xref: /titanic_50/usr/src/uts/common/fs/nfs/nfs4_vfsops.c (revision 985c053e83ff1a26a6ed980f86c6d19f8094d30c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  *	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
28  *	All Rights Reserved
29  */
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/systm.h>
36 #include <sys/cred.h>
37 #include <sys/vfs.h>
38 #include <sys/vnode.h>
39 #include <sys/pathname.h>
40 #include <sys/sysmacros.h>
41 #include <sys/kmem.h>
42 #include <sys/mkdev.h>
43 #include <sys/mount.h>
44 #include <sys/statvfs.h>
45 #include <sys/errno.h>
46 #include <sys/debug.h>
47 #include <sys/cmn_err.h>
48 #include <sys/utsname.h>
49 #include <sys/bootconf.h>
50 #include <sys/modctl.h>
51 #include <sys/acl.h>
52 #include <sys/flock.h>
53 #include <sys/time.h>
54 #include <sys/disp.h>
55 #include <sys/policy.h>
56 #include <sys/socket.h>
57 #include <sys/netconfig.h>
58 #include <sys/dnlc.h>
59 #include <sys/list.h>
60 #include <sys/mntent.h>
61 #include <sys/tsol/label.h>
62 
63 #include <rpc/types.h>
64 #include <rpc/auth.h>
65 #include <rpc/rpcsec_gss.h>
66 #include <rpc/clnt.h>
67 
68 #include <nfs/nfs.h>
69 #include <nfs/nfs_clnt.h>
70 #include <nfs/mount.h>
71 #include <nfs/nfs_acl.h>
72 
73 #include <fs/fs_subr.h>
74 
75 #include <nfs/nfs4.h>
76 #include <nfs/rnode4.h>
77 #include <nfs/nfs4_clnt.h>
78 #include <sys/fs/autofs.h>
79 
80 
81 /*
82  * Arguments passed to thread to free data structures from forced unmount.
83  */
84 
85 typedef struct {
86 	vfs_t *fm_vfsp;
87 	cred_t *fm_cr;
88 } freemountargs_t;
89 
90 static void	async_free_mount(vfs_t *, cred_t *);
91 static void	nfs4_free_mount(vfs_t *, cred_t *);
92 static void	nfs4_free_mount_thread(freemountargs_t *);
93 static int nfs4_chkdup_servinfo4(servinfo4_t *, servinfo4_t *);
94 
95 /*
96  * From rpcsec module (common/rpcsec).
97  */
98 extern int sec_clnt_loadinfo(struct sec_data *, struct sec_data **, model_t);
99 extern void sec_clnt_freeinfo(struct sec_data *);
100 
101 /*
102  * The order and contents of this structure must be kept in sync with that of
103  * rfsreqcnt_v4_tmpl in nfs_stats.c
104  */
105 static char *rfsnames_v4[] = {
106 	"null", "compound", "reserved",	"access", "close", "commit", "create",
107 	"delegpurge", "delegreturn", "getattr",	"getfh", "link", "lock",
108 	"lockt", "locku", "lookup", "lookupp", "nverify", "open", "openattr",
109 	"open_confirm",	"open_downgrade", "putfh", "putpubfh", "putrootfh",
110 	"read", "readdir", "readlink", "remove", "rename", "renew",
111 	"restorefh", "savefh", "secinfo", "setattr", "setclientid",
112 	"setclientid_confirm", "verify", "write"
113 };
114 
115 /*
116  * nfs4_max_mount_retry is the number of times the client will redrive
117  * a mount compound before giving up and returning failure.  The intent
118  * is to redrive mount compounds which fail NFS4ERR_STALE so that
119  * if a component of the server path being mounted goes stale, it can
120  * "recover" by redriving the mount compund (LOOKUP ops).  This recovery
121  * code is needed outside of the recovery framework because mount is a
122  * special case.  The client doesn't create vnodes/rnodes for components
123  * of the server path being mounted.  The recovery code recovers real
124  * client objects, not STALE FHs which map to components of the server
125  * path being mounted.
126  *
127  * We could just fail the mount on the first time, but that would
128  * instantly trigger failover (from nfs4_mount), and the client should
129  * try to re-lookup the STALE FH before doing failover.  The easiest
130  * way to "re-lookup" is to simply redrive the mount compound.
131  */
132 static int nfs4_max_mount_retry = 2;
133 
134 /*
135  * nfs4 vfs operations.
136  */
137 static int	nfs4_mount(vfs_t *, vnode_t *, struct mounta *, cred_t *);
138 static int	nfs4_unmount(vfs_t *, int, cred_t *);
139 static int	nfs4_root(vfs_t *, vnode_t **);
140 static int	nfs4_statvfs(vfs_t *, struct statvfs64 *);
141 static int	nfs4_sync(vfs_t *, short, cred_t *);
142 static int	nfs4_vget(vfs_t *, vnode_t **, fid_t *);
143 static int	nfs4_mountroot(vfs_t *, whymountroot_t);
144 static void	nfs4_freevfs(vfs_t *);
145 
146 static int	nfs4rootvp(vnode_t **, vfs_t *, struct servinfo4 *,
147 		    int, cred_t *, zone_t *);
148 
149 vfsops_t	*nfs4_vfsops;
150 
151 int nfs4_vfsinit(void);
152 void nfs4_vfsfini(void);
153 static void nfs4setclientid_init(void);
154 static void nfs4setclientid_fini(void);
155 static void nfs4setclientid_otw(mntinfo4_t *, servinfo4_t *,  cred_t *,
156 		struct nfs4_server *, nfs4_error_t *, int *);
157 static void	destroy_nfs4_server(nfs4_server_t *);
158 static void	remove_mi(nfs4_server_t *, mntinfo4_t *);
159 
160 /*
161  * Initialize the vfs structure
162  */
163 
164 static int nfs4fstyp;
165 
166 
167 /*
168  * Debug variable to check for rdma based
169  * transport startup and cleanup. Controlled
170  * through /etc/system. Off by default.
171  */
172 extern int rdma_debug;
173 
174 int
175 nfs4init(int fstyp, char *name)
176 {
177 	static const fs_operation_def_t nfs4_vfsops_template[] = {
178 		VFSNAME_MOUNT, nfs4_mount,
179 		VFSNAME_UNMOUNT, nfs4_unmount,
180 		VFSNAME_ROOT, nfs4_root,
181 		VFSNAME_STATVFS, nfs4_statvfs,
182 		VFSNAME_SYNC, (fs_generic_func_p) nfs4_sync,
183 		VFSNAME_VGET, nfs4_vget,
184 		VFSNAME_MOUNTROOT, nfs4_mountroot,
185 		VFSNAME_FREEVFS, (fs_generic_func_p)nfs4_freevfs,
186 		NULL, NULL
187 	};
188 	int error;
189 
190 	error = vfs_setfsops(fstyp, nfs4_vfsops_template, &nfs4_vfsops);
191 	if (error != 0) {
192 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
193 		    "nfs4init: bad vfs ops template");
194 		return (error);
195 	}
196 
197 	error = vn_make_ops(name, nfs4_vnodeops_template, &nfs4_vnodeops);
198 	if (error != 0) {
199 		(void) vfs_freevfsops_by_type(fstyp);
200 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
201 		    "nfs4init: bad vnode ops template");
202 		return (error);
203 	}
204 
205 	nfs4fstyp = fstyp;
206 
207 	(void) nfs4_vfsinit();
208 
209 	(void) nfs4_init_dot_entries();
210 
211 	return (0);
212 }
213 
214 void
215 nfs4fini(void)
216 {
217 	(void) nfs4_destroy_dot_entries();
218 	nfs4_vfsfini();
219 }
220 
221 /*
222  * Create a new sec_data structure to store AUTH_DH related data:
223  * netname, syncaddr, knetconfig. There is no AUTH_F_RPCTIMESYNC
224  * flag set for NFS V4 since we are avoiding to contact the rpcbind
225  * daemon and is using the IP time service (IPPORT_TIMESERVER).
226  *
227  * sec_data can be freed by sec_clnt_freeinfo().
228  */
229 struct sec_data *
230 create_authdh_data(char *netname, int nlen, struct netbuf *syncaddr,
231 		struct knetconfig *knconf) {
232 	struct sec_data *secdata;
233 	dh_k4_clntdata_t *data;
234 	char *pf, *p;
235 
236 	if (syncaddr == NULL || syncaddr->buf == NULL || nlen == 0)
237 		return (NULL);
238 
239 	secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
240 	secdata->flags = 0;
241 
242 	data = kmem_alloc(sizeof (*data), KM_SLEEP);
243 
244 	data->syncaddr.maxlen = syncaddr->maxlen;
245 	data->syncaddr.len = syncaddr->len;
246 	data->syncaddr.buf = (char *)kmem_alloc(syncaddr->len, KM_SLEEP);
247 	bcopy(syncaddr->buf, data->syncaddr.buf, syncaddr->len);
248 
249 	/*
250 	 * duplicate the knconf information for the
251 	 * new opaque data.
252 	 */
253 	data->knconf = kmem_alloc(sizeof (*knconf), KM_SLEEP);
254 	*data->knconf = *knconf;
255 	pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
256 	p = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
257 	bcopy(knconf->knc_protofmly, pf, KNC_STRSIZE);
258 	bcopy(knconf->knc_proto, p, KNC_STRSIZE);
259 	data->knconf->knc_protofmly = pf;
260 	data->knconf->knc_proto = p;
261 
262 	/* move server netname to the sec_data structure */
263 	data->netname = kmem_alloc(nlen, KM_SLEEP);
264 	bcopy(netname, data->netname, nlen);
265 	data->netnamelen = (int)nlen;
266 
267 	secdata->secmod = AUTH_DH;
268 	secdata->rpcflavor = AUTH_DH;
269 	secdata->data = (caddr_t)data;
270 
271 	return (secdata);
272 }
273 
274 static int
275 nfs4_chkdup_servinfo4(servinfo4_t *svp_head, servinfo4_t *svp)
276 {
277 	servinfo4_t *si;
278 
279 	/*
280 	 * Iterate over the servinfo4 list to make sure
281 	 * we do not have a duplicate. Skip any servinfo4
282 	 * that has been marked "NOT IN USE"
283 	 */
284 	for (si = svp_head; si; si = si->sv_next) {
285 		(void) nfs_rw_enter_sig(&si->sv_lock, RW_READER, 0);
286 		if (si->sv_flags & SV4_NOTINUSE) {
287 			nfs_rw_exit(&si->sv_lock);
288 			continue;
289 		}
290 		nfs_rw_exit(&si->sv_lock);
291 		if (si == svp)
292 			continue;
293 		if (si->sv_addr.len == svp->sv_addr.len &&
294 		    strcmp(si->sv_knconf->knc_protofmly,
295 			svp->sv_knconf->knc_protofmly) == 0 &&
296 		    bcmp(si->sv_addr.buf, svp->sv_addr.buf,
297 			si->sv_addr.len) == 0) {
298 			/* it's a duplicate */
299 			return (1);
300 		}
301 	}
302 	/* it's not a duplicate */
303 	return (0);
304 }
305 
306 void
307 nfs4_free_args(struct nfs_args *nargs)
308 {
309 	if (nargs->knconf) {
310 		if (nargs->knconf->knc_protofmly)
311 			kmem_free(nargs->knconf->knc_protofmly,
312 				KNC_STRSIZE);
313 		if (nargs->knconf->knc_proto)
314 			kmem_free(nargs->knconf->knc_proto, KNC_STRSIZE);
315 		kmem_free(nargs->knconf, sizeof (*nargs->knconf));
316 		nargs->knconf = NULL;
317 	}
318 
319 	if (nargs->fh) {
320 		kmem_free(nargs->fh, strlen(nargs->fh) + 1);
321 		nargs->fh = NULL;
322 	}
323 
324 	if (nargs->hostname) {
325 		kmem_free(nargs->hostname, strlen(nargs->hostname) + 1);
326 		nargs->hostname = NULL;
327 	}
328 
329 	if (nargs->addr) {
330 		if (nargs->addr->buf) {
331 			ASSERT(nargs->addr->len);
332 			kmem_free(nargs->addr->buf, nargs->addr->len);
333 		}
334 		kmem_free(nargs->addr, sizeof (struct netbuf));
335 		nargs->addr = NULL;
336 	}
337 
338 	if (nargs->syncaddr) {
339 		ASSERT(nargs->syncaddr->len);
340 		if (nargs->syncaddr->buf) {
341 			ASSERT(nargs->syncaddr->len);
342 			kmem_free(nargs->syncaddr->buf, nargs->syncaddr->len);
343 		}
344 		kmem_free(nargs->syncaddr, sizeof (struct netbuf));
345 		nargs->syncaddr = NULL;
346 	}
347 
348 	if (nargs->netname) {
349 		kmem_free(nargs->netname, strlen(nargs->netname) + 1);
350 		nargs->netname = NULL;
351 	}
352 
353 	if (nargs->nfs_ext_u.nfs_extA.secdata) {
354 		sec_clnt_freeinfo(
355 			nargs->nfs_ext_u.nfs_extA.secdata);
356 		nargs->nfs_ext_u.nfs_extA.secdata = NULL;
357 	}
358 }
359 
360 
361 int
362 nfs4_copyin(char *data, int datalen, struct nfs_args *nargs)
363 {
364 
365 	int error;
366 	size_t hlen;			/* length of hostname */
367 	size_t nlen;			/* length of netname */
368 	char netname[MAXNETNAMELEN+1];	/* server's netname */
369 	struct netbuf addr;		/* server's address */
370 	struct netbuf syncaddr;		/* AUTH_DES time sync addr */
371 	struct knetconfig *knconf;		/* transport structure */
372 	struct sec_data *secdata = NULL;	/* security data */
373 	STRUCT_DECL(nfs_args, args);		/* nfs mount arguments */
374 	STRUCT_DECL(knetconfig, knconf_tmp);
375 	STRUCT_DECL(netbuf, addr_tmp);
376 	int flags;
377 	char *p, *pf;
378 	struct pathname pn;
379 	char *userbufptr;
380 
381 
382 	bzero(nargs, sizeof (*nargs));
383 
384 	STRUCT_INIT(args, get_udatamodel());
385 	bzero(STRUCT_BUF(args), SIZEOF_STRUCT(nfs_args, DATAMODEL_NATIVE));
386 	if (copyin(data, STRUCT_BUF(args), MIN(datalen,
387 	    STRUCT_SIZE(args))))
388 		return (EFAULT);
389 
390 	nargs->wsize = STRUCT_FGET(args, wsize);
391 	nargs->rsize = STRUCT_FGET(args, rsize);
392 	nargs->timeo = STRUCT_FGET(args, timeo);
393 	nargs->retrans = STRUCT_FGET(args, retrans);
394 	nargs->acregmin = STRUCT_FGET(args, acregmin);
395 	nargs->acregmax = STRUCT_FGET(args, acregmax);
396 	nargs->acdirmin = STRUCT_FGET(args, acdirmin);
397 	nargs->acdirmax = STRUCT_FGET(args, acdirmax);
398 
399 	flags = STRUCT_FGET(args, flags);
400 	nargs->flags = flags;
401 
402 	addr.buf = NULL;
403 	syncaddr.buf = NULL;
404 
405 
406 	/*
407 	 * Allocate space for a knetconfig structure and
408 	 * its strings and copy in from user-land.
409 	 */
410 	knconf = kmem_zalloc(sizeof (*knconf), KM_SLEEP);
411 	STRUCT_INIT(knconf_tmp, get_udatamodel());
412 	if (copyin(STRUCT_FGETP(args, knconf), STRUCT_BUF(knconf_tmp),
413 	    STRUCT_SIZE(knconf_tmp))) {
414 		kmem_free(knconf, sizeof (*knconf));
415 		return (EFAULT);
416 	}
417 
418 	knconf->knc_semantics = STRUCT_FGET(knconf_tmp, knc_semantics);
419 	knconf->knc_protofmly = STRUCT_FGETP(knconf_tmp, knc_protofmly);
420 	knconf->knc_proto = STRUCT_FGETP(knconf_tmp, knc_proto);
421 	if (get_udatamodel() != DATAMODEL_LP64) {
422 		knconf->knc_rdev = expldev(STRUCT_FGET(knconf_tmp, knc_rdev));
423 	} else {
424 		knconf->knc_rdev = STRUCT_FGET(knconf_tmp, knc_rdev);
425 	}
426 
427 	pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
428 	p = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
429 	error = copyinstr(knconf->knc_protofmly, pf, KNC_STRSIZE, NULL);
430 	if (error) {
431 		kmem_free(pf, KNC_STRSIZE);
432 		kmem_free(p, KNC_STRSIZE);
433 		kmem_free(knconf, sizeof (*knconf));
434 		return (error);
435 	}
436 
437 	error = copyinstr(knconf->knc_proto, p, KNC_STRSIZE, NULL);
438 	if (error) {
439 		kmem_free(pf, KNC_STRSIZE);
440 		kmem_free(p, KNC_STRSIZE);
441 		kmem_free(knconf, sizeof (*knconf));
442 		return (error);
443 	}
444 
445 
446 	knconf->knc_protofmly = pf;
447 	knconf->knc_proto = p;
448 
449 	nargs->knconf = knconf;
450 
451 	/*
452 	 * Get server address
453 	 */
454 	STRUCT_INIT(addr_tmp, get_udatamodel());
455 	if (copyin(STRUCT_FGETP(args, addr), STRUCT_BUF(addr_tmp),
456 	    STRUCT_SIZE(addr_tmp))) {
457 		error = EFAULT;
458 		goto errout;
459 	}
460 
461 	nargs->addr = kmem_alloc(sizeof (struct netbuf), KM_SLEEP);
462 	userbufptr = STRUCT_FGETP(addr_tmp, buf);
463 	addr.len = STRUCT_FGET(addr_tmp, len);
464 	addr.buf = kmem_alloc(addr.len, KM_SLEEP);
465 	addr.maxlen = addr.len;
466 	if (copyin(userbufptr, addr.buf, addr.len)) {
467 		kmem_free(addr.buf, addr.len);
468 		error = EFAULT;
469 		goto errout;
470 	}
471 	bcopy(&addr, nargs->addr, sizeof (struct netbuf));
472 
473 	/*
474 	 * Get the root fhandle
475 	 */
476 	error = pn_get(STRUCT_FGETP(args, fh), UIO_USERSPACE, &pn);
477 	if (error)
478 		goto errout;
479 
480 	/* Volatile fh: keep server paths, so use actual-size strings */
481 	nargs->fh = kmem_alloc(pn.pn_pathlen + 1, KM_SLEEP);
482 	bcopy(pn.pn_path, nargs->fh, pn.pn_pathlen);
483 	nargs->fh[pn.pn_pathlen] = '\0';
484 	pn_free(&pn);
485 
486 
487 	/*
488 	 * Get server's hostname
489 	 */
490 	if (flags & NFSMNT_HOSTNAME) {
491 		error = copyinstr(STRUCT_FGETP(args, hostname),
492 				netname, sizeof (netname), &hlen);
493 		if (error)
494 			goto errout;
495 		nargs->hostname = kmem_zalloc(hlen, KM_SLEEP);
496 		(void) strcpy(nargs->hostname, netname);
497 
498 	} else {
499 		nargs->hostname = NULL;
500 	}
501 
502 
503 	/*
504 	 * If there are syncaddr and netname data, load them in. This is
505 	 * to support data needed for NFSV4 when AUTH_DH is the negotiated
506 	 * flavor via SECINFO. (instead of using MOUNT protocol in V3).
