xref: /titanic_50/usr/src/uts/common/fs/nfs/nfs4_subr.c (revision 6e1fa242609208de48dfe1939b8814d4dff455a5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  *  	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
28  *	All Rights Reserved
29  */
30 
31 #include <sys/param.h>
32 #include <sys/types.h>
33 #include <sys/systm.h>
34 #include <sys/cmn_err.h>
35 #include <sys/vtrace.h>
36 #include <sys/session.h>
37 #include <sys/thread.h>
38 #include <sys/dnlc.h>
39 #include <sys/cred.h>
40 #include <sys/priv.h>
41 #include <sys/list.h>
42 #include <sys/sdt.h>
43 #include <sys/policy.h>
44 
45 #include <rpc/types.h>
46 #include <rpc/xdr.h>
47 
48 #include <nfs/nfs.h>
49 
50 #include <nfs/nfs_clnt.h>
51 
52 #include <nfs/nfs4.h>
53 #include <nfs/rnode4.h>
54 #include <nfs/nfs4_clnt.h>
55 
56 /*
57  * client side statistics
58  */
59 static const struct clstat4 clstat4_tmpl = {
60 	{ "calls",	KSTAT_DATA_UINT64 },
61 	{ "badcalls",	KSTAT_DATA_UINT64 },
62 	{ "clgets",	KSTAT_DATA_UINT64 },
63 	{ "cltoomany",	KSTAT_DATA_UINT64 },
64 #ifdef DEBUG
65 	{ "clalloc",	KSTAT_DATA_UINT64 },
66 	{ "noresponse",	KSTAT_DATA_UINT64 },
67 	{ "failover",	KSTAT_DATA_UINT64 },
68 	{ "remap",	KSTAT_DATA_UINT64 },
69 #endif
70 };
71 
72 #ifdef DEBUG
73 struct clstat4_debug clstat4_debug = {
74 	{ "nrnode",	KSTAT_DATA_UINT64 },
75 	{ "access",	KSTAT_DATA_UINT64 },
76 	{ "dirent",	KSTAT_DATA_UINT64 },
77 	{ "dirents",	KSTAT_DATA_UINT64 },
78 	{ "reclaim",	KSTAT_DATA_UINT64 },
79 	{ "clreclaim",	KSTAT_DATA_UINT64 },
80 	{ "f_reclaim",	KSTAT_DATA_UINT64 },
81 	{ "a_reclaim",	KSTAT_DATA_UINT64 },
82 	{ "r_reclaim",	KSTAT_DATA_UINT64 },
83 	{ "r_path",	KSTAT_DATA_UINT64 },
84 };
85 #endif
86 
87 /*
88  * We keep a global list of per-zone client data, so we can clean up all zones
89  * if we get low on memory.
90  */
91 static list_t nfs4_clnt_list;
92 static kmutex_t nfs4_clnt_list_lock;
93 static zone_key_t nfs4clnt_zone_key;
94 
95 static struct kmem_cache *chtab4_cache;
96 
97 #ifdef DEBUG
98 static int nfs4_rfscall_debug;
99 static int nfs4_try_failover_any;
100 int nfs4_utf8_debug = 0;
101 #endif
102 
103 /*
104  * NFSv4 readdir cache implementation
105  */
106 typedef struct rddir4_cache_impl {
107 	rddir4_cache	rc;		/* readdir cache element */
108 	kmutex_t	lock;		/* lock protects count */
109 	uint_t		count;		/* reference count */
110 	avl_node_t	tree;		/* AVL tree link */
111 } rddir4_cache_impl;
112 
113 static int rddir4_cache_compar(const void *, const void *);
114 static void rddir4_cache_free(rddir4_cache_impl *);
115 static rddir4_cache *rddir4_cache_alloc(int);
116 static void rddir4_cache_hold(rddir4_cache *);
117 static int try_failover(enum clnt_stat);
118 
119 static int nfs4_readdir_cache_hits = 0;
120 static int nfs4_readdir_cache_waits = 0;
121 static int nfs4_readdir_cache_misses = 0;
122 
123 /*
124  * Shared nfs4 functions
125  */
126 
127 /*
128  * Copy an nfs_fh4.  The destination storage (to->nfs_fh4_val) must already
129  * be allocated.
130  */
131 
132 void
133 nfs_fh4_copy(nfs_fh4 *from, nfs_fh4 *to)
134 {
135 	to->nfs_fh4_len = from->nfs_fh4_len;
136 	bcopy(from->nfs_fh4_val, to->nfs_fh4_val, to->nfs_fh4_len);
137 }
138 
139 /*
140  * nfs4cmpfh - compare 2 filehandles.
141  * Returns 0 if the two nfsv4 filehandles are the same, -1 if the first is
142  * "less" than the second, +1 if the first is "greater" than the second.
143  */
144 
145 int
146 nfs4cmpfh(const nfs_fh4 *fh4p1, const nfs_fh4 *fh4p2)
147 {
148 	const char *c1, *c2;
149 
150 	if (fh4p1->nfs_fh4_len < fh4p2->nfs_fh4_len)
151 		return (-1);
152 	if (fh4p1->nfs_fh4_len > fh4p2->nfs_fh4_len)
153 		return (1);
154 	for (c1 = fh4p1->nfs_fh4_val, c2 = fh4p2->nfs_fh4_val;
155 	    c1 < fh4p1->nfs_fh4_val + fh4p1->nfs_fh4_len;
156 	    c1++, c2++) {
157 		if (*c1 < *c2)
158 			return (-1);
159 		if (*c1 > *c2)
160 			return (1);
161 	}
162 
163 	return (0);
164 }
165 
166 /*
167  * Compare two v4 filehandles.  Return zero if they're the same, non-zero
168  * if they're not.  Like nfs4cmpfh(), but different filehandle
169  * representation, and doesn't provide information about greater than or
170  * less than.
171  */
172 
173 int
174 nfs4cmpfhandle(nfs4_fhandle_t *fh1, nfs4_fhandle_t *fh2)
175 {
176 	if (fh1->fh_len == fh2->fh_len)
177 		return (bcmp(fh1->fh_buf, fh2->fh_buf, fh1->fh_len));
178 
179 	return (1);
180 }
181 
182 int
183 stateid4_cmp(stateid4 *s1, stateid4 *s2)
184 {
185 	if (bcmp(s1, s2, sizeof (stateid4)) == 0)
186 		return (1);
187 	else
188 		return (0);
189 }
190 
191 nfsstat4
192 puterrno4(int error)
193 {
194 	switch (error) {
195 	case 0:
196 		return (NFS4_OK);
197 	case EPERM:
198 		return (NFS4ERR_PERM);
199 	case ENOENT:
200 		return (NFS4ERR_NOENT);
201 	case EINTR:
202 		return (NFS4ERR_IO);
203 	case EIO:
204 		return (NFS4ERR_IO);
205 	case ENXIO:
206 		return (NFS4ERR_NXIO);
207 	case ENOMEM:
208 		return (NFS4ERR_RESOURCE);
209 	case EACCES:
210 		return (NFS4ERR_ACCESS);
211 	case EBUSY:
212 		return (NFS4ERR_IO);
213 	case EEXIST:
214 		return (NFS4ERR_EXIST);
215 	case EXDEV:
216 		return (NFS4ERR_XDEV);
217 	case ENODEV:
218 		return (NFS4ERR_IO);
219 	case ENOTDIR:
220 		return (NFS4ERR_NOTDIR);
221 	case EISDIR:
222 		return (NFS4ERR_ISDIR);
223 	case EINVAL:
224 		return (NFS4ERR_INVAL);
225 	case EMFILE:
226 		return (NFS4ERR_RESOURCE);
227 	case EFBIG:
228 		return (NFS4ERR_FBIG);
229 	case ENOSPC:
230 		return (NFS4ERR_NOSPC);
231 	case EROFS:
232 		return (NFS4ERR_ROFS);
233 	case EMLINK:
234 		return (NFS4ERR_MLINK);
235 	case EDEADLK:
236 		return (NFS4ERR_DEADLOCK);
237 	case ENOLCK:
238 		return (NFS4ERR_DENIED);
239 	case EREMOTE:
240 		return (NFS4ERR_SERVERFAULT);
241 	case ENOTSUP:
242 		return (NFS4ERR_NOTSUPP);
243 	case EDQUOT:
244 		return (NFS4ERR_DQUOT);
245 	case ENAMETOOLONG:
246 		return (NFS4ERR_NAMETOOLONG);
247 	case EOVERFLOW:
248 		return (NFS4ERR_INVAL);
249 	case ENOSYS:
250 		return (NFS4ERR_NOTSUPP);
251 	case ENOTEMPTY:
252 		return (NFS4ERR_NOTEMPTY);
253 	case EOPNOTSUPP:
254 		return (NFS4ERR_NOTSUPP);
255 	case ESTALE:
256 		return (NFS4ERR_STALE);
257 	case EAGAIN:
258 		if (curthread->t_flag & T_WOULDBLOCK) {
259 			curthread->t_flag &= ~T_WOULDBLOCK;
260 			return (NFS4ERR_DELAY);
261 		}
262 		return (NFS4ERR_LOCKED);
263 	default:
264 		return ((enum nfsstat4)error);
265 	}
266 }
267 
268 int
269 geterrno4(enum nfsstat4 status)
270 {
271 	switch (status) {
272 	case NFS4_OK:
273 		return (0);
274 	case NFS4ERR_PERM:
275 		return (EPERM);
276 	case NFS4ERR_NOENT:
277 		return (ENOENT);
278 	case NFS4ERR_IO:
279 		return (EIO);
280 	case NFS4ERR_NXIO:
281 		return (ENXIO);
282 	case NFS4ERR_ACCESS:
283 		return (EACCES);
284 	case NFS4ERR_EXIST:
285 		return (EEXIST);
286 	case NFS4ERR_XDEV:
287 		return (EXDEV);
288 	case NFS4ERR_NOTDIR:
289 		return (ENOTDIR);
290 	case NFS4ERR_ISDIR:
291 		return (EISDIR);
292 	case NFS4ERR_INVAL:
293 		return (EINVAL);
294 	case NFS4ERR_FBIG:
295 		return (EFBIG);
296 	case NFS4ERR_NOSPC:
297 		return (ENOSPC);
298 	case NFS4ERR_ROFS:
299 		return (EROFS);
300 	case NFS4ERR_MLINK:
301 		return (EMLINK);
302 	case NFS4ERR_NAMETOOLONG:
303 		return (ENAMETOOLONG);
304 	case NFS4ERR_NOTEMPTY:
305 		return (ENOTEMPTY);
306 	case NFS4ERR_DQUOT:
307 		return (EDQUOT);
308 	case NFS4ERR_STALE:
309 		return (ESTALE);
310 	case NFS4ERR_BADHANDLE:
311 		return (ESTALE);
312 	case NFS4ERR_BAD_COOKIE:
313 		return (EINVAL);
314 	case NFS4ERR_NOTSUPP:
315 		return (EOPNOTSUPP);
316 	case NFS4ERR_TOOSMALL:
317 		return (EINVAL);
318 	case NFS4ERR_SERVERFAULT:
319 		return (EIO);
320 	case NFS4ERR_BADTYPE:
321 		return (EINVAL);
322 	case NFS4ERR_DELAY:
323 		return (ENXIO);
324 	case NFS4ERR_SAME:
325 		return (EPROTO);
326 	case NFS4ERR_DENIED:
327 		return (ENOLCK);
328 	case NFS4ERR_EXPIRED:
329 		return (EPROTO);
330 	case NFS4ERR_LOCKED:
331 		return (EACCES);
332 	case NFS4ERR_GRACE:
333 		return (EAGAIN);
334 	case NFS4ERR_FHEXPIRED:	/* if got here, failed to get a new fh */
335 		return (ESTALE);
336 	case NFS4ERR_SHARE_DENIED:
337 		return (EACCES);
338 	case NFS4ERR_WRONGSEC:
339 		return (EPERM);
340 	case NFS4ERR_CLID_INUSE:
341 		return (EAGAIN);
342 	case NFS4ERR_RESOURCE:
343 		return (EAGAIN);
344 	case NFS4ERR_MOVED:
345 		return (EPROTO);
346 	case NFS4ERR_NOFILEHANDLE:
347 		return (EIO);
348 	case NFS4ERR_MINOR_VERS_MISMATCH:
349 		return (ENOTSUP);
350 	case NFS4ERR_STALE_CLIENTID:
351 		return (EIO);
352 	case NFS4ERR_STALE_STATEID:
353 		return (EIO);
354 	case NFS4ERR_OLD_STATEID:
355 		return (EIO);
356 	case NFS4ERR_BAD_STATEID:
357 		return (EIO);
358 	case NFS4ERR_BAD_SEQID:
359 		return (EIO);
360 	case NFS4ERR_NOT_SAME:
361 		return (EPROTO);
362 	case NFS4ERR_LOCK_RANGE:
363 		return (EPROTO);
364 	case NFS4ERR_SYMLINK:
365 		return (EPROTO);
366 	case NFS4ERR_RESTOREFH:
367 		return (EPROTO);
368 	case NFS4ERR_LEASE_MOVED:
369 		return (EPROTO);
370 	case NFS4ERR_ATTRNOTSUPP:
371 		return (ENOTSUP);
372 	case NFS4ERR_NO_GRACE:
373 		return (EPROTO);
374 	case NFS4ERR_RECLAIM_BAD:
375 		return (EPROTO);
376 	case NFS4ERR_RECLAIM_CONFLICT:
377 		return (EPROTO);
378 	case NFS4ERR_BADXDR:
379 		return (EINVAL);
380 	case NFS4ERR_LOCKS_HELD:
381 		return (EIO);
382 	case NFS4ERR_OPENMODE:
383 		return (EACCES);
384 	case NFS4ERR_BADOWNER:
385 		/*
386 		 * Client and server are in different DNS domains
387 		 * and the NFSMAPID_DOMAIN in /etc/default/nfs
388 		 * doesn't match.  No good answer here.  Return
389 		 * EACCESS, which translates to "permission denied".
390 		 */
391 		return (EACCES);
392 	case NFS4ERR_BADCHAR:
393 		return (EINVAL);
394 	case NFS4ERR_BADNAME:
395 		return (EINVAL);
396 	case NFS4ERR_BAD_RANGE:
397 		return (EIO);
398 	case NFS4ERR_LOCK_NOTSUPP:
399 		return (ENOTSUP);
400 	case NFS4ERR_OP_ILLEGAL:
401 		return (EINVAL);
402 	case NFS4ERR_DEADLOCK:
403 		return (EDEADLK);
404 	case NFS4ERR_FILE_OPEN:
405 		return (EACCES);
406 	case NFS4ERR_ADMIN_REVOKED:
407 		return (EPROTO);
408 	case NFS4ERR_CB_PATH_DOWN:
409 		return (EPROTO);
410 	default:
411 #ifdef DEBUG
412 		zcmn_err(getzoneid(), CE_WARN, "geterrno4: got status %d",
413 		    status);
414 #endif
415 		return ((int)status);
416 	}
417 }
418 
419 void
420 nfs4_log_badowner(mntinfo4_t *mi, nfs_opnum4 op)
421 {
422 	nfs4_server_t *server;
423 
424 	/*
425 	 * Return if already printed/queued a msg
426 	 * for this mount point.
