xref: /titanic_50/usr/src/uts/common/fs/hsfs/hsfs_vnops.c (revision df4628cb18cef0a7960608d573d5a9b6cc9e29d5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Vnode operations for the High Sierra filesystem
30  */
31 
32 #include <sys/types.h>
33 #include <sys/t_lock.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/resource.h>
39 #include <sys/signal.h>
40 #include <sys/cred.h>
41 #include <sys/user.h>
42 #include <sys/buf.h>
43 #include <sys/vfs.h>
44 #include <sys/vfs_opreg.h>
45 #include <sys/stat.h>
46 #include <sys/vnode.h>
47 #include <sys/mode.h>
48 #include <sys/proc.h>
49 #include <sys/disp.h>
50 #include <sys/file.h>
51 #include <sys/fcntl.h>
52 #include <sys/flock.h>
53 #include <sys/kmem.h>
54 #include <sys/uio.h>
55 #include <sys/conf.h>
56 #include <sys/errno.h>
57 #include <sys/mman.h>
58 #include <sys/pathname.h>
59 #include <sys/debug.h>
60 #include <sys/vmsystm.h>
61 #include <sys/cmn_err.h>
62 #include <sys/fbuf.h>
63 #include <sys/dirent.h>
64 #include <sys/errno.h>
65 
66 #include <vm/hat.h>
67 #include <vm/page.h>
68 #include <vm/pvn.h>
69 #include <vm/as.h>
70 #include <vm/seg.h>
71 #include <vm/seg_map.h>
72 #include <vm/seg_kmem.h>
73 #include <vm/seg_vn.h>
74 #include <vm/rm.h>
75 #include <vm/page.h>
76 #include <sys/swap.h>
77 
78 #include <sys/fs/hsfs_spec.h>
79 #include <sys/fs/hsfs_node.h>
80 #include <sys/fs/hsfs_impl.h>
81 #include <sys/fs/hsfs_susp.h>
82 #include <sys/fs/hsfs_rrip.h>
83 
84 #include <fs/fs_subr.h>
85 
86 /*
87  * This tunable allows us to ignore inode numbers from rrip-1.12.
88  * In this case, we fall back to our default inode algorithm.
89  */
90 extern int use_rrip_inodes;
91 
92 
93 /* ARGSUSED */
94 static int
95 hsfs_fsync(vnode_t *cp, int syncflag, cred_t *cred)
96 {
97 	return (0);
98 }
99 
100 
101 /*ARGSUSED*/
102 static int
103 hsfs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cred,
104 	struct caller_context *ct)
105 {
106 	caddr_t base;
107 	offset_t diff;
108 	int error;
109 	struct hsnode *hp;
110 	uint_t filesize;
111 
112 	hp = VTOH(vp);
113 	/*
114 	 * if vp is of type VDIR, make sure dirent
115 	 * is filled up with all info (because of ptbl)
116 	 */
117 	if (vp->v_type == VDIR) {
118 		if (hp->hs_dirent.ext_size == 0)
119 			hs_filldirent(vp, &hp->hs_dirent);
120 	}
121 	filesize = hp->hs_dirent.ext_size;
122 
123 	/* Sanity checks. */
124 	if (uiop->uio_resid == 0 ||		/* No data wanted. */
125 	    uiop->uio_loffset > HS_MAXFILEOFF ||	/* Offset too big. */
126 	    uiop->uio_loffset >= filesize)	/* Past EOF. */
127 		return (0);
128 
129 	do {
130 		/*
131 		 * We want to ask for only the "right" amount of data.
132 		 * In this case that means:-
133 		 *
134 		 * We can't get data from beyond our EOF. If asked,
135 		 * we will give a short read.
136 		 *
137 		 * segmap_getmapflt returns buffers of MAXBSIZE bytes.
138 		 * These buffers are always MAXBSIZE aligned.
139 		 * If our starting offset is not MAXBSIZE aligned,
140 		 * we can only ask for less than MAXBSIZE bytes.
141 		 *
142 		 * If our requested offset and length are such that
143 		 * they belong in different MAXBSIZE aligned slots
144 		 * then we'll be making more than one call on
145 		 * segmap_getmapflt.
146 		 *
147 		 * This diagram shows the variables we use and their
148 		 * relationships.
149 		 *
150 		 * |<-----MAXBSIZE----->|
151 		 * +--------------------------...+
152 		 * |.....mapon->|<--n-->|....*...|EOF
153 		 * +--------------------------...+
154 		 * uio_loffset->|
155 		 * uio_resid....|<---------->|
156 		 * diff.........|<-------------->|
157 		 *
158 		 * So, in this case our offset is not aligned
159 		 * and our request takes us outside of the
160 		 * MAXBSIZE window. We will break this up into
161 		 * two segmap_getmapflt calls.
162 		 */
163 		size_t nbytes;
164 		offset_t mapon;
165 		size_t n;
166 		uint_t flags;
167 
168 		mapon = uiop->uio_loffset & MAXBOFFSET;
169 		diff = filesize - uiop->uio_loffset;
170 		nbytes = (size_t)MIN(MAXBSIZE - mapon, uiop->uio_resid);
171 		n = MIN(diff, nbytes);
172 		if (n <= 0) {
173 			/* EOF or request satisfied. */
174 			return (0);
175 		}
176 
177 		base = segmap_getmapflt(segkmap, vp,
178 		    (u_offset_t)uiop->uio_loffset, n, 1, S_READ);
179 
180 		error = uiomove(base + mapon, n, UIO_READ, uiop);
181 
182 		if (error == 0) {
183 			/*
184 			 * if read a whole block, or read to eof,
185 			 *  won't need this buffer again soon.
