op); 14898 if (error != 0) { 14899 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14900 "nfs4_make_dotdot returned %d", error)); 14901 return (error); 14902 } 14903 if (!dvp) { 14904 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14905 "nfs4_make_dotdot returned a NULL dvp")); 14906 return (EIO); 14907 } 14908 if (dvp->v_type == VNON) 14909 dvp->v_type = VDIR; 14910 ASSERT(dvp->v_type == VDIR); 14911 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14912 mutex_enter(&dvp->v_lock); 14913 dvp->v_flag |= V_XATTRDIR; 14914 mutex_exit(&dvp->v_lock); 14915 } 14916 *dvpp = dvp; 14917 return (0); 14918 } 14919 14920 /* 14921 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14922 * length that fnamep can accept, including the trailing null. 14923 * Returns 0 if okay, returns an errno value if there was a problem. 14924 */ 14925 14926 int 14927 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14928 { 14929 char *fn; 14930 int err = 0; 14931 servinfo4_t *svp; 14932 svnode_t *shvp; 14933 14934 /* 14935 * If the file being opened has VROOT set, then this is 14936 * a "file" mount. sv_name will not be interesting, so 14937 * go back to the servinfo4 to get the original mount 14938 * path and strip off all but the final edge. Otherwise 14939 * just return the name from the shadow vnode. 14940 */ 14941 14942 if (vp->v_flag & VROOT) { 14943 14944 svp = VTOMI4(vp)->mi_curr_serv; 14945 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14946 14947 fn = strrchr(svp->sv_path, '/'); 14948 if (fn == NULL) 14949 err = EINVAL; 14950 else 14951 fn++; 14952 } else { 14953 shvp = VTOSV(vp); 14954 fn = fn_name(shvp->sv_name); 14955 } 14956 14957 if (err == 0) 14958 if (strlen(fn) < maxlen) 14959 (void) strcpy(fnamep, fn); 14960 else 14961 err = ENAMETOOLONG; 14962 14963 if (vp->v_flag & VROOT) 14964 nfs_rw_exit(&svp->sv_lock); 14965 else 14966 kmem_free(fn, MAXNAMELEN); 14967 14968 return (err); 14969 } 14970 14971 /* 14972 * Bookkeeping for a close that doesn't need to go over the wire. 14973 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14974 * it is left at 1. 14975 */ 14976 void 14977 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14978 { 14979 rnode4_t *rp; 14980 mntinfo4_t *mi; 14981 14982 mi = VTOMI4(vp); 14983 rp = VTOR4(vp); 14984 14985 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14986 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14987 ASSERT(nfs_zone() == mi->mi_zone); 14988 ASSERT(mutex_owned(&osp->os_sync_lock)); 14989 ASSERT(*have_lockp); 14990 14991 if (!osp->os_valid || 14992 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14993 return; 14994 } 14995 14996 /* 14997 * This removes the reference obtained at OPEN; ie, 14998 * when the open stream structure was created. 14999 * 15000 * We don't have to worry about calling 'open_stream_rele' 15001 * since we our currently holding a reference to this 15002 * open stream which means the count can not go to 0 with 15003 * this decrement. 15004 */ 15005 ASSERT(osp->os_ref_count >= 2); 15006 osp->os_ref_count--; 15007 osp->os_valid = 0; 15008 mutex_exit(&osp->os_sync_lock); 15009 *have_lockp = 0; 15010 15011 nfs4_dec_state_ref_count(mi); 15012 } 15013 15014 /* 15015 * Close all remaining open streams on the rnode. These open streams 15016 * could be here because: 15017 * - The close attempted at either close or delmap failed 15018 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 15019 * - Someone did mknod on a regular file but never opened it 15020 */ 15021 int 15022 nfs4close_all(vnode_t *vp, cred_t *cr) 15023 { 15024 nfs4_open_stream_t *osp; 15025 int error; 15026 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 15027 rnode4_t *rp; 15028 15029 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15030 15031 error = 0; 15032 rp = VTOR4(vp); 15033 15034 /* 15035 * At this point, all we know is that the last time 15036 * someone called vn_rele, the count was 1. Since then, 15037 * the vnode could have been re-activated. We want to 15038 * loop through the open streams and close each one, but 15039 * we have to be careful since once we release the rnode 15040 * hash bucket lock, someone else is free to come in and 15041 * re-activate the rnode and add new open streams. The 15042 * strategy is take the rnode hash bucket lock, verify that 15043 * the count is still 1, grab the open stream off the 15044 * head of the list and mark it invalid, then release the 15045 * rnode hash bucket lock and proceed with that open stream. 