427 	 */
428 	if (mi->mi_flags & MI4_BADOWNER_DEBUG)
429 		return;
430 	/*
431 	 * Happens once per client <-> server pair.
432 	 */
433 	if (nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER,
434 	    mi->mi_flags & MI4_INT))
435 		return;
436 
437 	server = find_nfs4_server(mi);
438 	if (server == NULL) {
439 		nfs_rw_exit(&mi->mi_recovlock);
440 		return;
441 	}
442 
443 	if (!(server->s_flags & N4S_BADOWNER_DEBUG)) {
444 		zcmn_err(mi->mi_zone->zone_id, CE_WARN,
445 		    "!NFSMAPID_DOMAIN does not match"
446 		    " the server: %s domain.\n"
447 		    "Please check configuration",
448 		    mi->mi_curr_serv->sv_hostname);
449 		server->s_flags |= N4S_BADOWNER_DEBUG;
450 	}
451 	mutex_exit(&server->s_lock);
452 	nfs4_server_rele(server);
453 	nfs_rw_exit(&mi->mi_recovlock);
454 
455 	/*
456 	 * Happens once per mntinfo4_t.
457 	 * This error is deemed as one of the recovery facts "RF_BADOWNER",
458 	 * queue this in the mesg queue for this mount_info. This message
459 	 * is not printed, meaning its absent from id_to_dump_solo_fact()
460 	 * but its there for inspection if the queue is ever dumped/inspected.
461 	 */
462 	mutex_enter(&mi->mi_lock);
463 	if (!(mi->mi_flags & MI4_BADOWNER_DEBUG)) {
464 		nfs4_queue_fact(RF_BADOWNER, mi, NFS4ERR_BADOWNER, 0, op,
465 		    FALSE, NULL, 0, NULL);
466 		mi->mi_flags |= MI4_BADOWNER_DEBUG;
467 	}
468 	mutex_exit(&mi->mi_lock);
469 }
470 
471 int
472 nfs4_time_ntov(nfstime4 *ntime, timestruc_t *vatime)
473 {
474 	int64_t sec;
475 	int32_t nsec;
476 
477 	/*
478 	 * Here check that the nfsv4 time is valid for the system.
479 	 * nfsv4 time value is a signed 64-bit, and the system time
480 	 * may be either int64_t or int32_t (depends on the kernel),
481 	 * so if the kernel is 32-bit, the nfsv4 time value may not fit.
482 	 */
483 #ifndef _LP64
484 	if (! NFS4_TIME_OK(ntime->seconds)) {
485 		return (EOVERFLOW);
486 	}
487 #endif
488 
489 	/* Invalid to specify 1 billion (or more) nsecs */
490 	if (ntime->nseconds >= 1000000000)
491 		return (EINVAL);
492 
493 	if (ntime->seconds < 0) {
494 		sec = ntime->seconds + 1;
495 		nsec = -1000000000 + ntime->nseconds;
496 	} else {
497 		sec = ntime->seconds;
498 		nsec = ntime->nseconds;
499 	}
500 
501 	vatime->tv_sec = sec;
502 	vatime->tv_nsec = nsec;
503 
504 	return (0);
505 }
506 
507 int
508 nfs4_time_vton(timestruc_t *vatime, nfstime4 *ntime)
509 {
510 	int64_t sec;
511 	uint32_t nsec;
512 
513 	/*
514 	 * nfsv4 time value is a signed 64-bit, and the system time
515 	 * may be either int64_t or int32_t (depends on the kernel),
516 	 * so all system time values will fit.
517 	 */
518 	if (vatime->tv_nsec >= 0) {
519 		sec = vatime->tv_sec;
520 		nsec = vatime->tv_nsec;
521 	} else {
522 		sec = vatime->tv_sec - 1;
523 		nsec = 1000000000 + vatime->tv_nsec;
524 	}
525 	ntime->seconds = sec;
526 	ntime->nseconds = nsec;
527 
528 	return (0);
529 }
530 
531 /*
532  * Converts a utf8 string to a valid null terminated filename string.
533  *
534  * XXX - Not actually translating the UTF-8 string as per RFC 2279.
535  *	 For now, just validate that the UTF-8 string off the wire
536  *	 does not have characters that will freak out UFS, and leave
537  *	 it at that.
538  */
539 char *
540 utf8_to_fn(utf8string *u8s, uint_t *lenp, char *s)
541 {
542 	ASSERT(lenp != NULL);
543 
544 	if (u8s == NULL || u8s->utf8string_len <= 0 ||
545 	    u8s->utf8string_val == NULL)
546 		return (NULL);
547 
548 	/*
549 	 * Check for obvious illegal filename chars
550 	 */
551 	if (utf8_strchr(u8s, '/') != NULL) {
552 #ifdef DEBUG
553 		if (nfs4_utf8_debug) {
554 			char *path;
555 			int len = u8s->utf8string_len;
556 
557 			path = kmem_alloc(len + 1, KM_SLEEP);
558 			bcopy(u8s->utf8string_val, path, len);
559 			path[len] = '\0';
560 
561 			zcmn_err(getzoneid(), CE_WARN,
562 			    "Invalid UTF-8 filename: %s", path);
563 
564 			kmem_free(path, len + 1);
565 		}
566 #endif
567 		return (NULL);
568 	}
569 
570 	return (utf8_to_str(u8s, lenp, s));
571 }
572 
573 /*
574  * Converts a utf8 string to a C string.
575  * kmem_allocs a new string if not supplied
576  */
577 char *
578 utf8_to_str(utf8string *str, uint_t *lenp, char *s)
579 {
580 	char	*sp;
581 	char	*u8p;
582 	int	len;
583 	int	 i;
584 
585 	ASSERT(lenp != NULL);
586 
587 	if (str == NULL)
588 		return (NULL);
589 
590 	u8p = str->utf8string_val;
591 	len = str->utf8string_len;
592 	if (len <= 0 || u8p == NULL) {
593 		if (s)
594 			*s = '\0';
595 		return (NULL);
596 	}
597 
598 	sp = s;
599 	if (sp == NULL)
600 		sp = kmem_alloc(len + 1, KM_SLEEP);
601 
602 	/*
603 	 * At least check for embedded nulls
604 	 */
605 	for (i = 0; i < len; i++) {
606 		sp[i] = u8p[i];
607 		if (u8p[i] == '\0') {
608 #ifdef	DEBUG
609 			zcmn_err(getzoneid(), CE_WARN,
610 			    "Embedded NULL in UTF-8 string");
611 #endif
612 			if (s == NULL)
613 				kmem_free(sp, len + 1);
614 			return (NULL);
615 		}
616 	}
617 	sp[len] = '\0';
618 	*lenp = len + 1;
619 
620 	return (sp);
621 }
622 
623 /*
624  * str_to_utf8 - converts a null-terminated C string to a utf8 string
625  */
626 utf8string *
627 str_to_utf8(char *nm, utf8string *str)
628 {
629 	int len;
630 
631 	if (str == NULL)
632 		return (NULL);
633 
634 	if (nm == NULL || *nm == '\0') {
635 		str->utf8string_len = 0;
636 		str->utf8string_val = NULL;
637 	}
638 
639 	len = strlen(nm);
640 
641 	str->utf8string_val = kmem_alloc(len, KM_SLEEP);
642 	str->utf8string_len = len;
643 	bcopy(nm, str->utf8string_val, len);
644 
645 	return (str);
646 }
647 
648 utf8string *
649 utf8_copy(utf8string *src, utf8string *dest)
650 {
651 	if (src == NULL)
652 		return (NULL);
653 	if (dest == NULL)
654 		return (NULL);
655 
656 	if (src->utf8string_len > 0) {
657 		dest->utf8string_val = kmem_alloc(src->utf8string_len,
658 		    KM_SLEEP);
659 		bcopy(src->utf8string_val, dest->utf8string_val,
660 		    src->utf8string_len);
661 		dest->utf8string_len = src->utf8string_len;
662 	} else {
663 		dest->utf8string_val = NULL;
664 		dest->utf8string_len = 0;
665 	}
666 
667 	return (dest);
668 }
669 
670 int
671 utf8_compare(const utf8string *a, const utf8string *b)
672 {
673 	int mlen, cmp;
674 	int alen, blen;
675 	char *aval, *bval;
676 
677 	if ((a == NULL) && (b == NULL))
678 		return (0);
679 	else if (a == NULL)
680 		return (-1);
681 	else if (b == NULL)
682 		return (1);
683 
684 	alen = a->utf8string_len;
685 	blen = b->utf8string_len;
686 	aval = a->utf8string_val;
687 	bval = b->utf8string_val;
688 
689 	if (((alen == 0) || (aval == NULL)) &&
690 	    ((blen == 0) || (bval == NULL)))
691 		return (0);
692 	else if ((alen == 0) || (aval == NULL))
693 		return (-1);
694 	else if ((blen == 0) || (bval == NULL))
695 		return (1);
696 
697 	mlen = MIN(alen, blen);
698 	cmp = strncmp(aval, bval, mlen);
699 
700 	if ((cmp == 0) && (alen == blen))
701 		return (0);
702 	else if ((cmp == 0) && (alen < blen))
703 		return (-1);
704 	else if (cmp == 0)
705 		return (1);
706 	else if (cmp < 0)
707 		return (-1);
708 	return (1);
709 }
710 
711 /*
712  * utf8_dir_verify - checks that the utf8 string is valid
713  */
714 int
715 utf8_dir_verify(utf8string *str)
716 {
717 	char *nm;
718 	int len;
719 
720 	if (str == NULL)
721 		return (0);
722 
723 	nm = str->utf8string_val;
724 	len = str->utf8string_len;
725 	if (nm == NULL || len == 0) {
726 		return (0);
727 	}
728 
729 	if (len == 1 && nm[0] == '.')
730 		return (0);
731 	if (len == 2 && nm[0] == '.' && nm[1] == '.')
732 		return (0);
733 
734 	if (utf8_strchr(str, '/') != NULL)
735 		return (0);
736 
737 	if (utf8_strchr(str, '\0') != NULL)
738 		return (0);
739 
740 	return (1);
741 }
742 
743 /*
744  * from rpcsec module (common/rpcsec)
745  */
746 extern int sec_clnt_geth(CLIENT *, struct sec_data *, cred_t *, AUTH **);
747 extern void sec_clnt_freeh(AUTH *);
748 extern void sec_clnt_freeinfo(struct sec_data *);
749 
750 /*
751  * authget() gets an auth handle based on the security
752  * information from the servinfo in mountinfo.
753  * The auth handle is stored in ch_client->cl_auth.
754  *
755  * First security flavor of choice is to use sv_secdata
756  * which is initiated by the client. If that fails, get
757  * secinfo from the server and then select one from the
758  * server secinfo list .
759  *
760  * For RPCSEC_GSS flavor, upon success, a secure context is
761  * established between client and server.
762  */
763 int
764 authget(servinfo4_t *svp, CLIENT *ch_client, cred_t *cr)
765 {
766 	int error, i;
767 
768 	/*
769 	 * SV4_TRYSECINFO indicates to try the secinfo list from
770 	 * sv_secinfo until a successful one is reached. Point
771 	 * sv_currsec to the selected security mechanism for
772 	 * later sessions.
773 	 */
774 	(void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
775 	if ((svp->sv_flags & SV4_TRYSECINFO) && svp->sv_secinfo) {
776 		for (i = svp->sv_secinfo->index; i < svp->sv_secinfo->count;
777 		    i++) {
778 			if (!(error = sec_clnt_geth(ch_client,
779 			    &svp->sv_secinfo->sdata[i],
780 			    cr, &ch_client->cl_auth))) {
781 
782 				svp->sv_currsec = &svp->sv_secinfo->sdata[i];
783 				svp->sv_secinfo->index = i;
784 				/* done */
785 				svp->sv_flags &= ~SV4_TRYSECINFO;
786 				break;
787 			}
788 
789 			/*
790 			 * Allow the caller retry with the security flavor
791 			 * pointed by svp->sv_secinfo->index when
792 			 * ETIMEDOUT/ECONNRESET occurs.
793 			 */
794 			if (error == ETIMEDOUT || error == ECONNRESET) {
795 				svp->sv_secinfo->index = i;
796 				break;
797 			}
798 		}
799 	} else {
800 		/* sv_currsec points to one of the entries in sv_secinfo */
801 		if (svp->sv_currsec) {
802 			error = sec_clnt_geth(ch_client, svp->sv_currsec, cr,
803 			    &ch_client->cl_auth);
804 		} else {
805 			/* If it's null, use sv_secdata. */
806 			error = sec_clnt_geth(ch_client, svp->sv_secdata, cr,
807 			    &ch_client->cl_auth);
808 		}
809 	}
810 	nfs_rw_exit(&svp->sv_lock);
811 
812 	return (error);
813 }
814 
815 /*
816  * Common handle get program for NFS, NFS ACL, and NFS AUTH client.
817  */
818 int
819 clget4(clinfo_t *ci, servinfo4_t *svp, cred_t *cr, CLIENT **newcl,
820     struct chtab **chp, struct nfs4_clnt *nfscl)
821 {
822 	struct chhead *ch, *newch;
823 	struct chhead **plistp;
824 	struct chtab *cp;
825 	int error;
826 	k_sigset_t smask;
827 
828 	if (newcl == NULL || chp == NULL || ci == NULL)
829 		return (EINVAL);
830 
831 	*newcl = NULL;
832 	*chp = NULL;
833 
834 	/*
835 	 * Find an unused handle or create one
836 	 */
837 	newch = NULL;
838 	nfscl->nfscl_stat.clgets.value.ui64++;
839 top:
840 	/*
841 	 * Find the correct entry in the cache to check for free
842 	 * client handles.  The search is based on the RPC program
843 	 * number, program version number, dev_t for the transport
844 	 * device, and the protocol family.
845 	 */
846 	mutex_enter(&nfscl->nfscl_chtable4_lock);
847 	plistp = &nfscl->nfscl_chtable4;
848 	for (ch = nfscl->nfscl_chtable4; ch != NULL; ch = ch->ch_next) {
849 		if (ch->ch_prog == ci->cl_prog &&
850 		    ch->ch_vers == ci->cl_vers &&
851 		    ch->ch_dev == svp->sv_knconf->knc_rdev &&
852 		    (strcmp(ch->ch_protofmly,
853 		    svp->sv_knconf->knc_protofmly) == 0))
854 			break;
855 		plistp = &ch->ch_next;
856 	}
857 
858 	/*
859 	 * If we didn't find a cache entry for this quadruple, then
860 	 * create one.  If we don't have one already preallocated,
861 	 * then drop the cache lock, create one, and then start over.
862 	 * If we did have a preallocated entry, then just add it to
863 	 * the front of the list.