507 	 */
508 	netname[0] = '\0';
509 	if (flags & NFSMNT_SECURE) {
510 
511 		/* get syncaddr */
512 		STRUCT_INIT(addr_tmp, get_udatamodel());
513 		if (copyin(STRUCT_FGETP(args, syncaddr), STRUCT_BUF(addr_tmp),
514 			STRUCT_SIZE(addr_tmp))) {
515 			error = EINVAL;
516 			goto errout;
517 		}
518 		userbufptr = STRUCT_FGETP(addr_tmp, buf);
519 		syncaddr.len = STRUCT_FGET(addr_tmp, len);
520 		syncaddr.buf = kmem_alloc(syncaddr.len, KM_SLEEP);
521 		syncaddr.maxlen = syncaddr.len;
522 		if (copyin(userbufptr, syncaddr.buf, syncaddr.len)) {
523 			kmem_free(syncaddr.buf, syncaddr.len);
524 			error = EFAULT;
525 			goto errout;
526 		}
527 
528 		nargs->syncaddr = kmem_alloc(sizeof (struct netbuf), KM_SLEEP);
529 		bcopy(&syncaddr, nargs->syncaddr, sizeof (struct netbuf));
530 	}
531 	/* get server's netname */
532 	if (copyinstr(STRUCT_FGETP(args, netname), netname,
533 		sizeof (netname), &nlen)) {
534 		error = EFAULT;
535 		goto errout;
536 	}
537 
538 	netname[nlen] = '\0';
539 	nargs->netname = kmem_zalloc(nlen, KM_SLEEP);
540 	(void) strcpy(nargs->netname, netname);
541 
542 	/*
543 	 * Get the extention data which has the security data structure.
544 	 * This includes data for AUTH_SYS as well.
545 	 */
546 	if (flags & NFSMNT_NEWARGS) {
547 		nargs->nfs_args_ext = STRUCT_FGET(args, nfs_args_ext);
548 		if (nargs->nfs_args_ext == NFS_ARGS_EXTA ||
549 			nargs->nfs_args_ext == NFS_ARGS_EXTB) {
550 			/*
551 			 * Indicating the application is using the new
552 			 * sec_data structure to pass in the security
553 			 * data.
554 			 */
555 			if (STRUCT_FGETP(args,
556 			    nfs_ext_u.nfs_extA.secdata) != NULL) {
557 				error = sec_clnt_loadinfo(
558 				    (struct sec_data *)STRUCT_FGETP(args,
559 					nfs_ext_u.nfs_extA.secdata),
560 				    &secdata, get_udatamodel());
561 			}
562 			nargs->nfs_ext_u.nfs_extA.secdata = secdata;
563 		}
564 	}
565 
566 	if (error)
567 		goto errout;
568 
569 	/*
570 	 * Failover support:
571 	 *
572 	 * We may have a linked list of nfs_args structures,
573 	 * which means the user is looking for failover.  If
574 	 * the mount is either not "read-only" or "soft",
575 	 * we want to bail out with EINVAL.
576 	 */
577 	if (nargs->nfs_args_ext == NFS_ARGS_EXTB)
578 		nargs->nfs_ext_u.nfs_extB.next =
579 			STRUCT_FGETP(args, nfs_ext_u.nfs_extB.next);
580 
581 errout:
582 	if (error)
583 		nfs4_free_args(nargs);
584 
585 	return (error);
586 }
587 
588 
589 /*
590  * nfs mount vfsop
591  * Set up mount info record and attach it to vfs struct.
592  */
593 static int
594 nfs4_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
595 {
596 	char *data = uap->dataptr;
597 	int error;
598 	vnode_t *rtvp;			/* the server's root */
599 	mntinfo4_t *mi;			/* mount info, pointed at by vfs */
600 	struct knetconfig *rdma_knconf;	/* rdma transport structure */
601 	rnode4_t *rp;
602 	struct servinfo4 *svp;		/* nfs server info */
603 	struct servinfo4 *svp_tail = NULL; /* previous nfs server info */
604 	struct servinfo4 *svp_head;	/* first nfs server info */
605 	struct servinfo4 *svp_2ndlast;	/* 2nd last in server info list */
606 	struct sec_data *secdata;	/* security data */
607 	struct nfs_args *args = NULL;
608 	int flags, addr_type, removed;
609 	zone_t *zone = nfs_zone();
610 	nfs4_error_t n4e;
611 	zone_t *mntzone = NULL;
612 
613 	if (secpolicy_fs_mount(cr, mvp, vfsp) != 0)
614 		return (EPERM);
615 	if (mvp->v_type != VDIR)
616 		return (ENOTDIR);
617 	/*
618 	 * get arguments
619 	 *
620 	 * nfs_args is now versioned and is extensible, so
621 	 * uap->datalen might be different from sizeof (args)
622 	 * in a compatible situation.
623 	 */
624 more:
625 	if (!(uap->flags & MS_SYSSPACE)) {
626 		if (args == NULL)
627 			args = kmem_zalloc(sizeof (struct nfs_args), KM_SLEEP);
628 		else
629 			nfs4_free_args(args);
630 		error = nfs4_copyin(data, uap->datalen, args);
631 		if (error) {
632 			if (args) {
633 				kmem_free(args, sizeof (*args));
634 			}
635 			return (error);
636 		}
637 	} else {
638 		args = (struct nfs_args *)data;
639 	}
640 
641 
642 	flags = args->flags;
643 
644 	/*
645 	 * If the request changes the locking type, disallow the remount,
646 	 * because it's questionable whether we can transfer the
647 	 * locking state correctly.
648 	 */
649 	if (uap->flags & MS_REMOUNT) {
650 		if (!(uap->flags & MS_SYSSPACE)) {
651 			nfs4_free_args(args);
652 			kmem_free(args, sizeof (*args));
653 		}
654 		if ((mi = VFTOMI4(vfsp)) != NULL) {
655 			uint_t new_mi_llock;
656 			uint_t old_mi_llock;
657 			new_mi_llock = (flags & NFSMNT_LLOCK) ? 1 : 0;
658 			old_mi_llock = (mi->mi_flags & MI4_LLOCK) ? 1 : 0;
659 			if (old_mi_llock != new_mi_llock)
660 				return (EBUSY);
661 		}
662 		return (0);
663 	}
664 
665 	mutex_enter(&mvp->v_lock);
666 	if (!(uap->flags & MS_OVERLAY) &&
667 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
668 		mutex_exit(&mvp->v_lock);
669 		if (!(uap->flags & MS_SYSSPACE)) {
670 			nfs4_free_args(args);
671 			kmem_free(args, sizeof (*args));
672 		}
673 		return (EBUSY);
674 	}
675 	mutex_exit(&mvp->v_lock);
676 
677 	/* make sure things are zeroed for errout: */
678 	rtvp = NULL;
679 	mi = NULL;
680 	secdata = NULL;
681 
682 	/*
683 	 * A valid knetconfig structure is required.
684 	 */
685 
686 	if (!(flags & NFSMNT_KNCONF) ||
687 		args->knconf == NULL || args->knconf->knc_protofmly == NULL ||
688 		args->knconf->knc_proto == NULL ||
689 		(strcmp(args->knconf->knc_proto, NC_UDP) == 0)) {
690 		if (!(uap->flags & MS_SYSSPACE)) {
691 			nfs4_free_args(args);
692 			kmem_free(args, sizeof (*args));
693 		}
694 		return (EINVAL);
695 	}
696 
697 	if ((strlen(args->knconf->knc_protofmly) >= KNC_STRSIZE) ||
698 		(strlen(args->knconf->knc_proto) >= KNC_STRSIZE)) {
699 		if (!(uap->flags & MS_SYSSPACE)) {
700 			nfs4_free_args(args);
701 			kmem_free(args, sizeof (*args));
702 		}
703 		return (EINVAL);
704 	}
705 
706 
707 	/*
708 	 * Allocate a servinfo4 struct.
709 	 */
710 	svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
711 	nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL);
712 	if (svp_tail) {
713 		svp_2ndlast = svp_tail;
714 		svp_tail->sv_next = svp;
715 	} else {
716 		svp_head = svp;
717 		svp_2ndlast = svp;
718 	}
719 
720 	svp_tail = svp;
721 	svp->sv_knconf = args->knconf;
722 	args->knconf = NULL;
723 
724 
725 	/*
726 	 * Get server address
727 	 */
728 
729 	if (args->addr == NULL || args->addr->buf == NULL) {
730 		error = EINVAL;
731 		goto errout;
732 	}
733 
734 	svp->sv_addr.maxlen = args->addr->maxlen;
735 	svp->sv_addr.len = args->addr->len;
736 	svp->sv_addr.buf = args->addr->buf;
737 	args->addr->buf = NULL;
738 
739 
740 	/*
741 	 * Get the root fhandle
742 	 */
743 	if (args->fh == NULL || (strlen(args->fh) >= MAXPATHLEN)) {
744 		error = EINVAL;
745 		goto errout;
746 	}
747 
748 	svp->sv_path = args->fh;
749 	svp->sv_pathlen = strlen(args->fh) + 1;
750 	args->fh = NULL;
751 
752 	/*
753 	 * Get server's hostname
754 	 */
755 	if (flags & NFSMNT_HOSTNAME) {
756 		if (args->hostname == NULL || (strlen(args->hostname) >
757 			MAXNETNAMELEN)) {
758 			error = EINVAL;
759 			goto errout;
760 		}
761 		svp->sv_hostnamelen = strlen(args->hostname) + 1;
762 		svp->sv_hostname = args->hostname;
763 		args->hostname = NULL;
764 	} else {
765 		char *p = "unknown-host";
766 		svp->sv_hostnamelen = strlen(p) + 1;
767 		svp->sv_hostname = kmem_zalloc(svp->sv_hostnamelen, KM_SLEEP);
768 		(void) strcpy(svp->sv_hostname, p);
769 	}
770 
771 	/*
772 	 * RDMA MOUNT SUPPORT FOR NFS v4.
773 	 * Establish, is it possible to use RDMA, if so overload the
774 	 * knconf with rdma specific knconf and free the orignal knconf.
775 	 */
776 	if ((flags & NFSMNT_TRYRDMA) || (flags & NFSMNT_DORDMA)) {
777 		/*
778 		 * Determine the addr type for RDMA, IPv4 or v6.
779 		 */
780 		if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET) == 0)
781 			addr_type = AF_INET;
782 		else if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET6) == 0)
783 			addr_type = AF_INET6;
784 
785 		if (rdma_reachable(addr_type, &svp->sv_addr,
786 			&rdma_knconf) == 0) {
787 			/*
788 			 * If successful, hijack the orignal knconf and
789 			 * replace with the new one, depending on the flags.
790 			 */
791 			svp->sv_origknconf = svp->sv_knconf;
792 			svp->sv_knconf = rdma_knconf;
793 		} else {
794 			if (flags & NFSMNT_TRYRDMA) {
795 #ifdef	DEBUG
796 				if (rdma_debug)
797 					zcmn_err(getzoneid(), CE_WARN,
798 					    "no RDMA onboard, revert\n");
799 #endif
800 			}
801 
802 			if (flags & NFSMNT_DORDMA) {
803 				/*
804 				 * If proto=rdma is specified and no RDMA
805 				 * path to this server is avialable then
806 				 * ditch this server.
807 				 * This is not included in the mountable
808 				 * server list or the replica list.
809 				 * Check if more servers are specified;
810 				 * Failover case, otherwise bail out of mount.
811 				 */
812 				if (args->nfs_args_ext ==
813 					NFS_ARGS_EXTB &&
814 					args->nfs_ext_u.nfs_extB.next
815 					!= NULL) {
816 					data = (char *)
817 						args->nfs_ext_u.nfs_extB.next;
818 					if (uap->flags & MS_RDONLY &&
819 					    !(flags & NFSMNT_SOFT)) {
820 						if (svp_head->sv_next == NULL) {
821 							svp_tail = NULL;
822 							svp_2ndlast = NULL;
823 							sv4_free(svp_head);
824 							goto more;
825 						} else {
826 							svp_tail = svp_2ndlast;
827 							svp_2ndlast->sv_next =
828 							    NULL;
829 							sv4_free(svp);
830 							goto more;
831 						}
832 					}
833 				} else {
834 					/*
835 					 * This is the last server specified
836 					 * in the nfs_args list passed down
837 					 * and its not rdma capable.
838 					 */
839 					if (svp_head->sv_next == NULL) {
840 						/*
841 						 * Is this the only one
842 						 */
843 						error = EINVAL;
844 #ifdef	DEBUG
845 						if (rdma_debug)
846 							zcmn_err(getzoneid(),
847 							    CE_WARN,
848 							    "No RDMA srv");
849 #endif
850 						goto errout;
851 					} else {
852 						/*
853 						 * There is list, since some
854 						 * servers specified before
855 						 * this passed all requirements
856 						 */
857 						svp_tail = svp_2ndlast;
858 						svp_2ndlast->sv_next = NULL;
859 						sv4_free(svp);
860 						goto proceed;
861 					}
862 				}
863 			}
864 		}
865 	}
866 
867 	/*
868 	 * If there are syncaddr and netname data, load them in. This is
869 	 * to support data needed for NFSV4 when AUTH_DH is the negotiated
870 	 * flavor via SECINFO. (instead of using MOUNT protocol in V3).
871 	 */
872 	if (args->flags & NFSMNT_SECURE) {
873 		svp->sv_dhsec = create_authdh_data(args->netname,
874 			strlen(args->netname),
875 			args->syncaddr, svp->sv_knconf);
876 	}
877 
878 	/*
879 	 * Get the extention data which has the security data structure.
880 	 * This includes data for AUTH_SYS as well.
881 	 */
882 	if (flags & NFSMNT_NEWARGS) {
883 		switch (args->nfs_args_ext) {
884 		case NFS_ARGS_EXTA:
885 		case NFS_ARGS_EXTB:
886 			/*
887 			 * Indicating the application is using the new
888 			 * sec_data structure to pass in the security
889 			 * data.
890 			 */
891 			secdata = args->nfs_ext_u.nfs_extA.secdata;
892 			if (secdata == NULL) {
893 				error = EINVAL;
894 			} else if (uap->flags & MS_SYSSPACE) {
895 				/*
896 				 * Need to validate the flavor here if
897 				 * sysspace, userspace was already
898 				 * validate from the nfs_copyin function.
899 				 */
900 				switch (secdata->rpcflavor) {
901 				case AUTH_NONE:
902 				case AUTH_UNIX:
903 				case AUTH_LOOPBACK:
904 				case AUTH_DES:
905 				case RPCSEC_GSS:
906 					break;
907 				default:
908 					error = EINVAL;
909 					goto errout;
910 				}
911 			}
912 			args->nfs_ext_u.nfs_extA.secdata = NULL;
913 			break;
914 
915 		default:
916 			error = EINVAL;
917 			break;
918 		}
919 
920 	} else if (flags & NFSMNT_SECURE) {
921 		/*
922 		 * NFSMNT_SECURE is deprecated but we keep it
923 		 * to support the rouge user generated application
924 		 * that may use this undocumented interface to do
925 		 * AUTH_DH security.
926 		 */
927 		secdata = create_authdh_data(args->netname,
928 			strlen(args->netname), args->syncaddr, svp->sv_knconf);
929 
930 	} else {
931 		secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
932 		secdata->secmod = secdata->rpcflavor = AUTH_SYS;
933 		secdata->data = NULL;
934 	}
935 
936 	svp->sv_secdata = secdata;
937 
938 	/*
939 	 * User does not explictly specify a flavor, and a user
940 	 * defined default flavor is passed down.
941 	 */
942 	if (flags & NFSMNT_SECDEFAULT) {
943 		(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
944 		svp->sv_flags |= SV4_TRYSECDEFAULT;
945 		nfs_rw_exit(&svp->sv_lock);
946 	}
947 
948 	/*
949 	 * Failover support:
950 	 *
951 	 * We may have a linked list of nfs_args structures,
952 	 * which means the user is looking for failover.  If
953 	 * the mount is either not "read-only" or "soft",
954 	 * we want to bail out with EINVAL.
955 	 */
956 	if (args->nfs_args_ext == NFS_ARGS_EXTB &&
957 	    args->nfs_ext_u.nfs_extB.next != NULL) {
958 		if (uap->flags & MS_RDONLY && !(flags & NFSMNT_SOFT)) {
959 			data = (char *)args->nfs_ext_u.nfs_extB.next;
960 			goto more;
961 		}
962 		error = EINVAL;
963 		goto errout;
964 	}
965 
966 	/*
967 	 * Determine the zone we're being mounted into.
968 	 */
969 	zone_hold(mntzone = zone);		/* start with this assumption */
970 	if (getzoneid() == GLOBAL_ZONEID) {
971 		zone_rele(mntzone);
972 		mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
973 		ASSERT(mntzone != NULL);
974 		if (mntzone != zone) {
975 			error = EBUSY;
976 			goto errout;
977 		}
978 	}
979 
980 	if (is_system_labeled()) {
981 		error = nfs_mount_label_policy(vfsp, &svp->sv_addr,
982 		    svp->sv_knconf, cr);
983 
984 		if (error > 0)
985 			goto errout;
986 
987 		if (error == -1) {
988 			/* change mount to read-only to prevent write-down */
989 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
990 		}
991 	}
992 
993 	/*
994 	 * Stop the mount from going any further if the zone is going away.
995 	 */
996 	if (zone_status_get(mntzone) >= ZONE_IS_SHUTTING_DOWN) {
997 		error = EBUSY;
998 		goto errout;
999 	}
1000 
1001 	/*
1002 	 * Get root vnode.
1003 	 */
1004 proceed:
1005 	error = nfs4rootvp(&rtvp, vfsp, svp_head, flags, cr, mntzone);
1006 
1007 	if (error) {
1008 		/* if nfs4rootvp failed, it will free svp_head */
1009 		svp_head = NULL;
1010 		goto errout;
1011 	}
1012 
1013 	mi = VTOMI4(rtvp);
1014 
1015 	/*
1016 	 * Send client id to the server, if necessary
1017 	 */
1018 	nfs4_error_zinit(&n4e);
1019 	nfs4setclientid(mi, cr, FALSE, &n4e);
1020 	error = n4e.error;
1021 
1022 	if (error)
1023 		goto errout;
1024 
1025 	/*
1026 	 * Set option fields in the mount info record
1027 	 */
1028 
1029 	if (svp_head->sv_next) {
1030 		mutex_enter(&mi->mi_lock);
1031 		mi->mi_flags |= MI4_LLOCK;
1032 		mutex_exit(&mi->mi_lock);
1033 	}
1034 	error = nfs4_setopts(rtvp, DATAMODEL_NATIVE, args);
1035 
1036 errout:
1037 	if (error) {
1038 		if (rtvp != NULL) {
1039 			rp = VTOR4(rtvp);
1040 			if (rp->r_flags & R4HASHED)
1041 				rp4_rmhash(rp);
1042 		}
1043 		if (mi != NULL) {
1044 			nfs4_async_stop(vfsp);
1045 			nfs4_async_manager_stop(vfsp);
1046 			nfs4_remove_mi_from_server(mi, NULL);
1047 			if (rtvp != NULL)
1048 				VN_RELE(rtvp);
1049 			if (mntzone != NULL)
1050 				zone_rele(mntzone);
1051 			/* need to remove it from the zone */
1052 			removed = nfs4_mi_zonelist_remove(mi);
1053 			if (removed)
1054 				zone_rele(mi->mi_zone);
1055 			MI4_RELE(mi);
1056 			if (!(uap->flags & MS_SYSSPACE) && args) {
1057 				nfs4_free_args(args);
1058 				kmem_free(args, sizeof (*args));
1059 			}
1060 			return (error);
1061 		}
1062 		if (svp_head)
1063 			sv4_free(svp_head);
1064 	}
1065 
1066 	if (!(uap->flags & MS_SYSSPACE) && args) {
1067 		nfs4_free_args(args);
1068 		kmem_free(args, sizeof (*args));
1069 	}
1070 	if (rtvp != NULL)
1071 		VN_RELE(rtvp);
1072 
1073 	if (mntzone != NULL)
1074 		zone_rele(mntzone);
1075 
1076 	return (error);
1077 }
1078 
1079 #ifdef  DEBUG
1080 #define	VERS_MSG	"NFS4 server "
1081 #else
1082 #define	VERS_MSG	"NFS server "
1083 #endif
1084 
1085 #define	READ_MSG        \
1086 	VERS_MSG "%s returned 0 for read transfer size"
1087 #define	WRITE_MSG       \
1088 	VERS_MSG "%s returned 0 for write transfer size"
1089 #define	SIZE_MSG        \
1090 	VERS_MSG "%s returned 0 for maximum file size"
1091 
1092 /*
1093  * Get the symbolic link text from the server for a given filehandle
1094  * of that symlink.