15046 * This is ok because nfs4close_one() will acquire the proper 15047 * open/create to close/destroy synchronization for open 15048 * streams, and will ensure that if someone has reopened 15049 * the open stream after we've dropped the hash bucket lock 15050 * then we'll just simply return without destroying the 15051 * open stream. 15052 * Repeat until the list is empty. 15053 */ 15054 15055 for (;;) { 15056 15057 /* make sure vnode hasn't been reactivated */ 15058 rw_enter(&rp->r_hashq->r_lock, RW_READER); 15059 mutex_enter(&vp->v_lock); 15060 if (vp->v_count > 1) { 15061 mutex_exit(&vp->v_lock); 15062 rw_exit(&rp->r_hashq->r_lock); 15063 break; 15064 } 15065 /* 15066 * Grabbing r_os_lock before releasing v_lock prevents 15067 * a window where the rnode/open stream could get 15068 * reactivated (and os_force_close set to 0) before we 15069 * had a chance to set os_force_close to 1. 15070 */ 15071 mutex_enter(&rp->r_os_lock); 15072 mutex_exit(&vp->v_lock); 15073 15074 osp = list_head(&rp->r_open_streams); 15075 if (!osp) { 15076 /* nothing left to CLOSE OTW, so return */ 15077 mutex_exit(&rp->r_os_lock); 15078 rw_exit(&rp->r_hashq->r_lock); 15079 break; 15080 } 15081 15082 mutex_enter(&rp->r_statev4_lock); 15083 /* the file can't still be mem mapped */ 15084 ASSERT(rp->r_mapcnt == 0); 15085 if (rp->created_v4) 15086 rp->created_v4 = 0; 15087 mutex_exit(&rp->r_statev4_lock); 15088 15089 /* 15090 * Grab a ref on this open stream; nfs4close_one 15091 * will mark it as invalid 15092 */ 15093 mutex_enter(&osp->os_sync_lock); 15094 osp->os_ref_count++; 15095 osp->os_force_close = 1; 15096 mutex_exit(&osp->os_sync_lock); 15097 mutex_exit(&rp->r_os_lock); 15098 rw_exit(&rp->r_hashq->r_lock); 15099 15100 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 15101 15102 /* Update error if it isn't already non-zero */ 15103 if (error == 0) { 15104 if (e.error) 15105 error = e.error; 15106 else if (e.stat) 15107 error = geterrno4(e.stat); 15108 } 15109 15110 #ifdef DEBUG 15111 nfs4close_all_cnt++; 15112 #endif 15113 /* Release the ref on osp acquired above. */ 15114 open_stream_rele(osp, rp); 15115 15116 /* Proceed to the next open stream, if any */ 15117 } 15118 return (error); 15119 } 15120 15121 /* 15122 * nfs4close_one - close one open stream for a file if needed. 15123 * 15124 * "close_type" indicates which close path this is: 15125 * CLOSE_NORM: close initiated via VOP_CLOSE. 15126 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 15127 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 15128 * the close and release of client state for this open stream 15129 * (unless someone else has the open stream open). 15130 * CLOSE_RESEND: indicates the request is a replay of an earlier request 15131 * (e.g., due to abort because of a signal). 15132 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 15133 * 15134 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 15135 * recovery. Instead, the caller is expected to deal with retries. 15136 * 15137 * The caller can either pass in the osp ('provided_osp') or not. 15138 * 15139 * 'access_bits' represents the access we are closing/downgrading. 15140 * 15141 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 15142 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 15143 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 15144 * 15145 * Errors are returned via the nfs4_error_t. 15146 */ 15147 void 15148 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 15149 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 15150 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 15151 uint_t mmap_flags) 15152 { 15153 nfs4_open_owner_t *oop; 15154 nfs4_open_stream_t *osp = NULL; 15155 int retry = 0; 15156 int num_retries = NFS4_NUM_RECOV_RETRIES; 15157 rnode4_t *rp; 15158 mntinfo4_t *mi; 15159 nfs4_recov_state_t recov_state; 15160 cred_t *cred_otw = NULL; 15161 bool_t recovonly = FALSE; 15162 int isrecov; 15163 int force_close; 15164 int close_failed = 0; 15165 int did_dec_count = 0; 15166 int did_start_op = 0; 15167 int did_force_recovlock = 0; 15168 int did_start_seqid_sync = 0; 15169 int have_sync_lock = 0; 15170 15171 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15172 15173 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 15174 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15175 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15176 len, maxprot, mmap_flags, access_bits)); 15177 15178 nfs4_error_zinit(ep); 15179 rp = VTOR4(vp); 15180 mi = VTOMI4(vp); 15181 isrecov = (close_type == CLOSE_RESEND || 15182 close_type == CLOSE_AFTER_RESEND); 15183 15184 /* 15185 * First get the open owner. 