864 	 */
865 	if (ch == NULL) {
866 		if (newch == NULL) {
867 			mutex_exit(&nfscl->nfscl_chtable4_lock);
868 			newch = kmem_alloc(sizeof (*newch), KM_SLEEP);
869 			newch->ch_timesused = 0;
870 			newch->ch_prog = ci->cl_prog;
871 			newch->ch_vers = ci->cl_vers;
872 			newch->ch_dev = svp->sv_knconf->knc_rdev;
873 			newch->ch_protofmly = kmem_alloc(
874 			    strlen(svp->sv_knconf->knc_protofmly) + 1,
875 			    KM_SLEEP);
876 			(void) strcpy(newch->ch_protofmly,
877 			    svp->sv_knconf->knc_protofmly);
878 			newch->ch_list = NULL;
879 			goto top;
880 		}
881 		ch = newch;
882 		newch = NULL;
883 		ch->ch_next = nfscl->nfscl_chtable4;
884 		nfscl->nfscl_chtable4 = ch;
885 	/*
886 	 * We found a cache entry, but if it isn't on the front of the
887 	 * list, then move it to the front of the list to try to take
888 	 * advantage of locality of operations.
889 	 */
890 	} else if (ch != nfscl->nfscl_chtable4) {
891 		*plistp = ch->ch_next;
892 		ch->ch_next = nfscl->nfscl_chtable4;
893 		nfscl->nfscl_chtable4 = ch;
894 	}
895 
896 	/*
897 	 * If there was a free client handle cached, then remove it
898 	 * from the list, init it, and use it.
899 	 */
900 	if (ch->ch_list != NULL) {
901 		cp = ch->ch_list;
902 		ch->ch_list = cp->ch_list;
903 		mutex_exit(&nfscl->nfscl_chtable4_lock);
904 		if (newch != NULL) {
905 			kmem_free(newch->ch_protofmly,
906 			    strlen(newch->ch_protofmly) + 1);
907 			kmem_free(newch, sizeof (*newch));
908 		}
909 		(void) clnt_tli_kinit(cp->ch_client, svp->sv_knconf,
910 		    &svp->sv_addr, ci->cl_readsize, ci->cl_retrans, cr);
911 
912 		/*
913 		 * Get an auth handle.
914 		 */
915 		error = authget(svp, cp->ch_client, cr);
916 		if (error || cp->ch_client->cl_auth == NULL) {
917 			CLNT_DESTROY(cp->ch_client);
918 			kmem_cache_free(chtab4_cache, cp);
919 			return ((error != 0) ? error : EINTR);
920 		}
921 		ch->ch_timesused++;
922 		*newcl = cp->ch_client;
923 		*chp = cp;
924 		return (0);
925 	}
926 
927 	/*
928 	 * There weren't any free client handles which fit, so allocate
929 	 * a new one and use that.
930 	 */
931 #ifdef DEBUG
932 	atomic_add_64(&nfscl->nfscl_stat.clalloc.value.ui64, 1);
933 #endif
934 	mutex_exit(&nfscl->nfscl_chtable4_lock);
935 
936 	nfscl->nfscl_stat.cltoomany.value.ui64++;
937 	if (newch != NULL) {
938 		kmem_free(newch->ch_protofmly, strlen(newch->ch_protofmly) + 1);
939 		kmem_free(newch, sizeof (*newch));
940 	}
941 
942 	cp = kmem_cache_alloc(chtab4_cache, KM_SLEEP);
943 	cp->ch_head = ch;
944 
945 	sigintr(&smask, (int)ci->cl_flags & MI4_INT);
946 	error = clnt_tli_kcreate(svp->sv_knconf, &svp->sv_addr, ci->cl_prog,
947 	    ci->cl_vers, ci->cl_readsize, ci->cl_retrans, cr, &cp->ch_client);
948 	sigunintr(&smask);
949 
950 	if (error != 0) {
951 		kmem_cache_free(chtab4_cache, cp);
952 #ifdef DEBUG
953 		atomic_add_64(&nfscl->nfscl_stat.clalloc.value.ui64, -1);
954 #endif
955 		/*
956 		 * Warning is unnecessary if error is EINTR.
957 		 */
958 		if (error != EINTR) {
959 			nfs_cmn_err(error, CE_WARN,
960 			    "clget: couldn't create handle: %m\n");
961 		}
962 		return (error);
963 	}
964 	(void) CLNT_CONTROL(cp->ch_client, CLSET_PROGRESS, NULL);
965 	auth_destroy(cp->ch_client->cl_auth);
966 
967 	/*
968 	 * Get an auth handle.
969 	 */
970 	error = authget(svp, cp->ch_client, cr);
971 	if (error || cp->ch_client->cl_auth == NULL) {
972 		CLNT_DESTROY(cp->ch_client);
973 		kmem_cache_free(chtab4_cache, cp);
974 #ifdef DEBUG
975 		atomic_add_64(&nfscl->nfscl_stat.clalloc.value.ui64, -1);
976 #endif
977 		return ((error != 0) ? error : EINTR);
978 	}
979 	ch->ch_timesused++;
980 	*newcl = cp->ch_client;
981 	ASSERT(cp->ch_client->cl_nosignal == FALSE);
982 	*chp = cp;
983 	return (0);
984 }
985 
986 static int
987 nfs_clget4(mntinfo4_t *mi, servinfo4_t *svp, cred_t *cr, CLIENT **newcl,
988     struct chtab **chp, struct nfs4_clnt *nfscl)
989 {
990 	clinfo_t ci;
991 	bool_t is_recov;
992 	int firstcall, error = 0;
993 
994 	/*
995 	 * Set read buffer size to rsize
996 	 * and add room for RPC headers.
997 	 */
998 	ci.cl_readsize = mi->mi_tsize;
999 	if (ci.cl_readsize != 0)
1000 		ci.cl_readsize += (RPC_MAXDATASIZE - NFS_MAXDATA);
1001 
1002 	/*
1003 	 * If soft mount and server is down just try once.
1004 	 * meaning: do not retransmit.
1005 	 */
1006 	if (!(mi->mi_flags & MI4_HARD) && (mi->mi_flags & MI4_DOWN))
1007 		ci.cl_retrans = 0;
1008 	else
1009 		ci.cl_retrans = mi->mi_retrans;
1010 
1011 	ci.cl_prog = mi->mi_prog;
1012 	ci.cl_vers = mi->mi_vers;
1013 	ci.cl_flags = mi->mi_flags;
1014 
1015 	/*
1016 	 * clget4 calls authget() to get an auth handle. For RPCSEC_GSS
1017 	 * security flavor, the client tries to establish a security context
1018 	 * by contacting the server. If the connection is timed out or reset,
1019 	 * e.g. server reboot, we will try again.
1020 	 */
1021 	is_recov = (curthread == mi->mi_recovthread);
1022 	firstcall = 1;
1023 
1024 	do {
1025 		error = clget4(&ci, svp, cr, newcl, chp, nfscl);
1026 
1027 		if (error == 0)
1028 			break;
1029 
1030 		/*
1031 		 * For forced unmount and zone shutdown, bail out but
1032 		 * let the recovery thread do one more transmission.
1033 		 */
1034 		if ((FS_OR_ZONE_GONE4(mi->mi_vfsp)) &&
1035 		    (!is_recov || !firstcall)) {
1036 			error = EIO;
1037 			break;
1038 		}
1039 
1040 		/* do not retry for soft mount */
1041 		if (!(mi->mi_flags & MI4_HARD))
1042 			break;
1043 
1044 		/* let the caller deal with the failover case */
1045 		if (FAILOVER_MOUNT4(mi))
1046 			break;
1047 
1048 		firstcall = 0;
1049 
1050 	} while (error == ETIMEDOUT || error == ECONNRESET);
1051 
1052 	return (error);
1053 }
1054 
1055 void
1056 clfree4(CLIENT *cl, struct chtab *cp, struct nfs4_clnt *nfscl)
1057 {
1058 	if (cl->cl_auth != NULL) {
1059 		sec_clnt_freeh(cl->cl_auth);
1060 		cl->cl_auth = NULL;
1061 	}
1062 
1063 	/*
1064 	 * Timestamp this cache entry so that we know when it was last
1065 	 * used.
1066 	 */
1067 	cp->ch_freed = gethrestime_sec();
1068 
1069 	/*
1070 	 * Add the free client handle to the front of the list.
1071 	 * This way, the list will be sorted in youngest to oldest
1072 	 * order.
1073 	 */
1074 	mutex_enter(&nfscl->nfscl_chtable4_lock);
1075 	cp->ch_list = cp->ch_head->ch_list;
1076 	cp->ch_head->ch_list = cp;
1077 	mutex_exit(&nfscl->nfscl_chtable4_lock);
1078 }
1079 
1080 #define	CL_HOLDTIME	60	/* time to hold client handles */
1081 
1082 static void
1083 clreclaim4_zone(struct nfs4_clnt *nfscl, uint_t cl_holdtime)
1084 {
1085 	struct chhead *ch;
1086 	struct chtab *cp;	/* list of objects that can be reclaimed */
1087 	struct chtab *cpe;
1088 	struct chtab *cpl;
1089 	struct chtab **cpp;
1090 #ifdef DEBUG
1091 	int n = 0;
1092 	clstat4_debug.clreclaim.value.ui64++;
1093 #endif
1094 
1095 	/*
1096 	 * Need to reclaim some memory, so step through the cache
1097 	 * looking through the lists for entries which can be freed.
1098 	 */
1099 	cp = NULL;
1100 
1101 	mutex_enter(&nfscl->nfscl_chtable4_lock);
1102 
1103 	/*
1104 	 * Here we step through each non-NULL quadruple and start to
1105 	 * construct the reclaim list pointed to by cp.  Note that
1106 	 * cp will contain all eligible chtab entries.  When this traversal
1107 	 * completes, chtab entries from the last quadruple will be at the
1108 	 * front of cp and entries from previously inspected quadruples have
1109 	 * been appended to the rear of cp.
1110 	 */
1111 	for (ch = nfscl->nfscl_chtable4; ch != NULL; ch = ch->ch_next) {
1112 		if (ch->ch_list == NULL)
1113 			continue;
1114 		/*
1115 		 * Search each list for entries older then
1116 		 * cl_holdtime seconds.  The lists are maintained
1117 		 * in youngest to oldest order so that when the
1118 		 * first entry is found which is old enough, then
1119 		 * all of the rest of the entries on the list will
1120 		 * be old enough as well.
1121 		 */
1122 		cpl = ch->ch_list;
1123 		cpp = &ch->ch_list;
1124 		while (cpl != NULL &&
1125 		    cpl->ch_freed + cl_holdtime > gethrestime_sec()) {
1126 			cpp = &cpl->ch_list;
1127 			cpl = cpl->ch_list;
1128 		}
1129 		if (cpl != NULL) {
1130 			*cpp = NULL;
1131 			if (cp != NULL) {
1132 				cpe = cpl;
1133 				while (cpe->ch_list != NULL)
1134 					cpe = cpe->ch_list;
1135 				cpe->ch_list = cp;
1136 			}
1137 			cp = cpl;
1138 		}
1139 	}
1140 
1141 	mutex_exit(&nfscl->nfscl_chtable4_lock);
1142 
1143 	/*
1144 	 * If cp is empty, then there is nothing to reclaim here.
1145 	 */
1146 	if (cp == NULL)
1147 		return;
1148 
1149 	/*
1150 	 * Step through the list of entries to free, destroying each client
1151 	 * handle and kmem_free'ing the memory for each entry.
1152 	 */
1153 	while (cp != NULL) {
1154 #ifdef DEBUG
1155 		n++;
1156 #endif
1157 		CLNT_DESTROY(cp->ch_client);
1158 		cpl = cp->ch_list;
1159 		kmem_cache_free(chtab4_cache, cp);
1160 		cp = cpl;
1161 	}
1162 
1163 #ifdef DEBUG
1164 	/*
1165 	 * Update clalloc so that nfsstat shows the current number
1166 	 * of allocated client handles.
1167 	 */
1168 	atomic_add_64(&nfscl->nfscl_stat.clalloc.value.ui64, -n);
1169 #endif
1170 }
1171 
1172 /* ARGSUSED */
1173 static void
1174 clreclaim4(void *all)
1175 {
1176 	struct nfs4_clnt *nfscl;
1177 
1178 	/*
1179 	 * The system is low on memory; go through and try to reclaim some from
1180 	 * every zone on the system.
1181 	 */
1182 	mutex_enter(&nfs4_clnt_list_lock);
1183 	nfscl = list_head(&nfs4_clnt_list);
1184 	for (; nfscl != NULL; nfscl = list_next(&nfs4_clnt_list, nfscl))
1185 		clreclaim4_zone(nfscl, CL_HOLDTIME);
1186 	mutex_exit(&nfs4_clnt_list_lock);
1187 }
1188 
1189 /*
1190  * Minimum time-out values indexed by call type
1191  * These units are in "eights" of a second to avoid multiplies
1192  */
1193 static unsigned int minimum_timeo[] = {
1194 	6, 7, 10
1195 };
1196 
1197 #define	SHORTWAIT	(NFS_COTS_TIMEO / 10)
1198 
1199 /*
1200  * Back off for retransmission timeout, MAXTIMO is in hz of a sec
1201  */
1202 #define	MAXTIMO	(20*hz)
1203 #define	backoff(tim)	(((tim) < MAXTIMO) ? dobackoff(tim) : (tim))
1204 #define	dobackoff(tim)	((((tim) << 1) > MAXTIMO) ? MAXTIMO : ((tim) << 1))
1205 
1206 static int
1207 nfs4_rfscall(mntinfo4_t *mi, rpcproc_t which, xdrproc_t xdrargs, caddr_t argsp,
1208     xdrproc_t xdrres, caddr_t resp, cred_t *icr, int *doqueue,
1209     enum clnt_stat *rpc_statusp, int flags, struct nfs4_clnt *nfscl)
1210 {
1211 	CLIENT *client;
1212 	struct chtab *ch;
1213 	cred_t *cr = icr;
1214 	struct rpc_err rpcerr, rpcerr_tmp;
1215 	enum clnt_stat status;
1216 	int error;
1217 	struct timeval wait;
1218 	int timeo;		/* in units of hz */
1219 	bool_t tryagain, is_recov;
1220 	bool_t cred_cloned = FALSE;
1221 	k_sigset_t smask;
1222 	servinfo4_t *svp;
1223 #ifdef DEBUG
1224 	char *bufp;
1225 #endif
1226 	int firstcall;
1227 
1228 	rpcerr.re_status = RPC_SUCCESS;
1229 
1230 	/*
1231 	 * If we know that we are rebooting then let's
1232 	 * not bother with doing any over the wireness.
1233 	 */
1234 	mutex_enter(&mi->mi_lock);
1235 	if (mi->mi_flags & MI4_SHUTDOWN) {
1236 		mutex_exit(&mi->mi_lock);
1237 		return (EIO);
1238 	}
1239 	mutex_exit(&mi->mi_lock);
1240 
1241 	/* For TSOL, use a new cred which has net_mac_aware flag */
1242 	if (!cred_cloned && is_system_labeled()) {
1243 		cred_cloned = TRUE;
1244 		cr = crdup(icr);
1245 		(void) setpflags(NET_MAC_AWARE, 1, cr);
1246 	}
1247 
1248 	/*
1249 	 * clget() calls clnt_tli_kinit() which clears the xid, so we
1250 	 * are guaranteed to reprocess the retry as a new request.
1251 	 */
1252 	svp = mi->mi_curr_serv;
1253 	rpcerr.re_errno = nfs_clget4(mi, svp, cr, &client, &ch, nfscl);
1254 	if (rpcerr.re_errno != 0)
1255 		return (rpcerr.re_errno);
1256 
1257 	timeo = (mi->mi_timeo * hz) / 10;
1258 
1259 	/*
1260 	 * If hard mounted fs, retry call forever unless hard error
1261 	 * occurs.