186 			 */
187 			if (n + mapon == MAXBSIZE ||
188 			    uiop->uio_loffset == filesize)
189 				flags = SM_DONTNEED;
190 			else
191 				flags = 0;
192 			error = segmap_release(segkmap, base, flags);
193 		} else
194 			(void) segmap_release(segkmap, base, 0);
195 	} while (error == 0 && uiop->uio_resid > 0);
196 
197 	return (error);
198 }
199 
200 /*ARGSUSED2*/
201 static int
202 hsfs_getattr(
203 	struct vnode *vp,
204 	struct vattr *vap,
205 	int flags,
206 	struct cred *cred)
207 {
208 	struct hsnode *hp;
209 	struct vfs *vfsp;
210 	struct hsfs *fsp;
211 
212 	hp = VTOH(vp);
213 	fsp = VFS_TO_HSFS(vp->v_vfsp);
214 	vfsp = vp->v_vfsp;
215 
216 	if ((hp->hs_dirent.ext_size == 0) && (vp->v_type == VDIR)) {
217 		hs_filldirent(vp, &hp->hs_dirent);
218 	}
219 	vap->va_type = IFTOVT(hp->hs_dirent.mode);
220 	vap->va_mode = hp->hs_dirent.mode;
221 	vap->va_uid = hp->hs_dirent.uid;
222 	vap->va_gid = hp->hs_dirent.gid;
223 
224 	vap->va_fsid = vfsp->vfs_dev;
225 	vap->va_nodeid = (ino64_t)hp->hs_nodeid;
226 	vap->va_nlink = hp->hs_dirent.nlink;
227 	vap->va_size =	(offset_t)hp->hs_dirent.ext_size;
228 
229 	vap->va_atime.tv_sec = hp->hs_dirent.adate.tv_sec;
230 	vap->va_atime.tv_nsec = hp->hs_dirent.adate.tv_usec*1000;
231 	vap->va_mtime.tv_sec = hp->hs_dirent.mdate.tv_sec;
232 	vap->va_mtime.tv_nsec = hp->hs_dirent.mdate.tv_usec*1000;
233 	vap->va_ctime.tv_sec = hp->hs_dirent.cdate.tv_sec;
234 	vap->va_ctime.tv_nsec = hp->hs_dirent.cdate.tv_usec*1000;
235 	if (vp->v_type == VCHR || vp->v_type == VBLK)
236 		vap->va_rdev = hp->hs_dirent.r_dev;
237 	else
238 		vap->va_rdev = 0;
239 	vap->va_blksize = vfsp->vfs_bsize;
240 	/* no. of blocks = no. of data blocks + no. of xar blocks */
241 	vap->va_nblocks = (fsblkcnt64_t)howmany(vap->va_size + (u_longlong_t)
242 	    (hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift), DEV_BSIZE);
243 	vap->va_seq = hp->hs_seq;
244 	return (0);
245 }
246 
247 /*ARGSUSED*/
248 static int
249 hsfs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cred)
250 {
251 	struct hsnode *hp;
252 
253 	if (vp->v_type != VLNK)
254 		return (EINVAL);
255 
256 	hp = VTOH(vp);
257 
258 	if (hp->hs_dirent.sym_link == (char *)NULL)
259 		return (ENOENT);
260 
261 	return (uiomove(hp->hs_dirent.sym_link,
262 	    (size_t)MIN(hp->hs_dirent.ext_size,
263 	    uiop->uio_resid), UIO_READ, uiop));
264 }
265 
266 /*ARGSUSED*/
267 static void
268 hsfs_inactive(struct vnode *vp, struct cred *cred)
269 {
270 	struct hsnode *hp;
271 	struct hsfs *fsp;
272 
273 	int nopage;
274 
275 	hp = VTOH(vp);
276 	fsp = VFS_TO_HSFS(vp->v_vfsp);
277 	/*
278 	 * Note: acquiring and holding v_lock for quite a while
279 	 * here serializes on the vnode; this is unfortunate, but
280 	 * likely not to overly impact performance, as the underlying
281 	 * device (CDROM drive) is quite slow.
282 	 */
283 	rw_enter(&fsp->hsfs_hash_lock, RW_WRITER);
284 	mutex_enter(&hp->hs_contents_lock);
285 	mutex_enter(&vp->v_lock);
286 
287 	if (vp->v_count < 1) {
288 		panic("hsfs_inactive: v_count < 1");
289 		/*NOTREACHED*/
290 	}
291 
292 	if (vp->v_count > 1 || (hp->hs_flags & HREF) == 0) {
293 		vp->v_count--;	/* release hold from vn_rele */
294 		mutex_exit(&vp->v_lock);
295 		mutex_exit(&hp->hs_contents_lock);
296 		rw_exit(&fsp->hsfs_hash_lock);
297 		return;
298 	}
299 	vp->v_count--;	/* release hold from vn_rele */
300 	if (vp->v_count == 0) {
301 		/*
302 		 * Free the hsnode.
303 		 * If there are no pages associated with the
304 		 * hsnode, give it back to the kmem_cache,
305 		 * else put at the end of this file system's
306 		 * internal free list.
307 		 */
308 		nopage = !vn_has_cached_data(vp);
309 		hp->hs_flags = 0;
310 		/*
311 		 * exit these locks now, since hs_freenode may
312 		 * kmem_free the hsnode and embedded vnode
313 		 */
314 		mutex_exit(&vp->v_lock);
315 		mutex_exit(&hp->hs_contents_lock);
316 		hs_freenode(vp, fsp, nopage);
317 	} else {
318 		mutex_exit(&vp->v_lock);
319 		mutex_exit(&hp->hs_contents_lock);
320 	}
321 	rw_exit(&fsp->hsfs_hash_lock);
322 }
323 
324 
325 /*ARGSUSED*/
326 static int
327 hsfs_lookup(
328 	struct vnode *dvp,
329 	char *nm,
330 	struct vnode **vpp,
331 	struct pathname *pnp,
332 	int flags,
333 	struct vnode *rdir,
334 	struct cred *cred)
335 {
336 	int error;
337 	int namelen = (int)strlen(nm);
338 
339 	if (*nm == '\0') {
340 		VN_HOLD(dvp);
341 		*vpp = dvp;
342 		return (0);
343 	}
344 
345 	/*
346 	 * If we're looking for ourself, life is simple.