15186 */ 15187 if (!provided_osp) { 15188 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15189 } else { 15190 oop = provided_osp->os_open_owner; 15191 ASSERT(oop != NULL); 15192 open_owner_hold(oop); 15193 } 15194 15195 if (!oop) { 15196 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15197 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15198 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15199 (void *)provided_osp, close_type)); 15200 ep->error = EIO; 15201 goto out; 15202 } 15203 15204 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15205 recov_retry: 15206 osp = NULL; 15207 close_failed = 0; 15208 force_close = (close_type == CLOSE_FORCE); 15209 retry = 0; 15210 did_start_op = 0; 15211 did_force_recovlock = 0; 15212 did_start_seqid_sync = 0; 15213 have_sync_lock = 0; 15214 recovonly = FALSE; 15215 recov_state.rs_flags = 0; 15216 recov_state.rs_num_retry_despite_err = 0; 15217 15218 /* 15219 * Second synchronize with recovery. 15220 */ 15221 if (!isrecov) { 15222 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15223 &recov_state, &recovonly); 15224 if (!ep->error) { 15225 did_start_op = 1; 15226 } else { 15227 close_failed = 1; 15228 /* 15229 * If we couldn't get start_fop, but have to 15230 * cleanup state, then at least acquire the 15231 * mi_recovlock so we can synchronize with 15232 * recovery. 15233 */ 15234 if (close_type == CLOSE_FORCE) { 15235 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15236 RW_READER, FALSE); 15237 did_force_recovlock = 1; 15238 } else 15239 goto out; 15240 } 15241 } 15242 15243 /* 15244 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15245 * set 'recovonly' to TRUE since most likely this is due to 15246 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15247 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15248 * to retry, causing us to loop until recovery finishes. Plus we 15249 * don't need protection over the open seqid since we're not going 15250 * OTW, hence don't need to use the seqid. 15251 */ 15252 if (recovonly == FALSE) { 15253 /* need to grab the open owner sync before 'os_sync_lock' */ 15254 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15255 if (ep->error == EAGAIN) { 15256 ASSERT(!isrecov); 15257 if (did_start_op) 15258 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15259 &recov_state, TRUE); 15260 if (did_force_recovlock) 15261 nfs_rw_exit(&mi->mi_recovlock); 15262 goto recov_retry; 15263 } 15264 did_start_seqid_sync = 1; 15265 } 15266 15267 /* 15268 * Third get an open stream and acquire 'os_sync_lock' to 15269 * sychronize the opening/creating of an open stream with the 15270 * closing/destroying of an open stream. 15271 */ 15272 if (!provided_osp) { 15273 /* returns with 'os_sync_lock' held */ 15274 osp = find_open_stream(oop, rp); 15275 if (!osp) { 15276 ep->error = EIO; 15277 goto out; 15278 } 15279 } else { 15280 osp = provided_osp; 15281 open_stream_hold(osp); 15282 mutex_enter(&osp->os_sync_lock); 15283 } 15284 have_sync_lock = 1; 15285 15286 ASSERT(oop == osp->os_open_owner); 15287 15288 /* 15289 * Fourth, do any special pre-OTW CLOSE processing 15290 * based on the specific close type. 15291 */ 15292 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15293 !did_dec_count) { 15294 ASSERT(osp->os_open_ref_count > 0); 15295 osp->os_open_ref_count--; 15296 did_dec_count = 1; 15297 if (osp->os_open_ref_count == 0) 15298 osp->os_final_close = 1; 15299 } 15300 15301 if (close_type == CLOSE_FORCE) { 15302 /* see if somebody reopened the open stream. */ 15303 if (!osp->os_force_close) { 15304 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15305 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15306 "was reopened, vp %p", (void *)osp, (void *)vp)); 15307 ep->error = 0; 15308 ep->stat = NFS4_OK; 15309 goto out; 15310 } 15311 15312 if (!osp->os_final_close && !did_dec_count) { 15313 osp->os_open_ref_count--; 15314 did_dec_count = 1; 15315 } 15316 15317 /* 15318 * We can't depend on os_open_ref_count being 0 due to the 15319 * way executables are opened (VN_RELE to match a VOP_OPEN). 