1095  *
1096  *      (get symlink text) PUTFH READLINK
1097  */
1098 static int
1099 getlinktext_otw(mntinfo4_t *mi, nfs_fh4 *fh, char **linktextp, cred_t *cr,
1100 	int flags)
1101 
1102 {
1103 	COMPOUND4args_clnt args;
1104 	COMPOUND4res_clnt res;
1105 	int doqueue;
1106 	nfs_argop4 argop[2];
1107 	nfs_resop4 *resop;
1108 	READLINK4res *lr_res;
1109 	uint_t len;
1110 	bool_t needrecov = FALSE;
1111 	nfs4_recov_state_t recov_state;
1112 	nfs4_sharedfh_t *sfh;
1113 	nfs4_error_t e;
1114 	int num_retry = nfs4_max_mount_retry;
1115 	int recovery = !(flags & NFS4_GETFH_NEEDSOP);
1116 
1117 	sfh = sfh4_get(fh, mi);
1118 	recov_state.rs_flags = 0;
1119 	recov_state.rs_num_retry_despite_err = 0;
1120 
1121 recov_retry:
1122 	nfs4_error_zinit(&e);
1123 
1124 	args.array_len = 2;
1125 	args.array = argop;
1126 	args.ctag = TAG_GET_SYMLINK;
1127 
1128 	if (! recovery) {
1129 		e.error = nfs4_start_op(mi, NULL, NULL, &recov_state);
1130 		if (e.error) {
1131 			sfh4_rele(&sfh);
1132 			return (e.error);
1133 		}
1134 	}
1135 
1136 	/* 0. putfh symlink fh */
1137 	argop[0].argop = OP_CPUTFH;
1138 	argop[0].nfs_argop4_u.opcputfh.sfh = sfh;
1139 
1140 	/* 1. readlink */
1141 	argop[1].argop = OP_READLINK;
1142 
1143 	doqueue = 1;
1144 
1145 	rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
1146 
1147 	needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
1148 
1149 	if (needrecov && !recovery && num_retry-- > 0) {
1150 
1151 		NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1152 			"getlinktext_otw: initiating recovery\n"));
1153 
1154 		if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL,
1155 			OP_READLINK, NULL) == FALSE) {
1156 		nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
1157 		if (!e.error)
1158 			(void) xdr_free(xdr_COMPOUND4res_clnt,
1159 				(caddr_t)&res);
1160 			goto recov_retry;
1161 		}
1162 	}
1163 
1164 	/*
1165 	 * If non-NFS4 pcol error and/or we weren't able to recover.
1166 	 */
1167 	if (e.error != 0) {
1168 		if (! recovery)
1169 			nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
1170 		sfh4_rele(&sfh);
1171 		return (e.error);
1172 	}
1173 
1174 	if (res.status) {
1175 		e.error = geterrno4(res.status);
1176 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1177 		if (! recovery)
1178 			nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
1179 		sfh4_rele(&sfh);
1180 		return (e.error);
1181 	}
1182 
1183 	/* res.status == NFS4_OK */
1184 	ASSERT(res.status == NFS4_OK);
1185 
1186 	resop = &res.array[1];  /* readlink res */
1187 	lr_res = &resop->nfs_resop4_u.opreadlink;
1188 
1189 	/* treat symlink name as data */
1190 	*linktextp = utf8_to_str(&lr_res->link, &len, NULL);
1191 
1192 	if (! recovery)
1193 		nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
1194 	sfh4_rele(&sfh);
1195 	(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1196 	return (0);
1197 }
1198 
1199 /*
1200  * Skip over consecutive slashes and "/./" in a pathname.
1201  */
1202 void
1203 pathname_skipslashdot(struct pathname *pnp)
1204 {
1205 	char *c1, *c2;
1206 
1207 	while (pnp->pn_pathlen > 0 && *pnp->pn_path == '/') {
1208 
1209 		c1 = pnp->pn_path + 1;
1210 		c2 = pnp->pn_path + 2;
1211 
1212 		if (*c1 == '.' && (*c2 == '/' || *c2 == '\0')) {
1213 			pnp->pn_path = pnp->pn_path + 2; /* skip "/." */
1214 			pnp->pn_pathlen = pnp->pn_pathlen - 2;
1215 		} else {
1216 			pnp->pn_path++;
1217 			pnp->pn_pathlen--;
1218 		}
1219 	}
1220 }
1221 
1222 /*
1223  * Resolve a symbolic link path. The symlink is in the nth component of
1224  * svp->sv_path and has an nfs4 file handle "fh".
1225  * Upon return, the sv_path will point to the new path that has the nth
1226  * component resolved to its symlink text.
1227  */
1228 int
1229 resolve_sympath(mntinfo4_t *mi, servinfo4_t *svp, int nth, nfs_fh4 *fh,
1230 		cred_t *cr, int flags)
1231 {
1232 	char *oldpath;
1233 	char *symlink, *newpath;
1234 	struct pathname oldpn, newpn;
1235 	char component[MAXNAMELEN];
1236 	int i, addlen, error = 0;
1237 	int oldpathlen;
1238 
1239 	/* Get the symbolic link text over the wire. */
1240 	error = getlinktext_otw(mi, fh, &symlink, cr, flags);
1241 
1242 	if (error || symlink == NULL || strlen(symlink) == 0)
1243 		return (error);
1244 
1245 	/*
1246 	 * Compose the new pathname.
1247 	 * Note:
1248 	 *    - only the nth component is resolved for the pathname.
1249 	 *    - pathname.pn_pathlen does not count the ending null byte.
1250 	 */
1251 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1252 	oldpath = svp->sv_path;
1253 	oldpathlen = svp->sv_pathlen;
1254 	if (error = pn_get(oldpath, UIO_SYSSPACE, &oldpn)) {
1255 		nfs_rw_exit(&svp->sv_lock);
1256 		kmem_free(symlink, strlen(symlink) + 1);
1257 		return (error);
1258 	}
1259 	nfs_rw_exit(&svp->sv_lock);
1260 	pn_alloc(&newpn);
1261 
1262 	/*
1263 	 * Skip over previous components from the oldpath so that the
1264 	 * oldpn.pn_path will point to the symlink component. Skip
1265 	 * leading slashes and "/./" (no OP_LOOKUP on ".") so that
1266 	 * pn_getcompnent can get the component.
1267 	 */
1268 	for (i = 1; i < nth; i++) {
1269 		pathname_skipslashdot(&oldpn);
1270 		error = pn_getcomponent(&oldpn, component);
1271 		if (error)
1272 			goto out;
1273 	}
1274 
1275 	/*
1276 	 * Copy the old path upto the component right before the symlink
1277 	 * if the symlink is not an absolute path.
1278 	 */
1279 	if (symlink[0] != '/') {
1280 		addlen = oldpn.pn_path - oldpn.pn_buf;
1281 		bcopy(oldpn.pn_buf, newpn.pn_path, addlen);
1282 		newpn.pn_pathlen += addlen;
1283 		newpn.pn_path += addlen;
1284 		newpn.pn_buf[newpn.pn_pathlen] = '/';
1285 		newpn.pn_pathlen++;
1286 		newpn.pn_path++;
1287 	}
1288 
1289 	/* copy the resolved symbolic link text */
1290 	addlen = strlen(symlink);
1291 	if (newpn.pn_pathlen + addlen >= newpn.pn_bufsize) {
1292 		error = ENAMETOOLONG;
1293 		goto out;
1294 	}
1295 	bcopy(symlink, newpn.pn_path, addlen);
1296 	newpn.pn_pathlen += addlen;
1297 	newpn.pn_path += addlen;
1298 
1299 	/*
1300 	 * Check if there is any remaining path after the symlink component.
1301 	 * First, skip the symlink component.
1302 	 */
1303 	pathname_skipslashdot(&oldpn);
1304 	if (error = pn_getcomponent(&oldpn, component))
1305 		goto out;
1306 
1307 	addlen = pn_pathleft(&oldpn); /* includes counting the slash */
1308 
1309 	/*
1310 	 * Copy the remaining path to the new pathname if there is any.
1311 	 */
1312 	if (addlen > 0) {
1313 		if (newpn.pn_pathlen + addlen >= newpn.pn_bufsize) {
1314 			error = ENAMETOOLONG;
1315 			goto out;
1316 		}
1317 		bcopy(oldpn.pn_path, newpn.pn_path, addlen);
1318 		newpn.pn_pathlen += addlen;
1319 	}
1320 	newpn.pn_buf[newpn.pn_pathlen] = '\0';
1321 
1322 	/* get the newpath and store it in the servinfo4_t */
1323 	newpath = kmem_alloc(newpn.pn_pathlen + 1, KM_SLEEP);
1324 	bcopy(newpn.pn_buf, newpath, newpn.pn_pathlen);
1325 	newpath[newpn.pn_pathlen] = '\0';
1326 
1327 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
1328 	svp->sv_path = newpath;
1329 	svp->sv_pathlen = strlen(newpath) + 1;
1330 	nfs_rw_exit(&svp->sv_lock);
1331 
1332 	kmem_free(oldpath, oldpathlen);
1333 out:
1334 	kmem_free(symlink, strlen(symlink) + 1);
1335 	pn_free(&newpn);
1336 	pn_free(&oldpn);
1337 
1338 	return (error);
1339 }
1340 
1341 /*
1342  * Get the root filehandle for the given filesystem and server, and update
1343  * svp.
1344  *
1345  * If NFS4_GETFH_NEEDSOP is set, then use nfs4_start_fop and nfs4_end_fop
1346  * to coordinate with recovery.  Otherwise, the caller is assumed to be
1347  * the recovery thread or have already done a start_fop.
1348  *
1349  * Errors are returned by the nfs4_error_t parameter.
1350  */
1351 
1352 static void
1353 nfs4getfh_otw(struct mntinfo4 *mi, servinfo4_t *svp, vtype_t *vtp,
1354 		int flags, cred_t *cr, nfs4_error_t *ep)
1355 {
1356 	COMPOUND4args_clnt args;
1357 	COMPOUND4res_clnt res;
1358 	int doqueue = 1;
1359 	nfs_argop4 *argop;
1360 	nfs_resop4 *resop;
1361 	nfs4_ga_res_t *garp;
1362 	int num_argops;
1363 	lookup4_param_t lookuparg;
1364 	nfs_fh4 *tmpfhp;
1365 	nfs_fh4 *resfhp;
1366 	bool_t needrecov = FALSE;
1367 	nfs4_recov_state_t recov_state;
1368 	int llndx;
1369 	int nthcomp;
1370 	int recovery = !(flags & NFS4_GETFH_NEEDSOP);
1371 
1372 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1373 	ASSERT(svp->sv_path != NULL);
1374 	if (svp->sv_path[0] == '\0') {
1375 		nfs_rw_exit(&svp->sv_lock);
1376 		nfs4_error_init(ep, EINVAL);
1377 		return;
1378 	}
1379 	nfs_rw_exit(&svp->sv_lock);
1380 
1381 	recov_state.rs_flags = 0;
1382 	recov_state.rs_num_retry_despite_err = 0;
1383 recov_retry:
1384 	nfs4_error_zinit(ep);
1385 
1386 	if (!recovery) {
1387 		ep->error = nfs4_start_fop(mi, NULL, NULL, OH_MOUNT,
1388 				&recov_state, NULL);
1389 
1390 		/*
1391 		 * If recovery has been started and this request as
1392 		 * initiated by a mount, then we must wait for recovery
1393 		 * to finish before proceeding, otherwise, the error
1394 		 * cleanup would remove data structures needed by the
1395 		 * recovery thread.
1396 		 */
1397 		if (ep->error) {
1398 			mutex_enter(&mi->mi_lock);
1399 			if (mi->mi_flags & MI4_MOUNTING) {
1400 				mi->mi_flags |= MI4_RECOV_FAIL;
1401 				mi->mi_error = EIO;
1402 
1403 				NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1404 				    "nfs4getfh_otw: waiting 4 recovery\n"));
1405 
1406 				while (mi->mi_flags & MI4_RECOV_ACTIV)
1407 					cv_wait(&mi->mi_failover_cv,
1408 					    &mi->mi_lock);
1409 			}
1410 			mutex_exit(&mi->mi_lock);
1411 			return;
1412 		}
1413 
1414 		/*
1415 		 * If the client does not specify a specific flavor to use
1416 		 * and has not gotten a secinfo list from the server yet,
1417 		 * retrieve the secinfo list from the server and use a
1418 		 * flavor from the list to mount.
1419 		 *
1420 		 * If fail to get the secinfo list from the server, then
1421 		 * try the default flavor.
1422 		 */
1423 		if ((svp->sv_flags & SV4_TRYSECDEFAULT) &&
1424 		    svp->sv_secinfo == NULL) {
1425 			(void) nfs4_secinfo_path(mi, cr, FALSE);
1426 		}
1427 	}
1428 
1429 	if (recovery)
1430 		args.ctag = TAG_REMAP_MOUNT;
1431 	else
1432 		args.ctag = TAG_MOUNT;
1433 
1434 	lookuparg.l4_getattrs = LKP4_ALL_ATTRIBUTES;
1435 	lookuparg.argsp = &args;
1436 	lookuparg.resp = &res;
1437 	lookuparg.header_len = 2;	/* Putrootfh, getfh */
1438 	lookuparg.trailer_len = 0;
1439 	lookuparg.ga_bits = FATTR4_FSINFO_MASK;
1440 	lookuparg.mi = mi;
1441 
1442 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1443 	ASSERT(svp->sv_path != NULL);
1444 	llndx = nfs4lookup_setup(svp->sv_path, &lookuparg, 0);
1445 	nfs_rw_exit(&svp->sv_lock);
1446 
1447 	argop = args.array;
1448 	num_argops = args.array_len;
1449 
1450 	/* choose public or root filehandle */
1451 	if (flags & NFS4_GETFH_PUBLIC)
1452 		argop[0].argop = OP_PUTPUBFH;
1453 	else
1454 		argop[0].argop = OP_PUTROOTFH;
1455 
1456 	/* get fh */
1457 	argop[1].argop = OP_GETFH;
1458 
1459 	NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
1460 	    "nfs4getfh_otw: %s call, mi 0x%p",
1461 	    needrecov ? "recov" : "first", (void *)mi));
1462 
1463 	rfs4call(mi, &args, &res, cr, &doqueue, RFSCALL_SOFT, ep);
1464 
1465 	needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp);
1466 
1467 	if (needrecov) {
1468 		bool_t abort;
1469 
1470 		if (recovery) {
1471 			nfs4args_lookup_free(argop, num_argops);
1472 			kmem_free(argop,
1473 					lookuparg.arglen * sizeof (nfs_argop4));
1474 			if (!ep->error)
1475 				(void) xdr_free(xdr_COMPOUND4res_clnt,
1476 								(caddr_t)&res);
1477 			return;
1478 		}
1479 
1480 		NFS4_DEBUG(nfs4_client_recov_debug,
1481 		    (CE_NOTE, "nfs4getfh_otw: initiating recovery\n"));
1482 
1483 		abort = nfs4_start_recovery(ep, mi, NULL,
1484 			    NULL, NULL, NULL, OP_GETFH, NULL);
1485 		if (!ep->error) {
1486 			ep->error = geterrno4(res.status);
1487 			(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1488 		}
1489 		nfs4args_lookup_free(argop, num_argops);
1490 		kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1491 		nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov);
1492 		/* have another go? */
1493 		if (abort == FALSE)
1494 			goto recov_retry;
1495 		return;
1496 	}
1497 
1498 	/*
1499 	 * No recovery, but check if error is set.
1500 	 */
1501 	if (ep->error)  {
1502 		nfs4args_lookup_free(argop, num_argops);
1503 		kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1504 		if (!recovery)
1505 			nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
1506 				needrecov);
1507 		return;
1508 	}
1509 
1510 is_link_err:
1511 
1512 	/* for non-recovery errors */
1513 	if (res.status && res.status != NFS4ERR_SYMLINK) {
1514 		if (!recovery) {
1515 			nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
1516 				needrecov);
1517 		}
1518 		nfs4args_lookup_free(argop, num_argops);
1519 		kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1520 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1521 		return;
1522 	}
1523 
1524 	/*
1525 	 * If any intermediate component in the path is a symbolic link,
1526 	 * resolve the symlink, then try mount again using the new path.
1527 	 */
1528 	if (res.status == NFS4ERR_SYMLINK) {
1529 		int where;
1530 
1531 		/*
1532 		 * This must be from OP_LOOKUP failure. The (cfh) for this
1533 		 * OP_LOOKUP is a symlink node. Found out where the
1534 		 * OP_GETFH is for the (cfh) that is a symlink node.
1535 		 *
1536 		 * Example:
1537 		 * (mount) PUTROOTFH, GETFH, LOOKUP comp1, GETFH, GETATTR,
1538 		 * LOOKUP comp2, GETFH, GETATTR, LOOKUP comp3, GETFH, GETATTR
1539 		 *
1540 		 * LOOKUP comp3 fails with SYMLINK because comp2 is a symlink.
1541 		 * In this case, where = 7, nthcomp = 2.
1542 		 */
1543 		where = res.array_len - 2;
1544 		ASSERT(where > 0);
1545 
1546 		resop = &res.array[where - 1];
1547 		ASSERT(resop->resop == OP_GETFH);
1548 		tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
1549 		nthcomp = res.array_len/3 - 1;
1550 
1551 		/*
1552 		 * Need to call nfs4_end_op before resolve_sympath to avoid
1553 		 * potential nfs4_start_op deadlock.