347 	 */
348 	if (namelen == 1 && *nm == '.') {
349 		if (error = hs_access(dvp, (mode_t)VEXEC, cred))
350 			return (error);
351 		VN_HOLD(dvp);
352 		*vpp = dvp;
353 		return (0);
354 	}
355 
356 	return (hs_dirlook(dvp, nm, namelen, vpp, cred));
357 }
358 
359 
360 /*ARGSUSED*/
361 static int
362 hsfs_readdir(
363 	struct vnode	*vp,
364 	struct uio	*uiop,
365 	struct cred	*cred,
366 	int		*eofp)
367 {
368 	struct hsnode	*dhp;
369 	struct hsfs	*fsp;
370 	struct hs_direntry hd;
371 	struct dirent64	*nd;
372 	int		error;
373 	uint_t		offset;		/* real offset in directory */
374 	uint_t		dirsiz;		/* real size of directory */
375 	uchar_t		*blkp;
376 	int		hdlen;		/* length of hs directory entry */
377 	long		ndlen;		/* length of dirent entry */
378 	int		bytes_wanted;
379 	size_t		bufsize;	/* size of dirent buffer */
380 	char		*outbuf;	/* ptr to dirent buffer */
381 	char		*dname;
382 	int		dnamelen;
383 	size_t		dname_size;
384 	struct fbuf	*fbp;
385 	uint_t		last_offset;	/* last index into current dir block */
386 	ino64_t		dirino;	/* temporary storage before storing in dirent */
387 	off_t		diroff;
388 
389 	dhp = VTOH(vp);
390 	fsp = VFS_TO_HSFS(vp->v_vfsp);
391 	if (dhp->hs_dirent.ext_size == 0)
392 		hs_filldirent(vp, &dhp->hs_dirent);
393 	dirsiz = dhp->hs_dirent.ext_size;
394 	if (uiop->uio_loffset >= dirsiz) {	/* at or beyond EOF */
395 		if (eofp)
396 			*eofp = 1;
397 		return (0);
398 	}
399 	ASSERT(uiop->uio_loffset <= HS_MAXFILEOFF);
400 	offset = uiop->uio_loffset;
401 
402 	dname_size = fsp->hsfs_namemax + 1;	/* 1 for the ending NUL */
403 	dname = kmem_alloc(dname_size, KM_SLEEP);
404 	bufsize = uiop->uio_resid + sizeof (struct dirent64);
405 
406 	outbuf = kmem_alloc(bufsize, KM_SLEEP);
407 	nd = (struct dirent64 *)outbuf;
408 
409 	while (offset < dirsiz) {
410 		bytes_wanted = MIN(MAXBSIZE, dirsiz - (offset & MAXBMASK));
411 
412 		error = fbread(vp, (offset_t)(offset & MAXBMASK),
413 		    (unsigned int)bytes_wanted, S_READ, &fbp);
414 		if (error)
415 			goto done;
416 
417 		blkp = (uchar_t *)fbp->fb_addr;
418 		last_offset = (offset & MAXBMASK) + fbp->fb_count;
419 
420 #define	rel_offset(offset) ((offset) & MAXBOFFSET)	/* index into blkp */
421 
422 		while (offset < last_offset) {
423 			/*
424 			 * Very similar validation code is found in
425 			 * process_dirblock(), hsfs_node.c.
426 			 * For an explanation, see there.
427 			 * It may make sense for the future to
428 			 * "consolidate" the code in hs_parsedir(),
429 			 * process_dirblock() and hsfs_readdir() into
430 			 * a single utility function.
431 			 */
432 			hdlen = (int)((uchar_t)
433 			    HDE_DIR_LEN(&blkp[rel_offset(offset)]));
434 			if (hdlen < HDE_ROOT_DIR_REC_SIZE ||
435 			    offset + hdlen > last_offset) {
436 				/*
437 				 * advance to next sector boundary
438 				 */
439 				offset = roundup(offset + 1, HS_SECTOR_SIZE);
440 				if (hdlen)
441 					hs_log_bogus_disk_warning(fsp,
442 					    HSFS_ERR_TRAILING_JUNK, 0);
443 
444 				continue;
445 			}
446 
447 			bzero(&hd, sizeof (hd));
448 
449 			/*
450 			 * Just ignore invalid directory entries.
451 			 * XXX - maybe hs_parsedir() will detect EXISTENCE bit
452 			 */
453 			if (!hs_parsedir(fsp, &blkp[rel_offset(offset)],
454 			    &hd, dname, &dnamelen, last_offset - offset)) {
455 				/*
456 				 * Determine if there is enough room
457 				 */
458 				ndlen = (long)DIRENT64_RECLEN((dnamelen));
459 
460 				if ((ndlen + ((char *)nd - outbuf)) >
461 				    uiop->uio_resid) {
462 					fbrelse(fbp, S_READ);
463 					goto done; /* output buffer full */
464 				}
465 
466 				diroff = offset + hdlen;
467 				/*
468 				 * If the media carries rrip-v1.12 or newer,
469 				 * and we trust the inodes from the rrip data
470 				 * (use_rrip_inodes != 0), use that data. If the
471 				 * media has been created by a recent mkisofs
472 				 * version, we may trust all numbers in the
473 				 * starting extent number; otherwise, we cannot
474 				 * do this for zero sized files and symlinks,
475 				 * because if we did we'd end up mapping all of
476 				 * them to the same node. We use HS_DUMMY_INO
477 				 * in this case and make sure that we will not
478 				 * map all files to the same meta data.
479 				 */
480 				if (hd.inode != 0 && use_rrip_inodes) {
481 					dirino = hd.inode;
482 				} else if ((hd.ext_size == 0 ||
483 				    hd.sym_link != (char *)NULL) &&
484 				    (fsp->hsfs_flags & HSFSMNT_INODE) == 0) {
485 					dirino = HS_DUMMY_INO;
486 				} else {
487 					dirino = hd.ext_lbn;
488 				}
489 
490 				/* strncpy(9f) will zero uninitialized bytes */
491 
492 				ASSERT(strlen(dname) + 1 <=
493 				    DIRENT64_NAMELEN(ndlen));
494 				(void) strncpy(nd->d_name, dname,
495 				    DIRENT64_NAMELEN(ndlen));
496 				nd->d_reclen = (ushort_t)ndlen;
497 				nd->d_off = (offset_t)diroff;
498 				nd->d_ino = dirino;
499 				nd = (struct dirent64 *)((char *)nd + ndlen);
500 
501 				/*
502 				 * free up space allocated for symlink
503 				 */
504 				if (hd.sym_link != (char *)NULL) {
505 					kmem_free(hd.sym_link,
506 					    (size_t)(hd.ext_size+1));
507 					hd.sym_link = (char *)NULL;
508 				}
509 			}
510 			offset += hdlen;
511 		}
512 		fbrelse(fbp, S_READ);
513 	}
514 
515 	/*
516 	 * Got here for one of the following reasons:
517 	 *	1) outbuf is full (error == 0)
518 	 *	2) end of directory reached (error == 0)
519 	 *	3) error reading directory sector (error != 0)
520 	 *	4) directory entry crosses sector boundary (error == 0)
521 	 *
522 	 * If any directory entries have been copied, don't report
523 	 * case 4.  Instead, return the valid directory entries.