15320 */ 15321 #ifdef NOTYET 15322 ASSERT(osp->os_open_ref_count == 0); 15323 #endif 15324 if (osp->os_open_ref_count != 0) { 15325 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15326 "nfs4close_one: should panic here on an " 15327 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15328 "since this is probably the exec problem.")); 15329 15330 osp->os_open_ref_count = 0; 15331 } 15332 15333 /* 15334 * There is the possibility that nfs4close_one() 15335 * for close_type == CLOSE_DELMAP couldn't find the 15336 * open stream, thus couldn't decrement its os_mapcnt; 15337 * therefore we can't use this ASSERT yet. 15338 */ 15339 #ifdef NOTYET 15340 ASSERT(osp->os_mapcnt == 0); 15341 #endif 15342 osp->os_mapcnt = 0; 15343 } 15344 15345 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15346 ASSERT(osp->os_mapcnt >= btopr(len)); 15347 15348 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15349 osp->os_mmap_write -= btopr(len); 15350 if (maxprot & PROT_READ) 15351 osp->os_mmap_read -= btopr(len); 15352 if (maxprot & PROT_EXEC) 15353 osp->os_mmap_read -= btopr(len); 15354 /* mirror the PROT_NONE check in nfs4_addmap() */ 15355 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15356 !(maxprot & PROT_EXEC)) 15357 osp->os_mmap_read -= btopr(len); 15358 osp->os_mapcnt -= btopr(len); 15359 did_dec_count = 1; 15360 } 15361 15362 if (recovonly) { 15363 nfs4_lost_rqst_t lost_rqst; 15364 15365 /* request should not already be in recovery queue */ 15366 ASSERT(lrp == NULL); 15367 nfs4_error_init(ep, EINTR); 15368 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15369 osp, cred_otw, vp); 15370 mutex_exit(&osp->os_sync_lock); 15371 have_sync_lock = 0; 15372 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15373 lost_rqst.lr_op == OP_CLOSE ? 15374 &lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL); 15375 close_failed = 1; 15376 force_close = 0; 15377 goto close_cleanup; 15378 } 15379 15380 /* 15381 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15382 * we stopped operating on the open owner's <old oo_name, old seqid> 15383 * space, which means we stopped operating on the open stream 15384 * too. So don't go OTW (as the seqid is likely bad, and the 15385 * stateid could be stale, potentially triggering a false 15386 * setclientid), and just clean up the client's internal state. 15387 */ 15388 if (osp->os_orig_oo_name != oop->oo_name) { 15389 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15390 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15391 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15392 "oo_name %" PRIx64")", 15393 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15394 oop->oo_name)); 15395 close_failed = 1; 15396 } 15397 15398 /* If the file failed recovery, just quit. */ 15399 mutex_enter(&rp->r_statelock); 15400 if (rp->r_flags & R4RECOVERR) { 15401 close_failed = 1; 15402 } 15403 mutex_exit(&rp->r_statelock); 15404 15405 /* 15406 * If the force close path failed to obtain start_fop 15407 * then skip the OTW close and just remove the state. 15408 */ 15409 if (close_failed) 15410 goto close_cleanup; 15411 15412 /* 15413 * Fifth, check to see if there are still mapped pages or other 15414 * opens using this open stream. If there are then we can't 15415 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15416 */ 15417 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15418 nfs4_lost_rqst_t new_lost_rqst; 15419 bool_t needrecov = FALSE; 15420 cred_t *odg_cred_otw = NULL; 15421 seqid4 open_dg_seqid = 0; 15422 15423 if (osp->os_delegation) { 15424 /* 15425 * If this open stream was never OPENed OTW then we 15426 * surely can't DOWNGRADE it (especially since the 15427 * osp->open_stateid is really a delegation stateid 15428 * when os_delegation is 1). 15429 */ 15430 if (access_bits & FREAD) 15431 osp->os_share_acc_read--; 15432 if (access_bits & FWRITE) 15433 osp->os_share_acc_write--; 15434 osp->os_share_deny_none--; 15435 nfs4_error_zinit(ep); 15436 goto out; 15437 } 15438 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15439 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15440 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15441 if (needrecov && !isrecov) { 15442 bool_t abort; 15443 nfs4_bseqid_entry_t *bsep = NULL; 15444 15445 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15446 bsep = nfs4_create_bseqid_entry(oop, NULL, 15447 vp, 0, 15448 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15449 open_dg_seqid); 15450 15451 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15452 oop, osp, odg_cred_otw, vp, access_bits, 0); 15453 mutex_exit(&osp->os_sync_lock); 15454 have_sync_lock = 0; 15455 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15456 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15457 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15458 bsep, NULL, NULL); 15459 if (odg_cred_otw) 15460 crfree(odg_cred_otw); 15461 if (bsep) 15462 kmem_free(bsep, sizeof (*bsep)); 15463 15464 if (abort == TRUE) 15465 goto out; 15466 15467 if (did_start_seqid_sync) { 15468 nfs4_end_open_seqid_sync(oop); 15469 did_start_seqid_sync = 0; 15470 } 15471 open_stream_rele(osp, rp); 15472 15473 if (did_start_op) 15474 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15475 &recov_state, FALSE); 15476 if (did_force_recovlock) 15477 nfs_rw_exit(&mi->mi_recovlock); 15478 15479 goto recov_retry; 15480 } else { 15481 if (odg_cred_otw) 15482 crfree(odg_cred_otw); 15483 } 15484 goto out; 15485 } 15486 15487 /* 15488 * If this open stream was created as the results of an open 15489 * while holding a delegation, then just release it; no need 15490 * to do an OTW close. Otherwise do a "normal" OTW close. 