1554 		 */
1555 		if (!recovery)
1556 			nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
1557 				needrecov);
1558 
1559 		ep->error = resolve_sympath(mi, svp, nthcomp, tmpfhp, cr,
1560 					    flags);
1561 
1562 		nfs4args_lookup_free(argop, num_argops);
1563 		kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1564 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1565 
1566 		if (ep->error)
1567 			return;
1568 
1569 		goto recov_retry;
1570 	}
1571 
1572 	/* getfh */
1573 	resop = &res.array[res.array_len - 2];
1574 	ASSERT(resop->resop == OP_GETFH);
1575 	resfhp = &resop->nfs_resop4_u.opgetfh.object;
1576 
1577 	/* getattr fsinfo res */
1578 	resop++;
1579 	garp = &resop->nfs_resop4_u.opgetattr.ga_res;
1580 
1581 	*vtp = garp->n4g_va.va_type;
1582 
1583 	mi->mi_fh_expire_type = garp->n4g_ext_res->n4g_fet;
1584 
1585 	mutex_enter(&mi->mi_lock);
1586 	if (garp->n4g_ext_res->n4g_pc4.pc4_link_support)
1587 		mi->mi_flags |= MI4_LINK;
1588 	if (garp->n4g_ext_res->n4g_pc4.pc4_symlink_support)
1589 		mi->mi_flags |= MI4_SYMLINK;
1590 	if (garp->n4g_ext_res->n4g_suppattrs & FATTR4_ACL_MASK)
1591 		mi->mi_flags |= MI4_ACL;
1592 	mutex_exit(&mi->mi_lock);
1593 
1594 	if (garp->n4g_ext_res->n4g_maxread == 0)
1595 		mi->mi_tsize =
1596 			MIN(MAXBSIZE, mi->mi_tsize);
1597 	else
1598 		mi->mi_tsize =
1599 			MIN(garp->n4g_ext_res->n4g_maxread,
1600 			    mi->mi_tsize);
1601 
1602 	if (garp->n4g_ext_res->n4g_maxwrite == 0)
1603 		mi->mi_stsize =
1604 			MIN(MAXBSIZE, mi->mi_stsize);
1605 	else
1606 		mi->mi_stsize =
1607 			MIN(garp->n4g_ext_res->n4g_maxwrite,
1608 			    mi->mi_stsize);
1609 
1610 	if (garp->n4g_ext_res->n4g_maxfilesize != 0)
1611 		mi->mi_maxfilesize =
1612 			MIN(garp->n4g_ext_res->n4g_maxfilesize,
1613 			    mi->mi_maxfilesize);
1614 
1615 	/*
1616 	 * If the final component is a a symbolic link, resolve the symlink,
1617 	 * then try mount again using the new path.
1618 	 *
1619 	 * Assume no symbolic link for root filesysm "/".
1620 	 */
1621 	if (*vtp == VLNK) {
1622 		/*
1623 		 * nthcomp is the total result length minus
1624 		 * the 1st 2 OPs (PUTROOTFH, GETFH),
1625 		 * then divided by 3 (LOOKUP,GETFH,GETATTR)
1626 		 *
1627 		 * e.g. PUTROOTFH GETFH LOOKUP 1st-comp GETFH GETATTR
1628 		 *	LOOKUP 2nd-comp GETFH GETATTR
1629 		 *
1630 		 *	(8 - 2)/3 = 2
1631 		 */
1632 		nthcomp = (res.array_len - 2)/3;
1633 
1634 		/*
1635 		 * Need to call nfs4_end_op before resolve_sympath to avoid
1636 		 * potential nfs4_start_op deadlock. See RFE 4777612.
1637 		 */
1638 		if (!recovery)
1639 			nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
1640 				needrecov);
1641 
1642 		ep->error = resolve_sympath(mi, svp, nthcomp, resfhp, cr,
1643 					flags);
1644 
1645 		nfs4args_lookup_free(argop, num_argops);
1646 		kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1647 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1648 
1649 		if (ep->error)
1650 			return;
1651 
1652 		goto recov_retry;
1653 	}
1654 
1655 	/*
1656 	 * We need to figure out where in the compound the getfh
1657 	 * for the parent directory is. If the object to be mounted is
1658 	 * the root, then there is no lookup at all:
1659 	 * PUTROOTFH, GETFH.
1660 	 * If the object to be mounted is in the root, then the compound is:
1661 	 * PUTROOTFH, GETFH, LOOKUP, GETFH, GETATTR.
1662 	 * In either of these cases, the index of the GETFH is 1.
1663 	 * If it is not at the root, then it's something like:
1664 	 * PUTROOTFH, GETFH, LOOKUP, GETFH, GETATTR,
1665 	 * LOOKUP, GETFH, GETATTR
1666 	 * In this case, the index is llndx (last lookup index) - 2.
1667 	 */
1668 	if (llndx == -1 || llndx == 2)
1669 		resop = &res.array[1];
1670 	else {
1671 		ASSERT(llndx > 2);
1672 		resop = &res.array[llndx-2];
1673 	}
1674 
1675 	ASSERT(resop->resop == OP_GETFH);
1676 	tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
1677 
1678 	/* save the filehandles for the replica */
1679 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
1680 	ASSERT(tmpfhp->nfs_fh4_len <= NFS4_FHSIZE);
1681 	svp->sv_pfhandle.fh_len = tmpfhp->nfs_fh4_len;
1682 	bcopy(tmpfhp->nfs_fh4_val, svp->sv_pfhandle.fh_buf,
1683 	    tmpfhp->nfs_fh4_len);
1684 	ASSERT(resfhp->nfs_fh4_len <= NFS4_FHSIZE);
1685 	svp->sv_fhandle.fh_len = resfhp->nfs_fh4_len;
1686 	bcopy(resfhp->nfs_fh4_val, svp->sv_fhandle.fh_buf, resfhp->nfs_fh4_len);
1687 
1688 	/* initialize fsid and supp_attrs for server fs */
1689 	svp->sv_fsid = garp->n4g_fsid;
1690 	svp->sv_supp_attrs =
1691 		garp->n4g_ext_res->n4g_suppattrs | FATTR4_MANDATTR_MASK;
1692 
1693 	nfs_rw_exit(&svp->sv_lock);
1694 
1695 	nfs4args_lookup_free(argop, num_argops);
1696 	kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1697 	(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1698 	if (!recovery)
1699 		nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov);
1700 }
1701 
1702 static ushort_t nfs4_max_threads = 8;	/* max number of active async threads */
1703 static uint_t nfs4_bsize = 32 * 1024;	/* client `block' size */
1704 static uint_t nfs4_async_clusters = 1;	/* # of reqs from each async queue */
1705 static uint_t nfs4_cots_timeo = NFS_COTS_TIMEO;
1706 
1707 /*
1708  * Remap the root filehandle for the given filesystem.
1709  *
1710  * results returned via the nfs4_error_t parameter.
1711  */
1712 void
1713 nfs4_remap_root(mntinfo4_t *mi, nfs4_error_t *ep, int flags)
1714 {
1715 	struct servinfo4 *svp;
1716 	vtype_t vtype;
1717 	nfs_fh4 rootfh;
1718 	int getfh_flags;
1719 	char *orig_sv_path;
1720 	int orig_sv_pathlen, num_retry;
1721 
1722 	mutex_enter(&mi->mi_lock);
1723 
1724 remap_retry:
1725 	svp = mi->mi_curr_serv;
1726 	getfh_flags =
1727 		(flags & NFS4_REMAP_NEEDSOP) ? NFS4_GETFH_NEEDSOP : 0;
1728 	getfh_flags |=
1729 		(mi->mi_flags & MI4_PUBLIC) ? NFS4_GETFH_PUBLIC : 0;
1730 	mutex_exit(&mi->mi_lock);
1731 
1732 	/*
1733 	 * Just in case server path being mounted contains
1734 	 * symlinks and fails w/STALE, save the initial sv_path
1735 	 * so we can redrive the initial mount compound with the
1736 	 * initial sv_path -- not a symlink-expanded version.
1737 	 *
1738 	 * This could only happen if a symlink was expanded
1739 	 * and the expanded mount compound failed stale.  Because
1740 	 * it could be the case that the symlink was removed at
1741 	 * the server (and replaced with another symlink/dir,
1742 	 * we need to use the initial sv_path when attempting
1743 	 * to re-lookup everything and recover.
1744 	 */
1745 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1746 	orig_sv_pathlen = svp->sv_pathlen;
1747 	orig_sv_path = kmem_alloc(orig_sv_pathlen, KM_SLEEP);
1748 	bcopy(svp->sv_path, orig_sv_path, orig_sv_pathlen);
1749 	nfs_rw_exit(&svp->sv_lock);
1750 
1751 	num_retry = nfs4_max_mount_retry;
1752 
1753 	do {
1754 		/*
1755 		 * Get the root fh from the server.  Retry nfs4_max_mount_retry
1756 		 * (2) times if it fails with STALE since the recovery
1757 		 * infrastructure doesn't do STALE recovery for components
1758 		 * of the server path to the object being mounted.
1759 		 */
1760 		nfs4getfh_otw(mi, svp, &vtype, getfh_flags, CRED(), ep);
1761 
1762 		if (ep->error == 0 && ep->stat == NFS4_OK)
1763 			break;
1764 
1765 		/*
1766 		 * For some reason, the mount compound failed.  Before
1767 		 * retrying, we need to restore the original sv_path
1768 		 * because it might have contained symlinks that were
1769 		 * expanded by nfsgetfh_otw before the failure occurred.
1770 		 * replace current sv_path with orig sv_path -- just in case
1771 		 * it changed due to embedded symlinks.
1772 		 */
1773 		(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1774 		if (orig_sv_pathlen != svp->sv_pathlen) {
1775 			kmem_free(svp->sv_path, svp->sv_pathlen);
1776 			svp->sv_path = kmem_alloc(orig_sv_pathlen, KM_SLEEP);
1777 			svp->sv_pathlen = orig_sv_pathlen;
1778 		}
1779 		bcopy(orig_sv_path, svp->sv_path, orig_sv_pathlen);
1780 		nfs_rw_exit(&svp->sv_lock);
1781 
1782 	} while (num_retry-- > 0);
1783 
1784 	kmem_free(orig_sv_path, orig_sv_pathlen);
1785 
1786 	if (ep->error != 0 || ep->stat != 0) {
1787 		return;
1788 	}
1789 
1790 	if (vtype != VNON && vtype != mi->mi_type) {
1791 		/* shouldn't happen */
1792 		zcmn_err(mi->mi_zone->zone_id, CE_WARN,
1793 			"nfs4_remap_root: server root vnode type (%d) doesn't "
1794 			"match mount info (%d)", vtype, mi->mi_type);
1795 	}
1796 
1797 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1798 	rootfh.nfs_fh4_val = svp->sv_fhandle.fh_buf;
1799 	rootfh.nfs_fh4_len = svp->sv_fhandle.fh_len;
1800 	nfs_rw_exit(&svp->sv_lock);
1801 	sfh4_update(mi->mi_rootfh, &rootfh);
1802 
1803 	/*
1804 	 * It's possible that recovery took place on the filesystem
1805 	 * and the server has been updated between the time we did
1806 	 * the nfs4getfh_otw and now. Re-drive the otw operation
1807 	 * to make sure we have a good fh.
1808 	 */
1809 	mutex_enter(&mi->mi_lock);
1810 	if (mi->mi_curr_serv != svp)
1811 		goto remap_retry;
1812 
1813 	mutex_exit(&mi->mi_lock);
1814 }
1815 
1816 static int
1817 nfs4rootvp(vnode_t **rtvpp, vfs_t *vfsp, struct servinfo4 *svp_head,
1818 	int flags, cred_t *cr, zone_t *zone)
1819 {
1820 	vnode_t *rtvp = NULL;
1821 	mntinfo4_t *mi;
1822 	dev_t nfs_dev;
1823 	int error = 0;
1824 	rnode4_t *rp;
1825 	int i;
1826 	struct vattr va;
1827 	vtype_t vtype = VNON;
1828 	vtype_t tmp_vtype = VNON;
1829 	struct servinfo4 *firstsvp = NULL, *svp = svp_head;
1830 	nfs4_oo_hash_bucket_t *bucketp;
1831 	nfs_fh4 fh;
1832 	char *droptext = "";
1833 	struct nfs_stats *nfsstatsp;
1834 	nfs4_fname_t *mfname;
1835 	nfs4_error_t e;
1836 	char *orig_sv_path;
1837 	int orig_sv_pathlen, num_retry, removed;
1838 	cred_t *lcr = NULL, *tcr = cr;
1839 
1840 	nfsstatsp = zone_getspecific(nfsstat_zone_key, nfs_zone());
1841 	ASSERT(nfsstatsp != NULL);
1842 
1843 	ASSERT(nfs_zone() == zone);
1844 	ASSERT(crgetref(cr));
1845 
1846 	/*
1847 	 * Create a mount record and link it to the vfs struct.
1848 	 */
1849 	mi = kmem_zalloc(sizeof (*mi), KM_SLEEP);
1850 	mutex_init(&mi->mi_lock, NULL, MUTEX_DEFAULT, NULL);
1851 	nfs_rw_init(&mi->mi_recovlock, NULL, RW_DEFAULT, NULL);
1852 	nfs_rw_init(&mi->mi_rename_lock, NULL, RW_DEFAULT, NULL);
1853 	nfs_rw_init(&mi->mi_fh_lock, NULL, RW_DEFAULT, NULL);
1854 
1855 	if (!(flags & NFSMNT_SOFT))
1856 		mi->mi_flags |= MI4_HARD;
1857 	if ((flags & NFSMNT_NOPRINT))
1858 		mi->mi_flags |= MI4_NOPRINT;
1859 	if (flags & NFSMNT_INT)
1860 		mi->mi_flags |= MI4_INT;
1861 	if (flags & NFSMNT_PUBLIC)
1862 		mi->mi_flags |= MI4_PUBLIC;
1863 	mi->mi_retrans = NFS_RETRIES;
1864 	if (svp->sv_knconf->knc_semantics == NC_TPI_COTS_ORD ||
1865 	    svp->sv_knconf->knc_semantics == NC_TPI_COTS)
1866 		mi->mi_timeo = nfs4_cots_timeo;
1867 	else
1868 		mi->mi_timeo = NFS_TIMEO;
1869 	mi->mi_prog = NFS_PROGRAM;
1870 	mi->mi_vers = NFS_V4;
1871 	mi->mi_rfsnames = rfsnames_v4;
1872 	mi->mi_reqs = nfsstatsp->nfs_stats_v4.rfsreqcnt_ptr;
1873 	cv_init(&mi->mi_failover_cv, NULL, CV_DEFAULT, NULL);
1874 	mi->mi_servers = svp;
1875 	mi->mi_curr_serv = svp;
1876 	mi->mi_acregmin = SEC2HR(ACREGMIN);
1877 	mi->mi_acregmax = SEC2HR(ACREGMAX);
1878 	mi->mi_acdirmin = SEC2HR(ACDIRMIN);
1879 	mi->mi_acdirmax = SEC2HR(ACDIRMAX);
1880 	mi->mi_fh_expire_type = FH4_PERSISTENT;
1881 	mi->mi_clientid_next = NULL;
1882 	mi->mi_clientid_prev = NULL;
1883 	mi->mi_grace_wait = 0;
1884 	mi->mi_error = 0;
1885 	mi->mi_srvsettime = 0;
1886 
1887 	mi->mi_count = 1;
1888 
1889 	mi->mi_tsize = nfs4_tsize(svp->sv_knconf);
1890 	mi->mi_stsize = mi->mi_tsize;
1891 
1892 	if (flags & NFSMNT_DIRECTIO)
1893 		mi->mi_flags |= MI4_DIRECTIO;
1894 
1895 	mi->mi_flags |= MI4_MOUNTING;
1896 
1897 	/*
1898 	 * Make a vfs struct for nfs.  We do this here instead of below
1899 	 * because rtvp needs a vfs before we can do a getattr on it.
1900 	 *
1901 	 * Assign a unique device id to the mount
1902 	 */
1903 	mutex_enter(&nfs_minor_lock);
1904 	do {
1905 		nfs_minor = (nfs_minor + 1) & MAXMIN32;
1906 		nfs_dev = makedevice(nfs_major, nfs_minor);
1907 	} while (vfs_devismounted(nfs_dev));
1908 	mutex_exit(&nfs_minor_lock);
1909 
1910 	vfsp->vfs_dev = nfs_dev;
1911 	vfs_make_fsid(&vfsp->vfs_fsid, nfs_dev, nfs4fstyp);
1912 	vfsp->vfs_data = (caddr_t)mi;
1913 	vfsp->vfs_fstype = nfsfstyp;
1914 	vfsp->vfs_bsize = nfs4_bsize;
1915 
1916 	/*
1917 	 * Initialize fields used to support async putpage operations.
1918 	 */
1919 	for (i = 0; i < NFS4_ASYNC_TYPES; i++)
1920 		mi->mi_async_clusters[i] = nfs4_async_clusters;
1921 	mi->mi_async_init_clusters = nfs4_async_clusters;
1922 	mi->mi_async_curr = &mi->mi_async_reqs[0];
1923 	mi->mi_max_threads = nfs4_max_threads;
1924 	mutex_init(&mi->mi_async_lock, NULL, MUTEX_DEFAULT, NULL);
1925 	cv_init(&mi->mi_async_reqs_cv, NULL, CV_DEFAULT, NULL);
1926 	cv_init(&mi->mi_async_work_cv, NULL, CV_DEFAULT, NULL);
1927 	cv_init(&mi->mi_async_cv, NULL, CV_DEFAULT, NULL);
1928 	cv_init(&mi->mi_inact_req_cv, NULL, CV_DEFAULT, NULL);
1929 
1930 	mi->mi_vfsp = vfsp;
1931 	zone_hold(mi->mi_zone = zone);
1932 	nfs4_mi_zonelist_add(mi);
1933 
1934 	/*
1935 	 * Initialize the <open owner/cred> hash table.
1936 	 */
1937 	for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) {
1938 		bucketp = &(mi->mi_oo_list[i]);
1939 		mutex_init(&bucketp->b_lock, NULL, MUTEX_DEFAULT, NULL);
1940 		list_create(&bucketp->b_oo_hash_list,
1941 		    sizeof (nfs4_open_owner_t),
1942 		    offsetof(nfs4_open_owner_t, oo_hash_node));
1943 	}
1944 
1945 	/*
1946 	 * Initialize the freed open owner list.
1947 	 */
1948 	mi->mi_foo_num = 0;
1949 	mi->mi_foo_max = NFS4_NUM_FREED_OPEN_OWNERS;
1950 	list_create(&mi->mi_foo_list, sizeof (nfs4_open_owner_t),
1951 	    offsetof(nfs4_open_owner_t, oo_foo_node));
1952 
1953 	list_create(&mi->mi_lost_state, sizeof (nfs4_lost_rqst_t),
1954 	    offsetof(nfs4_lost_rqst_t, lr_node));
1955 
1956 	list_create(&mi->mi_bseqid_list, sizeof (nfs4_bseqid_entry_t),
1957 	    offsetof(nfs4_bseqid_entry_t, bs_node));
1958 
1959 	/*
1960 	 * Initialize the msg buffer.
1961 	 */
1962 	list_create(&mi->mi_msg_list, sizeof (nfs4_debug_msg_t),
1963 	    offsetof(nfs4_debug_msg_t, msg_node));
1964 	mi->mi_msg_count = 0;
1965 	mutex_init(&mi->mi_msg_list_lock, NULL, MUTEX_DEFAULT, NULL);
1966 
1967 	/*
1968 	 * Initialize kstats
1969 	 */
1970 	nfs4_mnt_kstat_init(vfsp);
1971 
1972 	/*
1973 	 * Initialize the shared filehandle pool, and get the fname for
1974 	 * the filesystem root.