524 	 *
525 	 * If no entries have been copied, report the error.
526 	 * If case 4, this will be indistiguishable from EOF.
527 	 */
528 done:
529 	ndlen = ((char *)nd - outbuf);
530 	if (ndlen != 0) {
531 		error = uiomove(outbuf, (size_t)ndlen, UIO_READ, uiop);
532 		uiop->uio_loffset = offset;
533 	}
534 	kmem_free(dname, dname_size);
535 	kmem_free(outbuf, bufsize);
536 	if (eofp && error == 0)
537 		*eofp = (uiop->uio_loffset >= dirsiz);
538 	return (error);
539 }
540 
541 static int
542 hsfs_fid(struct vnode *vp, struct fid *fidp)
543 {
544 	struct hsnode *hp;
545 	struct hsfid *fid;
546 
547 	if (fidp->fid_len < (sizeof (*fid) - sizeof (fid->hf_len))) {
548 		fidp->fid_len = sizeof (*fid) - sizeof (fid->hf_len);
549 		return (ENOSPC);
550 	}
551 
552 	fid = (struct hsfid *)fidp;
553 	fid->hf_len = sizeof (*fid) - sizeof (fid->hf_len);
554 	hp = VTOH(vp);
555 	mutex_enter(&hp->hs_contents_lock);
556 	fid->hf_dir_lbn = hp->hs_dir_lbn;
557 	fid->hf_dir_off = (ushort_t)hp->hs_dir_off;
558 	fid->hf_ino = hp->hs_nodeid;
559 	mutex_exit(&hp->hs_contents_lock);
560 	return (0);
561 }
562 
563 /*ARGSUSED*/
564 static int
565 hsfs_open(struct vnode **vpp, int flag, struct cred *cred)
566 {
567 	return (0);
568 }
569 
570 /*ARGSUSED*/
571 static int
572 hsfs_close(
573 	struct vnode *vp,
574 	int flag,
575 	int count,
576 	offset_t offset,
577 	struct cred *cred)
578 {
579 	(void) cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
580 	cleanshares(vp, ttoproc(curthread)->p_pid);
581 	return (0);
582 }
583 
584 /*ARGSUSED2*/
585 static int
586 hsfs_access(struct vnode *vp, int mode, int flags, cred_t *cred)
587 {
588 	return (hs_access(vp, (mode_t)mode, cred));
589 }
590 
591 /*
592  * the seek time of a CD-ROM is very slow, and data transfer
593  * rate is even worse (max. 150K per sec).  The design
594  * decision is to reduce access to cd-rom as much as possible,
595  * and to transfer a sizable block (read-ahead) of data at a time.
596  * UFS style of read ahead one block at a time is not appropriate,
597  * and is not supported
598  */
599 
600 /*
601  * KLUSTSIZE should be a multiple of PAGESIZE and <= MAXPHYS.
602  */
603 #define	KLUSTSIZE	(56 * 1024)
604 /* we don't support read ahead */
605 int hsfs_lostpage;	/* no. of times we lost original page */
606 
607 /*
608  * Used to prevent biodone() from releasing buf resources that
609  * we didn't allocate in quite the usual way.
610  */
611 /*ARGSUSED*/
612 int
613 hsfs_iodone(struct buf *bp)
614 {
615 	sema_v(&bp->b_io);
616 	return (0);
617 }
618 
619 /*
620  * Each file may have a different interleaving on disk.  This makes
621  * things somewhat interesting.  The gist is that there are some
622  * number of contiguous data sectors, followed by some other number
623  * of contiguous skip sectors.  The sum of those two sets of sectors
624  * defines the interleave size.  Unfortunately, it means that we generally
625  * can't simply read N sectors starting at a given offset to satisfy
626  * any given request.
627  *
628  * What we do is get the relevant memory pages via pvn_read_kluster(),
629  * then stride through the interleaves, setting up a buf for each
630  * sector that needs to be brought in.  Instead of kmem_alloc'ing
631  * space for the sectors, though, we just point at the appropriate
632  * spot in the relevant page for each of them.  This saves us a bunch
633  * of copying.
634  */
635 /*ARGSUSED*/
636 static int
637 hsfs_getapage(
638 	struct vnode *vp,
639 	u_offset_t off,
640 	size_t len,
641 	uint_t *protp,
642 	struct page *pl[],
643 	size_t plsz,
644 	struct seg *seg,
645 	caddr_t addr,
646 	enum seg_rw rw,
647 	struct cred *cred)
648 {
649 	struct hsnode *hp;
650 	struct hsfs *fsp;
651 	int	err;
652 	struct buf *bufs;
653 	caddr_t *vas;
654 	caddr_t va;
655 	struct page *pp, *searchp, *lastp;
656 	page_t	*pagefound;
657 	offset_t	bof;
658 	struct vnode *devvp;
659 	ulong_t	byte_offset;
660 	size_t	io_len_tmp;
661 	uint_t	io_off, io_len;
662 	uint_t	xlen;
663 	uint_t	filsiz;
664 	uint_t	secsize;
665 	uint_t	bufcnt;
666 	uint_t	bufsused;
667 	uint_t	count;
668 	uint_t	io_end;
669 	uint_t	which_chunk_lbn;
670 	uint_t	offset_lbn;
671 	uint_t	offset_extra;
672 	offset_t	offset_bytes;
673 	uint_t	remaining_bytes;
674 	uint_t	extension;
675 	int	remainder;	/* must be signed */
676 	int	chunk_lbn_count;
677 	int	chunk_data_bytes;
678 	int	xarsiz;
679 	diskaddr_t driver_block;
680 	u_offset_t io_off_tmp;
681 
682 	/*
683 	 * We don't support asynchronous operation at the moment, so
684 	 * just pretend we did it.  If the pages are ever actually
685 	 * needed, they'll get brought in then.