15491 */ 15492 if (osp->os_delegation) { 15493 nfs4close_notw(vp, osp, &have_sync_lock); 15494 nfs4_error_zinit(ep); 15495 goto out; 15496 } 15497 15498 /* 15499 * If this stream is not valid, we're done. 15500 */ 15501 if (!osp->os_valid) { 15502 nfs4_error_zinit(ep); 15503 goto out; 15504 } 15505 15506 /* 15507 * Last open or mmap ref has vanished, need to do an OTW close. 15508 * First check to see if a close is still necessary. 15509 */ 15510 if (osp->os_failed_reopen) { 15511 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15512 "don't close OTW osp %p since reopen failed.", 15513 (void *)osp)); 15514 /* 15515 * Reopen of the open stream failed, hence the 15516 * stateid of the open stream is invalid/stale, and 15517 * sending this OTW would incorrectly cause another 15518 * round of recovery. In this case, we need to set 15519 * the 'os_valid' bit to 0 so another thread doesn't 15520 * come in and re-open this open stream before 15521 * this "closing" thread cleans up state (decrementing 15522 * the nfs4_server_t's state_ref_count and decrementing 15523 * the os_ref_count). 15524 */ 15525 osp->os_valid = 0; 15526 /* 15527 * This removes the reference obtained at OPEN; ie, 15528 * when the open stream structure was created. 15529 * 15530 * We don't have to worry about calling 'open_stream_rele' 15531 * since we our currently holding a reference to this 15532 * open stream which means the count can not go to 0 with 15533 * this decrement. 15534 */ 15535 ASSERT(osp->os_ref_count >= 2); 15536 osp->os_ref_count--; 15537 nfs4_error_zinit(ep); 15538 close_failed = 0; 15539 goto close_cleanup; 15540 } 15541 15542 ASSERT(osp->os_ref_count > 1); 15543 15544 /* 15545 * Sixth, try the CLOSE OTW. 15546 */ 15547 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15548 close_type, ep, &have_sync_lock); 15549 15550 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15551 /* 15552 * Let the recovery thread be responsible for 15553 * removing the state for CLOSE. 15554 */ 15555 close_failed = 1; 15556 force_close = 0; 15557 retry = 0; 15558 } 15559 15560 /* See if we need to retry with a different cred */ 15561 if ((ep->error == EACCES || 15562 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15563 cred_otw != cr) { 15564 crfree(cred_otw); 15565 cred_otw = cr; 15566 crhold(cred_otw); 15567 retry = 1; 15568 } 15569 15570 if (ep->error || ep->stat) 15571 close_failed = 1; 15572 15573 if (retry && !isrecov && num_retries-- > 0) { 15574 if (have_sync_lock) { 15575 mutex_exit(&osp->os_sync_lock); 15576 have_sync_lock = 0; 15577 } 15578 if (did_start_seqid_sync) { 15579 nfs4_end_open_seqid_sync(oop); 15580 did_start_seqid_sync = 0; 15581 } 15582 open_stream_rele(osp, rp); 15583 15584 if (did_start_op) 15585 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15586 &recov_state, FALSE); 15587 if (did_force_recovlock) 15588 nfs_rw_exit(&mi->mi_recovlock); 15589 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15590 "nfs4close_one: need to retry the close " 15591 "operation")); 15592 goto recov_retry; 15593 } 15594 close_cleanup: 15595 /* 15596 * Seventh and lastly, process our results. 15597 */ 15598 if (close_failed && force_close) { 15599 /* 15600 * It's ok to drop and regrab the 'os_sync_lock' since 15601 * nfs4close_notw() will recheck to make sure the 15602 * "close"/removal of state should happen. 