1975 	 */
1976 	sfh4_createtab(&mi->mi_filehandles);
1977 	mi->mi_fname = fn_get(NULL, ".");
1978 
1979 	/*
1980 	 * Save server path we're attempting to mount.
1981 	 */
1982 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
1983 	orig_sv_pathlen = svp_head->sv_pathlen;
1984 	orig_sv_path = kmem_alloc(svp_head->sv_pathlen, KM_SLEEP);
1985 	bcopy(svp_head->sv_path, orig_sv_path, svp_head->sv_pathlen);
1986 	nfs_rw_exit(&svp->sv_lock);
1987 
1988 	/*
1989 	 * Make the GETFH call to get root fh for each replica.
1990 	 */
1991 	if (svp_head->sv_next)
1992 		droptext = ", dropping replica";
1993 
1994 	/*
1995 	 * If the uid is set then set the creds for secure mounts
1996 	 * by proxy processes such as automountd.
1997 	 */
1998 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1999 	if (svp->sv_secdata->uid != 0) {
2000 		lcr = crdup(cr);
2001 		(void) crsetugid(lcr, svp->sv_secdata->uid, crgetgid(cr));
2002 		tcr = lcr;
2003 	}
2004 	nfs_rw_exit(&svp->sv_lock);
2005 	for (svp = svp_head; svp; svp = svp->sv_next) {
2006 		if (nfs4_chkdup_servinfo4(svp_head, svp)) {
2007 			nfs_cmn_err(error, CE_WARN,
2008 				VERS_MSG "Host %s is a duplicate%s",
2009 				svp->sv_hostname, droptext);
2010 			(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
2011 			svp->sv_flags |= SV4_NOTINUSE;
2012 			nfs_rw_exit(&svp->sv_lock);
2013 			continue;
2014 		}
2015 		mi->mi_curr_serv = svp;
2016 
2017 		/*
2018 		 * Just in case server path being mounted contains
2019 		 * symlinks and fails w/STALE, save the initial sv_path
2020 		 * so we can redrive the initial mount compound with the
2021 		 * initial sv_path -- not a symlink-expanded version.
2022 		 *
2023 		 * This could only happen if a symlink was expanded
2024 		 * and the expanded mount compound failed stale.  Because
2025 		 * it could be the case that the symlink was removed at
2026 		 * the server (and replaced with another symlink/dir,
2027 		 * we need to use the initial sv_path when attempting
2028 		 * to re-lookup everything and recover.
2029 		 *
2030 		 * Other mount errors should evenutally be handled here also
2031 		 * (NFS4ERR_DELAY, NFS4ERR_RESOURCE).  For now, all mount
2032 		 * failures will result in mount being redriven a few times.
2033 		 */
2034 		num_retry = nfs4_max_mount_retry;
2035 		do {
2036 			nfs4getfh_otw(mi, svp, &tmp_vtype,
2037 			    ((flags & NFSMNT_PUBLIC) ? NFS4_GETFH_PUBLIC : 0) |
2038 			    NFS4_GETFH_NEEDSOP, tcr, &e);
2039 
2040 			if (e.error == 0 && e.stat == NFS4_OK)
2041 				break;
2042 
2043 			/*
2044 			 * replace current sv_path with orig sv_path -- just in
2045 			 * case it changed due to embedded symlinks.
2046 			 */
2047 			(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
2048 			if (orig_sv_pathlen != svp->sv_pathlen) {
2049 				kmem_free(svp->sv_path, svp->sv_pathlen);
2050 				svp->sv_path = kmem_alloc(orig_sv_pathlen,
2051 							KM_SLEEP);
2052 				svp->sv_pathlen = orig_sv_pathlen;
2053 			}
2054 			bcopy(orig_sv_path, svp->sv_path, orig_sv_pathlen);
2055 			nfs_rw_exit(&svp->sv_lock);
2056 
2057 		} while (num_retry-- > 0);
2058 
2059 		error = e.error ? e.error : geterrno4(e.stat);
2060 		if (error) {
2061 			nfs_cmn_err(error, CE_WARN,
2062 				VERS_MSG "initial call to %s failed%s: %m",
2063 				svp->sv_hostname, droptext);
2064 			(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
2065 			svp->sv_flags |= SV4_NOTINUSE;
2066 			nfs_rw_exit(&svp->sv_lock);
2067 			mi->mi_flags &= ~MI4_RECOV_FAIL;
2068 			mi->mi_error = 0;
2069 			continue;
2070 		}
2071 
2072 		if (tmp_vtype == VBAD) {
2073 			zcmn_err(mi->mi_zone->zone_id, CE_WARN,
2074 				VERS_MSG "%s returned a bad file type for "
2075 				"root%s", svp->sv_hostname, droptext);
2076 			(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
2077 			svp->sv_flags |= SV4_NOTINUSE;
2078 			nfs_rw_exit(&svp->sv_lock);
2079 			continue;
2080 		}
2081 
2082 		if (vtype == VNON) {
2083 			vtype = tmp_vtype;
2084 		} else if (vtype != tmp_vtype) {
2085 			zcmn_err(mi->mi_zone->zone_id, CE_WARN,
2086 				VERS_MSG "%s returned a different file type "
2087 				"for root%s", svp->sv_hostname, droptext);
2088 			(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
2089 			svp->sv_flags |= SV4_NOTINUSE;
2090 			nfs_rw_exit(&svp->sv_lock);
2091 			continue;
2092 		}
2093 		if (firstsvp == NULL)
2094 			firstsvp = svp;
2095 	}
2096 
2097 	kmem_free(orig_sv_path, orig_sv_pathlen);
2098 
2099 	if (firstsvp == NULL) {
2100 		if (error == 0)
2101 			error = ENOENT;
2102 		goto bad;
2103 	}
2104 
2105 	mi->mi_curr_serv = svp = firstsvp;
2106 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
2107 	ASSERT((mi->mi_curr_serv->sv_flags & SV4_NOTINUSE) == 0);
2108 	fh.nfs_fh4_len = svp->sv_fhandle.fh_len;
2109 	fh.nfs_fh4_val = svp->sv_fhandle.fh_buf;
2110 	mi->mi_rootfh = sfh4_get(&fh, mi);
2111 	fh.nfs_fh4_len = svp->sv_pfhandle.fh_len;
2112 	fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf;
2113 	mi->mi_srvparentfh = sfh4_get(&fh, mi);
2114 	nfs_rw_exit(&svp->sv_lock);
2115 
2116 	/*
2117 	 * Make the root vnode without attributes.
2118 	 */
2119 	mfname = mi->mi_fname;
2120 	fn_hold(mfname);
2121 	rtvp = makenfs4node_by_fh(mi->mi_rootfh, NULL,
2122 	    &mfname, NULL, mi, cr, gethrtime());
2123 	rtvp->v_type = vtype;
2124 
2125 	mi->mi_curread = mi->mi_tsize;
2126 	mi->mi_curwrite = mi->mi_stsize;
2127 
2128 	/*
2129 	 * Start the manager thread responsible for handling async worker
2130 	 * threads.
2131 	 */
2132 	MI4_HOLD(mi);
2133 	VFS_HOLD(vfsp);	/* add reference for thread */
2134 	mi->mi_manager_thread = zthread_create(NULL, 0, nfs4_async_manager,
2135 					vfsp, 0, minclsyspri);
2136 	ASSERT(mi->mi_manager_thread != NULL);
2137 
2138 	/*
2139 	 * Create the thread that handles over-the-wire calls for
2140 	 * VOP_INACTIVE.
2141 	 * This needs to happen after the manager thread is created.
2142 	 */
2143 	MI4_HOLD(mi);
2144 	mi->mi_inactive_thread = zthread_create(NULL, 0, nfs4_inactive_thread,
2145 					mi, 0, minclsyspri);
2146 	ASSERT(mi->mi_inactive_thread != NULL);
2147 
2148 	/* If we didn't get a type, get one now */
2149 	if (rtvp->v_type == VNON) {
2150 		va.va_mask = AT_TYPE;
2151 		error = nfs4getattr(rtvp, &va, tcr);
2152 		if (error)
2153 			goto bad;
2154 		rtvp->v_type = va.va_type;
2155 	}
2156 
2157 	mi->mi_type = rtvp->v_type;
2158 
2159 	mutex_enter(&mi->mi_lock);
2160 	mi->mi_flags &= ~MI4_MOUNTING;
2161 	mutex_exit(&mi->mi_lock);
2162 
2163 	*rtvpp = rtvp;
2164 	if (lcr != NULL)
2165 		crfree(lcr);
2166 
2167 	return (0);
2168 bad:
2169 	/*
2170 	 * An error occurred somewhere, need to clean up...
2171 	 */
2172 	if (lcr != NULL)
2173 		crfree(lcr);
2174 	if (rtvp != NULL) {
2175 		/*
2176 		 * We need to release our reference to the root vnode and
2177 		 * destroy the mntinfo4 struct that we just created.
2178 		 */
2179 		rp = VTOR4(rtvp);
2180 		if (rp->r_flags & R4HASHED)
2181 			rp4_rmhash(rp);
2182 		VN_RELE(rtvp);
2183 	}
2184 	nfs4_async_stop(vfsp);
2185 	nfs4_async_manager_stop(vfsp);
2186 	removed = nfs4_mi_zonelist_remove(mi);
2187 	if (removed)
2188 		zone_rele(mi->mi_zone);
2189 
2190 	/*
2191 	 * This releases the initial "hold" of the mi since it will never
2192 	 * be referenced by the vfsp.  Also, when mount returns to vfs.c
2193 	 * with an error, the vfsp will be destroyed, not rele'd.
2194 	 */
2195 	MI4_RELE(mi);
2196 
2197 	*rtvpp = NULL;
2198 	return (error);
2199 }
2200 
2201 /*
2202  * vfs operations
2203  */
2204 static int
2205 nfs4_unmount(vfs_t *vfsp, int flag, cred_t *cr)
2206 {
2207 	mntinfo4_t *mi;
2208 	ushort_t omax;
2209 	int removed;
2210 
2211 	if (secpolicy_fs_unmount(cr, vfsp) != 0)
2212 		return (EPERM);
2213 
2214 	mi = VFTOMI4(vfsp);
2215 
2216 	if (flag & MS_FORCE) {
2217 		vfsp->vfs_flag |= VFS_UNMOUNTED;
2218 		if (nfs_zone() != mi->mi_zone) {
2219 			/*
2220 			 * If the request is coming from the wrong zone,
2221 			 * we don't want to create any new threads, and
2222 			 * performance is not a concern.  Do everything
2223 			 * inline.
2224 			 */
2225 			NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2226 			    "nfs4_unmount x-zone forced unmount of vfs %p\n",
2227 			    (void *)vfsp));
2228 			nfs4_free_mount(vfsp, cr);
2229 		} else {
2230 			/*
2231 			 * Free data structures asynchronously, to avoid
2232 			 * blocking the current thread (for performance
2233 			 * reasons only).
2234 			 */
2235 			async_free_mount(vfsp, cr);
2236 		}
2237 		return (0);
2238 	}
2239 	/*
2240 	 * Wait until all asynchronous putpage operations on
2241 	 * this file system are complete before flushing rnodes
2242 	 * from the cache.
2243 	 */
2244 	omax = mi->mi_max_threads;
2245 	if (nfs4_async_stop_sig(vfsp)) {
2246 
2247 		return (EINTR);
2248 	}
2249 	r4flush(vfsp, cr);
2250 	/*
2251 	 * If there are any active vnodes on this file system,
2252 	 * then the file system is busy and can't be umounted.
2253 	 */
2254 	if (check_rtable4(vfsp)) {
2255 		mutex_enter(&mi->mi_async_lock);
2256 		mi->mi_max_threads = omax;
2257 		mutex_exit(&mi->mi_async_lock);
2258 		return (EBUSY);
2259 	}
2260 	/*
2261 	 * The unmount can't fail from now on, and there are no active
2262 	 * files that could require over-the-wire calls to the server,
2263 	 * so stop the async manager and the inactive thread.
2264 	 */
2265 	nfs4_async_manager_stop(vfsp);
2266 	/*
2267 	 * Destroy all rnodes belonging to this file system from the
2268 	 * rnode hash queues and purge any resources allocated to
2269 	 * them.
2270 	 */
2271 	destroy_rtable4(vfsp, cr);
2272 	vfsp->vfs_flag |= VFS_UNMOUNTED;
2273 
2274 	nfs4_remove_mi_from_server(mi, NULL);
2275 	removed = nfs4_mi_zonelist_remove(mi);
2276 	if (removed)
2277 		zone_rele(mi->mi_zone);
2278 
2279 	return (0);
2280 }
2281 
2282 /*
2283  * find root of nfs
2284  */
2285 static int
2286 nfs4_root(vfs_t *vfsp, vnode_t **vpp)
2287 {
2288 	mntinfo4_t *mi;
2289 	vnode_t *vp;
2290 	nfs4_fname_t *mfname;
2291 	servinfo4_t *svp;
2292 
2293 	mi = VFTOMI4(vfsp);
2294 
2295 	if (nfs_zone() != mi->mi_zone)
2296 		return (EPERM);
2297 
2298 	svp = mi->mi_curr_serv;
2299 	if (svp) {
2300 		(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
2301 		if (svp->sv_flags & SV4_ROOT_STALE) {
2302 			nfs_rw_exit(&svp->sv_lock);
2303 
2304 			(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
2305 			if (svp->sv_flags & SV4_ROOT_STALE) {
2306 				svp->sv_flags &= ~SV4_ROOT_STALE;
2307 				nfs_rw_exit(&svp->sv_lock);
2308 				return (ENOENT);
2309 			}
2310 			nfs_rw_exit(&svp->sv_lock);
2311 		} else
2312 			nfs_rw_exit(&svp->sv_lock);
2313 	}
2314 
2315 	mfname = mi->mi_fname;
2316 	fn_hold(mfname);
2317 	vp = makenfs4node_by_fh(mi->mi_rootfh, NULL, &mfname, NULL,
2318 	    VFTOMI4(vfsp), CRED(), gethrtime());
2319 
2320 	if (VTOR4(vp)->r_flags & R4STALE) {
2321 		VN_RELE(vp);
2322 		return (ENOENT);
2323 	}
2324 
2325 	ASSERT(vp->v_type == VNON || vp->v_type == mi->mi_type);
2326 
2327 	vp->v_type = mi->mi_type;
2328 
2329 	*vpp = vp;
2330 
2331 	return (0);
2332 }
2333 
2334 static int
2335 nfs4_statfs_otw(vnode_t *vp, struct statvfs64 *sbp, cred_t *cr)
2336 {
2337 	int error;
2338 	nfs4_ga_res_t gar;
2339 	nfs4_ga_ext_res_t ger;
2340 
2341 	gar.n4g_ext_res = &ger;
2342 
2343 	if (error = nfs4_attr_otw(vp, TAG_FSINFO, &gar,
2344 	    NFS4_STATFS_ATTR_MASK, cr))
2345 		return (error);
2346 
2347 	*sbp = gar.n4g_ext_res->n4g_sb;
2348 
2349 	return (0);
2350 }
2351 
2352 /*
2353  * Get file system statistics.
2354  */
2355 static int
2356 nfs4_statvfs(vfs_t *vfsp, struct statvfs64 *sbp)
2357 {
2358 	int error;
2359 	vnode_t *vp;
2360 	cred_t *cr;
2361 
2362 	error = nfs4_root(vfsp, &vp);
2363 	if (error)
2364 		return (error);
2365 
2366 	cr = CRED();
2367 
2368 	error = nfs4_statfs_otw(vp, sbp, cr);
2369 	if (!error) {
2370 		(void) strncpy(sbp->f_basetype,
2371 			vfssw[vfsp->vfs_fstype].vsw_name, FSTYPSZ);
2372 		sbp->f_flag = vf_to_stf(vfsp->vfs_flag);
2373 	} else {
2374 		nfs4_purge_stale_fh(error, vp, cr);
2375 	}
2376 
2377 	VN_RELE(vp);
2378 
2379 	return (error);
2380 }
2381 
2382 static kmutex_t nfs4_syncbusy;
2383 
2384 /*
2385  * Flush dirty nfs files for file system vfsp.
2386  * If vfsp == NULL, all nfs files are flushed.
2387  *
2388  * SYNC_CLOSE in flag is passed to us to
2389  * indicate that we are shutting down and or
2390  * rebooting.
2391  */
2392 static int
2393 nfs4_sync(vfs_t *vfsp, short flag, cred_t *cr)
2394 {
2395 	/*
2396 	 * Cross-zone calls are OK here, since this translates to a
2397 	 * VOP_PUTPAGE(B_ASYNC), which gets picked up by the right zone.
2398 	 */
2399 	if (!(flag & SYNC_ATTR) && mutex_tryenter(&nfs4_syncbusy) != 0) {
2400 		r4flush(vfsp, cr);
2401 		mutex_exit(&nfs4_syncbusy);
2402 	}
2403 
2404 	/*
2405 	 * if SYNC_CLOSE is set then we know that
2406 	 * the system is rebooting, mark the mntinfo
2407 	 * for later examination.
2408 	 */
2409 	if (vfsp && (flag & SYNC_CLOSE)) {
2410 		mntinfo4_t *mi;
2411 
2412 		mi = VFTOMI4(vfsp);
2413 		if (!(mi->mi_flags & MI4_SHUTDOWN)) {
2414 			mutex_enter(&mi->mi_lock);
2415 			mi->mi_flags |= MI4_SHUTDOWN;
2416 			mutex_exit(&mi->mi_lock);
2417 		}
2418 	}
2419 	return (0);
2420 }
2421 
2422 /*
2423  * vget is difficult, if not impossible, to support in v4 because we don't
2424  * know the parent directory or name, which makes it impossible to create a
2425  * useful shadow vnode.  And we need the shadow vnode for things like
2426  * OPEN.
2427  */
2428 
2429 /* ARGSUSED */
2430 /*
2431  * XXX Check nfs4_vget_pseudo() for dependency.
2432  */
2433 static int
2434 nfs4_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
2435 {
2436 	return (EREMOTE);
2437 }
2438 
2439 /*
2440  * nfs4_mountroot get called in the case where we are diskless booting.  All
2441  * we need from here is the ability to get the server info and from there we
2442  * can simply call nfs4_rootvp.
2443  */
2444 /* ARGSUSED */
2445 static int
2446 nfs4_mountroot(vfs_t *vfsp, whymountroot_t why)
2447 {
2448 	vnode_t *rtvp;
2449 	char root_hostname[SYS_NMLN+1];
2450 	struct servinfo4 *svp;
2451 	int error;
2452 	int vfsflags;
2453 	size_t size;
2454 	char *root_path;
2455 	struct pathname pn;
2456 	char *name;
2457 	cred_t *cr;
2458 	mntinfo4_t *mi;
2459 	struct nfs_args args;		/* nfs mount arguments */
2460 	static char token[10];
2461 	nfs4_error_t n4e;
2462 
2463 	bzero(&args, sizeof (args));
2464 
2465 	/* do this BEFORE getfile which causes xid stamps to be initialized */
2466 	clkset(-1L);		/* hack for now - until we get time svc? */
2467 
2468 	if (why == ROOT_REMOUNT) {
2469 		/*
2470 		 * Shouldn't happen.