1262 	 *
1263 	 * For forced unmount, let the recovery thread through but return
1264 	 * an error for all others.  This is so that user processes can
1265 	 * exit quickly.  The recovery thread bails out after one
1266 	 * transmission so that it can tell if it needs to continue.
1267 	 *
1268 	 * For zone shutdown, behave as above to encourage quick
1269 	 * process exit, but also fail quickly when servers have
1270 	 * timed out before and reduce the timeouts.
1271 	 */
1272 	is_recov = (curthread == mi->mi_recovthread);
1273 	firstcall = 1;
1274 	do {
1275 		tryagain = FALSE;
1276 
1277 		NFS4_DEBUG(nfs4_rfscall_debug, (CE_NOTE,
1278 		    "nfs4_rfscall: vfs_flag=0x%x, %s",
1279 		    mi->mi_vfsp->vfs_flag,
1280 		    is_recov ? "recov thread" : "not recov thread"));
1281 
1282 		/*
1283 		 * It's possible while we're retrying the admin
1284 		 * decided to reboot.
1285 		 */
1286 		mutex_enter(&mi->mi_lock);
1287 		if (mi->mi_flags & MI4_SHUTDOWN) {
1288 			mutex_exit(&mi->mi_lock);
1289 			clfree4(client, ch, nfscl);
1290 			if (cred_cloned)
1291 				crfree(cr);
1292 			return (EIO);
1293 		}
1294 		mutex_exit(&mi->mi_lock);
1295 
1296 		if ((mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) &&
1297 		    (!is_recov || !firstcall)) {
1298 			clfree4(client, ch, nfscl);
1299 			if (cred_cloned)
1300 				crfree(cr);
1301 			return (EIO);
1302 		}
1303 
1304 		if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) {
1305 			mutex_enter(&mi->mi_lock);
1306 			if ((mi->mi_flags & MI4_TIMEDOUT) ||
1307 			    !is_recov || !firstcall) {
1308 				mutex_exit(&mi->mi_lock);
1309 				clfree4(client, ch, nfscl);
1310 				if (cred_cloned)
1311 					crfree(cr);
1312 				return (EIO);
1313 			}
1314 			mutex_exit(&mi->mi_lock);
1315 			timeo = (MIN(mi->mi_timeo, SHORTWAIT) * hz) / 10;
1316 		}
1317 
1318 		firstcall = 0;
1319 		TICK_TO_TIMEVAL(timeo, &wait);
1320 
1321 		/*
1322 		 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT
1323 		 * and SIGTERM. (Preserving the existing masks).
1324 		 * Mask out SIGINT if mount option nointr is specified.
1325 		 */
1326 		sigintr(&smask, (int)mi->mi_flags & MI4_INT);
1327 		if (!(mi->mi_flags & MI4_INT))
1328 			client->cl_nosignal = TRUE;
1329 
1330 		/*
1331 		 * If there is a current signal, then don't bother
1332 		 * even trying to send out the request because we
1333 		 * won't be able to block waiting for the response.
1334 		 * Simply assume RPC_INTR and get on with it.
1335 		 */
1336 		if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING))
1337 			status = RPC_INTR;
1338 		else {
1339 			status = CLNT_CALL(client, which, xdrargs, argsp,
1340 			    xdrres, resp, wait);
1341 		}
1342 
1343 		if (!(mi->mi_flags & MI4_INT))
1344 			client->cl_nosignal = FALSE;
1345 		/*
1346 		 * restore original signal mask
1347 		 */
1348 		sigunintr(&smask);
1349 
1350 		switch (status) {
1351 		case RPC_SUCCESS:
1352 			break;
1353 
1354 		case RPC_INTR:
1355 			/*
1356 			 * There is no way to recover from this error,
1357 			 * even if mount option nointr is specified.
1358 			 * SIGKILL, for example, cannot be blocked.
1359 			 */
1360 			rpcerr.re_status = RPC_INTR;
1361 			rpcerr.re_errno = EINTR;
1362 			break;
1363 
1364 		case RPC_UDERROR:
1365 			/*
1366 			 * If the NFS server is local (vold) and
1367 			 * it goes away then we get RPC_UDERROR.
1368 			 * This is a retryable error, so we would
1369 			 * loop, so check to see if the specific
1370 			 * error was ECONNRESET, indicating that
1371 			 * target did not exist at all.  If so,
1372 			 * return with RPC_PROGUNAVAIL and
1373 			 * ECONNRESET to indicate why.
1374 			 */
1375 			CLNT_GETERR(client, &rpcerr);
1376 			if (rpcerr.re_errno == ECONNRESET) {
1377 				rpcerr.re_status = RPC_PROGUNAVAIL;
1378 				rpcerr.re_errno = ECONNRESET;
1379 				break;
1380 			}
1381 			/*FALLTHROUGH*/
1382 
1383 		default:		/* probably RPC_TIMEDOUT */
1384 
1385 			if (IS_UNRECOVERABLE_RPC(status))
1386 				break;
1387 
1388 			/*
1389 			 * increment server not responding count
1390 			 */
1391 			mutex_enter(&mi->mi_lock);
1392 			mi->mi_noresponse++;
1393 			mutex_exit(&mi->mi_lock);
1394 #ifdef DEBUG
1395 			nfscl->nfscl_stat.noresponse.value.ui64++;
1396 #endif
1397 			/*
1398 			 * On zone shutdown, mark server dead and move on.
1399 			 */
1400 			if (zone_status_get(curproc->p_zone) >=
1401 			    ZONE_IS_SHUTTING_DOWN) {
1402 				mutex_enter(&mi->mi_lock);
1403 				mi->mi_flags |= MI4_TIMEDOUT;
1404 				mutex_exit(&mi->mi_lock);
1405 				clfree4(client, ch, nfscl);
1406 				if (cred_cloned)
1407 					crfree(cr);
1408 				return (EIO);
1409 			}
1410 
1411 			/*
1412 			 * NFS client failover support:
1413 			 * return and let the caller take care of
1414 			 * failover.  We only return for failover mounts
1415 			 * because otherwise we want the "not responding"
1416 			 * message, the timer updates, etc.
1417 			 */
1418 			if (mi->mi_vers == 4 && FAILOVER_MOUNT4(mi) &&
1419 			    (error = try_failover(status)) != 0) {
1420 				clfree4(client, ch, nfscl);
1421 				if (cred_cloned)
1422 					crfree(cr);
1423 				*rpc_statusp = status;
1424 				return (error);
1425 			}
1426 
1427 			if (flags & RFSCALL_SOFT)
1428 				break;
1429 
1430 			tryagain = TRUE;
1431 
1432 			/*
1433 			 * The call is in progress (over COTS).
1434 			 * Try the CLNT_CALL again, but don't
1435 			 * print a noisy error message.
1436 			 */
1437 			if (status == RPC_INPROGRESS)
1438 				break;
1439 
1440 			timeo = backoff(timeo);
1441 			CLNT_GETERR(client, &rpcerr_tmp);
1442 
1443 			mutex_enter(&mi->mi_lock);
1444 			if (!(mi->mi_flags & MI4_PRINTED)) {
1445 				mi->mi_flags |= MI4_PRINTED;
1446 				mutex_exit(&mi->mi_lock);
1447 				if ((status == RPC_CANTSEND) &&
1448 				    (rpcerr_tmp.re_errno == ENOBUFS))
1449 					nfs4_queue_fact(RF_SENDQ_FULL, mi, 0,
1450 					    0, 0, FALSE, NULL, 0, NULL);
1451 				else
1452 					nfs4_queue_fact(RF_SRV_NOT_RESPOND, mi,
1453 					    0, 0, 0, FALSE, NULL, 0, NULL);
1454 			} else
1455 				mutex_exit(&mi->mi_lock);
1456 
1457 			if (*doqueue && nfs_has_ctty()) {
1458 				*doqueue = 0;
1459 				if (!(mi->mi_flags & MI4_NOPRINT)) {
1460 					if ((status == RPC_CANTSEND) &&
1461 					    (rpcerr_tmp.re_errno == ENOBUFS))
1462 						nfs4_queue_fact(RF_SENDQ_FULL,
1463 						    mi, 0, 0, 0, FALSE, NULL,
1464 						    0, NULL);
1465 					else
1466 						nfs4_queue_fact(
1467 						    RF_SRV_NOT_RESPOND, mi, 0,
1468 						    0, 0, FALSE, NULL, 0, NULL);
1469 				}
1470 			}
1471 		}
1472 	} while (tryagain);
1473 
1474 	DTRACE_PROBE2(nfs4__rfscall_debug, enum clnt_stat, status,
1475 	    int, rpcerr.re_errno);
1476 
1477 	if (status != RPC_SUCCESS) {
1478 		zoneid_t zoneid = mi->mi_zone->zone_id;
1479 
1480 		/*
1481 		 * Let soft mounts use the timed out message.
1482 		 */
1483 		if (status == RPC_INPROGRESS)
1484 			status = RPC_TIMEDOUT;
1485 		nfscl->nfscl_stat.badcalls.value.ui64++;
1486 		if (status != RPC_INTR) {
1487 			mutex_enter(&mi->mi_lock);
1488 			mi->mi_flags |= MI4_DOWN;
1489 			mutex_exit(&mi->mi_lock);
1490 			CLNT_GETERR(client, &rpcerr);
1491 #ifdef DEBUG
1492 			bufp = clnt_sperror(client, svp->sv_hostname);
1493 			zprintf(zoneid, "NFS%d %s failed for %s\n",
1494 			    mi->mi_vers, mi->mi_rfsnames[which], bufp);
1495 			if (nfs_has_ctty()) {
1496 				if (!(mi->mi_flags & MI4_NOPRINT)) {
1497 					uprintf("NFS%d %s failed for %s\n",
1498 					    mi->mi_vers, mi->mi_rfsnames[which],
1499 					    bufp);
1500 				}
1501 			}
1502 			kmem_free(bufp, MAXPATHLEN);
1503 #else
1504 			zprintf(zoneid,
1505 			    "NFS %s failed for server %s: error %d (%s)\n",
1506 			    mi->mi_rfsnames[which], svp->sv_hostname,
1507 			    status, clnt_sperrno(status));
1508 			if (nfs_has_ctty()) {
1509 				if (!(mi->mi_flags & MI4_NOPRINT)) {
1510 					uprintf(
1511 				"NFS %s failed for server %s: error %d (%s)\n",
1512 					    mi->mi_rfsnames[which],
1513 					    svp->sv_hostname, status,
1514 					    clnt_sperrno(status));
1515 				}
1516 			}
1517 #endif
1518 			/*
1519 			 * when CLNT_CALL() fails with RPC_AUTHERROR,
1520 			 * re_errno is set appropriately depending on
1521 			 * the authentication error
1522 			 */
1523 			if (status == RPC_VERSMISMATCH ||
1524 			    status == RPC_PROGVERSMISMATCH)
1525 				rpcerr.re_errno = EIO;
1526 		}
1527 	} else {
1528 		/*
1529 		 * Test the value of mi_down and mi_printed without
1530 		 * holding the mi_lock mutex.  If they are both zero,
1531 		 * then it is okay to skip the down and printed
1532 		 * processing.  This saves on a mutex_enter and
1533 		 * mutex_exit pair for a normal, successful RPC.
1534 		 * This was just complete overhead.
1535 		 */
1536 		if (mi->mi_flags & (MI4_DOWN | MI4_PRINTED)) {
1537 			mutex_enter(&mi->mi_lock);
1538 			mi->mi_flags &= ~MI4_DOWN;
1539 			if (mi->mi_flags & MI4_PRINTED) {
1540 				mi->mi_flags &= ~MI4_PRINTED;
1541 				mutex_exit(&mi->mi_lock);
1542 				if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED))
1543 					nfs4_queue_fact(RF_SRV_OK, mi, 0, 0,
1544 					    0, FALSE, NULL, 0, NULL);
1545 			} else
1546 				mutex_exit(&mi->mi_lock);
1547 		}
1548 
1549 		if (*doqueue == 0) {
1550 			if (!(mi->mi_flags & MI4_NOPRINT) &&
1551 			    !(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED))
1552 				nfs4_queue_fact(RF_SRV_OK, mi, 0, 0, 0,
1553 				    FALSE, NULL, 0, NULL);
1554 
1555 			*doqueue = 1;
1556 		}
1557 	}
1558 
1559 	clfree4(client, ch, nfscl);
1560 	if (cred_cloned)
1561 		crfree(cr);
1562 
1563 	ASSERT(rpcerr.re_status == RPC_SUCCESS || rpcerr.re_errno != 0);
1564 
1565 	TRACE_1(TR_FAC_NFS, TR_RFSCALL_END, "nfs4_rfscall_end:errno %d",
1566 	    rpcerr.re_errno);
1567 
1568 	*rpc_statusp = status;
1569 	return (rpcerr.re_errno);
1570 }
1571 
1572 /*
1573  * rfs4call - general wrapper for RPC calls initiated by the client
1574  */
1575 void
1576 rfs4call(mntinfo4_t *mi, COMPOUND4args_clnt *argsp, COMPOUND4res_clnt *resp,
1577     cred_t *cr, int *doqueue, int flags, nfs4_error_t *ep)
1578 {
1579 	int i, error;
1580 	enum clnt_stat rpc_status = NFS4_OK;
1581 	int num_resops;
1582 	struct nfs4_clnt *nfscl;
1583 
1584 	ASSERT(nfs_zone() == mi->mi_zone);
1585 	nfscl = zone_getspecific(nfs4clnt_zone_key, nfs_zone());
1586 	ASSERT(nfscl != NULL);
1587 
1588 	nfscl->nfscl_stat.calls.value.ui64++;
1589 	mi->mi_reqs[NFSPROC4_COMPOUND].value.ui64++;
1590 
1591 	/* Set up the results struct for XDR usage */
1592 	resp->argsp = argsp;
1593 	resp->array = NULL;
1594 	resp->status = 0;
1595 	resp->decode_len = 0;
1596 
1597 	error = nfs4_rfscall(mi, NFSPROC4_COMPOUND,
1598 	    xdr_COMPOUND4args_clnt, (caddr_t)argsp,
1599 	    xdr_COMPOUND4res_clnt, (caddr_t)resp, cr,
1600 	    doqueue, &rpc_status, flags, nfscl);
1601 
1602 	/* Return now if it was an RPC error */
1603 	if (error) {
1604 		ep->error = error;
1605 		ep->stat = resp->status;
1606 		ep->rpc_status = rpc_status;
1607 		return;
1608 	}
1609 
1610 	/* else we'll count the processed operations */
1611 	num_resops = resp->decode_len;
1612 	for (i = 0; i < num_resops; i++) {
1613 		/*
1614 		 * Count the individual operations
1615 		 * processed by the server.
1616 		 */
1617 		if (resp->array[i].resop >= NFSPROC4_NULL &&
1618 		    resp->array[i].resop <= OP_WRITE)
1619 			mi->mi_reqs[resp->array[i].resop].value.ui64++;
1620 	}
1621 
1622 	ep->error = 0;
1623 	ep->stat = resp->status;
1624 	ep->rpc_status = rpc_status;
1625 }
1626 
1627 /*
1628  * nfs4rename_update - updates stored state after a rename.  Currently this
1629  * is the path of the object and anything under it, and the filehandle of
1630  * the renamed object.