15603 */ 15604 if (!have_sync_lock) { 15605 mutex_enter(&osp->os_sync_lock); 15606 have_sync_lock = 1; 15607 } 15608 /* 15609 * This is last call, remove the ref on the open 15610 * stream created by open and clean everything up. 15611 */ 15612 osp->os_pending_close = 0; 15613 nfs4close_notw(vp, osp, &have_sync_lock); 15614 nfs4_error_zinit(ep); 15615 } 15616 15617 if (!close_failed) { 15618 if (have_sync_lock) { 15619 osp->os_pending_close = 0; 15620 mutex_exit(&osp->os_sync_lock); 15621 have_sync_lock = 0; 15622 } else { 15623 mutex_enter(&osp->os_sync_lock); 15624 osp->os_pending_close = 0; 15625 mutex_exit(&osp->os_sync_lock); 15626 } 15627 if (did_start_op && recov_state.rs_sp != NULL) { 15628 mutex_enter(&recov_state.rs_sp->s_lock); 15629 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15630 mutex_exit(&recov_state.rs_sp->s_lock); 15631 } else { 15632 nfs4_dec_state_ref_count(mi); 15633 } 15634 nfs4_error_zinit(ep); 15635 } 15636 15637 out: 15638 if (have_sync_lock) 15639 mutex_exit(&osp->os_sync_lock); 15640 if (did_start_op) 15641 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15642 recovonly ? TRUE : FALSE); 15643 if (did_force_recovlock) 15644 nfs_rw_exit(&mi->mi_recovlock); 15645 if (cred_otw) 15646 crfree(cred_otw); 15647 if (osp) 15648 open_stream_rele(osp, rp); 15649 if (oop) { 15650 if (did_start_seqid_sync) 15651 nfs4_end_open_seqid_sync(oop); 15652 open_owner_rele(oop); 15653 } 15654 } 15655 15656 /* 15657 * Convert information returned by the server in the LOCK4denied 15658 * structure to the form required by fcntl. 15659 */ 15660 static void 15661 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15662 { 15663 nfs4_lo_name_t *lo; 15664 15665 #ifdef DEBUG 15666 if (denied_to_flk_debug) { 15667 lockt_denied_debug = lockt_denied; 15668 debug_enter("lockt_denied"); 15669 } 15670 #endif 15671 15672 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15673 flk->l_whence = 0; /* aka SEEK_SET */ 15674 flk->l_start = lockt_denied->offset; 15675 flk->l_len = lockt_denied->length; 15676 15677 /* 15678 * If the blocking clientid matches our client id, then we can 15679 * interpret the lockowner (since we built it). If not, then 15680 * fabricate a sysid and pid. Note that the l_sysid field 15681 * in *flk already has the local sysid. 15682 */ 15683 15684 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15685 15686 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15687 lo = (nfs4_lo_name_t *) 15688 lockt_denied->owner.owner_val; 15689 15690 flk->l_pid = lo->ln_pid; 15691 } else { 15692 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15693 "denied_to_flk: bad lock owner length\n")); 15694 15695 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15696 } 15697 } else { 15698 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15699 "denied_to_flk: foreign clientid\n")); 15700 15701 /* 15702 * Construct a new sysid which should be different from 15703 * sysids of other systems. 15704 */ 15705 15706 flk->l_sysid++; 15707 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15708 } 15709 } 15710 15711 static pid_t 15712 lo_to_pid(lock_owner4 *lop) 15713 { 15714 pid_t pid = 0; 15715 uchar_t *cp; 15716 int i; 15717 15718 cp = (uchar_t *)&lop->clientid; 15719 15720 for (i = 0; i < sizeof (lop->clientid); i++) 15721 pid += (pid_t)*cp++; 15722 15723 cp = (uchar_t *)lop->owner_val; 15724 15725 for (i = 0; i < lop->owner_len; i++) 15726 pid += (pid_t)*cp++; 15727 15728 return (pid); 15729 } 15730 15731 /* 15732 * Given a lock pointer, returns the length of that lock. 15733 * "end" is the last locked offset the "l_len" covers from 15734 * the start of the lock. 15735 */ 15736 static off64_t 15737 lock_to_end(flock64_t *lock) 15738 { 15739 off64_t lock_end; 15740 15741 if (lock->l_len == 0) 15742 lock_end = (off64_t)MAXEND; 15743 else 15744 lock_end = lock->l_start + lock->l_len - 1; 15745 15746 return (lock_end); 15747 } 15748 15749 /* 15750 * Given the end of a lock, it will return you the length "l_len" for that lock. 15751 */ 15752 static off64_t 15753 end_to_len(off64_t start, off64_t end) 15754 { 15755 off64_t lock_len; 15756 15757 ASSERT(end >= start); 15758 if (end == MAXEND) 15759 lock_len = 0; 15760 else 15761 lock_len = end - start + 1; 15762 15763 return (lock_len); 15764 } 15765 15766 /* 15767 * On given end for a lock it determines if it is the last locked offset 15768 * or not, if so keeps it as is, else adds one to return the length for 15769 * valid start. 15770 */ 15771 static off64_t 15772 start_check(off64_t x) 15773 { 15774 if (x == MAXEND) 15775 return (x); 15776 else 15777 return (x + 1); 15778 } 15779 15780 /* 15781 * See if these two locks overlap, and if so return 1; 15782 * otherwise, return 0. 15783 */ 15784 static int 15785 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15786 { 15787 off64_t llfp_end, curfp_end; 15788 15789 llfp_end = lock_to_end(llfp); 15790 curfp_end = lock_to_end(curfp); 15791 15792 if (((llfp_end >= curfp->l_start) && 15793 (llfp->l_start <= curfp->l_start)) || 15794 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15795 return (1); 15796 return (0); 15797 } 15798 15799 /* 15800 * Determine what the intersecting lock region is, and add that to the 15801 * 'nl_llpp' locklist in increasing order (by l_start). 