2471 		 */
2472 		panic("nfs4_mountroot: why == ROOT_REMOUNT");
2473 	}
2474 
2475 	if (why == ROOT_UNMOUNT) {
2476 		/*
2477 		 * Nothing to do for NFS.
2478 		 */
2479 		return (0);
2480 	}
2481 
2482 	/*
2483 	 * why == ROOT_INIT
2484 	 */
2485 
2486 	name = token;
2487 	*name = 0;
2488 	(void) getfsname("root", name, sizeof (token));
2489 
2490 	pn_alloc(&pn);
2491 	root_path = pn.pn_path;
2492 
2493 	svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
2494 	nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL);
2495 	svp->sv_knconf = kmem_zalloc(sizeof (*svp->sv_knconf), KM_SLEEP);
2496 	svp->sv_knconf->knc_protofmly = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
2497 	svp->sv_knconf->knc_proto = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
2498 
2499 	/*
2500 	 * Get server address
2501 	 * Get the root path
2502 	 * Get server's transport
2503 	 * Get server's hostname
2504 	 * Get options
2505 	 */
2506 	args.addr = &svp->sv_addr;
2507 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
2508 	args.fh = (char *)&svp->sv_fhandle;
2509 	args.knconf = svp->sv_knconf;
2510 	args.hostname = root_hostname;
2511 	vfsflags = 0;
2512 	if (error = mount_root(*name ? name : "root", root_path, NFS_V4,
2513 	    &args, &vfsflags)) {
2514 		if (error == EPROTONOSUPPORT)
2515 			nfs_cmn_err(error, CE_WARN, "nfs4_mountroot: "
2516 			    "mount_root failed: server doesn't support NFS V4");
2517 		else
2518 			nfs_cmn_err(error, CE_WARN,
2519 			    "nfs4_mountroot: mount_root failed: %m");
2520 		nfs_rw_exit(&svp->sv_lock);
2521 		sv4_free(svp);
2522 		pn_free(&pn);
2523 		return (error);
2524 	}
2525 	nfs_rw_exit(&svp->sv_lock);
2526 	svp->sv_hostnamelen = (int)(strlen(root_hostname) + 1);
2527 	svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP);
2528 	(void) strcpy(svp->sv_hostname, root_hostname);
2529 
2530 	svp->sv_pathlen = (int)(strlen(root_path) + 1);
2531 	svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP);
2532 	(void) strcpy(svp->sv_path, root_path);
2533 
2534 	/*
2535 	 * Force root partition to always be mounted with AUTH_UNIX for now
2536 	 */
2537 	svp->sv_secdata = kmem_alloc(sizeof (*svp->sv_secdata), KM_SLEEP);
2538 	svp->sv_secdata->secmod = AUTH_UNIX;
2539 	svp->sv_secdata->rpcflavor = AUTH_UNIX;
2540 	svp->sv_secdata->data = NULL;
2541 
2542 	cr = crgetcred();
2543 	rtvp = NULL;
2544 
2545 	error = nfs4rootvp(&rtvp, vfsp, svp, args.flags, cr, global_zone);
2546 
2547 	if (error) {
2548 		crfree(cr);
2549 		pn_free(&pn);
2550 		goto errout;
2551 	}
2552 
2553 	mi = VTOMI4(rtvp);
2554 
2555 	/*
2556 	 * Send client id to the server, if necessary
2557 	 */
2558 	nfs4_error_zinit(&n4e);
2559 	nfs4setclientid(mi, cr, FALSE, &n4e);
2560 	error = n4e.error;
2561 
2562 	crfree(cr);
2563 
2564 	if (error) {
2565 		pn_free(&pn);
2566 		goto errout;
2567 	}
2568 
2569 	error = nfs4_setopts(rtvp, DATAMODEL_NATIVE, &args);
2570 	if (error) {
2571 		nfs_cmn_err(error, CE_WARN,
2572 		    "nfs4_mountroot: invalid root mount options");
2573 		pn_free(&pn);
2574 		goto errout;
2575 	}
2576 
2577 	(void) vfs_lock_wait(vfsp);
2578 	vfs_add(NULL, vfsp, vfsflags);
2579 	vfs_unlock(vfsp);
2580 
2581 	size = strlen(svp->sv_hostname);
2582 	(void) strcpy(rootfs.bo_name, svp->sv_hostname);
2583 	rootfs.bo_name[size] = ':';
2584 	(void) strcpy(&rootfs.bo_name[size + 1], root_path);
2585 
2586 	pn_free(&pn);
2587 
2588 errout:
2589 	if (error) {
2590 		sv4_free(svp);
2591 		nfs4_async_stop(vfsp);
2592 		nfs4_async_manager_stop(vfsp);
2593 	}
2594 
2595 	if (rtvp != NULL)
2596 		VN_RELE(rtvp);
2597 
2598 	return (error);
2599 }
2600 
2601 /*
2602  * Initialization routine for VFS routines.  Should only be called once
2603  */
2604 int
2605 nfs4_vfsinit(void)
2606 {
2607 	mutex_init(&nfs4_syncbusy, NULL, MUTEX_DEFAULT, NULL);
2608 	nfs4setclientid_init();
2609 	return (0);
2610 }
2611 
2612 void
2613 nfs4_vfsfini(void)
2614 {
2615 	nfs4setclientid_fini();
2616 	mutex_destroy(&nfs4_syncbusy);
2617 }
2618 
2619 void
2620 nfs4_freevfs(vfs_t *vfsp)
2621 {
2622 	mntinfo4_t *mi;
2623 
2624 	/* need to release the initial hold */
2625 	mi = VFTOMI4(vfsp);
2626 	MI4_RELE(mi);
2627 }
2628 
2629 /*
2630  * Client side SETCLIENTID and SETCLIENTID_CONFIRM
2631  */
2632 struct nfs4_server nfs4_server_lst =
2633 	{ &nfs4_server_lst, &nfs4_server_lst };
2634 
2635 kmutex_t nfs4_server_lst_lock;
2636 
2637 static void
2638 nfs4setclientid_init(void)
2639 {
2640 	mutex_init(&nfs4_server_lst_lock, NULL, MUTEX_DEFAULT, NULL);
2641 }
2642 
2643 static void
2644 nfs4setclientid_fini(void)
2645 {
2646 	mutex_destroy(&nfs4_server_lst_lock);
2647 }
2648 
2649 int nfs4_retry_sclid_delay = NFS4_RETRY_SCLID_DELAY;
2650 int nfs4_num_sclid_retries = NFS4_NUM_SCLID_RETRIES;
2651 
2652 /*
2653  * Set the clientid for the server for "mi".  No-op if the clientid is
2654  * already set.
2655  *
2656  * The recovery boolean should be set to TRUE if this function was called
2657  * by the recovery code, and FALSE otherwise.  This is used to determine
2658  * if we need to call nfs4_start/end_op as well as grab the mi_recovlock
2659  * for adding a mntinfo4_t to a nfs4_server_t.
2660  *
2661  * Error is returned via 'n4ep'.  If there was a 'n4ep->stat' error, then
2662  * 'n4ep->error' is set to geterrno4(n4ep->stat).
2663  */
2664 void
2665 nfs4setclientid(mntinfo4_t *mi, cred_t *cr, bool_t recovery, nfs4_error_t *n4ep)
2666 {
2667 	struct nfs4_server *np;
2668 	struct servinfo4 *svp = mi->mi_curr_serv;
2669 	nfs4_recov_state_t recov_state;
2670 	int num_retries = 0;
2671 	bool_t retry;
2672 	cred_t *lcr = NULL;
2673 	int retry_inuse = 1; /* only retry once on NFS4ERR_CLID_INUSE */
2674 	time_t lease_time = 0;
2675 
2676 	recov_state.rs_flags = 0;
2677 	recov_state.rs_num_retry_despite_err = 0;
2678 	ASSERT(n4ep != NULL);
2679 
2680 recov_retry:
2681 	retry = FALSE;
2682 	nfs4_error_zinit(n4ep);
2683 	if (!recovery)
2684 		(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0);
2685 
2686 	mutex_enter(&nfs4_server_lst_lock);
2687 	np = servinfo4_to_nfs4_server(svp); /* This locks np if it is found */
2688 	mutex_exit(&nfs4_server_lst_lock);
2689 	if (!np) {
2690 		struct nfs4_server *tnp;
2691 		np = new_nfs4_server(svp, cr);
2692 		mutex_enter(&np->s_lock);
2693 
2694 		mutex_enter(&nfs4_server_lst_lock);
2695 		tnp = servinfo4_to_nfs4_server(svp);
2696 		if (tnp) {
2697 			/*
2698 			 * another thread snuck in and put server on list.
2699 			 * since we aren't adding it to the nfs4_server_list
2700 			 * we need to set the ref count to 0 and destroy it.
2701 			 */
2702 			np->s_refcnt = 0;
2703 			destroy_nfs4_server(np);
2704 			np = tnp;
2705 		} else {
2706 			/*
2707 			 * do not give list a reference until everything
2708 			 * succeeds
2709 			 */
2710 			insque(np, &nfs4_server_lst);
2711 		}
2712 		mutex_exit(&nfs4_server_lst_lock);
2713 	}
2714 	ASSERT(MUTEX_HELD(&np->s_lock));
2715 	/*
2716 	 * If we find the server already has N4S_CLIENTID_SET, then
2717 	 * just return, we've already done SETCLIENTID to that server
2718 	 */
2719 	if (np->s_flags & N4S_CLIENTID_SET) {
2720 		/* add mi to np's mntinfo4_list */
2721 		nfs4_add_mi_to_server(np, mi);
2722 		if (!recovery)
2723 			nfs_rw_exit(&mi->mi_recovlock);
2724 		mutex_exit(&np->s_lock);
2725 		nfs4_server_rele(np);
2726 		return;
2727 	}
2728 	mutex_exit(&np->s_lock);
2729 
2730 
2731 	/*
2732 	 * Drop the mi_recovlock since nfs4_start_op will
2733 	 * acquire it again for us.
2734 	 */
2735 	if (!recovery) {
2736 		nfs_rw_exit(&mi->mi_recovlock);
2737 
2738 		n4ep->error = nfs4_start_op(mi, NULL, NULL, &recov_state);
2739 		if (n4ep->error) {
2740 			nfs4_server_rele(np);
2741 			return;
2742 		}
2743 	}
2744 
2745 	mutex_enter(&np->s_lock);
2746 	while (np->s_flags & N4S_CLIENTID_PEND) {
2747 		if (!cv_wait_sig(&np->s_clientid_pend, &np->s_lock)) {
2748 			mutex_exit(&np->s_lock);
2749 			nfs4_server_rele(np);
2750 			if (!recovery)
2751 				nfs4_end_op(mi, NULL, NULL, &recov_state,
2752 				    recovery);
2753 			n4ep->error = EINTR;
2754 			return;
2755 		}
2756 	}
2757 
2758 	if (np->s_flags & N4S_CLIENTID_SET) {
2759 		/* XXX copied/pasted from above */
2760 		/* add mi to np's mntinfo4_list */
2761 		nfs4_add_mi_to_server(np, mi);
2762 		mutex_exit(&np->s_lock);
2763 		nfs4_server_rele(np);
2764 		if (!recovery)
2765 			nfs4_end_op(mi, NULL, NULL, &recov_state, recovery);
2766 		return;
2767 	}
2768 
2769 	/*
2770 	 * Reset the N4S_CB_PINGED flag. This is used to
2771 	 * indicate if we have received a CB_NULL from the
2772 	 * server. Also we reset the waiter flag.
2773 	 */
2774 	np->s_flags &= ~(N4S_CB_PINGED | N4S_CB_WAITER);
2775 	/* any failure must now clear this flag */
2776 	np->s_flags |= N4S_CLIENTID_PEND;
2777 	mutex_exit(&np->s_lock);
2778 	nfs4setclientid_otw(mi, svp, cr, np, n4ep, &retry_inuse);
2779 
2780 	if (n4ep->error == EACCES) {
2781 		/*
2782 		 * If the uid is set then set the creds for secure mounts
2783 		 * by proxy processes such as automountd.
2784 		 */
2785 		(void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
2786 		if (svp->sv_secdata->uid != 0) {
2787 			lcr = crdup(cr);
2788 			(void) crsetugid(lcr, svp->sv_secdata->uid,
2789 			    crgetgid(cr));
2790 		}
2791 		nfs_rw_exit(&svp->sv_lock);
2792 
2793 		if (lcr != NULL) {
2794 			mutex_enter(&np->s_lock);
2795 			crfree(np->s_cred);
2796 			np->s_cred = lcr;
2797 			mutex_exit(&np->s_lock);
2798 			nfs4setclientid_otw(mi, svp, lcr, np, n4ep,
2799 				&retry_inuse);
2800 		}
2801 	}
2802 	mutex_enter(&np->s_lock);
2803 	lease_time = np->s_lease_time;
2804 	np->s_flags &= ~N4S_CLIENTID_PEND;
2805 	mutex_exit(&np->s_lock);
2806 
2807 	if (n4ep->error != 0 || n4ep->stat != NFS4_OK) {
2808 		/*
2809 		 * Start recovery if failover is a possibility.  If
2810 		 * invoked by the recovery thread itself, then just
2811 		 * return and let it handle the failover first.  NB:
2812 		 * recovery is not allowed if the mount is in progress
2813 		 * since the infrastructure is not sufficiently setup
2814 		 * to allow it.  Just return the error (after suitable
2815 		 * retries).
2816 		 */
2817 		if (FAILOVER_MOUNT4(mi) && nfs4_try_failover(n4ep)) {
2818 			(void) nfs4_start_recovery(n4ep, mi, NULL,
2819 				    NULL, NULL, NULL, OP_SETCLIENTID, NULL);
2820 			/*
2821 			 * Don't retry here, just return and let
2822 			 * recovery take over.
2823 			 */
2824 			if (recovery)
2825 				retry = FALSE;
2826 		} else if (nfs4_rpc_retry_error(n4ep->error) ||
2827 			    n4ep->stat == NFS4ERR_RESOURCE ||
2828 			    n4ep->stat == NFS4ERR_STALE_CLIENTID) {
2829 
2830 				retry = TRUE;
2831 				/*
2832 				 * Always retry if in recovery or once had
2833 				 * contact with the server (but now it's
2834 				 * overloaded).
2835 				 */
2836 				if (recovery == TRUE ||
2837 				    n4ep->error == ETIMEDOUT ||
2838 				    n4ep->error == ECONNRESET)
2839 					num_retries = 0;
2840 		} else if (retry_inuse && n4ep->error == 0 &&
2841 			    n4ep->stat == NFS4ERR_CLID_INUSE) {
2842 				retry = TRUE;
2843 				num_retries = 0;
2844 		}
2845 	} else {
2846 		/*
2847 		 * Since everything succeeded give the list a reference count if
2848 		 * it hasn't been given one by add_new_nfs4_server() or if this
2849 		 * is not a recovery situation in which case it is already on
2850 		 * the list.
2851 		 */
2852 		mutex_enter(&np->s_lock);
2853 		if ((np->s_flags & N4S_INSERTED) == 0) {
2854 			np->s_refcnt++;
2855 			np->s_flags |= N4S_INSERTED;
2856 		}
2857 		mutex_exit(&np->s_lock);
2858 	}
2859 
2860 	if (!recovery)
2861 		nfs4_end_op(mi, NULL, NULL, &recov_state, recovery);
2862 
2863 
2864 	if (retry && num_retries++ < nfs4_num_sclid_retries) {
2865 		if (retry_inuse) {
2866 			delay(SEC_TO_TICK(lease_time + nfs4_retry_sclid_delay));
2867 			retry_inuse = 0;
2868 		} else
2869 			delay(SEC_TO_TICK(nfs4_retry_sclid_delay));
2870 
2871 		nfs4_server_rele(np);
2872 		goto recov_retry;
2873 	}
2874 
2875 
2876 	if (n4ep->error == 0)
2877 		n4ep->error = geterrno4(n4ep->stat);
2878 
2879 	/* broadcast before release in case no other threads are waiting */
2880 	cv_broadcast(&np->s_clientid_pend);
2881 	nfs4_server_rele(np);
2882 }
2883 
2884 int nfs4setclientid_otw_debug = 0;
2885 
2886 /*
2887  * This function handles the recovery of STALE_CLIENTID for SETCLIENTID_CONFRIM,
2888  * but nothing else; the calling function must be designed to handle those
2889  * other errors.
2890  */
2891 static void
2892 nfs4setclientid_otw(mntinfo4_t *mi, struct servinfo4 *svp,  cred_t *cr,
2893 	struct nfs4_server *np, nfs4_error_t *ep, int *retry_inusep)
2894 {
2895 	COMPOUND4args_clnt args;
2896 	COMPOUND4res_clnt res;
2897 	nfs_argop4 argop[3];
2898 	SETCLIENTID4args *s_args;
2899 	SETCLIENTID4resok *s_resok;
2900 	int doqueue = 1;
2901 	nfs4_ga_res_t *garp = NULL;
2902 	timespec_t prop_time, after_time;
2903 	verifier4 verf;
2904 	clientid4 tmp_clientid;
2905 
2906 	ASSERT(!MUTEX_HELD(&np->s_lock));
2907 
2908 	args.ctag = TAG_SETCLIENTID;
2909 
2910 	args.array = argop;
2911 	args.array_len = 3;
2912 
2913 	/* PUTROOTFH */
2914 	argop[0].argop = OP_PUTROOTFH;
2915 
2916 	/* GETATTR */
2917 	argop[1].argop = OP_GETATTR;
2918 	argop[1].nfs_argop4_u.opgetattr.attr_request = FATTR4_LEASE_TIME_MASK;
2919 	argop[1].nfs_argop4_u.opgetattr.mi = mi;
2920 
2921 	/* SETCLIENTID */
2922 	argop[2].argop = OP_SETCLIENTID;
2923 
2924 	s_args = &argop[2].nfs_argop4_u.opsetclientid;
2925 
2926 	mutex_enter(&np->s_lock);
2927 
2928 	s_args->client.verifier = np->clidtosend.verifier;
2929 	s_args->client.id_len = np->clidtosend.id_len;
2930 	ASSERT(s_args->client.id_len <= NFS4_OPAQUE_LIMIT);
2931 	s_args->client.id_val = np->clidtosend.id_val;
2932 
2933 	/*
2934 	 * Callback needs to happen on non-RDMA transport
2935 	 * Check if we have saved the original knetconfig
2936 	 * if so, use that instead.
2937 	 */
2938 	if (svp->sv_origknconf != NULL)
2939 		nfs4_cb_args(np, svp->sv_origknconf, s_args);
2940 	else
2941 		nfs4_cb_args(np, svp->sv_knconf, s_args);
2942 
2943 	mutex_exit(&np->s_lock);
2944 
2945 	rfs4call(mi, &args, &res, cr, &doqueue, 0, ep);
2946 
2947 	if (ep->error)
2948 		return;
2949 
2950 	/* getattr lease_time res */
2951 	if (res.array_len >= 2) {
2952 		garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res;
2953 
2954 #ifndef _LP64
2955 		/*
2956 		 * The 32 bit client cannot handle a lease time greater than
2957 		 * (INT32_MAX/1000000).  This is due to the use of the
2958 		 * lease_time in calls to drv_usectohz() in
2959 		 * nfs4_renew_lease_thread().  The problem is that
2960 		 * drv_usectohz() takes a time_t (which is just a long = 4
2961 		 * bytes) as its parameter.  The lease_time is multiplied by
2962 		 * 1000000 to convert seconds to usecs for the parameter.  If
2963 		 * a number bigger than (INT32_MAX/1000000) is used then we
2964 		 * overflow on the 32bit client.