1631  */
1632 void
1633 nfs4rename_update(vnode_t *renvp, vnode_t *ndvp, nfs_fh4 *nfh4p, char *nnm)
1634 {
1635 	sfh4_update(VTOR4(renvp)->r_fh, nfh4p);
1636 	fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, nnm);
1637 }
1638 
1639 /*
1640  * Routine to look up the filehandle for the given path and rootvp.
1641  *
1642  * Return values:
1643  * - success: returns zero and *statp is set to NFS4_OK, and *fhp is
1644  *   updated.
1645  * - error: return value (errno value) and/or *statp is set appropriately.
1646  */
1647 #define	RML_ORDINARY	1
1648 #define	RML_NAMED_ATTR	2
1649 #define	RML_ATTRDIR	3
1650 
1651 static void
1652 remap_lookup(nfs4_fname_t *fname, vnode_t *rootvp,
1653     int filetype, cred_t *cr,
1654     nfs_fh4 *fhp, nfs4_ga_res_t *garp,		/* fh, attrs for object */
1655     nfs_fh4 *pfhp, nfs4_ga_res_t *pgarp,	/* fh, attrs for parent */
1656     nfs4_error_t *ep)
1657 {
1658 	COMPOUND4args_clnt args;
1659 	COMPOUND4res_clnt res;
1660 	nfs_argop4 *argop;
1661 	nfs_resop4 *resop;
1662 	int num_argops;
1663 	lookup4_param_t lookuparg;
1664 	nfs_fh4 *tmpfhp;
1665 	int doqueue = 1;
1666 	char *path;
1667 	mntinfo4_t *mi;
1668 
1669 	ASSERT(fname != NULL);
1670 	ASSERT(rootvp->v_type == VDIR);
1671 
1672 	mi = VTOMI4(rootvp);
1673 	path = fn_path(fname);
1674 	switch (filetype) {
1675 	case RML_NAMED_ATTR:
1676 		lookuparg.l4_getattrs = LKP4_LAST_NAMED_ATTR;
1677 		args.ctag = TAG_REMAP_LOOKUP_NA;
1678 		break;
1679 	case RML_ATTRDIR:
1680 		lookuparg.l4_getattrs = LKP4_LAST_ATTRDIR;
1681 		args.ctag = TAG_REMAP_LOOKUP_AD;
1682 		break;
1683 	case RML_ORDINARY:
1684 		lookuparg.l4_getattrs = LKP4_ALL_ATTRIBUTES;
1685 		args.ctag = TAG_REMAP_LOOKUP;
1686 		break;
1687 	default:
1688 		ep->error = EINVAL;
1689 		return;
1690 	}
1691 	lookuparg.argsp = &args;
1692 	lookuparg.resp = &res;
1693 	lookuparg.header_len = 1;	/* Putfh */
1694 	lookuparg.trailer_len = 0;
1695 	lookuparg.ga_bits = NFS4_VATTR_MASK;
1696 	lookuparg.mi = VTOMI4(rootvp);
1697 
1698 	(void) nfs4lookup_setup(path, &lookuparg, 1);
1699 
1700 	/* 0: putfh directory */
1701 	argop = args.array;
1702 	argop[0].argop = OP_CPUTFH;
1703 	argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(rootvp)->r_fh;
1704 
1705 	num_argops = args.array_len;
1706 
1707 	rfs4call(mi, &args, &res, cr, &doqueue, RFSCALL_SOFT, ep);
1708 
1709 	if (ep->error || res.status != NFS4_OK)
1710 		goto exit;
1711 
1712 	/* get the object filehandle */
1713 	resop = &res.array[res.array_len - 2];
1714 	if (resop->resop != OP_GETFH) {
1715 		nfs4_queue_event(RE_FAIL_REMAP_OP, mi, NULL,
1716 		    0, NULL, NULL, 0, NULL, 0, TAG_NONE, TAG_NONE, 0, 0);
1717 		ep->stat = NFS4ERR_SERVERFAULT;
1718 		goto exit;
1719 	}
1720 	tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
1721 	if (tmpfhp->nfs_fh4_len > NFS4_FHSIZE) {
1722 		nfs4_queue_event(RE_FAIL_REMAP_LEN, mi, NULL,
1723 		    tmpfhp->nfs_fh4_len, NULL, NULL, 0, NULL, 0, TAG_NONE,
1724 		    TAG_NONE, 0, 0);
1725 		ep->stat = NFS4ERR_SERVERFAULT;
1726 		goto exit;
1727 	}
1728 	fhp->nfs_fh4_val = kmem_alloc(tmpfhp->nfs_fh4_len, KM_SLEEP);
1729 	nfs_fh4_copy(tmpfhp, fhp);
1730 
1731 	/* get the object attributes */
1732 	resop = &res.array[res.array_len - 1];
1733 	if (garp && resop->resop == OP_GETATTR)
1734 		*garp = resop->nfs_resop4_u.opgetattr.ga_res;
1735 
1736 	/* See if there are enough fields in the response for parent info */
1737 	if ((int)res.array_len - 5 <= 0)
1738 		goto exit;
1739 
1740 	/* get the parent filehandle */
1741 	resop = &res.array[res.array_len - 5];
1742 	if (resop->resop != OP_GETFH) {
1743 		nfs4_queue_event(RE_FAIL_REMAP_OP, mi, NULL,
1744 		    0, NULL, NULL, 0, NULL, 0, TAG_NONE, TAG_NONE, 0, 0);
1745 		ep->stat = NFS4ERR_SERVERFAULT;
1746 		goto exit;
1747 	}
1748 	tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
1749 	if (tmpfhp->nfs_fh4_len > NFS4_FHSIZE) {
1750 		nfs4_queue_event(RE_FAIL_REMAP_LEN, mi, NULL,
1751 		    tmpfhp->nfs_fh4_len, NULL, NULL, 0, NULL, 0, TAG_NONE,
1752 		    TAG_NONE, 0, 0);
1753 		ep->stat = NFS4ERR_SERVERFAULT;
1754 		goto exit;
1755 	}
1756 	pfhp->nfs_fh4_val = kmem_alloc(tmpfhp->nfs_fh4_len, KM_SLEEP);
1757 	nfs_fh4_copy(tmpfhp, pfhp);
1758 
1759 	/* get the parent attributes */
1760 	resop = &res.array[res.array_len - 4];
1761 	if (pgarp && resop->resop == OP_GETATTR)
1762 		*pgarp = resop->nfs_resop4_u.opgetattr.ga_res;
1763 
1764 exit:
1765 	/*
1766 	 * It is too hard to remember where all the OP_LOOKUPs are
1767 	 */
1768 	nfs4args_lookup_free(argop, num_argops);
1769 	kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1770 
1771 	if (!ep->error)
1772 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1773 	kmem_free(path, strlen(path)+1);
1774 }
1775 
1776 /*
1777  * NFS client failover / volatile filehandle support
1778  *
1779  * Recover the filehandle for the given rnode.
1780  *
1781  * Errors are returned via the nfs4_error_t parameter.
1782  */
1783 
1784 void
1785 nfs4_remap_file(mntinfo4_t *mi, vnode_t *vp, int flags, nfs4_error_t *ep)
1786 {
1787 	int is_stub;
1788 	rnode4_t *rp = VTOR4(vp);
1789 	vnode_t *rootvp = NULL;
1790 	vnode_t *dvp = NULL;
1791 	cred_t *cr, *cred_otw;
1792 	nfs4_ga_res_t gar, pgar;
1793 	nfs_fh4 newfh = {0, NULL}, newpfh = {0, NULL};
1794 	int filetype = RML_ORDINARY;
1795 	nfs4_recov_state_t recov = {NULL, 0, 0};
1796 	int badfhcount = 0;
1797 	nfs4_open_stream_t *osp = NULL;
1798 	bool_t first_time = TRUE;	/* first time getting OTW cred */
1799 	bool_t last_time = FALSE;	/* last time getting OTW cred */
1800 
1801 	NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1802 	    "nfs4_remap_file: remapping %s", rnode4info(rp)));
1803 	ASSERT(nfs4_consistent_type(vp));
1804 
1805 	if (vp->v_flag & VROOT) {
1806 		nfs4_remap_root(mi, ep, flags);
1807 		return;
1808 	}
1809 
1810 	/*
1811 	 * Given the root fh, use the path stored in
1812 	 * the rnode to find the fh for the new server.
1813 	 */
1814 	ep->error = VFS_ROOT(mi->mi_vfsp, &rootvp);
1815 	if (ep->error != 0)
1816 		return;
1817 
1818 	cr = curthread->t_cred;
1819 	ASSERT(cr != NULL);
1820 get_remap_cred:
1821 	/*
1822 	 * Releases the osp, if it is provided.
1823 	 * Puts a hold on the cred_otw and the new osp (if found).
1824 	 */
1825 	cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
1826 	    &first_time, &last_time);
1827 	ASSERT(cred_otw != NULL);
1828 
1829 	if (rp->r_flags & R4ISXATTR) {
1830 		filetype = RML_NAMED_ATTR;
1831 		(void) vtodv(vp, &dvp, cred_otw, FALSE);
1832 	}
1833 
1834 	if (vp->v_flag & V_XATTRDIR) {
1835 		filetype = RML_ATTRDIR;
1836 	}
1837 
1838 	if (filetype == RML_ORDINARY && rootvp->v_type == VREG) {
1839 		/* file mount, doesn't need a remap */
1840 		goto done;
1841 	}
1842 
1843 again:
1844 	remap_lookup(rp->r_svnode.sv_name, rootvp, filetype, cred_otw,
1845 	    &newfh, &gar, &newpfh, &pgar, ep);
1846 
1847 	NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1848 	    "nfs4_remap_file: remap_lookup returned %d/%d",
1849 	    ep->error, ep->stat));
1850 
1851 	if (last_time == FALSE && ep->error == EACCES) {
1852 		crfree(cred_otw);
1853 		if (dvp != NULL)
1854 			VN_RELE(dvp);
1855 		goto get_remap_cred;
1856 	}
1857 	if (ep->error != 0)
1858 		goto done;
1859 
1860 	switch (ep->stat) {
1861 	case NFS4_OK:
1862 		badfhcount = 0;
1863 		if (recov.rs_flags & NFS4_RS_DELAY_MSG) {
1864 			mutex_enter(&rp->r_statelock);
1865 			rp->r_delay_interval = 0;
1866 			mutex_exit(&rp->r_statelock);
1867 			uprintf("NFS File Available..\n");
1868 		}
1869 		break;
1870 	case NFS4ERR_FHEXPIRED:
1871 	case NFS4ERR_BADHANDLE:
1872 		/*
1873 		 * If we ran into filehandle problems, we should try to
1874 		 * remap the root vnode first and hope life gets better.
1875 		 * But we need to avoid loops.
1876 		 */
1877 		if (badfhcount++ > 0)
1878 			goto done;
1879 		if (newfh.nfs_fh4_len != 0) {
1880 			kmem_free(newfh.nfs_fh4_val, newfh.nfs_fh4_len);
1881 			newfh.nfs_fh4_len = 0;
1882 		}
1883 		if (newpfh.nfs_fh4_len != 0) {
1884 			kmem_free(newpfh.nfs_fh4_val, newpfh.nfs_fh4_len);
1885 			newpfh.nfs_fh4_len = 0;
1886 		}
1887 		/* relative path - remap rootvp then retry */
1888 		VN_RELE(rootvp);
1889 		rootvp = NULL;
1890 		nfs4_remap_root(mi, ep, flags);
1891 		if (ep->error != 0 || ep->stat != NFS4_OK)
1892 			goto done;
1893 		ep->error = VFS_ROOT(mi->mi_vfsp, &rootvp);
1894 		if (ep->error != 0)
1895 			goto done;
1896 		goto again;
1897 	case NFS4ERR_DELAY:
1898 		badfhcount = 0;
1899 		nfs4_set_delay_wait(vp);
1900 		ep->error = nfs4_wait_for_delay(vp, &recov);
1901 		if (ep->error != 0)
1902 			goto done;
1903 		goto again;
1904 	case NFS4ERR_ACCESS:
1905 		/* get new cred, try again */
1906 		if (last_time == TRUE)
1907 			goto done;
1908 		if (dvp != NULL)
1909 			VN_RELE(dvp);
1910 		crfree(cred_otw);
1911 		goto get_remap_cred;
1912 	default:
1913 		goto done;
1914 	}
1915 
1916 	/*
1917 	 * Check on the new and old rnodes before updating;
1918 	 * if the vnode type or size changes, issue a warning
1919 	 * and mark the file dead.
1920 	 */
1921 	mutex_enter(&rp->r_statelock);
1922 	if (flags & NFS4_REMAP_CKATTRS) {
1923 		if (vp->v_type != gar.n4g_va.va_type ||
1924 		    (vp->v_type != VDIR &&
1925 		    rp->r_size != gar.n4g_va.va_size)) {
1926 			NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1927 			    "nfs4_remap_file: size %d vs. %d, type %d vs. %d",
1928 			    (int)rp->r_size, (int)gar.n4g_va.va_size,
1929 			    vp->v_type, gar.n4g_va.va_type));
1930 			mutex_exit(&rp->r_statelock);
1931 			nfs4_queue_event(RE_FILE_DIFF, mi,
1932 			    rp->r_server->sv_hostname, 0, vp, NULL, 0, NULL, 0,
1933 			    TAG_NONE, TAG_NONE, 0, 0);
1934 			nfs4_fail_recov(vp, NULL, 0, NFS4_OK);
1935 			goto done;
1936 		}
1937 	}
1938 	ASSERT(gar.n4g_va.va_type != VNON);
1939 	rp->r_server = mi->mi_curr_serv;
1940 
1941 	/*
1942 	 * Turn this object into a "stub" object if we
1943 	 * crossed an underlying server fs boundary.
1944 	 *
1945 	 * This stub will be for a mirror-mount.
1946 	 *
1947 	 * See comment in r4_do_attrcache() for more details.