15802 */ 15803 static void 15804 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15805 locklist_t **nl_llpp, vnode_t *vp) 15806 { 15807 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15808 off64_t lost_flp_end, local_flp_end, len, start; 15809 15810 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15811 15812 if (!locks_intersect(lost_flp, local_flp)) 15813 return; 15814 15815 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15816 "locks intersect")); 15817 15818 lost_flp_end = lock_to_end(lost_flp); 15819 local_flp_end = lock_to_end(local_flp); 15820 15821 /* Find the starting point of the intersecting region */ 15822 if (local_flp->l_start > lost_flp->l_start) 15823 start = local_flp->l_start; 15824 else 15825 start = lost_flp->l_start; 15826 15827 /* Find the lenght of the intersecting region */ 15828 if (lost_flp_end < local_flp_end) 15829 len = end_to_len(start, lost_flp_end); 15830 else 15831 len = end_to_len(start, local_flp_end); 15832 15833 /* 15834 * Prepare the flock structure for the intersection found and insert 15835 * it into the new list in increasing l_start order. This list contains 15836 * intersections of locks registered by the client with the local host 15837 * and the lost lock. 15838 * The lock type of this lock is the same as that of the local_flp. 15839 */ 15840 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15841 intersect_llp->ll_flock.l_start = start; 15842 intersect_llp->ll_flock.l_len = len; 15843 intersect_llp->ll_flock.l_type = local_flp->l_type; 15844 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15845 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15846 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15847 intersect_llp->ll_vp = vp; 15848 15849 tmp_fllp = *nl_llpp; 15850 cur_fllp = NULL; 15851 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15852 intersect_llp->ll_flock.l_start) { 15853 cur_fllp = tmp_fllp; 15854 tmp_fllp = tmp_fllp->ll_next; 15855 } 15856 if (cur_fllp == NULL) { 15857 /* first on the list */ 15858 intersect_llp->ll_next = *nl_llpp; 15859 *nl_llpp = intersect_llp; 15860 } else { 15861 intersect_llp->ll_next = cur_fllp->ll_next; 15862 cur_fllp->ll_next = intersect_llp; 15863 } 15864 15865 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15866 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15867 intersect_llp->ll_flock.l_start, 15868 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15869 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15870 } 15871 15872 /* 15873 * Our local locking current state is potentially different than 15874 * what the NFSv4 server thinks we have due to a lost lock that was 15875 * resent and then received. We need to reset our "NFSv4" locking 15876 * state to match the current local locking state for this pid since 15877 * that is what the user/application sees as what the world is. 15878 * 15879 * We cannot afford to drop the open/lock seqid sync since then we can 15880 * get confused about what the current local locking state "is" versus 15881 * "was". 15882 * 15883 * If we are unable to fix up the locks, we send SIGLOST to the affected 15884 * process. This is not done if the filesystem has been forcibly 15885 * unmounted, in case the process has already exited and a new process 15886 * exists with the same pid. 15887 */ 15888 static void 15889 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15890 nfs4_lock_owner_t *lop) 15891 { 15892 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15893 mntinfo4_t *mi = VTOMI4(vp); 15894 const int cmd = F_SETLK; 15895 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15896 flock64_t ul_fl; 15897 15898 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15899 "nfs4_reinstitute_local_lock_state")); 15900 15901 /* 15902 * Find active locks for this vp from the local locking code. 15903 * Scan through this list and find out the locks that intersect with 15904 * the lost lock. Once we find the lock that intersects, add the 15905 * intersection area as a new lock to a new list "ri_llp". The lock 15906 * type of the intersection region lock added to ri_llp is the same 15907 * as that found in the active lock list, "list". The intersecting 15908 * region locks are added to ri_llp in increasing l_start order. 