686 	 */
687 	if (pl == NULL)
688 		return (0);
689 
690 	hp = VTOH(vp);
691 	fsp = VFS_TO_HSFS(vp->v_vfsp);
692 	devvp = fsp->hsfs_devvp;
693 	secsize = fsp->hsfs_vol.lbn_size;  /* bytes per logical block */
694 
695 	/* file data size */
696 	filsiz = hp->hs_dirent.ext_size;
697 
698 	/* disk addr for start of file */
699 	bof = LBN_TO_BYTE((offset_t)hp->hs_dirent.ext_lbn, vp->v_vfsp);
700 
701 	/* xarsiz byte must be skipped for data */
702 	xarsiz = hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift;
703 
704 	/* how many logical blocks in an interleave (data+skip) */
705 	chunk_lbn_count = hp->hs_dirent.intlf_sz + hp->hs_dirent.intlf_sk;
706 
707 	if (chunk_lbn_count == 0) {
708 		chunk_lbn_count = 1;
709 	}
710 
711 	/*
712 	 * Convert interleaving size into bytes.  The zero case
713 	 * (no interleaving) optimization is handled as a side-
714 	 * effect of the read-ahead logic.
715 	 */
716 	if (hp->hs_dirent.intlf_sz == 0) {
717 		chunk_data_bytes = LBN_TO_BYTE(1, vp->v_vfsp);
718 	} else {
719 		chunk_data_bytes =
720 		    LBN_TO_BYTE(hp->hs_dirent.intlf_sz, vp->v_vfsp);
721 	}
722 
723 reread:
724 	err = 0;
725 	pagefound = 0;
726 
727 	/*
728 	 * Do some read-ahead.  This mostly saves us a bit of
729 	 * system cpu time more than anything else when doing
730 	 * sequential reads.  At some point, could do the
731 	 * read-ahead asynchronously which might gain us something
732 	 * on wall time, but it seems unlikely....
733 	 *
734 	 * We do the easy case here, which is to read through
735 	 * the end of the chunk, minus whatever's at the end that
736 	 * won't exactly fill a page.
737 	 */
738 	which_chunk_lbn = (off + len) / chunk_data_bytes;
739 	extension = ((which_chunk_lbn + 1) * chunk_data_bytes) - off;
740 	extension -= (extension % PAGESIZE);
741 	if (extension != 0 && extension < filsiz - off) {
742 		len = extension;
743 	} else {
744 		len = PAGESIZE;
745 	}
746 	/*
747 	 * Some cd writers don't write sectors that aren't used.  Also,
748 	 * there's no point in reading sectors we'll never look at.  So,
749 	 * if we're asked to go beyond the end of a file, truncate to the
750 	 * length of that file.
751 	 *
752 	 * Additionally, this behaviour is required by section 6.4.5 of
753 	 * ISO 9660:1988(E).
754 	 */
755 	if (len > (filsiz - off)) {
756 		len = filsiz - off;
757 	}
758 
759 	/* A little paranoia. */
760 	ASSERT(len > 0);
761 
762 	/*
763 	 * After all that, make sure we're asking for things in units
764 	 * that bdev_strategy() will understand (see bug 4202551).
765 	 */
766 	len = roundup(len, DEV_BSIZE);
767 
768 	pp = NULL;
769 again:
770 	/* search for page in buffer */
771 	if ((pagefound = page_exists(vp, off)) == 0) {
772 		/*
773 		 * Need to really do disk IO to get the page.
774 		 */
775 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp,
776 		    &io_len_tmp, off, len, 0);
777 
778 		if (pp == NULL)
779 			goto again;
780 
781 		io_off = (uint_t)io_off_tmp;
782 		io_len = (uint_t)io_len_tmp;
783 
784 		/* check for truncation */
785 		/*
786 		 * xxx Clean up and return EIO instead?
787 		 * xxx Ought to go to u_offset_t for everything, but we
788 		 * xxx call lots of things that want uint_t arguments.
789 		 */
790 		ASSERT(io_off == io_off_tmp);
791 
792 		/*
793 		 * get enough buffers for worst-case scenario
794 		 * (i.e., no coalescing possible).
795 		 */
796 		bufcnt = (len + secsize - 1) / secsize;
797 		bufs = kmem_zalloc(bufcnt * sizeof (struct buf), KM_SLEEP);
798 		vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP);
799 		for (count = 0; count < bufcnt; count++) {
800 			bufs[count].b_edev = devvp->v_rdev;
801 			bufs[count].b_dev = cmpdev(devvp->v_rdev);
802 			bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ;
803 			bufs[count].b_iodone = hsfs_iodone;
804 			bufs[count].b_vp = vp;
805 			bufs[count].b_file = vp;
806 			sema_init(&bufs[count].b_io, 0, NULL,
807 			    SEMA_DEFAULT, NULL);
808 			sema_init(&bufs[count].b_sem, 0, NULL,
809 			    SEMA_DEFAULT, NULL);
810 		}
811 
812 		/*
813 		 * If our filesize is not an integer multiple of PAGESIZE,
814 		 * we zero that part of the last page that's between EOF and
815 		 * the PAGESIZE boundary.
816 		 */
817 		xlen = io_len & PAGEOFFSET;
818 		if (xlen != 0)
819 			pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
820 
821 		va = NULL;
822 		lastp = NULL;
823 		searchp = pp;
824 		io_end = io_off + io_len;
825 		for (count = 0, byte_offset = io_off;
826 		    byte_offset < io_end; count++) {
827 			ASSERT(count < bufcnt);
828 
829 			/* Compute disk address for interleaving. */
830 
831 			/* considered without skips */
832 			which_chunk_lbn = byte_offset / chunk_data_bytes;
833 
834 			/* factor in skips */
835 			offset_lbn = which_chunk_lbn * chunk_lbn_count;
836 
837 			/* convert to physical byte offset for lbn */
838 			offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp);
839 
840 			/* don't forget offset into lbn */
841 			offset_extra = byte_offset % chunk_data_bytes;
842 
843 			/* get virtual block number for driver */
844 			driver_block =
845 			    lbtodb(bof + xarsiz + offset_bytes + offset_extra);
846 
847 			if (lastp != searchp) {
848 				/* this branch taken first time through loop */
849 				va = vas[count] =
850 				    ppmapin(searchp, PROT_WRITE, (caddr_t)-1);
851 				/* ppmapin() guarantees not to return NULL */
852 			} else {
853 				vas[count] = NULL;
854 			}
855 
856 			bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE;
857 			bufs[count].b_offset =
858 			    (offset_t)(byte_offset - io_off + off);
859 
860 			/*
861 			 * We specifically use the b_lblkno member here
862 			 * as even in the 32 bit world driver_block can
863 			 * get very large in line with the ISO9660 spec.