2965 		 */
2966 		if (garp->n4g_ext_res->n4g_leasetime > (INT32_MAX/1000000)) {
2967 			garp->n4g_ext_res->n4g_leasetime = INT32_MAX/1000000;
2968 		}
2969 #endif
2970 
2971 		mutex_enter(&np->s_lock);
2972 		np->s_lease_time = garp->n4g_ext_res->n4g_leasetime;
2973 
2974 		/*
2975 		 * Keep track of the lease period for the mi's
2976 		 * mi_msg_list.  We need an appropiate time
2977 		 * bound to associate past facts with a current
2978 		 * event.  The lease period is perfect for this.
2979 		 */
2980 		mutex_enter(&mi->mi_msg_list_lock);
2981 		mi->mi_lease_period = np->s_lease_time;
2982 		mutex_exit(&mi->mi_msg_list_lock);
2983 		mutex_exit(&np->s_lock);
2984 	}
2985 
2986 
2987 	if (res.status == NFS4ERR_CLID_INUSE) {
2988 		clientaddr4 *clid_inuse;
2989 
2990 		if (!(*retry_inusep)) {
2991 			clid_inuse = &res.array->nfs_resop4_u.
2992 				opsetclientid.SETCLIENTID4res_u.client_using;
2993 
2994 			zcmn_err(mi->mi_zone->zone_id, CE_NOTE,
2995 			    "NFS4 mount (SETCLIENTID failed)."
2996 			    "  nfs4_client_id.id is in"
2997 			    "use already by: r_netid<%s> r_addr<%s>",
2998 			    clid_inuse->r_netid, clid_inuse->r_addr);
2999 		}
3000 
3001 		/*
3002 		 * XXX - The client should be more robust in its
3003 		 * handling of clientid in use errors (regen another
3004 		 * clientid and try again?)
3005 		 */
3006 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3007 		return;
3008 	}
3009 
3010 	if (res.status) {
3011 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3012 		return;
3013 	}
3014 
3015 	s_resok = &res.array[2].nfs_resop4_u.
3016 		opsetclientid.SETCLIENTID4res_u.resok4;
3017 
3018 	tmp_clientid = s_resok->clientid;
3019 
3020 	verf = s_resok->setclientid_confirm;
3021 
3022 #ifdef	DEBUG
3023 	if (nfs4setclientid_otw_debug) {
3024 		union {
3025 			clientid4	clientid;
3026 			int		foo[2];
3027 		} cid;
3028 
3029 		cid.clientid = s_resok->clientid;
3030 
3031 		zcmn_err(mi->mi_zone->zone_id, CE_NOTE,
3032 		"nfs4setclientid_otw: OK, clientid = %x,%x, "
3033 		"verifier = %" PRIx64 "\n", cid.foo[0], cid.foo[1], verf);
3034 	}
3035 #endif
3036 
3037 	(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3038 
3039 	/* Confirm the client id and get the lease_time attribute */
3040 
3041 	args.ctag = TAG_SETCLIENTID_CF;
3042 
3043 	args.array = argop;
3044 	args.array_len = 1;
3045 
3046 	argop[0].argop = OP_SETCLIENTID_CONFIRM;
3047 
3048 	argop[0].nfs_argop4_u.opsetclientid_confirm.clientid = tmp_clientid;
3049 	argop[0].nfs_argop4_u.opsetclientid_confirm.setclientid_confirm = verf;
3050 
3051 	/* used to figure out RTT for np */
3052 	gethrestime(&prop_time);
3053 
3054 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setlientid_otw: "
3055 		"start time: %ld sec %ld nsec", prop_time.tv_sec,
3056 		prop_time.tv_nsec));
3057 
3058 	rfs4call(mi, &args, &res, cr, &doqueue, 0, ep);
3059 
3060 	gethrestime(&after_time);
3061 	mutex_enter(&np->s_lock);
3062 	np->propagation_delay.tv_sec =
3063 		MAX(1, after_time.tv_sec - prop_time.tv_sec);
3064 	mutex_exit(&np->s_lock);
3065 
3066 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setlcientid_otw: "
3067 		"finish time: %ld sec ", after_time.tv_sec));
3068 
3069 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setclientid_otw: "
3070 		"propagation delay set to %ld sec",
3071 		np->propagation_delay.tv_sec));
3072 
3073 	if (ep->error)
3074 		return;
3075 
3076 	if (res.status == NFS4ERR_CLID_INUSE) {
3077 		clientaddr4 *clid_inuse;
3078 
3079 		if (!(*retry_inusep)) {
3080 			clid_inuse = &res.array->nfs_resop4_u.
3081 				opsetclientid.SETCLIENTID4res_u.client_using;
3082 
3083 			zcmn_err(mi->mi_zone->zone_id, CE_NOTE,
3084 			    "SETCLIENTID_CONFIRM failed.  "
3085 			    "nfs4_client_id.id is in use already by: "
3086 			    "r_netid<%s> r_addr<%s>",
3087 			    clid_inuse->r_netid, clid_inuse->r_addr);
3088 		}
3089 
3090 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3091 		return;
3092 	}
3093 
3094 	if (res.status) {
3095 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3096 		return;
3097 	}
3098 
3099 	mutex_enter(&np->s_lock);
3100 	np->clientid = tmp_clientid;
3101 	np->s_flags |= N4S_CLIENTID_SET;
3102 
3103 	/* Add mi to np's mntinfo4 list */
3104 	nfs4_add_mi_to_server(np, mi);
3105 
3106 	if (np->lease_valid == NFS4_LEASE_NOT_STARTED) {
3107 		/*
3108 		 * Start lease management thread.
3109 		 * Keep trying until we succeed.
3110 		 */
3111 
3112 		np->s_refcnt++;		/* pass reference to thread */
3113 		(void) zthread_create(NULL, 0, nfs4_renew_lease_thread, np, 0,
3114 				    minclsyspri);
3115 	}
3116 	mutex_exit(&np->s_lock);
3117 
3118 	(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3119 }
3120 
3121 /*
3122  * Add mi to sp's mntinfo4_list if it isn't already in the list.  Makes
3123  * mi's clientid the same as sp's.
3124  * Assumes sp is locked down.
3125  */
3126 void
3127 nfs4_add_mi_to_server(nfs4_server_t *sp, mntinfo4_t *mi)
3128 {
3129 	mntinfo4_t *tmi;
3130 	int in_list = 0;
3131 
3132 	ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
3133 	    nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
3134 	ASSERT(sp != &nfs4_server_lst);
3135 	ASSERT(MUTEX_HELD(&sp->s_lock));
3136 
3137 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3138 		"nfs4_add_mi_to_server: add mi %p to sp %p",
3139 		    (void*)mi, (void*)sp));
3140 
3141 	for (tmi = sp->mntinfo4_list;
3142 	    tmi != NULL;
3143 	    tmi = tmi->mi_clientid_next) {
3144 		if (tmi == mi) {
3145 			NFS4_DEBUG(nfs4_client_lease_debug,
3146 				(CE_NOTE,
3147 				"nfs4_add_mi_to_server: mi in list"));
3148 			in_list = 1;
3149 		}
3150 	}
3151 
3152 	/*
3153 	 * First put a hold on the mntinfo4's vfsp so that references via
3154 	 * mntinfo4_list will be valid.
3155 	 */
3156 	if (!in_list)
3157 		VFS_HOLD(mi->mi_vfsp);
3158 
3159 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4_add_mi_to_server: "
3160 		"hold vfs %p for mi: %p", (void*)mi->mi_vfsp, (void*)mi));
3161 
3162 	if (!in_list) {
3163 		if (sp->mntinfo4_list)
3164 			sp->mntinfo4_list->mi_clientid_prev = mi;
3165 		mi->mi_clientid_next = sp->mntinfo4_list;
3166 		sp->mntinfo4_list = mi;
3167 		mi->mi_srvsettime = gethrestime_sec();
3168 	}
3169 
3170 	/* set mi's clientid to that of sp's for later matching */
3171 	mi->mi_clientid = sp->clientid;
3172 
3173 	/*
3174 	 * Update the clientid for any other mi's belonging to sp.  This
3175 	 * must be done here while we hold sp->s_lock, so that
3176 	 * find_nfs4_server() continues to work.
3177 	 */
3178 
3179 	for (tmi = sp->mntinfo4_list;
3180 	    tmi != NULL;
3181 	    tmi = tmi->mi_clientid_next) {
3182 		if (tmi != mi) {
3183 			tmi->mi_clientid = sp->clientid;
3184 		}
3185 	}
3186 }
3187 
3188 /*
3189  * Remove the mi from sp's mntinfo4_list and release its reference.
3190  * Exception: if mi still has open files, flag it for later removal (when
3191  * all the files are closed).
3192  *
3193  * If this is the last mntinfo4 in sp's list then tell the lease renewal
3194  * thread to exit.
3195  */
3196 static void
3197 nfs4_remove_mi_from_server_nolock(mntinfo4_t *mi, nfs4_server_t *sp)
3198 {
3199 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3200 		"nfs4_remove_mi_from_server_nolock: remove mi %p from sp %p",
3201 		(void*)mi, (void*)sp));
3202 
3203 	ASSERT(sp != NULL);
3204 	ASSERT(MUTEX_HELD(&sp->s_lock));
3205 	ASSERT(mi->mi_open_files >= 0);
3206 
3207 	/*
3208 	 * First make sure this mntinfo4 can be taken off of the list,
3209 	 * ie: it doesn't have any open files remaining.
3210 	 */
3211 	if (mi->mi_open_files > 0) {
3212 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3213 			"nfs4_remove_mi_from_server_nolock: don't "
3214 			"remove mi since it still has files open"));
3215 
3216 		mutex_enter(&mi->mi_lock);
3217 		mi->mi_flags |= MI4_REMOVE_ON_LAST_CLOSE;
3218 		mutex_exit(&mi->mi_lock);
3219 		return;
3220 	}
3221 
3222 	VFS_HOLD(mi->mi_vfsp);
3223 	remove_mi(sp, mi);
3224 	VFS_RELE(mi->mi_vfsp);
3225 
3226 	if (sp->mntinfo4_list == NULL) {
3227 		/* last fs unmounted, kill the thread */
3228 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3229 			"remove_mi_from_nfs4_server_nolock: kill the thread"));
3230 		nfs4_mark_srv_dead(sp);
3231 	}
3232 }
3233 
3234 /*
3235  * Remove mi from sp's mntinfo4_list and release the vfs reference.
3236  */
3237 static void
3238 remove_mi(nfs4_server_t *sp, mntinfo4_t *mi)
3239 {
3240 	ASSERT(MUTEX_HELD(&sp->s_lock));
3241 
3242 	/*
3243 	 * We release a reference, and the caller must still have a
3244 	 * reference.
3245 	 */
3246 	ASSERT(mi->mi_vfsp->vfs_count >= 2);
3247 
3248 	if (mi->mi_clientid_prev) {
3249 		mi->mi_clientid_prev->mi_clientid_next = mi->mi_clientid_next;
3250 	} else {
3251 		/* This is the first mi in sp's mntinfo4_list */
3252 		/*
3253 		 * Make sure the first mntinfo4 in the list is the actual
3254 		 * mntinfo4 passed in.
3255 		 */
3256 		ASSERT(sp->mntinfo4_list == mi);
3257 
3258 		sp->mntinfo4_list = mi->mi_clientid_next;
3259 	}
3260 	if (mi->mi_clientid_next)
3261 		mi->mi_clientid_next->mi_clientid_prev = mi->mi_clientid_prev;
3262 
3263 	/* Now mark the mntinfo4's links as being removed */
3264 	mi->mi_clientid_prev = mi->mi_clientid_next = NULL;
3265 
3266 	VFS_RELE(mi->mi_vfsp);
3267 }
3268 
3269 /*
3270  * Free all the entries in sp's mntinfo4_list.
3271  */
3272 static void
3273 remove_all_mi(nfs4_server_t *sp)
3274 {
3275 	mntinfo4_t *mi;
3276 
3277 	ASSERT(MUTEX_HELD(&sp->s_lock));
3278 
3279 	while (sp->mntinfo4_list != NULL) {
3280 		mi = sp->mntinfo4_list;
3281 		/*
3282 		 * Grab a reference in case there is only one left (which
3283 		 * remove_mi() frees).
3284 		 */
3285 		VFS_HOLD(mi->mi_vfsp);
3286 		remove_mi(sp, mi);
3287 		VFS_RELE(mi->mi_vfsp);
3288 	}
3289 }
3290 
3291 /*
3292  * Remove the mi from sp's mntinfo4_list as above, and rele the vfs.
3293  *
3294  * This version can be called with a null nfs4_server_t arg,
3295  * and will either find the right one and handle locking, or
3296  * do nothing because the mi wasn't added to an sp's mntinfo4_list.
3297  */
3298 void
3299 nfs4_remove_mi_from_server(mntinfo4_t *mi, nfs4_server_t *esp)
3300 {
3301 	nfs4_server_t	*sp;
3302 
3303 	if (esp == NULL) {
3304 		(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0);
3305 		sp = find_nfs4_server_all(mi, 1);
3306 	} else
3307 		sp = esp;
3308 
3309 	if (sp != NULL)
3310 		nfs4_remove_mi_from_server_nolock(mi, sp);
3311 
3312 	/*
3313 	 * If we had a valid esp as input, the calling function will be
3314 	 * responsible for unlocking the esp nfs4_server.
3315 	 */
3316 	if (esp == NULL) {
3317 		if (sp != NULL)
3318 			mutex_exit(&sp->s_lock);
3319 		nfs_rw_exit(&mi->mi_recovlock);
3320 		if (sp != NULL)
3321 			nfs4_server_rele(sp);
3322 	}
3323 }
3324 
3325 /*
3326  * Return TRUE if the given server has any non-unmounted filesystems.
3327  */
3328 
3329 bool_t
3330 nfs4_fs_active(nfs4_server_t *sp)
3331 {
3332 	mntinfo4_t *mi;
3333 
3334 	ASSERT(MUTEX_HELD(&sp->s_lock));
3335 
3336 	for (mi = sp->mntinfo4_list; mi != NULL; mi = mi->mi_clientid_next) {
3337 		if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED))
3338 			return (TRUE);
3339 	}
3340 
3341 	return (FALSE);
3342 }
3343 
3344 /*
3345  * Mark sp as finished and notify any waiters.
3346  */
3347 
3348 void
3349 nfs4_mark_srv_dead(nfs4_server_t *sp)
3350 {
3351 	ASSERT(MUTEX_HELD(&sp->s_lock));
3352 
3353 	sp->s_thread_exit = NFS4_THREAD_EXIT;
3354 	cv_broadcast(&sp->cv_thread_exit);
3355 }
3356 
3357 /*
3358  * Create a new nfs4_server_t structure.
3359  * Returns new node unlocked and not in list, but with a reference count of
3360  * 1.
3361  */
3362 struct nfs4_server *
3363 new_nfs4_server(struct servinfo4 *svp, cred_t *cr)
3364 {
3365 	struct nfs4_server *np;
3366 	timespec_t tt;
3367 	union {
3368 		struct {
3369 			uint32_t sec;
3370 			uint32_t subsec;
3371 		} un_curtime;
3372 		verifier4	un_verifier;
3373 	} nfs4clientid_verifier;
3374 	char id_val[] = "Solaris: %s, NFSv4 kernel client";
3375 	int len;
3376 
3377 	np = kmem_zalloc(sizeof (struct nfs4_server), KM_SLEEP);
3378 	np->saddr.len = svp->sv_addr.len;
3379 	np->saddr.maxlen = svp->sv_addr.maxlen;
3380 	np->saddr.buf = kmem_alloc(svp->sv_addr.maxlen, KM_SLEEP);
3381 	bcopy(svp->sv_addr.buf, np->saddr.buf, svp->sv_addr.len);
3382 	np->s_refcnt = 1;
3383 
3384 	/*
3385 	 * Build the nfs_client_id4 for this server mount.  Ensure
3386 	 * the verifier is useful and that the identification is
3387 	 * somehow based on the server's address for the case of
3388 	 * multi-homed servers.
3389 	 */
3390 	nfs4clientid_verifier.un_verifier = 0;
3391 	gethrestime(&tt);
3392 	nfs4clientid_verifier.un_curtime.sec = (uint32_t)tt.tv_sec;
3393 	nfs4clientid_verifier.un_curtime.subsec = (uint32_t)tt.tv_nsec;
3394 	np->clidtosend.verifier = nfs4clientid_verifier.un_verifier;
3395 
3396 	/*
3397 	 * calculate the length of the opaque identifier.  Subtract 2
3398 	 * for the "%s" and add the traditional +1 for null
3399 	 * termination.
3400 	 */
3401 	len = strlen(id_val) - 2 + strlen(uts_nodename()) + 1;
3402 	np->clidtosend.id_len = len + np->saddr.maxlen;
3403 
3404 	np->clidtosend.id_val = kmem_alloc(np->clidtosend.id_len, KM_SLEEP);
3405 	(void) sprintf(np->clidtosend.id_val, id_val, uts_nodename());
3406 	bcopy(np->saddr.buf, &np->clidtosend.id_val[len], np->saddr.len);
3407 
3408 	np->s_flags = 0;
3409 	np->mntinfo4_list = NULL;
3410 	/* save cred for issuing rfs4calls inside the renew thread */
3411 	crhold(cr);
3412 	np->s_cred = cr;
3413 	cv_init(&np->cv_thread_exit, NULL, CV_DEFAULT, NULL);
3414 	mutex_init(&np->s_lock, NULL, MUTEX_DEFAULT, NULL);
3415 	nfs_rw_init(&np->s_recovlock, NULL, RW_DEFAULT, NULL);
3416 	list_create(&np->s_deleg_list, sizeof (rnode4_t),
3417 	    offsetof(rnode4_t, r_deleg_link));
3418 	np->s_thread_exit = 0;
3419 	np->state_ref_count = 0;
3420 	np->lease_valid = NFS4_LEASE_NOT_STARTED;
3421 	cv_init(&np->s_cv_otw_count, NULL, CV_DEFAULT, NULL);
3422 	cv_init(&np->s_clientid_pend, NULL, CV_DEFAULT, NULL);
3423 	np->s_otw_call_count = 0;
3424 	cv_init(&np->wait_cb_null, NULL, CV_DEFAULT, NULL);
3425 	np->zoneid = getzoneid();
3426 	np->zone_globals = nfs4_get_callback_globals();
3427 	ASSERT(np->zone_globals != NULL);
3428 	return (np);
3429 }
3430 
3431 /*
3432  * Create a new nfs4_server_t structure and add it to the list.
3433  * Returns new node locked; reference must eventually be freed.