15909 */ 15910 ASSERT(nfs_zone() == mi->mi_zone); 15911 15912 locks = flk_active_locks_for_vp(vp); 15913 ri_llp = NULL; 15914 15915 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15916 ASSERT(llp->ll_vp == vp); 15917 /* 15918 * Pick locks that belong to this pid/lockowner 15919 */ 15920 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15921 continue; 15922 15923 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15924 } 15925 15926 /* 15927 * Now we have the list of intersections with the lost lock. These are 15928 * the locks that were/are active before the server replied to the 15929 * last/lost lock. Issue these locks to the server here. Playing these 15930 * locks to the server will re-establish aur current local locking state 15931 * with the v4 server. 15932 * If we get an error, send SIGLOST to the application for that lock. 15933 */ 15934 15935 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15936 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15937 "nfs4_reinstitute_local_lock_state: need to issue " 15938 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15939 llp->ll_flock.l_start, 15940 llp->ll_flock.l_start + llp->ll_flock.l_len, 15941 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15942 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15943 /* 15944 * No need to relock what we already have 15945 */ 15946 if (llp->ll_flock.l_type == lost_flp->l_type) 15947 continue; 15948 15949 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15950 } 15951 15952 /* 15953 * Now keeping the start of the lost lock as our reference parse the 15954 * newly created ri_llp locklist to find the ranges that we have locked 15955 * with the v4 server but not in the current local locking. We need 15956 * to unlock these ranges. 15957 * These ranges can also be reffered to as those ranges, where the lost 15958 * lock does not overlap with the locks in the ri_llp but are locked 15959 * since the server replied to the lost lock. 15960 */ 15961 cur_start = lost_flp->l_start; 15962 lost_flp_end = lock_to_end(lost_flp); 15963 15964 ul_fl.l_type = F_UNLCK; 15965 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15966 ul_fl.l_sysid = lost_flp->l_sysid; 15967 ul_fl.l_pid = lost_flp->l_pid; 15968 15969 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15970 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15971 15972 if (llp->ll_flock.l_start <= cur_start) { 15973 cur_start = start_check(llp_ll_flock_end); 15974 continue; 15975 } 15976 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15977 "nfs4_reinstitute_local_lock_state: " 15978 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15979 cur_start, llp->ll_flock.l_start)); 15980 15981 ul_fl.l_start = cur_start; 15982 ul_fl.l_len = end_to_len(cur_start, 15983 (llp->ll_flock.l_start - 1)); 15984 15985 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15986 cur_start = start_check(llp_ll_flock_end); 15987 } 15988 15989 /* 15990 * In the case where the lost lock ends after all intersecting locks, 15991 * unlock the last part of the lost lock range. 15992 */ 15993 if (cur_start != start_check(lost_flp_end)) { 15994 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15995 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15996 "lost lock region [%"PRIx64" - %"PRIx64"]", 15997 cur_start, lost_flp->l_start + lost_flp->l_len)); 15998 15999 ul_fl.l_start = cur_start; 16000 /* 16001 * Is it an to-EOF lock? if so unlock till the end 16002 */ 16003 if (lost_flp->l_len == 0) 16004 ul_fl.l_len = 0; 16005 else 16006 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 16007 16008 push_reinstate(vp, cmd, &ul_fl, cr, lop); 16009 } 16010 16011 if (locks != NULL) 16012 flk_free_locklist(locks); 16013 16014 /* Free up our newly created locklist */ 16015 for (llp = ri_llp; llp != NULL; ) { 16016 tmp_llp = llp->ll_next; 16017 kmem_free(llp, sizeof (locklist_t)); 16018 llp = tmp_llp; 16019 } 16020 16021 /* 16022 * Now return back to the original calling nfs4frlock() 16023 * and let us naturally drop our seqid syncs. 16024 */ 16025 } 16026 16027 /* 16028 * Create a lost state record for the given lock reinstantiation request 16029 * and push it onto the lost state queue. 16030 */ 16031 static void 16032 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 16033 nfs4_lock_owner_t *lop) 16034 { 16035 nfs4_lost_rqst_t req; 16036 nfs_lock_type4 locktype; 16037 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 16038 16039 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 16040 16041 locktype = flk_to_locktype(cmd, flk->l_type); 16042 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 16043 NULL, NULL, lop, flk, &req, cr, vp); 16044 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 16045 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 16046 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 16047 NULL, NULL, NULL); 16048 } 16049