864 			 */
865 
866 			bufs[count].b_lblkno = driver_block;
867 
868 			remaining_bytes =
869 			    ((which_chunk_lbn + 1) * chunk_data_bytes)
870 			    - byte_offset;
871 
872 			/*
873 			 * remaining_bytes can't be zero, as we derived
874 			 * which_chunk_lbn directly from byte_offset.
875 			 */
876 			if ((remaining_bytes + byte_offset) < (off + len)) {
877 				/* coalesce-read the rest of the chunk */
878 				bufs[count].b_bcount = remaining_bytes;
879 			} else {
880 				/* get the final bits */
881 				bufs[count].b_bcount = off + len - byte_offset;
882 			}
883 
884 			/*
885 			 * It would be nice to do multiple pages'
886 			 * worth at once here when the opportunity
887 			 * arises, as that has been shown to improve
888 			 * our wall time.  However, to do that
889 			 * requires that we use the pageio subsystem,
890 			 * which doesn't mix well with what we're
891 			 * already using here.  We can't use pageio
892 			 * all the time, because that subsystem
893 			 * assumes that a page is stored in N
894 			 * contiguous blocks on the device.
895 			 * Interleaving violates that assumption.
896 			 */
897 
898 			remainder = PAGESIZE - (byte_offset % PAGESIZE);
899 			if (bufs[count].b_bcount > remainder) {
900 				bufs[count].b_bcount = remainder;
901 			}
902 
903 			bufs[count].b_bufsize = bufs[count].b_bcount;
904 			if (((offset_t)byte_offset + bufs[count].b_bcount) >
905 			    HS_MAXFILEOFF) {
906 				break;
907 			}
908 			byte_offset += bufs[count].b_bcount;
909 
910 			(void) bdev_strategy(&bufs[count]);
911 
912 			lwp_stat_update(LWP_STAT_INBLK, 1);
913 			lastp = searchp;
914 			if ((remainder - bufs[count].b_bcount) < 1) {
915 				searchp = searchp->p_next;
916 			}
917 		}
918 
919 		bufsused = count;
920 		/* Now wait for everything to come in */
921 		for (count = 0; count < bufsused; count++) {
922 			if (err == 0) {
923 				err = biowait(&bufs[count]);
924 			} else
925 				(void) biowait(&bufs[count]);
926 		}
927 
928 		/* Don't leak resources */
929 		for (count = 0; count < bufcnt; count++) {
930 			sema_destroy(&bufs[count].b_io);
931 			sema_destroy(&bufs[count].b_sem);
932 			if (count < bufsused && vas[count] != NULL) {
933 				ppmapout(vas[count]);
934 			}
935 		}
936 
937 		kmem_free(vas, bufcnt * sizeof (caddr_t));
938 		kmem_free(bufs, bufcnt * sizeof (struct buf));
939 	}
940 
941 	if (err) {
942 		pvn_read_done(pp, B_ERROR);
943 		return (err);
944 	}
945 
946 	/*
947 	 * Lock the requested page, and the one after it if possible.
948 	 * Don't bother if our caller hasn't given us a place to stash
949 	 * the page pointers, since otherwise we'd lock pages that would
950 	 * never get unlocked.
951 	 */
952 	if (pagefound) {
953 		int index;
954 		ulong_t soff;
955 
956 		/*
957 		 * Make sure it's in memory before we say it's here.
958 		 */
959 		if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) {
960 			hsfs_lostpage++;
961 			goto reread;
962 		}
963 
964 		pl[0] = pp;
965 		index = 1;
966 
967 		/*
968 		 * Try to lock the next page, if it exists, without
969 		 * blocking.
970 		 */
971 		plsz -= PAGESIZE;
972 		/* LINTED (plsz is unsigned) */
973 		for (soff = off + PAGESIZE; plsz > 0;
974 		    soff += PAGESIZE, plsz -= PAGESIZE) {
975 			pp = page_lookup_nowait(vp, (u_offset_t)soff,
976 			    SE_SHARED);
977 			if (pp == NULL)
978 				break;
979 			pl[index++] = pp;
980 		}
981 		pl[index] = NULL;
982 		return (0);
983 	}
984 
985 	if (pp != NULL) {
986 		pvn_plist_init(pp, pl, plsz, off, io_len, rw);
987 	}
988 
989 	return (err);
990 }
991 
992 static int
993 hsfs_getpage(
994 	struct vnode *vp,
995 	offset_t off,
996 	size_t len,
997 	uint_t *protp,
998 	struct page *pl[],
999 	size_t plsz,
1000 	struct seg *seg,
1001 	caddr_t addr,
1002 	enum seg_rw rw,
1003 	struct cred *cred)
1004 {
1005 	int err;
1006 	uint_t filsiz;
1007 	struct hsnode *hp = VTOH(vp);
1008 
1009 	/* does not support write */
1010 	if (rw == S_WRITE) {
1011 		panic("write attempt on READ ONLY HSFS");
1012 		/*NOTREACHED*/
1013 	}
1014 
1015 	if (vp->v_flag & VNOMAP) {
1016 		return (ENOSYS);
1017 	}
1018 
1019 	ASSERT(off <= HS_MAXFILEOFF);
1020 
1021 	/*
1022 	 * Determine file data size for EOF check.