3434  */
3435 static struct nfs4_server *
3436 add_new_nfs4_server(struct servinfo4 *svp, cred_t *cr)
3437 {
3438 	nfs4_server_t *sp;
3439 
3440 	ASSERT(MUTEX_HELD(&nfs4_server_lst_lock));
3441 	sp = new_nfs4_server(svp, cr);
3442 	mutex_enter(&sp->s_lock);
3443 	insque(sp, &nfs4_server_lst);
3444 	sp->s_refcnt++;			/* list gets a reference */
3445 	sp->s_flags |= N4S_INSERTED;
3446 	sp->clientid = 0;
3447 	return (sp);
3448 }
3449 
3450 int nfs4_server_t_debug = 0;
3451 
3452 #ifdef lint
3453 extern void
3454 dumpnfs4slist(char *, mntinfo4_t *, clientid4, servinfo4_t *);
3455 #endif
3456 
3457 #ifndef lint
3458 #ifdef DEBUG
3459 void
3460 dumpnfs4slist(char *txt, mntinfo4_t *mi, clientid4 clientid, servinfo4_t *srv_p)
3461 {
3462 	int hash16(void *p, int len);
3463 	nfs4_server_t *np;
3464 
3465 	NFS4_DEBUG(nfs4_server_t_debug, (CE_NOTE,
3466 	    "dumping nfs4_server_t list in %s", txt));
3467 	NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
3468 	    "mi 0x%p, want clientid %llx, addr %d/%04X",
3469 	    mi, (longlong_t)clientid, srv_p->sv_addr.len,
3470 	    hash16((void *)srv_p->sv_addr.buf, srv_p->sv_addr.len)));
3471 	for (np = nfs4_server_lst.forw; np != &nfs4_server_lst;
3472 	    np = np->forw) {
3473 		NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
3474 		    "node 0x%p,    clientid %llx, addr %d/%04X, cnt %d",
3475 		    np, (longlong_t)np->clientid, np->saddr.len,
3476 		    hash16((void *)np->saddr.buf, np->saddr.len),
3477 		    np->state_ref_count));
3478 		if (np->saddr.len == srv_p->sv_addr.len &&
3479 		    bcmp(np->saddr.buf, srv_p->sv_addr.buf,
3480 		    np->saddr.len) == 0)
3481 			NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
3482 			    " - address matches"));
3483 		if (np->clientid == clientid || np->clientid == 0)
3484 			NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
3485 			    " - clientid matches"));
3486 		if (np->s_thread_exit != NFS4_THREAD_EXIT)
3487 			NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
3488 			    " - thread not exiting"));
3489 	}
3490 	delay(hz);
3491 }
3492 #endif
3493 #endif
3494 
3495 
3496 /*
3497  * Move a mntinfo4_t from one server list to another.
3498  * Locking of the two nfs4_server_t nodes will be done in list order.
3499  *
3500  * Returns NULL if the current nfs4_server_t for the filesystem could not
3501  * be found (e.g., due to forced unmount).  Otherwise returns a reference
3502  * to the new nfs4_server_t, which must eventually be freed.
3503  */
3504 nfs4_server_t *
3505 nfs4_move_mi(mntinfo4_t *mi, servinfo4_t *old, servinfo4_t *new)
3506 {
3507 	nfs4_server_t *p, *op = NULL, *np = NULL;
3508 	int num_open;
3509 	zoneid_t zoneid = nfs_zoneid();
3510 
3511 	ASSERT(nfs_zone() == mi->mi_zone);
3512 
3513 	mutex_enter(&nfs4_server_lst_lock);
3514 #ifdef DEBUG
3515 	if (nfs4_server_t_debug)
3516 		dumpnfs4slist("nfs4_move_mi", mi, (clientid4)0, new);
3517 #endif
3518 	for (p = nfs4_server_lst.forw; p != &nfs4_server_lst; p = p->forw) {
3519 		if (p->zoneid != zoneid)
3520 			continue;
3521 		if (p->saddr.len == old->sv_addr.len &&
3522 		    bcmp(p->saddr.buf, old->sv_addr.buf, p->saddr.len) == 0 &&
3523 		    p->s_thread_exit != NFS4_THREAD_EXIT) {
3524 			op = p;
3525 			mutex_enter(&op->s_lock);
3526 			op->s_refcnt++;
3527 		}
3528 		if (p->saddr.len == new->sv_addr.len &&
3529 		    bcmp(p->saddr.buf, new->sv_addr.buf, p->saddr.len) == 0 &&
3530 		    p->s_thread_exit != NFS4_THREAD_EXIT) {
3531 			np = p;
3532 			mutex_enter(&np->s_lock);
3533 		}
3534 		if (op != NULL && np != NULL)
3535 			break;
3536 	}
3537 	if (op == NULL) {
3538 		/*
3539 		 * Filesystem has been forcibly unmounted.  Bail out.
3540 		 */
3541 		if (np != NULL)
3542 			mutex_exit(&np->s_lock);
3543 		mutex_exit(&nfs4_server_lst_lock);
3544 		return (NULL);
3545 	}
3546 	if (np != NULL) {
3547 		np->s_refcnt++;
3548 	} else {
3549 #ifdef DEBUG
3550 		NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
3551 		    "nfs4_move_mi: no target nfs4_server, will create."));
3552 #endif
3553 		np = add_new_nfs4_server(new, kcred);
3554 	}
3555 	mutex_exit(&nfs4_server_lst_lock);
3556 
3557 	NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
3558 	    "nfs4_move_mi: for mi 0x%p, "
3559 	    "old servinfo4 0x%p, new servinfo4 0x%p, "
3560 	    "old nfs4_server 0x%p, new nfs4_server 0x%p, ",
3561 	    (void*)mi, (void*)old, (void*)new,
3562 	    (void*)op, (void*)np));
3563 	ASSERT(op != NULL && np != NULL);
3564 
3565 	/* discard any delegations */
3566 	nfs4_deleg_discard(mi, op);
3567 
3568 	num_open = mi->mi_open_files;
3569 	mi->mi_open_files = 0;
3570 	op->state_ref_count -= num_open;
3571 	ASSERT(op->state_ref_count >= 0);
3572 	np->state_ref_count += num_open;
3573 	nfs4_remove_mi_from_server_nolock(mi, op);
3574 	mi->mi_open_files = num_open;
3575 	NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
3576 	    "nfs4_move_mi: mi_open_files %d, op->cnt %d, np->cnt %d",
3577 	    mi->mi_open_files, op->state_ref_count, np->state_ref_count));
3578 
3579 	nfs4_add_mi_to_server(np, mi);
3580 
3581 	mutex_exit(&op->s_lock);
3582 	nfs4_server_rele(op);
3583 	mutex_exit(&np->s_lock);
3584 
3585 	return (np);
3586 }
3587 
3588 /*
3589  * Need to have the nfs4_server_lst_lock.
3590  * Search the nfs4_server list to find a match on this servinfo4
3591  * based on its address.
3592  *
3593  * Returns NULL if no match is found.  Otherwise returns a reference (which
3594  * must eventually be freed) to a locked nfs4_server.
3595  */
3596 nfs4_server_t *
3597 servinfo4_to_nfs4_server(servinfo4_t *srv_p)
3598 {
3599 	nfs4_server_t *np;
3600 	zoneid_t zoneid = nfs_zoneid();
3601 
3602 	ASSERT(MUTEX_HELD(&nfs4_server_lst_lock));
3603 	for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
3604 		if (np->zoneid == zoneid &&
3605 		    np->saddr.len == srv_p->sv_addr.len &&
3606 		    bcmp(np->saddr.buf, srv_p->sv_addr.buf,
3607 			    np->saddr.len) == 0 &&
3608 		    np->s_thread_exit != NFS4_THREAD_EXIT) {
3609 			mutex_enter(&np->s_lock);
3610 			np->s_refcnt++;
3611 			return (np);
3612 		}
3613 	}
3614 	return (NULL);
3615 }
3616 
3617 /*
3618  * Search the nfs4_server_lst to find a match based on clientid and
3619  * addr.
3620  * Locks the nfs4_server down if it is found and returns a reference that
3621  * must eventually be freed.
3622  *
3623  * Returns NULL it no match is found.  This means one of two things: either
3624  * mi is in the process of being mounted, or mi has been unmounted.
3625  *
3626  * The caller should be holding mi->mi_recovlock, and it should continue to
3627  * hold the lock until done with the returned nfs4_server_t.  Once
3628  * mi->mi_recovlock is released, there is no guarantee that the returned
3629  * mi->nfs4_server_t will continue to correspond to mi.
3630  */
3631 nfs4_server_t *
3632 find_nfs4_server(mntinfo4_t *mi)
3633 {
3634 	return (find_nfs4_server_all(mi, 0));
3635 }
3636 
3637 /*
3638  * Same as above, but takes an "all" parameter which can be
3639  * set to 1 if the caller wishes to find nfs4_server_t's which
3640  * have been marked for termination by the exit of the renew
3641  * thread.  This should only be used by operations which are
3642  * cleaning up and will not cause an OTW op.
3643  */
3644 nfs4_server_t *
3645 find_nfs4_server_all(mntinfo4_t *mi, int all)
3646 {
3647 	nfs4_server_t *np;
3648 	servinfo4_t *svp;
3649 	zoneid_t zoneid = mi->mi_zone->zone_id;
3650 
3651 	ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
3652 	    nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
3653 	/*
3654 	 * This can be called from nfs4_unmount() which can be called from the
3655 	 * global zone, hence it's legal for the global zone to muck with
3656 	 * another zone's server list, as long as it doesn't try to contact
3657 	 * them.
3658 	 */
3659 	ASSERT(zoneid == getzoneid() || getzoneid() == GLOBAL_ZONEID ||
3660 	    nfs_global_client_only != 0);
3661 
3662 	/*
3663 	 * The nfs4_server_lst_lock global lock is held when we get a new
3664 	 * clientid (via SETCLIENTID OTW).  Holding this global lock and
3665 	 * mi_recovlock (READER is fine) ensures that the nfs4_server
3666 	 * and this mntinfo4 can't get out of sync, so the following search is
3667 	 * always valid.
3668 	 */
3669 	mutex_enter(&nfs4_server_lst_lock);
3670 #ifdef DEBUG
3671 	if (nfs4_server_t_debug) {
3672 		/* mi->mi_clientid is unprotected, ok for debug output */
3673 		dumpnfs4slist("find_nfs4_server", mi, mi->mi_clientid,
3674 			mi->mi_curr_serv);
3675 	}
3676 #endif
3677 	for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
3678 		mutex_enter(&np->s_lock);
3679 		svp = mi->mi_curr_serv;
3680 
3681 		if (np->zoneid == zoneid &&
3682 		    np->clientid == mi->mi_clientid &&
3683 		    np->saddr.len == svp->sv_addr.len &&
3684 		    bcmp(np->saddr.buf, svp->sv_addr.buf, np->saddr.len) == 0 &&
3685 		    (np->s_thread_exit != NFS4_THREAD_EXIT || all != 0)) {
3686 			mutex_exit(&nfs4_server_lst_lock);
3687 			np->s_refcnt++;
3688 			return (np);
3689 		}
3690 		mutex_exit(&np->s_lock);
3691 	}
3692 	mutex_exit(&nfs4_server_lst_lock);
3693 
3694 	return (NULL);
3695 }
3696 
3697 /*
3698  * Release the reference to sp and destroy it if that's the last one.
3699  */
3700 
3701 void
3702 nfs4_server_rele(nfs4_server_t *sp)
3703 {
3704 	mutex_enter(&sp->s_lock);
3705 	ASSERT(sp->s_refcnt > 0);
3706 	sp->s_refcnt--;
3707 	if (sp->s_refcnt > 0) {
3708 		mutex_exit(&sp->s_lock);
3709 		return;
3710 	}
3711 	mutex_exit(&sp->s_lock);
3712 
3713 	mutex_enter(&nfs4_server_lst_lock);
3714 	mutex_enter(&sp->s_lock);
3715 	if (sp->s_refcnt > 0) {
3716 		mutex_exit(&sp->s_lock);
3717 		mutex_exit(&nfs4_server_lst_lock);
3718 		return;
3719 	}
3720 	remque(sp);
3721 	sp->forw = sp->back = NULL;
3722 	mutex_exit(&nfs4_server_lst_lock);
3723 	destroy_nfs4_server(sp);
3724 }
3725 
3726 static void
3727 destroy_nfs4_server(nfs4_server_t *sp)
3728 {
3729 	ASSERT(MUTEX_HELD(&sp->s_lock));
3730 	ASSERT(sp->s_refcnt == 0);
3731 	ASSERT(sp->s_otw_call_count == 0);
3732 
3733 	remove_all_mi(sp);
3734 
3735 	crfree(sp->s_cred);
3736 	kmem_free(sp->saddr.buf, sp->saddr.maxlen);
3737 	kmem_free(sp->clidtosend.id_val, sp->clidtosend.id_len);
3738 	mutex_exit(&sp->s_lock);
3739 
3740 	/* destroy the nfs4_server */
3741 	nfs4callback_destroy(sp);
3742 	list_destroy(&sp->s_deleg_list);
3743 	mutex_destroy(&sp->s_lock);
3744 	cv_destroy(&sp->cv_thread_exit);
3745 	cv_destroy(&sp->s_cv_otw_count);
3746 	cv_destroy(&sp->s_clientid_pend);
3747 	cv_destroy(&sp->wait_cb_null);
3748 	nfs_rw_destroy(&sp->s_recovlock);
3749 	kmem_free(sp, sizeof (*sp));
3750 }
3751 
3752 /*
3753  * Lock sp, but only if it's still active (in the list and hasn't been
3754  * flagged as exiting) or 'all' is non-zero.
3755  * Returns TRUE if sp got locked and adds a reference to sp.
3756  */
3757 bool_t
3758 nfs4_server_vlock(nfs4_server_t *sp, int all)
3759 {
3760 	nfs4_server_t *np;
3761 
3762 	mutex_enter(&nfs4_server_lst_lock);
3763 	for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
3764 		if (sp == np && (np->s_thread_exit != NFS4_THREAD_EXIT ||
3765 		    all != 0)) {
3766 			mutex_enter(&np->s_lock);
3767 			np->s_refcnt++;
3768 			mutex_exit(&nfs4_server_lst_lock);
3769 			return (TRUE);
3770 		}
3771 	}
3772 	mutex_exit(&nfs4_server_lst_lock);
3773 	return (FALSE);
3774 }
3775 
3776 /*
3777  * Fork off a thread to free the data structures for a mount.
3778  */
3779 
3780 static void
3781 async_free_mount(vfs_t *vfsp, cred_t *cr)
3782 {
3783 	freemountargs_t *args;
3784 	args = kmem_alloc(sizeof (freemountargs_t), KM_SLEEP);
3785 	args->fm_vfsp = vfsp;
3786 	VFS_HOLD(vfsp);
3787 	MI4_HOLD(VFTOMI4(vfsp));
3788 	args->fm_cr = cr;
3789 	crhold(cr);
3790 	(void) zthread_create(NULL, 0, nfs4_free_mount_thread, args, 0,
3791 	    minclsyspri);
3792 }
3793 
3794 static void
3795 nfs4_free_mount_thread(freemountargs_t *args)
3796 {
3797 	mntinfo4_t *mi;
3798 	nfs4_free_mount(args->fm_vfsp, args->fm_cr);
3799 	mi = VFTOMI4(args->fm_vfsp);
3800 	crfree(args->fm_cr);
3801 	VFS_RELE(args->fm_vfsp);
3802 	MI4_RELE(mi);
3803 	kmem_free(args, sizeof (freemountargs_t));
3804 	zthread_exit();
3805 	/* NOTREACHED */
3806 }
3807 
3808 /*
3809  * Thread to free the data structures for a given filesystem.
3810  */
3811 static void
3812 nfs4_free_mount(vfs_t *vfsp, cred_t *cr)
3813 {
3814 	mntinfo4_t	*mi = VFTOMI4(vfsp);
3815 	nfs4_server_t	*sp;
3816 	callb_cpr_t	cpr_info;
3817 	kmutex_t	cpr_lock;
3818 	boolean_t	async_thread;
3819 	int		removed;
3820 
3821 	/*
3822 	 * We need to participate in the CPR framework if this is a kernel
3823 	 * thread.
3824 	 */
3825 	async_thread = (curproc == nfs_zone()->zone_zsched);
3826 	if (async_thread) {
3827 		mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
3828 		CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr,
3829 		    "nfsv4AsyncUnmount");
3830 	}
3831 
3832 	/*
3833 	 * We need to wait for all outstanding OTW calls
3834 	 * and recovery to finish before we remove the mi
3835 	 * from the nfs4_server_t, as current pending
3836 	 * calls might still need this linkage (in order
3837 	 * to find a nfs4_server_t from a mntinfo4_t).
3838 	 */
3839 	(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, FALSE);
3840 	sp = find_nfs4_server(mi);
3841 	nfs_rw_exit(&mi->mi_recovlock);
3842 
3843 	if (sp) {
3844 		while (sp->s_otw_call_count != 0) {
3845 			if (async_thread) {
3846 				mutex_enter(&cpr_lock);
3847 				CALLB_CPR_SAFE_BEGIN(&cpr_info);
3848 				mutex_exit(&cpr_lock);
3849 			}
3850 			cv_wait(&sp->s_cv_otw_count, &sp->s_lock);
3851 			if (async_thread) {
3852 				mutex_enter(&cpr_lock);
3853 				CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3854 				mutex_exit(&cpr_lock);
3855 			}
3856 		}
3857 		mutex_exit(&sp->s_lock);
3858 		nfs4_server_rele(sp);
3859 		sp = NULL;
3860 	}
3861 
3862 
3863 	mutex_enter(&mi->mi_lock);
3864 	while (mi->mi_in_recovery != 0) {
3865 		if (async_thread) {
3866 			mutex_enter(&cpr_lock);
3867 			CALLB_CPR_SAFE_BEGIN(&cpr_info);
3868 			mutex_exit(&cpr_lock);
3869 		}
3870 		cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock);
3871 		if (async_thread) {
3872 			mutex_enter(&cpr_lock);
3873 			CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3874 			mutex_exit(&cpr_lock);
3875 		}
3876 	}
3877 	mutex_exit(&mi->mi_lock);
3878 
3879 	/*
3880 	 * The original purge of the dnlc via 'dounmount'
3881 	 * doesn't guarantee that another dnlc entry was not
3882 	 * added while we waitied for all outstanding OTW
3883 	 * and recovery calls to finish.  So re-purge the
3884 	 * dnlc now.
3885 	 */
3886 	(void) dnlc_purge_vfsp(vfsp, 0);
3887 
3888 	/*
3889 	 * We need to explicitly stop the manager thread; the asyc worker
3890 	 * threads can timeout and exit on their own.
3891 	 */
3892 	mutex_enter(&mi->mi_async_lock);
3893 	mi->mi_max_threads = 0;
3894 	cv_broadcast(&mi->mi_async_work_cv);
3895 	mutex_exit(&mi->mi_async_lock);
3896 	if (mi->mi_manager_thread)
3897 		nfs4_async_manager_stop(vfsp);
3898 
3899 	destroy_rtable4(vfsp, cr);
3900 
3901 	nfs4_remove_mi_from_server(mi, NULL);
3902 
3903 	if (async_thread) {
3904 		mutex_enter(&cpr_lock);
3905 		CALLB_CPR_EXIT(&cpr_info);	/* drops cpr_lock */
3906 		mutex_destroy(&cpr_lock);
3907 	}
3908 
3909 	removed = nfs4_mi_zonelist_remove(mi);
3910 	if (removed)
3911 		zone_rele(mi->mi_zone);
3912 }
3913