1948 	 */
1949 	is_stub = 0;
1950 	if (gar.n4g_fsid_valid) {
1951 		(void) nfs_rw_enter_sig(&rp->r_server->sv_lock, RW_READER, 0);
1952 		rp->r_srv_fsid = gar.n4g_fsid;
1953 		if (!FATTR4_FSID_EQ(&gar.n4g_fsid, &rp->r_server->sv_fsid))
1954 			is_stub = 1;
1955 		nfs_rw_exit(&rp->r_server->sv_lock);
1956 #ifdef DEBUG
1957 	} else {
1958 		NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1959 		    "remap_file: fsid attr not provided by server.  rp=%p",
1960 		    (void *)rp));
1961 #endif
1962 	}
1963 	if (is_stub)
1964 		r4_stub_mirrormount(rp);
1965 	else
1966 		r4_stub_none(rp);
1967 	mutex_exit(&rp->r_statelock);
1968 	nfs4_attrcache_noinval(vp, &gar, gethrtime()); /* force update */
1969 	sfh4_update(rp->r_fh, &newfh);
1970 	ASSERT(nfs4_consistent_type(vp));
1971 
1972 	/*
1973 	 * If we got parent info, use it to update the parent
1974 	 */
1975 	if (newpfh.nfs_fh4_len != 0) {
1976 		if (rp->r_svnode.sv_dfh != NULL)
1977 			sfh4_update(rp->r_svnode.sv_dfh, &newpfh);
1978 		if (dvp != NULL) {
1979 			/* force update of attrs */
1980 			nfs4_attrcache_noinval(dvp, &pgar, gethrtime());
1981 		}
1982 	}
1983 done:
1984 	if (newfh.nfs_fh4_len != 0)
1985 		kmem_free(newfh.nfs_fh4_val, newfh.nfs_fh4_len);
1986 	if (newpfh.nfs_fh4_len != 0)
1987 		kmem_free(newpfh.nfs_fh4_val, newpfh.nfs_fh4_len);
1988 	if (cred_otw != NULL)
1989 		crfree(cred_otw);
1990 	if (rootvp != NULL)
1991 		VN_RELE(rootvp);
1992 	if (dvp != NULL)
1993 		VN_RELE(dvp);
1994 	if (osp != NULL)
1995 		open_stream_rele(osp, rp);
1996 }
1997 
1998 /*
1999  * Client-side failover support: remap the filehandle for vp if it appears
2000  * necessary.  errors are returned via the nfs4_error_t parameter; though,
2001  * if there is a problem, we will just try again later.
2002  */
2003 
2004 void
2005 nfs4_check_remap(mntinfo4_t *mi, vnode_t *vp, int flags, nfs4_error_t *ep)
2006 {
2007 	if (vp == NULL)
2008 		return;
2009 
2010 	if (!(vp->v_vfsp->vfs_flag & VFS_RDONLY))
2011 		return;
2012 
2013 	if (VTOR4(vp)->r_server == mi->mi_curr_serv)
2014 		return;
2015 
2016 	nfs4_remap_file(mi, vp, flags, ep);
2017 }
2018 
2019 /*
2020  * nfs4_make_dotdot() - find or create a parent vnode of a non-root node.
2021  *
2022  * Our caller has a filehandle for ".." relative to a particular
2023  * directory object.  We want to find or create a parent vnode
2024  * with that filehandle and return it.  We can of course create
2025  * a vnode from this filehandle, but we need to also make sure
2026  * that if ".." is a regular file (i.e. dvp is a V_XATTRDIR)
2027  * that we have a parent FH for future reopens as well.  If
2028  * we have a remap failure, we won't be able to reopen this
2029  * file, but we won't treat that as fatal because a reopen
2030  * is at least unlikely.  Someday nfs4_reopen() should look
2031  * for a missing parent FH and try a remap to recover from it.
2032  *
2033  * need_start_op argument indicates whether this function should
2034  * do a start_op before calling remap_lookup().  This should
2035  * be FALSE, if you are the recovery thread or in an op; otherwise,
2036  * set it to TRUE.
2037  */
2038 int
2039 nfs4_make_dotdot(nfs4_sharedfh_t *fhp, hrtime_t t, vnode_t *dvp,
2040     cred_t *cr, vnode_t **vpp, int need_start_op)
2041 {
2042 	mntinfo4_t *mi = VTOMI4(dvp);
2043 	nfs4_fname_t *np = NULL, *pnp = NULL;
2044 	vnode_t *vp = NULL, *rootvp = NULL;
2045 	rnode4_t *rp;
2046 	nfs_fh4 newfh = {0, NULL}, newpfh = {0, NULL};
2047 	nfs4_ga_res_t gar, pgar;
2048 	vattr_t va, pva;
2049 	nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
2050 	nfs4_sharedfh_t *sfh = NULL, *psfh = NULL;
2051 	nfs4_recov_state_t recov_state;
2052 
2053 #ifdef DEBUG
2054 	/*
2055 	 * ensure need_start_op is correct
2056 	 */
2057 	{
2058 		int no_need_start_op = (tsd_get(nfs4_tsd_key) ||
2059 		    (curthread == mi->mi_recovthread));
2060 		/* C needs a ^^ operator! */
2061 		ASSERT(((need_start_op) && (!no_need_start_op)) ||
2062 		    ((! need_start_op) && (no_need_start_op)));
2063 	}
2064 #endif
2065 	ASSERT(VTOMI4(dvp)->mi_zone == nfs_zone());
2066 
2067 	NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE,
2068 	    "nfs4_make_dotdot: called with fhp %p, dvp %s", (void *)fhp,
2069 	    rnode4info(VTOR4(dvp))));
2070 
2071 	/*
2072 	 * rootvp might be needed eventually. Holding it now will
2073 	 * ensure that r4find_unlocked() will find it, if ".." is the root.
2074 	 */
2075 	e.error = VFS_ROOT(mi->mi_vfsp, &rootvp);
2076 	if (e.error != 0)
2077 		goto out;
2078 	rp = r4find_unlocked(fhp, mi->mi_vfsp);
2079 	if (rp != NULL) {
2080 		*vpp = RTOV4(rp);
2081 		VN_RELE(rootvp);
2082 		return (0);
2083 	}
2084 
2085 	/*
2086 	 * Since we don't have the rnode, we have to go over the wire.
2087 	 * remap_lookup() can get all of the filehandles and attributes
2088 	 * we need in one operation.
2089 	 */
2090 	np = fn_parent(VTOSV(dvp)->sv_name);
2091 	ASSERT(np != NULL);
2092 
2093 	recov_state.rs_flags = 0;
2094 	recov_state.rs_num_retry_despite_err = 0;
2095 recov_retry:
2096 	if (need_start_op) {
2097 		e.error = nfs4_start_fop(mi, rootvp, NULL, OH_LOOKUP,
2098 		    &recov_state, NULL);
2099 		if (e.error != 0) {
2100 			goto out;
2101 		}
2102 	}
2103 	va.va_type = VNON;
2104 	pva.va_type = VNON;
2105 	remap_lookup(np, rootvp, RML_ORDINARY, cr,
2106 	    &newfh, &gar, &newpfh, &pgar, &e);
2107 	if (nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp)) {
2108 		if (need_start_op) {
2109 			bool_t abort;
2110 
2111 			abort = nfs4_start_recovery(&e, mi,
2112 			    rootvp, NULL, NULL, NULL, OP_LOOKUP, NULL);
2113 			if (abort) {
2114 				nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP,
2115 				    &recov_state, FALSE);
2116 				if (e.error == 0)
2117 					e.error = EIO;
2118 				goto out;
2119 			}
2120 			nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP,
2121 			    &recov_state, TRUE);
2122 			goto recov_retry;
2123 		}
2124 		if (e.error == 0)
2125 			e.error = EIO;
2126 		goto out;
2127 	}
2128 
2129 	if (!e.error) {
2130 		va = gar.n4g_va;
2131 		pva = pgar.n4g_va;
2132 	}
2133 
2134 	if ((e.error != 0) ||
2135 	    (va.va_type != VDIR)) {
2136 		if (need_start_op)
2137 			nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP,
2138 			    &recov_state, FALSE);
2139 		if (e.error == 0)
2140 			e.error = EIO;
2141 		goto out;
2142 	}
2143 
2144 	if (e.stat != NFS4_OK) {
2145 		if (need_start_op)
2146 			nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP,
2147 			    &recov_state, FALSE);
2148 		e.error = EIO;
2149 		goto out;
2150 	}
2151 
2152 	/*
2153 	 * It is possible for remap_lookup() to return with no error,
2154 	 * but without providing the parent filehandle and attrs.
2155 	 */
2156 	if (pva.va_type != VDIR) {
2157 		/*
2158 		 * Call remap_lookup() again, this time with the
2159 		 * newpfh and pgar args in the first position.
2160 		 */
2161 		pnp = fn_parent(np);
2162 		if (pnp != NULL) {
2163 			remap_lookup(pnp, rootvp, RML_ORDINARY, cr,
2164 			    &newpfh, &pgar, NULL, NULL, &e);
2165 			if (nfs4_needs_recovery(&e, FALSE,
2166 			    mi->mi_vfsp)) {
2167 				if (need_start_op) {
2168 					bool_t abort;
2169 
2170 					abort = nfs4_start_recovery(&e, mi,
2171 					    rootvp, NULL, NULL, NULL,
2172 					    OP_LOOKUP, NULL);
2173 					if (abort) {
2174 						nfs4_end_fop(mi, rootvp, NULL,
2175 						    OH_LOOKUP, &recov_state,
2176 						    FALSE);
2177 						if (e.error == 0)
2178 							e.error = EIO;
2179 						goto out;
2180 					}
2181 					nfs4_end_fop(mi, rootvp, NULL,
2182 					    OH_LOOKUP, &recov_state, TRUE);
2183 					goto recov_retry;
2184 				}
2185 				if (e.error == 0)
2186 					e.error = EIO;
2187 				goto out;
2188 			}
2189 
2190 			if (e.stat != NFS4_OK) {
2191 				if (need_start_op)
2192 					nfs4_end_fop(mi, rootvp, NULL,
2193 					    OH_LOOKUP, &recov_state, FALSE);
2194 				e.error = EIO;
2195 				goto out;
2196 			}
2197 		}
2198 		if ((pnp == NULL) ||
2199 		    (e.error != 0) ||
2200 		    (pva.va_type == VNON)) {
2201 			if (need_start_op)
2202 				nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP,
2203 				    &recov_state, FALSE);
2204 			if (e.error == 0)
2205 				e.error = EIO;
2206 			goto out;
2207 		}
2208 	}
2209 	ASSERT(newpfh.nfs_fh4_len != 0);
2210 	if (need_start_op)
2211 		nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP, &recov_state, FALSE);
2212 	psfh = sfh4_get(&newpfh, mi);
2213 
2214 	sfh = sfh4_get(&newfh, mi);
2215 	vp = makenfs4node_by_fh(sfh, psfh, &np, &gar, mi, cr, t);
2216 
2217 out:
2218 	if (np != NULL)
2219 		fn_rele(&np);
2220 	if (pnp != NULL)
2221 		fn_rele(&pnp);
2222 	if (newfh.nfs_fh4_len != 0)
2223 		kmem_free(newfh.nfs_fh4_val, newfh.nfs_fh4_len);
2224 	if (newpfh.nfs_fh4_len != 0)
2225 		kmem_free(newpfh.nfs_fh4_val, newpfh.nfs_fh4_len);
2226 	if (sfh != NULL)
2227 		sfh4_rele(&sfh);
2228 	if (psfh != NULL)
2229 		sfh4_rele(&psfh);
2230 	if (rootvp != NULL)
2231 		VN_RELE(rootvp);
2232 	*vpp = vp;
2233 	return (e.error);
2234 }
2235 
2236 #ifdef DEBUG
2237 size_t r_path_memuse = 0;
2238 #endif
2239 
2240 /*
2241  * NFS client failover support
2242  *
2243  * sv4_free() frees the malloc'd portion of a "servinfo_t".
2244  */
2245 void
2246 sv4_free(servinfo4_t *svp)
2247 {
2248 	servinfo4_t *next;
2249 	struct knetconfig *knconf;
2250 
2251 	while (svp != NULL) {
2252 		next = svp->sv_next;
2253 		if (svp->sv_dhsec)
2254 			sec_clnt_freeinfo(svp->sv_dhsec);
2255 		if (svp->sv_secdata)
2256 			sec_clnt_freeinfo(svp->sv_secdata);
2257 		if (svp->sv_save_secinfo &&
2258 		    svp->sv_save_secinfo != svp->sv_secinfo)
2259 			secinfo_free(svp->sv_save_secinfo);
2260 		if (svp->sv_secinfo)
2261 			secinfo_free(svp->sv_secinfo);
2262 		if (svp->sv_hostname && svp->sv_hostnamelen > 0)
2263 			kmem_free(svp->sv_hostname, svp->sv_hostnamelen);
2264 		knconf = svp->sv_knconf;
2265 		if (knconf != NULL) {
2266 			if (knconf->knc_protofmly != NULL)
2267 				kmem_free(knconf->knc_protofmly, KNC_STRSIZE);
2268 			if (knconf->knc_proto != NULL)
2269 				kmem_free(knconf->knc_proto, KNC_STRSIZE);
2270 			kmem_free(knconf, sizeof (*knconf));
2271 		}
2272 		knconf = svp->sv_origknconf;
2273 		if (knconf != NULL) {
2274 			if (knconf->knc_protofmly != NULL)
2275 				kmem_free(knconf->knc_protofmly, KNC_STRSIZE);
2276 			if (knconf->knc_proto != NULL)
2277 				kmem_free(knconf->knc_proto, KNC_STRSIZE);
2278 			kmem_free(knconf, sizeof (*knconf));
2279 		}
2280 		if (svp->sv_addr.buf != NULL && svp->sv_addr.maxlen != 0)
2281 			kmem_free(svp->sv_addr.buf, svp->sv_addr.maxlen);
2282 		if (svp->sv_path != NULL) {
2283 			kmem_free(svp->sv_path, svp->sv_pathlen);
2284 		}
2285 		nfs_rw_destroy(&svp->sv_lock);
2286 		kmem_free(svp, sizeof (*svp));
2287 		svp = next;
2288 	}
2289 }
2290 
2291 void
2292 nfs4_printfhandle(nfs4_fhandle_t *fhp)
2293 {
2294 	int *ip;
2295 	char *buf;
2296 	size_t bufsize;
2297 	char *cp;
2298 
2299 	/*
2300 	 * 13 == "(file handle:"
2301 	 * maximum of NFS_FHANDLE / sizeof (*ip) elements in fh_buf times
2302 	 *	1 == ' '
2303 	 *	8 == maximum strlen of "%x"
2304 	 * 3 == ")\n\0"
2305 	 */
2306 	bufsize = 13 + ((NFS_FHANDLE_LEN / sizeof (*ip)) * (1 + 8)) + 3;
2307 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
2308 	if (buf == NULL)
2309 		return;
2310 
2311 	cp = buf;
2312 	(void) strcpy(cp, "(file handle:");
2313 	while (*cp != '\0')
2314 		cp++;
2315 	for (ip = (int *)fhp->fh_buf;
2316 	    ip < (int *)&fhp->fh_buf[fhp->fh_len];
2317 	    ip++) {
2318 		(void) sprintf(cp, " %x", *ip);
2319 		while (*cp != '\0')
2320 			cp++;
2321 	}
2322 	(void) strcpy(cp, ")\n");
2323 
2324 	zcmn_err(getzoneid(), CE_CONT, "%s", buf);
2325 
2326 	kmem_free(buf, bufsize);
2327 }
2328 
2329 /*
2330  * The NFSv4 readdir cache subsystem.
2331  *
2332  * We provide a set of interfaces to allow the rest of the system to utilize
2333  * a caching mechanism while encapsulating the details of the actual
2334  * implementation.  This should allow for better maintainability and
2335  * extensibility by consolidating the implementation details in one location.
2336  */
2337 
2338 /*
2339  * Comparator used by AVL routines.