1023 	 */
1024 	filsiz = hp->hs_dirent.ext_size;
1025 	if ((off + len) > (offset_t)(filsiz + PAGEOFFSET) && seg != segkmap)
1026 		return (EFAULT);	/* beyond EOF */
1027 
1028 	if (protp != NULL)
1029 		*protp = PROT_ALL;
1030 
1031 	if (len <= PAGESIZE)
1032 		err = hsfs_getapage(vp, (u_offset_t)off, len, protp, pl, plsz,
1033 		    seg, addr, rw, cred);
1034 	else
1035 		err = pvn_getpages(hsfs_getapage, vp, off, len, protp,
1036 		    pl, plsz, seg, addr, rw, cred);
1037 
1038 	return (err);
1039 }
1040 
1041 
1042 
1043 /*
1044  * This function should never be called. We need to have it to pass
1045  * it as an argument to other functions.
1046  */
1047 /*ARGSUSED*/
1048 int
1049 hsfs_putapage(
1050 	vnode_t		*vp,
1051 	page_t		*pp,
1052 	u_offset_t	*offp,
1053 	size_t		*lenp,
1054 	int		flags,
1055 	cred_t		*cr)
1056 {
1057 	/* should never happen - just destroy it */
1058 	cmn_err(CE_NOTE, "hsfs_putapage: dirty HSFS page");
1059 	pvn_write_done(pp, B_ERROR | B_WRITE | B_INVAL | B_FORCE | flags);
1060 	return (0);
1061 }
1062 
1063 
1064 /*
1065  * The only flags we support are B_INVAL, B_FREE and B_DONTNEED.
1066  * B_INVAL is set by:
1067  *
1068  *	1) the MC_SYNC command of memcntl(2) to support the MS_INVALIDATE flag.
1069  *	2) the MC_ADVISE command of memcntl(2) with the MADV_DONTNEED advice
1070  *	   which translates to an MC_SYNC with the MS_INVALIDATE flag.
1071  *
1072  * The B_FREE (as well as the B_DONTNEED) flag is set when the
1073  * MADV_SEQUENTIAL advice has been used. VOP_PUTPAGE is invoked
1074  * from SEGVN to release pages behind a pagefault.
1075  */
1076 /*ARGSUSED*/
1077 static int
1078 hsfs_putpage(
1079 	struct vnode	*vp,
1080 	offset_t	off,
1081 	size_t		len,
1082 	int		flags,
1083 	struct cred	*cr)
1084 {
1085 	int error = 0;
1086 
1087 	if (vp->v_count == 0) {
1088 		panic("hsfs_putpage: bad v_count");
1089 		/*NOTREACHED*/
1090 	}
1091 
1092 	if (vp->v_flag & VNOMAP)
1093 		return (ENOSYS);
1094 
1095 	ASSERT(off <= HS_MAXFILEOFF);
1096 
1097 	if (!vn_has_cached_data(vp))	/* no pages mapped */
1098 		return (0);
1099 
1100 	if (len == 0) {		/* from 'off' to EOF */
1101 		error = pvn_vplist_dirty(vp, off, hsfs_putapage, flags, cr);
1102 	} else {
1103 		offset_t end_off = off + len;
1104 		offset_t file_size = VTOH(vp)->hs_dirent.ext_size;
1105 		offset_t io_off;
1106 
1107 		file_size = (file_size + PAGESIZE - 1) & PAGEMASK;
1108 		if (end_off > file_size)
1109 			end_off = file_size;
1110 
1111 		for (io_off = off; io_off < end_off; io_off += PAGESIZE) {
1112 			page_t *pp;
1113 
1114 			/*
1115 			 * We insist on getting the page only if we are
1116 			 * about to invalidate, free or write it and
1117 			 * the B_ASYNC flag is not set.
1118 			 */
1119 			if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
1120 				pp = page_lookup(vp, io_off,
1121 				    (flags & (B_INVAL | B_FREE)) ?
1122 				    SE_EXCL : SE_SHARED);
1123 			} else {
1124 				pp = page_lookup_nowait(vp, io_off,
1125 				    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
1126 			}
1127 
1128 			if (pp == NULL)
1129 				continue;
1130 			/*
1131 			 * Normally pvn_getdirty() should return 0, which
1132 			 * impies that it has done the job for us.
1133 			 * The shouldn't-happen scenario is when it returns 1.
1134 			 * This means that the page has been modified and
1135 			 * needs to be put back.
1136 			 * Since we can't write on a CD, we fake a failed
1137 			 * I/O and force pvn_write_done() to destroy the page.
1138 			 */
1139 			if (pvn_getdirty(pp, flags) == 1) {
1140 				cmn_err(CE_NOTE,
1141 				    "hsfs_putpage: dirty HSFS page");
1142 				pvn_write_done(pp, flags |
1143 				    B_ERROR | B_WRITE | B_INVAL | B_FORCE);
1144 			}
1145 		}
1146 	}
1147 	return (error);
1148 }
1149 
1150 
1151 /*ARGSUSED*/
1152 static int
1153 hsfs_map(
1154 	struct vnode *vp,
1155 	offset_t off,
1156 	struct as *as,
1157 	caddr_t *addrp,
1158 	size_t len,
1159 	uchar_t prot,
1160 	uchar_t maxprot,
1161 	uint_t flags,
1162 	struct cred *cred)
1163 {
1164 	struct segvn_crargs vn_a;
1165 	int error;
1166 
1167 	/* VFS_RECORD(vp->v_vfsp, VS_MAP, VS_CALL); */
1168 
1169 	if (vp->v_flag & VNOMAP)
1170 		return (ENOSYS);
1171 
1172 	if (off > HS_MAXFILEOFF || off < 0 ||
1173 	    (off + len) < 0 || (off + len) > HS_MAXFILEOFF)
1174 		return (ENXIO);
1175 
1176 	if (vp->v_type != VREG) {
1177 		return (ENODEV);
1178 	}
1179 
1180 	/*
1181 	 * If file is being locked, disallow mapping.
1182 	 */
1183 	if (vn_has_mandatory_locks(vp, VTOH(vp)->hs_dirent.mode))
1184 		return (EAGAIN);
1185 
1186 	as_rangelock(as);
1187 
1188 	if ((flags & MAP_FIXED) == 0) {
1189 		map_addr(addrp, len, off, 1, flags);
1190 		if (*addrp == NULL) {
1191 			as_rangeunlock(as);
1192 			return (ENOMEM);
1193 		}
1194 	} else {
1195 		/*
1196 		 * User specified address - blow away any previous mappings
1197 		 */
1198 		(void) as_unmap(as, *addrp, len);
1199 	}
1200 
1201 	vn_a.vp = vp;
1202 	vn_a.offset = off;
1203 	vn_a.type = flags & MAP_TYPE;
1204 	vn_a.prot = prot;
1205 	vn_a.maxprot = maxprot;
1206 	vn_a.flags = flags & ~MAP_TYPE;
1207 	vn_a.cred = cred;
1208 	vn_a.amp = NULL;
1209 	vn_a.szc = 0;
1210 	vn_a.lgrp_mem_policy_flags = 0;
1211 
1212 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
1213 	as_rangeunlock(as);
1214 	return (error);
1215 }
1216 
1217 /* ARGSUSED */
1218 static int
1219 hsfs_addmap(
1220 	struct vnode *vp,
1221 	offset_t off,
1222 	struct as *as,
1223 	caddr_t addr,
1224 	size_t len,
1225 	uchar_t prot,
1226 	uchar_t maxprot,
1227 	uint_t flags,
1228 	struct cred *cr)
1229 {
1230 	struct hsnode *hp;
1231 
1232 	if (vp->v_flag & VNOMAP)
1233 		return (ENOSYS);
1234 
1235 	hp = VTOH(vp);
1236 	mutex_enter(&hp->hs_contents_lock);
1237 	hp->hs_mapcnt += btopr(len);
1238 	mutex_exit(&hp->hs_contents_lock);
1239 	return (0);
1240 }
1241 
1242 /*ARGSUSED*/
1243 static int
1244 hsfs_delmap(
1245 	struct vnode *vp,
1246 	offset_t off,
1247 	struct as *as,
1248 	caddr_t addr,
1249 	size_t len,
1250 	uint_t prot,
1251 	uint_t maxprot,
1252 	uint_t flags,
1253 	struct cred *cr)
1254 {
1255 	struct hsnode *hp;
1256 
1257 	if (vp->v_flag & VNOMAP)
1258 		return (ENOSYS);
1259 
1260 	hp = VTOH(vp);
1261 	mutex_enter(&hp->hs_contents_lock);
1262 	hp->hs_mapcnt -= btopr(len);	/* Count released mappings */
1263 	ASSERT(hp->hs_mapcnt >= 0);
1264 	mutex_exit(&hp->hs_contents_lock);
1265 	return (0);
1266 }
1267 
1268 /* ARGSUSED */
1269 static int
1270 hsfs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp)
1271 {
1272 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
1273 }
1274 
1275 /* ARGSUSED */
1276 static int
1277 hsfs_frlock(
1278 	struct vnode *vp,
1279 	int cmd,
1280 	struct flock64 *bfp,
1281 	int flag,
1282 	offset_t offset,
1283 	struct flk_callback *flk_cbp,
1284 	cred_t *cr)
1285 {
1286 	struct hsnode *hp = VTOH(vp);
1287 
1288 	/*
1289 	 * If the file is being mapped, disallow fs_frlock.
1290 	 * We are not holding the hs_contents_lock while checking
1291 	 * hs_mapcnt because the current locking strategy drops all
1292 	 * locks before calling fs_frlock.
1293 	 * So, hs_mapcnt could change before we enter fs_frlock making
1294 	 * it meaningless to have held hs_contents_lock in the first place.
1295 	 */
1296 	if (hp->hs_mapcnt > 0 && MANDLOCK(vp, hp->hs_dirent.mode))
1297 		return (EAGAIN);
1298 
1299 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr));
1300 }
1301 
1302 /* ARGSUSED */
1303 static int
1304 hsfs_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr)
1305 {
1306 	struct hsfs	*fsp;
1307 
1308 	int		error = 0;
1309 
1310 	switch (cmd) {
1311 
1312 	case _PC_NAME_MAX:
1313 		fsp = VFS_TO_HSFS(vp->v_vfsp);
1314 		*valp = fsp->hsfs_namemax;
1315 		break;
1316 
1317 	case _PC_FILESIZEBITS:
1318 		*valp = 33;	/* Without multi extent support: 4 GB - 2k */
1319 		break;
1320 
1321 	default:
1322 		error = fs_pathconf(vp, cmd, valp, cr);
1323 	}
1324 
1325 	return (error);
1326 }
1327 
1328 
1329 
1330 const fs_operation_def_t hsfs_vnodeops_template[] = {
1331 	VOPNAME_OPEN,		{ .vop_open = hsfs_open },
1332 	VOPNAME_CLOSE,		{ .vop_close = hsfs_close },
1333 	VOPNAME_READ,		{ .vop_read = hsfs_read },
1334 	VOPNAME_GETATTR,	{ .vop_getattr = hsfs_getattr },
1335 	VOPNAME_ACCESS,		{ .vop_access = hsfs_access },
1336 	VOPNAME_LOOKUP,		{ .vop_lookup = hsfs_lookup },
1337 	VOPNAME_READDIR,	{ .vop_readdir = hsfs_readdir },
1338 	VOPNAME_READLINK,	{ .vop_readlink = hsfs_readlink },
1339 	VOPNAME_FSYNC,		{ .vop_fsync = hsfs_fsync },
1340 	VOPNAME_INACTIVE,	{ .vop_inactive = hsfs_inactive },
1341 	VOPNAME_FID,		{ .vop_fid = hsfs_fid },
1342 	VOPNAME_SEEK,		{ .vop_seek = hsfs_seek },
1343 	VOPNAME_FRLOCK,		{ .vop_frlock = hsfs_frlock },
1344 	VOPNAME_GETPAGE,	{ .vop_getpage = hsfs_getpage },
1345 	VOPNAME_PUTPAGE,	{ .vop_putpage = hsfs_putpage },
1346 	VOPNAME_MAP,		{ .vop_map = hsfs_map },
1347 	VOPNAME_ADDMAP,		{ .vop_addmap = hsfs_addmap },
1348 	VOPNAME_DELMAP,		{ .vop_delmap = hsfs_delmap },
1349 	VOPNAME_PATHCONF,	{ .vop_pathconf = hsfs_pathconf },
1350 	NULL,			NULL
1351 };
1352 
1353 struct vnodeops *hsfs_vnodeops;
1354