2340  */
2341 static int
2342 rddir4_cache_compar(const void *x, const void *y)
2343 {
2344 	rddir4_cache_impl *ai = (rddir4_cache_impl *)x;
2345 	rddir4_cache_impl *bi = (rddir4_cache_impl *)y;
2346 	rddir4_cache *a = &ai->rc;
2347 	rddir4_cache *b = &bi->rc;
2348 
2349 	if (a->nfs4_cookie == b->nfs4_cookie) {
2350 		if (a->buflen == b->buflen)
2351 			return (0);
2352 		if (a->buflen < b->buflen)
2353 			return (-1);
2354 		return (1);
2355 	}
2356 
2357 	if (a->nfs4_cookie < b->nfs4_cookie)
2358 			return (-1);
2359 
2360 	return (1);
2361 }
2362 
2363 /*
2364  * Allocate an opaque handle for the readdir cache.
2365  */
2366 void
2367 rddir4_cache_create(rnode4_t *rp)
2368 {
2369 	ASSERT(rp->r_dir == NULL);
2370 
2371 	rp->r_dir = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2372 
2373 	avl_create(rp->r_dir, rddir4_cache_compar, sizeof (rddir4_cache_impl),
2374 	    offsetof(rddir4_cache_impl, tree));
2375 }
2376 
2377 /*
2378  *  Purge the cache of all cached readdir responses.
2379  */
2380 void
2381 rddir4_cache_purge(rnode4_t *rp)
2382 {
2383 	rddir4_cache_impl	*rdip;
2384 	rddir4_cache_impl	*nrdip;
2385 
2386 	ASSERT(MUTEX_HELD(&rp->r_statelock));
2387 
2388 	if (rp->r_dir == NULL)
2389 		return;
2390 
2391 	rdip = avl_first(rp->r_dir);
2392 
2393 	while (rdip != NULL) {
2394 		nrdip = AVL_NEXT(rp->r_dir, rdip);
2395 		avl_remove(rp->r_dir, rdip);
2396 		rdip->rc.flags &= ~RDDIRCACHED;
2397 		rddir4_cache_rele(rp, &rdip->rc);
2398 		rdip = nrdip;
2399 	}
2400 	ASSERT(avl_numnodes(rp->r_dir) == 0);
2401 }
2402 
2403 /*
2404  * Destroy the readdir cache.
2405  */
2406 void
2407 rddir4_cache_destroy(rnode4_t *rp)
2408 {
2409 	ASSERT(MUTEX_HELD(&rp->r_statelock));
2410 	if (rp->r_dir == NULL)
2411 		return;
2412 
2413 	rddir4_cache_purge(rp);
2414 	avl_destroy(rp->r_dir);
2415 	kmem_free(rp->r_dir, sizeof (avl_tree_t));
2416 	rp->r_dir = NULL;
2417 }
2418 
2419 /*
2420  * Locate a readdir response from the readdir cache.
2421  *
2422  * Return values:
2423  *
2424  * NULL - If there is an unrecoverable situation like the operation may have
2425  *	  been interrupted.
2426  *
2427  * rddir4_cache * - A pointer to a rddir4_cache is returned to the caller.
2428  *		    The flags are set approprately, such that the caller knows
2429  *		    what state the entry is in.
2430  */
2431 rddir4_cache *
2432 rddir4_cache_lookup(rnode4_t *rp, offset_t cookie, int count)
2433 {
2434 	rddir4_cache_impl	*rdip = NULL;
2435 	rddir4_cache_impl	srdip;
2436 	rddir4_cache		*srdc;
2437 	rddir4_cache		*rdc = NULL;
2438 	rddir4_cache		*nrdc = NULL;
2439 	avl_index_t		where;
2440 
2441 top:
2442 	ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
2443 	ASSERT(MUTEX_HELD(&rp->r_statelock));
2444 	/*
2445 	 * Check to see if the readdir cache has been disabled.  If so, then
2446 	 * simply allocate an rddir4_cache entry and return it, since caching
2447 	 * operations do not apply.
2448 	 */
2449 	if (rp->r_dir == NULL) {
2450 		if (nrdc == NULL) {
2451 			/*
2452 			 * Drop the lock because we are doing a sleeping
2453 			 * allocation.
2454 			 */
2455 			mutex_exit(&rp->r_statelock);
2456 			rdc = rddir4_cache_alloc(KM_SLEEP);
2457 			rdc->nfs4_cookie = cookie;
2458 			rdc->buflen = count;
2459 			mutex_enter(&rp->r_statelock);
2460 			return (rdc);
2461 		}
2462 		return (nrdc);
2463 	}
2464 
2465 	srdc = &srdip.rc;
2466 	srdc->nfs4_cookie = cookie;
2467 	srdc->buflen = count;
2468 
2469 	rdip = avl_find(rp->r_dir, &srdip, &where);
2470 
2471 	/*
2472 	 * If we didn't find an entry then create one and insert it
2473 	 * into the cache.
2474 	 */
2475 	if (rdip == NULL) {
2476 		/*
2477 		 * Check for the case where we have made a second pass through
2478 		 * the cache due to a lockless allocation.  If we find that no
2479 		 * thread has already inserted this entry, do the insert now
2480 		 * and return.
2481 		 */
2482 		if (nrdc != NULL) {
2483 			avl_insert(rp->r_dir, nrdc->data, where);
2484 			nrdc->flags |= RDDIRCACHED;
2485 			rddir4_cache_hold(nrdc);
2486 			return (nrdc);
2487 		}
2488 
2489 #ifdef DEBUG
2490 		nfs4_readdir_cache_misses++;
2491 #endif
2492 		/*
2493 		 * First, try to allocate an entry without sleeping.  If that
2494 		 * fails then drop the lock and do a sleeping allocation.
2495 		 */
2496 		nrdc = rddir4_cache_alloc(KM_NOSLEEP);
2497 		if (nrdc != NULL) {
2498 			nrdc->nfs4_cookie = cookie;
2499 			nrdc->buflen = count;
2500 			avl_insert(rp->r_dir, nrdc->data, where);
2501 			nrdc->flags |= RDDIRCACHED;
2502 			rddir4_cache_hold(nrdc);
2503 			return (nrdc);
2504 		}
2505 
2506 		/*
2507 		 * Drop the lock and do a sleeping allocation.	We incur
2508 		 * additional overhead by having to search the cache again,
2509 		 * but this case should be rare.
2510 		 */
2511 		mutex_exit(&rp->r_statelock);
2512 		nrdc = rddir4_cache_alloc(KM_SLEEP);
2513 		nrdc->nfs4_cookie = cookie;
2514 		nrdc->buflen = count;
2515 		mutex_enter(&rp->r_statelock);
2516 		/*
2517 		 * We need to take another pass through the cache
2518 		 * since we dropped our lock to perform the alloc.
2519 		 * Another thread may have come by and inserted the
2520 		 * entry we are interested in.
2521 		 */
2522 		goto top;
2523 	}
2524 
2525 	/*
2526 	 * Check to see if we need to free our entry.  This can happen if
2527 	 * another thread came along beat us to the insert.  We can
2528 	 * safely call rddir4_cache_free directly because no other thread
2529 	 * would have a reference to this entry.
2530 	 */
2531 	if (nrdc != NULL)
2532 		rddir4_cache_free((rddir4_cache_impl *)nrdc->data);
2533 
2534 #ifdef DEBUG
2535 	nfs4_readdir_cache_hits++;
2536 #endif
2537 	/*
2538 	 * Found something.  Make sure it's ready to return.
2539 	 */
2540 	rdc = &rdip->rc;
2541 	rddir4_cache_hold(rdc);
2542 	/*
2543 	 * If the cache entry is in the process of being filled in, wait
2544 	 * until this completes.  The RDDIRWAIT bit is set to indicate that
2545 	 * someone is waiting and when the thread currently filling the entry
2546 	 * is done, it should do a cv_broadcast to wakeup all of the threads
2547 	 * waiting for it to finish. If the thread wakes up to find that
2548 	 * someone new is now trying to complete the the entry, go back
2549 	 * to sleep.
2550 	 */
2551 	while (rdc->flags & RDDIR) {
2552 		/*
2553 		 * The entry is not complete.
2554 		 */
2555 		nfs_rw_exit(&rp->r_rwlock);
2556 		rdc->flags |= RDDIRWAIT;
2557 #ifdef DEBUG
2558 		nfs4_readdir_cache_waits++;
2559 #endif
2560 		while (rdc->flags & RDDIRWAIT) {
2561 			if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) {
2562 				/*
2563 				 * We got interrupted, probably the user
2564 				 * typed ^C or an alarm fired.  We free the
2565 				 * new entry if we allocated one.
2566 				 */
2567 				rddir4_cache_rele(rp, rdc);
2568 				mutex_exit(&rp->r_statelock);
2569 				(void) nfs_rw_enter_sig(&rp->r_rwlock,
2570 				    RW_READER, FALSE);
2571 				mutex_enter(&rp->r_statelock);
2572 				return (NULL);
2573 			}
2574 		}
2575 		mutex_exit(&rp->r_statelock);
2576 		(void) nfs_rw_enter_sig(&rp->r_rwlock,
2577 		    RW_READER, FALSE);
2578 		mutex_enter(&rp->r_statelock);
2579 	}
2580 
2581 	/*
2582 	 * The entry we were waiting on may have been purged from
2583 	 * the cache and should no longer be used, release it and
2584 	 * start over.
2585 	 */
2586 	if (!(rdc->flags & RDDIRCACHED)) {
2587 		rddir4_cache_rele(rp, rdc);
2588 		goto top;
2589 	}
2590 
2591 	/*
2592 	 * The entry is completed.  Return it.
2593 	 */
2594 	return (rdc);
2595 }
2596 
2597 /*
2598  * Allocate a cache element and return it.  Can return NULL if memory is
2599  * low.
2600  */
2601 static rddir4_cache *
2602 rddir4_cache_alloc(int flags)
2603 {
2604 	rddir4_cache_impl	*rdip = NULL;
2605 	rddir4_cache		*rc = NULL;
2606 
2607 	rdip = kmem_alloc(sizeof (rddir4_cache_impl), flags);
2608 
2609 	if (rdip != NULL) {
2610 		rc = &rdip->rc;
2611 		rc->data = (void *)rdip;
2612 		rc->nfs4_cookie = 0;
2613 		rc->nfs4_ncookie = 0;
2614 		rc->entries = NULL;
2615 		rc->eof = 0;
2616 		rc->entlen = 0;
2617 		rc->buflen = 0;
2618 		rc->actlen = 0;
2619 		/*
2620 		 * A readdir is required so set the flag.
2621 		 */
2622 		rc->flags = RDDIRREQ;
2623 		cv_init(&rc->cv, NULL, CV_DEFAULT, NULL);
2624 		rc->error = 0;
2625 		mutex_init(&rdip->lock, NULL, MUTEX_DEFAULT, NULL);
2626 		rdip->count = 1;
2627 #ifdef DEBUG
2628 		atomic_add_64(&clstat4_debug.dirent.value.ui64, 1);
2629 #endif
2630 	}
2631 	return (rc);
2632 }
2633 
2634 /*
2635  * Increment the reference count to this cache element.
2636  */
2637 static void
2638 rddir4_cache_hold(rddir4_cache *rc)
2639 {
2640 	rddir4_cache_impl *rdip = (rddir4_cache_impl *)rc->data;
2641 
2642 	mutex_enter(&rdip->lock);
2643 	rdip->count++;
2644 	mutex_exit(&rdip->lock);
2645 }
2646 
2647 /*
2648  * Release a reference to this cache element.  If the count is zero then
2649  * free the element.
2650  */
2651 void
2652 rddir4_cache_rele(rnode4_t *rp, rddir4_cache *rdc)
2653 {
2654 	rddir4_cache_impl *rdip = (rddir4_cache_impl *)rdc->data;
2655 
2656 	ASSERT(MUTEX_HELD(&rp->r_statelock));
2657 
2658 	/*
2659 	 * Check to see if we have any waiters.  If so, we can wake them
2660 	 * so that they can proceed.
2661 	 */
2662 	if (rdc->flags & RDDIRWAIT) {
2663 		rdc->flags &= ~RDDIRWAIT;
2664 		cv_broadcast(&rdc->cv);
2665 	}
2666 
2667 	mutex_enter(&rdip->lock);
2668 	ASSERT(rdip->count > 0);
2669 	if (--rdip->count == 0) {
2670 		mutex_exit(&rdip->lock);
2671 		rddir4_cache_free(rdip);
2672 	} else
2673 		mutex_exit(&rdip->lock);
2674 }
2675 
2676 /*
2677  * Free a cache element.
2678  */
2679 static void
2680 rddir4_cache_free(rddir4_cache_impl *rdip)
2681 {
2682 	rddir4_cache *rc = &rdip->rc;
2683 
2684 #ifdef DEBUG
2685 	atomic_add_64(&clstat4_debug.dirent.value.ui64, -1);
2686 #endif
2687 	if (rc->entries != NULL)
2688 		kmem_free(rc->entries, rc->buflen);
2689 	cv_destroy(&rc->cv);
2690 	mutex_destroy(&rdip->lock);
2691 	kmem_free(rdip, sizeof (*rdip));
2692 }
2693 
2694 /*
2695  * Snapshot callback for nfs:0:nfs4_client as registered with the kstat
2696  * framework.
2697  */
2698 static int
2699 cl4_snapshot(kstat_t *ksp, void *buf, int rw)
2700 {
2701 	ksp->ks_snaptime = gethrtime();
2702 	if (rw == KSTAT_WRITE) {
2703 		bcopy(buf, ksp->ks_private, sizeof (clstat4_tmpl));
2704 #ifdef DEBUG
2705 		/*
2706 		 * Currently only the global zone can write to kstats, but we
2707 		 * add the check just for paranoia.
2708 		 */
2709 		if (INGLOBALZONE(curproc))
2710 			bcopy((char *)buf + sizeof (clstat4_tmpl),
2711 			    &clstat4_debug, sizeof (clstat4_debug));
2712 #endif
2713 	} else {
2714 		bcopy(ksp->ks_private, buf, sizeof (clstat4_tmpl));
2715 #ifdef DEBUG
2716 		/*
2717 		 * If we're displaying the "global" debug kstat values, we
2718 		 * display them as-is to all zones since in fact they apply to
2719 		 * the system as a whole.
2720 		 */
2721 		bcopy(&clstat4_debug, (char *)buf + sizeof (clstat4_tmpl),
2722 		    sizeof (clstat4_debug));
2723 #endif
2724 	}
2725 	return (0);
2726 }
2727 
2728 
2729 
2730 /*
2731  * Zone support
2732  */
2733 static void *
2734 clinit4_zone(zoneid_t zoneid)
2735 {
2736 	kstat_t *nfs4_client_kstat;
2737 	struct nfs4_clnt *nfscl;
2738 	uint_t ndata;
2739 
2740 	nfscl = kmem_alloc(sizeof (*nfscl), KM_SLEEP);
2741 	mutex_init(&nfscl->nfscl_chtable4_lock, NULL, MUTEX_DEFAULT, NULL);
2742 	nfscl->nfscl_chtable4 = NULL;
2743 	nfscl->nfscl_zoneid = zoneid;
2744 
2745 	bcopy(&clstat4_tmpl, &nfscl->nfscl_stat, sizeof (clstat4_tmpl));
2746 	ndata = sizeof (clstat4_tmpl) / sizeof (kstat_named_t);
2747 #ifdef DEBUG
2748 	ndata += sizeof (clstat4_debug) / sizeof (kstat_named_t);
2749 #endif
2750 	if ((nfs4_client_kstat = kstat_create_zone("nfs", 0, "nfs4_client",
2751 	    "misc", KSTAT_TYPE_NAMED, ndata,
2752 	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid)) != NULL) {
2753 		nfs4_client_kstat->ks_private = &nfscl->nfscl_stat;
2754 		nfs4_client_kstat->ks_snapshot = cl4_snapshot;
2755 		kstat_install(nfs4_client_kstat);
2756 	}
2757 	mutex_enter(&nfs4_clnt_list_lock);
2758 	list_insert_head(&nfs4_clnt_list, nfscl);
2759 	mutex_exit(&nfs4_clnt_list_lock);
2760 	return (nfscl);
2761 }
2762 
2763 /*ARGSUSED*/
2764 static void
2765 clfini4_zone(zoneid_t zoneid, void *arg)
2766 {
2767 	struct nfs4_clnt *nfscl = arg;
2768 	chhead_t *chp, *next;
2769 
2770 	if (nfscl == NULL)
2771 		return;
2772 	mutex_enter(&nfs4_clnt_list_lock);
2773 	list_remove(&nfs4_clnt_list, nfscl);
2774 	mutex_exit(&nfs4_clnt_list_lock);
2775 	clreclaim4_zone(nfscl, 0);
2776 	for (chp = nfscl->nfscl_chtable4; chp != NULL; chp = next) {
2777 		ASSERT(chp->ch_list == NULL);
2778 		kmem_free(chp->ch_protofmly, strlen(chp->ch_protofmly) + 1);
2779 		next = chp->ch_next;
2780 		kmem_free(chp, sizeof (*chp));
2781 	}
2782 	kstat_delete_byname_zone("nfs", 0, "nfs4_client", zoneid);
2783 	mutex_destroy(&nfscl->nfscl_chtable4_lock);
2784 	kmem_free(nfscl, sizeof (*nfscl));
2785 }
2786 
2787 /*
2788  * Called by endpnt_destructor to make sure the client handles are
2789  * cleaned up before the RPC endpoints.  This becomes a no-op if
2790  * clfini_zone (above) is called first.  This function is needed
2791  * (rather than relying on clfini_zone to clean up) because the ZSD
2792  * callbacks have no ordering mechanism, so we have no way to ensure
2793  * that clfini_zone is called before endpnt_destructor.
2794  */
2795 void
2796 clcleanup4_zone(zoneid_t zoneid)
2797 {
2798 	struct nfs4_clnt *nfscl;
2799 
2800 	mutex_enter(&nfs4_clnt_list_lock);
2801 	nfscl = list_head(&nfs4_clnt_list);
2802 	for (; nfscl != NULL; nfscl = list_next(&nfs4_clnt_list, nfscl)) {
2803 		if (nfscl->nfscl_zoneid == zoneid) {
2804 			clreclaim4_zone(nfscl, 0);
2805 			break;
2806 		}
2807 	}
2808 	mutex_exit(&nfs4_clnt_list_lock);
2809 }
2810 
2811 int
2812 nfs4_subr_init(void)
2813 {
2814 	/*
2815 	 * Allocate and initialize the client handle cache
2816 	 */
2817 	chtab4_cache = kmem_cache_create("client_handle4_cache",
2818 	    sizeof (struct chtab), 0, NULL, NULL, clreclaim4, NULL,
2819 	    NULL, 0);
2820 
2821 	/*
2822 	 * Initialize the list of per-zone client handles (and associated data).
2823 	 * This needs to be done before we call zone_key_create().
2824 	 */
2825 	list_create(&nfs4_clnt_list, sizeof (struct nfs4_clnt),
2826 	    offsetof(struct nfs4_clnt, nfscl_node));
2827 
2828 	/*
2829 	 * Initialize the zone_key for per-zone client handle lists.
2830 	 */
2831 	zone_key_create(&nfs4clnt_zone_key, clinit4_zone, NULL, clfini4_zone);
2832 
2833 	if (nfs4err_delay_time == 0)
2834 		nfs4err_delay_time = NFS4ERR_DELAY_TIME;
2835 
2836 	return (0);
2837 }
2838 
2839 int
2840 nfs4_subr_fini(void)
2841 {
2842 	/*
2843 	 * Deallocate the client handle cache
2844 	 */
2845 	kmem_cache_destroy(chtab4_cache);
2846 
2847 	/*
2848 	 * Destroy the zone_key
2849 	 */
2850 	(void) zone_key_delete(nfs4clnt_zone_key);
2851 
2852 	return (0);
2853 }
2854 /*
2855  * Set or Clear direct I/O flag
2856  * VOP_RWLOCK() is held for write access to prevent a race condition
2857  * which would occur if a process is in the middle of a write when
2858  * directio flag gets set. It is possible that all pages may not get flushed.
2859  *
2860  * This is a copy of nfs_directio, changes here may need to be made
2861  * there and vice versa.
2862  */
2863 
2864 int
2865 nfs4_directio(vnode_t *vp, int cmd, cred_t *cr)
2866 {
2867 	int	error = 0;
2868 	rnode4_t *rp;
2869 
2870 	rp = VTOR4(vp);
2871 
2872 	if (cmd == DIRECTIO_ON) {
2873 
2874 		if (rp->r_flags & R4DIRECTIO)
2875 			return (0);
2876 
2877 		/*
2878 		 * Flush the page cache.
2879 		 */
2880 
2881 		(void) VOP_RWLOCK(vp, V_WRITELOCK_TRUE, NULL);
2882 
2883 		if (rp->r_flags & R4DIRECTIO) {
2884 			VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL);
2885 			return (0);
2886 		}
2887 
2888 		if (nfs4_has_pages(vp) &&
2889 		    ((rp->r_flags & R4DIRTY) || rp->r_awcount > 0)) {
2890 			error = VOP_PUTPAGE(vp, (offset_t)0, (uint_t)0,
2891 			    B_INVAL, cr, NULL);
2892 			if (error) {
2893 				if (error == ENOSPC || error == EDQUOT) {
2894 					mutex_enter(&rp->r_statelock);
2895 					if (!rp->r_error)
2896 						rp->r_error = error;
2897 					mutex_exit(&rp->r_statelock);
2898 				}
2899 				VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL);
2900 				return (error);
2901 			}
2902 		}
2903 
2904 		mutex_enter(&rp->r_statelock);
2905 		rp->r_flags |= R4DIRECTIO;
2906 		mutex_exit(&rp->r_statelock);
2907 		VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL);
2908 		return (0);
2909 	}
2910 
2911 	if (cmd == DIRECTIO_OFF) {
2912 		mutex_enter(&rp->r_statelock);
2913 		rp->r_flags &= ~R4DIRECTIO;	/* disable direct mode */
2914 		mutex_exit(&rp->r_statelock);
2915 		return (0);
2916 	}
2917 
2918 	return (EINVAL);
2919 }
2920 
2921 /*
2922  * Return TRUE if the file has any pages.  Always go back to
2923  * the master vnode to check v_pages since none of the shadows
2924  * can have pages.
2925  */
2926 
2927 bool_t
2928 nfs4_has_pages(vnode_t *vp)
2929 {
2930 	rnode4_t *rp;
2931 
2932 	rp = VTOR4(vp);
2933 	if (IS_SHADOW(vp, rp))
2934 		vp = RTOV4(rp);	/* RTOV4 always gives the master */
2935 
2936 	return (vn_has_cached_data(vp));
2937 }
2938 
2939 /*
2940  * This table is used to determine whether the client should attempt
2941  * failover based on the clnt_stat value returned by CLNT_CALL.  The
2942  * clnt_stat is used as an index into the table.  If
2943  * the error value that corresponds to the clnt_stat value in the
2944  * table is non-zero, then that is the error to be returned AND
2945  * that signals that failover should be attempted.
2946  *
2947  * Special note: If the RPC_ values change, then direct indexing of the
2948  * table is no longer valid, but having the RPC_ values in the table
2949  * allow the functions to detect the change and issue a warning.
2950  * In this case, the code will always attempt failover as a defensive
2951  * measure.
2952  */
2953 
2954 static struct try_failover_tab {
2955 	enum clnt_stat	cstat;
2956 	int		error;
2957 } try_failover_table [] = {
2958 
2959 	RPC_SUCCESS,		0,
2960 	RPC_CANTENCODEARGS,	0,
2961 	RPC_CANTDECODERES,	0,
2962 	RPC_CANTSEND,		ECOMM,
2963 	RPC_CANTRECV,		ECOMM,
2964 	RPC_TIMEDOUT,		ETIMEDOUT,
2965 	RPC_VERSMISMATCH,	0,
2966 	RPC_AUTHERROR,		0,
2967 	RPC_PROGUNAVAIL,	0,
2968 	RPC_PROGVERSMISMATCH,	0,
2969 	RPC_PROCUNAVAIL,	0,
2970 	RPC_CANTDECODEARGS,	0,
2971 	RPC_SYSTEMERROR,	ENOSR,
2972 	RPC_UNKNOWNHOST,	EHOSTUNREACH,
2973 	RPC_RPCBFAILURE,	ENETUNREACH,
2974 	RPC_PROGNOTREGISTERED,	ECONNREFUSED,
2975 	RPC_FAILED,		ETIMEDOUT,
2976 	RPC_UNKNOWNPROTO,	EHOSTUNREACH,
2977 	RPC_INTR,		0,
2978 	RPC_UNKNOWNADDR,	EHOSTUNREACH,
2979 	RPC_TLIERROR,		0,
2980 	RPC_NOBROADCAST,	EHOSTUNREACH,
2981 	RPC_N2AXLATEFAILURE,	ECONNREFUSED,
2982 	RPC_UDERROR,		0,
2983 	RPC_INPROGRESS,		0,
2984 	RPC_STALERACHANDLE,	EINVAL,
2985 	RPC_CANTCONNECT,	ECONNREFUSED,
2986 	RPC_XPRTFAILED,		ECONNABORTED,
2987 	RPC_CANTCREATESTREAM,	ECONNREFUSED,
2988 	RPC_CANTSTORE,		ENOBUFS
2989 };
2990 
2991 /*
2992  * nfs4_try_failover - determine whether the client should
2993  * attempt failover based on the values stored in the nfs4_error_t.
2994  */
2995 int
2996 nfs4_try_failover(nfs4_error_t *ep)
2997 {
2998 	if (ep->error == ETIMEDOUT || ep->stat == NFS4ERR_RESOURCE)
2999 		return (TRUE);
3000 
3001 	if (ep->error && ep->rpc_status != RPC_SUCCESS)
3002 		return (try_failover(ep->rpc_status) != 0 ? TRUE : FALSE);
3003 
3004 	return (FALSE);
3005 }
3006 
3007 /*
3008  * try_failover - internal version of nfs4_try_failover, called
3009  * only by rfscall and aclcall.  Determine if failover is warranted
3010  * based on the clnt_stat and return the error number if it is.
3011  */
3012 static int
3013 try_failover(enum clnt_stat rpc_status)
3014 {
3015 	int err = 0;
3016 
3017 	if (rpc_status == RPC_SUCCESS)
3018 		return (0);
3019 
3020 #ifdef	DEBUG
3021 	if (rpc_status != 0 && nfs4_try_failover_any) {
3022 		err = ETIMEDOUT;
3023 		goto done;
3024 	}
3025 #endif
3026 	/*
3027 	 * The rpc status is used as an index into the table.
3028 	 * If the rpc status is outside of the range of the
3029 	 * table or if the rpc error numbers have been changed
3030 	 * since the table was constructed, then print a warning
3031 	 * (DEBUG only) and try failover anyway.  Otherwise, just
3032 	 * grab the resulting error number out of the table.
3033 	 */
3034 	if (rpc_status < RPC_SUCCESS || rpc_status >=
3035 	    sizeof (try_failover_table)/sizeof (try_failover_table[0]) ||
3036 	    try_failover_table[rpc_status].cstat != rpc_status) {
3037 
3038 		err = ETIMEDOUT;
3039 #ifdef	DEBUG
3040 		cmn_err(CE_NOTE, "try_failover: unexpected rpc error %d",
3041 		    rpc_status);
3042 #endif
3043 	} else
3044 		err = try_failover_table[rpc_status].error;
3045 
3046 done:
3047 	if (rpc_status)
3048 		NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
3049 		    "nfs4_try_failover: %strying failover on error %d",
3050 		    err ? "" : "NOT ", rpc_status));
3051 
3052 	return (err);
3053 }
3054 
3055 void
3056 nfs4_error_zinit(nfs4_error_t *ep)
3057 {
3058 	ep->error = 0;
3059 	ep->stat = NFS4_OK;
3060 	ep->rpc_status = RPC_SUCCESS;
3061 }
3062 
3063 void
3064 nfs4_error_init(nfs4_error_t *ep, int error)
3065 {
3066 	ep->error = error;
3067 	ep->stat = NFS4_OK;
3068 	ep->rpc_status = RPC_SUCCESS;
3069 }
3070 
3071 
3072 #ifdef DEBUG
3073 
3074 /*
3075  * Return a 16-bit hash for filehandle, stateid, clientid, owner.
3076  * use the same algorithm as for NFS v3.
3077  *
3078  */
3079 int
3080 hash16(void *p, int len)
3081 {
3082 	int i, rem;
3083 	uint_t *wp;
3084 	uint_t key = 0;
3085 
3086 	/* protect against non word aligned */
3087 	if ((rem = len & 3) != 0)
3088 		len &= ~3;
3089 
3090 	for (i = 0, wp = (uint_t *)p; i < len; i += 4, wp++) {
3091 		key ^= (*wp >> 16) ^ *wp;
3092 	}
3093 
3094 	/* hash left-over bytes */
3095 	for (i = 0; i < rem; i++)
3096 		key ^= *((uchar_t *)p + i);
3097 
3098 	return (key & 0xffff);
3099 }
3100 
3101 /*
3102  * rnode4info - return filehandle and path information for an rnode.
3103  * XXX MT issues: uses a single static buffer, no locking of path.
3104  */
3105 char *
3106 rnode4info(rnode4_t *rp)
3107 {
3108 	static char buf[80];
3109 	nfs4_fhandle_t fhandle;
3110 	char *path;
3111 	char *type;
3112 
3113 	if (rp == NULL)
3114 		return ("null");
3115 	if (rp->r_flags & R4ISXATTR)
3116 		type = "attr";
3117 	else if (RTOV4(rp)->v_flag & V_XATTRDIR)
3118 		type = "attrdir";
3119 	else if (RTOV4(rp)->v_flag & VROOT)
3120 		type = "root";
3121 	else if (RTOV4(rp)->v_type == VDIR)
3122 		type = "dir";
3123 	else if (RTOV4(rp)->v_type == VREG)
3124 		type = "file";
3125 	else
3126 		type = "other";
3127 	sfh4_copyval(rp->r_fh, &fhandle);
3128 	path = fn_path(rp->r_svnode.sv_name);
3129 	(void) snprintf(buf, 80, "$%p[%s], type=%s, flags=%04X, FH=%04X\n",
3130 	    (void *)rp, path, type, rp->r_flags,
3131 	    hash16((void *)&fhandle.fh_buf, fhandle.fh_len));
3132 	kmem_free(path, strlen(path)+1);
3133 	return (buf);
3134 }
3135 #endif
3136